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Abstract

Modern datasets are often massive due to the sharp decrease in the cost of collecting

and storing data. Many are endowed with relational structure modeled by a graph,

an object comprising a set of points and a set of pairwise connections between them.

A “signal on a graph” has elements related to each other through a graph—it could

model, for example, measurements from a sensor network. In this dissertation we

study several problems in signal processing and inference on graphs.

We begin by introducing an analogue to Heisenberg’s time-frequency uncer-

tainty principle for signals on graphs. We use spectral graph theory and the stan-

dard extension of Fourier analysis to graphs. Our spectral graph uncertainty princi-

ple makes precise the notion that a highly localized signal on a graph must have a

broad spectrum, and vice versa.

Next, we consider the problem of detecting a random walk on a graph from noisy

observations. We characterize the performance of the optimal detector through the

(type-II) error exponent, borrowing techniques from statistical physics to develop a

lower bound exhibiting a phase transition. Strong performance is only guaranteed

when the signal to noise ratio exceeds twice the random walk’s entropy rate. Monte

Carlo simulations show that the lower bound is quite close to the true exponent.
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Abstract

Next, we introduce a technique for inferring the source of an epidemic from

observations at a few nodes. We develop a Monte Carlo technique to simulate the

infection process, and use statistics computed from these simulations to approxi-

mate the likelihood, which we then maximize to locate the source.

We further introduce a logistic autoregressive model (ALARM), a simple model

for binary processes on graphs that can still capture a variety of behavior. We

demonstrate its simplicity by showing how to easily infer the underlying graph

structure from measurements; a technique versatile enough that it can work un-

der model mismatch.

Finally, we introduce the exact formula for the error of the randomized Kacz-

marz algorithm, a linear system solver for sparse systems, which often arise in

graph theory. This is important because, as we show, existing performance bounds

are quite loose.
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Chapter 1

Introduction

M
ODERN datasets are often massive due to the sharp decrease in the cost of

collecting and storing data. Many of these datasets possess some sort of

relational structure, where a datum may be connected to another through prox-

imity, affinity, or, more concretely, a direct communication link [18, 55, 79, 131].

A mathematical model for this sort of relational structure is a graph, which is an

object consisting of a set of points and information about pairwise connections be-

tween the points [32]. In general, these connections might be directed or weighted.

Several graphs are illustrated in Figure 1.1.

Graphs can model both neuronal and anatomical connectivity in the brain, hu-

man interaction networks through which diseases spread, sensor networks with dis-

tributed communication and processing, regulatory networks in biological systems,

transportation networks through which traffic flows, and many other real-world

1



Chapter 1: Introduction

(a) (b) (c)

(d) (e)

Figure 1.1: A graph represents relational structure between various nodes. Several

types of graphs are illustrated here: (a) a complete graph, a degenerate graph in

which all nodes are connected to each other; (b) a star graph, in which a central

node is connected to all others; (c) a random geometric graph, in which nodes are

selected as random points and connected to nearby nodes; (d) a small world graph,

a model in which most connections are local but a few long-distance connections

greatly reduce average distance; (e) a binary tree graph.
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Chapter 1: Introduction

systems. More abstractly, graphs often have utility as natural discretizations of the

complicated manifold structure underlying high dimensional signals. When the re-

lational structure is paired with measurements on the nodes of the network, we

have a signal on a graph.

Whatever the network, the processing we would like to perform on such a signal

may be very similar to standard signal processing on 1-D time series or 2-D images,

e.g. filtering and smoothing, detection (hypothesis testing), parameter estimation,

sampling and reconstruction, or compression. On the other hand, we also may wish

to answer a question unique to this setting: can we learn the network structure itself

from measurements that are bound to it somehow? In any of these cases, there are

unique challenges and opportunities due to the presence of the graph structure.

Exploiting or inferring this structure is the common thread running through this

dissertation.

1.1 Outline of dissertation

In this dissertation, we study several problems related to signal processing and

inference on graphs, in which we either exploit the graph structure or try to it from

our observations. The outline of the dissertation is as follows.

In recent years, there has been considerable effort to extend the concepts of

classical signal processing to the graph setting. One common desire is localized,

3



Chapter 1: Introduction

multiscale transforms that extract components of graph signals that are appropri-

ately localized on the graph itself and in the graph spectral domain, which is defined

by the eigenvectors of the Laplacian matrix. In Chapter 2, we show that there is an

ultimate limit for this localization. Analogous to the Heisenberg uncertainty prin-

ciple, which prohibits a classical signal from being highly localized in both time

and frequency, we find an uncertainty principle for signals on graphs that prevents

signals from being highly localized on the graph and in the spectral domain. We

define graph and spectral spreads that are analogous to the time and frequency

spreads defined by Heisenberg, and show how to find the “uncertainty curve” that

defines the smallest graph spread for any given spectral spread. We also reveal an

intriguing connection to diffusion processes.

How much can knowledge of graph structure help us to detect very weak sig-

nals? This is the question we consider in Chapter 3, where we study the problem

of detecting a random walk. Specifically, given a sequence of observations from

every node in a graph, we seek to distinguish between two hypotheses: (a) every

observation is just meaningless zero-mean Gaussian noise, or (b) an agent is un-

dergoing a random walk on the graph and raises the mean of the observation at

its location at each time. We characterize the performance of the optimal detector

by the (type-II) error exponent: the decay rate of the miss probability with increas-

ing observations under a false alarm constraint. We use a connection to statistical

physics to develop a lower bound that can be computed using techniques borrowed

4



Chapter 1: Introduction

from that field. Our fully rigorous analysis uses large deviations theory to show

that the lower bound exhibits a phase transition: strong performance is only guar-

anteed when the signal to noise ratio exceeds twice the entropy rate of the Markov

chain. Monte Carlo simulations show that the lower bound is quite close to the true

exponent.

There are many dynamical processes on graphs in which the graph structure

controls the behavior of the process by requiring interactions to primarily occur be-

tween nodes that are connected to each other. In Chapter 4 we consider two such

models. The first is the standard susceptible-infected (SI) model from epidemiol-

ogy, which models the spread of an infection through a network. This is a very

old model, but only recently has anyone considered the problem of detecting the

source of an infection from later observations. We introduce our technique, which

can perform this inference given a sequence of snapshots from only a small number

of nodes by performing Monte Carlo simulations to estimate the likelihood maxi-

mizing it. We also introduce our own model for general binary dynamic processes

on graphs: a logistic autoregressive model (ALARM). In this model, a node’s value

at time t is determined by a linear combination of its neighbors values at preceding

times through a logistic link function. This can capture all sorts of behavior: nodes

can positively or negatively influence their neighbors, and a node’s value can be

made to be “sticky”. We illustrate some of this behavior, and show how the gen-

erality of the model allows us to perform inference when the true dynamics are

5



Chapter 1: Introduction

unknown.

Next, we consider a problem with broad applications: solving a linear system. In

particular, in Chapter 5, we consider the performance of the randomized Kaczmarz

algorithm, a linear system solver that is particularly suited for sparse matrices of

that sort that often appear in graph problems (e.g. adjacency, Laplacian, and inci-

dence matrices). The Kaczmarz algorithm is a well-known iterative algorithm that

has been studied and used for decades. It can suffer from convergence difficulties

under certain conditions, but recently a randomized version of the algorithm was

proposed that has provably exponential convergence. We introduce the first exact

formula for the mean squared error (MSE) of the algorithm at each time step; this

formula works for both noiseless and noisy linear systems. We show how to com-

pute the limiting “error floor” in the noisy case, and the error exponent measuring

the decay rate of the MSE in the noiseless case. We consider the problem of opti-

mizing the randomization of the algorithm for fastest convergence. We also show

numerically that existing performance bounds are very weak, making our exact for-

mula useful in practice.

Finally, in Chapter 6 we summarize the main contributions of this dissertation

and discuss future research directions.

6



Chapter 2

A Spectral Graph Uncertainty

Principle

H
EISENBERG’S UNCERTAINTY principle is a cornerstone of signal processing.

The simple inequality [53,128],

∆2
t∆

2
ω ≥

1

4
, (2.1)

in which ∆2
t and ∆2

ω measure the “time spread” and “frequency spread” of some

signal, respectively, is one way to precisely characterize a general principle with

far-reaching consequences: that a signal cannot be concentrated in both time and

frequency. This is illustrated in Figure 2.1.

In this chapter, we establish analogous uncertainty principles for signals defined

on graphs. The study of signals on graphs, and the extension of classical signal

processing techniques to such nonstandard domains, has received growing interest

7
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t ω

t ω

t ω

t ω

F

F−1

F

F−1

F

F−1

F

F−1

Figure 2.1: The Heisenberg-Weyl uncertainty principle causes the Fourier transform

of a function to narrow as the function itself widens. Gaussian functions such as

the one in this figure are the only ones that achieve the bound exactly.
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Chapter 2: A Spectral Graph Uncertainty Principle

in the past few years (see, e.g., [23,29,33,34,43,62,76,92,102]). These studies are

often motivated (and enabled) by the deluge of modern data collected on various

technological, social, biological, and informational networks [79]. The efficient ac-

quisition, representation, and analysis of such high-dimensional graph-based data

present challenges that should be addressed by the development of new signal pro-

cessing theories and tools. By using analogies between traditional and graph-based

signal processing, researchers can bootstrap their intuitive understanding of stan-

dard signal processing problems to gain some insight into the more complicated

graph-based problems. This is the basic motivation for developing an uncertainty

principle for signals on graphs.

Related Work

Uncertainty principles date back to Heisenberg [53], who in 1927 proved a re-

sult that Weyl and Pauli soon afterward generalized to (2.1). It was also shown that

the bound in (2.1) is achievable by Gaussian-shaped functions and frequency mod-

ulations thereof. A lifetime later, analogous results were found for discrete-time

signals as well [25, 69]. Similar uncertainty principles have also been established

on the unit sphere Sd [57] and, in more abstract settings, on compact Riemannian

manifolds [49].

In a different line of work, Donoho and Stark [44] introduced a new con-

cept of uncertainty related to signal support size. They showed that a length N

9
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discrete-time signal with support set T in the time domain and support set W in

the frequency domain satisfies |T | |W| ≥ N . This bound is a nonlocal uncertainty

principle—it limits the cardinality of a signal’s time and frequency support sets, even

if each is the disjoint union of far-flung subsets. Further studied in, e.g, [26,27,46],

these nonlocal uncertainty principles laid the foundation for sparse signal recovery

from partial measurements.

In the same vein of the classical (and local) uncertainty principle stated in (2.1),

we have been studying the following question: given an arbitrary graph, to what

extent can a signal be simultaneously localized on that graph and in the “frequency”

domain? To obtain the spectral representation of these signals, we use the standard

approach of treating the eigenvectors of the graph Laplacian operator [56] as a

Fourier basis. The Laplacian encodes a notion of smoothness on a graph [18] and

is analogous to the Laplace-Beltrami operator on a manifold [17].

The analogy between the spectral decomposition of graph Laplacians and the

standard Fourier transform has been used to extend the concept of bandlimited

sampling to signals defined on graphs [102] and in the construction of wavelet

transforms on graphs [34, 62, 92]. In the latter case, as pointed out in [92], a

desirable property of the wavelet transforms is that the dictionary elements (i.e.,

wavelets) should be well-localized in the graph and spectral domains. Our results

provide a way to precisely quantify this desideratum, as well as its fundamental

limit.

10
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Contributions

We begin in Section 2.1 with a review of some basic concepts in graph theory,

including the definition of the graph Laplacian matrix and its spectral decompo-

sition. After justifying the use of the Laplacian eigenvectors as a Fourier basis on

graphs, we define in Section 2.1.3 the graph spread about a vertex u0, ∆
2
g,u0

(x), and

the spectral spread, ∆2
s(x), of a signal x defined on a graph. These two quantities,

which we first introduced in some preliminary work [2, 3], are defined in analogy

to the standard time and frequency spreads, respectively.

In [2], we developed a lower bound on the product of ∆2
g,u0

and ∆2
s analogous

to (2.1). However, the bound was not tight and applied only under restrictive

conditions for the graph and the signal on it. In [3] we took a new approach

to characterize a more general and precise relationship between the two kinds of

uncertainty. In [7], we continued this line of investigation, and provided a rigorous

basis for the arguments presented in [3], in addition to some new results. This

chapter mainly follows the results of [7].

The main contributions are developed in Section 2.2, where we characterize

the uncertainty bound, in Section 2.3, where we analyze the bound when applied

to special families of graphs, and in Section 2.4, where we reveal a connection

between diffusion processes and the uncertainty bound. The main results are sum-

marized as follows:

1. Convexity of the feasible region: We prove that, when the underlying graph is

11
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connected and contains at least three vertices, the feasibility region of all possible

pairs (∆2
s(x),∆

2
g,u0

(x)) is a bounded and convex set.

2. Characterization of the uncertainty curve: We provide a complete characteri-

zation of the curve

γu0(s) = min
x

∆2
g,u0

(x) subject to ∆2
s(x) = s,

which forms the lower boundary of the feasibility region. Studying γu0(s), which

we will refer to as the uncertainty curve, is important because it is a fundamental

bound analogous to the classical uncertainty bound (2.1). Theorem 2.1 states that

each point on the uncertainty curve is achieved by an eigenvector associated with

the smallest eigenvalue of a particular matrix-valued function M(α). Varying the

parameter α allows one to “trace” and obtain the entire curve γu0(s). A rigorous

and complete proof of Theorem 2.1 is provided. Based the convexity of γu0(s), we

show in Section 2.2.3 that the sandwich algorithm [111] can be used to efficiently

produce a piecewise linear approximation for the uncertainty curve that differs from

the true curve by at most ε (under a suitable error metric) and requires solving

O(ε−1/2) typically sparse eigenvalue problems.

3. Special graph families: The uncertainty curves for several special families

of graphs are investigated in Section 2.3. For complete graphs and star graphs,

we derive closed-form formulas for the uncertainty curves γu0(s). For Erdős-Rényi

random graphs [50, 51], we develop an analytical approximation for the expected

value of γu0(s), which is shown through experiment to be very accurate.

12
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4. Diffusion process on a graph: In Section 2.4, we reveal an intriguing connec-

tion between the classical uncertainty principle for functions on the real line and

our results for signals on graphs. In the classical case, the solution to the heat equa-

tion du
dt

= d2u
dy2

starting at t = 0 as an impulse is a Gaussian function with a variance

that grows linearly with t; this solution achieves the Heisenberg uncertainty bound

(2.1). We first show experimental results indicating that a diffusion process start-

ing with an impulse on a graph follows the graph uncertainty curve very closely

(though not, in general, exactly.) We then prove in Proposition 2.4 that the match

is exact for the special cases of a star graph or a complete graph. We further prove

in Proposition 2.5 that for general graphs, under a simple condition on the distance

function on the graph, the first two derivatives of the uncertainty curve and the

curve traced by the diffusion process match at the point corresponding to t = 0.

2.1 Mathematical Formulation

2.1.1 Graphs, Signals, and Notation

We define a simple, undirected graph as G = (V,E), where V = {v1, v2, . . . , vN}

is a set of N vertices and E = {e1, e2, . . . , eM} is the set of M edges. Each edge is

an unordered pair of two different vertices u, v ∈ V , and we will use the notation

u ∼ v to indicate that u and v are connected by an edge. The fundamental structure

of a graph G can be captured by its adjacency matrix A = [aij ]ij, where aij = 1

13
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if there is an edge between vi and vj , and aij = 0 otherwise. As defined, the

diagonal of A is always zero because a simple graph may contain no loops (i.e.,

edges connecting one vertex to itself), and A is symmetric because the graph is

undirected. (A common generalization is to consider a weighted graph, where each

edge em is associated with a positive “weight” wm. In this chapter we only consider

unweighted graphs, but other researchers have recently explored extending our

results to the weighted graph case [100].)

The degree of a vertex v, denoted by deg(v), is the number of edges incident

upon that vertex. We define D as the diagonal matrix that has the vertex degrees

on its diagonal, i.e.,

D
def
= diag {deg(v1), deg(v2), . . . , deg(vN )} . (2.2)

To quantify the graph-domain spread of a signal, we will need a notion of dis-

tance, denoted by d(u, v), between any pair of vertices u and v on the graph. A

simple choice is to use the geodesic distance [56], in which case d(u, v) is the length

of the shortest path connecting the two vertices. In this work, we only consider

connected graphs, so d(u, v) is always finite. Other distance functions have been

proposed in the literature, including the resistance distance [77] and the diffusion

distance [34]. Our subsequent discussions are not confined to any particular choice

of the distance function. The only requirement is that d(u, v) should form a semi-

metric: namely, d(u, v) ≥ 0 with equality if and only if u = v, and d(u, v) = d(v, u).

A finite-energy signal defined on the graph x ∈ ℓ2(G) is a mapping from the set

14
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of vertices to R. It can be treated as a vector in R
N , and so any such signal will be

denoted by a boldface variable. There is a natural inner product on ℓ2(G) defined

by 〈x,y〉 = yTx, which induces a norm ‖x‖ =
√
xTx. We will denote the value of

x at vertex v by x(v). An impulse at v ∈ V , i.e., a signal that has value 1 at v and 0

everywhere else, will be denoted as δv.

2.1.2 The Laplacian Matrix, Graph Fourier Transforms, and Sig-

nal Processing on Graphs

As mentioned earlier, the graph Laplacian matrix plays an important role in

this work. There are several different definitions of the Laplacian matrix com-

monly used in the literature. The unnormalized Laplacian matrix [56] is given by

Lunnorm
def
= D−A, where D and A are the degree matrix in (2.2) and the adjacency

matrix, respectively. In this work, we find it more convenient to use the normalized

Laplacian matrix [32], defined as

Lnorm
def
= D−1/2LunnormD

−1/2

= I −D−1/2AD−1/2.

The choice of unnormalized or normalized Laplacian makes no essential difference

to our analysis in Section 2.2. The latter is chosen because it leads to simpler

expressions in some of our derivations. For notational simplicity, we will drop the

subscript in Lnorm, calling it L in what follows.
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Intuitively, the Laplacian matrix is analogous to the continuous Laplacian oper-

ator −∇2 or − d2

dy2
on the real line. In fact, when the underlying graph is a line or

a cycle, L provides the standard stencil approximation for the second-order differ-

entiation operator. The same holds for higher-dimensional lattices. In more gen-

eral settings where the graphs are formed by sampling an underlying continuous

manifold, the Laplacian matrix converges at high sampling densities to the Laplace-

Beltrami operator, a differential geometric analogy to the second derivative [17].

By construction, L is a real symmetric matrix. We can therefore diagonalize L

as

L = FΛF T , (2.3)

where F is an orthogonal matrix whose columns are the eigenvectors of L, and

Λ
def
= diag {λ1, λ2, . . . , λN} is a diagonal matrix of eigenvalues, which are all real. L

can be shown to be positive semidefinite with rank less than N , so we can order the

eigenvalues as 0 = λ1 ≤ λ2 ≤ . . . ≤ λN .

A large number of the topological properties of a graph can be inferred from the

spectrum of its graph Laplacian [32]. For example, a graph is connected (meaning

that a path can always be found connecting one vertex to the other) if and only if

the smallest eigenvalue (λ1 = 0) has multiplicity one. The corresponding unit-norm

eigenvector f 1 is defined by

f1(v) =

√
deg(v)∑
u∈V deg(u)

, (2.4)

where deg(v) is the degree of the vertex v. The second-smallest eigenvalue, known
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as the algebraic connectivity [56], is a measure of the degree of connectedness of

the graph: higher values mean a more tightly-knit graph; the associated eigenvector

is known as the Fiedler vector [127] and provides a sort of canonical partition of a

graph through the signs of its entries. One can also show that the maximum possible

eigenvalue of L is equal to 2, attained only by bipartite graphs. (These are graphs

with two mutually exclusive subsets of vertices U0 and U1 such that every edge

connects a vertex in U0 to a vertex in U1.)

Given a signal x ∈ ℓ2(G), we can represent it in terms of the eigenvectors of L

by computing

x̂ = F Tx, (2.5)

where x̂ is called the graph Fourier transform of x. The matrix F T represents the

Fourier transform operator1. Since F is orthogonal, FF T = I. It follows that we

can invert the Fourier transform by taking

x = F x̂.

Using the Laplacian eigenvectors as a surrogate Fourier basis is a standard ap-

proach in the literature for defining signal processing operations on graphs [33,34,

62,92,102,113,117]. It may not seem immediately obvious, though, that the anal-

ogy is a fair one. In what follows, we provide some justification for this approach.

1There may be eigenvalues of L with multiplicity greater than one, so we should really think

of the Fourier transform as the set of projections onto the eigenspaces associated with each unique

eigenvalue. The Fourier transform defined in this way is unique up to unitary transformations within

eigenspaces. We can choose an orthogonal basis in each eigenspace, ensuring that F is orthogonal.
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Figure 2.2: (a) A cycle graph with 16 vertices. Signals defined on this graph are

equivalent to standard discrete, periodic signals. (b) Several eigenvectors of the

graph Laplacian. These eigenvectors exhibit the sinusoidal characteristics of the

DFT basis.

First, consider the special case of a cycle graph, illustrated in Figure 2.2(a).

Signals defined on this graph can be thought of as discrete, periodic signals. The

Laplacian of this graph is a circulant matrix, and can thus be diagonalized by the

real discrete Fourier transform (RDFT) matrix. Thus, in this case the Laplacian

eigenbasis is the RDFT basis of sine and cosine functions. Figure 2.2(b) shows

several such eigenvectors, which exhibit sinusoidal characteristics with increasing

oscillation frequencies. The eigenvalue corresponding to a frequency of ωk = 2πk
N

is 1 − cos(ωk), which is an increasing function of |ω| on [0, π] (and can be well-

approximated by ω2

2
for small values of k/N .) In a way, signal processing on this

graph gives us equivalent results to signal processing of discrete, periodic signals.

For general graphs, of course, the Laplacian eigenbasis is no longer the DFT
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Figure 2.3: Some Laplacian eigenvectors of a graph. Straight lines indicate that

values on joined vertices have the same sign; wavy lines indicate that there is a

sign change between the joined vertices. As is evident, eigenvectors associated with

larger eigenvalues correspond to more sign changes and thus faster variation.

basis. Nonetheless, the eigenvectors still satisfy our intuition about frequency. For

example, we would like to say that a signal is “highpass” if its value changes sig-

nificantly between neighboring vertices, and that it is “lowpass” if its value varies

very little. To quantify the variation of a signal on a graph, we can construct an

N ×M normalized incidence matrix S [56], where each column of S corresponds

to an edge e = (u, v) and has exactly two nonzero values: + 1√
deg(u)

in the row

corresponding to vertex u, and − 1√
deg(v)

in the row corresponding to vertex v. The

choice of (u, v) or (v, u), and therefore the signs involved, is arbitrary for each edge
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(though it is important that each column have one positive and one negative value.)

For any x ∈ ℓ2(G), the vector y = STx is a signal on the edges of the graph, where

each edge has the difference between the normalized values2 of x on its endpoint

vertices. So, in a way, y is the “derivative” of x. For any nonzero signal x, we can

then measure its normalized variation on the graph as

1

‖x‖2
∑

u∼v

(
x(u)√
deg(u)

− x(v)√
deg(v)

)2

=
1

‖x‖2‖y‖
2

=
1

‖x‖2x
TSSTx

=
1

‖x‖2x
TLx, (2.6)

where the last equality (SST = L) is well-known and easy to verify [56]. When the

signal x is the ith eigenvector f i of L, the normalized variation in (2.6) becomes

λi, the corresponding eigenvalue. This justifies the usage of Laplacian eigenvalues

as frequencies: eigenvectors corresponding to the higher eigenvalues of L are the

high-variation components, and the lower eigenvalues correspond to low-variation

components. We illustrate this fact with an example in Figure 2.3.

Given the success of multiresolution analysis [39,85,128] in standard signal pro-

cessing, several authors have considered multiresolution wavelet representations

for signals on graphs. Some of these representations rely on the graph Laplacian

operator and its analogy to the Fourier transform [34, 62, 92]. In [92], Narang

2The normalization by 1√
deg(u)

will limit the undue effect on the Laplacian of a vertex with a

large number of incident edges.
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and Ortega described a natural wish-list for wavelet transforms on graphs: first,

they should be invertible and have well-conditioned inverse; second, the transforms

should have low redundancies; and finally, they should be localized on the graph

and in the spectrum. We are simply interested in quantifying the last, seemingly

qualitative desideratum.

2.1.3 Graph and Spectral Spreads

We would like to quantify the localization of a signal on a graph in both the

graph and spectral domains. To do so, we look to the definitions of analogous

quantities in classical time-frequency analysis. For a nonzero signal x ∈ L2(R), its

time spread about a point t0 is defined by [128]

∆2
t,t0

def
=

1

‖x‖2
∫ ∞

−∞
(t− t0)

2|x(t)|2dt. (2.7)

The overall time spread of x(t) is then obtained by minimizing over t0, i.e.,

∆2
t

def
= min

t0

1

‖x‖2
∫ ∞

−∞
(t− t0)

2|x(t)|2dt, (2.8)

where the minimizing value of t0 is given by t0 = 1
‖x‖2

∫∞
−∞ t|x(t)|2dt. Generalizing

(2.7) to signals defined on graphs, we introduce the following definition [2,3].

Definition 2.1 (Graph spread). For a nonzero signal x ∈ ℓ2(G), its graph spread
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about a vertex u0 is

∆2
g,u0

(x)
def
=

1

‖x‖2
∑

v∈V
d(u0, v)

2x(v)2 (2.9)

=
1

‖x‖2 x
TP 2

u0
x,

where d(·, ·) is the distance metric described in Section 2.1.1, and P u0 is a diagonal

matrix defined as

P u0

def
= diag {d(u0, v1), d(u0, v2), . . . , d(u0, vN )} . (2.10)

Remark: Similar to (2.8), we can also define the overall (i.e., global) graph

spread of x as

∆2
g(x)

def
= min

u0∈V

1

‖x‖2 x
TP 2

u0
x. (2.11)

For our subsequent analysis on uncertainty principles though, we will focus on the

local graph spread (i.e., about a particular vertex u0) as defined in (2.9). Unlike clas-

sical domains such as the real line whose topology is shift-invariant, the “landscape”

of a graph can look very different around different vertices. Thus, it is important

to explicitly specify the center vertex u0 when considering the graph spread and

uncertainty principles. If needed, global versions can always be obtained through

finite minimization over all u0 ∈ V .

The spectral spread of a signal defined on graphs requires more thought. In the

classical case, the frequency spread of a real-valued signal x(t) ∈ L2(R) is given

by [128]

∆2
ω

def
=

1

‖x‖2
∫ ∞

−∞
ω2|x̂(ω)|2dω

2π
, (2.12)
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where x̂(ω) is the Fourier transform of x(t). This expression is simpler than that of

the time spread in (2.7) because the frequency center is chosen to be ω0 = 0 due

to the symmetry of the Fourier transforms of real-valued signals. On recognizing

that ω2x̂(ω) is the Fourier transform of −d2

dt2
x(t) and using Parseval’s identity, we can

rewrite (2.12) as

∆2
ω =

1

‖x‖2
∫ ∞

−∞
x(t)
−d2
dt2

x(t)dt. (2.13)

Generalizing to the graph case, treating L as analogous to the operator − d2

dt2
, we

obtain the following definition [2,3].

Definition 2.2 (Spectral spread). For a nonzero signal x ∈ ℓ2(G), we define its spec-

tral spread as

∆2
s(x)

def
=

1

‖x‖2 x
TLx (2.14)

=
1

‖x‖2
N∑

n=1

λn |x̂n|2, (2.15)

where the second equality follows from the decomposition of L in (2.3) and the defini-

tion of graph Fourier transforms in (2.5).

Remark: The equivalent definitions in (2.14) and (2.15) reveal two different

facets of the spectral spread: while (2.15) perhaps more clearly justifies the “spec-

tral” nature of ∆2
s(x), the form in (2.14) shows that ∆2

s(x) can also be understood

as the normalized variation of x introduced in (2.6).
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2.2 The Uncertainty Principle

Intuitively, we can reason that there should exist a tradeoff between the graph

and spectral spreads of a signal. If the graph spread ∆2
g is small, then the signal

must resemble an impulse centered at some vertex; in this case, the normalized

variation (i.e., the spectral spread ∆2
s) should be high. If instead ∆2

s is small, then

the signal cannot vary too quickly; it will thus take a long distance for the signal

values to drop significantly from the peak value, in which case the graph spread will

be high. How can one precisely quantify the above intuition? What are the signals

with a given spectral spread that are maximally localized on the graph? These are

the fundamental questions addressed in this section.

2.2.1 The Feasibility Region

In the classical uncertainty principle, not all pairs of time-frequency spreads

(∆2
t ,∆

2
ω) are achievable, and the tradeoff is quantified by the celebrated inequality

∆2
t∆

2
ω ≥ 1

4
, which holds for any nonzero function x(t) ∈ L2(R) [53, 128]. Further-

more, this bound is tight. In fact, any pair of the form (∆2
t ,∆

2
ω) = (c, 1

4c
) for c > 0 is

achievable by a function of the form x(t) = exp
(
− t2

4c

)
.

In a similar way, we are interested in characterizing the following feasibility
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Figure 2.4: The feasibility region Du0 for the spectral and graph spreads. Du0 is a

bounded and convex set that intersects the horizontal (and vertical) axis at exactly

one point. The lower boundary of Du0 can be implicitly computed by considering

supporting lines of varying slopes. The achievable region must lie in the half-plane

above the supporting line (found by solving an eigenvalue problem.)

region

Du0

def
= {(s, g) :∆2

s(x) = s, ∆2
g,u0

(x) = g

for some nonzero x ∈ ℓ2(G)}, (2.16)

containing all pairs of the form (∆2
s,∆

2
g,u0

) that are achievable on a graph G, using

u0 as the center vertex.

Proposition 2.1. Let Du0 be the feasibility region for a connected graph G with N

vertices. Then the following properties hold:
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(a) Du0 is a closed subset of [0, λN ] × [0, E2G(u0)], where λN ≤ 2 is the largest eigen-

value of graph Laplacian L, and EG(u0)
def
= maxv∈V d(u0, v) is the eccentricity of

the center vertex u0.

(b) Du0 intersects the horizontal axis at exactly one point, (1, 0), and the vertical axis

at exactly one point, (0,fT
1P

2
u0
f 1), where f 1 is the eigenvector defined in (2.4).

(c) The points (1, E2G(u0)) and (λN ,f
T
NP

2
u0
fN ), where fN is any unit-norm eigen-

vector associated with λN , belong to Du0.

(d) Du0 is a convex set if the number of vertices N ≥ 3.

Proof. (a) The graph and spectral spreads of any nonzero signal can be bounded

by the largest and smallest eigenvalues of L and P 2
u0

. More precisely, using the

Rayleigh inequalities [80], we have

0 = λ1 ≤
xTLx

xTx
≤ λN

and, similarly,

0 ≤ xTP 2
u0
x

xTx
≤ max

1≤i≤N
(P 2

u0
)ii = E2G(u0).

Du0 is compact, and therefore closed, because it is the image of a compact set under

a continuous transform [119]. Specifically, if we take the unit sphere in R
N , a

compact set, and apply the map f : x 7→ (∆2
s(x),∆

2
g,u0

(x)), which is continuous on

the unit sphere, we get the whole uncertainty region.

(b) A signal has zero graph spread (i.e., ∆2
g,u0

(x) = 0) if and only if it is an

impulse supported on u0, i.e., x(v) = c if v = u0 and x(v) = 0 otherwise, for
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some nonzero scalar c. Meanwhile, using (2.14) and (2.6), one can verify that the

normalized variation (and thus the spectral spread ∆2
s) of such impulse signals is

equal to 1. It follows that (1, 0) is the only point that lies at the intersection of Du0

and the horizontal axis. Next, consider the intersection of Du0 with the vertical axis.

Since ∆2
s(x) = xTLx/‖x‖2 ≥ λ1 = 0, the spectral spread ∆2

s(x) = 0 if and only if x

is an eigenvector of L associated with the smallest eigenvalue λ1 = 0. (See (2.4) for

an example.) Such eigenvectors are also unique (up to scalar multiplications) since

the smallest eigenvalue λ1 of connected graphs always has multiplicity one [32].

(c) The inclusion of (λN ,f
T
NP

2
u0
fN) in Du0 is clear. For the first point (1, E2G(u0)),

consider an impulse function supported at the furthest vertex on the graph from

u0. Similar to (b), we can compute its spectral and graph spreads as ∆2
s = 1 and

∆2
g,u0

= E2G(u0), respectively.

(d) See Appendix A.1.

Remark: Figure 2.4 illustrates a typical feasibility region Du0 as specified by

Proposition 2.1. The boundedness and convexity of Du0 imply that the entire region

can be completely characterized by its upper and lower boundaries: any pair be-

tween the two boundaries must also be achievable. Furthermore, the lower bound-

ary must be convex and the upper boundary must be concave.
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2.2.2 The Uncertainty Curve

In what follows, we will describe a technique for computing the lower boundary

curve of Du0, which we call the uncertainty curve.

Definition 2.3. Given a connected graph G, the uncertainty curve with respect to a

center vertex u0 is

γu0(s)
def
= min

x
∆2

g,u0
(x) subject to ∆2

s(x) = s

= min
x

xTP 2
u0
x subject to xTx = 1 and xTLx = s, (2.17)

for all s ∈ [0, λN ].

Remark: We could also define and study the upper boundary curve of Du0 in a

similar way. We choose to focus on the lower boundary curve because it provides an

uncertainty bound analogous to the classical bound (2.1). We will say that a signal

x achieves the uncertainty curve if ∆2
g,u0

(x) = γu0(∆s(x)
2).

We note that (2.17) is a quadratically constrained quadratic program [22]. The

equality constraints make the problem nonconvex. On differentiating the corre-

sponding Lagrangian function

Λ(x;α, λ)
def
= xTP 2

u0
x− α(xTLx− s)− λ(xTx− 1),

we see that the optimal solution x∗ to (2.17) must satisfy

(P 2
u0
− αL)x∗ = λx∗
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for some α, λ ∈ R. If we treat α as being fixed, then the above equality becomes an

eigenvalue problem. This observation leads us to study the matrix-valued function

M(α)
def
= P 2

u0
− αL. (2.18)

For any α, the smallest eigenvalue of M(α), denoted by

q(α)
def
= λmin(M(α)),

and its associated eigenspace, denoted by S(α), are key to our analysis of the un-

certainty curve γu0(s).

Proposition 2.2. For any α ∈ R and any unit-norm eigenvector v in S(α), the point

(vTLv,vTP 2
u0
v) is on γu0(s).

Proof. Let x be an arbitrary signal with ‖x‖ = 1. By definition, ∆2
g,u0

(x)−α∆2
s(x) =

xTM (α)x. Applying Rayleigh’s inequality to M (α) thus leads to

∆2
g,u0

(x)− α∆2
s(x) ≥ q(α) (2.19)

= vTP 2
u0
v − αvTLv, (2.20)

where (2.20) comes from the fact that v is an eigenvector associated with q(α).

Let s = vTLv. On specializing the relationship (2.20) to those signals x satisfying

∆2
s(x) = s, we have

∆2
g,u0

(x) ≥ vTP 2
u0
v,

which indicates that the point (vTLv,vTP 2
u0
v) must lie on the uncertainty curve

γu0(s).
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0
α

h+(α) and h−(α)

λN λ
N

s

γ
u
0
(s
)

h−(β)

h+(β)

h+(a) = h−(a)

h+(b) = h−(b)

βa b

(a) (b)

Figure 2.5: The mapping of the eigenvectors in S(α) onto the s–g plane is shown.

In (a), h+(α) and h−(α) are plotted against α (they coincide except at jumps in

the plot.) They are, respectively, the maximum and minimum spectral spreads of

elements of the eigenspace S(α). Any element of S(α) determines a point on the

graph of γu0(s). When S(α) is of dimension greater than one, it corresponds to a

line segment on γu0(s).

There is an interesting geometric interpretation of the above derivations: as

illustrated in Figure 2.4, for any α, the inequality in (2.19) defines a half-plane in

which Du0 must lie. The boundary of the half-plane, a line of slope α defined by

∆2
g,u0
− α∆2

s = q(α),

provides a tight lower bound to Du0. Varying the values of α generates a family of

such half-planes, the intersection of which contains Du0. For readers familiar with

convex analysis, we note that q(α) is the Legendre transform of γu0(s) [22].

Proposition 2.2 guarantees that any nonzero eigenvector of M (α) associated

with the smallest eigenvalue q(α) generates a point on the curve γu0(s). Next, we
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will show that the converse is also true: every point on γu0(s) is achieved by an

eigenvector in S(α) for some α. To establish this result, we need to introduce the

following two functions:

h+(α)
def
= max

x∈S(α): ‖x‖=1
xTLx (2.21)

h−(α)
def
= min

x∈S(α): ‖x‖=1
xTLx,

which measure, respectively, the maximum and minimum spectral spread (i.e., the

horizontal coordinate on the s–g plane) that can be achieved by eigenvectors in

S(α).

Lemma 2.1. The following properties hold for h+(α) and h−(α).

(a) They are increasing functions, i.e., h+(α1) ≤ h+(α2) and h−(α1) ≤ h−(α2) for

all α1 < α2.

(b) They have the same limits as |α| tends to infinity:

lim
α→−∞

h+(α) = lim
α→−∞

h−(α) = 0, (2.22)

and

lim
α→+∞

h+(α) = lim
α→+∞

h−(α) = λN . (2.23)

(c) On any finite interval [a, b], the functions h+(α) and h−(α) differ on at most a

finite number of points, denoted by B def
= {β1, β2, . . . , βk} for some k ≥ 0. Except

for these points, h+(α) and h−(α) coincide, are continuous, and satisfy

h+(α) = h−(α) = −q′(α), for all α ∈ [a, b] \ B, (2.24)
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where q′(α) is the derivative of q(α). At the points, if any, where they do differ,

h+(α) and h−(α) have jump discontinuities. Moreover, for all β ∈ B,

h+(β) = lim
α→β+

h+(α) > lim
α→β−

h−(α) = h−(β),

where the limits are taken as α approaches β from the positive and negative

sides, respectively.

Proof. See Appendix A.2.

The results of Lemma 2.1 are illustrated in Figure 2.5(a), where we plot a typical

example of h+(α) and h−(α): as α increases from −∞ to +∞, the values of the

functions increase from 0 to λN . Within any finite interval, h+(α) = h−(α) except

at a finite number of points (e.g., the point β in the figure). At these “jump points”,

h+(α) is right-continuous, whereas h−(α) is left-continuous.

Since we are only considering connected graphs, λ1 = 0 has multiplicity 1,

and so f 1 is the unique vector (up to scaling) that achieves the uncertainty curve

with ∆2
s = 0. At the other end, λN may have multiplicity, but some vector in

its eigenspace will achieve the uncertainty curve with ∆2
s = λN . For values of

s ∈ (0, λmax), we can use the following theorem to precisely characterize vectors

that achieve the uncertainty curve at s.

Theorem 2.1. A signal x ∈ ℓ2(G) with ∆2
s(x) ∈ (0, λmax) achieves the uncertainty

curve, i.e., ∆2
g,u0

(x) = γ(∆2
s(x)), if and only if it is a nonzero eigenvector in S(α) for

some α.
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Proof. The “if” direction has been established in Proposition 2.2. To prove the “only

if” direction, we will show that for any signal x ∈ ℓ2(G) that achieves the un-

certainty curve, there is an α and a unit-norm eigenvector v ∈ S(α) such that

vTLv = ∆2
s(x). Since both x and v lie on the uncertainty curve (with the for-

mer given as an assumption and the latter guaranteed by Proposition 2.2), we have

∆2
g,u0

(x) = vTP 2
u0
v, and thus

1

‖x‖2 x
TM(α)x = ∆2

g,u0
(x)− α∆2

s(x) = vTM(α)v = q(α).

Now, since q(α) is the smallest eigenvalue of M(α), the equality above implies that

x must also be an eigenvector associated with q(α). In fact, x will be equal to v (up

to a scalar multiple) if q(α) has multiplicity one. The remainder of the proof verifies

the claim, namely, for any s ∈ (0, λN) we can find an α and a unit-norm eigenvector

v ∈ S(α) such that vTLv = s.

By part (b) of Lemma 2.1, we can always find some a < b such that h−(a) <

s < h+(b). Furthermore, part (c) of Lemma 2.1 ensures that, within the interval

[a, b], the two functions h+(α) and h−(α) differ (and are discontinuous) on at most

a finite number of points. For notational simplicity, and without loss of generality,

we assume that there is only one such discontinuity point, denoted by β ∈ [a, b]. As

shown in Figure 2.5, the interval [h−(a), h+(b)] can now be written as the union of

three subintervals

[h−(a), h−(β)), [h−(β), h+(β)], and (h+(β), h+(b)],
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to one of which s must belong.

We first consider the case where s ∈ [h−(a), h−(β)). Lemma 2.1 says that h−(α)

is a continuous function on [a, β]. By the intermediate value theorem, there exists

some α0 ∈ [a, β] such that h−(α0) = s. By definition, h−(α0) = minz∈S(α0): ‖z‖=1 z
TLz.

Since the eigenspace S(α0) has finite dimensions, the minimization can always be

achieved by some unit-norm eigenvector v ∈ S(α0), i.e., s = h−(α0) = vTLv.

The same line of reasoning can be used when s belongs to the third subinterval,

(h+(β), h+(b)]. This leaves us with the remaining case when s ∈ [h−(β), h+(β)]. Let

v+
def
= argmax

z∈S(β):‖z‖=1

zTLz and v−
def
= argmin

z∈S(β):‖z‖=1

zTLz,

and consider the vector-valued function y(θ)
def
= cos(θ)v++sin(θ)v−

1+sin(2θ)vT
+v−

, defined for θ ∈

[0, π/2]. The denominator is nonzero for every θ, since v− 6= −v+ [otherwise we

would have h−(β) = h+(β)]. So y(θ) is of unit norm and is a continuous function

of θ. It also must belong to S(β) since it is a linear combination of two elements

of the subspace. Furthermore, y(0)TLy(0) = h+(β) and y(π/2)TLy(π/2) = h−(β).

By the intermediate value theorem, y(θ) for θ ∈ [0, π/2] achieves all the values in

between. In particular, there exists some θ0 such that y(θ0)
TLy(θ0) = s. We note

that since every element of S(β) achieves a point on the line g − βs = q(β), this

interpolation procedure amounts to including the straight line segment between the

two endpoints as part of the uncertainty curve.

Remark: If S(α) is one-dimensional for every α ∈ [a, b], or more generally if
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there is a single distinct eigenvalue function that achieves the minimum on [a, b],

then from Theorem 2.1 as well as Lemma 2.1 and its proof, q(α) is analytic on

[a, b] and the corresponding portion of the uncertainty curve can be expressed in

parametric form as 



s(α) = −q′(α)

γu0(s) = q(α)− αq′(α),

(2.25)

where the first equality is due to (2.24) and the second is due to the fact that any

vector in S(α) must achieve a point on the line g − αs = q(α).

In general, Theorem 2.1 and its proof justify a way to obtain the uncertainty

curve: for every α, we find the eigenvectors associated with the smallest eigenvalue

of M(α). These eigenvectors will give us points on γu0(s). By “sweeping” the values

of α from −∞ to∞, the entire curve can then be traced.

2.2.3 Fast Approximation Algorithm

In practice, of course, we must sample and work with a finite set of α’s, which

lead to an approximation of the true curve. In what follows, we describe an efficient

algorithm that can compute an approximation—more specifically, an upper and

lower bound—of γu0(s) with any desired accuracy.

Since γu0(s) is the lower boundary of the convex region Du0, it is itself a convex

function. We can therefore use the sandwich algorithm introduced in [111] and

presented here as Algorithm 2.1 to approximate it. The algorithm can be easily un-
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∆
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Figure 2.6: An illustration of the sandwich algorithm. (a) A single refinement step

on a segment of the uncertainty curve. (b) Two refinement steps on the full curve.

derstood by studying Figure 2.6(a): consider a segment of the curve γu0(s) with two

end points A and B, whose coordinates are denoted by (a, γu0(a)) and (b, γu0(b)),

respectively. Also given are supporting lines3 containing the end points, represented

by the line segments AD and BD. Due to the convexity of γu0(s), the chord that

connects A to B must lie entirely above the curve and thus form an upper bound.

Similarly, the combination of AD and BD forms a piecewise linear lower bound of

γu0(s).

To refine these two initial bounds, let α be the slope of the chord, i.e.,

α =
γu0(b)− γu0(a)

b− a
. (2.26)

Computing the smallest eigenvalue q(α) and the associated eigenvectors of M (α),

we can obtain a new point on the curve, denoted by C in Figure 2.6(a). The s-

3A supporting line is a line that intersects a curve but does not separate any two points on the

curve [22].
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g coordinates of C are (vTLv,vTP 2
u0
v), where v is a unit-norm element in the

eigenspace S(α). Our previous analysis in Section 2.2.2—in particular, (2.19) and

(2.20)—guarantees that the line

g − αs = q(α),

which passes through C, must be a supporting line of γu0(s). In other words, α is

a subderivative of γu0(s) at point C, and is the derivative if it exists. This property,

together with the construction of α in (2.26), also ensures that C is always located

between A and B. As illustrated in the figure, the curve is now bounded above by

joining the three points (A, C and B), and it is bounded below by joining the three

supporting lines (AE,EF and FB).

The above procedure can then be repeated, in a recursive fashion, on the two

curve segments AC and CB. Each stage of the recursion roughly doubles the num-

ber of points in the approximation, and we proceed until a fixed number of refine-

ments have been computed. Figure 2.6(b) shows the lower and upper bounds of

γu0(s) obtained by starting from two initial points (0,fT
1P

2
u0
f 1) and (λN ,f

T
NP

2
u0
fN)

and running the algorithm for two refinement iterations, involving a total of five

eigenvalue evaluations (each corresponding to a single point drawn on the curve.)

We can see that the proposed algorithm starts producing reasonable approximations

of γu0(s) after just a small number of steps.

Let η
(n)
u (·) and η

(n)
ℓ (·) denote, respectively, the upper and lower bounds the algo-

rithm generates after n eigenvalue evaluations. We measure the quality of approx-
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Algorithm 2.1 Approximate γu0(s) curve (sandwich algorithm.)

Require: L, P 2
u0

, desired number of points N

Ensure: Upper bound curve γu
u0
(s); Lower bound curve γℓ

u0
(s)

p1 ← (0,xT
0P

2
u0
x0); p2 ← (λmax,x

T
NP

2
u0
xN)

t1 ← (∞, 0); t2 ← (∞, λmax)

while #P < N do

i← 1

while i < #P do

α← − si+1−si
gi+1−gi

(x, q) = min-eig(P 2
u0

+ αL) {Note: ‖x‖ = 1}

s← xTLx

g ← xTP 2
u0
x

p← concat[p1:i (s, g) pi+1:end]

t← concat[t1:i (α, q) ti+1:end]

i← i+ 2

end while

end while

γu
u0
(·)← connect-dots(p)

γℓ
u0
(·)← connect-lines(t)
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imation by computing the Hausdorff distance [111] between these two bounds,

defined as

d(n) = sup
s1

inf
s2

[
(s1 − s2)

2 + (η(n)u (s1)− η
(n)
ℓ (s2))

2
] 1

2
.

Informally, the Hausdorff distance d(n) is small if the two bounding curves are close

to each other. The following theorem, which follows directly from [111, Theorem

3], shows that d(n) is of order 1/n2.

Theorem 2.2. Let ε > 0 be any preset precision level. To get d(n) ≤ ε, it is sufficient

to run the approximation algorithm until we have n ≥ max
{
4,
√

9W/ε+ 2
}

, where

W =
√
λ2
N + E4G(u0).

Remark: In many practical applications, the underlying graph G is large but

sparse. Correspondingly, M(·) are sparse matrices. Obtaining an approximation of

γu0(s) within a given precision ε then boils down to computing (e.g., via iterative

power methods) the smallest eigenvalue and an associated eigenvector of about

O(1/√ε) sparse matrices.

Instead of approximating the whole curve, we may wish to find γu0(s) only for

some particular value of s, as well as the signal that achieves it. The sandwich

algorithm can be modified slightly to this end. At each step of the approximation

procedure, we can choose to refine only the segment containing s, ignoring all other

segments. Iterating in this way, we will find both γu0(s) and the vector with spectral

spread s that achieves the bound.
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It may be that we are not interested in approximating the whole curve, but

we wish to find γu0(s) and the vector that achieves it for a particular value of s.

Therefore we will also describe a different scheme (Algorithm 2.2) that effectively

computes the uncertainty curve at a single point.

Algorithm 2.2 Approximate γu0(s)

Require: n ≥ 0 ∨ x 6= 0

Ensure: y = xn

y ⇐ 1

if n < 0 then

X ⇐ 1/x

N ⇐ −n
else

X ⇐ x

N ⇐ n

end if

2.3 The Uncertainty Curve for Special Graph Families

The uncertainty curves for several standard graph families are analyzed in this

section. The structure and regularity of complete graphs and star graphs make it

possible to find closed-form expressions for their corresponding curves. For Erdős-

Rényi random graphs [50, 51], we will derive and compute analytical approxima-

tions for the expected (i.e., mean) curves under different parameters. Throughout

this section, the distance metric d(·, ·) is assumed to be the geodesic distance.
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2.3.1 Complete Graphs

A complete graph, illustrated in Figure 2.7(a), is a fully-connected graph in

which every pair of distinct vertices is connected by an edge [79]. It is often used

to model fully-connected subgraphs, or cliques, in real-world networks [96]. The

Laplacian matrix of a complete graph with N vertices is given by

Lij =





1, if i = j;

− 1
N−1

, otherwise,

(2.27)

i.e., the diagonal of L is all 1, and the off-diagonal elements are all equal to − 1
N−1

.

It is easy to verify that L has eigenvalue 0 with multiplicity 1, and eigenvalue N
N−1

with multiplicity N − 1. Without loss of generality, we can choose the first vertex as

the center. The diagonal distance matrix is then

P u0 = diag{0, 1, 1, . . . , 1}. (2.28)

We would like to compute the uncertainty curve γ(s) for a complete graph for s ∈

[0, N
N−1

]. First, we will show that any vector that achieves the uncertainty curve has

a special form.

Proposition 2.3. For a complete graph, suppose x̃ achieves the uncertainty curve.

Then x̃ is of the form

x̃ = [x1, x2, x2, . . . , x2]
T . (2.29)

Proof. See Appendix A.3.
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Figure 2.7: (a) A complete graph is one in which every vertex is connected to every

other vertex. (b) A star graph includes a single central vertex connected by a single

edge to each other vertex, and no other edges

The result in Proposition 2.3 suggests that, for complete graphs, we need only

consider vectors of the form in (2.29). Enforcing the unit-norm constraint on

(2.29), we can further simplify these eigenvectors as

x̃(θ) = [cos θ,
sin θ√
N − 1

,
sin θ√
N − 1

, . . . ,
sin θ√
N − 1

]T

for some parameter θ. The graph spread in this case is given by

∆2
g,u0

=
N−1∑

i=1

1 · sin
2 θ

N − 1
=

1

2
− 1

2
cos 2θ,

where the second equality is due to a standard trigonometric identity. Meanwhile,
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by using the variational form in (2.6), we can compute the spectral spread as

∆2
s = (N − 1)

(
cos θ√
N − 1

− sin θ

N − 1

)2

=
N

2N − 2
− 1√

N − 1
sin 2θ +

N − 2

2N − 2
cos 2θ. (2.30)

Combining these two expressions and using the identity sin2 2θ+cos2 2θ = 1, we

can see that the uncertainty curve γu0(s) is part of the ellipse given by

(2∆2
g,u0
− 1)2 + (N − 1)

(
∆2

s +
N − 2

N − 1
∆2

g,u0
− 1

)2

= 1. (2.31)

For fixed s = ∆2
s, solving for γu0(s) = ∆2

g,u0
[by picking the smaller of the two

solutions to (2.31)] leads to

γu0(s) =

N − s(N − 2)− 2
√
1− (N − 2)(s− 1)− (N − 1)(s− 1)2

4 + (N − 2)2/(N − 1)
, (2.32)

for 0 ≤ s ≤ N
N−1

. Thus, the curve is the entire lower half of the ellipse given by

(2.31). When the graph is large (i.e., N ≫ 1), this curve converges to a straight

line γu0(s) = 1− s in the s–g plane.

2.3.2 Star Graphs

A star graph [56] with N vertices has one central vertex and N − 1 leaves,

each connected by a single edge to the center. Illustrated in Figure 2.7(b), it is

a prototypical example of a hub in a network [96]. The Laplacian matrix can be
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expressed in block form as

L =




1 − 1√
N−1

1
T
N−1

− 1√
N−1

1N−1 IN−1


 , (2.33)

where 1N−1 is the (N − 1)-vector of all ones, and IN−1 is the (N − 1) × (N − 1)

identity matrix. Since the graph is bipartite, the largest eigenvalue of L is always

equal to 2 [32]. Let u0 be the center of the star; the diagonal distance matrix is

again given by P u0 = diag{0, 1, 1, . . . , 1}.

Just as for the complete graph, we can always represent signals that achieve the

uncertainty curve on star graphs as x̃(θ) = [cos θ, sin θ√
N−1

, sin θ√
N−1

, . . . , sin θ√
N−1

]T for some

θ (see the remark in Appendix A.3 for justification). Now, the graph spread is given

by ∆2
g,u0

= sin2 θ = 1
2
− 1

2
cos 2θ; again, by using (2.6), the spectral spread can be

computed as

∆2
s = (N − 1)

(
cos θ√
N − 1

− sin θ√
N − 1

)2

= 1− sin 2θ.

The lower bound curve is thus the lower part of the ellipse defined by

(
∆2

s − 1
)2

+ (2∆2
g,u0
− 1)2 = 1.

Written explicitly, the curve is

γu0(s) =
1

2

(
1−

√
s(2− s)

)
, for 0 ≤ s ≤ 2. (2.34)

We note that, unlike the complete graph case, this curve does not depend on the

size of the graph.
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2.3.3 Erdős-Rényi Random Graphs

An Erdős-Rényi random graph G is generated by taking N vertices and selecting

each pair of vertices to be an edge with probability p, independent of all other

potential edges. We denote by Gp(N, p) the statistical ensemble of the resulting

graphs. First studied by Erdős and Rényi [50, 51], Gp(N, p) may be the simplest

random graph model. Although they do not capture all of the behaviors of real

networks, Erdős-Rényi graphs are an excellent theoretical model because they lend

themselves to tractable analysis.

To study the properties of the uncertainty curves for Erdős-Rényi graphs, we

generated several realizations drawn from Gp(N, p) and used the approximation al-

gorithm described in Section 2.2.3 to compute their uncertainty curves. It quickly

emerged that the curves for different realizations generated with the same param-

eters were, for reasonable sizes of N , tightly clustered around a common mean

curve. This is illustrated in Figure 2.8, which shows the mean curves and estimated

standard deviations for several parameter values. In what follows, we develop an

analytic approximation for computing the expected (i.e. mean) uncertainty curve

for different choices of parameters N and p.

Recall from the definition of the uncertainty curve that we are trying to approx-

imate the expectation of

γu0(s) = min
x∈ℓ2(G)

xTP 2
u0
x subject to ‖x‖2 = 1 and xTLx = s (2.35)
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over random graphs drawn from Gp(N, p). The matrices P 2
u0

and L and the opti-

mal vector x that solves the minimization problem are all random quantities. Since

γu0(s) is obtained through a nonconvex quadratic program, there is generally no

closed-form expressions linking γu0(s) to P 2
u0

and L. As a result, directly comput-

ing the expectation of γu0(s) will be difficult. To make the problem tractable, we

proceed by replacing xTP 2
u0
x and xTLx in (2.35) with their respective expected

values and minimizing after the fact. Later we will see that this strategy turns out

to be very effective in generating accurate approximations.

Another observation that emerged from our numerical experiment was a char-

acteristic of the vectors that achieved the bound with s ≤ 1: these vectors were

all approximately radial functions, i.e., the value at any vertex v was a function of

d(u0, v). Because this simplifies the analysis greatly, we will only consider the part of

the curve with s ≤ 1, which corresponds to signals that are maximally localized in

both the graph and spectral domains. We will explicitly incorporate this assumption

by focusing on vectors whose values depend only on distance from u0. In this case,

the original N -dimensional vector x ∈ ℓ2(G) can be represented by a smaller vector

y, with x(v) = y(d(u0, v)). The dimensionality of y is equal to EG(u0) + 1, where

EG(u0) is the eccentricity of the center vertex. We note that EG(u0) is a random

variable that in principle can take any value between 0 and N −1. When N is large,

however, we can find a small number dmax ∼ O(logN) such that EG(u0) ≤ dmax with

high probability [10]. So, in what follows, we will treat y as a vector in R
dmax+1.

46



Chapter 2: A Spectral Graph Uncertainty Principle

For a given, deterministic y, we will compute the expectations (over the ran-

domness of the graph model) of ‖x‖2 and xTP 2
u0
x. To that end, we define fd as

the probability that a vertex v chosen uniformly at random from V \{u0} has a dis-

tance d(u0, v) = d. The special case f1 = p is easy to verify. For the other cases, we

will use the results of Blondel et al. [19], who developed a recursive formula4 to

find (approximate) analytical expressions of the entire sequence {fd}. The expected

number of vertices at a distance d ≥ 1 is (N − 1)fd. It follows that, for fixed y,

E
[
‖x‖2

]
= E

[∑

v∈V
y(d(u0, v))

2

]

≈ y2(0) +
dmax∑

k=1

(N − 1)fky
2(k) (2.36)

and

E
[
xTP u0x

]
= E

[∑

v∈V
d(u0, v)

2x(v)2

]

≈
dmax∑

k=1

k2(N − 1)fky
2(k), (2.37)

where the approximations are due to the truncation of y at dimension dmax.

The spectral spread is more complicated. We start with the expression

xTLx =
∑

u∼v

(
x(u)√
deg(u)

− x(v)√
deg(v)

)2

.

By assuming that the degree of every vertex is approximately equal to its expecta-

4Unlike our construction, they allowed v to be any vertex in V , including u0; thus, in their result,

f0 = 1
N

, and all other values of fd differ from ours by a factor of N−1
N

. For large N the difference is

negligible.
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tion (N − 1)p, we write

xTLx ≈ 1

(N − 1)p

∑

u∼v

(x(u)− x(v))2. (2.38)

Recall that x(v) = y(d(u0, v)). Consequently, the only edges that contribute to (2.38)

are those between vertices at different distances from u0. Since a vertex at distance

k can only be connected to vertices at a distance of k− 1 and k+1, we simply need

to characterize Mk,k+1, the expected number of edges from vertices at a distance k

to vertices at a distance k + 1, for k = 0 to dmax − 1. The expected value of the

spectral spread can then be obtained as

E
[
xTLx

]
≈ 1

(N − 1)p

dmax−1∑

k=0

Mk,k+1

(
y(k + 1)− y(k)

)2
. (2.39)

It is easy to see that M0,1 = (N − 1)p, since that is simply the expected number

of edges incident upon u0. The other terms of Mk,k+1 can be approximated through

a recurrence relation. First, we observe that the expected number of vertices at

distance k is (N − 1)fk and the expected number of vertices not at distance k (not

counting u0) is (N − 1)(1 − fk). Thus, we can approximate the total number of

potential edges between these two disjoint sets of vertices is (N−1)2fk(1−fk). Since

each potential edge will be chosen with probability p, we get that Mk−1,k+Mk,k+1 ≈

(N − 1)2pfk(1− fk), which leads to the following approximate recurrence relation





M0,1 = (N − 1)p

Mk,k+1 ≈ (N − 1)2pfk(1− fk)−Mk−1,k, for k ≥ 1.

(2.40)
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Figure 2.8: Uncertainty curves for Erdős-Rényi graphs. For each choice of (N, p) pa-

rameters, 1000 Erdős-Rényi graphs were generated and their uncertainty curves for

s ∈ [0, 1] were computed using the sandwich approximation procedure described in

Section 2.2. The geodesic distance function is used. Each curve was interpolated to

generate comparable curves on a regular grid. For each parameter choice, the mean

and standard deviation of the interpolated curve was computed over the ensemble.

The mean curve is plotted on the graphs as a solid line, with shaded areas illustrat-

ing the three standard deviation levels. Meanwhile, the approximate expected value

computed before generating the curves is plotted as a dashed red line. The shape

of the uncertainty curve is clearly quite stable across each ensemble, especially as

N and p increase, and the approximate expectation curve is quite accurate.
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The expressions in (2.36), (2.37), and (2.39) show that the expected values of

the squared norm, graph spread, and spectral spread are all nonnegative quadratic

forms involving the vector y ∈ R
dmax+1. It follows that we can write

E
[
‖x‖2

]
≈ yTHay, E

[
xTP u0x

]
≈ yTP 2

ay, and (2.41)

E
[
xTP u0x

]
≈ yTLay,

for some positive semidefinite matrices Ha,P
2
a,La, respectively. Substituting these

expectations for their (random) counterparts in (2.35), we compute our approxi-

mation of the expected uncertainty curve, γ̃u0(s), as

γ̃u0(s) = (2.42)

min
y∈Rdmax+1

yTP 2
ay subject to yTHay = 1 and yTLay = s.

We note that this minimization problem (a quadratic program with quadratic con-

straints) has exactly the same mathematical structure as the one previously studied

in (2.17). Using the same techniques derived in Section 2.2.2, we can show that

any solution to (2.42) satisfies the (generalized) eigenvalue problem

(P 2
a − αLa)y = τmin(α)Hay (2.43)

for some value of α, where τmin(α) is the smallest (generalized) eigenvalue. As

before, we can construct a sandwich approximation to the curve by solving (2.43)

for a sequence of α’s.

Despite the various approximations made along the way, the analytical solution

obtained in (2.42) fits experiment remarkably well. As illustrated in Figure 2.8,

50



Chapter 2: A Spectral Graph Uncertainty Principle

the resulting analytic curves (shown in dashed lines) match almost perfectly with

the observed sample average (shown in solid lines). We note that the matrices in

(2.42) are of size dmax × dmax, which is much smaller than N × N . For example,

for the Gp(106, 10−4) model, we would have dmax = 4 (the smallest d such that

1−∑d
k=1 fk < 10−7.)

Thus, the analytic approximation derived here can be computed far faster than

the actual uncertainty curve for any realization of the model, and does not itself

require any realization to be generated.

2.4 Diffusion Processes and Uncertainty Bounds

In constructing dictionaries to represent signals on graphs, one would like the

dictionary elements to be localized in both graph and spectral domains. Quanti-

fying the signal localization in these two domains and studying their fundamental

tradeoff have been one of the motivations of this work. To test the theoretical re-

sults and the computational algorithm presented in Section 2.2, we consider two

graph wavelet transforms in the literature: the diffusion wavelets of Coifman and

Maggioni [34] and the spectral graph wavelet transform of Hammond et al. [62].

The localization properties of these two constructions are studied on a graph visu-

alized in Figure 2.9(a) based on the network of football games played in the 2000
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regular season by NCAA Division I-A5 teams [55]. While the spectral graph wavelet

transform does not downsample the graph, the diffusion wavelet transform does. In

our experiment, the center vertex u0 is chosen to be one of the vertices that remain

in the downsampled graph at the coarsest level of the diffusion wavelet transform.

Figure 2.9(b) shows several scaling functions from both constructions plotted

against the uncertainty curve γu0(s), with the latter obtained by using the sandwich

algorithm in Section 2.2.3. In this and all subsequent experiments, we use eight

refinement iterations (for a total of 257 sparse eigenvalue evaluations) to plot the

uncertainty curves. At this level, we find the lower and upper approximations of

γu0(s) to be visually indistinguishable. As predicted, both the spectral graph wavelet

and diffusion wavelet constructions result in basis elements that obey the computed

bound. In fact, they follow the curve quite well.

The diffusion wavelets are based on the evolution of a discrete time diffusion

process on a graph. In the classical setting, where the signal domain is the real line,

there is a strong connection between the continuous time diffusion process and the

Heisenberg uncertainty curve: to see this, consider a diffusion (i.e. heat) equation

∂u

∂t
=

∂2u

∂y2
, (2.44)

where u(y, t) is a function of y, t ∈ R. This equation governs the conduction of heat

in physical processes, and its solution was the original motivation for Fourier anal-

ysis. The fundamental solution to (2.44), i.e., the solution with the initial condition

5Now the Football Bowl Subdivision (FBS).
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Figure 2.9: (a) Network of football games between NCAA Division I-A teams in the

2000 regular season [55]; (b) Spectral spread versus graph spread on this graph.

Solid line: computed uncertainty curve γu0(s). Triangles: scaling functions in diffu-

sion wavelets [34]. Squares: scaling functions in spectral graph wavelet transform

(SGWT) [62]. (The true SGWT scaling functions are not related to the wavelet

functions by a two-scale relation; here, we simply take the cumulative sum of the

coarsest-level scaling function and higher-level wavelet functions.)
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that u(y, 0) = δ(y − y0) for a given y0, is the Gaussian kernel

K(t, y, y0) =
1√
4πt

e−
(y−y0)

2

4t .

Thus, if we start with an impulse and evolve according to (2.44), at time t we get a

function with time spread t and frequency spread 1
4t

, achieving the classical Heisen-

berg uncertainty ∆2
t ∆

2
ω ≥ 1

4
with equality. In other words, the diffusion kernels

on the real line are exactly the signals that achieve the time-frequency uncertainty

bound.

This line of thought motivated us to consider a continuous-time diffusion process

on graphs, governed by an equation analogous to (2.44):

dx

dt
= −Lx, (2.45)

where L is the graph Laplacian. With the initial condition x(0) = δu0 , the solution

to (2.45) is [33]

x(t) = e−tLδu0 =
N∑

i=1

e−tλif if
T
i δu0, (2.46)

where e−tL is the matrix exponential of L, {λi} are the eigenvalues of L, and {f i}

are the corresponding eigenvectors. Denote by ηu0(s) the curve in the s–g plane

traced out by the diffusion process. The curve can be given in parametric form as





s(t) = x(t)TLx(t)
||x(t)||2

ηu0(s) =
x(t)TP 2

u0
x(t)

||x(t)||2 .

(2.47)
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We show in Appendix A.5 that s(t) is a strictly decreasing function of t; therefore

it is one-to-one. Furthermore, s(0) = 1 and limt→∞ s(t) = 0. All together, this

guarantees that the function ηu0(s) is well-defined for every s ∈ (0, 1].

We plot in Figure 2.10 the diffusion curve ηu0(s) and the uncertainty curve γu0(s)

for three different graphs: a random geometric graph [101] that can capture the

connectivity of wireless sensor networks; an unstructured triangular mesh6 for finite

element analysis [118]; and a small-world graph [131] that serves as the mathemat-

ical model for social and various other empirical networks. The geodesic distance

function is used. In all three cases, the spreads of the diffusion process, though

not exactly achieving the bounds as in the classical setting, match the uncertainty

curves remarkably well.

The following proposition, proved in Appendix A.4, asserts that for certain spe-

cial graphs the match between ηu0(s) and γu0(s) is exact.

Proposition 2.4. For all s ∈ (0, 1], ηu0(s) = γu0(s) if (a) G is a complete graph with

N vertices and u0 is any vertex; or (b) G is a star graph with N vertices and u0 is the

vertex with degree N − 1.

For general graphs we can show that, under certain conditions, the low-order

derivatives of the uncertainty curve and the diffusion curve match.

6This graph was generated using the Mesh2D MATLAB toolbox written by Darren Engwirda,

available online at MATLAB Central (http://www.mathworks.com/matlabcentral/fileexchange/

25555).
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Proposition 2.5. Let G be any connected graph and u0 be any vertex on G. Then

ηu0(1) = γu0(1) = 0,
dηu0
ds

∣∣∣
s=1

=
dγu0
ds

∣∣∣
s=1

= 0, and

d2γu0

ds2

∣∣∣∣
s=1

=
deg u0

2
∑

v∼u0

1
d(v,u0)2 deg v

≤ d2ηu0

ds2

∣∣∣∣
s=1

=
deg u0

2

∑
v∼u0

d(v,u0)2

deg v(∑
v∼u0

1
deg v

)2 , (2.48)

with equality if and only if d(v, u0) is identical for every v ∼ u0.

This proposition is proved in Appendix A.5. It is easy to verify that the geodesic

distance satisfies the condition required for equality in (2.48). Extrapolating the

observations in Figure 2.10 and results in Propositions 2.4 and 2.5 leads us to be-

lieve that diffusion kernels on arbitrary graphs will always be close to optimal in

graph and spectral localizations. We leave further rigorous study of this tantalizing

conjecture as an important line of future work.

2.5 Summary

In this chapter, we developed an uncertainty principle for signals defined on

graphs, analogous to the classical Heisenberg uncertainty principle in time-frequency

analysis. After presenting quantitative definitions of the signal “spreads” in the

graph and spectral domains, we provided a complete characterization of the fea-

sibility region achieved by these two quantities. The lower boundary of the re-

gion, which is analogous to the classical uncertainty bound (2.1), was shown to be
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(a) Random geometric

graph (N = 100)

(b) Mesh graph (N =

720)

(c) Small-world graph

(N = 32)
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Figure 2.10: Diffusion process versus the uncertainty curve for three types of graph.

(a) A random geometric graph [101], (b) a triangular mesh [118], and (c) a small-

world graph [131]. Below each graph, (d), (e), and (f) show the associated uncer-

tainty curves (solid black line). A continuous-time diffusion process is run on each

graph, beginning with an impulse at one vertex, and the resulting spreads are plot-

ted (solid red line with circles). The circles are evenly spaced in time. The diffusion

process tracks the curve closely, though close examination reveals that the match is

not exact.
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achieved by eigenvectors associated with the smallest eigenvalues of a particular

matrix-valued function. Furthermore, the convexity of the uncertainty curve allows

it to be efficiently approximated by solving a sequence of eigenvalue problems. We

derived closed-form formulas of the uncertainty curves for complete graphs and star

graphs, and developed a fast analytical approximation for the expected uncertainty

curve for Erdős-Rényi random graphs. The localization properties of two existing

wavelet transforms were evaluated. Finally, numerical experiments and analytical

results led us to an intriguing connection between diffusion processes on graphs

and the uncertainty bounds.
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Optimal Detection of Random Walks

on Graphs

S
UPPOSE WE WISH to make sense of a sequence of observations from nodes in

a graph. The observations form a spatiotemporal matrix, where each col-

umn contains the measurements at all nodes at a particular snapshot in time. As

illustrated in Figure 3.1, we need to distinguish between two hypotheses: (a) every

observation is just meaningless zero-mean Gaussian noise, or (b) an agent is un-

dergoing a random walk on the graph and the measurement at its location at each

time has an elevated mean. We do not know the exact path of the agent, but we

do know its dynamics: with the graph structure assumed known, the agent’s move-

ments follow a well-defined finite-state Markov chain. In effect, we would like to

exploit our knowledge of the graph structure (or the Markov chain) to help detect
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a possibly very weak signal.

In practice, this problem can arise from the detection of an intruder via a sensor

network; the motion of a potential intruder might be modeled as a random walk on

a graph representing the network, and one is tasked with testing the hypothesis that

an intruder is currently present based on noisy measurements from each sensor.

This kind of model has also been used in the detection of frequency-hopping or

other highly oscillatory signals [28]. More generally, it can be interpreted as the

detection of a hidden Markov process, a problem with many applications (see, e.g.,

[81,90,112,121,124].)

The task we have is a kind of combinatorial testing problem [1,11,45,68], in that

there is an exponentially large number of paths that could be anomalous. Thus, the

alternative hypothesis is in fact a composite of an exponentially large number of

simple hypotheses. Despite this complexity, the optimal Neyman-Pearson detector

in our problem turns out to be easy to derive and computationally tractable. How-

ever, its performance is not so simple to characterize.

We will use the (type-II) error exponent, which measures the rate of decay of

the miss detection probability when the false alarm probability is held fixed, as

the performance metric. One should expect it to depend on the signal-to-noise

ratio (SNR) and the degree to which the Markov dynamics restrict the paths of

the agent. If the SNR is too low, the true path will not be very different from the

noise. But if the number of potential paths is very small, it may be easy to rule out
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false alarms, and performance will be better than when the number is very high.

As the main focus of this chapter, we will characterize the error exponent of the

optimal detector and quantify the above intuition. We do this by deriving a fully

rigorous lower bound to the error exponent, using ideas borrowed from statistical

physics [87–89,97].

Related and Prior Work

Detecting a continuous Gauss-Markov process in Gaussian noise is a classical

signal processing problem that has been extensively studied (see, e.g., [72, 114].)

Hypothesis testing that tries to distinguish between two different finite-state Markov

chains based on noiseless realizations is also well-understood [74, 82, 91]. In this

work, we focus on the related problem of detecting random walks on directed and

weighted graphs (which are finite state Markov chains) based on noisy observations

that are perturbed by additive Gaussian noise. These observations neither satisfy

the Markov property nor are jointly Gaussian, making the problem a more difficult

one.

There is some prior work on detecting hidden Markov processes such as the one

we consider in this chapter. The structure of the optimal detector for a finite-state

Markov chain in noise was addressed in [123, 124]. We are interested in going

further and characterizing the asymptotic performance of the optimal detector by

computing the error exponent. For the Gauss-Markov case, a closed-form expres-
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Figure 3.1: Illustration of the two hypotheses under consideration. Each column of

the observation matrix shows the measurements at all nodes at a particular point

in time. The null hypothesis H0 (top) is that all of the measurements are just noise.

The alternate hypothesis H1 (bottom) is that a single node has an elevated mean

at each time, and that node is chosen by a random walk. Here, we have illustrated

a random walk on a line graph, but in this chapter we consider the general case of

any finite-state Markov chain.
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sion for the error exponent was derived by Sung et al. [121] using a state space

representation. Our problem turns out to be more challenging. The error exponent,

we shall see, is equal to the top Lyapunov exponent of the product of a sequence of

random matrices [37,54], a problem known to be difficult [126]. Leong et al. [81]

described a numerical technique to approximately compute the error exponent for

detecting a two-state Markov chain in noise by discretizing a certain integral equa-

tion. Unfortunately, numerical solutions based on discretization become computa-

tionally intractable for general Markov chains with a large number of states, the

case we address in this chapter. In principle, one can always use Monte Carlo simu-

lations to estimate the Lyapunov exponent (and thus the error exponent.) However,

they will not easily provide insights relating the error exponents to the SNR and the

Markov chain structures.

Finally, we note that our problem is closely related to the general task of detect-

ing nonzero-mean components of a Gaussian random vector [12,45,68]. Addario-

Berry et al. characterized the performance in a very general setting [1], bounding

the Bayesian risk of the test; but in that work all of the nonzero-mean support sets

under test are equiprobable and there is no Markov structure. Arias-Castro et al.

considered a problem similar to ours where a path on a graph has elevated mean

while all other nodes are zero-mean Gaussians [11]; instead of a time series, they

considered a single snapshot in the asymptotic regime of very large graphs.

In this chapter, we consider general graphs (or Markov chains) with an arbi-
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trary number of nodes. Drawing upon techniques originally developed in statistical

physics [87–89,97], we compute a lower bound on the error exponent that appears

in practice to be quite sharp. The lower bound exhibits a phase transition at a cer-

tain threshold SNR, separating the detectable and undetectable regimes. Some of

these results were previously presented in [5,8], but we only justified them through

nonrigorous arguments common in the statistical physics literature. In this chapter

we use large deviations theory [41,48] to provide a fully rigorous derivation for the

lower bound.

Contributions

We will precisely formulate the hypothesis testing problem in Section 3.1, and

introduce and motivate the error exponent as the performance metric. The main

contributions of the chapter will follow:

(1) In Section 3.2, we prove that the error exponent for this problem is well-defined

and equal to the asymptotic Kullback-Leibler (KL) divergence rate of the two hy-

potheses. We do this by generalizing the standard Chernoff-Stein lemma [41],

which gives the error exponent for independent and identically distributed (i.i.d.)

hypotheses, to the Markovian case.

(2) Later in Section 3.2, we develop upper and lower bounds for the error ex-

ponent. The upper bound is a simple genie bound. The lower bound is derived
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borrowing techniques from statistical physics—it is related to the free energy density

of a new “spin glass” model [87–89,97,122].

(3) We show how to explicitly compute the statistical physics-based lower bound.

A rigorous proof of the expression is technical, so we present our results in two

steps: first, we provide in Section 3.3 a high-level overview of our approach, em-

phasizing ideas and intuitions rather than rigor. Our discussions there also serve

as a roadmap to the various results in Section 3.4, where we use large deviations

theory to rigorously derive an expression for the lower bound and show how to

compute it parametrically. The lower bound we derive exhibits a phase transition

at an SNR equal to twice the entropy rate of the Markov chain. Below the threshold

SNR, the bound is exactly equal to zero, indicating poor performance; above the

threshold, there is rapid improvement in performance as the SNR increases.

(4) In Section 3.4.4, we compare the true error exponent (as estimated via Monte

Carlo simulations) to the lower bound and find that the bound fully captures its

behavior, which appears to undergo a smoothed version of the phase transition at

the predicted threshold. In the detectable SNR regime (above the threshold), our

bound is also far better than an alternative bound obtained by ignoring the Markov

structure, especially when the graph size is large.

We offer some concluding remarks in Section 3.5.
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3.1 Problem Formulation

We consider testing the two hypotheses illustrated in Figure 3.1. The data form

a matrix Y N = [ym,n] with 1 ≤ m ≤ M and 1 ≤ n ≤ N , where M is the number

of nodes in the graph and N is the number of observation times. As we allow the

graph to be directed and weighted, the dynamics of an agent following a random

walk on the graph can model any finite-state Markov chain. The two hypotheses

are as follows:

H0 : ym,n
i.i.d.∼ N (0, 1)

H1 : s = (s1, s2, . . . , sN ) ∼ Markov(P )

ym,n|s indep.∼





N (β, 1), if m = sn

N (0, 1), if m 6= sn,

where P is the known transition matrix of an irreducible and aperiodic M -state

Markov chain [so that Pr(sn+1 = j|sn = i) = pi,j , the ijth entry of P ].

Under the null hypothesis H0, the measurements are just i.i.d. zero-mean stan-

dard Gaussian noise. Under the alternate hypothesis H1, there is a sequence of

states s = (s1, s2, . . . , sN ) ∈ {1, . . . ,M}N produced by a Markov chain with transi-

tion matrix P , and we assume that s1 is drawn from its unique stationary distribu-

tion π. By the Perron-Frobenius theorem for irreducible matrices [67], the elements

of π are all positive, meaning each state has a positive probability of being initially

chosen. Given the state sequence s, the entries of the data matrix Y N are still inde-
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pendent Gaussian random variables. The difference is just that, in each column n

the Gaussian random variable at the snth entry has an elevated mean β. This can be

interpreted as the “signature” or “evidence” left behind by the agent. The variance

in both hypotheses is set to 1 without loss of generality; what matters is the signal

to noise ratio (SNR) of β2. In what follows, we will use P0(·) and P1(·) to refer to

the probability laws under H0 and H1, respectively, and E0 and E1 to refer to the

corresponding expectation operators.

The optimal detector, that which minimizes the miss detection probability for a

fixed false alarm probability, is the Neyman-Pearson detector [36]. The correspond-

ing decision rule compares the likelihood ratio L(Y N )
def
= P1(Y

N )

P0(Y
N )

to a threshold and

chooses H1 only if it exceeds the threshold. The likelihood ratio for this problem

can be computed as

L(Y N ) =
∑

s

P (s)
P1(Y

N |s)
P0(Y

N)

=
∑

s

P (s) exp
(
β

N∑

n=1

ysn,n −
Nβ2

2

)
, (3.1)

where P (s) = πs1ps1,s2 · · · psN−1,sN is the probability of the state sequence s under

the Markov chain P . Conditioned on the state sequence s, the variable ym,n’s dis-

tribution is different under the two hypotheses only if m = sn. The expression in

(3.1) might appear complicated, as the sum is over an exponentially large (MN)

number of possible state sequences. However, the likelihood ratio turns out to be
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easy to compute: it can be reformulated in terms of matrix products1:

L(Y N ) = πTD1PD2P . . .PDN1, (3.2)

where P is the transition matrix of the Markov chain, and Dn is a diagonal matrix

defined as

Dn
def
= exp

(
−β2

2

)
diag

(
exp(βy1,n), . . . , exp(βyM,n)

)

for 1 ≤ n ≤ N . Thus, the likelihood ratio can be computed in O(M 2N) time.

A far more difficult problem is to characterize the performance of the detector,

i.e., to compute the type-I (false alarm) error probability Pfalse_alarm and the type-II

(miss) error probability Pmiss. Under the optimal detector, these are given by the

expressions

Pfalse_alarm =

∫∫
· · ·
∫

L(Y N )>τ

P0(Y
N) dMNy

Pmiss =

∫∫
· · ·
∫

L(Y N )<τ

P1(Y
N) dMNy

where τ is the Neyman-Pearson threshold chosen to achieve the constraint on

Pfalse_alarm, and the integrals are over all MN variables {ym,n}. These are very high

dimensional integrals for which only Monte Carlo techniques would be practical.

However, we would like to say something about the performance of these systems

without having to simulate them. In particular, we expect that the performance

1Readers with a background in statistical physics may recognize this formula as an immediate

consequence of the “transfer matrix” method [16] as applied to a one-dimensional generalized Potts

model with a quenched random field. Those in the signal processing community may recognize the

form of the conditional probability of a finite state discrete-time hidden Markov process.
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depends on two parameters: the element-wise SNR β2, and some measure of the

complexity of the Markov chain P . For example, more restrictive dynamics for the

state sequence s should make it easier to correctly distinguish between the two

hypotheses.

We consider the asymptotic performance of a detector as N → ∞, i.e., as the

observation time increases without bound. Let ǫ ∈ (0, 1) be a constant. Given

a sequence of optimal detectors δN (Y
N ) with false alarm constraint Pfalse_alarm ≤ ǫ

(where δN has access to N observations of the network), the (type-II) error exponent

is

η
def
= − lim

N→∞

1

N
logPmiss(δN ). (3.3)

This means that Pmiss(δN ) = exp(−ηN + o(N)), so that the dominant feature of the

miss probability is that it decays exponentially with a rate of η. In the remainder

of this chapter, we will first prove that the error exponent in (3.3) is indeed a well-

defined quantity, and then explore techniques to analytically characterize it.

3.2 The error exponent

3.2.1 Existence

The first question is whether the error exponent η is a well-defined quantity. If

H0 and H1 were both i.i.d. hypotheses with single-letter marginal densities p0(·)

and p1(·), then the Chernoff-Stein lemma [41] would tell us that η = D(p0||p1) =
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−E0 log
p1(y)
p0(y)

, the Kullback-Leibler divergence of p1 from p0. However, since H1

for our problem is not an i.i.d. hypothesis, the lemma in its original form is not

applicable. So we prove the following generalization.

Lemma 3.1 (Generalized Chernoff-Stein Lemma). Suppose we have a sequence of

hypotheses HN
0 and HN

1 with a well-defined Kullback-Leibler divergence rate

κ
def
= − lim

N→∞

1

N
E0 log

P1(Y
N )

P0(Y
N )

= − lim
N→∞

1

N
E0 logL(Y

N).

Suppose furthermore that under H0, the normalized log likelihood ratio

ℓN
def
=

1

N
logL(Y N )

converges in probability to the limit of its expectation, −κ. Then the error exponent η

is well defined and η = κ.

Proof. See Appendix B.1.

To apply Lemma 3.1 to our problem, we need to verify that its assumptions hold.

This is established by the following proposition, which uses results from the theory

of matrix-valued stochastic processes [54]:

Proposition 3.1. The Kullback-Leibler divergence rate for our problem,

κ = − lim
N→∞

1

N
E0 log

(
πTD1PD2P . . .PDN1

)
,

exists. Further, under H0, the normalized log likelihood ratio converges almost surely:

lim
N→∞

1

N
log
(
πTD1PD2P . . .PDN1

)
→ −κ, (3.4)

and thus it converges in probability.
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Proof. We first note that, since P is a stochastic matrix, we have P1 = 1, so we can

add an extra factor of P into the expression (3.2) to obtain

L(Y N ) = πTD1P · · ·PDNP1. (3.5)

Under H0, the factors {DnP }n≥1 form an i.i.d. sequence of random matrices, with

randomness induced by the Gaussian variables in the definition of Dn. In a classical

paper [54], Furstenberg and Kesten showed that for an i.i.d. sequence of random

matrices Xn, if E log+‖Xn‖∞ is finite2, the limit limN→∞
1
N
E log‖X1 · · ·XN‖∞ ex-

ists and the random quantity 1
N
log‖X1 · · ·XN‖∞ converges almost surely to the

same limit. This quantity is equivalent to what is known as the (top) Lyapunov ex-

ponent—the exponential rate of growth or decay of a product of random matrices.

First, let us show that the result applies to the factors {DnP }. For any fixed n, we

have:

E log+‖DnP ‖∞ ≤ E

∣∣∣ log ‖DnP ‖∞
∣∣∣

= E

∣∣∣ logmax
m

{
exp(βym,n −

β2

2
)
}∣∣∣

= E

∣∣∣βmax
m

ym,n −
β2

2

∣∣∣ <∞.

So the condition we need to apply the Furstenberg-Kesten result holds. Now we

must relate the likelihood ratio to the norm of the product of random matrices.

2Here, log+(x) = max{0, log(x)}, and the matrix∞-norm is induced by the ℓ∞ norm and is given

by ‖X‖∞ def
= maxi

∑
j |Xi,j |.
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Using Hölder’s inequality, we have

πTD1P · · ·PDNP1

≤ ‖π‖1‖D1P · · ·PDNP1‖∞

= ‖D1P · · ·PDNP ‖∞, (3.6)

where (3.6) follows from the definition of the matrix ∞-norm and the fact that

all of the matrices involved are nonnegative and all of the vectors are positive.

Meanwhile, as a lower bound, we let πmin = minm πm and it holds that

πTD1P · · ·PDNP1

≥ πmin‖D1P · · ·PDNP1‖1

≥ πmin‖D1P · · ·PDNP ‖∞, (3.7)

where (3.7) again follows from the definition of the matrix ∞-norm. So we can

sandwich the log likelihood ratio to within a vanishing constant:

1

N
log‖D1P · · ·DNP ‖∞ +

1

N
log πmin ≤

1

N
logL(Y N ) ≤ 1

N
log‖D1P · · ·DNP ‖∞.

The outer expressions converge almost surely and in expectation due to Fursten-

berg and Kesten’s results [54, Theorems 1 and 2], so the log likelihood ratio must

converge in the same way.

Remark: Note that the proof only requires that the probability distribution of the

initial state s1 be positive at all nodes—there is no need to start from the stationary
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distribution π. In fact, since P is irreducible and aperiodic, we could relax the pos-

itivity constraint on the initial distribution and start with any known distribution.

Lemma 3.1 and Proposition 3.1 indicate that computing the error exponent boils

down to computing the top Lyapunov exponent of products of random matrices, a

problem known to be hard [126]. For M ×M matrices, it generally requires solv-

ing an integral equation to obtain the invariant measure of a continuous diffusion

process on a M -dimensional real projective space [35]. In low dimensions (e.g.,

M = 2 or 3), this can be done with numerical quadrature (see, e.g., [70, 81]), but

this becomes intractable for high dimensional problems. Thanks to almost sure

convergence of the normalized partial products in (3.4), one can use Monte Carlo

simulations to estimate the error exponents. A simple Monte Carlo procedure that

does just that is presented in Section 3.4.4, where we report some results of numer-

ical simulations.

3.2.2 Upper and Lower Bounds

Obtaining analytical expressions for the error exponents for general Markov

chain structures is expected to be a very challenging task. Instead, we will focus

on deriving bounds for the error exponents. The Lyapunov exponent formulation

of the error exponent as given in (3.4) does not lend itself to easy analysis. To

proceed, we use the alternative form of the likelihood ratio in (3.1) to rewrite the
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error exponent as follows

η = lim
N→∞

− 1

N
E log

(∑

s

P (s) exp

(
βys −

Nβ2

2

))

=
β2

2
− lim

N→∞

1

N
E log

(∑

s

P (s) exp(βys)
)

︸ ︷︷ ︸
ϕ(β)

, (3.8)

where s = (s1, s2, . . . , sN ) ∈ {1, . . . ,M}N is a state sequence of the Markov chain,

and we define

ys
def
=

N∑

n=1

ysn,n ∼ N (0, N) (3.9)

to be the sum of the Gaussian random variables associated with a given state se-

quence s. Here, and in what follows, we shall simply use E to refer to the expec-

tation under H0, since we have no further use for E1. To study the behavior of the

error exponent, we just need to study

ϕ(β) = lim
N→∞

1

N
E log

(∑

s

P (s) exp(βys)
)
. (3.10)

We will derive upper and lower bounds on this quantity, which will translate

into bounds on the error exponent η. There is a simple lower bound: by treating

the sum
∑

s P (s) exp(βys) as an expectation and applying Jensen’s inequality, we

get

ϕ(β) ≥ lim
N→∞

1

N
E

∑

s

P (s) log exp(βys) = 0.

This then gives us an upper bound for the error exponent

η ≤ β2

2
,
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which can also be interpreted as the “genie” bound: if we are given the true state

sequence s, then we can examine only the variables along that path and ignore

all others, leading to an i.i.d. hypothesis testing problem with error exponent β2

2
. It

provides an upper bound on the true error exponent since the extra side information

about the correct path can only improve the performance.

To get a lower bound on η, we can still apply Jensen’s inequality, but this time

to the outer expectation E in (3.10), to obtain

ϕ(β) ≤ lim
N→∞

1

N
log
(∑

s

P (s)E exp(βys)
)
=

β2

2
,

which gives us η ≥ 0. Of course, this is trivial since η is equal to a limit of Kullback-

Leibler divergences, which are always nonnegative. Another lower bound can be

obtained by considering the test statistics yn =
∑

m ymn, the sums of the states in

each time step. Since we are discarding information, the error exponent for this

problem can be no greater than that for the original problem. But the new problem

is just testing two i.i.d. hypotheses yn
i.i.d.∼ N (0,M) and yn

i.i.d.∼ N (β,M). As we

know, in the i.i.d. case the error exponent is simply the Kullback-Leibler divergence

of these two densities, giving us a lower bound of

η ≥ β2

2M
.

This is a nontrivial bound, but just barely. For large M , the error exponent is very

small indeed. In fact, we would need M times the observation length to obtain the

same performance as the genie-aided detector.
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We will spend the remainder of this section and all of the next two sections

computing a nontrivial lower bound for η, one that we will find empirically to fully

capture its behavior. Qualitatively, this lower bound will guarantee that, above a

certain threshold SNR, the error exponent will be bounded by

η ≥ β2

2
−O(β),

meaning to leading order, the maximum likelihood detector will be just as good as

the genie-aided detector.

To develop this bound, we will borrow ideas from the theory of spin glasses

[87–89, 97, 122], a class of disordered systems studied in statistical physics. In

fact, we have already chosen our notation so that our result closely resembles the

quantities studied in that field. In particular, the function ϕ(β) resembles the so-

called “free energy density” of a spin glass, defined as

φ(β) = − 1

β
lim

N→∞

1

N
E log

(∑

s

exp(−βH(s))
)
, (3.11)

where N is the number of particles in the spin glass, s ∈ R
N is an indexing vec-

tor representing the configurations of the system (there are typically exponentially

large number of them), β is the inverse temperature parameter, and H(·) is a ran-

dom Hamiltonian, a function defining the energy of each configuration. For our

problem, we can write the function in (3.10) as ϕ(β) = −βφ(β) if we choose the

Hamiltonian to be

H(s) = −ys −
1

β
logP (s). (3.12)
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Despite the extra factor of −β, to be concise we will abuse the terminology and

henceforth refer to ϕ(β) for our problem as the free energy density.

Computing the free energy density of a disordered system is often very difficult.

In fact, there are seemingly simple models that have been studied for many years

with no exact solution [21, 122]. The main challenge lies in the fact that the free

energy density φ(β) in (3.11) involves the sum of an exponentially large number

of random variables. The high-dimensional correlation structures of the random

Hamiltonians {H(s)}s can often lead to remarkable phenomena (see, e.g., [89,99,

122]).

In our problem, the correlations of the Hamiltonians can be computed as fol-

lows. Let s1, s2 denote two arbitrary paths of the Markov chain, and let H(s1), H(s2)

be the associated Hamiltonians as defined in (3.12). Using (3.9), we can easily ver-

ify that

cov(H(s1), H(s1)) = E ys1ys2 =
N∑

n=1

1(s1n = s2n), (3.13)

where 1(·) is the indicator function. This means that the Hamiltonians of the various

states in our problem are indeed correlated, and the covariance is equal to the

number of times the two sequences overlap.

In the spin glass literature, removing or just reducing the correlations between

state Hamiltonians can often simplify a problem [42, 122]. We follow this idea: if
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we drop the correlations, we obtain a modified function3

ϕ̃(β) = lim
N→∞

1

N
E log

(∑

s

P (s) exp(βxs)
)
, (3.14)

where xs
i.i.d.∼ N (0, N), i.e. they are an uncorrelated Gaussian ensemble with the

same variance as the ys. We note that the two functions in (3.14) and (3.10) have

exactly the same form, the only difference being the absence of correlation in {xs}.

Dropping the correlation, as we shall see, makes our problem tractable4. Interest-

ingly, it also provides a lower bound on the error exponent, which is precisely what

we seek for our problem. The argument relies on the following lemma:

Lemma 3.2 (Slepian’s Lemma [122, pp. 12–15]). Let the function F : RL → R (for

some L) satisfy the moderate growth condition

lim
‖v‖→∞

F (v) exp(−a‖v‖2) = 0 for all a > 0,

and have nonnegative mixed derivatives:

∂2F

∂vi∂vj
≥ 0 for i 6= j.

Suppose that we have two independent zero-mean Gaussian random vectors x and

y taking values in R
L such that Ex2

i = Ey2i and Eyiyj ≥ Exixj for i 6= j. Then

EF (y) ≥ EF (x).

3Strictly speaking, we need to show that ϕ̃(β) exists, i.e. that the limit is actually well-defined.

We will do this in Section 3.4 by actually computing it. Until then, we presuppose its existence in all

our arguments.

4In spin glass parlance, our function ϕ̃(β) may be regarded as the (rescaled) free energy density

of a new generalization of the random energy model (REM) [42,122].

78



Chapter 3: Optimal Detection of Random Walks on Graphs

Applying this to ϕ(β) gives us the desired lower bound on the error exponent:

Proposition 3.2. The error exponent satisfies η ≥ β2

2
− ϕ̃(β).

Proof. Define F (v) = − log(
∑

s P (s) exp(βvs)). This is a function from R
MN

to R

that clearly satisfies the moderate growth condition. We can compute the cross

second derivative with respect to vs1 and vs2 , with s1 6= s2, as:

∂F

∂vs1∂vs2
=

β2P (s1)P (s2) exp(β(vs1 + vs2))

[
∑

s P (s) exp(βvs)]2
,

which is clearly nonnegative. From (3.13), we know that for s1 6= s2, Eys1ys2 ≥ 0,

and we have constructed the x ensemble so that Exs1xs2 = 0. Thus, applying

Slepian’s Lemma gives us EF (y) ≥ EF (x), which is equivalent to ϕ(β) ≤ ϕ̃(β).

The statement of the proposition then follows immediately from (3.8).

Next, we will show how to explicitly compute ϕ̃(β) by using tools from large

deviations theory. Before delving into the technical results, we first present in Sec-

tion 3.3 a high-level and non-rigorous overview of the main ideas used in our ap-

proach. The discussions there also provide a roadmap to the various rigorous argu-

ments that lead to our final results, stated as Theorem 3.3 and Propositions 3.6 and

3.7 in Section 3.4.
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3.3 Main Ideas and Roadmap to the Technical Results

To begin, we can rewrite the free energy density as:

ϕ̃(β) = lim
N→∞

1

N
E log

∑

s∈PN

exp(βxs + logP (s)), (3.15)

where we are considering only the set PN ⊂ {1, . . . ,M}N of paths that have

nonzero probability under the Markov chain P (the other paths contributed nothing

to the sum in the first place.)

We can group the terms of the sum by their 1
N
logP (s) and 1

N
xs values, dividing

them into bins with a small width δ. Counting the number of configurations (i.e.,

paths) in each bin as

Cδ
N(ρ, ξ)

def
= #{s ∈ PN : logP (s) ∈ [Nρ,N(ρ+ δ)] and xs ∈ [Nξ,N(ξ + δ)]},

then we should be able to approximate the sum as

ϕ̃(β) ≈ lim
N→∞

1

N
E log

∑

ρ

∑

ξ

Cδ
N(ρ, ξ) exp(N [βξ + ρ]), (3.16)

where the sums are over cornerpoints of the bins. In Section 3.4, we will show that

a form of this approximation can be made exact.

Of course, Cδ
N(·, ·) is random due to its dependence on the Gaussian variables

{xs}, but it turns out that there will be a concentration of measure phenomenon

that will allow us to treat it deterministically in the large N limit. If we consider

only the marginal count Cδ
N(ρ) of paths satisfying logP (s) ∈ [Nρ,N(ρ + δ)], then
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s(ρ)

ρ

Figure 3.2: Notional illustrations of the microcanonical entropy densities s(ρ) (top)

and s(ρ, ξ) (bottom). s(ρ) is the exponential growth rate of the number of paths

s satisfying 1
N
logP (s) ≈ ρ, whereas s(ρ, ξ) is, with probability 1, the exponential

growth rate of the number of paths satisfying 1
N
logP (s) ≈ ρ and 1

N
xs ≈ ξ. The

density function s(ρ, ξ) has a compact support, outside of which the density s(ρ, ξ) =

−∞, meaning that there is no path there. Analytical expressions for these functions

are derived in Section 3.4.
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there is no randomness involved; we can show that this count grows exponentially:

Cδ
N(ρ) = exp

(
N [ sup

ρ′∈[ρ,ρ+δ]

s(ρ′)] + o(N)
)
,

where s(ρ) is the “microcanonical entropy density” function for 1
N
logP (s). This

is physics jargon for the exponential growth rate of the number of configurations

within an energy level [89]. In Section 3.4, we will show how to compute it (see

Proposition 3.4) and derive several important properties (see Proposition 3.5). A

notional illustration based on those properties is provided in Figure 3.2.

Meanwhile, the full count Cδ
N(·, ·) will also grow exponentially:

Cδ
N(ρ, ξ) = exp

(
N

[
sup

ρ′∈[ρ,ρ+δ]
ξ′∈[ξ,ξ+δ]

s(ρ′, ξ′)

]
+ o(N)

)

with probability 1 under the distribution of the xs, where s(ρ, ξ) is the two-dimen-

sional microcanonical entropy density function for the pair ( 1
N
logP (s), 1

N
xs). In

Section 3.4, we will show how to compute s(ρ, ξ) (see Theorem 3.2), which is of

course closely related to s(ρ). Again a notional illustration is provided in Figure 3.2.

As N grows, the number of states grows exponentially, and we can let the bin

width δ vanish and approximate the sum (3.16) by an integral. The free energy

density can then be evaluated as

ϕ̃(β) ≈ lim
N→∞

1

N
E log

∫∫
exp (N [s(ρ, ξ) + βξ + ρ]) dρdξ

= sup
ρ,ξ

{
s(ρ, ξ) + βξ + ρ

}
, (3.17)
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where the equality is obtained via the Laplace principle5 [40]; we will use a rigorous

formulation of this principle in Theorem 3.3 in the next section.

To actually compute ϕ̃(β), we will need to evaluate the supremum in (3.17). As

it turns out, the microcanonical entropy density s(ρ, ξ) has a compact support (see

Figures 3.2 and 3.3), outside of which the density s(ρ, ξ) = −∞. The supremum

can thus be only achieved at the interior or the boundary of the support region.

As illustrated in Figure 3.3, the location where the supremum is achieved depends

on whether β is greater or less than a threshold of
√
2H, where H is the entropy

rate of the Markov chain P (defined in Section 3.4.) As shown in the figure, below

the threshold, the supremum is achieved at a critical point in the interior of the

support region; as β increases the critical point moves up along the line ρ = H

until it hits the boundary. As β continues to increase beyond the threshold, the

location of the supremum moves along the boundary in a direction of decreasing

ρ. The change in behavior at the threshold corresponds to a phase transition in

ϕ̃(β). In Section 3.4.3 we will provide a closed-form expression for ϕ̃(β) below the

threshold, and a parametric representation for it above the threshold. The reader

who wishes to skip the technical details can skip directly to that section, where we

provide these expressions.

5The Laplace principle states that when N is very large,
∫
exp(Nf(x))dx = exp(N supx f(x) +

o(N)), i.e. the integral is dominated by the peak. This is also known as the saddle-point technique, a

powerful tool in asymptotic integration [40].
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ρmaxρmin

β = ∞

β =
√
2H

β
=

0

β

H

A

ρ

ξ

Figure 3.3: The location of the supremum that ultimately gives us ϕ̃(β) is illustrated

here. The entropy density s(ρ, ξ) is finite only in the compact region A illustrated

here—this is also the effective domain of the large deviation rate function I(ρ, ξ),

which will be defined in (3.23). Below the threshold, the supremum in (3.17)

is achieved at a critical point in the interior; above the threshold, the supremum

moves along the boundary as β increases. The change in behavior at the threshold

leads to a phase transition. Technical details will be provided in Section 3.4.

3.4 Rigorous Derivation

In this section, we use results from large deviations theory to rigorously derive

expressions for the lower bound.

3.4.1 Large deviations and the microcanonical entropy density

First, we introduce the large deviations property for a sequence of probability

measures:

Definition 3.1 (Large Deviation Property [48, pp. 35-36]). Let X be a complete
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separable metric space and B(X ) be the Borel σ-field of X , Then the sequence {QN}∞N=1

of probability measures on B(X ) satisfies the large deviations property if there is a

lower semicontinuous function I : X → [0,∞] (the function may take the value ∞)

with compact level sets such that

1. lim sup
N→∞

1

N
logQN(B) ≤ − inf

x∈B
I(x) for every closed set B in B, and

2. lim inf
N→∞

1

N
logQN(U) ≥ − inf

x∈U
I(x) for every open set U in B.

I(x) is known as the rate function.

To apply large deviations theory, we will consider the set of ordered pairs of the

form ( 1
N
logP (s), 1

N
xs) for s ∈ PN as inducing an empirical measure QN ; for any

set B ⊂ R
2,

QN(B)
def
=

1

#PN
#

{
s ∈ PN :

(
1

N
logP (s),

1

N
xs

)
∈ B

}
.

One way to think about this is as follows: if we choose an allowable state s ∈ PN

uniformly at random (rather than choosing it by running the Markov chain), then

QN(B) is the probability that the ordered pair ( 1
N
P (s), 1

N
xs) is in B. This is just the

number of states in the set B divided by the total number of allowable paths #PN .

Since the {xs} are random, QN itself is a random probability measure. It is

important to note that there are two levels of randomness here: first, the random

variables { 1
N
xs} themselves, and second, the empirical probability distribution QN

that they induce when paired with the log probabilities 1
N
logP (s). We will show
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that with probability 1, the empirical probability measure will satisfy the large devi-

ations property in Definition 3.1, and we will compute the rate function I(ρ, ξ).

We will need to compute #PN , the number of allowable paths. If every entry

of transition matrix P is nonzero, then this is simple: #PN = MN . If each row of

P has exactly K nonzero entries, meaning that each state can transition to only K

other states, then #PN = KN . However, in the general case, we have:

#PN =
∑

s1

∑

s2

· · ·
∑

sN

1(ps1,s2 6= 0)1(ps2,s3 6= 0) · · ·1(psN−1,sN 6= 0)

= 1
T
(
P (0)

)N−1

1,

where for any matrix A and t ∈ R, we define A(t) to be the sparsity-preserving

Hadamard power of A, whose ijth entry is given by:

[A(t)]i,j =





[A]ti,j if [A]i,j 6= 0

0 if [A]i,j = 0.

In particular, P (0) is a 0-1 matrix that is the adjacency matrix of the directed graph

underlying the Markov chain. Its ijth element is 1 if and only if there is a nonzero

probability of transitioning to state j directly from state i. Since P is irreducible

and aperiodic, so must be P (0). Due to the Perron-Frobenius theorem, λmax(P
(0))

is simple, the associated left and right eigenvectors can be chosen to be positive,

and all other eigenvalues are of smaller magnitude, so we can see that #PN grows

exponentially with rate

lim
N→∞

1

N
log#PN = log λmax(P

(0)).
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The first step toward showing that QN satisfies the large deviation property with

probability 1 is to show that its marginal Q1
N with respect to the first argument sat-

isfies the large deviation property. This is simply the empirical probability measure

on R induced by 1
N
logP (s) for all s ∈ PN . It is not a random measure, since it does

not depend on the Gaussian random variables {xs}. We will exploit the powerful

Gärtner-Ellis theorem:

Theorem 3.1 (Gärtner-Ellis Theorem [48, p. 47]). Suppose we have a sequence

of random variables XN taking values in R. Let 1
N
logE exp(tXN) be finite for ev-

ery t, N . Suppose the limiting cumulant generating function (CGF), given by c(t)
def
=

limN→∞
1
N
logE exp(tXN ), exists and is finite and differentiable for all t. Then the

Legendre-Fenchel transform of c(t), given by

I(x) = sup
t∈R

{
tx− c(t)

}
,

is convex, lower semicontinuous, nonnegative, has compact level sets, satisfies infx I(x)

= 0, and is the large deviations rate function for 1
N
XN .

In our case, the random variable XN is the one induced by choosing a state s

uniformly at random from PN , and taking XN = logP (s). We can compute the
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limiting CGF as:

c(t) = lim
N→∞

1

N
log

(
1

1
T
(
P (0)

)N−1

1

·

∑

s1

· · ·
∑

sN

πt
s1
pts1,s21(ps1,s2 6= 0) · · · ptsN−1,sN

1(psN−1,sN 6= 0)

)

= lim
N→∞

1

N
log

[(
π(t)
)T (

P (t)
)N−1

1

]
− lim

N→∞

1

N
log

[
1
T
(
P (0)

)N−1

1

]

= log λmax(P
(t))− log λmax(P

(0)), (3.18)

again using the Perron-Frobenius theorem, which due to the irreducibility and ape-

riodicity of P ensures that only the top eigenvalue remains for both terms. To apply

the Gärtner-Ellis theorem, we need to show that c(t) is differentiable. This follows

from the following proposition, which provides several properties of the function

log λmax(P
(t)) that we will need. To simplify the notation, we will define

λt
def
= λmax(P

(t)).

Proposition 3.3. The function log λt satisfies the following properties:

(1) log λt is finite, analytic, and convex on R.

(2) log λt is in fact strictly convex on R unless P is the transition matrix for a uniform

random walk on a regular graph, i.e. there is some integer K ≤ M such that each

row of P has exactly K nonzero entries, all of which are 1
K

. In that case, log λt =

(1− t) logK.
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(3) Let at and bt be the left and right Perron-Frobenius eigenvectors of P (t), respec-

tively. Then the derivative is given by:

d

dt
log λt =

aT
t [(logP ) ◦ P (t)]bt

aT
t [P

(t)]bt
, (3.19)

where the log operates only on the nonzero entries of P , and ◦ is the Hadamard

(entrywise) product.

(4) The range of d
dt
log λt is given by

inf
t

d

dt
log λt = lim inf

N→∞
min
s∈PN

1

N
logP (s)

def
= ρmin (3.20)

sup
t

d

dt
log λt = lim sup

N→∞
max
s∈PN

1

N
logP (s)

def
= ρmax. (3.21)

Proof. See Appendix B.2.

Now we can prove the following proposition:

Proposition 3.4. Q1
N has a large deviations property with rate function

I1(ρ) = sup
t
{tρ− log λt + log λ0}

= log λ0 − s(ρ),

where s(ρ)
def
= inft

{
log λt − tρ

}
.

Proof. Since log λt is analytic, the limiting CGF c(t) as defined in (3.18) is differen-

tiable, and the proposition follows from the Gärtner-Ellis theorem.
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To complete the large deviations analysis, we will need to use several properties

of s(ρ). One quantity that will be important is the entropy rate of P :

Definition 3.2. The entropy rate of an irreducible and aperiodic Markov chain P is

given by

H = −
∑

i

πi

∑

j

pi,j log pi,j,

where π is the unique stationary distribution. The entropy rate can be understood

as the conditional entropy of the next state given the current state, averaged over the

stationary distribution.

This definition will be important in the following proposition:

Proposition 3.5. If P is the transition matrix for a uniform random walk on a K-

regular graph, then s(ρ) is given by

s(ρ) =





logK if ρ = − logK

−∞ if ρ 6= − logK.

(3.22)

Otherwise, s(ρ) satisfies the following properties:

(1) s : R → R
⋃{−∞} is a concave function that is nonnegative on its effective do-

main, [ρmin, ρmax], where ρmin and ρmax were defined in (3.20) and (3.21), respectively.

(2) s(ρ) is continuous in (ρmin, ρmax), and continuous from above at ρmin and ρmax.

(3) s(ρ) is differentiable on (ρmin, ρmax). The function s′(ρ) is one-to-one and −s′(ρ)

is the inverse function of d
dt
log λt.
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(4) s(−H) = H and s′(−H) = −1. Meanwhile, s(ρ0) = log λ0 and s′(ρ0) = 0, where

ρ0 =
(a0)T (logP )b0

aT
0 b0

.

Proof. See Appendix B.3.

We provide notional illustrations of log λt and s(ρ) in the general case, based on

the properties described in Propositions 3.3 and 3.5, in Figure 3.4.

Now we can prove the large deviation property for the two-dimensional empiri-

cal measure QN induced by the pairs ( 1
N
logP (s), 1

N
xs):

Theorem 3.2. With probability 1, the empirical measure QN satisfies the large devia-

tion property with rate function

I(ρ, ξ) =





I1(ρ) +
ξ2

2
, if I1(ρ) +

ξ2

2
≤ log λ0

∞, otherwise.

(3.23)

Proof. See Appendix B.4.

Remark: The microcanonical entropy density functions described in Section 3.3

and the large deviation rate functions computed in this section are closely related.

Entropy density functions give the exponential growth rate for the number of states

within some window; large deviation rate functions give the exponential decay rate

for the probability of a uniformly chosen state in some window. Since the number

of states in a window is equal to #PN times the probability under the empirical

measure, we have that the microcanonical entropy density functions as illustrated
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log λt

1

slope:ρ
m
in

slope:ρmax

t

s(ρ)

ρ

slope:
-1

ρmin d
dt
log λt

∣∣∣
t=0

−H ρmax

H

log λ0

Figure 3.4: The basic properties of the functions log λt and s(ρ) are illustrated here.

log λt is a convex function (strictly convex except for a degenerate case); its value

at t = 1 is 0, and it has limiting slopes ρmin and ρmax. s(ρ) is nonnegative and

concave, takes the value H at ρ = −H (where the slope is −1), and is finite only

on [ρmin, ρmax]. Its peak and the location thereof is determined by the value and

slope, respectively, of log λt at t = 0. (For the degenerate case of a uniform random

walk on a K-regular graph, the curves look different: log λt is just a linear function

(1−t) logK, and s(ρ) is only finite at a single point, ρ = − logK, where s(− logK) =

logK.)
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in Figure 3.2 are given by:

s(ρ) = log λ0 − I(ρ)

and

s(ρ, ξ) = log λ0 − I(ρ, ξ)

=





s(ρ)− ξ2

2
, if |ξ| ≤

√
2s(ρ)

−∞, otherwise.

(3.24)

3.4.2 The saddle point technique through Varadhan’s lemma

We can now compute the free energy density ϕ̃(β) given in (3.15). We rewrite

it in terms of the empirical measure as:

ϕ̃(β) = lim
N→∞

1

N
log(#PN) + lim

N→∞

1

N
E log

∫∫
exp(N [βξ + ρ])QN(dρ, dξ). (3.25)

We have simply re-written the sum over all states as an integral over the discrete

empirical measure induced by the states. The first term is, as we know, log λ0. The

second term can be computed using Varadhan’s lemma [48], a rigorous formula-

tion of the Laplace principle (or the saddle point technique) applied to measures

satisfying a large deviations property:

Lemma 3.3 (Varadhan’s Lemma [48, p. 51]). Suppose a sequence {QN}∞N=1 of prob-

ability measures on X satisfies a large deviations property with rate function I(x). Let

F : X → R be a continuous function that satisfies the tail condition

lim
L→∞

lim sup
N→∞

1

N
log

∫

x:F (x)≥L

exp(NF (x))QN(dx) = −∞.
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Then

lim
N→∞

1

N
log

∫

X
exp(NF (x))QN(dx) = sup

x∈X

{
F (x)− I(x)

}
.

We now have all the machinery in place to prove the main result:

Theorem 3.3. The free energy density is given by

ϕ̃(β) = sup
ρ,ξ

{
s(ρ, ξ) + βξ + ρ

}
, (3.26)

where s(ρ, ξ) is the microcanonical entropy density given in (3.24).

Proof. To apply Varadhan’s lemma, we need to show the tail condition

lim
L→∞

lim sup
N→∞

1

N
log

∫∫

(ρ,ξ):βξ+ρ≥L

exp(N [βξ + ρ])QN(dρ, dξ) = −∞.

But this is simple. For all large enough L, the region R = {(ρ, ξ) : βξ + ρ ≥ L}

has no intersection with the support of I(ρ, ξ), and thus it satisfies QN(R) = 0 with

probability 1. Thus the tail condition holds, and Varadhan’s lemma gives us that,

almost surely,

lim
N→∞

1

N
log

∑

s∈PN

exp(βxs + logP (s)) = log λ0 + sup
ρ,ξ

{
βξ + ρ− I(ρ, ξ)

}

= sup
ρ,ξ

{
s(ρ, ξ) + βξ + ρ

}
. (3.27)

In general, almost sure convergence does not guarantee the convergence of the

expectation. However, if a sequence of random variables is uniformly integrable,

then almost sure convergence (indeed, merely convergence in probability) guar-

antees convergence in L1, which is stronger than convergence of the expectation.
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Uniform integrability is a sort of joint tail condition for a sequence of random vari-

ables. As it turns out, the sequence of random variables 1
N
log
(∑

s P (s) exp(βxs)
)

is uniformly integrable. Rather than belabor the point here, we will prove this fact

(after formally defining uniform integrability) in Appendix B.5. This then immedi-

ately gives us the statement of the theorem.

3.4.3 Evaluating the bound

Now we are in a position to actually compute ϕ̃(β), which will then give us a

bound on the error exponent η. We start with the degenerate case, which has a

closed form expression:

Proposition 3.6. If P is the transition matrix for a uniform random walk on a K-

regular graph, then the error exponent satisfies

η ≥





0, if β ≤ √2 logK

β2

2
− β
√
2 logK + logK, otherwise.

(3.28)

Proof. Combining (3.22), (3.24) and (3.26), we have ϕ̃(β) = sup|ξ|≤
√
2 logK

{
βξ −

ξ2

2

}
. The supremum can be solved exactly; using the bound η ≥ β2

2
− ϕ̃(β) gives us

(3.28).

The general case is slightly more complicated. We have the following parametric

representation (of which the degenerate case expression given in Proposition 3.6 is
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a special case):

Proposition 3.7. For any irreducible and aperiodic Markov chain P , the error expo-

nent bound is

η ≥





0, if β ≤
√
2H

χ(β), if β ≥
√
2H,

where χ(β) is a function that can be parametrized for t ∈ (0, 1] as:

βt =
√
2
t

√
log λt − tρt,

χ(βt) =
1− 2t

t2
log λt −

1− t

t
ρt,

(3.29)

and ρt =
d
dt
log λt is given in (3.19).

Proof. Since the function s(ρ) − ξ2

2
+ βξ + ρ is concave and continuous on the ef-

fective domain of s(·, ·), given by A = {(ρ, ξ) : |ξ| ≤
√
2s(ρ)}, the supremum is

achieved at a point where s′(ρ) = −1 and ξ = β, if one exists in the interior of A; if

not, then the supremum is achieved on the boundary of A. See Figure 3.3 for an il-

lustration. From Proposition 3.5, we know that s′(−H) = −1 (the only such point),

and s(−H) = H. So we get ϕ̃(β) = H − β2

2
+ β2 −H = β2

2
so long as β ≤

√
2H.

Otherwise, the supremum is achieved on the boundary, so ξ =
√

2s(ρ) and

ϕ̃(β) = sup
ρ∈[ρmin,ρmax]

β
√

2s(ρ) + ρ.

Since the function to be maximized is differentiable, the supremum occurs at the

value of ρ for which

βs′(ρ)√
2s(ρ)

+ 1 = 0,
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if one exists; otherwise the supremum occurs at one of the endpoints ρmin or ρmax.

We will show that such a point always exists. To see this, choose any t ∈ (0, 1].

Based on the results in Propositions 3.3 and 3.5, we know that for ρt =
d
dt
log λt, we

have s′(ρt) = −t and s(ρt) = log λt − tρt. This in turn gives us a value of β:

βt = −
√
2s(ρt)

s′(ρt)

and a corresponding value

ϕ̃(βt) = −
2s(ρt)

s′(ρt)
+ ρt.

Using these representations, we can compute β1—since we know that d
dt
log λt

∣∣∣
t=1

=

−H, we have that β1 =
√
2H. Meanwhile, limt→0+ βt = ∞. This is because the

numerator
√
2s(ρ0) =

√
2 log λ0 > 0 by the Perron-Frobenius theorem, so s(ρ) is

strictly positive in a neighborhood of t = 0, while the denominator s′(ρt) approaches

0 from below. From the intermediate value theorem, we can then achieve any value

of β in [
√
2H,∞) by choosing some t ∈ (0, 1]. Thus we have a fully parametric

representation, and substituting the known values of s(ρt) and s′(ρt) and applying

the bound η ≥ β2

2
− ϕ̃(β) gives us the result.

The bound given in Proposition 3.7 is equal to 0 when the SNR is below a thresh-

old: β2 ≤ 2H. However, it is strictly positive for SNR above the threshold. Thus, we

can guarantee strong performance when the SNR is greater than twice the entropy

rate of the Markov chain. The entropy rate is smaller when the Markov struc-

ture is more restrictive; thus, the stronger our information about the dynamics of
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the process, the stronger the performance of the detection. Furthermore, at very

high SNR β ≫ 2H, we can use the parametric representation (3.29) to show that

β2

2
− O(β) ≤ η ≤ β2

2
, meaning the upper bound derived in Section 3.2.2 becomes

tight. This is to be expected; at very high SNR, the knowledge of the true state path

is not necessary to improve performance.

3.4.4 Numerical Verification

From Lemma 3.1, which equates the error exponent to the Kullback-Leibler di-

vergence rate, and Proposition 3.1, which says the normalized log likelihood ratio

converges almost surely to −κ = −η, and the fact that the log likelihood ratio can

be computed efficiently, we have a simple Monte Carlo technique for estimating

the true η. The only caveat is to prevent numerical underflow through a suitable

renormalization procedure.

We used this Monte Carlo technique to estimate the error exponents over a

range of SNRs for several Markov chains. In Figure 3.5 we compare the Monte

Carlo simulations to the lower bound obtained using the parametric representation

(3.29).

Although the phase transition appears only in the lower bound, the true error ex-

ponent curves appear to exhibit a smoothed version of the phase transition. Below

the threshold the error exponent is quite small. It is bounded by the sum detector’s

error exponent of β2

2M
, as we showed in Section 3.2.2. Of course, the sum detector
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Figure 3.5: Error exponent curves are plotted for random walks on four graphs,

from top to bottom: a cycle graph with 101 vertices (H = 0.693 nats), a 32 × 32

grid (H = 1.58 nats), a random geometric graph with 1000 vertices (H = 2.09 nats),

and a Watts-Strogatz small world graph [131] (H = 3.41 nats). The solid curve is

the error exponent computed via Monte Carlo simulations. The green dashed curve

is the sum-detector lower bound, which is barely nontrivial because M is large. The

blue dashed curve is our statistical physics-based analytic lower bound, computed

using the parametric representation (3.29). The analytic threshold (SNR = 2H) is

shown as well. At the same SNR level, the higher the entropy rate of the Markov

chain, the worse the detector performance.
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Figure 3.5 (Continued).
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completely ignores the structure of the problem, and when M is large, this bound

is practically 0. Meanwhile, above the threshold the error exponent grows quickly

with increasing SNR. Thus the simple test β2 ≶ 2H suffices to determine whether

one should expect good or bad detection performance.

3.5 Summary

In this chapter, we studied the problem of detecting a random walk on a graph

from spatiotemporal measurements corrupted by Gaussian noise. We modeled the

problem as a combinatorial hypothesis testing problem and studied the type-II error

exponent of the optimal Neyman-Pearson detectors. We proved the existence of the

error exponent and the fact that it is equal to the limiting Kullback-Leibler diver-

gence rate between the two hypotheses. We showed how concepts from statistical

physics could be used to analyze this quantity, and rigorously proved a bound for

the error exponent. Monte Carlo simulations show that, unlike the sum detector

bound, our bound fully captures the behavior of the error exponent. In particular,

the bound provides us with a simple test for whether to expect strong or weak per-

formance: if the SNR is greater than twice the entropy rate of the random walk,

then detection will be easy.
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Chapter 4

Exploring models for diffusion,

epidemics, and influence

M
ANY DYNAMICAL SYSTEMS possess some kind of network structure. We have

seen these kind of models before: in Chapter 2, we briefly studied a diffu-

sion process inspired by the classical heat equation, and in Chapter 3, we considered

a sequence of noisy measurements of a random walk on a graph. Other examples

abound in the literature. There are models for epidemics spreading through human

interaction or computer networks [129]. There are models for the spread of politi-

cal ideas on social networks [13, 65]. There are models for developing distributed

estimates through consensus on sensor networks [24]. In all of these models, the

structure of the network controls the behavior of the process by requiring inter-

actions to primarily occur between nodes that are connected in the network—the
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dynamics are local.

In this chapter, we discuss two distinct problems related to dynamic processes on

networks. In Section 4.1, we consider the problem of localization the source of an

epidemic on a graph. In particular, we consider the susceptible-infected (SI) model

[14], a well-known model in which each node is either infected with a disease

or susceptible, and at each time step every susceptible node has some probability

of being infected by an already-infected neighbor. In contrast to earlier work, we

assume that we can only monitor a fraction of the nodes, but can observe them over

a period of time. We develop a fast Monte Carlo technique to generate realizations

from the model, and use it to perform inference on our observations.

Then, in Section 4.2, we introduce a logistic auto-regressive model (ALARM) for

binary processes on networks. This is a very general model in which each node’s

next value depends probabilistically on the current value of its neighbors through a

logistic link function. We show that this model can generate some very interesting

behavior by showing phase transitions that depend on the underlying graph. We

also show how to use regularized logistic regression to learn the underlying graph

given a realization of this model. The model is general enough that it can approxi-

mate existing SI models, but simple enough to analyze more directly. We show that

under a model mismatch, wherein the data is generated by an infection model but

our inference is done assuming the ALARM model, we can still learn the underlying

graph structure reasonably well.
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4.1 Source Localization on Graphs

Epidemic models have long been studied by biologists and social scientists to

study the spread of contagion on networks of varying scales and geometries [14].

These models range from the early, very simple models on (implicit) complete

graphs [75], to very recent models on sophisticated random graphs [129]. This

standard line of work has been mainly focused on the problem of determining the

steady-state behavior of the model: will an epidemic die out, or will it remain ac-

tive, with some fraction of the population always infected?

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

Figure 4.1: At time t = 0, a single vertex is infected (filled red circle) and the

remaining ones are not. At each time step, an infected vertex has some probability

of infecting each of its neighbors.
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Recently, however, a new line of work has emerged to address the problem of

detecting the source of an epidemic [52, 83, 84, 103, 104, 115, 116, 133]. In many

ways, this is a much harder problem, which explains why it has only recently be-

gun to receive attention. To determine the steady-state behavior, it is often enough

to solve a system of differential equations. However, the source localization prob-

lem requires either high computational complexity to find near-optimal solutions,

or simplified heuristics to achieve suboptimal performance. Often, algorithms are

designed to work on trees, whose properties can greatly simplify the problem, and

extended in an ad hoc manner to general graphs [83,103,116].

In this work, we describe an algorithm that operates on a sequence of observa-

tions made on a small subset of the nodes; our observation window begins at some

unknown time after the initial infection. This algorithm is designed to function on

general graphs, not just trees, and uses an initial Monte Carlo stage to estimate a

pseudo-likelihood function for sources on a particular graph.

Serious investigation of the epidemic source localization problem began with

Shah and Zaman [116] in 2011. They considered a continuous-time SI epidemic

model on a graph, and sought to find the most likely source given the full set of

infected nodes at some time. The infected nodes under this model form a connected

subgraph, and they developed a metric called the rumor centrality for each node

in the infection subgraph that served as a proxy for the likelihood of a particular

node being the source. They provided an efficient message passing algorithm for
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calculating the rumor centrality on a tree, and developed the breadth-first search

(BFS) heuristic to approximate the rumor centrality on more general graphs. The

epidemic source was chosen to be the member of the infected subgraph with the

highest rumor centrality.

Others soon considered spectral techniques for source localization [52, 104].

Given the infected subgraph at some time, information about the likely source of

infection can be gained from the eigendecomposition of the adjacency or Laplacian

matrices of the subgraph. Luo and Tay [84] considered the case of multiple in-

fection sources and developed an algorithm to detect these sources and determine

the original infection source associated with each infected vertex. Seo et al. con-

sidered the case where only a subset of the vertices are monitored and developed

four metrics most likely to be associated with the source; each successive metric

breaks ties in the previous metrics [115]. Zhu and Ying [133] first considered the

susceptible-infected-recovered (SIR) model in which nodes can recover from infec-

tion after some period of time and are then immune. They developed a message

passing algorithm called the reverse infection algorithm that choose a source. More

recently, Lokhov et al. have provided the statistical physics community’s answer

to the problem: a message passing algorithm on trees that computes the exact

marginal probability for a vertex to be infected at some time given a source [83].

This facilitates the computation of a mean-field approximation to the likelihood of

an observation. Though not exact on general graphs, it seems to give reasonable
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results. Meanwhile, Pinto et al. considered the problem of locating the source given

the exact time of infection for a set of observers. Their estimator is linear on trees,

and is extended to general graphs using the BFS heuristic [103].

Our approach is the first to use multiple snapshots in a fixed, small time window

for a sparse set of observers to estimate the source. Since the infection process we

consider is Markov, if we could measure all the vertices, a snapshot of the state at a

single time would be sufficient and any more data collection would be superfluous.

However, because we only observe a small subset of the vertices, we can gain addi-

tional information by observing them over a period of time. Assuming that at least

one observer sees a transition from susceptible to infected, our observation can be

transformed into bounds on the difference between that observer’s transition and

all others. We introduce an alternate representation for the infection process in

terms of the infection times for each vertex. The alternate representation allows

us to quickly sample infection times conditioned on each source. This allows us to

estimate the marginals of the observed relative infection times and compute a pseu-

dolikelihood that is the product of those marginals, conditioned on each possible

source.

4.1.1 The SI Epidemic Model

We start with a graph G = (V,E), where V is the set of N vertices and E is

the set of M edges, each of which is an unordered pair of vertices. If {vi, vj} ∈ E,
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then vi and vj are in contact and capable of transmitting the infection to each other.

We will use the notation i ∼ j to mean that vi and vj are neighbors on the graph.

We consider a discrete-time version of the susceptible-infected (SI) model on G.

At any time, each vertex is in one of two states, susceptible or infected. To model

this mathematically, we will give every susceptible vertex the value 0 and every

infected vertex the value 1. The epidemic model, illustrated in Figure 4.1, is a

random process X = (x(t))∞t=0 whose sample paths are sequences of binary vectors

in {0, 1}N . We will assume that initially, a vertex s ∈ V is chosen uniformly at

random to be the infection source, and that the initial state vector x(0) = es is 1 at

s and 0 elsewhere.

At each time t ∈ {0, 1, . . .}, any vertex that is infected remains so at time t + 1,

while any vertex that is susceptible becomes infected at time t+1 if it receives an in-

fection signal from one of its neighbors on G. All infection signals are independent,

and at each time step an infected vertex vj sends an infection signal to suscepti-

ble neighbor vi with probability λji. Although the graph is undirected, we allow

λji and λij to differ. The infection process is Markov; the vector x(t + 1) depends

on the previous states only through x(t). To simplify the notation, we will define

Ii(t) = {j : vj ∼ vi, xj(t) = 1} to be the set of neighbors of i that are infected at

108



Chapter 4: Exploring models for diffusion, epidemics, and influence

time t. Then the transition rule can be written as

Pr{xi(t+ 1) = 1|x(t)} =





1 if xi(t) = 1

1−∏j∈Ii(t) (1− λji) if xi(t) = 0,

(4.1)

where the elements of x(t + 1) are independent conditioned on x(t). X can be

seen as a Markov chain with 2N − 1 states (if we ignore the all-susceptible state

that is inaccessible from any other state); the distribution of x(t + 1) conditioned

on its history depends only on x(t), its state at time t. The all-infected state is an

absorbing state, and will be reached in finite time with probability 1. The source

localization problem we are interested in amounts to inferring the initial state of

the Markov chain given partial measurements.

We can use an alternate representation of the processX . Let τi = mint{t : xi(t) =

1} be the time at which vertex i first becomes infected. Then (τ1, . . . , τN) contains

all of the information of X , since we can reconstruct the sequence (x(0),x(1), . . .)

from it. Using a randomly weighted version of the graph G, we can directly sample

(τ1, . . . , τN ) given the source s.

Let H be the random, directed weighted graph H = (V,E,W ), where V and E

are the vertex and edge sets for the graph G, and W consists of random weights wij

and wji associated with each edge {i, j} in E. H is directed because the weights

for two different directions of an edge in E can be different. Each weight wij is

a geometric random variable taking values in {1, 2, . . .} with parameter λij. If vi

became infected at some time, and vj were connected to no other vertices, then wij
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represents the number of time steps it would take for vj to become infected.

We define the following geodesic quasimetric on H:

dH(vi, vj) = min
P∈Pij

len(P )−1∑

k=1

wpk,pk+1
, (4.2)

where Pij is the set of paths on the graph from vi to vj, and

P = (p1 = vi, p2, . . . , pℓ(P ) = vj)

. dH(vi, vj) is the length of the shortest possible path from vi to vj , where traversing

an edge from vk to vl costs wkl. It is a quasimetric and not a metric because it is not

symmetric, due to the different weights on different directions of each edge. Now

define Y = (y(0),y(1), . . .) as follows:

s ∼ Unif(1, . . . , N); yi(t) =





0 if t < dH(s, i)

1 otherwise.

(4.3)

Y is constructed to start with only the source s, chosen uniformly at random as in X ,

infected, and then to have the infection time of each remaining vertex determined

by its distance from the source on H. We have the following proposition:

Proposition 4.1. The process Y is equal in distribution to X , i.e.

Pr{x(0),x(1), . . . ,x(t)} = Pr{y(0),y(1), . . . ,y(t)} (4.4)

for every t.

Proof. First, it is clear that y(0)
d
= x(0) since each is a standard basis vector chosen

uniformly at random. It remains to be shown that for each t, the distribution of
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y(t + 1) given the history (y(t), . . . ,y(0)) is identical to that for x(t + 1) given

(x(t), . . . ,x(0)). Along the way, we will show that Y is a Markov process.

First, we note that if yi(t) = 1, then Pr{yi(t+ 1) = 1|y(t), . . . ,y(0)} = 1, regard-

less of any of the other current or previous values in y, since if t ≥ dH(s, i), then

t+ 1 ≥ dH(s, i). On the other hand, if yi(t) = 0, then

Pr{yi(t+ 1) = 1|y(t), . . . ,y(0),with yi(t) = 0} = 1− (4.5)

Pr{dH(s, i) > t+ 1|dH(s, i) > t, dH(s, j) > t∀yj(t) = 0, dH(s, j) = kj ∀yj(t) = 1},

by the definition of Y, where kj is the time at which vertex j switched from 0 to

1 in the sequence y(0), . . . ,y(t). From the definition of geodesic distance, we can

rewrite dH(s, i) = minj∼i(dH(s, j) + wji). Since dH(s, j) + wji > t + 1 automatically

if yj(t) = 0, we can consider in the minimum only those vertices that are infected at

time t. So we get

Pr{yi(t+ 1) = 1|y(t), . . . ,y(0),with yi(t) = 0} (4.6)

= 1− Pr




wji + dH(s, j) > t+ 1 ∀j ∈ Ii(t)

∣∣∣∣∣∣∣∣

wji + dH(s, j) > t∀j ∈ Ii(t),

dH(s, j) = kj ∀j ∈ Ii(t)





,

= 1− Pr{wji > t+ 1− kj ∀j ∈ Ii(t)|wji > t− kj, dH(s, j) = kj ∀j ∈ Ii(t)}.

(4.7)

Since the wji are geometric random variables, the conditional probability in (4.7)

does not depend on the kj ’s. Combined with the fact that the wji’s are independent,

111



Chapter 4: Exploring models for diffusion, epidemics, and influence

we arrive at

Pr{yi(t+ 1) = 1|y(t), . . . ,y(0),with yi(t) = 0}

= Pr{yi(t+ 1) = 1|y(t)} = 1−
∏

j∈Ii(t)
(1− λji),

the same as the Markov transition rule for X . Thus Y d
= X .

Thus, to sample (τ1, . . . , τN ) given a source s, we simply draw random weights

wij and wji for each edge {i, j} ∈ E, and let τi = dH(s, i). The distances can be

computed using the Dijkstra shortest paths algorithm.

4.1.2 Problem statement

We now formally define the source localization problem. Suppose we can ob-

serve the states of L verticesO ⊂ V during an observation window {t0, t0+1, . . . , t0+

T − 1}. Without loss of generality, we assume O = {1, 2, . . . , L}. We do not know

t0, so we have no knowledge of how long ago the infection began spreading from

the source. Given the observations and knowledge of the graph and the infection

parameters λji we would like to estimate the source. If all vertices are observed,

so that L = N , then x(t0) is sufficient for estimation and we do not need to use

the whole sequence of observations, since the infection sequence before t0 is inde-

pendent of the infection sequence after t0 given the realization at t0 thanks to the

Markov property. This is no longer true if L < N since in that case our observation

sequence is a hidden Markov process (HMP) and does not itself satisfy the Markov
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property [106].

Observations of a single vertex during our window may fall into three categories:

we may observe its transition from susceptible to infected during our observation

window, it may be susceptible during the entire window, or it may be infected

during the entire window. This defines a partition of the set of observers O = OT ∪

OS ∪ OI , where OT , OS, and OI represent these categories, respectively. Suppose

that OT is nonempty, and without loss of generality, that 1 ∈ OT . For each i ∈ OT ,

we let mi ∈ {1, 2, . . . , T − 1} be the index of the first observation for which the

vertex transitions to the infected state (where our first observation has index 0).

Because we do not have an absolute time reference, we have knowledge only about

the relative infection times τi − τ1 for i ∈ O\{i}.

Then we define a log-pseudolikelihood function ℓ by assuming that the relative

delays of the observed nodes are independent:

ℓ(s) =
∑

i∈OT \{1}
log Pr{τi − τ1 = mi −m1|s}+

∑

i∈OI

log Pr{τi − τ1 ≤ −m1|s}

+
∑

i∈OS

log Pr{τi − τ1 ≥ T −m1|s}. (4.8)

To estimate the marginals for the relative times, we will use Monte Carlo sim-

ulations to approximate the means and variances of the τi. We will use the proce-

dure described in Section 4.1.1 to sample (τ1, . . . , τL) for several iterations for each

source s, then set µi(s) and σ2
i (s) to be the mean and variance of those samples.

By approximating the infection times as Gaussian, the pseudo-likelihood function
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(4.8) becomes

ℓ(s) = −1

2

∑

i∈OT \{1}

(
log 2π

(
σ2
i (s) + σ2

1(s)
)
+

(mi −m1 − µi(s) + µ1(s))
2

σ2
i (s) + σ2

1(s)

)
(4.9)

+
∑

i∈OI

log Φ

(
−m1 − µi + µ1√
σ2
i (s) + σ2

1(s)

)
+
∑

i∈OS

log

(
1− Φ

(
T −m1 − µi + µ1√

σ2
i (s) + σ2

1(s)

))
,

where Φ(·) is the cumulative distribution function for the standard normal distribu-

tion.

The computation is dominated by the Dijkstra shortest path algorithm in the

sampling procedure for the infection times. By the central limit theorem, O(1/ǫ2)

samples are needed to achieve an error o(ǫ). The Dijkstra algorithm requires O(M+

N logN) time to find the lengths of the shortest path to a single vertex from ev-

ery other vertex. Thus, it takes O(L(M + N logN)/ǫ2) time to estimate µi(s) and

σ2
i (s) for every i ∈ O and s ∈ V . In typical applications, graphs tend to be

sparse, so we may take M = o(N logN), giving us a computational complexity

of O(LN log(N)/ǫ2).

4.1.3 Numerical Results

To analyze the performance of this algorithm, we simulated the epidemic pro-

cess on several graphs and computed the pseudolikelihoods for various observer

fractions. The choice of performance metric is not entirely obvious: the probabil-

ity of getting exactly the correct source is too pessimistic, since choosing, say, a

neighbor of the true source is much better than choosing a source at the other end

114



Chapter 4: Exploring models for diffusion, epidemics, and influence

rank

cu
m

.
d

is
t.

fu
n

c.

0
50 100

0.5

1

1

L
N

= 1.0
0.3
0.1
0.05

rank
cu

m
.

d
is

t.
fu

n
c.

0
50 100 161

0.5

1

1

L
N

= 1.0
0.3
0.1
0.05

Figure 4.2: Numerical results from experiments involving two different graphs. On

the left, a random geometric graph with 100 vertices; on the right, a 4-regular tree

truncated 5 levels from a root vertex. For each graph, a series of trials was run

in which a random source was chosen and a realization of X was generated. Our

algorithm was given the realization from t = 4 to t = 23, for twenty observations,

and computed pseudolikelihoods for each potential source. For the random geo-

metric graph, the infection rate was 0.1 for every edge; for the tree it was 0.4. The

CDF of the rank of the true source in the ordered list of pseudolikelihoods is shown

here. Curves closer to the top right indicate better performance. On both graphs,

the CDFs presented are for sampling factors of 1, 0.3, 0.1, and 0.05. It is evident

that a lot of decimation is needed before the performance degrades appreciably. In

all cases, the estimator does significantly better than the uniform random estimator,

whose theoretical performance is given by the dotted line.

of the graph; yet average geodesic (or some other) distance is too optimistic, since

many realistic graphs have small diameter. In prior work, most authors have instead

considered the following metric: the vertices are sorted according to the value of

whatever function is to be maximized, and the rank of the true source is considered.

In Figure 4.2, we show the cumulative distribution functions (CDFs) of the

source’s rank in our various experiments. We considered two graphs. First, a ran-

dom geometric graph with 100 nodes randomly placed on the unit square and two
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nodes connected if they are within a radius of 0.3 of one another; on this graph,

an infection rate λ = 0.1 is used for every edge. Second, a 4-regular tree truncated

after 5 levels; on this graph, an infection rate λ = 0.4 is used for every edge. In both

cases, observations start at t = 4 and continue for 20 time steps. And in both cases,

CDFs are computed when the fraction of observers is 1, 0.3, 0.1, and 0.05.

As expected, the performance of the estimator degrades as fewer vertices are

observed. Interestingly, however, the degradation begins very slowly as the observer

fraction drops from 1 down to 0.3, then speeds up as the fraction continues to fall.

Note that on the 100-vertex random geometric graph, and observer fraction of 0.05

means that only 5 random vertices are observed. Meanwhile, it is interesting to see

that for both graphs, observing only 30% of the vertices gives almost as good results

as observing them all.

4.2 ALARM: A logistic auto-regressive model for bi-

nary processes on networks

The epidemic model described in Section 4.1 is just one kind of binary dynamic

process on graphs. But these dynamic processes can be used to model systems in

fields as varied as power systems engineering, political science, and ecology (see

e.g. [13, 14]). In these systems, each node is in one of two states (which we will

model as 0 and 1), and the current state of a node in the network is influenced by
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Figure 4.3: A snapshot of the ALARM model at time t. The model is defined on a

directed graph which captures the local interactions of the nodes. Each node has a

value of 0 or 1 at time t that depends on its neighbors’ values at times t−K, . . . , t−1.

the previous values of its neighboring nodes (and perhaps its own previous state).

Several interesting questions arise in such models: we may wish to know whether

they settle into some equilibrium, whether such an equilibrium is unique, whether

the nodes are likely to coalesce to a single state, or even whether a small number

of state flips can cascade across the network and transform the state of most of

the nodes. As described in Section 4.1, recently some attention has turned to the

problem of inferring the initial state. Furthermore, we may want to understand

how well the network itself can be learned by merely observing the sequence of

values produced by the model—a kind of system identification problem.

Over the years, several models for such dynamic processes have been developed

in various fields (e.g, [13, 59, 65]). In this chapter, we introduce a logistic autore-

gressive model (ALARM), a simple yet very flexible model for stochastic processes

on graphs. The proposed ALARM model is a natural vector autoregressive process

taking on binary values: at time t, the probability that a node has the value 1 is
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the logistic function logit−1(·) = exp(·)
1+exp(·) (a sigmoidal function illustrated in Figure

4.4) applied to a linear combination of its neighbors’ (and its own) values at times

t−K, . . . , t− 1.

Like many existing models, it can model the influence of neighbors on a node’s

value. However, it is more general than existing models: it can capture negative

influences (a node favors a value opposite a neighbor’s), it can model uncertainty

even when a node’s neighbors are unanimous, it allows control over a node’s bias

toward one value or another, and it can model node values that depend strongly on

their history.

This could be used to model the spread of a rumor on a social network with

varying levels of skepticism or distrust, as an alternate model for the spread of an

epidemic in a human interaction network, or the spread of a virus in a computer

network. Its behavior can encapsulate that of existing models, but because it is

more general, we can learn what kind of model best captures the behavior in a

given system. Since each node’s value is modeled by logistic regression against its

neighbors’ and its own preceding values, the model is open to analysis and existing

logistic regression algorithms can be used for parameter estimation.
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Figure 4.4: The logistic function is a sigmoidal function that maps the real line onto

probabilities in (0,1). It is the “link function” in the ALARM model that takes a

linear autoregressive expression and generates a probability of a Bernoulli variable

being set to 1 in the next time step.

4.2.1 The ALARM Model

Definition

A logistic autoregressive model (ALARM) is defined on a directed graph G =

(V,E), where V = {v1, . . . , vN} is the set of N vertices and E is the set of directed

edges, each of which is an ordered pair of vertices. We write vi → vj if (vi, vj) ∈ E,

and vi ∼ vj if either vi → vj or vj → vi. The indegree indeg(vi) = |{vj : vj → vi}| of a

vertex is the number of incoming edges, the outdegree outdeg(vi) = |{vj : vi → vj}|

is the number of outgoing edges, and the degree deg(vi) = |{vj : vi ∼ vj}| is the

total number of vertices connected to vi one way or another. We define G∗ as the

undirected version of G, containing an edge {vi, vj} if vi ∼ vj in G. We will assume

that the indegree is bounded by a constant, so indeg(vi) < D for every i, and the

D ≪ N .
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Under the ALARM model, we obtain a sequence of random vectors y(1), . . . ,y(T ) ∈

{0, 1}N . Each element y
(t)
i of y(t) is independent of the others, conditioned on the

previous K vectors y(t−1), . . . ,y(t−K), and takes the value 1 with probability

Pr
(
y
(t)
i = 1

∣∣y(t−1), . . . ,y(t−K)
)

= logit−1

(
K∑

k=1

N∑

j=1

h
(k)
ij y

(t−k)
j + bi

)
(4.10)

where logit−1(x) = exp(x)
1+exp(x)

is the logistic function [the inverse of the function

logit(x) = log
(

x
1−x

)
].

The parameters of the ALARM model are the K matrices H(1), . . . ,H(K) and

the vector b. Their elements are effectively logistic regression coefficients linking

previous values of the dynamic process to the current values, giving the model its

name: it is a vector autoregressive model with a logistic link function. This is the

standard link function for generalized linear regression when the response variables

are Bernoulli-distributed.

Our assumption is that the H(·) matrices respect the graph structure, i.e., h
(k)
ij 6=

0 only if vj → vi or i = j. Of course, the model is well-defined even on a complete

graph, which would allow for every coefficient to be nonzero. But on a true net-

work, the model obeys the structure in a way that can be exploited, as we will show

in Section 4.2.2. If we treat each time series (y
(1)
i , . . . , y

(T )
i ) as a random variable,

the ALARM model is a graphical model described by the graph G∗, meaning that if

j 6∼ i, then the time series at vi is independent of the one at vj conditioned on the

time series at all of vi’s neighbors.
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Properties

The ALARM process is a Kth order Markov chain with 2N states. In general,

such a Markov chain requires 2NK(2N − 1) real parameters to define. The ALARM

model in general requires at most N2K + N real parameters (and only NDK + N

parameters under the bounded indegree condition). Despite its compact parametric

representation, the ALARM model can capture a wide range of interactions.

Consider even just the special case of K = 1, so that the state at time t is

dependent on the past only through the state at time t−1. If h
(1)
ij > 0, then y

(t−1)
j = 1

makes it more likely that y
(t)
i will be 1. If h

(1)
ij < 0, then the opposite is true, and

y
(t)
i seeks the opposite state of y

(t−1)
j . If the diagonal element hii > 0, then yi has

“inertia” and may try to stay in the same state; if hii < 0, then yi may oscillate

between 1 and 0 (the specifics depend on the other coefficients and neighboring

values).

The value of bi is a kind of bias. If bi = 0, then y
(t)
i = 1 with probability 1/2 if

all of the neighbors y
(t−1)
j were zero. bi > 0 biases y

(t)
i toward 1, and bi < 0 biases it

toward 0. Thus we can model behavior where neighbors influence each other either

positively or negatively, nodes are biased one way or another, and nodes are either

stuck in their current value or prone to flip-flopping. The meaning of the H and b

parameters are illustrated in Figure 4.5.
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H
(1)

Off-diagonal:

h
(1)
ij > 0 ⇒ y

(t)
i positively

influenced by y
(t−1)
j .

Diagonal: h
(1)
ii > 0 ⇒ y

(t)
i is “sticky”

b

bi > 0 ⇒ y
(t)
i

biased toward 1.

Figure 4.5: The meaning of the parameters of the ALARM model is illustrated here.

The matrix H (1) links the current states to the next states: if h
(1)
ij is positive, then

y
(t)
i is positively influenced by y

(t−1)
j ; if h

(1)
ii > 0, then yi is “sticky”, meaning that it

resists changing its value; if bi > 0, then y
(t)
i is biased toward 1.

Examples

To illustrate some of the intriguing behavior that this model can produce, we

consider the following special cases. Let K = 1, and suppose G is a 1D or 2D lattice

graph (undirected) with N nodes. Let A be the adjacency matrix of the graph. For

some β > 0 we define H = β(A + I) and b = −1
2
H1. This value of b ensures the

identity Pr
(
y
(t)
i = 1

∣∣y(t−1)
)
= Pr

(
y
(t)
i = 0

∣∣1− y(t−1)
)

, so that flipping every state

in y(t−1) does the same to y(t).

As in [13], we can use this to model influence in a social network. A node whose

neighbors are evenly divided will have an equal chance of choosing either state. As

the proportion of neighbors in a particular state deviates from that equilibrium, the

logistic link function provides for an approximately linear response in the begin-

ning; if the neighbors are nearly unanimous, the logistic function saturates and the
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node is very likely to join them.

If the initial state y(0) is i.i.d. Bernoulli(1/2), then at time t, every state is as

probable as its inverse. If we run the model for some time, does this mean that

the final state will have an equal number of 0’s and 1’s? The question is a practical

one: if we are modeling influence on a social network as in [13], then this tells us

whether we settle into a consensus decision or a divided state. We might expect

that for small β, the interactions are not strong enough to create a consensus, but

as β increases, we end up with the vast majority of states either 0 or 1 (with each

consensus equally probable).

We simulated the model to answer this question. The results for these two

graphs are illustrated in Figure 4.6. We ran the model for 3000 time steps, and

measured the size of the majority group. In each case, the graph size is 1024.

Majority sizes near 512 indicate that no consensus is reached, whereas majority

sizes nearer to 1024 indicate a consensus. A sharp phase transition is evident in

the 2D lattice. As the interaction strength β increases past 1.3, we quickly move

from a disordered phase to an ordered one with a strong consensus. Meanwhile,

in the 1D case, even allowing β to go as high as 15 does not reveal any such phase

transition. The final state is disordered even though the interaction strength is

extremely strong.

This result hints at a connection to the Ising model of statistical physics [109].

A realization of the Ising model is a vector z ∈ {−1,+1}N with probability given by

123



Chapter 4: Exploring models for diffusion, epidemics, and influence

600

700

800

900

1000

M
a
jo
ri
ty

S
iz
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
β

600

700

800

900

1000

M
a
jo
ri
ty

S
iz
e

1 2 3
β

(b)

(a)

Figure 4.6: The size of majority after 3000 steps of the ALARM model is illustrated,

for (a) 1D and (b) 2D lattice graphs. The initial states are i.i.d. Bernoulli(1/2). The

model parameters are H = β(A + I), b = −1
2
H1, The 2D graph, unlike the 1D

graph, has a phase transition. This is reminiscent of the behavior of the Ising model

in physics [109].
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Pr(z) ∝ exp
(
βzTAz

)
, where A is the adjacency matrix of the interaction graph of

the system, and β is the inverse temperature. It is a well-known result in physics

that the Ising model undergoes a similar phase transition to the one we observe in

the ALARM model when the graph is a lattice of dimension 2 or greater, and that

there is no phase transition on a 1D lattice [109]. The ALARM model is similar to

Markov chain Monte Carlo techniques used to simulate the Ising model; but deeper

study of the connection is warranted.

4.2.2 Parameter Estimation

In this section we present an algorithm for learning the parameters H(1), . . . ,H(K)

and b of the ALARM model from a sequence of observations from the model. The

log-likelihood of the ALARM model [conditioned on the initial states y(1−K), . . . ,y(0)]

is given by

ℓ{y(t)}

(
H(1), . . . ,H (K), b

)

=
T∑

t=1

N∑

i=1

[
y
(t)
i

(
K∑

k=1

N∑

j=1

h
(k)
ij y

(t−k)
j + bi

)

− log

(
1 + exp

(
K∑

k=1

N∑

j=1

h
(k)
ij y

(t−k)
j + bi

))]
(4.11)

=
N∑

i=1

ℓi{y(t)}

(
h
(1)
i· , . . . , h

(K)
i· , bi

)
, (4.12)
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where the ℓi{y(t)} are likelihoods for the parameters associated with the response of

yi to the neighboring values:

ℓi{y(t)}

(
h
(1)
i1 , . . . , h

(1)
iN , . . . , h

(K)
i1 , . . . , h

(K)
iN , bi

)

def
=

T∑

t=1

[
y
(t)
i

(
K∑

k=1

N∑

j=1

h
(k)
ij y

(t−k)
j + bi

)

− log

(
1 + exp

(
K∑

k=1

N∑

j=1

h
(k)
ij y

(t−k)
j + bi

))]
. (4.13)

The separability of the likelihood means we can learn the coefficients associated

with the ith node independently of the others (but note that each independent

log-likelihood uses all of the data.) This will simplify the analysis and allow for

embarrassingly parallel algorithms to learn all the parameters. This learning really

amounts to N logistic regression problems.

Let us consider the problem of learning the parameters associated with a single

vertex: h
(1)
i· , . . . , h

(K)
i· and bi. The unknown graph structure described in Section

4.2.1 guarantees that for each k, the only non-zero variables out of h
(k)
i1 , . . . , h

(k)
iN

are the D variables h
(k)
ij for j → i. This is a group sparsity [132] constraint on the

parameter vector θ =
(
θT
1 , . . . ,θ

T
N

)T def
=
(
h
(1)
i1 , . . . , h

(K)
i1 , . . . , h

(1)
iN , . . . , h

(K)
iN

)T
. Unlike

a sparsity constraint, which would limit the number of nonzero entries of θ, the

group sparsity constraint limits the number of subvectors θ1, . . . ,θN that are not

identically 0. Each subvector is associated with a neighboring vertex, and so at

most D can be nonzero.

Directly incorporating this constraint into the maximum likelihood procedure
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would result in a hard combinatorial problem. But we can use the standard ap-

proach of relaxing the constraint using the ℓ2,1 mixed norm defined by ||θ||2,1 =

∑N
i=1 ||θi||2 as a convex regularizer. The ℓ2 part of the norm does not privilege any

direction in the subspace associated with each vertex; but the ℓ1 part of the norm

promotes a group-sparse solution where only a small number of vertices are associ-

ated with non-zero values. We obtain the estimator

(
θ̂, b̂i

)
= argmin

θ,bi

ℓi{y(t)}(θ, bi) + λ||θ||2,1, (4.14)

or, more explicitly,

(
ĥ
(1)
i1 , . . . , ĥ

(1)
iN , . . . , ĥ

(K)
i1 , . . . , ĥ

(K)
iN , b̂i

)

= argmin
h
(·)
i· ,bi

ℓi{y(t)}(h
(·)
i· , bi) + λ

N∑

j=1

√√√√
K∑

k=1

h
(k)2
ij , (4.15)

where λ is a nonnegative regularization parameter. The regularization function

does not include bi because we have no reason to expect that b is sparse. The

function to be minimized in (4.15) is convex, so it should be efficiently solvable.

In fact, it is closely related to lasso and group-lasso logistic regression problems,

for which several efficient algorithms exist [78,86], and which can be shown to be

consistent estimators [107].

To illustrate the utility of such techniques, we consider the problem of recon-

structing the graph G from a realization of the ALARM model. The analogous prob-

lem for linear multivariate autoregressive models with Gaussian noise has been

considered in [20]. Suppose we have a model with an unknown graph and K = 1.
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Figure 4.7: ROC curves for the detection of edges based on ALARM realizations are

illustrated here. The realizations are generated with for a random geometric graph,

with the strength of the nonzero edges (the values in the matrix H) set to 0.2. The

results based on 2000 and 5000 samples is shown.

If we use ℓ1-regularized logistic regression to reconstruct each row of H
def
= H(1),

then we will obtain a matrix with many zero entries, due to the sparsity-recovery

properties of the ℓ1 regularization. As λ increases, more and more entries of Ĥ

will be set to zero. If vj → vi but ĥij = 0, then we will characterize that as a

misdetection; if vj 6→ vi but ĥij 6= 0, then we will characterize it as a false alarm.

Varying λ, we obtain a ROC curve. For the experiment, we used random geometric

graph (N = 100, D = 12). We set H = βA, where A was the adjacency ma-

trix of the graph, and β = 0.2. A realization of the ALARM model was generated

with T = 2000 and T = 5000. We used a l1_logreg, a publicly available code for

performing ℓ1-regularized logistic regression [78]. The results are shown in Figure
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Figure 4.8: ROC curves for mismatched estimator when the data is generated by

an SIS model. In both cases, the performance is far better than random chance.

Estimation based on 5000 samples does not appear to be considerably better than

estimation from only 2000 samples.

4.7.

The ALARM model is useful even when the underlying data is generated from

a more specialized model. To show this, we conducted a separate experiment in

which the data was generated from a susceptible-infected-susceptible (SIS) model.

This model is similar to the SI model described in Section 4.1, except that each

infected node has some positive probability of being “cured” and reverting to the

susceptible state. This model is not a true specialization of the ALARM model, so

ALARM cannot be used directly to model it. However, our results show that if the

data is generated by an SIS model and we incorrectly assume it was generated by

the ALARM model, we can still infer the graph structure. This will be useful in the
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case that we know nothing about the dynamics of the process—ALARM is general

enough that it can capture the qualitative behavior of the SIS model.

The performance of the ALARM graph inference technique under model mis-

match is illustrated in Figure 4.8. We have plotted curves generated after 2000

samples and 5000 samples. The mismatched estimators perform far better than

random chance.

4.3 Summary

In this chapter, we studied binary dynamic processes on networks, processes

which are applicable to the study of many real-world phenomena. We first consid-

ered the problem of localizing the source of an epidemic on a graph. The epidemic

was modeled using the standard SI model. We developed a Monte Carlo technique

for quickly estimating the pseudolikelihood associated with each potential source

node and used it to infer the true source. We then introduced ALARM, a simple but

powerful model for binary processes on graphs in which a node’s state is depen-

dent on the states of its neighbors at preceding time steps through a logistic link

function. We showed how to use ℓ1-regularized logistic regression to estimate the

graph structure from observations of the process. We also showed that the method

works reasonably well under model mismatch, meaning it is able to infer the graph

structure under the standard SI model.
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Chapter 5

The Randomized Kaczmarz

Algorithm: Exact MSE Analysis

T
HE KACZMARZ ALGORITHM [71], also known under the name Algebraic Recon-

struction Technique (ART) [58], is a popular method for solving a large-scale

overdetermined system of linear equations. Let

y = Ax, (5.1)

where A is a full-rank m × n matrix with m ≥ n. Given y ∈ R
m, the algorithm

proceeds to solve for x as follows: An initial guess x(0) is chosen arbitrarily. The

iterations then start with the first row, proceed in succession to the last row, and

then cycle back to the first row, and so on. When row r is chosen, the current

estimate x(k) is projected onto the hyperplane {x ∈ R
n : aT

r x = yr} to obtain

x(k+1). Here, aT
r is the rth row of A.
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Due to its simplicity, the Kaczmarz algorithm has been widely used in signal and

image processing. It is also a special case of the projection onto convex sets (POCS)

algorithm [125] for finding an intersection of many convex sets: in our case, we are

looking for the intersection of a set of (n− 1)-dimensional hyperplanes in R
n.

It is well-known that the rate of convergence of the original Kaczmarz algorithm

depends heavily on the exact ordering of the rows in A [64]. Recognizing this is-

sue, Strohmer and Vershynin proposed in [120] a randomized Kaczmarz algorithm

(RKA) that, instead of cycling sequentially through the rows in a deterministic fash-

ion, chooses a row at random at each step. In their paper, they analyzed a specific

probability distribution: choosing row i with probability proportional to its squared

norm ||ai||2. They then showed the following upper bound on the mean squared

error (MSE) of the RKA:

E‖x(N) − x‖2 ≤
(
1− κ−2

A

)N ‖x(0) − x‖2, (5.2)

where κA
def
= ‖A‖F‖A−1‖2 is the scaled condition number of A, and A−1 is its

left-inverse. Since κA ≥
√
n, the above bound guarantees that the MSE decays

exponentially as the RKA iterations proceed.

The work of Strohmer and Vershynin spurred a great deal of interest in RKA and

its various extensions (see, e.g., [30,31,38,93,95,108,134]). The original analysis

in [120] assumes that the linear inverse problem is consistent (i.e., noise-free).

The noisy case was studied in [93]. A more general algorithm, involving random

projections onto blocks of rows, was analyzed in [95]. Recently, Zouzias and Freris
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[134] proposed a randomized extended Kaczmarz algorithm which converges to

the least squares estimate of an inconsistent system of linear equations.

We provide three contributions in this chapter:

1. An exact MSE formula: All previous works on analyzing the performance

of RKA provide strict upper bounds on the MSE. In this chapter, we present exact

closed-form formulas for the MSE of RKA after k iterations, in both the noisy and

noiseless case, for any k.

2. Error floor: We show that in the noise case, the MSE tends to a limiting value,

an “error floor”, and we show how to compute it.

3. Annealed and quenched error exponents: We provide an exact formula for the

annealed error exponent, which measures the asymptotic rate of decay of the MSE

in the noiseless case, and we provide a good approximation for the quenched error

exponent, which measures the asymptotic rate of decay of the squared error during

a typical realization of the algorithm.

4. Optimal sampling probabilities: Our exact MSE formula allows us to pose a

simple semidefinite programming (SDP) problem, the solution of which leads to

optimal row-selection probabilities to minimize the MSE of the RKA.
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5.1 Performance Analysis

5.1.1 Overview of RKA

Given a matrix A ∈ R
m×n and vector y ∈ R

m, the randomized Kaczmarz algo-

rithm attempts to find a solution x ∈ R
n to (5.1) as follows1 The iterand x(0) ∈ R

n

is initialized arbitrarily. At each step k, a row rk is chosen at random. The proba-

bility of choosing row i is pi; the row-selection probabilities p1, . . . , pm are tunable

parameters of the algorithm. The iterand is then updated according to the formula

x(k) = x(k−1) +
yrk − aT

rk
x(k−1)

||ark ||2
ark . (5.3)

The algorithm is listed above. The intuition behind the algorithm is simple. Each

row of A and its corresponding entry in y defines a hyperplane on which the solu-

tion x must lie; at each time step in the RKA algorithm we randomly select one of

these hyperplanes and project the iterand onto it, getting closer to the true solution

with each step.

5.1.2 Existing Bounds

Originally, Strohmer et al. proposed a specific probability distribution: pi =

||ai||2
||A||2

F

, where ||·||F is the Frobenius norm, and analyzed the behavior of the algorithm

in terms of the properties of A. However, the solution to (5.1) is invariant to

1The extension of the analysis in this chapter to the complex case is simple, but complicates the

notation enough that we analyze only the real case here.
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Randomized Kaczmarz Algorithm [120]

Require: A ∈ R
m×n with rows aT

1 ,a
T
2 , . . . ,a

T
m; y ∈ R

m; selection probabilities

p1, . . . , pm with
∑

i pi = 1; iteration count N .

Ensure: x̂ ∈ R
n, an estimate for x ∈ R

n solving y = Ax.

Initialize x(0) arbitrarily.

for k = 1 to N do

rk ← i with probability pi.

x(k) ← x(k−1) +
yrk−aT

rk
x(k−1)

||ark
||2 ark

end for

x̂← x(N).

arbitrary and independent scalings of the rows. Thus, by looking at the properties

of a rescaled version of A, their analysis can be applied to arbitrary row-selection

probabilities. Indeed, their results show that

(1− 2N/κA(p)
2) ≤ E‖x(N) − x‖2

‖x0 − x‖2 ≤ (1− κA(p)
−2)N , (5.4)

where κA(p) =
∥∥∥Ã−1

D−1/2
p

∥∥∥, and we have defined Ã as the row-normalized version

of A, and Dp as the diagonal matrix with p1, p2, . . . , pm on the diagonal. Ã
−1

is

the left-inverse, which is guaranteed to exist because A is a tall, full-rank matrix.

This is sufficient to show that the error decays exponentially as the RKA iterations

proceed. However, we will show that it is possible to compute the exact error after

N iterations of RKA, for any N ≥ 1, given the initial error. This will allow us to

precisely characterize the rate of decay of the error.

The exponential decay of the error assumes that the measurements are exact,

with no error. In general, however, the observations may be noisy, so that

y = Ax+ η, (5.5)
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where η is a noise vector. Needell extended the upper bound to the noisy case [94]

and Zouzias and Freris improved it [135], obtaining

E‖x(N) − x‖2 ≤ (1− κA(p)
−2)N‖x(0) − x‖2 + ‖η‖2

σ2
min(A)

, (5.6)

where σmin(A) is the smallest singular value of A. This is just the original noiseless

bound plus an extra term proportional to the total squared error in the measure-

ments, meaning that the error bound decays until it reaches a finite limiting value.

Just as in the noiseless case, we will derive a formula for the exact MSE at each

iteration. This will allow us to compute the exact “error floor”, the actual limiting

value of the MSE. Numerical results will show that in many cases, the bounds in

both the noiseless and noisy cases are very loose, meaning that exact expressions

can be valuable.

5.1.3 Exact MSE through the “lifting trick”

To lighten the notation in the sequel, we define the normalized ith row vector

of A as ãi
def
= ai

‖ai‖ ∈ R
n and let η̃i

def
= ηi

‖ai‖ . Consider the noiseless case first. By

combining (5.1) and (5.3), the error vector z(k) = x(k) − x can be expressed as

z(k) = P rkz
(k−1). (5.7)

where P i
def
= I − ãiã

T
i is the projection onto the (n − 1)-dimensional subspace

orthogonal to the ith row ãi. Averaging (5.7) over the randomness of the algorithm,
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we get an iterative equation of the mean error vector

Ez(k) = P Ez(k−1) (5.8)

where P
def
= EP i.

Note that the ease with which we can obtain (5.8) from (5.7) is mainly due to

the linearity of the original random recursion in (5.7). However, the quantity we are

interested in, the mean-squared error E
∥∥z(k)

∥∥2, is a non-linear (quadratic) term. To

compute it, we “lift” the problem by treating the covariance matrix Ez(k)(z(k))T as

an n2-dimensional vector whose dynamics are determined by the algorithm. In the

lifted space, the dynamics are still linear (as we shall soon see), thus allowing for a

relatively simple analysis. The MSE can be easily obtained as the trace of the matrix

Ez(k)(z(k))T .

Consider the kth iteration:

z(k)(z(k))T = P iz
(k−1)(z(k−1))TP i (5.9)

The linearity of this expression will be clearer if we “vectorize” z(k)(z(k))T by ver-

tically concatenating its columns to form a vector vec
(
z(k)(z(k))T

)
∈ R

n2
. In what

follows, we will make use of the following matrix identity which holds for any ma-

trices dimensioned so that ABC is well-defined:

vec(ABC) = (CT ⊗A) vec(B), (5.10)

where ⊗ represents the Kronecker matrix product [66]. First, we note that

vec
(
z(k)(z(k))T

)
= z(k) ⊗ z(k) def

= [z(k)]⊗2,
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where v⊗2 is introduced as a shorthand notation for the Kronecker product of a

vector v and itself. Then, we can apply the identity (5.10) to the right hand side of

(5.9) to obtain

[z(k)]⊗2 = (P i ⊗ P i) [z
(k−1)]⊗2

Taking expectation on both sides of the equation over the randomness of the algo-

rithm, we obtain a simple iterative formula for the second-moment matrix:

E [z(k)]⊗2 = QE [z(k−1)]⊗2. (5.11)

where Q
def
= E (P i ⊗ P i). So we can prove the following proposition:

Proposition 5.1. After N iterations of the randomized Kaczmarz algorithm with ini-

tial iterand x(0), the average error is given by

E
∣∣∣∣x(N) − x

∣∣∣∣2 = vec(In)
TQN vec

((
x(0) − x

) (
x(0) − x

)T)
.

Proof. We use the identity tr(ATB) = vec(A)T vec(B) to obtain

E
∥∥z(N)

∥∥2 = E tr
(
z(N)(z(N))T

)

= vec(I)T vec
(
Ez(N)(z(N))T

)

= vec(I)TQN vec
(
z(0)(z(0))T

)
,

with the last step due to (5.11). This proves the proposition.
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Remark: Q is an n2×n2 matrix; however, due to its structure, it can be multiplied

by a vector in R
n2

using O(mn2) operations rather than the naive O(n4).

Now consider the noisy case. Combining (5.3) and (5.5), we have this time that

the error vector iteration is

z(k) = P ikz
(k−1) + ãik η̃ik . (5.12)

This gives us an iterative equation of the mean error vector

Ez(k) = P Ez(k−1) + f , (5.13)

where we have defined f
def
= E ãiη̃i. The dynamics of the error dyad z(k)(z(k))T ,

however, are more complicated. We have

z(k)(z(k))T = P ikz
(k−1)(z(k−1))TP ik

+ η̃ik

(
ãik(z

(k−1))TP ik + P ikz
(k−1)ã

T
ik

)
+ η̃ 2

ik
ãikã

T
ik

(5.14)

The error dyad couples with the error vector z(k). If we use the identity (5.10) as

before to rewrite this iteration, we obtain

[z(k)]⊗2 = (P ik ⊗ P ik) [z
(k−1)]⊗2 + η̃ik (P ik ⊗ ãik + ãik ⊗ P ik) z

(k−1) + η̃ 2
ik
ã
⊗2
ik
.

Taking expectation on both sides of the equation over the randomness of the algo-

rithm, we obtain a simple iterative formula for the second-moment matrix:

E [z(k)]⊗2 = QE [z(k−1)]⊗2 +DEz(k−1) + e, (5.15)

where we introduce D
def
= E η̃i (P i ⊗ ãi + ãi ⊗ P i) and e

def
= E η̃ 2

i ã
⊗2
i .
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We can combine (5.13) and (5.15) into a single linear recursion over the state

variable
[
([z(k)]⊗2)T , (z(k))T

]T
:



E [z(k)]⊗2

Ez(k)


 = H



E [z(k−1)]⊗2

Ez(k−1)


+



e

f


 , (5.16)

where

H
def
=



Q D

0 P


 . (5.17)

We thus have the following proposition:

Proposition 5.2. For a fixed noise vector η, and an initial error vector z(0), the MSE

of RKA at the N th iteration is given by

E
∥∥z(N)

∥∥2 =



vec(In)

0n




T 
H

N



[z(0)]⊗2 − v1

z(0) − v2


+



v1

v2





 , (5.18)

where v1 = (I −Q)−1 [e+Dv2] and v2 = (I − P )−1f .

Proof. We first solve the linear recursion (5.16) to get a closed-form expression


E [z(N)]⊗2

Ez(N)


 = HN



E [z(0)]⊗2

Ez(0)


+

N−1∑

k=0

Hk



e

f


 (5.19)

that depends on the initial error z(0). Using the identity
∑N−1

k=0 Hk = (I −HN )(I −

H)−1 and noting that2

(I −H)−1 =



(I −Q)−1 (I −Q)−1D(I − P )−1

0 (I − P )−1


 ,

2For now, we presume that I −H is invertible, a fact we will prove in the next section.
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we can simplify (5.19) and get



E [z(N)]⊗2

Ez(N)


 = HN



[z(0)]⊗2 − v1

z(0) − v2


+



v1

v2


 . (5.20)

The MSE can be expressed in terms of the vectorized second-moment matrix as

E
∥∥z(N)

∥∥2 = vec(In)
T
(
E [z(N)]⊗2

)
. (5.21)

Combining this with (5.20) yields the desired result.

5.1.4 Error floor

When the noise vector is nonzero, the MSE in (5.18) will converge to a limiting

value (i.e., an error floor) that only depends on the error vector η. To show this,

we must show that the matrix H is a contraction, i.e. λmax(H) < 1, where λmax(·)

is the largest eigenvalue. We start with the following proposition:

Proposition 5.3. The matrices P and Q satisfy λmax(Q) ≤ λmax(P ).

Proof. We make use of the fact that the eigenvalues of A ⊗ B are all of the form

λiµj , where λi is an eigenvalue of A and µj is an eigenvalue of B, as well as the

bilinearity of the Kronecker product operator. Consider the following decomposition
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of Q:

Q =
∑

i

pi(P i ⊗ P i) (5.22)

=
∑

i

pi(I ⊗ P i)−
∑

i

pi[(I − P i)⊗ P i]

= I ⊗ P +
∑

i

pi[(P i − I)⊗ P i]

We can see that λmax(I ⊗ P ) = λmax(P ). Indeed, all the eigenvalues are the same,

but with n times the multiplicity). Meanwhile, for any i, λmax[(P i − I) ⊗ P i] ≤ 0

since P i is positive semidefinite and λmax(P i) ≤ 1. Using the sublinearity of the

λmax(·) function, we have

λmax(Q) ≤ λmax(P ) +
∑

i

piλmax((P i − I)⊗ P i) (5.23)

≤ λmax(P ), (5.24)

and the proposition is proved.

So we have that λmax(Q) ≤ λmax(P ) < 1. The matrix P is a contraction because

A is overdetermined. We can show that H is a contraction as well through the

following proposition

Proposition 5.4. If the eigenvalues of P (including multiplicity) are λ1(P ), . . . , λn(P )

and the eigenvalues of Q are λ1(Q), . . . , λn2(Q), then the eigenvalues of H are simply

λ1(P ), . . . , λn(P ), λ1(Q), . . . , λn2(Q).
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Proof. P or Q are symmetric so they can be diagonalized as P = SPΛPS
−1
P and

Q = SQΛQS
−1
Q . Here, SP and SQ have as columns the eigenvectors of P and Q,

respectively, while ΛP and ΛQ are diagonal matrices containing the eigenvalues.

Now, consider the following decomposition of H:

H =



SP 0

0 SQ






ΛP S−1

P DSQ

0 ΛQ






S−1

P 0

0 S−1
Q


 . (5.25)

This shows that H is similar to (and thus has the same eigenvalues as)



ΛP S−1

P DSQ

0 ΛQ


 . (5.26)

Since this is an upper triangular matrix, its eigenvalues can be read off the diagonal.

These are simply the eigenvalues of P and Q.

Combining this with the previous proposition, we have λmax(H) = λmax(P ). So

H is a contraction. Most notably, (I −H) is invertible, as we presumed before. In

particular, we can compute the inverse as

(I −H)−1 =



(I −Q)−1 (I −Q)−1D(I − P )−1

0 (I − P )−1


 .

As k →∞, the first term of (5.18) vanishes, and so we approach an error floor:

lim
k→∞

E
∥∥z(k)

∥∥2 = vec(I)Tv1 (5.27)

= vec(I)T (I −Q)−1(e+D(I − P )−1f). (5.28)
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5.1.5 Average over the noise

Our exact MSE expression (5.18) given in Proposition 5.2 depends on the noise

vector η. In practice, of course, η is unknown, but we may have information about

its statistics. In this section, we suppose that η is drawn from a probability dis-

tribution: in particular, we assume that its elements ηi are i.i.d. random variables

with zero-mean and variance σ2. Here, it is important to differentiate between two

sources of randomness: the random row-selections made by the algorithm and the

random vector η. In what follows, E is understood as the conditional expectation

operator over the randomness of the algorithm, with η fixed, and we define Eη as

the average over the noise.

It is convenient to rewrite (5.18) as

E
∥∥z(N)

∥∥2 = vec(In)
T
[
QN

(
[z(0)]⊗2 − v1

)

+fN(D)
(
z(0) − v2

)]
+ trmat(v1) ,

(5.29)

where

fN (D) =
∑

0≤k<N

QkDPN−1−k. (5.30)

Since fN (D) is a linear function, we have Eη fN(D) = fN(EηD) = 0. Averaging

(5.29) over the noise, we get the following proposition.

Proposition 5.5. The MSE of RKA at the N th iteration averaged over both the ran-
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domness of the algorithm and noise is

EηE
∥∥z(N)

∥∥2 = vec(In)
T
[
QN

(
[z(0)]⊗2 − Eηv1

)
− Eη fN(D)v2

]
+ trmat(Eηv1).

(5.31)

This formula involves two noise-related quantities, Eηv1 and Eη fN(D)v2, both

of which are second-order in the noise. This shows that our knowledge of the

second-order statistics of the noise is sufficient to compute them. In particular, the

first term is given by

Eηv1 = σ2(I −Q)−1

[∑

i

pi
ã
⊗2
i

||ai||2
+ g

(
(I − P )−1

)
]
,

where we define the matrix function

g(M) =
∑

i

p2i
||ai||2

(ãi ⊗ P i + P i ⊗ ãi)Mãi. (5.32)

(In these expressions the extra factors of ||ai||2 are not erroneous—they account for

the varying signal-to-noise ratio of the measurements.)

The second noise-related term is computed by

Eη fN(D)v2 =
∑

0≤n<N

Qk
EηDPN−1−k(I − P )−1f

= σ2
∑

0≤k<N

Qk
Eη g(P

N−1−k(I − P )−1).

Remark: The first term on the right-hand side of (5.31) decays exponentially be-

cause λmax(Q) < 1. Thus, the limiting MSE averaged over both the randomness of

the algorithm and noise is EηE
∥∥z(∞)

∥∥2 = trmat(Eηv1).

145



Chapter 5: The Randomized Kaczmarz Algorithm: Exact MSE Analysis

5.2 Error Exponents: Annealed vs. Quenched

Proposition 5.1 confirms earlier bounds showing that the error decays exponen-

tially in the noiseless case. In fact, for generic values of the initial error vector,

we have E
∥∥z(N)

∥∥2 = exp(−γaN + o(N)), where γa is the annealed error exponent,

defined by

γa
def
= lim

N→∞
− 1

N
logE

∥∥z(N)
∥∥2 . (5.33)

It is not hard to see that γa = − log λmax(Q), where λmax(·) is the largest eigenvalue

of a matrix.

To test our result, we simulated 3007 trials of the Kaczmarz algorithm for solv-

ing a linear system of dimension 150× 20. The same system was used for each run,

as well as the same initial vector. The matrix A was chosen to have independent

standard normal entries (note that none of our analysis depends on A being drawn

in this way, and similar results can be obtained with other matrices). We tracked the

error after every iteration for each run. The row was chosen uniformly at random

for each iteration. Figure 5.1(a) shows a histogram of the errors after 1000 itera-

tions. The histogram was computed and is plotted on a logarithmic scale because of

the wide range of resulting errors. The empirical MSE is overlaid on the histogram,

as well as our prediction based on Proposition 5.1. It is clear that our prediction

matches the empirical value quite well. However, it is also clear that there is more

to the story. Over 90% of the realizations have an error smaller than the mean,
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Figure 5.1: (a) Histogram of squared errors after the simulation described in Sec-

tion 5.2. The errors are plotted on a logarithmic scale to show the full range of

errors; on a linear scale, the histogram is an L-shaped distribution with a spike

at the origin and a long, thin tail. The location of the empirical MSE is overlaid

on the histogram (red solid line), as is the exact MSE as given in Proposition 5.1

(blue dashed line). (b) Of the 3007 simulation trials, the “error trajectories” of 150

randomly-selected trials are plotted here (gray lines). On a logarithmic scale, there

is a clear linear trend. Overlaid on these trajectories is the (annealed) average er-

ror trajectory (blue solid line) of all 3007 trials, and the prediction based on the

annealed error exponent (cyan dashed line). We have also plotted the quenched

average error trajectory, i.e. the average of the log of the error (red solid line), and

the prediction based on the quenched error exponent (green dashed line) as given

in (5.36). These are much more representative of the typical behavior of the al-

gorithm. The upper bound of Strohmer et al. [120] is also shown (black dashed

line).
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Figure 5.1 (Continued).
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which is more than 102 times smaller than the worst realization. It appears that the

average error is not necessarily a great representation of the typical error; in reality,

there are occasional, rare, extreme failures that cause the average error to be much

higher than the “typical” error.

A more representative measure of the error’s decay rate is the quenched error

exponent:

γq
def
= lim

N→∞
− 1

N
E log ‖z(N)‖2 . (5.34)

Here, the logarithm of the error is taken before the expectation. The annealed

and quenched error exponents we have defined are formally similar to Lyapunov

exponents of products of random matrices, a problem well-studied by statistical

physicists for use in modeling dynamical systems [37]. The terms “annealed” and

“quenched” are borrowed from their analysis and have certain physical meanings,

but to us they are just convenient names for two interesting quantities.

The quenched error exponent is far more difficult to analyze than the annealed

one, a fact well known to the physicists [37, 126]. Jensen’s inequality tells us

that γq ≥ γa. To obtain more information, physicists often rely on non-rigorous

heuristics that are verified numerically or experimentally. One such heuristic is the

replica method, which provides an approximation for the quenched Lyapunov ex-

ponent [37]. The physicists have their own intuition for this approximation, but

our engineer’s intuition is quite simple. The quintessential heavy-tailed distribu-

tion is the log-normal distribution. So let us assume that the error distribution is
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‖z(N)‖2 ∼ log-N (Nµ,Nσ2). Then log ‖z(N)‖2 ∼ N (Nµ,Nσ2). The log-normal

assumption is supported by the histogram in Figure 5.1(a): the logarithm of the

squared errors appear to follow a Gaussian distribution. The quenched error ex-

ponent is seen to be simply γq = −µ. Now we need to compute the parameters

of the distribution. Under these assumptions, E
∥∥z(N)

∥∥2 = exp(N [µ + 1
2
σ2]) and

E
∣∣∣∣z(N)

∣∣∣∣4 = exp(N [2µ+ 2σ2]). Solving this system of equations, we obtain:

µ =
1

N

[
2 logE

∥∥z(N)
∥∥2 − 1

2
logE

∣∣∣∣z(N)
∣∣∣∣4
]
. (5.35)

Thus, our approximation for the quenched error exponent is

γq ≈ 2γa −
1

2
γ(2)
a , (5.36)

where

γ(2)
a = lim

N→∞
− 1

N
logE

∣∣∣∣z(N)
∣∣∣∣4 . (5.37)

To compute γ
(2)
a , we define

Q(2) =
m∑

i=1

pi (P ai
⊗ P ai

⊗ P ai
⊗ P ai

) , (5.38)

and have

γ(2)
a = − log λmax

(
Q(2)

)
. (5.39)

Q(2) is an n4 × n4 matrix, but it can be applied in time O(mn4) instead of the naive

O(n8). So finding the largest eigenvalue is not as complex as one might naively

expect.
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Figure 5.1(b) illustrates our argument and shows just how good the replica

method approximation is. We have plotted, on a logarithmic scale, the error trajec-

tory of many trials as the iterations proceeded. (Only 150 randomly-selected trials

are shown to prevent the figure from getting too cluttered). We have also plotted

the logarithm of the average error, which matches the linear trendline predicted

by the annealed error exponent γa, and the average of the logarithm of the error

trajectories, which matches the linear trendline predicted by our approximation for

the quenched error exponent γq. The quenched values are clearly more representa-

tive of the typical performance of the algorithm than the annealed ones. The close

match indicates that our approximation is valid. For comparison purposes, we have

also plotted the upper bound provided by Strohmer et al. [120].

5.3 Optimal Row-Selection Probabilities

Given a matrix A, we may wish to choose the row selection probabilities p1,

p2,. . . , pm that provide the fastest convergence. A tractable way to do this is to

optimize the annealed error exponent γa, which measures the decay rate of the

MSE. This is equivalent to the following optimization problem:

(p1, . . . , pm) = argmin
p∈∆n−1

λmax(Q), (5.40)

where ∆n−1 is the unit simplex in R
n. The function λmax(Q) is convex [22], as is

the set ∆n−1, so (5.40) is a convex optimization problem (more specifically, it is a
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semidefinite programming problem). Thus, finding the optimal probability distribu-

tion p is quite tractable. Note that Dai et al. recently considered an optimized ran-

domized Kaczmarz algorithm [38], in which the row-selection probabilities were

chosen to optimize a bound on the MSE’s decay rate. However, we optimize the

exact decay rate of the MSE.

To illustrate the kind of improvement possible by optimizing the row selection

probabilities, and develop some intuition on the optimum choice, we computed the

optimal values for a matrix of size 300× 3. The elements of the matrix were chosen

as independent Gaussian random variables with a variance of 0.5; the columns had

means 0.5, 1, and 2, respectively. We used the cvx convex optimization software

package to compute the optimal row selection probabilities for this matrix [60,61].

Since the problem is invariant to the scale and sign of each rows, each row in the

matrix A can be represented as a point on the unit hemisphere. Thus, the matrix

and row probabilities can be illustrated as in Figure 5.2 by plotting each row as a

point on a 2D projection of a unit hemisphere. We used the Lambert equal-area pro-

jection, which is measure-preserving and therefore allows us to accurately visualize

the sampling density everywhere in the space. The darker points represent rows

that are selected with high probability in the optimal selection scheme; the lighter

ones are selected with lower probability. We would expect an optimal scheme to

choose rows that are far from any other rows with higher probability than rows that

are in close proximity to many other rows, in order to reduce redundancy and cover
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10−3

10−2

10−1

Figure 5.2: Optimal selection probabilities for a non-uniform matrix. The plot is an

equal-area projection of the entire unit hemisphere in R3. Each row in the matrix

is represented by a point on the plot; the color represents the optimal selection

probability computed using cvx.

the whole space. The figure conforms to this intuition.

Figure 5.3 illustrates the improvement of the optimal randomization scheme

over simply choosing rows uniformly at random. After 20 iterations, the optimal

scheme has an error 36 dB lower than the uniform scheme, and 12 dB lower than

the sub-optimal scheme of Dai et al.

Of course, in practice, there is a tradeoff between the computation time saved by

needing fewer iterations and the computation time spent determining the optimal

row selection probabilities in advance. The main purpose of the exact optimization

proposed in this work is to develop intuition and validate sub-optimal heuristics. A

fast or on-line method for approximating the optimal probabilities would be very
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Figure 5.3: Quenched average squared errors versus RKA iteration under the uni-

form, Dai et al.’s approximate optimal, and optimal row selection probabilities, for

the 1000 x 3 matrix described in the text.The average is taken over 1007 trials.

beneficial for large-scale problems.

5.4 Numerical Verification of the Noisy MSE formula

We also did simulations to verify the noisy MSE formulas (5.18) and (5.31). The

results of two experiments are shown in this chapter. First, we tested the fixed noise

formula (5.18). We drew a single noise vector η with ||η||2 = 1.6, and a starting

error z(0), and choose a 150 × 50 measurement matrix A that had i.i.d. Gaussian

entries. Then we ran 1007 separate trials of the randomized Kaczmarz algorithm,

with each trial running for 2000 iterations and starting with an error vector z(0). We

plotted the average MSE of the trials at each iteration on a log scale. The results are
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shown in Figure 5.4(a), and show that the expression we derived in (5.18) matches

the numerical results very well. We also plotted existing bounds [94, 135] as well.

The bounds are significantly higher than the true MSE.

Next, we tested the noise-averaged formula (5.31). We used the AIR Tools pack-

age in MATLAB [63] to generate a tomography measurement matrix A of size

148 × 100. The noise vector η had i.i.d. entries with variance σ2 = 2.25 × 10−4

and was drawn independently for each trial. We ran 1007 separate trials of the

randomized Kaczmarz algorithm, with each trial running for 3000 iterations. The

results are shown in Figure 5.4(b). The close match between empirical and theoret-

ical curves verify our expression for the noise-averaged MSE (5.31). The graph also

shows that the noise-averaged version of the Zouzias-Freris bound is more than two

orders of magnitude higher than the true limiting MSE in this case.

5.5 Summary

We provided a complete characterization of the randomized Kaczmarz algo-

rithm. This included an exact formula for the MSE in both the noiseless and noisy

cases, an expression for the limiting “error floor” in the noisy case, an exact expres-

sion for the annealed error exponent characterizing its decay rate in the noiseless

case, plus an approximation for the quenched error exponent that captures the typ-

ical error decay rate. We also explored choosing the row-selection probabilities to

155



Chapter 5: The Randomized Kaczmarz Algorithm: Exact MSE Analysis

achieve the best convergence properties for the algorithm.

156



Chapter 5: The Randomized Kaczmarz Algorithm: Exact MSE Analysis

Figure 5.4: (a) The mean squared error E ||x(k) − x||2 is shown on a logarithmic

scale as a function of the iteration number k. The matrix A has Gaussian entries,

and the error vector η is fixed in advance, with ||η||2 = 1.6. The average results

from 1007 trials are shown as the blue curve, and the results from 150 of the trials

are shown in gray. The analytical expression (5.18) is shown as a dashed green

line, and clearly matches the simulation results quite well. The Needell [94] and

Zouzias-Freris [135] bounds are shown as well, and are far higher than the true

MSE. (b) The mean square error EηE ||x(k)−x||2 averaged over both the algorithm’s

randomness and the noise is shown on a logarithmic scale as a function of the

iteration number k. The matrix A is the measurement matrix of a tomographic

system (generated by the AIR Tools package [63]), and the error vector η is a zero

mean Gaussian vector with variance 2.25 × 10−4, drawn independently with each

trial. The average of 1007 trials are shown in blue along with the results from 150

of the trials in gray. The analytical expression for the Gaussian noise case (5.31)

clearly matches the simulation results. The noise-averaged Zouzias-Freris bound is

shown as well for comparison.
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Conclusion

I
N THIS DISSERTATION, we studied several problems in signal processing and in-

ference on graphs. The main contributions of this work are:

• We introduced graph and spectral spread measurements for signals on graphs

analogous to the time and frequency spreads of classical signal processing,

and showed how to compute an “uncertainty curve” defining the tradeoff be-

tween the two. This tradeoff is directly analogous to the Heisenberg uncer-

tainty principle in classical signal processing. The uncertainty curve can be

computed parametrically by solving a sequence of eigenvalue problems. We

also uncovered an intriguing connection to the graph heat equation: solutions

to this equation seem to lie very close to the uncertainty curve.

• We analyzed the problem of detecting a random walk on a graph. We showed

how to use statistical physics techniques to lower bound the error exponent for
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this problem, revealing a phase transition. This provides a nice rule of thumb

for deciding if the problem is tractable: when the SNR is greater than twice

the entropy rate of the random walk, strong performance and exponential

error decay is guaranteed.

• We introduced a technique for inferring the origin of an epidemic on a known

network given a sequence of observations from a fraction of the nodes. We

developed a fast Monte Carlo technique to simulate the epidemic from each

possible source, extracted statistics from those simulations, and used them to

approximate the likelihood. By maximizing this approximate likelihood, we

found an estimate for the origin of the epidemic.

• We introduced a logistic autoregressive model (ALARM), a simple but very

versatile model for binary dynamic processes on graphs. This model can

capture a wide variety of behavior, including diffusion, negative influence

of neighbors, and “stickiness” of a node’s value. We showed how to use ℓ1-

regularized logistic regression to infer the graph structure from observations

from this model. We also showed that the model is general enough that graph

structure can be inferred even when the true data generation model is an

epidemic model and not ALARM itself.

• We developed the first exact MSE formula for the randomized Kaczmarz al-

gorithm, a linear system solver especially suited for sparse matrices often en-
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countered in graph problems. The formula works in the noiseless and noisy

cases. In the noisy case, we computed the limiting “error floor” that the al-

gorithm converges to. In the noiseless case, we studied the annealed and

quenched error exponents, which provide measures of the rate of decay of

the MSE. We showed that the row selection probabilities could be chosen to

optimize the annealed error exponent and improve performance. We showed

numerically that existing bounds on the MSE are very loose, meaning that

our expressions are a big improvement over the state-of-the-art performance

bounds.

6.1 Future work

6.1.1 Spectral graph uncertainty principle

Although our basic analysis of the uncertainty curve works with an arbitrary

distance function d(·, ·) on the graph, our results primarily focused on the geodesic

distance, which is the smallest number of links in a path from one node to another.

Extending these results to weighted graphs, in which each edge is associated with a

weight capturing the strength of the connection, turns out to be nontrivial. Recently,

a group of researchers analyzed how to do this [100]. One of the authors of that

work also studied the influence of the clustering coefficient, a standard metric for

the topology of a graph, on the shape of the uncertainty curves [105].
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Another interesting line of investigation would be to fully understand the con-

nection between the graph heat equation’s solutions and the uncertainty curve. Is

there a distance function under which the solutions follow the curve exactly? Can

the difference between the uncertainty curve and the curve traced out by the solu-

tions be bounded? An answer to these questions could lead to nicely localized signal

representations computed easily by evolving the heat equation—perhaps something

like the existing diffusion wavelet transform [34].

6.1.2 Detection of random walks

An important open problem is the development of an upper bound for the error

exponent, particularly one with a similar phase transition as the lower bound. This

would allow us to definitively say that below a certain threshold SNR, the detection

problem will be impossible. We believe that such a nontrivial upper bound would

require taking the asymptotic limit M → ∞ of growing system size either simulta-

neously or after N → ∞. This would require some sort of model for the growing

graphs. For example, we may be able to model a K-regular graph with M nodes

with K/M fixed as M →∞.

6.1.3 ALARM model

We conjecture that in the limit as the number of observations grows without

bound, the ℓ1-regularized logistic regression estimator can consistently estimate the
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graph structure underlying the ALARM model. This parallels similar consistency re-

sults for the Gaussian case. A proof would provide strong backing for this technique

in learning graphical structure collections of binary time series.

Using the concept of Granger causality, learning the parameters of the ALARM

model can also help decide the existence and direction of causality in a network.

6.1.4 Randomized Kaczmarz

Our exact MSE formula for the randomized Kaczmarz algorithm is quite com-

plicated. Existing bounds are very simple to compute, but we showed that they are

often very loose. Perhaps our exact formula could be used to inspire simple, but

tighter bounds on the performance.

6.2 Outlook

The field of signal processing and inference on graphs is fertile ground for inter-

disciplinary approaches to solving challenging new problems being raised by mod-

ern data sets. In this dissertation, we used concepts from time-frequency analysis,

classical signal processing, decision theory, statistical physics, epidemiology, regres-

sion analysis, and more, to formulate, analyze, and solve problems involving data

with network structure. This sort of broad-ranging synthesis will make the field

very challenging—and fascinating—for years to come.
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Appendix A

Spectral Graph Uncertainty Principle

Proofs

A.1 The convexity of D

We would like to prove that the set D is convex as long as the number of vertices

N ≥ 3. (The need for such a condition will be made clear shortly.) This is equivalent

to showing the following result.

Proposition A.1. Suppose that there exist two vectors x1,x2 in R
N with N ≥ 3, such

that

xT
i xi = 1, xT

i Lxi = si, and xT
i P

2
u0
xi = gi, for i = 1, 2. (A.1)

Then for any β ∈ [0, 1], we can always find a vector x in R
N satisfying

xTx = 1, xTLx = s, and xTP 2
u0
x = g, (A.2)
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where s
def
= βs1 + (1− β)s2 and g

def
= βg1 + (1− β)g2.

We will prove the above proposition by recasting the problem in SymN , the

Hilbert space of real, symmetric N × N matrices. The space is endowed with the

Hilbert-Schmidt inner product defined by 〈A,B〉HS
def
= tr(ATB) = tr(AB), where

tr(·) is the trace of a matrix. Every x ∈ R
N can be mapped onto a matrix X = xxT

in SymN . Finding a vector x satisfying the conditions in (A.2) then boils down to

finding a rank-one positive semidefinite matrix X = xxT satisfying the following

three constraints

tr(X) = 1, tr(LX) = s and tr(P 2
u0
X) = g. (A.3)

The requirement that X be a rank-one matrix makes this a hard problem, be-

cause the cone of rank-one matrices is not convex. Instead, we will use the follow-

ing theorem to relax the problem to the cone of positive semidefinite matrices SN
+ ,

which is convex.

Theorem A.1 (Barvinok [15]). Suppose that R > 0 and N ≥ R + 2. Let H ⊂ SymN

be an affine subspace such that codim(H) ≤
(
R+2
2

)
. If the intersection SN

+ ∩ H is

nonempty and bounded, then there is a matrix X in SN
+ ∩H such that rank(X) ≤ R.

Proof of Proposition A.1. First, we note that the three equalities in (A.3) are all

affine constraints on X. Together, they define a hyperplane H ⊂ SymN with

codim(H) ≤ 3 =
(
1+2
2

)
. (In fact, I, L, and P 2

u0
are linearly independent, so
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codim(H) = 3.) To apply Theorem A.1, we verify next that SN
+ ∩H is nonempty and

bounded.

First we show that it is bounded: let X be an arbitrary matrix in the intersec-

tion SN
+ ∩ H (assuming one exists), and let {ν1, ν2, . . . , νN} be its eigenvalues. The

equalities 1 = tr(X) =
∑N

n=1 νn, together with the nonnegativity of the eigenvalues,

imply that

‖X‖2HS = tr(X2) =
N∑

n=1

ν2
n ≤

N∑

n=1

νn = 1.

Therefore, SN
+ ∩H is a subset of the unit ball in SymN and is thus bounded.

To show that SN
+ ∩ H is nonempty, we explicitly construct a member of the

set. Let x1,x2 be the two vectors satisfying (A.1). On mapping the vectors to two

matrices X1
def
= x1x

T
1 and X2

def
= x2x

T
2 , the constraints in (A.1) can be rewritten as

tr(X i) = 1, tr(LX i) = si and tr(P 2
u0
X i) = gi, for i = 1, 2.

X1 and X2 are both in SN
+ . Now set X ′ = βX1 + (1 − β)X2. It is easy to see

that X ′ ∈ H and, because SN
+ is convex, X ′ ∈ SN

+ as well. To be sure, the matrix

X ′ ∈ SN
+ ∩H is not necessarily of rank one. However, the result of Theorem A.1 (for

the case when R = 1) guarantees the existence of a rank one matrix X in SN
+ ∩ H.

Decomposing this matrix as X = xxT and using the equivalence between (A.2)

and (A.3), we can conclude that the resulting vector x satisfies all the constraints

in (A.2).

Remark: The above proof uses Theorem A.1 for the case when R = 1. Conse-
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quently, we need to work with N ≥ R + 2 = 3. This requirement is sharp in that

the achievable region D for a graph with two vertices (i.e., N = 2) is not convex.

The only connected graph with N = 2 is the complete graph. All unit-norm signals

on this graph can be parametrized as (cos θ, sin θ). By computing the corresponding

graph Laplacian and distance matrices, it is easy to show that the achievable re-

gion is only the boundary of an ellipse (not including its interior) and hence is not

convex.

A.2 Proof of Lemma 2.1

(a) For any α1 < α2, let v1 and v2 be two unit-norm eigenvectors in S(α1) and

S(α2), respectively. Applying Rayleigh’s inequality, we get vT
2M(α1)v2 ≥ q(α1) =

vT
1M (α1)v1 Similarly, we have −vT

2M(α2)v2 ≥ −vT
1M(α2)v1. A combination of

these two inequalities leads to

vT
2 (M (α1)−M(α2))v2 ≥ vT

1 (M(α1)−M(α2))v1. (A.4)

Recall that M(α) = P 2
u0
− αL, and therefore M(α1) −M(α2) = (α2 − α1)L.

Replacing this identity into (A.4), we thus have

vT
2Lv2 ≥ vT

1Lv1.

Note that v1 and v2 can be arbitrary unit-norm elements in S(α1) and S(α2), respec-

tively. If, in particular, we choose v1,v2 to be those that attain the maximization in
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(2.21), we get h+(α2) = vT
2Lv2 ≥ vT

1Lv1 = h+(α1). Similarly, we can show that

h−(α2) ≥ h−(α1).

(b) We will only consider the limits when α tends to −∞ as given in (2.23). The

other case, when α tends to +∞, can be analyzed in a similar way, and its proof

will be omitted. Let α > 0 be any positive number. By definition,

h+(α) ≥ h−(α) ≥ 0, (A.5)

where the second inequality is due to the Laplacian matrix L being positive semidef-

inite. Next, we show that h+(α) can be made arbitrarily close to 0 as α → −∞. To

that end, let v be any unit-norm eigenvector in S(α), and f 1 be the first eigenvector

of L as defined in (2.4). Since S(α) is associated with the smallest eigenvalue q(α),

we have, from Rayleigh’s inequality,

vT (P 2
u0
− αL)v ≤ fT

1 (P
2
u0
− αL)f 1 = fT

1P
2
u0
f 1,

with the equality coming from the identity Lf 1 = 0. For any α < 0, rearranging the

above expression leads to

vTLv ≤ − 1

α

(
fT

1P
2
u0
f 1 − vTP 2

u0
v
)
≤ −E

2
G(u0)

α
, (A.6)

where the second inequality uses the bound of the graph spread as provided in

Proposition 2.1. Since (A.6) holds for any nonzero element v from S(α), we must

have h+(α) ≤ −E2G(u0)/α, which, when combined with (A.5), completes the proof.

(c) First, using eigenvalue perturbation results, we will derive a candidate set A

of points such that q(α) is certainly analytic on [a, b]\A. We will show thatA is finite,
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so that the set of nonanalytic points of q(α) is finite as well. Then, we will compute

h−(α) and h+(α) explicitly, and show that they are are left- and right-continuous,

respectively, and that they are equal to the negative left- and right-derivatives of

q(α), respectively. We will then show that h−(α) = h+(α) everywhere except a

subset B ⊆ A; therefore, they satisfy (2.24). Since A is finite, it follows that B is

finite as well.

The starting point of our analysis is the following result.

Proposition A.2. There exist N analytic functions λ1(·), . . . , λN (·) and N analytic

vector-valued functions x1(·), . . . ,xN(·) such that

M(α)xi(α) = λi(α)xi(α), (A.7)

and xi(α)
Txj(α) = δij.

Proof. Standard perturbation results [80, p. 404] guarantee the existence of such

functions for any matrix function that is analytic and whose value is always Hermi-

tian. The function M(·) as defined in (2.18) is affine in α, and thus analytic; it is

symmetric and real for every α, and thus Hermitian. Therefore functions with the

properties listed in the proposition do exist.

From Proposition A.2, we can write q(α) as

q(α) = min
1≤i≤N

λi(α), (A.8)
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where the {λi(·)}i are the eigenvalue functions guaranteed by the proposition. For

any α0 ∈ R, if S(α0) has dimension one, then precisely one of the eigenvalue func-

tions is equal to q(·) at α0, say λk(α0) = q(α0). Pick some ε < 1
2
minj 6=k |λj(α0) −

λk(α0)|. Since every λj(·) is analytic, we can find some neighborhood N of α0 for

which |λj(α) − λj(α0)| < ε for every j. This guarantees that λk(α) < λj(α) on N

for every j 6= k. Thus q(α) = λk(α) on N . Since λk(·) is analytic on N , we have

that q(·) is analytic on N and therefore at α0. We can make this more general. Sup-

pose instead of only one eigenvalue function attaining the minimum at α0, there

are multiple eigenvalue functions [e.g., two, denoted by λk1(·) and λk2(·)] that at-

tain the minimum, and that they are all equal on a neighborhood N of α0. All the

other eigenvalue functions are larger at α0. Again, the analyticity allows us to find

a neighborhood N ′ ⊆ N on which all the other eigenvalue functions are larger than

λk1(·) = λk2(·). Now, since q(α) = λk1(α) = λk2(α), the function q(α) is analytic on

N ′ as well.

Thus, a necessary condition for q(·) to be nonanalytic at α0 is that two (or more)

distinct eigenvalue functions must intersect at α0. Define µj(·), j = 1, . . . , N ′, N ′ ≤

N as the set of distinct eigenvalue functions, and let nj be the multiplicity of the

eigenvalue function µj(·). Now consider an arbitrary finite interval [a, b] and define

A =
⋃

1≤i<j≤N ′

{α ∈ [a, b] : µi(α) = µj(α)} .

It is a well known property of analytic functions that if they are equal on more

than a finite set of points in an interval, then they are identical. Since the µi(·) are
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distinct analytic functions, no two of them can be equal on more than a finite set of

points in [a, b]. Thus A is the finite union of finite sets, and therefore contains only

a finite number of points

Next, we connect q(α) to h+(α) and h−(α). At any point α0 ∈ [a, b], there can

be k ≥ 1 distinct eigenvalue functions that achieve the minimum in (A.8). Without

loss of generality, we shall assume they are the first k functions, µ1(·), . . . , µk(·).

The associated eigenvectors, xij(α0), for i = 1, . . . , k and j = 1, . . . , ni, form an

orthonormal basis for the eigenspace S(α0). Any unit-norm element v ∈ S(α0) can

then be written as v =
∑k

i=1

∑ni

j=1 cij xij(α0), for some constant coefficients {cij}

satisfying
∑k

i=1

∑ni

j=1 c
2
ij = 1.

We now define an analytic function v(α)
def
=
∑k

i=1

∑ni

j=1 cij xij(α), with v(α0) =

v. The eigenvalue identity in (A.7) implies that

M(α)v(α) =
k∑

i=1

ni∑

j=1

cijµi(α)xij(α)

. Differentiating both sides of this equality yields

M ′(α) v(α) +M (α)v′(α) = (A.9)

k∑

i=1

ni∑

j=1

cijµ
′
i(α)xij(α) +

k∑

i=1

ni∑

j=1

cijµi(α)x
′
ij(α).

Evaluating (A.9) at α = α0, pre-multiplying it by vT (α0) and using the substitutions
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M ′(α) = −L, M(α0)v(α0) = q(α0)v(α0), and µi(α0) = q(α0) for every i, we get

−vT (α0)Lv(α0) + q(α0)v
T (α0)v

′(α0) = (A.10)

k∑

i=1

ni∑

j=1

c2ijµ
′
i(α0) + q(α0)

k∑

i=1

ni∑

j=1

cijv
T (α0)x

′
ij(α0).

The second terms on the left-hand and right-hand sides of (A.10) are equal, leaving

us with

vT (α0)Lv(α0) = −
k∑

i=1

ni∑

j=1

c2ijµ
′
i(α0). (A.11)

By definition, h+(α0) and h−(α0) are the two extreme values of vT (α0)Lv(α0). Max-

imizing (and minimizing) the quantity in (A.11) subject to the unit-norm constraint

k∑

i=1

ni∑

j=1

c2ij = 1,

we have

h+(α0) = max
1≤i≤k

(−µ′
i(α0)) andh−(α0) = min

1≤i≤k
(−µ′

i(α0)). (A.12)

Now, there must exist some m, ℓ ∈ {1, . . . , k} such that

q(α) =





µℓ(α) if α ≤ α0

µm(α) if α ≥ α0

(A.13)

on some neighborhood N of α0, which can be chosen to be small enough that

N ∩ A = {α0} if α0 ∈ A or N ∩ A = ∅ otherwise. We must have µ′
m(α0) =

min1≤i≤k µ
′
i(α0), since if µ′

j(α0) < µ′
m(α0) for some j, then on a sufficiently small

neighborhood of α0, we would have q(α) = µj(α) < µm(α) for α > α0, contradicting
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(A.13).1 Meanwhile, away from α0 there are no other points inN at which multiple

distinct eigenvalue functions intersect. Thus, from (A.12), we have that h+(α) =

−µ′
m(α) on N ∩ [α0,∞). Since the µi(·) are all analytic, h+(α) is right-continuous

at α0. Furthermore, since q(α) = µm(α) on N ∩ [α0,∞), h+(α0) is equal to the

negative right-derivative of q(α) at α0. By similar arguments, we can show that

h−(α) is left-continuous at α0 and is equal to the negative left-derivative of q(α) at

α0.

A necessary condition for h−(α0) 6= h+(α0) is that k > 1, i.e., there are multiple

distinct eigenvalue functions achieving the minimum in (A.8). Thus the set of points

B at which they differ satisfies B ⊆ A, so B is finite. Meanwhile, if h+(α0) = h−(α0),

then the equality must hold for all α ∈ N as well because of the way we constructed

the neighborhood N . Since h−(α) is left-continuous and h+(α) is right-continuous

at α0, both functions are continuous at α0. Equality also means the left- and right-

derivatives of q(α) are equal at α0, and thus q′(α0) is well-defined with h+(α0) =

h−(α0) = −q′(α0).

1The requirement that µ′
m(α0) = min1≤i≤k µ

′
i(α0) might not always be sufficient to uniquely

determine m, however. In the case that multiple distinct eigenvalue functions achieve the minimum

derivative, µm(·) is then determined by comparing the higher order derivatives. This nuance does

not affect our proof, which only depends on the first derivative.
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A.3 Proof of Proposition 2.3

For N = 2 the proposition is trivial, so let us assume N > 2. By Theorem 2.1, x̃

must be an eigenvector associated with the smallest eigenvalue of M (α) = P 2
u0
−αL

for some α, where L and P u0 are given by (2.27) and (2.28), respectively. M(α) is

given in block form as

M (α) =




−α α
N−1

1
T
N−1

α
N−1

1N−1 B


 ,

where B is the (N − 1)× (N − 1) circulant matrix

B =

(
1− N

N − 1
α

)
IN−1 +

α

N − 1
1N−11

T
N−1.

Let {w1, . . . ,wN−2} be an orthonormal set of vectors in R
N−1 such that wi ⊥ 1N−1.

This set spans the subspace of vectors in R
N−1 orthogonal to 1N−1. It is easy to

verify that Bwi = (1− N
N−1

α)wi. Furthermore, if we set vi = (0,wT
i )

T , then we can

see that vi are all eigenvectors of M(α) with eigenvalue 1− N
N−1

α.

If we can show that this is not the smallest eigenvalue of M(α), i.e. that q(α) 6=

1 − N
N−1

α, then it follows that x̃ [an eigenvector of M(α) corresponding to q(α)]

must be orthogonal to every vi for i = 1, . . . , N − 2. This will then guarantee that x̃

is of the form (2.29).

To show that q(α) 6= 1 − N
N−1

α, we let y = [y1, . . . , yN ] be chosen such that

||y|| = 1, y1 6= 0, and yT
1N = 0. This last property makes y an eigenvector of L with

eigenvalue N
N−1

. We have yTP 2
u0
y = 1 − y21 and yTLy = N

N−1
. Thus yTM(α)y =
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1 − y21 − N
N−1

α < 1 − N
N−1

α. It follows from the Rayleigh inequality that q(α) ≤

yTM(α)y < 1− N
N−1

α, proving the proposition.

Remark: With small modifications, the above proof can be used to demonstrate

that the same property holds for star graphs, i.e. any vector achieving the uncer-

tainty curve must be of the form in (2.29). For a star graph with N vertices, we

have

M(α) =




−α α√
N−1

1
T
N−1

α√
N−1

1N−1 (1− α)IN−1


 . (A.14)

Again, there is an (N−2)–dimensional eigenspace spanned by the same set {vi}N−2
i=1

as in the complete graph case above. In this case, the eigenvalue associated with

that subspace is 1 − α. Thus, to show that the smallest eigenvector is of the de-

sired form, we must simply show that there is some unit norm vector y for which

yTM(α)y < 1 − α, guaranteeing that the eigenvector associated with the smallest

eigenvalue is orthogonal to the eigenspace spanned by {vi}N−1
i=1 . Our test vector

here is y = (1, 0, . . . , 0)T , which gives us yTM(α)y = −α < 1 − α, so the same

property holds for the star graph as the complete graph.

A.4 Proof of Proposition 2.4

(a) Let {f 1, . . . ,fN} be an orthonormal basis of R
N with f 1 = 1√

N
1N . It is

easy to verify that these are eigenvectors of L [given in (2.27)] with corresponding

eigenvalues λ1 = 0 and λk =
N

N−1
for k = 2, . . . , N .
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It follows from (2.46) that the diffusion process starting from x0 = δu0 can be

obtained as

x(t) = f 1f
T
1 δu0 + e−λ2t(I − f 1f

T
1 )δu0. (A.15)

Assuming without loss of generality that u0 = 1 and using the fact that f 1 =

1√
N
1, we have x(t) = 1

N

[
1 + (N − 1)e−λ2t, 1− e−λ2t, . . . , 1− e−λ2t

]T
. Using our

knowledge of L and the fact that P u0 = diag(0, 1, . . . , 1), it is now straightfor-

ward to compute the spreads as ∆2
s(x(t)) =

Ne−2λ2t

1 + (N − 1)e−2λ2t
and ∆2

g,u0
(x(t)) =

N−1
N

(
1− e−λ2t

)2

1 + (N − 1)e−2λ2t
. We can verify that these spreads satisfy (2.32). Thus, for all t ≥

0, x(t) achieves the uncertainty curve. ∆2
s(x(t)) is continuous and limt→∞ ∆2

s(x(t)) =

0, so ηu0(s) = γu0(s) for s ∈ (0, 1].

(b) Here, we assume without loss of generality that the center of the star,

i.e., the vertex with degree N − 1 is u0 = 1. Again, we explicitly construct an

orthonormal eigenbasis for L, given in this case by (2.33). In what follows, we

will assume that N > 2; the star graph with 2 vertices is the same as the com-

plete graph with 2 vertices, so the proof from (a) will apply to that case. Let

f 1 =

[
1√
2
, 1√

2(N−1)
, . . . , 1√

2(N−1)

]T
, fN =

[
− 1√

2
, 1√

2(N−1)
, . . . , 1√

2(N−1)

]T
, and fk =

[
0, gT

k

]T
for k = 2, . . . , N − 1, where {gk}N−1

k=1 is any orthonormal basis for R
N−1

satisfying g1 = 1√
N−1

1N−1. It is easy to verify that {fk}Nk=1 forms an orthonormal

basis for RN , and that the fk are eigenvectors of L with corresponding eigenvalues

λ1 = 0, λ2 = · · · = λN−1 = 1, and λN = 2.
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Similar to (A.15), we can compute the diffusion process explicitly as

x(t) = f 1f
T
1 δu0 + e−t(I − f 1f

T
1 − fNf

T
N )δu0 (A.16)

+ e−2tfNf
T
Nδu0

=
(
1− e−t

)
f 1f

T
1 δu0 +

(
e−2t − e−t

)
fNf

T
Nδu0 (A.17)

+ e−tδu0.

Using the expressions for f 1 and fN , we find that

x(t) =

[
1

2
+

1

2
e−2t,

1

2
√
N − 1

(
1− e−2t

)
1
T
N−1

]T
.

From this, we can compute the graph spread as ∆2
g,u0

(x(t)) =
(1− e−2t)2

2(1 + e−4t)
and the

spectral spread as ∆2
s(x(t)) =

2e−4t

1 + e−4t
. It is easy to verify that these spreads satisfy

(2.34), and so x(t) achieves the uncertainty curve for t ≥ 0. Once again, ∆2
s(x(t))

is continuous and limt→∞ ∆2
s(x(t)) = 0, so ηu0(s) = γu0(s) for s ∈ (0, 1].

A.5 Proof of Proposition 2.5

We know from Theorem 2.1 that every point on the uncertainty curve is achieved

by an eigenvector associated with the smallest eigenvalue q(α) of M(α) = P 2
u0
−αL.

In particular, the point (1, 0) is achieved by δu0 , which is the eigenvector associated

with the matrix M (0) = P 2
u0

and eigenvalue q(0) = 0. Since d(u0, v) = 0 if and only

if u0 = v and d(v, u0) > 0 otherwise, the eigenspace S(0) is one-dimensional. Thus,

from the proof of Lemma 2.1 in Appendix A.2, there is some neighborhood N of
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α = 0 on which S(α) is one-dimensional, and therefore q(α) is analytic. In this case,

there exists some neighborhood of s = 1 for which we can use the parametric form

of the uncertainty curve given in (2.25), namely (s, γu0(s)) = (su(α), gu(α)) where

su(α) = −q′(α) and gu(α) = q(α)− αq′(α) for α ∈ N .

We can thus compute the derivative of the uncertainty curve parametrically as

dγu0

ds
=

g′u(α)

s′u(α)
=
−αq′′(α)
−q′′(α) = α. (A.18)

where α is chosen so that s(α) is the argument at which we wish to evaluate the

derivative. Similarly, the second derivative is

d2γu0

ds2
=

d
dα

(
g′u(α)
s′u(α)

)

s′u(α)
=

1

−q′′(α) . (A.19)

Both (A.18) and (A.19) require that q′′(α) be nonzero. In what follows, we will

explicitly compute q′′(0) and show that q′′(α) 6= 0 for α ∈ N ′, where N ′ ⊆ N . As

described in the proof of Lemma 2.1, there is an analytic eigenvector function v(α)

defined in a neighborhood of α = 0 such that

M (α)v(α) = q(α)v(α), (A.20)

with v(0) = δu0 and ||v(α)||2 = 1. The spectral spread function is given by su(α) =

v(α)Lv(α) = −q′(α), where the second equality is due to (2.25). So we can com-

pute

q′′(α) = −2v(α)Lv′(α). (A.21)

To compute v′(α), we differentiate both sides of (A.20) and after rearranging terms
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obtain

[M (α)− q(α)I]v′(α) = Lv(α) + q′(α)v(α). (A.22)

From (A.20) and the fact that S(α) is one-dimensional on N , M(α) − q(α)I has a

one-dimensional nullspace spanned by v(α). Since 0 = d
dα
||v(α)||2 = 2v(α)Tv′(α),

when we multiply both sides of (A.22) by the Moore-Penrose pseudoinverse of

M(α)− q(α)I, we obtain

v′(α) = [M (α)− q(α)I]+Lv(α), (A.23)

where we have also used the fact that [M − q(α)I]+v(α) = 0 to simplify the right-

hand side of (A.23).

Setting α = 0 and using the fact that q(0) = 0 and v(0) = δu0 , we have v′(0) =

(
P 2

u0

)+
Lδu0. Substituting this into (A.21), we get q′′(0) = −2δT

u0
L
(
P 2

u0

)+
Lδu0 =

−2
∑

v∼u0

(Lδu0)
2
v

d2(v, u0)
, where (Lδu0)v is the vth entry of Lδu0 . From the definition of the

graph Laplacian, we have that for every v ∼ u0, (Lδu0)v =
−1√
deg u0

1√
deg v

. Thus,

q′′(0) =
−2

deg u0

(∑

v∼u0

1

d(v, u0)2 deg v

)
. (A.24)

Since the graph is connected, q′′(0) 6= 0, and since q(α) is analytic on N , there

exists a neighborhood N ′ ⊆ N containing 0 on which q′′(α) 6= 0 as well. Thus our

expressions for the first and second derivatives (A.18) and (A.19) are valid at s = 1,

which corresponds to α = 0. We obtain
dγu0
ds

∣∣∣
s=1

= 0 and the expression for
d2γu0
ds2

∣∣∣
s=1

given in (2.48).
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To compute the derivatives of the curve ηu0(s) traced out by the diffusion process

x(t), we express it parametrically in terms of t, with (s, ηu0(s)) = (sd(t), gd(t)) where

sd(t) =
x(t)TLx(t)
||x(t)||2 and gd(t) =

x(t)TP 2
u0

x(t)

||x(t)||2 .

We first show that ṡd(t) < 0. To simplify the computation of this and other

derivatives, we introduce the function RZ(t) =
x(t)TZx(t)
||x(t)||2 for any fixed matrix Z. It

is easy to verify that since ẋ(t) = −Lx(t), ṘZ(t) = 2RZ(t)RL(t)−RLZ(t)−RZL(t),

where the last two terms in the sum are equal if Z is symmetric. Since we have an

explicit solution x(t) = e−Ltδu0, we can see that ||x(t)|| 6= 0 for all t, so that RZ(t)

and its derivative is well-defined.

Since sd(t) = RL(t), we have

ṡd(t) = 2(sd(t)
2 −RL2(t)) = 2

[
(x(t)TLx(t))2 − x(t)TL2x(t)

]
< 0

by the Cauchy-Schwarz inequality. Equality would hold only if Lx(t) were a mul-

tiple of x(t)—i.e., if x(t) were an eigenvector. From (2.46) we can see that this

could only occur if δu0 itself were an eigenvector, which is impossible for a con-

nected graph. We can directly evaluate sd(0) = 1 and limt→∞ sd(t) = 0; combining

this with the above result guarantees that sd(t) is a one-to-one function with range

(0, 1]. Thus ηu0(s) is well-defined on that domain.

Since gd(t) = RP 2
u0
(t), we can compute the derivative

ġd(0) = gd(0)sd(0)−RLP 2
u0
(0) = 0.
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Thus the diffusion curve’s derivative at s = 1 is given by

dηu0

ds

∣∣∣∣
s=1

=
ġd(t)

ṡd(t)
= 0 =

dγu0

ds

∣∣∣∣
s=1

. (A.25)

Meanwhile, we can simplify the second derivative evaluated at s = 1, obtaining

d2ηu0

ds2

∣∣∣∣
s=1

=
g̈d(0)

ṡ2d(0)
. (A.26)

The first derivative of sd(t) at t = 0 can be computed as

ṡd(0) = 2(sd(0)
2 −RL2(0))

= 2
(
1− ||Lδu0||2

)
= −2

∑

v∼u0

1

deg u0 deg v
. (A.27)

The second derivative of gd(t) is

g̈d(t) = 2ġd(t)sd(t) + 2gd(t)ṡd(t)− 4sd(t)RLP 2
u0
(t)

+ 2RL2P 2
u0
(t) + 2RLP 2

u0
L(t) (A.28)

At t = 0, the only nonzero term in (A.28) is the last one:

g̈d(0) = 2RLP 2
u0

L(0) = 2δT
u0
LP 2

u0
Lδu0

= 2
∑

v∼u0

d(v, u0)
2

deg u0 deg v
. (A.29)

Now we can combine (A.26), (A.27), and (A.29) to obtain the expression for

d2ηu0
ds2

∣∣∣
s=1

given in (2.48). By the Cauchy-Schwartz inequality,

(∑

v∼u0

1

deg v

)2

≤
(∑

v∼u0

d(v, u0)
2

deg v

)(∑

v∼u0

1

d(v, u0)2 deg v

)
(A.30)
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with equality if and only if d(v, u0)
2 = c for every v ∼ u0, where c is some constant.

Comparing the expressions for the second derivatives of the uncertainty curve and

diffusion curve, we can see that
d2ηu0
ds2

∣∣∣
s=1
≥ d2γu0

ds2

∣∣∣
s=1

, with equality if and only if

d(v, u0) is identical for every v ∼ u0.
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Random Walk Detection Proofs

B.1 Proof of Lemma 3.1

The proof is a rather straightforward generalization of the proof of the standard

Chernoff-Stein lemma given in [41]. Consider the sequence of optimal detectors

δN , i.e., the Neyman-Pearson detector that choose H1 if ℓN > τN and H0 otherwise,

where τN is a sequence of thresholds chosen to satisfy the false alarm constraint

Pfalse_alarm ≤ ǫ for some fixed ǫ ∈ (0, 1). The false alarm and miss detection probabil-

ities are then given by

PN
false_alarm = P0(ℓN > τN)

and

PN
miss = P1(ℓN < τN),
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respectively. Note that lim infN→∞ τN ≥ −κ must hold; if that were not the case,

then since ℓN → −κ in probability underH0, we would have lim supN→∞ PN
false_alarm =

1, which would violate the false alarm constraint.

Noting that P1(Y
N) = exp(NℓN)P0(Y

N ), we can rewrite the miss detection

probability as

PN
miss = E1 1(ℓN < τN)

= E0 1(ℓN < τN) exp(NℓN), (B.1)

where 1(·) is the indicator function, since multiplying by exp(NℓN) converts the

density P0(·) to the density P1(·). Choosing an arbitrary δ > 0, we have

P0(ℓN ∈ [−κ− δ, τN ])

= 1− P0(ℓN < −κ− δ)− P0(ℓN > τN) (B.2)

≥ 1− P0(ℓN < −κ− δ)− ǫ, (B.3)

since the final term in (B.2) is just the false alarm probability, which is constrained.

It then holds that

1

N
logPN

miss =
1

N
logE0

[
1(ℓN < τN) exp(NℓN)

]

≥ 1

N
logE0

[
1(ℓN ∈ [−κ− δ, τN ]) exp(NℓN)

]

≥ −κ− δ +
1

N
logP0

(
ℓ ∈ [−κ− δ, τN ]

)

≥ −κ− δ +
1

N
log


1− ǫ− P0(ℓN < −κ− δ)︸ ︷︷ ︸

−→0


 , (B.4)
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from which we can conclude that lim infN→∞
1
N
logPN

miss ≥ −κ, since δ can be made

arbitrarily small and the last term on the right-hand side of (B.4) vanishes.

Now, instead, suppose we simply fix τN = −κ + δ for every N . Then clearly

PN
false_alarm → 0 because ℓN → −κ in probability. Thus, eventually, PN

false_alarm <

ǫ. Meanwhile, the maximum value of the quantity inside the integral in (B.1) is

exp(NτN), so we have that 1
N
logPN

miss ≤ τN = −κ + δ. So lim supN→∞
1
N
logPN

miss ≤

−κ, since again δ is arbitrary.

We have shown the following: (1) any sequence of Neyman-Pearson detectors

satisfying the false alarm constraint PN
false_alarm < ǫ satisfies

lim inf
N→∞

1

N
logPN

miss ≥ −κ,

and (2) there exists a sequence of Neyman-Pearson detectors satisfying the false

alarm constraint Pfalse_alarm < ǫ for which lim supN→∞
1
N
logPN

miss ≤ −κ. Thus for the

optimal sequence of detectors, we have η
def
= limN→∞− 1

N
logPN

miss = κ. This holds

for any ǫ ∈ (0, 1), so the proposition is proved.

B.2 Proof of Proposition 3.3 [Properties of log λt]

(1) P (t) is an irreducible nonnegative matrix for any t, just as P is. Thus the Perron-

Frobenius theorem tells us that λmax(P
(t)) is a real, positive eigenvalue, so log λt is

well-defined and finite. Since wt is an analytic function of t for any positive w and

the zero function is an analytic function, we have that every entry of P (t) is analytic
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in t. Standard perturbation-theoretic results [73] tell us that on any neighborhood

in which a matrix function is analytic and an eigenvalue remains isolated from

the rest of the spectrum (i.e. has no multiplicity), it can be analytically continued

to the rest of that neighborhood. Since λt is the Perron-Frobenius eigenvalue, it

is simple and thus isolated. Therefore, it is an analytic function of t everywhere.

Since it is positive, log λt is analytic as well. The convexity of log λt follows from

a property of Hadamard powers proven by Horn and Johnson in [66, p. 361]: for

any nonnegative matrices A and B and 0 ≤ α ≤ 1, they showed that

λmax(A
(α) ◦B(1−α)) ≤ λmax(A)αλmax(B)1−α. (B.5)

Taking A = P (s) and B = P (t) for arbitrary t > s > 0, and using the fact that log is

an increasing function, we have

log λmax(P
(αs+(1−α)t)) ≤ α log λmax(P

(s)) + (1− α) log λmax(P
(t)), (B.6)

which by definition gives us the convexity of log λt.

(2) Strict convexity means that the inequality in (B.6) must be strict. Since log

is strictly increasing, equality holds if and only if it holds in (B.5), which for irre-

ducible matrices holds if and only if there exists a positive scalar γ and a positive

diagonal matrix D such that γA = D−1BD [66, p. 361]. For our problem, then,

equality holds if and only if there are some t > s > 0 such that for all i, j

γpsij =
dj
di
ptij,
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for some positive constants γ and di, i = 1, . . . ,M . Thus either pij = 0 or

pij = γ
1

t−sd
1

t−s

i d
1

s−t

j .

Summing over j on both sides of this equation tells us that di must be a constant.

This means that all of the nonzero entries of P must be constant. Since the row

sums of P must be one, this means that every row of P having exactly K nonzero

entries equal to 1
K

for some K ≤ M is the only situation in which strict convexity

does not hold.

So what exactly is log λt in that case? Consider the test vector 1: we have P (t)
1 =

K1−t
1. So the test vector is an eigenvector. The Perron-Frobenius theorem states

that any positive eigenvector must correspond to the largest eigenvalue. Since 1

has all positive entries, we have that λt = K1−t, so log λt = (1− t) logK.

(3) As before, we use the perturbation results. In addition to an analytic eigenvalue

function, in the case of a simple eigenvalue, there are analytic functions for the left-

and right-eigenvectors. These can be normalized as desired. So we have analytic

functions at and bt such that

aT
t P

(t) = λta
T
t

P (t)bt = λtbt

and normalized1 such that aT
t bt = 1 and aT

t 1 = 1. We can write the largest eigen-

value function as λt = aT
t P

(t)bt. Using the chain rule, we can compute the deriva-

1They are Perron-Frobenius eigenvectors, so they are nonnegative can never be orthogonal.
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tive

λ′
t = (a′

t)
TP (t)bt + aT

t P
(t)b′t + aT

t ((logP ) ◦ P (t))bt

= λt[(a
′
t)

Tbt + aT
t b

′
t] + aT

t ((logP ) ◦ P (t))bt

= aT
t [(logP ) ◦ P (t)]bt, (B.7)

where in reaching (B.7) we have used the fact that aT
t bt = 1 and thus (a′

t)
Tbt +

aT
t b

′
t = 0. Using the chain rule, we have that d

dt
log λt =

λ′

t

λt
, and the result follows.

Note that the normalization of the eigenvectors is irrelevant in the final expression

because the normalization factors will cancel out in the numerator and denomina-

tor.

(4) Since log λt is convex, its derivative is nondecreasing. Thus

inf
t

d

dt
log λt = lim

t→−∞

d

dt
log λt

= lim
t→−∞

log λt

t
,

where the finals step results from L’Hôpital’s rule. By the same argument, we have

sup
t

d

dt
log λt = lim

t→+∞

log λt

t

Horn and Johnson show that these are equal to ρmin and ρmax, respectively [66, p.

367].
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B.3 Proof of Proposition 3.5 [Properties of s(ρ)]

As we stated in Proposition 3.3, if P is the transition matrix for a uniform ran-

dom walk on a regular graph, then log λt = (1 − t) logK. If ρ = − logK, then

log λt − tρ = logK, a constant, giving us s(− logK) = logK. For any other ρ, the

function log λt−tρ is linear but not constant, so it is unbounded and has an infimum

of −∞. Now consider the general case:

(1) Consider the function −s(ρ) = supt {tρ− log λt}. This is the convex conjugate

of log λt. A convex conjugate function is guaranteed to be a convex function with

range R
⋃{+∞}, so s(ρ) is a concave function with range R

⋃{−∞}. Since log λt

is strictly convex, the infimum inft log λt − tρ that defines s(ρ) is achieved at no

more than one point t∗ [110]. Since it is also differentiable, then if and only if the

infimum is achieved at t∗, we have

d

dt
log λt

∣∣∣
t∗
= ρ.

If there is no such t∗, then s(ρ) = −∞. This will be the case if ρ < ρmin or ρ > ρmax.

Suppose, however, that ρ ∈ (ρmin, ρmax). By the intermediate value theorem, there

must be some t∗ for which d
dt
log λt

∣∣∣
t∗
= ρ. Then s(ρ) = log λt∗ − t∗ρ. It remains to

prove nonnegativity.
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We use the following alternate expressions [66, p. 367] for ρmin and ρmax:

ρmin = min
self-avoiding loops

i1,...,iL
1≤L≤M

1

L

L∑

j=1

log pij ,ij+1
(B.8)

ρmax = max
self-avoiding loops

i1,...,iL
1≤L≤M

1

L

L∑

j=1

log pij ,ij+1
, (B.9)

where the suprema are over self-avoiding loops that obey the topology induced by

the sparsity of P , so each i1, . . . , iL is unique, pij ,ij+1
6= 0, and we use the convention

that iL+1 = i1.) Let i∗1, . . . , i
∗
L be the self-avoiding loop achieving the maximum in

(B.9). Define the matrix B as follows: every transition in the maximal loop is given

the same value as in P (t) (i.e., [B]i∗1,i∗2 = pti∗1,i∗2 , . . . , [B]i∗
L
,i∗1

= pti∗
L
,i∗1

), and every other

entry is set to 0. On an elementwise basis, then, P (t) ≥ B. If L < M , then B is

not irreducible, but the Perron-Frobenius theorem still guarantees us that it has a

real eigenvalue λmax(B) equal to its spectral radius [67]. It is not hard to verify

that taking powers of B eventually results in a constant multiple of a diagonal 0−1

matrix:

BL = pti∗1,i∗2 · · · p
t
i∗
L
,i∗+1D

= exp(tLρmax)D. (B.10)

Here, the diagonal entries of D associated with the indices i∗1, . . . , i
∗
L are 1, and the

others are all 0. Now if we let v be an eigenvector of B associated with the eigen-

value λmax(B) whose only nonzero entries are those associated with the indices
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i∗1, . . . , i
∗
L, we have

BLv = λmax(B)Lv. (B.11)

Combining this with (B.10), we obtain

λmax(B) = exp(tρmax)

Since the Perron-Frobenius eigenvalue λmax(·) is a monotonic function of the matrix

entries [66], we have log λt ≥ log λmax(B
(t)) = tρmax for every t. Now since log λt −

tρmax ≥ 0 for all t, we must have s(ρmax) ≥ 0. A similar argument shows that

s(ρmin) ≥ 0 as well. It then follows from the concavity of s(ρ) that s(ρ) ≥ 0 on

[ρmin, ρmax].

(2) Any proper convex function is continuous on the interior of its effective domain,

so −s(ρ) is continuous on (ρmin, ρmax), and thus s(ρ) is as well. Since −s(ρ) is the

Legendre-Fenchel transform of log λt, which is itself a convex function, it must be

lower semicontinuous. So s(ρ) must be upper semicontinuous, and therefore it is

continuous from above at ρmin and ρmax.

(3) Since log λt is strictly convex (remember, we are not considering regular graphs

here), there is at most one point that achieves the infimum inft {λt − tρ} that defines

s(ρ). We showed earlier that as long as ρ ∈ (ρmin, ρmax), there is exactly one such

point. Another basic result in convex analysis [110, Theorem 11.8] tells us that s(·)

is then differentiable at ρ, and in particular −s′(ρ) = tρ, where tρ is the argument of
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the minimum. Since log λt is differentiable, we also have that

d

dt
log λt

∣∣∣
t=tρ

= ρ.

Thus −s′(ρ) is the inverse function of d
dt
log λt as claimed. Since log λt is strictly

convex, its derivative is one-to-one, and thus so is s′(ρ).

(4) We know that s(ρ) = log λtρ−tρρ, where tρ is the value of t at which d
dt
log λt = ρ,

if such a value exists, and s′(ρ) = −tρ; otherwise s(ρ) = −∞. Using the expression

for the derivative from the proof of Proposition 3.3, and the fact that the left and

right eigenvectors of P are a1 = π and b1 = 1, respectively, we have that

d

dt
λt

∣∣∣
t=1

=
πT [(logP ) ◦ P ]1

πTP1

=
∑

i

πi

∑

j

pij log pij

= −H.

Meanwhile, λ1 = 1, so d
dt
log λt

∣∣∣
t=1

= −H. So s(−H) = log 1 − 1 · (−H) = H,

and s′(−H) = −1. The same argument gives us s(ρ0) and s′(ρ0), only without the

nicely-interpretable values.

B.4 Proof of Theorem 3.2

To prove the statement of the theorem, we need to show that the upper bound

lim sup
N→∞

1

N
logQN(B) ≤ − inf

(ρ,ξ)∈B
I(ρ, ξ) (B.12)
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holds almost surely for every closed set B ⊂ R
2, and the lower bound

lim inf
N→∞

1

N
logQN(U) ≥ − inf

(ρ,ξ)∈U
I(ρ, ξ) (B.13)

holds almost surely for every open set U ⊂ R
2. We will use an argument parallel to

Dorlas and Wedagedera’s for the random energy model with an external field [47].

Let A =
{
(ρ, ξ) : I1(ρ) +

ξ2

2
≤ log λ0

}
be the effective domain of I(·, ·), i.e. the set

on which it is finite. It can also be written as A =
{
(ρ, ξ) : |ξ| ≤

√
2s(ρ)

}
. It is the

union of hypograph of the function ξ =
√
2s(ρ) and its reflection over the ρ axis.

We know from Proposition 3.5 that s(ρ) is nonnegative and concave on [ρmin, ρmax].

Since
√ · is a concave and increasing function, we have that A is a convex set. A

notional illustration of A was shown in Figure 3.3.

We will be able to build up the result for general sets by studying the behavior

of a few classes of primitive sets. Consider a box C = [ρ, ρ+ δ]× [ξ, ξ+ δ] with sides

of length δ; suppose first that it is entirely outside of A. By definition, QN(C) =

1
#PN #{s : 1

N
logP (s) ∈ [ρ, ρ + δ], 1

N
xs ∈ [ξ, ξ + δ]}. So #PNQN(C) is a binomial

random variable with parameters #PNQ1
N([ρ, ρ + δ]) and

√
N
2π

∫ ξ+δ

ξ
exp(−Nx2

2
)dx.

This means that

EQN(C) = Q1
N([ρ, ρ+ δ])

√
N
2π

∫ ξ+δ

ξ

exp(−Nx2

2
)dx (B.14)
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and

var(QN(C)) =
1

#PN
Q1

N([ρ, ρ+ δ])

(√
N
2π

∫ ξ+δ

ξ

exp(−Nx2

2
)dx

)

·
(
1−

√
N
2π

∫ ξ+δ

ξ

exp(−Nx2

2
)dx

)
.

Now for any ǫ, we can choose N ′ large enough so that for every N > N ′,

P (QN(C) > 0)

= P (#PNQN(C) ≥ 1) (B.15)

≤ E(PNQN(C)) (B.16)

= #PNQ1
N([ρ, ρ+ δ])

√
N
2π

∫ ξ+δ

ξ

exp(−Nx2

2
)dx (B.17)

≤ exp(N [log λ0 + ǫ]) exp
(
N [ǫ− inf

r∈[ρ,ρ+δ]
I1(r)]

)
δ
√

N
2π

exp

(
N

[
− inf
x∈[ξ,ξ+δ]

x2

2

])

= exp
(
N
[
− inf
r∈[ρ,ρ+δ]
x∈[ξ,ξ+δ]

(I1(r) +
x2

2
) + log λ0 + 2ǫ

]
+ log δ + 1

2
log N

2π

)
(B.18)

−→ 0.

Here, (B.15) is because there is a discrete number of paths, (B.16) is the Markov

inequality, and (B.17) is due to (B.14). (B.18) converges to 0 because the coefficient

on N in the exponent is guaranteed to be negative for small enough ǫ because C is

entirely outside of A. We have merely proven convergence in probability, but since

the probability goes to zero exponentially fast, the Borel-Cantelli lemma tells us that

with probability 1, there is an N ′ such that for every N > N ′, we have QN(C) = 0,

so limN→∞
1
N
logQN(C) = −∞ almost surely.

194



Appendix B: Random Walk Detection Proofs

If instead we consider the half-planes C = {(ρ, ξ) : ξ >
√
2 log λ0 + 1} or C =

{(ρ, ξ) : ξ < −√2 log λ0−1}, we can use the same argument (replacing the Gaussian

integrals in (B.17) with standard Gaussian tail bounds, and using the fact that C is

outside of A) to show that limN→∞
1
N
logQN(C) = −∞ almost surely for these sets

as well. The half planes C = {(ρ, ξ) : ρ > ρmax + 1} and C = {(ρ, ξ) : ρ < ρmin − 1}

also contain no states for large enough N due to the definitions of ρmin and ρmax, so

again limN→∞
1
N
logQN(C) = −∞ almost surely.

Now, suppose we have a box C = [ρ, ρ+ δ]× [ξ, ξ + δ], but this time it intersects

the set A. By Chebyshev’s inequality we know that for any ǫ, there is an N ′ such

that for N > N ′,

P
(
|QN(C)− EQN(C)| ≥ kEQN(C)

)

≤ 1

k2

var(QN(C))

(EQN(C))2

≤ 1

k2

(
#PN ·Q1

N([ρ, ρ+ δ]) ·
√

N
2π

∫ ξ+δ

ξ

exp(−Nx2

2
)dx

)−1

≤ 1

k2
exp

(
−N [log λ0 − ǫ− ǫ− inf

r∈[ρ,ρ+δ]
I1(r)− inf

x∈[ξ,ξ+δ]

x2

2
]− log δ − 1

2
log
(
N
2π

) )
.

By choosing ǫ small enough, we can guarantee that this probability decays expo-

nentially in N . Thus, by the Borel-Cantelli lemma limN→∞
QN (C)
EQN (C)

= 1 with prob-

ability 1. Because log(·) is continuous at 1, this gives us limN→∞
1
N
logQN(C) =

limN→∞
1
N
logEQN(C). Using (B.14), we can compute

lim
N→∞

1

N
logQN(C) = − inf

(ρ,ξ)∈C

{
I0(r) +

x2

2

}
= − inf

(ρ,ξ)∈C
I(r, x),

almost surely.
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Using these primitives, we can prove the large deviation property directly. We

start with the upper bound. Suppose B is a closed set entirely outside of the effec-

tive domain of I(·, ·), i.e. B ∩ A = ∅. Let d(B,A) be the distance between the set

B and A. Then if we choose some δ < d(B,A)/
√
2, the set B can be covered by

a finite number of δ × δ boxes that are entirely outside of A plus possibly one or

more of the half-planes described above: B ⊂ ⋃L
ℓ=1Bℓ, where each Bℓ is one of the

primitives described above and Bℓ ∩ A = ∅. Then we have

lim sup
N→∞

1

N
logQN(B) ≤ lim sup

N→∞

1

N
log

L∑

ℓ=1

QN(Bℓ)

≤ lim
N→∞

1

N
logL+ lim sup

N→∞

1

N
log(max

ℓ
QN(Bℓ))

= −∞, (B.19)

almost surely, since the maximum is over just a finite number of sets.

Next suppose B is a closed set that is not entirely outside the effective domain:

B ∩ A 6= ∅. Let b = inf(ρ,ξ)∈B I(ρ, ξ). Because I is continuous inside A, for any ǫ,

we can choose a δ and cover B with the primitive halfplanes and a finite number

of boxes of width δ such that, for each square (and each halfplane, trivially) Bℓ, we
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have inf(ρ,ξ)∈Bℓ
I(ρ, ξ) ≥ b− ǫ. We have

lim sup
N→∞

1

N
logQN(B) ≤ lim sup

N→∞

1

N
log

L∑

ℓ=1

QN(Bℓ)

≤ lim
N→∞

1

N
logL+ lim sup

N→∞

1

N
log(max

ℓ
QN(Bℓ))

= max
ℓ

{
lim sup
N→∞

1

N
log(QN(Bℓ))

}

≤ −(b− ǫ).

Since ǫ can be made arbitrarily small, we have

lim sup
N→∞

1

N
logQN(B) ≤ − inf

(ρ,ξ)∈B
I(ρ, ξ). (B.20)

Combining this with (B.19) gives us the large deviation upper bound for any closed

set B.

Now we must prove the large deviations lower bound (B.13). Let U be an open

set. First, suppose U ∩ A = ∅, meaning that the set is entirely outside the region.

Then the lower bound is trivial: it amounts to proving that

lim inf
N→∞

1

N
logQN(U) ≥ −∞,

which is obviously true. So let us assume that U ∩ A 6= ∅. For any ǫ > 0, there

is a square C of width δ contained entirely within U such that inf(r,x)∈C I(r, x) <

inf(r,x)∈U I(r, x) + ǫ, by the following argument. First, note that the infimum must

be achieved on the interior of A2. If the infimum is achieved at a point (ρ∗, ξ∗)

2To see this, note that the boundary points ofA satisfy ξ2

2 −s(ρ) = 0, in which case I(ρ, ξ) = log λ0

is the maximum possible value of I, or either ρ = ρmin, |ξ| ≤ s(ρmin) or ρ = ρmax, |ξ| ≤ s(ρmax), in

which case the concavity of s(ρ) tells us that we can decrease I by moving into the interior of A.
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on the interior of U , then we can easily just draw a box C around it that is small

enough to fit in U , and it must have the same infimum. If on the other hand

the infimum is achieved on the boundary of U , the continuity of I(ρ, ξ) means

that we can choose a small open neighborhood around (ρ∗, ξ∗) in which I(ρ, ξ) <

I(ρ∗, ξ∗) + ǫ. This neighborhood must intersect with U since it is centered on a

boundary point, and the intersection must be an open set since both sets are open.

Then we can choose a small box C that fits inside the intersection, and again we

must have that inf(r,x)∈C I(r, x) < inf(r,x)∈U I(r, x) + ǫ.

Using our result for boxes, we have

lim inf
N→∞

1

N
logQN(U) ≥ lim inf

N→∞

1

N
logQN(C)

= − inf
(r,x)∈C

I(r, x)

> − inf
(r,x)∈U

I(r, x)− ǫ,

almost surely. Since this holds for any ǫ, the lower bound is proved.

B.5 Uniform integrability of the free energy density

In this appendix, we show that the sequence of random variables

XN
def
=

1

N
log
( ∑

s∈PN

P (s) exp(βxs)
)
, N = 1, 2, . . . (B.21)

is uniformly integrable. Our arguments will closely follow those in Olivieri and

Picco [98], who showed that the free energy density of the standard random energy
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model [42] is uniformly integrable. We start by recalling the definition of uniform

integrability:

Definition B.1. A sequence of random variables {XN}N≥1 is uniformly integrable if

lim
α→∞

sup
N>N0

E

(
1|XN |≥α|XN |

)
= 0, (B.22)

for some N0 > 0.

To proceed, we first note that, by the definition of ρmin in (3.20), there exists

some N0 such that P (s) > exp(2Nρmin) for all N ≥ N0. (Note that ρmin is neg-

ative, so 2ρmin is actually less than ρmin.) Using this inequality and the fact that

∑
s∈PN P (s) = 1, we can bound the random variable XN in (B.21) on both sides as

2ρmin +
β

N
max
s∈PN

xs ≤ XN ≤
β

N
max
s∈PN

xs. (B.23)

Now take any α ≥ 1. We can split the expectation in (B.22) into two parts and

apply (B.23):

E

(
1|XN |≥α|XN |

)
= E

(
1XN≥αXN

)
+ E

(
1XN≤−α(−XN )

)

≤ E

(
1 β

N
maxs xs≥α[

β

N
max

s
xs]
)

+ E

(
12ρmin+

β
N

maxs xs≤−α[−2ρmin −
β

N
max

s
xs]
)

≤
∞∑

K=1

α(K + 1)P (max
s

xs ≥ αKN/β)

+
∞∑

K=1

α(K + 1)P (max
s

xs ≤ −αKN/β − 2ρminN/β),

(B.24)
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where to reach (B.24) we have simply decomposed the integrals corresponding to

the expectations into a sum of integrals from Kα to (K + 1)α for K = 1, 2, . . ., and

bounded each one.

Let us consider the first probability expression in (B.24). Defining Φ(·) as the

standard Gaussian cumulative distribution function, and exploiting the fact that the

ensemble {xs} is i.i.d., we have

P (max
s

xs ≥ αKN/β) = 1− P
(
xs ≤ αKN/β, for all s ∈ PN

)

= 1−
(
1− Φ(−αK

√
N/β)

)#PN

≤ #PN exp
(−α2K2N

2β2

)
, (B.25)

where in reaching (B.25) we have used the inequality (1 − x)K ≥ 1 − Kx for any

positive integer K and any x < 1, and applied the standard Gaussian tail bound

Φ(−t) ≤ exp(−t2/2) for t > 0 (see, e.g., [122, p. 445]). Recall that #PN =

exp(N log λ0 + o(N)). Thus, for all sufficiently large N and sufficiently large α, we

can bound the first term on the right-hand side of (B.24) as

∞∑

K=1

α(K + 1)P (max
s

xs ≥ αKN/β) ≤
∞∑

K=1

α(K + 1) exp
(
2N log λ0 −

α2K2N

2β2

)

≤ αλ2
0

∞∑

K=1

(K + 1) exp
(
− α2K2

2β2

)
,

which converges to zero as α → ∞. Similar bounds allow us to reach the same

conclusion for the second term on the right-hand side of (B.24). It then follows

that the uniform integrability condition (B.22) holds for the sequence of random

variables in (B.21) corresponding to the free energy density.
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