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Introduction and definitions. A conjecture of B. L. van der Waerden states that

the minimal value of the permanent of the n x n doubly stochastic matrices is n\jnn

and is uniquely achieved at the matrix /„ in which every element is l/n. In view of

this problem and the fact that the permanent of a matrix is the sum of the diagonal

products, this paper investigates the question of just how well the diagonal products

of a matrix characterize that matrix. The results are stated for nonnegative matrices,

but many of the theorems hold in a more general setting.

The main result is the following. If A is an n x n nonnegative fully indecompos-

able matrix whose positive diagonal products are equal, there exists a unique

matrix B of rank one which is positive and is such that ow=aw when aw>0. As a

consequence of this it is shown that no two doubly stochastic matrices have

corresponding diagonal products equal.

Two of the main tools used in obtaining these results are well known. Proofs

may be found in [3, pp. 97-98].

Frobenius-König Theorem. Every diagonal of annxn matrix A contains a zero

element if and only if A has an sxt zero submatrix with s + t = n+l.

Birkhoff's Theorem. The set of all nxn doubly stochastic matrices forms a

convex polyhedron with the permutation matrices as vertices.

We shall make use of the following notions and definitions.

A (0, l)-matrix is a matrix in which every element is either 0 or 1.

A diagonal of a square matrix is a collection of entries from the matrix, one from

each row and one from each column. If a is a permutation of {1, 2,..., n} then the

diagonal associated with cr is aiaa), a2a^,..., ana(n). Every diagonal corresponds

to a permutation. A positive diagonal is a diagonal in which every aia(i)>0. A

diagonal product is the product of the elements on a diagonal.

A nonnegative square matrix A has doubly stochastic pattern if there is a doubly

stochastic matrix B such that ai; = 0 if and only if bit=0. A consequence of Birk-

hoff's theorem is that a square matrix A has doubly stochastic pattern if and only if

each positive entry lies on a positive diagonal.
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A square matrix A is fully indecomposable if there do not exist permutation

matrices P and Q such that PAQ has the form

where B and D are square matrices. Otherwise A is partly decomposable.

A square matrix A is chainable if for each pair of nonzero entries ailh and aikik

there is a sequence of nonzero entries ailh,..., aikik where, for r=l,..., k— 1,

either ir=ir+1 or jr=jr+i- This may be described by saying that one may move

from ailh to aikik by a sequence of rook moves on the nonzero entries. The set of

elements atljl,.. .,aikjk will be called a chain with ahil and aikik its end points.

Let A = {ciij) be an mx« matrix, and let u and v be positive integers such that

1<. w<. m, 1<.1'<_ n. Let a denote a strictly increasing sequence of u integers (iu ..., iu)

chosen from 1,.. .,m, and let ß denote a strictly increasing sequence of v integers

C/i, • • - ,jv) chosen from 1,..., n. Then ^[<x|j8] is that submatrix of A with rows

indexed by a and columns indexed by ß. A[a\ß) is that submatrix of A with rows

indexed by a and columns indexed by the complement of ß in {1, 2,..., «}. ^(a|/3]

and A(a\ß) are denned analogously.

Eij will denote the (0, l)-matrix having a one only in the position.

Results and consequences.

Lemma 1. A nonnegative matrix A is fully indecomposable if and only if it is

chainable and has doubly stochastic pattern.

Proof. Suppose that A has doubly stochastic pattern. Then there is a doubly

stochastic matrix B with the same zero pattern as A. If A is partly decomposable

so is B. In such a case there would exist permutation matrices P and Q such that

where X and Y are square matrices. Since B is doubly stochastic so is PBQ. Since

X and Y are square, it readily follows that the sum of the elements in W is zero.

Hence W=0. But then certainly B, and therefore A, is not chainable.

Now suppose that A is fully indecomposable. Suppose further that some positive

ai} does not lie on a positive diagonal. By the Frobenius-König theorem A{i\j)

contains an sx(n — s) zero submatrix. The presence of this zero submatrix in A

would make A partly decomposable. Hence A has doubly stochastic pattern.

If A is not chainable there are positive elements c7io,0 and ailh which are not end

points of a chain. Let H1 = {i0}, ̂  = {7 | aio; >0} and define
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Ks = {j $ Uk = 1 Kk | atj > 0 for some / e Hs}, s = 2, 3,.... Then set H=\JS Hs and

K— Us Ks- There exist permutation matrices P and Q such that

A[H\K] A[H\K)\

A(H\K] A{H\K)]'

A[H\K] contains flioy0 and A(H\K) containsahh and thus each is nonvoid. But then

A[H\K) = 0 and A(H\K]=0, and it follows that A is partly decomposable.

Lemma 2. Suppose A is an nxn nonnegative matrix of the form

I A, 0 0 - 0 0 EA

IE2A20 • • • 0 0 0 1

I 0    E3   A3   ■ ■ ■   0       0       0 I

| 0 0 0 ••• As-2 0 0 I

jo    0    0 A,-t  0 I

\0    0    0     •••   0       Es AJ

where s> I, and for k=\, 2,..., s, Akis fully indecomposable and Ek has exactly one

positive entry. Then (1) A has doubly stochastic pattern, (2) A is chainable, (3) A is

fully indecomposable, and (4) if A has the property that for each positive entry aXj,

A—OijEij is partly decomposable, then each Ak has the same property.

Proof. (1) Clearly any element in any Ak, k= 1,..., s, lies on a positive diagonal.

Consider any Ek and the positive element in that Ek. The position of an entry (not

necessarily positive) of Ak is determined by the row of the positive entry in Ek and

the column of the positive entry in Ek+llmods). If the row and column of Ak con-

taining that element in Ak are removed from Ak, the resulting submatrix of Ak will

have a positive diagonal, for otherwise Ak would be partly decomposable by the

Frobenius-König theorem. Let 8k be a positive diagonal in the submatrix of Ak.

The elements on all the Sk and the positive elements of every Ek constitute a

positive diagonal in A. This diagonal, of course, accounts for the positive elements

in every Ek.

(2) This is obvious.

(3) This follows from (1) and (2) via Lemma 1.

(4) Suppose there is a positive element in some Ak such that its replacement by 0

transforms Ak into a fully indecomposable matrix. Then the matrix obtained by

replacing that element in A by 0 satisfies the hypotheses of Lemma 2 and conse-

quently it is fully indecomposable. This is a contradiction.

PAQ =
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Lemma 3. Suppose that A is an rix n nonnegative matrix whose positive diagonal

products are equal, and suppose that A has the form

A =

A   0 0

E2   A2 0

0    E3 A3

0

0

0

0

0

0 0

0 0 0

\o   0 0

Es-i   As-i 0

0       Es Asl

where each Ak is positive and has rank one, and each Ek has exactly one positive

element. Then there exists annxn positive matrix B of rank one such that bxj = au

when fly > 0. (Assume s>l.)

Proof. Denote the positive element in Ek by ek. Denote by ak the element in Ak

which lies on the row of ek and on the column of ek+1(mods). Let dk denote the

product of the elements on any diagonal of Ak which contains ak except for ak. If

any    is lxl use dk = l.

Since the positive diagonal products of A are equal, FlSUi dk-Y[%=i ak =

n*-i dk-YYk=i ek. Thus in particular, e^YlUi ak/U%=2 ek.

In the s x s submatrix

A'

ax   0 0

e2 a2 0

0    £?3 a3

0 0 0

0    0 0

0 0

0 0

0 0

0

0

e,-i

0

as-i

e.

0

aj

replace the zero in the ijth position by n&M ß JITJUi+i ek when i<j and (i,j)

^(1, s) and by YVk=j+1 t?jn!f=/+i ak when i>j+l. The resulting sxs submatrix

will then have rank one, for the (/+ l)th row equals ei+1/at times the i'th row,

1 = 1, . . .,5-1.

By permuting the rows and columns of A it may be assumed that ak is in the

(1, 1) position in Ak. After the zero elements of A corresponding to the zero

elements of A' have been replaced as indicated, A has the form

A" =

Ai X\2

_ I X2i A2

i Xsi Xs<4

where only the (1, 1) position of each Xuv is nonzero. Denote that element by xu
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Since each Ak has rank one the 7,7th element in Ak has the form rikcjk. The matrix

B may now be obtained by replacing the zero in the 7',7'th position in Xuv by

fiUCjVxuv/riuCiv.

Theorem 1. Suppose A is an nxn nonnegative fully indecomposable matrix

whose positive diagonal products are equal. Then there exists a unique positive nxn

matrix B of rank one such that bij = aij when ai; >0. Thus ay is of the form r^j when

atj > 0. (Assume n > 1.)

Proof. We first show that B is unique. For any i,j, A{i\j) contains a positive

diagonal, for otherwise A would be partly decomposable by the Frobenius-König

theorem. Since the diagonal products in any B are equal to the common value of

the positive diagonal products in A, any btj replacing a zero in A would be com-

pletely determined from a positive diagonal in A(i\j). Thus there can be at most

one B.

The proof of the existence is by induction on the number of positive elements in

A. According to [2], A must have at least In positive elements. If A has exactly 2n

positive elements, there must be exactly two positive elements in each row and each

column. By a permutation of rows, A may be assumed to have a positive main

diagonal au a2,..., an. If the positive element other than that on the main diagonal

is denoted by some ek, the rows and columns of A may be simultanequsly permuted

to put A in the form

la-,   0    0    ■ • •   0      0 ex\

I e2  a2  0    • • •   0      0 0

0    e,   a3   •••   0       0 0

0   0   0    ...   en_x  an_! 0

\0   0   0    ...   0       en aj

Otherwise A would be partly decomposable. For such an A, the B exists as was seen

in the proof of Lemma 3.

Suppose such a B exists when A has m positive elements where 2n, and con-

sider an A with m +1 positive elements. Two cases arise. Either (1) there is a posi-

tive aij so that A — ciijEij is fully indecomposable or (2) for every positive ai},

A—auEtj is partly decomposable.

If case (1) holds, Ä = A-aioioEiojo is fully indecomposable for some positive

aioio. By the induction hypothesis there is a B of rank one corresponding to A'.

Since A has doubly stochastic pattern aioio lies on a positive diagonal alaa), a2a(2),

..., aioio,..., a,,ff(B). If all the positive diagonal products in A are k, a,oio

=*/TLiHo fliff«). Since A is fully indecomposable there is a positive diagonal in A

which does not contain aioio. This diagonal is in A', and thus the positive diagonal

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 RICHARD SINKHORN AND PAUL KNOPP [February

= a*,

products in a' and therefore in b are equal to k. Hence

bhi0 = Ki n   = «i n °u
I i*io I t*io

Thus b also corresponds to a.

Suppose case (2) holds. Since a has doubly stochastic pattern, there is a doubly

stochastic matrix C with the same zero pattern as a. Let c be the minimal positive

element in C. By assumption C-cEu is partly decomposable if i,j is such that

ci; = c. Since C itself is fully indecomposable, the rows and columns of C may be

permuted to the form

(el £)•
where Cx and C2 are square and where exactly one element of Fx equals c, with the

remaining elements equal to zero. Since C is doubly stochastic, the row sums are

one and thus the sum of the elements in C\ is r—c, where r is the number of rows in

CY But the column sums of C are also one, and thus the sum of the elements in C21

is c. This means that C21 = F2 where exactly one element in F2 equals c and all other

elements are zero.

If Cj is partly decomposable, a further permutation of rows and columns of C

brings C into the form

0

C2

Fa

where the C'k are square and F[ and F3 have one element equal to c and other

elements zero. Since C is doubly stochastic C'2l = F2 also has one element equal to c

and other elements zero. Thus the form above becomes

The same form results if C2 is partly decomposable.

If we continue inductively and recall that a and C have the same zero pattern

we finally conclude that there are permutation matrices p and q such that

0Mi 0
E2   a2 0

(*) paq =
0

0 0

0 0

0 0

0

0

0 0 0

0    0 0

Es-i

0 Es

0

aJ

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] PROBLEMS INVOLVING DIAGONAL PRODUCTS 73

where each Ak is fully indecomposable and each Ek has one positive element and all

other elements equal to zero. The positive diagonal products in any particular Ak

are equal.

By part (4) of Lemma 2 and the reasoning above, each Ak can be brought into

the form (*). This process may be continued until matrices of the form (*) are

obtained which have positive (1 x 1) blocks on the main diagonal. Repeated use of

Lemma 3 will yield the desired positive rank one matrix B.

This completes the proof of Theorem 1.

Theorem 2. Suppose A is a nonnegative fully indecomposable nxn matrix such that

a^r^Cj when aif > 0. The nth term of the sequence of matrices obtained by alternately

dividing the elements in each row by the maximal element in the row and then the

elements in each column by the minimal positive element in the column is a (0, 1)-

matrix.

Proof. Denote the sequence of matrices by Ax, A2,....

Since A is fully indecomposable there are at least two positive elements in every

row and every column. Thus there are at least two rows where %>() and c, is

maximal. Whence Ax will have at least one column of zeros and ones, and every such

column will contain at least two ones. Suppose that for one such column the ones

occur at the iu i2,..., is positions, where in the ikth row of Au aiki, = Cy/max c, if

aikj > 0. Thus the ilt i2,..., i, rows of A2 are zeros and ones, with at least two of the

elements ones. A2 has at least one column of zeros and ones and is such that for

every one in that column, the row containing that one is a row of zeros and ones.

There are at least two such rows.

We may now proceed inductively, generating at least two additional columns of

zeros and ones in A3, A5, A7,... and at least two additional rows of zeros and ones

in Ai, A6, AB,... until the iteration is completed. If n is even, the iteration will be

completed by the time we reach An, since An will have n rows of zeros and ones. If n

is odd the iteration will still be completed at An since then An will have n columns of

zeros and ones.

The examples

show that all n steps of the iteration may be required.

Corollary 1. If A is a nonnegative fully indecomposable matrix whose positive

diagonal products are equal, there exist diagonal matrices Dx and D2 with positive

main diagonals such that DXAD2 is a (0, \)-matrix.
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Corollary 2. If A is a nonnegative matrix with doubly stochastic pattern

whose positive diagonal products are equal, there exist diagonal matrices and D2

with positive main diagonals such that DXAD2 is a (0, \)-matrix.

Proof. There is a doubly stochastic matrix with the same zero pattern as A. For

convenience we suppose that it is A. If A is partly decomposable, there exist

permutation matrices P and Q such that

where X and Y are square. Since A is doubly stochastic, IV=0. X and Y are thus

each doubly stochastic, and if either is partly decomposable, it may be decomposed

similarly. This process may be continued until A is decomposed into a direct sum

of fully indecomposable doubly stochastic matrices. Hence there exist permutation

matrices Py and Qx such that P1AQ1 = A1 © A2 ©• • • © As, where each Ak,

k=\,..., s, is fully indecomposable. By Corollary 1, there are diagonal matrices

Dlk and D2k so that DlkAkD2k is a (0, l)-matrix for k=l,..., s. Then let D,

shows that the assumption of doubly stochastic pattern may not be dropped.

Corollary 3. If A is a nonnegative matrix with doubly stochastic pattern

whose positive diagonal products are equal, then every square submatrix of A has its

positive diagonal products equal.

Corollary 4. Distinct nxn doubly stochastic matrices A and B do not have

proportional corresponding diagonal products, i.e. there is no k > 0 such that for each

permutation a, FI"-i aiaii) = k 11"= i bmi).

Proof. Let A and B be nxn doubly stochastic matrices with corresponding

diagonal products proportional. Note that this implies that A and B have the same

zero pattern. For suppose for some i,j, ^,=0 while /3y>0. Since B has doubly

stochastic pattern bi} lies on a positive diagonal with positive product. The corre-

sponding diagonal product in A must have a positive product. This is impossible

since % = (). Thus oi; = 0 => /)i;=0. Likewise, bu = 0 => aw = 0.

Let C=(ctf) be denned as follows. Put cw=0 if aij = bij = 0 and put cij = au\bij if

ai} >0 and &o >0. Then C has doubly stochastic pattern, and the positive diagonal

products of C are equal. By Corollary 2, there exist diagonal matrices D, and D2

with positive main diagonals such that DXCD2 is a (0, l)-matrix. This means that

DYAD2 = B. But by a result in [1] and [4] no two doubly stochastic matrices are

diagonally equivalent. Thus A = B.
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