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Abstract

We describe a probabilistic peptide fragmentation model for use in protein databank

searching and de novo sequencing of electrospray tandem mass spectrometry data. A

probabilistic framework for tuning of the model using a range of well-characterized

samples are introduced. We present preliminary results of our tuning efforts.
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Introduction

Sequencing of peptides from their collision-
induced fragments is a well-established technique
(Papayannopoulos, 1995). A biological sample,
which may contain an unknown protein or a
mixture of proteins, is subjected to an enzymatic
digest (usually tryptic) resulting in a mixture of
peptides. This mixture is analysed using liquid
chromatography and electrospray quadrupole time-
of-flight (Q-TOF) mass spectrometry.

A Q-TOF (Morris et al., 1996) mass spectrome-
ter consists of a quadrupole mass analyser, a colli-
sion cell filled with an inert gas, and a time-of-flight
analyser. The quadrupole allows the mass:charge
range of peptides which enter the collision cell
to be selected accurately. The Q-TOF can oper-
ate in two modes. In wide-bandpass, low-energy
mode, all peptides are allowed to pass into the col-
lision cell and the voltage applied to the collision
cell is low, allowing the peptides to pass through
intact into the TOF stage. In narrow-bandpass,

high-energy mode, the quadrupole is tuned to pass
only a small mass:charge range around a single
peptide. In this mode, the collision cell voltage is
relatively high, causing the peptide to fragment as
it is pulled through the gas. The final, TOF stage
of the instrument allows the peptide ion or frag-
ment ion masses to be determined to an accuracy
of around five parts per million on a well-calibrated
instrument. The decision to switch mode is made
in real time using a number of possible strategies,
and the collision energy can be adjusted to make
useful fragmentation of each peptide more likely.

Peptides fragment in complex ways, and their
fragments in turn have complex representations
in mass spectra. Manual interpretation of these
spectra is a skilled and laborious job, and a
modern experiment can produce many hundreds.
Around 1998 (see Skilling, 2000a, 2000b), we
began to use the ProbSeq fragmentation model
in combination with Markov chain methods to
interpret this data. Commonly, we are required to
answer two questions: ‘How much can we infer
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about the sequence of the peptide which gave rise
to a single spectrum?’ and ‘Given many spectra,
what can we infer about the mixture of proteins
that may be present?’. To address these questions
in a robust, probabilistic way, we appeal to Bayes’
theorem:

Pr(Sequence | Spectrum, I)

=
Prior × Likelihood

Evidence

=
Pr(Sequence | I) Pr(Spectrum | Sequence, I)

Pr(Spectrum | I)
.

(1)

The ‘Likelihood’ Pr(Spectrum | Sequence, I) on
the RHS of the above equation encodes our incom-
plete knowledge about peptide fragmentation. It is
the probability that the peptide under considera-
tion could give rise to the observed spectrum. The
‘Prior’ Pr(Sequence | I) is a probability that we
assign to each candidate sequence before we look
at the data. At this level, the ‘Evidence’ is a nor-
malization factor, but it can be used to objectively
compare different likelihood functions and other
background assumptions. I contains information
about the context in which this calculation is being
used, and it happens that it is different for each of
the above questions.

Our likelihood function is called ‘ProbSeq’ and it
is, in itself, a Bayesian calculation which involves
a good deal of prior information about peptide
fragmentation. The rest of this paper introduces a
new framework which we can use to improve the
model. We regard it to be a strength of the Bayesian
approach that we can treat this as an inference
problem at every level (Skilling, 1998).

Materials and methods

We decided to base the tuning of the likelihood
function on human assignments of sequences to
spectra. The samples chosen consisted of tryp-
tic digests of pyruvate kinase, glyceraldehyde 3-
phosphate dehydrogenase, alcohol dehydrogenase
and β-lactoglobulin. The solvent was 0.1% formic
acid in acetonitrile:water, 1:1. The samples were
infused directly into a nanolockspray source. The
instrument used was a Waters Q-TOF ULTIMA

operating in positive ion mode. The collision
energy was 20–45 eV.

The acquired spectra were analysed manually
to provide a list of verified sequences. The data
was processed using the MaxEnt3 deconvolution
algorithm to remove isotope series and to resolve
overlapping isotope clusters and multiple charge
states. The data was split into two sets. The first,
‘tuning’, set was used to tune the fragmentation
model, while the second, ‘validation’, set was
reserved for assessment of the resulting parameters.

The chemical structure and fragmentation modes
for a typical peptide are shown in Figure 1. The
types of fragments that are observed depends on
the collision energy used. The calculation of the
likelihood is based on a probabilistic summation
over all of the possible ways that a peptide could
fragment and give rise to trial masses:

Pr(Spectrum | Sequence, �, I)

=
∑

Frag

Pr(Spectrum | Frag)

× Pr(Frag | Sequence, �, I) (2)

where � is a database containing probabilistic
information about peptide fragmentation and ‘Frag’
is a particular fragmentation pattern. Experience
tells us that some patterns of fragmentation are
more likely than others, e.g. y ion series are
correlated: if yn is present, there are better than
even odds that yn+1 is also present. This is the
information that is encoded in the last term in
equation (2). For a peptide of length n amino
acids, the sum in equation (2) contains 2n terms
for y ions alone and 26n terms if a ,b,c,x ,y ,z -ions
are all considered with extra factors for various
losses. It would be impractical to do this summation
explicitly for each trial sequence. Remarkably,
using a Markov chain allows the summation to be
performed in O(n) steps. Considering only y ions,
the chain is structured as follows:

Pr(y1 on) = p1

and Pr(yr on) = pr Pr(yr−1 on)

+ qr Pr(yr−1 off). (3)

As mentioned above, the probability p that the y
series stays on is expected to be greater than 0.5,
and the probability q that it switches on is likely to

Copyright  2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 61–68.



ProbSeq — a fragmentation model for electrospray tandem MS data interpretation 63

C-terminusN-terminus

c

b

a

z

x

y′′

CH

CH CONHCO

NH2

NH=C

NH

(CH2)3

H2N CH

H3C CH3

CH

CH2

CH2

CH3

CH3 CH2
CH2

OH

HN

N

HCCH2

NHCO NH CH CO NH NH CH CO N CO NH CH COOHCOCH

HOOC

D                          R                       V                       Y                          I                        H                   P                            F

Figure 1. The chemical structure of a peptide. The boldface letters are one-letter amino acid codes. Also indicated are
the three backbone fragmentation modes. At the collision energies used in this study, the b, y′′ mode dominates. a and z
ions are also commonly observed. Losses can also occur from terminal and side-chain groups

be less than 0.5. It is also to be expected that the
values of p and q at a particular point in the chain
should depend on the amino acid sequence of the
peptide under consideration. At each step along the
chain, the probability that a y ion will be observed
is influenced by whether or not its predecessor
was observed and we do as many summations
as are locally available. When we reach the end
of the chain, we have accumulated Pr(Spectrum |

Sequence, �, I), with a computational cost of only
O(n).

As well as the Markov chain parameters which
describe the expected appearance of series of b and
y ions, each amino acid may undergo a number
of losses, may exhibit a propensity for cleavage
to occur on the C- or N-terminal side and may
appear isolated from the rest of the sequence as an
immonium ion. The maximum number of proba-
bilities required to encode this description is seven
per amino acid. This leads to our fragmentation
model, �, having over 100 tuneable parameters.
Some examples are given in Table 1. Reasonable
values for some of these can be arrived at by con-
sulting the literature (Papayannopoulos, 1995), and
others can be estimated by manually inspecting
many fragmentation spectra.

We decided to treat the tuning of the ProbSeq
parameters as another exercise in Bayesian infer-
ence. In order to do this we needed to define prior
distributions for our parameters and a likelihood
function for comparison against the data. Having a

Table 1. Some examples of tune-
able likelihood parameters. The first
column contains probabilities that
apply globally, while the second col-
umn contains probabilities that may
be different for each amino acid

Global Amino Acid

Pr(yn+1 on | yn on) Pr(break left)

Pr(yn+1 off | yn on) Pr(break right)

Pr(y − H2O) Pr(Immonium)

list of sequences validated against known spectra,
the tuning likelihood becomes:

Pr(Spectra | Sequences, �, I)

=
∏

Spectra

Pr(Spectrum | Sequence, �, I) (4)

We take the prior distribution for each of the
probabilities in the ProbSeq model, �, to be
uniform on (0, 1). We are left with the problem
of how to explore the >100-dimensional parameter
space. We validate the result by checking whether
a chosen set of parameters, �, does or does
not enable a de novo sequence determination to
recover the correct, known, sequence. This has the
advantage of tuning our parameters directly upon
our own implementation software.

De novo sequencing involves the exploration of a
large space of peptide sequences that are consistent
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with the intact mass of an unknown peptide.
At least some of the candidate sequences must
be compared with the associated fragmentation
spectrum. The number of possible trial sequences
grows exponentially with precursor mass with:

log2 n ≈
M

25
− 7 (5)

where n is the number of trial sequences and
M is the nominal mass of the precursor. The
implementation used in the Waters proteomics
product, ProteinLynx Global Server, does not use
an exhaustive search but simulates this by sampling
from the space of possible peptide sequences
through a terminated Markov Chain Monte Carlo
(MCMC) algorithm. Initially, an ensemble of trial
solutions is constructed by sampling from a prior
distribution. The prior probability of a trial peptide
is based on the natural abundances of its constituent
amino acids and the preference for C-terminal
residues, if appropriate, for a particular digestion
reagent. In order to proceed, new trial sequences
must be generated. We employ transition engines
that change the state of an ensemble member, with
a probability of transition, T , defined by:

T (i → j )

T (j → i )
=

Prior(j )

Prior(i )
(6)

where i and j represent two possible solutions in
the space. Transitions of this type will eventually
converge on occupancies of states which match the
prior distribution. The various transition schemes
employed by the de novo algorithm are outlined
in Table 2. The data must be introduced via the
likelihood function (ProbSeq in this case), as we
wish to progress from the prior to the posterior.
The transition probabilities are therefore combined
with acceptance probabilities, A, where:

A(i → j )T (i → j )

A(j → i )T (j → i )
=

Prior(j )Likelihood(j )

Prior(i )Likelihood(i )

=
Posterior(j )

Posterior(i )
(7)

so that:

A(i → j )

A(j → i )
=

Likelihood(j )

Likelihood(i )
(8)

Table 2. The MCMC transitions for peptide sequencing:
reversal of a contiguous subsequence with randomly
chosen end-points, rotation of a contiguous subsequence
with randomly chosen end-points, permutation of a
contiguous subsequence with randomly chosen end-points,
replacement of a contiguous subsequence with randomly
chosen end-points, exchange of the C-terminus and
N-terminus ends of two sequences to preserve nominal
mass. The last transition is an example of a ‘genetic
algorithm’

Type Before After

Reversal XXXARQEIKXXX XXXKIEQRAXXX

Rotation XXXARQEIKXXX XXXQEIKARXXX

Permutation XXXARQEIKXXX XXXIQRKAEXXX

Replacement XXXNEQXXX XXXEKGGXXX

Exchange EKGG-DQCYKR,

NEH-YKDQCR

NEH-DQCYKR,

EKGG-YKDQCR

This is the usual Metropolis–Hastings approach
of detailed balancing (Metropolis et al., 1953;
Hastings, 1970). In order to improve convergence,
the likelihood is introduced in a modified form,
by raising it to some power 0 ≤ λ ≤ 1. Here, λ

is analogous to an inverse temperature and by
raising it slowly from 0 to 1 (i.e. by slow cooling),
we implement ‘simulated annealing’ (Kirkpatrick
et al., 1983). We use simulated annealing for both
de novo exploration and exploring the ProbSeq
parameter space, � (see Table 3 for an outline of
the commonalities).

The result of a de novo exploration is a number
of candidate peptide sequences that may account
for the fragmentation spectrum and precursor mass,
accompanied by a posterior probability. In order to
assess whether the results of tuning the ProbSeq
likelihood parameters afford greater discrimination
in favour of the correct sequences, we can perform
de novo searches and inspect the ranks and poste-
rior probabilities of the correct sequences. Indeed,

Table 3. Comparison between tuning and sequencing,
which are both inference problems that can be explored
using MCMC methods

Probseq tuning De novo sequencing

Likelihood Pr(Spectrum | �) Pr(Spectrum |

Sequence)

Space [0, 1]n-unit hypercube Discrete space of

∼1010 sequences

Prior Uniform Given by amino acid

abundance
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we could have replaced equation (4) in favour of a
likelihood for the tuning parameters which incor-
porated de novo searches in order to involve this
discrimination directly in the tuning process. How-
ever, the exploration of the parameter space would
have become prohibitively time-consuming.

Results and Discussion

Although cysteine and tryptophan are under-repre-
sented in the tuning dataset, the probabilities for
immonium production allow us to make general
comparisons with observations described in the
literature. Papayannopoulos (1995) indicates that
arginine, lysine, leucine/isoleucine, cysteine, histi-
dine, phenylalanine, tyrosine and tryptophan may
give diagnostically important immonium ions (see
Table 4). Our results indicate that arginine, leucine/
isoleucine, cysteine, histidine, phenylalanine, tyro-
sine and tryptophan are likely to give stronger
signals, although the strengths reported may be sen-
sitive to the configuration of the instrument.

The results of performing de novo searches on
the tuning and validation datasets are summarized

in Tables 5 and 6. There is a noticeable improve-
ment in the results of de novo sequencing in the
tuning dataset: the correct sequence is ranked first
on eight occasions with the tuned prior as opposed
to six with the original prior out of a total of
39 sequences. With the tuning dataset, 17 correct
sequences appeared in the top 10 with the tuned
prior, against 10 for the original prior.

The improvement is less clear in the validation
dataset but is still present, with 11 correct for the
tuned prior and nine for the original prior out of 31
sequences; 17 correct sequences appeared in the top
10 for both the tuned and original priors.

The improvements gained by tuning the prior
probabilities of the ProbSeq model are slight.
This is to be expected as, when accurately mass-
measured data are available, the information in the
data dominates the prior. The quality of our results
is not critically dependent on specific parameter
settings, which is reassuring. We may have gained
some improvement for marginal data but this
remains to be seen, perhaps through tuning and
validation with a more extensive library of data.

Overall, tuning has resulted in the softening
of some probabilities, e.g. those for immonium

Table 4. Listed for each amino acid are occurrences in the validated sequences throughout the
tuning dataset, occurrences in different spectra, mean probability of immonium ion production
and its standard deviation as sampled from the posterior distribution during the MCMC
exploration

Amino acid Occurrences Spectra Pr(Immonium) Standard deviation

Alanine 57 25 0.0 0.0

Arginine∗ 12 12 0.2418 0.0622

Asparagine 13 10 0.0334 0.0234

Aspartic acid 47 28 0.0071 0.0068

Cysteine∗ 1 1 0.2205 0.0695

Glutamine 8 7 0.0702 0.0514

Glutamic acid 47 22 0.1829 0.0375

Glycine 26 16 0.0 0.0

Histidine∗ 7 7 0.5176 0.0763

(Iso)leucine∗ 83 38 0.1047 0.0201

Lysine∗ 36 28 0.0216 0.0172

Methionine 9 9 0.1405 0.0667

Phenylalanine∗ 14 12 0.4645 0.0623

Proline∗ 24 21 0.0137 0.0135

Serine 33 13 0.0104 0.0108

Threonine 25 22 0.0149 0.0135

Tryptophan∗ 2 2 0.3232 0.0525

Tyrosine∗ 12 12 0.6785 0.0536

Valine 52 30 0.0128 0.0106

∗Amino acids with immonium ions, described as diagnostically important. Leucine and Isoleucine were not

considered to be distinguishable. The probabilities of immonium production were set to zero for alanine and

glycine throughout the tuning process.
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production, and confirmation for others in the
original set. However, the results are not markedly
different and we conclude that a single set of
reasonable parameters will suffice to give good
results over a range of instruments and the details
of their configurations.

We have put in place a flexible, automated
scheme for tuning the prior used in the calcu-
lation of the likelihood Pr(Spectrum | Sequence),
used in both de novo sequencing and databank
searching applications, to which new data can eas-
ily be added and the fragmentation characteristics
observed from new instruments and experiments
accommodated.
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