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Abstract 
Although a substantial number of research projects have addressed music information 
retrieval over the past three decades, the field is still very immature. Few of these projects 
involve complex (polyphonic) music; methods for evaluation are at a very primitive stage 
of development; none of the projects tackles the problem of realistically large-scale 
databases. Many problems to be faced are due to the nature of music itself. Among these 
are issues in human perception and cognition of music, especially as they concern the 
recognizability of a musical phrase. 

This paper considers some of the most fundamental problems in music information 
retrieval, challenging the common assumption that searching on pitch (or pitch-contour) 
alone is likely to be satisfactory for all purposes. This assumption may indeed be true for 
most monophonic (single-voice) music, but it is certainly inadequate for polyphonic 
(multi-voice) music. Even in the monophonic case it can lead to misleading results. The 
fact, long recognized in projects involving monophonic music, that a recognizable passage 
is usually not identical with the search pattern means that approximate matching is almost 
always necessary, yet this too is severely complicated by the demands of polyphonic 
music. 

Almost all text-IR methods rely on identifying approximate units of meaning, that is, 
words. A fundamental problem in music IR is that locating such units is extremely 
difficult, perhaps impossible. 

Keywords: information retrieval, searching, music, audio, MIDI, notation. 
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This work contains about 10,000 themes...we feel that we have compiled a fairly complete 
index of themes, not only first themes, but every important theme, introduction, and salient 
rememberable phrase of the works included. 

 —Barlow and Morgenstern, A Dictionary of Musical Themes (1948, p. xi) 

 

Introduction 
The first published work on music information retrieval (music IR), by Michael Kassler 
and others, dates back to the mid-1960’s. Kassler (1966, 1970) and his colleagues were 
well ahead of their time, and for many years thereafter, very little was done; but now, 
interest in music IR is exploding. A paper on music IR (Bainbridge et al., 1999) won the 
best paper award at the Digital Libraries ’99 conference, and almost every recent SIGIR, 
Digital Libraries, Computer Music, or Multimedia conference has had one or more 
papers on music retrieval and/or digital music libraries (see for example Downie & 
Nelson, 2000; Lemström  et al., 1999; Tseng, 1999; Uitdenbogerd & Zobel, 1998). 
Furthermore, the first major grant for music-IR research, to the present authors, was 
recently funded (Wiseman et al., 1999; OMRAS, 2000), and the First International 
Symposium on Music Information Retrieval (ISMIR, 2000) was held just last fall. But 
everything published to date reports on specific projects: no general discussion of the 
problems researchers need to solve has appeared. This paper attempts to fill that gap. 

To put things in perspective, music IR is still a very immature field: much of what 
follows is necessarily speculative. For example, to our knowledge, no survey of user 
needs has ever been done (the results of the European Union’s HARMONICA project 
(HARMONICA, 1999) are of some interest, but they focused on general needs of music 
libraries). At least as serious, the single existing set of relevance judgements we know of 
(Uitdenbogerd et al., 2001) is extremely limited; this means that evaluating music-IR 
systems according to the Cranfield model that is standard in the text-IR world (see for 
example Sparck Jones and Willett, 1997) is impossible, and no one has even proposed a 
realistic alternative to the Cranfield approach for music. Finally, for efficiency reasons, 
some kind of indexing is as vital for music as it is for text; but the techniques required 
are quite different, and the first published research on indexing music dates back no 
further than five years. Overall, it is safe to say that music IR is decades behind text IR. 

For another sort of perspective, nearly all music-IR research we know of is concerned 
with mainstream Western music: music that is not necessarily tonal and not derived 
from any particular tradition (“art music” or other), but that is primarily based on notes 
of definite pitch, chosen from the conventional gamut of 12 semitones per octave. In this 
paper, we maintain that bias. Thus, we exclude music for ensembles of percussion 
instruments (not definite pitch), microtonal music (not 12 semitones per octave), and 
electronic music, i.e., music realized via digital or analog sound synthesis (if based on 
notes at all, often not definite pitch, and almost never limited to 12 semitones per 
octave). 

Music IR is cross-disciplinary, involving very substantial elements of music and of 
information science. It also involves a significant amount of music perception and 
cognition. We wanted this paper to be intelligible to readers with whatever background, 

3 



but found it impractical to avoid assuming a fair amount of knowledge of information 
science and some knowledge of music. 

Background 

Basic Representations of Music and Audio 
There are three basic representations of music and audio: the well-known audio and 
music notation at the extremes of minimum and maximum structure respectively, and the 
less-well-known time-stamped events form in the middle. Numerous variations exist on 
each representation. All three are shown schematically in Figure 1, and described in 
Figure 2.  . 

 

Digital Audio

Time-stamped Events

Music Notation � � � � 24
193

�
Variation 8� � � � � � �� �

 
Figure 1. Basic representations of music (schematic) 

The “Average relative storage” figures in the table are for uncompressed material and 
are our own estimates. A great deal of variation is possible based on type of material, 
mono vs. stereo, etc., and—for audio—especially with such sophisticated forms as MP3, 
which compresses audio typically by a factor of 10 or so by removing perceptually 
unimportant features. 

“Convert to left” and “Convert to right” refer to the difficulty of converting fully 
automatically to the form in the column to left or right. Reducing structure with 
reasonable quality (convert to left) is much easier than enhancing it (convert to right). 
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Representation Audio Time-stamped Events Music Notation 

Common examples CD, MP3 file Standard MIDI File sheet music 

Unit sample event                        note, clef, lyric, etc. 

Explicit structure none little (partial voicing 
information) 

much (complete 
voicing information) 

Avg. rel. storage 2000 1 10 

Convert to left -  easy OK job: easy 

Convert to right 1 note/time: pretty easy; 
2 notes/time: hard; 
other: very hard 

OK job: fairly hard - 

Ideal for music 

bird/animal sounds 

sound effects 

speech 

 music music 

Figure 2. Basic representations of music 

 

It is often helpful to compare music and text; this is particularly true here because text 
also comes with varying amounts of explicit structure, though that is seldom recognized 
in the IR literature. See Figure 3. 

 

Explicit structure minimum medium maximum 

Music representation 
(and examples) 

Audio (CD, MP3) Events (Standard 
MIDI File) 

Music Notation (sheet 
music) 

Text representation 
(and examples) 

Audio (speech) ordinary text text with markup 
(HTML) 

Figure 3. Text vs. music 

While musical notation is invaluable for many applications of music IR, notation of 
complex music is very demanding: divergencies in interpretation and inconsistencies of 
application often frustrate attempts at its computational treatment. See Byrd (1984, 
1994). 

Music Perception and Music IR 
As we have said, we concern ourselves here with music based on definite-pitched notes. 
Nearly all music familiar to Western ears is built up out of notes somewhat as text is 
built up out of characters or words; notes are much closer to characters than to words, 
but there is less similarity than might appear. We will return to this analogy. 

The four basic parameters of a definite-pitched musical note are generally listed as: 
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pitch: how high or low the sound is, the perceptual analog of frequency 

duration: how long the note lasts 

loudness:  the perceptual analog of amplitude 

timbre or tone quality 

But human beings hear music in a “non-linear” way: studies in music perception and 
cognition reveal many subtle and counterintuitive aspects, and these parameters are not 
nearly as cleanly separable as might at first appear. To cite a simple example, very short 
notes are heard as being less loud than otherwise identical longer notes. And when a 
group of notes is heard in sequence as a melody, the effects of perception can be very 
unobvious. For example, changing timbre can turn a single melodic line into multiple 
voices and vice-versa. Pierce (1992) devotes an entire chapter to “Perception, Illusion, 
and Effect” in music. In one very striking illusion he describes (pp. 211–212), due to 
David Wessel, a series of notes all played in similar timbres sounds like a melody 
composed of repetitions of a sequence of three notes going up (Figure 4). But if alternate 
notes are played in very dissimilar timbres (say, diamond-shaped notes as brass and x-
shaped notes as organ), it sounds like two interleaved melodies each composed of 
repetitions of a sequence of three notes going down. . 

�
�  = 180

♦ � ♦ � ♦ � ♦ � ♦ � ♦ � ♦ � ♦ � ♦ �
 

Figure 4. Wessel’s streaming illusion 

Such streaming effects can be produced by changing tempo (i.e., speed of performance, 
affecting both note durations and onset times) as well as changing timbre. McAdams 
and Bregman (1979, p. 659) describes “a repeating six-tone series of interspersed high 
and low tones” that, when played at a moderate tempo, produces one perceptual 
stream, while at a fast tempo, “the high tones segregate perceptually from the low tones 
to form two streams.” These examples may sound very artificial, but the idea—using 
differences of timbre, register (pitch), or anything else to turn single-note-at-a-time 
passages into perceptual streams—has been known to composers for centuries. It is 
exploited frequently in idiomatic keyboard music (e.g., Chopin, Bach) and string music 
(e.g., Bach’s music for unaccompanied violin as well as the virtuoso music of Paganini 
and others). The most dramatic examples are in works such as Telemann’s Fantasies for 
unaccompanied flute, written well over 200 years ago: of course the flute is an 
instrument that can play only one note at a time1 and therefore can produce multiple 
streams only by exploiting perceptual phenomena. In Figure 5, from his Fantasie no. 7 in 
D major, I, Telemann produces the effect of imitative counterpoint. The first four 
measures are treated as a fugue subject, with a second entrance of the subject consisting 

                                                      
1 This is not strictly true: techniques exist with which a flutist can play multiple simultaneous 
notes, but they are rarely used. 
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of the notes with “x”-shaped heads. Nor is this just an effect for the score reader: in a 
competent performance, the second entrance is quite audible. 

 

� �� 38 �� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� ��8 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 

Figure 5. Telemann: Fantasie no. 7 in D major, I 

If a music-IR system were to operate only in a single highly-structured representation—
that is, music notation—these effects might be less of a problem. But most systems will 
need to operate in other representations. Besides, musical queries are likely to be based 
on a listener’s recollection, and thus subject to error caused by such perceptual and 
cognitive effects. The implications of such problems have been discussed previously by 
McNab et al. (1996) and by Uitdenbogerd and Zobel (1998). 

For example, consider the fact that wide skips of pitch may not be heard as such: 
listeners’ perceptual systems may remove octaves. On paper, the opening motif of 
Beethoven’s Piano Sonata in B-flat, Op. 106 (the “Hammerklavier”) has one of the widest 
ranges of any melody we know of: four octaves and a fifth, some 53 semitones (Figure 6 
is the way it appears in Barlow and Morgenstern’s 1948 Dictionary). But the wide range 
is due almost entirely to two huge jumps, marked A and B in the figure. Jump A, two 
octaves and a major third, would sound nearly the same if it was reduced by an octave, 
while—to the authors’ ears—the alleged two-octave jump B does not sound like a jump 
at all, but rather a change of texture: this is evident in Figure 7, the full score. In fact, 
more-or-less any combination of octave transpositions of the three segments of the motif 
leaves it instantly recognizable, though rhythm undoubtedly plays a role in this. 

� 	 	 
 ��
A � � B

�
�� � � � � �

 
Figure 6. Barlow and Morgenstern, after Beethoven 
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Figure 7. Beethoven: Piano Sonata in B-flat, Op. 106, I 

 

It is not easy to imagine an algorithmic way to handle this problem; pitch perception is 
far more subtle than appears at first, and complex textures and wide register changes are 
among the factors that affect it. But the octave seems to be a basic human perceptual unit 
(Deutsch, 1972), a fact that both music theory and composers’ practice have 
acknowledged for centuries, and our problem might be sidestepped by viewing pitches 
as octave plus pitch class (C, Bb, etc.), and melodic intervals as number of octaves plus 
modulo-12 interval. Then we could give the number of octaves less weight, and rely 
more on other factors—rhythm is an obvious candidate—to rank matches. In fact, the 
index that occupies over 100 pages of Barlow and Morgenstern gives only pitch classes 
and completely ignores octaves (and therefore melodic direction). This is surely going 
too far, but it illustrates the point that a note’s register is generally less important than its 
pitch class. 

Monophony, Polyphony, and Salience 
Some music is monophonic, that is, only one note sounds at a time. Examples include 
unaccompanied folksongs and Gregorian chant. However, the vast majority of 
mainstream Western music is polyphonic: multiple notes sound at a time. As we shall see, 
the presence of polyphony makes music IR far more difficult. Note that in monophonic 
pieces like the Telemann example that employ streaming effects, the complications of 
polyphony are still possible, albeit in a limited way. 

One complication in music IR that is largely a result of polyphony is the issue of salience, 
that is, how significant in perceptual terms an element of the music is, be it a note, 
chord, melody, or whatever. We will say more about salience later. 

Music Retrieval and the Four Parameters of Notes 
Two papers on music IR and the evaluation of musical similarity that underlies it offer 
apparently contradictory statements. Selfridge-Field says (1998, p. 31): “Recent studies in 
musical perception suggest that durational values may outweigh pitch values in 
facilitating melodic recognition.” On the other hand, Downie (1999, p. 15) remarks that 
“Psychoacoustic research has shown the [pitch] contour, or shape, of a melody to be its 
most memorable feature.” In any case, it is evident that the pitch contour of a melody is 
by no means its only memorable feature. 
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One obvious question is what is the relative weight of information carried by each of our 
four parameters in a given style of music. Curiously, there does not appear to be any 
published work on this question2, but for the music we are focusing on, mainstream 
Western music in general, reasonable figures might be pitch 50%, rhythm 40%, timbre 
and dynamics 10%. Note that pitch occurs in both the horizontal (melodic) and vertical 
(harmonic) dimensions, and rhythm is not just strings of durations: it also involves 
accent patterns resulting from the meter (essentially, time signature).3

Pitch Matching and Realistic Databases 

In any case, it is clear that a great deal of the information in music is not in pitch, and 
certainly not in horizontal (melodic) pitch. Yet almost all music-IR work to date has 
focused primarily on pitch matching, and in the horizontal dimension alone—and that 
work has enjoyed a fair amount of success (cf. Downie, 1999). (One of the very few 
papers to focus on rhythm matching is Chen et al., 1998.) However, almost all music-IR 
work has also focused exclusively on monophonic music, and has been tested with 
moderate-sized databases (10,000 documents or so) of music that is relatively simple 
(often folksongs) as well as monophonic. For comparison, it is estimated that the music 
holdings of the Library of Congress amount to over 10,000,000 items, including over 
6,000,000 pieces of sheet music and tens of thousands, perhaps hundreds of thousands, 
of scores of operas and other major works (K. LaVine, personal communication, May 2,  
2000). As for polyphony, a symphony by Mozart might at times employ 12 voices; 
Stravinsky’s Le Sacre du Printemps uses a maximum of about 38. Popular music is 
generally simpler than this, while most movie and TV music is probably in the same 
range as symphonic music. Will melodic pitch alone be adequate for large databases and 
complex music? Some evidence of the need to consider other information follows. 

Salience 

Salience in music is tremendously dependent on factors like dynamics (loudness) and 
thickness of texture. In fact, in works for large ensembles like the symphony orchestra, a 
substantial fraction of the “melodies” played by individual instruments are completely 
indistinguishable in the overall effect. This can lead to what appear to be excellent 
“matches” for queries that are actually of little or no interest. 

Duration Patterns and Rhythm 

Selfridge-Field (1998) gives several examples of ridiculous matches based on pitch alone 
(pp. 27, 32). The main cause in all cases is ignoring rhythm (though in  some cases 
ignoring melodic direction is also a factor). 

                                                      
2 Boltz (1999) considers the relative cognitive effects in memorizing melodies of pitch and 
rhythm, and includes some discussion of style-related factors.  
3 A caveat here. Aside from questions of what the figures should be, citing any relative-weight 
figures makes it sound as if the factors are independent and can be combined linearly. In reality, 
these factors are clearly not independent. We might have to make the assumption of 
independence to make building a music-IR system a tractable problem, but we should always 
bear in mind that this is an oversimplification. 

9 



There are many melodies in which most interest is rhythmic. Extreme cases include 
those which begin with distinctive rhythms but with many repetitions of the same pitch, 
e.g., Beethoven’s Symphony no. 7, III, main theme (12 repetitions); Bartók’s Piano 
Sonata, II (20); and Jobim’s One-Note Samba (no fewer than 30). 

Confounds 

Melodic-pitch-based music IR systems generally try to match either contours, or actual 
profiles of successive pitch intervals. But Selfridge-Field (1998, p. 30) comments that 
“three elements…can confound both contour and intervallic-profile comparisons. These 
are rests, repeated notes, and grace notes [italics ours]. Researchers focused on contours 
often argue that all three disrupt the ‘flow’ of the line.” Other confounding elements 
include such “ornaments” as turns and trills (Figure 8). In many styles of music, these 
elements are common enough to be a serious complication. Our Appendix 1: Melodic 
Confounds gives statistics on Barlow and Morgenstern’s “classical” themes, as well as 
statistics on tunes in a “fake book”4 and a hymnal. Approximately one-third of Barlow 
and Morgenstern’s  themes contain rests, and fully two-thirds of our sample of the fake 
book contain them. 

� 	 	 	 24 RE�
RN
� � � � � � � � �

� 44 � � G� ���� � T��
 

Figure 8: RE = rest, RN = repeated notes, G = grace notes, T = trill 

Here is a real-life example that illustrates all three of the above-mentioned problems: 
salience, rhythm, and confounds. One of the current authors looked in Barlow and 
Morgenstern’s index for the main theme of the last movement of Beethoven’s Ninth 
Symphony, the famous “Ode to Joy” (shown in Figure 9a, with their index entry: letter 
names for the notes of the melody transposed to the key of C). The index contains an 
entry that matches the first six notes, but it is a little-known piece by Dvorak, The Wood 
Dove, Op. 110 (Figure 10), that sounds hardly at all like the Beethoven. The main cause 
of the false positive is that the index ignores rhythm. The false negative is more 
interesting. Most instances of the theme in the Beethoven work, especially the more 
salient ones, involve trivial melodic ornamentation, specifically the “repeated notes” 
confound: subdivision of the first note (Figure 9b). The latter version was, in fact, the one 
the current author searched for, while the former version, which occurs first in the 
Symphony, is the one Barlow and Morgenstern chose: four pages separate the entries for 
the two versions in the index! 

                                                      
4 This is a collection of popular-song melodies with chord symbols so that musicians who do not 
know a given tune can “fake it”. 
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At least 42% of Barlow and Morgenstern’s themes contain repeated notes. Their claim of 
completeness (in the epigraph at the beginning of this paper) may be literally correct, 
but this incident shows that—at least with manual lookup—the 10,000 index entries are 
not sufficient to support retrieval in all reasonable cases. Mongeau and Sankoff (1990) 
discuss both our situation, which they call fragmentation, and the inverse situation, 
combining repeated notes into a single note, which they refer to as consolidation. The 
essence of the problem in either case is disagreement between the query and the score 
over the number of instances of a note.  
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Figure 9: a (above) and b (below). Beethoven: Ode to Joy 
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Figure 10. Dvorak: The Wood Dove 

Cross-Voice Matching 

It is tempting to assume that one can search in polyphonic music for matches to a query 
one voice at a time, but in a great many cases, this will not be workable. For one thing, 
music in time-stamped event form generally does not have complete voicing 
information, and music in audio form has none at all (see Figure 2). (Uitdenbogerd and 
Zobel, 1998, reports work on algorithmic treatment of MIDI for music-IR purposes.) 
Even when complete voicing information is available—usually where the database is in 
notation form—matching across voices will sometimes be necessary. An example is 
Mozart’s Variations for piano, K. 265, on “Ah, vous dirais-je, Maman”: the theme, 
otherwise known as “Twinkle, Twinkle, Little Star”, is shown in Figure 11a. In 
Variations 2 (Figure 11b), 4, and 9, the melody starts in one voice, then, after four 
notes—not enough for a reliable match—moves to another. We know of no prior work 
on cross-voice matching. But intuition suggests (and our preliminary research supports 
it) that cross-voice matching will be a disaster for precision if only melodic pitch is 
considered, because it is likely to find many spurious “matches” with totally different 
rhythm, buried in inner voices or accompaniment. Many of these problems would be 
alleviated by considering dynamics or timbre: for example, Wessel’s effect discussed 
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above strongly suggests that cross-voice matches are better evidence of a document’s 
relevance when similar timbres are involved than when the timbres are very different. 
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Figure 11a (above) and b (below). Mozart: Variations on “Ah, vous dirais-je, Maman” 

Polyphonic Queries 

In searches “by example”, which almost any user might want to do, queries will 
generally be polyphonic, just like the music that is sought. 

A more specialized case applies only to musically-trained users: music scholars and 
students, jazz musicians, etc. Such users will sometimes want to find instances of chords 
and chord progressions: of course, such queries are inherently polyphonic and require 
considering more than just melodic pitch. One of the present authors (Byrd) has been 
interested for years in finding examples of the final cadential progression of the Chopin 
Ballade in F-minor, Op. 52, that have the same soprano line as Chopin’s. 

Calling the Question 

We can now return to our question: will melodic pitch alone be adequate for large 
databases and complex music? It seems very likely that it can be answered in the 
negative: melodic pitch will not be adequate for anywhere near all users and situations, 
and even melodic and harmonic pitch together will often fail for searching larger 
databases and/or more complex music. The obvious way to improve results is to match 
on duration patterns as well as pitch (Smith et al., 1998). Note that duration matching 
can and probably should be as flexible as pitch matching: in our own research, we have 
implemented matching on “duration contour” in a way that is exactly analogous to pitch 
contour (Byrd, 2001). In some situations, it should also help to match relative loudness 
and/or timbre. And even if matching on loudness is not explicitly required, loudness 
and thickness of texture should probably be considered as affecting salience, and used to 
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adjust ranking of search results. Dovey and Crawford (1999) discuss several factors they 
feel should be considered in relevance ranking, including salience.5

Special Cases and Sidestepping the Issues  
It might be argued that, in one particular case, we can completely sidestep all of these 
issues and rely on techniques that are not even specific to music. That case is where both 
the query and the database are in audio form, and the query is an actual performance of 
the exact music desired (perhaps from a CD in the user’s possession). But audio signals 
contain so much extraneous information related to room acoustics and microphone 
placement as well as to fine details of performance that, even in this case, the problem 
may be intractable. Foote (2000) suggests otherwise, and his ARTHUR system showed 
good results with orchestral music; but he tested it with “an extremely modest corpus” 
and cautions that his approach may not scale well. 

A situation that seems clearly to be manageable with pure audio techniques is the even 
more specific case of identifying different recordings, or different versions of one 
recording, of a single performance: this has been attacked, and with considerable 
success, by Gibson (1999).  Gibson comments that his system “assumes that the [query] 
sample is no more than a rerecording of the original.” 

Causes: Why is Music IR Hard? 

Segmentation and Units of Meaning 
In a recent paper, one of the present authors wrote: “The distinction between concepts 
and words underlies all the difficulties of text retrieval. To satisfy the vast majority of 
information needs, what is important is concepts, but—until they can truly understand 
natural language—all computers can deal with is words.” (Byrd & Podorozhny, 2000, p. 
4) To put it differently, in text, there are many ways to say the same thing, and users 
cannot possibly be aware of all the ways when they formulate their queries. Therefore, it 
is important for an IR system to conflate variants of the same word. It is also important 
to conflate different but (in the context of the user’s information need, and in a statistical 
sense) synonymous words. If a system does not do both, recall will suffer.6 (This is 

                                                      
5 Notice Dovey and Crawford’s assumption of best-match rather than exact-match retrieval. The 
advantage of best match—that the user can look as far down the result list as they want and 
thereby choose the tradeoff between recall and precision they want—appears at least as 
important for music as it is for text. But this is necessarily speculative: as we have said, work on 
music-IR evaluation has hardly begun. 

 
6 Blair and Maron (1985) make a similar argument very effectively. The main difference is that 
they assume exact-match evaluation, and this and other questionable assumptions lead them to 
far too sweeping conclusions. But, for example, their description of a concerted attempt to find all 
references in a large database to a certain concept is extremely thought-provoking. 
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admittedly oversimplified: very often a concept is represented not by a word but by a 
noun phrase or something even more complex. But that does not affect our point.) 

Thus, a basic requirement of text IR is conflating units of meaning, normally words. On 
the other hand, the conflation must be done judiciously or precision will suffer. Note 
that this principle holds regardless of the retrieval model, be it exact-match or best-
match, and regardless of whether term matching or language modelling is used. 

Essentially the same principle applies to music in any of our three representations. In 
music as in text, there are many ways to “say” the same thing (see the list of “Objective” 
matching problems in the next section), and again, a user cannot be aware of all. But it is 
not clear that music has units of meaning: a music “word list”, i.e., a dictionary of 
musical symbol sequences without definitions, is very difficult to imagine, and a music 
dictionary with definitions is even harder to imagine. There is simply no predictable 
association of musical entities with meanings.7 And even if music has “words”, in many 
cases, experts will not agree on where the boundaries are. 

Segmenting English into words is relatively easy: a rather good first-approximation 
method is just to look for white space or punctuation marks. In Chinese, among other 
languages, words have no explicit delimiters, so segmentation is much more difficult; 
nonetheless, experts generally agree on where word boundaries are (D. Moser, personal 
communication, July, 1999), and algorithmic solutions have been reasonably successful 
(Ponte & Croft, 1996). In music, however, experts do not generally agree on 
segmentation except in unusually clear-cut cases—barlines are entirely useless for this, 
and rests are of limited help, even when they occur—and automatic segmentation even 
of monophonic music (e.g., Cambouropoulos, 1998) is at an early stage. It is clear that 
segmentation in music is vastly more difficult than in Chinese.8

In fact, it can be argued that overlapping segments (perhaps “motives”or “phrases”) are 
common, even within voices. Of course, music in event format may not have complete 
voicing information, while music in audio form will have no voicing information at all, 
and one cannot even begin to look for boundaries within a voice without knowing what 
events are in the voice. Selfridge-Field’s confounds aggravate the situation further: they 
mean that conflating even fragments that are obviously closely related, the way 
stemming and case folding in text conflate closely-related strings, requires considerably 
more sophistication than with text. 

 

                                                      
7 A few musical techniques do have conventional associations with emotional states: the use of 
the minor mode to express “sadness”, for example. But such associations are, notwithstanding 
Cooke (1959), notoriously unreliable and inconsistent. 
8 Byrd (1984, pp. 49-55) compares the difficulty of formatting in Chinese, mathematics, and music 
notation, and argues that music is the most difficult. The situation with respect to segmentation 
exactly parallels that for formatting, and for similar reasons. 
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Figure 12. Bach: “St. Anne” Fugue, BWV 552 

Overlapping segments are certainly common in musical texture as a whole, and the 
problem is far worse when polyphonic music is taken into account. By the very nature of 
the independence of voices in polyphony, it is always possible for phrases or motives to 
overlap in different voices; in fact, the technique of counterpoint to a large extent 
depends on this. For example, the only remotely-clear divisions in the first page and a 
half of J.S. Bach’s “St. Anne” Fugue, BWV 552, are at measure 21 and possibly measure 
11 (marked “A” and “B” in Figure 12). 
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When full voicing information is explicitly present, the problem might be sidestepped 
by treating each voice as an independent monophonic string, but in most cases of music 
in event format, and all cases of audio recordings, it will be extremely difficult to 
disentangle these overlappings. 

Polyphony 

Downie (1999) speculates that “polyphony will prove to be the most intractable problem 
[in music IR].” We would put it a bit differently, namely that polyphony will prove to be 
the source of the most intractable problems.  

Polyphonic—that, is, most—music involves simultaneous independent voices, 
something like characters in a play. Ordinarily, of course, only one character in a play is 
active (speaks) at a time, and when more than one does speak at a time, the (temporal) 
relationship between them is defined in the simplest possible way. Exceptions are such 
20tth century works as Caryl Churchill’s Top Girls (1982) (Figure 13, from Act 1, Scene 1; 
font changes added for clarity). However, most music is much more complex than this: 
see Figure 12, from J. S. Bach’s “St. Anne” Fugue. An obvious reason is that complex 
parallelism is greatly facilitated by sophisticated rhythmic notation, which text lacks: 
Churchill’s notation of asterisks and slashes is adequate for her purposes but very 
limited. 

 

Text of the play: 
MARLENE. What I fancy is a rare steak. Gret? 
ISABELLA. I am of course a member of the / Church of England.* 
GRET. Potatoes. 
MARLENE. *I haven’t been to church for years. / I like Christmas carols. 
ISABELLA. Good works matter more than church attendance. 
 
Performance (time goes from left to right): 
M: What I fancy is a rare steak. Gret?   I haven’t... 

I: I am of course a member of the Church of England. 

G:  Potatoes. 

Figure 13. Churchill: Top Girls, Act 1 , Scene 1. 

We have already pointed out the necessity of cross-voice matching in unvoiced 
polyphonic music. Of course, without the multiple voices polyphony involves, the 
problems of cross-voice matching would not exist. A less obvious consequence of 
multiple voices is the issue of salience. Salience is essentially ignored by all text-IR 
systems we are aware of.9 But without some consideration of at least the audibility of 

                                                      
9 An obvious analogue in text IR might be to take into account a formatted document’s 
typography, so that for example text styled as “bold”, “emphasis”, “strong”, or “italic” is 
assigned a higher weight than plain text. 
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likely matches in their context in a polyphonic score, the risk of being overwhelmed by 
false matches is quite serious. Early experiments have been made with a simple cross-
voice musical-matching algorithm suitable for unvoiced polyphonic scores, using an 
extract from the first movement of Beethoven’s Eroica Symphony (Dovey, 1999). It was 
found that a very recognizable woodwind phrase (Figure 14a) which appeared audibly 
only once in the extract occurred 92 times buried within a passage of repeated chords 
that happened to contain the nine notes in the correct sequence (Figure 14b)! This 
already seems disastrous in terms of precision, but consider that this is a case of exact 
matching of the note sequence; allowing common musical transformations would have 
damaged precision to an even greater extent. (In this case the “real” match has the 
woodwind phrase as the highest-sounding note throughout; this fact certainly 
contributes to its salience, but it often happens that the highest notes are not very salient. 
Even piccolos, the highest instruments in the orchestra, sometimes play 
accompaniment.) 

� 	 	 	 34 oboe� �� �� � ��
clarinet

�� � 	 �� flute�� � �
�

�� � �

� 	 	 	 � � � � � 	 � � � � � �
 

Figure 14: a (above) and b (below). Beethoven: Symphony no. 3, I, woodwinds 

Efficiency 
With music as with text, acceptable efficiency requires an approach other than 
sequential searching (this applies to all three representations of music). On a useful-size 
collection, indexing via inverted lists—the standard solution—is undoubtedly thousands 
of times faster. 

In monophonic music, matching on one of our four parameters at a time, indexing is not 
too hard. In fact, Downie (1999) adapted a standard text-IR system to music, using n-
grams as words and ignoring the units-of-meaning question; the results with a database 
of 10,000 folksongs were quite good. But, as we have observed, 10,000 monophonic 
songs is not a lot of music, and polyphony makes things much more difficult, especially 
for matching on more than one parameter at a time (pitch and rhythm being the obvious 
combination). A recent paper (Lee & Chen, 2000) compares several approaches to 
indexing monophonic music; at least one seems adequate for demanding situations in 
terms of both scalability and flexibility, but it is not at all clear how to adapt this work to 
polyphonic music. 

It is important to bear in mind that inverted lists are not the only way, and may not be 
the best way, to avoid the efficiency disaster of sequential searching. For example, 
signatures have been studied for text IR and found to be inferior to inverted lists in 
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nearly all real-world situations (Witten et al., 1999, pp. 143–145); but the tradeoffs for 
music IR might be very different. 

Recognizing Notes in Audio 
The fundamental problem of audio music recognition (“AMR”) is simply separating and 
recognizing the notes (obviously, this applies to the audio representation only). Castan 
(2000) discusses standalone AMR systems, which nearly always output MIDI files; he 
comments “There is no such thing as a good conversion from audio to MIDI. And not at 
all with a single mouse click.” He concentrates on programs that are actually available, 
most of them commercial; among those he lists are no less than four that claim to handle 
polyphony. For research on AMR, see Sterian et al. (1999), Martin and Scheirer (1997), 
and Walmsley (1999). 

Difficulties of AMR include “masking”, which leads to notes being missed, and the fact 
that every musical note consists of many partials, which leads to non-existent notes 
being found; these difficulties increase very rapidly with the number of notes actually 
present simultaneously. The Web site for one commercial system comments that music-
recognition systems “work with an exactitude [sic] of 70-80% but only for single-voice 
melody. For polyphonic music the exactitude is even lower. The variety of musical 
timbres, harmonic constructions and transitions is so great that, for example, there will 
be no computational capabilities of all computers in the world to recognize [the] musical 
score of a symphonic orchestra.” (AKoff 2000) 

Notice that for query input, monophonic AMR is quite helpful, e.g., to let users hum or 
whistle queries, and several existing music-IR systems—for example, the early system of 
Ghias et al (1995) and the recent MELDEX (Bainbridge, 1999)—support audio queries. 
For databases, monophonic AMR will rarely be helpful. 

User Interfaces 
The general topic of user interfaces for music IR deserves an entire paper of its own. We 
simply note that good user interfaces for music are extremely challenging to develop, 
even for the apparently routine task of musical score editing and printing (Byrd, 1984, 
1994), and very few of these problems can be disregarded for music-notation-format 
query interfaces and result displays. For audio or MIDI, the problems are easier in some 
ways, but harder in others: if a system cannot show content in a result list graphically, it 
may take a user a very long time to choose among, say, 100 proposed matches. 

Symptoms: Problems Matching Musical Data 

Query “Quality Control” 
Search queries in a music-IR system might be constructed using a variety of input 
method. These may include direct manual coding; translation from score-notation files; 
MIDI-keyboard performances; manual editing within a graphical or textual search 
dialog; or even whistling, humming, or singing into a microphone. The important thing 
is that each input method is subject to its own characteristic errors. Assuming the user is 
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competent to use the method, these errors might be caused by imperfect specification of 
a query (possibly due to over-simplification or to “false memory”) or by its incorrect 
interpretation by the search program. A MIDI keyboard cannot distinguish between 
enharmonic pitch spellings; with audio input, a user’s performance may be inaccurate in 
pitch or rhythm, and the pitch-tracking system may not handle such errors correctly. 

Database “Quality Control” 
Similar comments apply to the musical databases being searched (Huron, 1988). There 
is, typically, very little “quality control” of publicly-available musical data, and, again, 
there are characteristic forms of error arising from a wide range of musical ambiguities. 
A piece of music saved as a MIDI file may contain unexpected extra data, such as the 
explicit realization of trills and other ornaments which would simply be represented by 
signs in score notation. There may be errors which have escaped an editing or data-
checking process (a particularly insidious kind of error is one that fits the harmonic or 
melodic context even though it is clearly wrong; such an error is very hard to spot in 
aural monitoring). 

On the other hand, the encoding of the musical data may be perfectly accurate, but from 
a source that differs in some respect from the user’s expectations. On a trivial level, a 
piece familiar to the user from a recording in one key may be encoded from an edition in 
another; at a more subtle level, certain performance-related characteristics which are the 
subject of the performer’s personal choice (e.g. the complex of time-based performance 
choices classed under the headings of rubato and articulation, or chord-spreading) may 
be encoded in performance-based data in a manner that conflicts with the user’s 
expectations based on the appearance of a printed score. Furthermore, by their very 
nature, “performances” of a musical work (in any style or genre) are inherently diverse 
and divergent from their model: the number of possible ways of performing any one 
work is enormous. 

Assuming that an identical musical score is being used, performance A of a given work 
may take longer overall than performance B, yet some segments of A may be done faster 
than in B; groups of notes (chords) that are sounded simultaneously in A may appear in 
close succession (spread) in B; partially-specified items in the score (such as grace notes, 
or ornaments like trills) may be interpreted differently in the two scores, with the result 
that any two performances of a given score will probably contain different numbers of 
sounding notes. 

All the examples given here are within the bounds of “accurate” performance of the 
music: neither is less “correct” than the other. 

Implications and a Catalog of Problems 
In our discussion of Segmentation and Units of Meaning, we commented that “in music 
as in text, there are many ways to ‘say’ the same thing.” The identities of musical entities 
are stubbornly resistant to certain types of transformation. Simple examples include 
mutation (roughly, changing from minor to major or vice-versa); diatonic 
“transposition” (really scale-degree shifts); “tonal answers” to fugue subjects (where 
repetitions of the subject have pitch intervals distorted to stay within the scale); and 
varying the number of repetitions of a note. More complex examples include a myriad 
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ways of ornamenting melodies. This is analogous to the problem of conflating various 
ways of expressing the same concept in text: through variants of the same words, 
synonymous words and phrases. These considerations mean that searching for exact 
matches is of no more use—and quite possibly less—in music than in text IR. 

Appendix 2 contains a first attempt at a catalog of the problems. 

Prospects for Solutions 
Huron (1988) gives a list of and a thoughtful discussion of “error categories” for music 
databases that applies to our type 9 and, to a lesser extent, to all of our “Subjective” 
types. 

All of the problems we have listed are common now. But how good are the prospects for 
solving them, one way or another? Objective problems are inherent in music, so they 
will certainly remain common. Subjective problems and mistakes by user result from 
human nature, so they also will remain common. Outright mistakes from conversion are 
common now in OMR (optical music recognition), and much more in AMR, systems. As 
technology improves, they may become less common in OMR. But we must assume they 
will remain common in AMR, at least for many years to come: one expert commented 
that AMR is “orders of magnitude more difficult” than OMR (C. Raphael, personal 
communication, Sept. 1999). 

To sum up, we can expect most, if not all, of these problems to be with us for the 
foreseeable future. 

Conclusions 
In a paper like this, summarizing the challenges of a significant new area of technology, 
the only “conclusions” we can offer are suggestions for future research. 

User-Interface Issues 

In recent years, text-IR researchers have tried to leverage user-interface techniques first 
applied in database systems to overcome the difficulty of achieving high precision and 
high recall simultaneously; results are very promising. The idea is summarized in 
Shneiderman’s “Visual Information Seeking Mantra”: “Overview first, zoom and filter, 
then details on demand” (North, Shneiderman, & Plaisant, 1996). For music-IR, a list of 
scores might be presented with user control over relative ranking according to the 
criteria, preferably using Shneiderman’s (1994) dynamic-queries techniques, e.g., with 
sliders controlling relative weights and the display reacting interactively. (It would be 
better to use real dynamic queries instead of just dynamic ordering of the results of a 
static query, but that would also impose much greater computation and data-transfer 
demands.) 

Units of Meaning Revisited 

Even on the level of individual instances of a musical motif or theme within a work, 
repeated occurrences are rarely identical; musical entities are recognizable even when 
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they objectively differ quite significantly. If a musical entity is recognizable, it is likely to be 
the subject of a search query. Therefore, more attention needs to be paid to the work of 
music psychologists and researchers in music cognition, especially into musical 
recognition and memory. 

It is generally recognized that partial and approximate matching is a sine qua non for 
successful music IR: see Crawford et al. (1998) and Smith et al. (1998), and Symptoms: 
Problems Matching Musical Data, above. Specialized string-matching techniques, such 
as those sometimes used in text IR to recognize words unusually or incorrectly spelt, 
have been successfully applied to monophonic music IR (see, e.g., Downie, 1999), but—
as usual—the problem is much more difficult for polyphony. 

Scale and Performance 

As we have seen, with sequential searching, musical-similarity matches in useful-size 
polyphonic databases are likely to be unacceptably slow. Obviously, we need to develop 
polyphonic indexing (or signature-based) methods; research like Lee and Chen (2000) is 
just beginning to show how this might be done. 

Relevance and Music 

It is not at all clear that the standard IR evaluation model is valid for music. 
“Information”, the explicit goal of conventional IR, has an unquestioned correspondence 
(albeit complex and ill-defined) with the concepts expressed in words in a query. The 
notion of “relevance”, on which standard IR strategies depend, is bound up with the 
relations between concepts in a way that has little or no parallel in music. The question 
of whether relevance is the proper goal even for text IR has received much attention in 
recent years: see for example the discussion of “topicality” vs. “utility” in Blair (1996). 

Appendix 1: Melodic Confounds 
The term “melodic confounds” is due to Selfridge-Field (1998). 

In the statistics below, rests are counted only if internal (not at the very beginning or 
end). Repeated notes in the “musical” sense excludes cases like appogiaturas reiterated 
across the barline, or where there are intervening rests. 

1. Barlow and Morgenstern’s Dictionary of Musical Themes (1948) contains incipits of a 
few measures each for about 10,000 themes of classical-tradition instrumental pieces. We 
checked 400 themes (all of pages with numbers ending with 00, 20, 50, and 70). 

2. The anonymous Real Vocal Book (a “fake book”, undoubtedly crammed with blatant 
copyright violations; undated but c. 1980) contains melodies and chord symbols for 
about 225 complete pop songs. Starting with number 1, we considered every fifth song. 
As a rough analog of incipits, we scanned the first two systems, but ignoring pickups 
ending the first ending; then the first two systems of the bridge/chorus, if any, for a 
maximum of two themes per song. The 45 songs we considered contain 81 themes. 
There appear to be no grace notes, trills, or turns in the entire volume. 
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3. Worship in Song: A Friends Hymnal (1996) contains 335 hymns. Starting with number 5, 
we considered every fifth hymn: 67 in all. As an analog of incipits, in each, we scanned 
the first two systems. There appear to be no grace notes, trills, or turns in the entire 
volume. 

Here are percentages of each sample containing each type of confound. Values of 37% 
and above are in boldface; other values are no greater than 15%. 

 B&M Dictionary Real Vocal Book Friends Hymnal 
Repeated notes (musical sense) 42% 46% 75% 
Repeated notes (other) 11% 7.5% 12% 
Rests 37% 48% 13% 
Grace notes 15% 0 0 
Trills and turns 7.5% 0 0 

Appendix 2: Preliminary Catalog of Problems 
The list below is a first attempt at categorizing the problems of music IR. “M” means the 
problem applies to monophonic music; “P” means it applies to polyphonic music. 
(Notice however that, in view of the music-perception phenomena we discussed earlier, 
even this distinction is not clear-cut: a single monophonic line is sometimes heard as 
polyphonic.) 
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Figure 15. Mozart: Variations on “Ah, vous dirais-je, Maman” 

Objective 

M,P: 1. Replacement (note-for-note). Cases include tonal answer (Bach: “St. Anne” (Figure 
12) and very many other fugues); mutation; diatonic transposition. 

M: 2a. Melodic ornamentation, simple: subdividing a note into repeated notes (Mongeau and 
Sankoff, 1990, call this “fragmentation”).  Example: Beethoven: Symphony no. 9, IV, 
main theme (the “Ode to Joy”) appears first beginning with a half note followed by 
two quarters; but in most subsequent appearances, including those that are most 
salient, the first note is subdivided into two (Figure 9). 

M: 2b. Melodic ornamentation, complex: insertion. Example: Mozart’s Variations K.265, 
Variation 1 (Figure 15; this is essentially the “submerged” melody of Selfridge-Field, 
1998). 

M: 3a. Melodic simplification, simple:  combining repeated notes into a single note (Mongeau 
and Sankoff, 1990, call this “consolidation”). 
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M: 3b. Melodic simplification, complex: deletion. 

 As compositional devices, 3a and 3b are inverses to 2a and 2b, but as far as music-IR 
is concerned, they are effectively identical. If the query is the version of the “Ode to 
Joy” theme that starts with a half note and the document includes only the repeated-
quarter-notes version, the problem is fragmentation; if the query is the repeated-
quarter-notes version and the document includes only the half-note version, it is 
consolidation. 

P: 4. Melody crossing voices. Example: in Mozart’s Variations K.265, Variation 2  (Figure 11). 
(Selfridge-Field, 1998, calls this “roving”; Crawford et al, 1998, calls it “distributed 
matching”.) 

M,P: 5. “Linear” transformations of the entire query. Cases include transposition and time 
scaling (i.e., augmentation/diminution). 

Subjective: errors of perception, cognition and memory 

See the discussion of “Human performance in melody recall” in McNab et al. (1996), as 
well as general discussion of perceptual, cognitive, and memory errors in Uitdenbogerd 
and Zobel (1998). 

M: 6. The version remembered is simplified. 

P: 7. The version remembered mixes voices, typically melody and accompaniment. 

M,P: 8. The version remembered is incorrect in some other way. 

Other: discrepancies in input 

M,P: 9. Outright mistakes in query and/or database. 

 These may be automatic (from the conversion process) or manual (by the user). 

M,P: 10. Performance-related issues. 

 These are affected by style/genre (e.g., “swing” in jazz, the similar “notes inégales” 
in baroque music, chord-spreading and -breaking in piano, guitar, and lute music). 
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