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ABSTRACT

Introduction

Unsteady states are speci�c states of internal combustion 
engine operation. �ey appear as a result of the loss of 
thermodynamic equilibrium in engine cylinders, which 
is generally preserved during constant-load operation. 
�ese states disturb the combustion process by introducing 
instantaneous changes of, �rst of all, the rate of fresh charge 
delivered to the cylinder, but also of the amount of the 
delivered fuel. As a consequence, the fuel/air ratio is subject 
to temporary changes, which lead to changes of the excess 
air number and to the  increased emission of combustion 
products generated at local oxygen de�ciency. A further 
consequence of the appearance of larger amounts of carbon 
monoxide CO and non-combusted hydrocarbons HC is the 
decrease of the combustion temperature, which decides about 
the scale of the emission of nitrogen oxides NO

x
.

A factor which decides about the amount of toxic 
compounds emitted in unsteady states is, most of all, the 
intensity of excitations which provoke these states. However, 
there is an additional factor which is to be taken into account, 

namely, the technical condition of the engine. When the 
engine executes the technical process, parameters of its 
structure change, which a�ects its performance de�ned by 
the set of output parameters. Mutual relation between the 
parameters of the structure and the output parameters of the  
engine allows, in certain conditions, the output parameters 
to be considered as symptoms of technical condition of the 
engine. �ese symptoms can be obtained without engine 
disassembling, as the physicochemical processes taking place 
during the working process and the relevant  parameters can 
be, in general, observed and measured from outside. �e 
volumes of the emitted exhaust gas components belong to 
the group of these parameters.  

�is simple association remains within the area of authors’ 
interest and is oriented on analysing the applicability of 
exhaust gas emission indices and characteristics for evaluating    
parameters of engine’s structure. However, a comment is 
needed here that in classical approach any output parameter 
can only be considered a diagnostic parameter when it 
simultaneously reveals certain properties, which are: 
unambiguousness, su�cient width of the �eld of changes, 

Contemporary engine tests are performed based on the theory of experiment.  �e available versions of programmes 
used for analysing experimental data make frequent use of the multiple regression model, which enables examining 
e�ects and interactions between input model parameters and a single output variable. �e use of multi-equation 
models provides more freedom in analysing the measured results, as those models enable simultaneous analysis of 
e�ects and interactions between many output variables. �ey can also be used as a tool in preparing experimental 
material for other advanced diagnostic tools, such as the models making use of neural networks which, when properly 
prepared, enable also analysing measurement results recorded during dynamic processes. 
�e article presents advantages of the use of the abovementioned analytical tools and a sample application of the 
neural model developed based on the results of examination carried out on the engine research rig.
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the rotational speed of 850 rpm, to avoid excessive engine 
load it was decided to resign from the loads of 50 and 70 
Nm. �e same decision was made for the rotational speed of 
950 rpm and the load of 70 Nm. �e fuel injection advance 
angle was changed by ±5ºOWK, thus obtaining three values, 
i.e. the nominal angle – N, the advanced angle – W, and the 
delayed angle – P. �is way 36 repeatable unsteady states 
were obtained. Graphical interpretation of the examination 
programme is shown in Fig. 1.

Fig.1. Scheme of implementation of the examination programme  

A similar procedure was applied to the set of output 
quantities Y in which the number of elements was limited 
to basic toxic compounds in the exhaust gas manifold. �ese 
elements included:  y

1 
– concentration of carbon monoxide in 

the exhaust gas manifold C
CO(k)

 [ppm]; y
2
– concentration of 

hydrocarbons in the exhaust gas manifold C
HC(k)

 [ppm]; y
3
– 

concentration of nitrogen oxides in the exhaust gas manifold 
C

NOx(k)
 [ppm], y

4
– exhaust gas temperature t

sp 
[ºC], y

5
– C

O2(k)
 

[%].
�e collected empirical material has made the basis for 

creating multi-equation models which enabled to analyse 
dynamic processes, adopting an assumption resulting from 
earlier experience that the process of changes of exhaust 
gas toxicity is time-dependent, i.e. has its dynamics [13, 
14, 15, 16, 17, 18, 19]. As a consequence, the multi-equation 
model was developed using a system of linear di�erence 
equations. Since the measurement of concentration of toxic 
compounds is discrete by nature, a time-discrete signal (time 
series) has the form of a function in which the domain is the 
set of integers. Consequently, the time-discrete signal is a 
sequence of numbers in the functional notation of the ][kx  
type. �is notation re�ected the tendency to minimise errors 
resulting from, among other sources, inevitable function 
approximation in cases when a continuous function was used.  

�e time-discrete signal ][kx  is frequently determined by 
sampling the time-continuous signal )(tx . If the sampling 
is uniform, than  , where T is the sampling 
period. �e time-history of the dynamic process depends 
not only on the value of excitation at a given time instant, 
but also on the past values of those excitations. �erefore the 
dynamic process (system) has memory in which the e�ects 
of past actions are collected  [6, 8].

�e relations between the input signals:

and availability. �erefore a question can be raised whether 
the emission indices and characteristics can be considered 
diagnostic parameters.   

Authors have made an attempt to give a positive proof of 
this statement by analysing  sample unsteady states of engine 
operation. Although short-lasting, these processes are so 
dynamical that the initial concentrations of toxic compounds 
(ZT) exceed by many times the levels characteristic for steady 
states. In this context we can expect that the engine with 
the structure parameters changed due to wear will be more 
sensitive to the action of unsteady states, thus providing 
opportunities for easier evaluation of technical condition 
of the engine. [7, 12].

EXAMINATION OF DYNAMIC 

PROCESSES OF ENGINE FUEL SUPPLY 

SYSTEM 

A correct course of combustion in the engine cylinder 
depends most of all on correct operation of the supply system, 
the main task of which is to ensure repeatability of fuel 
injection. Because of this repeatability, of high importance 
is not only the beginning and end of the injection, but also its 
entire course. In classical supply systems, the correctness of 
these two criteria (beginning and end of injection) is to a large 
extent ensured by the high-pressure fuel  pump with certain 
controlled parameters, such as the fuel dose and the injection 
advance angle. �is latter parameter can be considered a 
basic parameter which decides about the correctness of the 
combustion course in Diesel engines, as even its small shi� 
results in remarkable changes of the main parameters of 
engine operation, including exhaust gas emission indices.   

�e reported examination has been performed on the 
research rig for one-cylinder test engine [15]. �e experimental 
material was collected according to the developed complete 
trivalent plan [8]. High repeatability of the dynamic processes 
for particular measuring systems (measuring points) of 
the above plan of experiment was obtained by the use of 
a programmable controller, installed in the control system 
for the eddy current brake being a part of the research rig 
equipment. �e time of the dynamic process was the time 
elapse between the beginning of the reverse of the injection 
system elements and the renewed stabilisation of the output 
parameters. �e above time, lasting about 106 seconds, was 
selected based on past experience gained by the authors. 

In order to identify the e�ect of technical condition of 
the fuel supply system on engine power parameters during 
dynamic processes, sets of input quantities (set parameters) 
and sets of output quantities (observed parameters) were 
de�ned. For the purpose of the present work, the set of input 
quantities X was limited to three elements, which were:              
x

1 
-

  
engine rotational speed n [rpm]; x

2
 – engine torque M

o
 

[N×m],and x
3
 – fuel injection advance angle α

ww
 [ºOWK]. 

�e examination was performed in accordance with the 
adopted complete plan for three rotational speed values, which 
were: 850, 950 and 1100 [rpm]. For each rotational speed, the 
torque T

tq
 was increased, thus generating the unsteady state 

successively for the loads of 10, 20, 30, 50 and 70 [Nm]. For 
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in the experiments, or obtained from the analysis of the 
developed models, provides opportunities for creating 
a possible pattern of the phenomenon. �e concentrations of 
particular toxic compounds emitted during an unsteady state 
depend to a large extent on the intensity of the excitation which 
has provoked the appearance of this state. Nevertheless, these 
concentrations reveal certain regularities and repeatabilities, 
which can be  observed  in the time-histories of the states. 
Generally, two phases can be named in the time-history of 
a typical unsteady state. �e �rst phase is characteristic for 
extremely high dynamics of changes and is accompanied 
with rapid increase of concentrations of ZT’s, which, as a rule, 
exceed by many times the steady-state levels. �e second 
phase of the unsteady state has much less dramatic course, 
is monotonic in nature and asymptotically nears the steady-
state concentration levels. 

Fig. 2. Concentration of hydrocarbons HC for unsteady state at n = 1100 
rpm and load change from M

o
 = 30 Nm to M

o
 = 50 Nm: P – delayed 

injection advance angle,  W -  advanced injection advance angle,  CHC 
(N, W, P) – HC concentration for (N) nominal, (W) advanced, and (P) 

delayed injection advance angle 

A method which can be used for relatively precise and 
objective description of the nature of individual concentrations 
of toxic compounds is the analysis of correlations of particular 
unsteady states, aimed at determining the correlation 
between the currently analysed state and the state assumed 
as the reference pattern for the examined phenomenon. 
�e analysis of correlation functions enables to assess the 
level of correlation and its nature. Analysing components 
of the function also enables to conclude about the nature of 
the unsteady state, i.e. the contribution and intensity of its 
particular phases. Figure 2 shows the dispersion diagram 
being graphical illustration of the analysis of correlation. 

Strong correlation with simultaneous unambiguous nature 
of concentration changes of the analysed toxic compounds 
during unsteady states can be considered symptoms of the 
technical condition of the engine. Moreover, the known values 
of the output signal (concentrations of ZT’s, among others) 
and their estimates can make a basis for determining the 
values of residuals, which can indicate the type of damage.

  ,

and the output signals:

  ,    ,  

have been described using a set of linear di�erence equations, 
the matrix form of which is:  

where:

i.e.:
y[k]-  matrix of output signal values at time k, i = 1, 2, ..., m 
x[k]-  matrix of input signal values at time k, j = 1, 2, ..., n
A – matrix of coe�cients at output signal, ,
B - matrix of coe�cients at input signal in i-th equation 
at -th element, i = 1, 2, ..., m,  j = 1, 2, ..., n,

 -  matrix of non-observable random component in i-th 
equation.

 Statistical identi�cation was performed using the 
code GRETL [5]. Coe�cients in the equations for particular 
input variables were estimated using the least squares method. 
�e estimation was oriented on verifying the relevance of 
particular parameters and rejecting negligible values, all this 
�nally leading to remarkable simpli�cation of the models. 

�e presented analysis of the results of examination 
accentuates essential advantage of multi-equation models, 
which is their capability of performing multi-criteria 
analysis of the input variables in case when these variables 
are intercorrelated with each other. Analysing these relations 
in one model re�ects more precisely the reality (as there are 
obvious interactions between, for instance: concentrations of 
CO and HC on the one hand, and concentration of O

2
 or the 

excess air number λ on the other hand), thus enabling wider 
interpretation of the problem. In the examined case substantial 
interactions were observed between the concentrations of CO 
and HC, while negative correlation was recorded between the 
concentrations of these compounds and the concentration 
of NO

x
. �ese results seem to be logical taking into account 

processes of formation of these compounds in the cylinder.
Despite obvious advantages, the multi-equation models do 

not provide direct quantitative  information on the analysed 
changes, here: changes in concentrations of particular toxic 
compounds resulting from the change of the fuel injection 
advance angle. Only a collection of time-histories recorded 
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THE COURSE AND RESULTS OF 

SIMUALTION TESTS 

�e results obtained in the experimental examination were 
elaborated as the time-histories of the analysed quantities 
(Fig. 4) for each rotational speed.

Fig. 4. Time-histories of changes of diagnostic parameters for engine 
rotational speed n = 850 rpm  (for example the contents of O

2
, HC, NO

x
)

To facilitate practical use of the neural 
damage detection system shown in Fig. 3, the  
quantities assumed as independent variables 
(input parameters) were: the engine torque 
M

o
 and the engine rotational speed - n.
Then, referring to the results of 

experimental examination, three classes 
of technical condition of the engine were 
assumed:
1. Class of states S

1
 – normal state of operation 

– the values of the fuel injection  advance 
angle de�ned by the engine producer.

2. Class of states S
2
 – damage manifesting 

itself by the increased value of the fuel 
injection advance angle (with respect to the 

nominal          value) – injection too early.
3. Class of states S

3
 – damage manifesting itself by the 

decreased value of the fuel injection advance angle (with 
respect to the nominal value) – injection too late. 

Banks of neural observers 

Since, according to the adopted concept, �ve output 

CONCEPT OF NEURAL DIAGNOSTIC 

SYSTEM 

Bearing in mind di�culties in analytical modelling of 
complex systems, an interesting  alternative can be a neural 
diagnostic model which, based solely on experimental results, 
can be applied to modelling arbitrary nonlinearities. �e 
neural models reveal high resistance to  disturbances [9, 
10, 11].

Basic data on the structures and possible applications of 
the arti�cial neural networks can be found in numerous 
manuals and publications, for instance in  [3, 4, 10]. 

For the purpose of the simulation tests the results of which 
are presented further in the article, a general scheme of the 
neural system of damage detection was developed, adopting 
the following  assumptions:

• parameters of substantial importance which are the 
objects of diagnostic monitoring are: 

• exhaust gas temperature - T
ex

,
• contents of  O

2
, CO, HC, and NO

x
 in the exhaust gas 

• for each of these parameters, a neural model will be 
developed, and all models created in this way will 
compose a so-called bank of neural observers [3] which 
model the values of the monitored parameters in the 
normal state of engine operation (without damages),

• comparing the signals at the outputs of the model 
and the diagnosed engine will make the basis for 
determining residuals – signals which re�ect the 
discrepancy between the model and the engine,

• the obtained vector of residuals will be analysed using 
a neural classi�er of residuals, the task of which is to 
decide whether the damage has taken place and, if so, 
to indicate the type of damage.

Fig. 3. Scheme of neural damage detection system. M
o
 – engine torque,    

n – engine rotational speed, T
ex

 – exhaust gas temperature, CO – content 
of carbon monoxide in the exhaust gas, O

2
 – content of oxide in the 

exhaust gas, HC – content of aromatic hydrocarbons in the exhaust gas, 
NO

x
 – content of nitrogen oxides in the exhaust gas
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�e preliminary examination stage has made it possible 
to perform basic training of the networks for each neural 
observer which modelled changes of the assumed input 
variables, i.e. T

ex
, O

2
, CO, HC, NO

x
. Training was performed 

and �nal architecture of the network was created using the 
package MATLAB 2014b and its dedicated extension “Neural 
Network Toolbox” [21]

Analysing basic measures of quality of the developed neural 
models, i.e. the values and distributions of the residuals, and 
the percentage errors between the values expected at the 
network output and its real responses, has revealed good 
quality of modelling and practically negligible di�erences. 
Sample values of these di�erences for models of T

ex
 and NO

x
 

are shown in Figs. 6 and 7.

Fig. 6. Distribution of percentage errors of neural network response  – 
model T

ex
.

Fig. 7. Distribution of residuals (NO
x
 - NO

xs
) for the neural model NO

x
. 

NO
X
  = f(M

o
, n) – experimentally measured content of NO

x
 in the exhaust 

gas, NO
xs

 – neural network response obtained for the set values of (M
o
, n)

Generation of residuals 

�e task of the residual generator is to calculate the 
di�erences between the monitored output signals of the 
diagnosed engine, V

k
, and the corresponding responses of 

the developed   models of the bank of neural observers, V
ks

. 
Figure 8 shows relevant values for the case of  NO

x
. In the 

parameters were selected as the objects of on-line control, 
the same number of neural models were to be developed to 
model  the relations between the input variables: Mo and 
n, and the output variables being the object of diagnostic 
supervision in the engine operation condition referred to as 
normal – state s

1
. 

�e �rst stage of examination has the form of preliminary 
tests oriented on selecting the type and optimal structure of 
the neural networks for particular models. For this purpose,   
automatic tools included to the package STATISTICA Neural 
Networks v. 7.0 which support  construction and testing of 
neural networks used in data analyses and predictive issues, 
were applied [20]. 

�e goal of network training was to achieve the state which 
returns correct responses within a wide range of excitations, 
having in this case the form of di�erent (ranging within 0 – 70 
Nm) engine loads for corresponding steady-state rotational 
speeds (850, 950 and 1100 rpm). �e teaching set, prepared 
based on experimental results, included 1272 cases referring 
to each of 5 parameters. Sample realisations of changes of the 
analysed variables (CO and T

ex
) as functions of engine torque 

and rotational speed are shown in Fig. 5.

Fig. 5. Changes of CO emission and exhaust gas temperature vs. engine 
speed and torque   

�e performed simulations and the analysis of the obtained 
results have led to selecting the neural network of multilayer 
perceptron type with one hidden layer. 
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�e experimentally obtained reference patterns of the 
components r

k
 for states s

1
, s

2
 and s

3
 as functions of engine 

load and rotational speed are shown in Figs. 6, 7 and 8 for 
residuum r

2
.

Fig. 9. Residual vector component r
2
 as the function  r

2
 = f(M

o
, n)  – state 

s
1

Fig. 10. Residual vector component r
2
 as the function r

2
 = f(M

o
, n) – state 

s
2

Preliminary tests oriented on selecting the type and 
optimal structure of the neural network for the residual 
generator enabled selecting a linear neural network which 
models the relations between ten inputs (V

1
, V

2
, V

3
, V

4
, V

5
, 

V
1S

, V
2S

, V
3S

, V
4S

, V
5S

 ) and �ve outputs (r
1
, r

2
, r

3
, r

4
, r

5
).

Like for the bank of neural observers, the performed 
tests and the applied quality measures, having the  form of 
values and distributions of modules of residuals between 
the expected network outlet values and the real network 
responses, have proved very good quality of modelling 
and practically negligible di�erences. Figure 12 shows the 
adjustment of the residual generator response to real values.   

analysed case: 
• exhaust gas temperature T

ex
 = V

1
 

• content of oxygen in the exhaust gas O
2
 = V

2
, 

• content of hydrocarbons in the exhaust gas HC = V
3
, 

• content of carbon monoxide in the exhaust gas             
CO = V

4
, 

• content of nitrogen oxides in the exhaust gas NO
x
 = V

5
 

• neural model  response T
ex

 - T
exs

 = V
1S

, 
• neural model  response O

2
 - O

2s
 = V

2S

• neural model  response HC - HC
s
 = V

3S

• neural model  response CO - CO
s
 = V

4S

• neural model  response NO
x
 - NO

xs
 = V

5S

�e vector of residuals r = [r
1
, r

2
, r

3
, r

4
, r

5
] obtained in the 

above way can be considered a  signal which contains the 
information about damages [3]. In this case:

r
k
 = V

k
 - V

kS
,

where:
k = 1, 2, … , 5,
V

k
 – diagnostic parameter value V

k
 = f(M

o
, n),

V
kS

 – parameter value generated by the neural model         
V

kS
 = f(M

o
, n).

 

Fig. 8. Content of  NO
x
 as the function NO

x
 = f(M

o
, n) for state classes s

1
, 

s
2
, s

3
.

In the analysed case three classes of technical condition 
of the diagnosed engine were de�ned. During the engine 
operation referred to as normal, the components of the 
obtained vector of residuals should be close to zero, while the 
appearance of damage increases  remarkably these di�erences. 
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the vector of symptoms to one of the separated classes of 
states.

Based on the �rst stage of examination, the neural network 
constructed and trained to solve the presented problem had 
the multilayer perceptron structure with one hidden layer.

Fig. 13. Classifier – neural network of multilayer perceptron type. 
IN – input layer (5 neurons), OU –  output layer (3 neurons); r − input 

excitations,  s
i
 – network responses, i = 1, 2, 3.

Setting the vector r = [r
1
, r

2
, r

3
, r

4
, r

5
] at the input of the 

classi�er network activates one of  the three neurons in the 
output layer, thus indicating the presence of certain damage 
and  passing of the installation to the state si. 

Training, validation and tests of the classi�er, performed 
with the aid of the training set, have revealed its very good 
adjustment, and the in�nitesimal number of  incorrectly 
classi�ed cases, below 2% at the testing stage. Figure 14 shows 
the obtained results in the form of confusion matrix.

Fig. 14. Confusion matrix obtained during network training and test 
stages 

Fig. 11. Residual vector component r
2
 as the function r

2
 = f(M

o
, n) – state 

s
3

Fig. 12. Adjusting the  residual generator response during network 
training and test stages 

Neural classifiers of installation condition 

�e task of the installation condition classi�er (the residual 
evaluation block), being a part of the damage detection and 
localisation system, is to analyse the residual vector and  
recognise whether and where the damage took place. �us, it 
solves a typical classi�cation problem consisting in adjusting 
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condition of the installation.  
2. Introducing cases of deformed values of the parameters 

being the objects of diagnostic monitoring to the 
teaching sets. �e course of neural network teaching 
will take much longer in this case, but the resistance 
of the trained networks to disturbances, which in 
real conditions can turn out very intensive, should be 
improved. However, con�rmation of this statement 
requires further research oriented on determining 
whether this is a universal regularity and whether 
it results from the presence of certain rules and 
principles.

�e presented results are undoubtedly good motivation for 
further research and possible application of neural networks 
in operating practice, most of all by developing their so�ware 
or hardware realisations in the form, for instance, of dedicated 
electronic systems. An additional favourable factor here is 
possible use of VLSI systems with large integration scales, as 
these systems provide opportunities for practical construction 
of parallel data processing systems, i.e. the type of systems 

which includes neural networks [4]).
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