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Abstract
Latent class analysis (LCA) is a statistical method used to identify a set of discrete, mutually exclusive
latent classes of individuals based on their responses to a set of observed categorical variables. In
multiple-group LCA, both the measurement part and structural part of the model can vary across
groups, and measurement invariance across groups can be empirically tested. LCA with covariates
extends the model to include predictors of class membership. In this article, we introduce PROC
LCA, a new SAS procedure for conducting LCA, multiple-group LCA, and LCA with covariates.
The procedure is demonstrated using data on alcohol use behavior in a national sample of high school
seniors.

In the social and behavioral sciences, it is useful to regard many constructs as latent variables.
These variables cannot be observed directly and instead must be inferred from multiple
observed items. Covariance structure analysis (e.g., the factor model) provides a popular
framework for mapping items onto continuous latent variables. Latent class analysis (LCA)
provides an analogous framework for measuring categorical latent variables. Whereas the
factor model characterizes the latent variable with a continuous (e.g., normal) distribution, the
latent class model divides a population into mutually exclusive and exhaustive subgroups
(Goodman, 1974; Lazarsfeld & Henry, 1968).

LATENT CLASS ANALYSIS
In traditional LCA, two sets of parameters are estimated: class membership probabilities and
item-response probabilities conditional on class membership. Because it is a measurement
model, the latent class model estimates and removes measurement error from the vector of
latent-class membership probabilities.

Latent class models usually involve categorical indicators (although a version of LCA
involving continuous indicators called latent profile analysis [Gibson, 1959] is being used
increasingly). When categorical data are used, the latent class model has the advantage of
making no assumptions about the distributions of the indicators other than that of local
independence; that is, the assumption that within a latent class the indicators are independent.
Local independence is directly analogous to the assumption of uncorrelated uniquenesses often
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made in factor analysis. Dependence between indicators in the overall sample is expected; it
is assumed that the latent class variable will account for these interrelations.

The latent class model has been applied in many domains. For example, in psychology, the
approach has been used to assess temperament (Stern, Arcus, Kagan, Rubin, & Snidman,
1995) and depression (Lanza, Flaherty, & Collins, 2003). In education, teaching style has been
modeled using LCA (e.g., Aitkin, Anderson, & Hinde, 1981). In sociology, this approach has
been used to express poverty as a multidimensional construct (Dewilde, 2004). Recently LCA
(and latent transition analysis, an extension of LCA to repeated measures) has been used
increasingly often as a multivariate approach to behavioral research. For example,
multidimensional alcohol use including features such as frequency of use, quantity of use, and
the existence of heavy episodic use has been modeled by Jackson, Sher, Gotham, and Wood
(2001) and Auerbach and Collins (2006). Other aspects of substance use behavior have been
modeled by Velicer, Martin, and Collins (1996), Chung, Park, and Lanza (2005), Lanza and
Collins (2002, 2006), and Chung, Flaherty, and Schafer (2006).

Two particularly useful extensions of LCA are multiple-group LCA and LCA with covariates.
In multiple-group LCA, both the class membership and item-response probabilities can vary
across groups, and measurement invariance across groups can be empirically tested. Clogg and
Goodman (1984) were the first to introduce a latent class model in which class membership
probabilities and item-response probabilities are conditioned on membership in an observed
group. An example of sex differences in adolescent depression latent classes appears in Lanza
et al. (2003). LCA with covariates extends the model to include predictors of class membership;
latent class membership probabilities are predicted by covariates through a logistic link
(Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Dayton & Macready, 1988). An
example of this model appears in Chung et al. (2006), in which latent classes characterized by
patterns of marijuana use and attitudes were regressed on year to show historical changes in
the prevalence of classes over time.

Software for LCA includes Latent GOLD (Vermunt & Magidson, 2000), PanMark (van de
Pol, Langeheine, & de Jong, 1998), WinLTA (Collins, Lanza, Schafer, & Flaherty, 2002), and
Mplus (Muthén & Muthén, 1998–2006). This article introduces PROC LCA, a new SAS
procedure for latent class analysis developed for SAS Version 9.1 for Windows.1 The software
is available for download free of charge at http://methodology.psu.edu. This article reviews
features of the software and illustrates its use with a series of empirical analyses.

MODEL SPECIFICATION
The following sets of parameters are estimated in the traditional latent class model: γ (gamma)
parameters, which represent latent class membership probabilities, and ρ (rho) parameters,
which are item-response probabilities conditional on latent class membership. The ρ
parameters express the correspondence between the observed items and the latent classes.

If a grouping variable is included, both sets of parameters (γ, ρ) can be conditioned on group.
When one or more covariates are included, an additional set of parameters is estimated: β
(beta) parameters are logistic regression coefficients for covariates, predicting class
membership. When covariates are included, only ρ and β parameters are actually estimated,
although the γ parameters are still of interest. The γ parameters are calculated as functions of
β and the covariates, and are provided in PROC LCA output. If a grouping variable is included,
all parameters are conditioned on group.

1Copyright 2002–2003 SAS Institute, Inc. SAS and all other SAS Institute, Inc. product or service names are registered trademarks or
trademarks of SAS Institute, Inc., Cary, NC, USA.
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Suppose a latent class model with C classes is to be estimated based on a data set including
m categorical items, a covariate x, and a grouping variable g. Let Yi = (Yi1, …, YiM ) represent
the vector of individual i ’s responses to the M items where Yim = 1, 2, …, rm. Let ci = 1, 2, …,
C be the latent class membership of individual i and let I(y = k) be the indicator function that
equals 1 if response y equals k and 0 otherwise. Suppose also that gi represents the value of
individual i’s group membership, xi represents the value of the covariate for individual i, and
its value can relate to the probability of membership in each latent class, γ. Then the latent class
model can be expressed as:

(1)

where γc|g(xi ) = P(Ci = c|xi, Gi = g) is a standard baseline-category multinomial logistic model
(Agresti, 2002). For example, with one covariate x the γ parameters are expressed as:

(2)

for c = 1, …, C −1 with class C as the reference class in the logistic regression. This enables
estimation of the log-odds that an individual falls in latent class c relative to reference class
C. For example, if Class 2 is the reference class, the log-odds of membership in Class 1 relative
to Class 2 for an individual in Group 1 with value xi on the covariate is:

(3)

The exponentiated β parameter corresponding to the covariate is an odds ratio, reflecting the
increase in odds of class membership (relative to reference class C) corresponding to a one-
unit increase in the covariate. Note that multiple covariates can be included simultaneously.

Because class membership probabilities are modeled as functions of the covariates (see
Equation 2), and individuals vary with respect to their covariates, there is a vector of estimated
class membership probabilities corresponding to each individual (or group of individuals with
the same responses to the covariates). The prevalence of each latent class is calculated as the
average across participant-specific class membership probabilities.

In PROC LCA, parameters are estimated by maximum likelihood using an EM (expectation-
maximization) type procedure. Missing data on the latent class indicators are handled in this
procedure, with data assumed to be missing at random (MAR). With missing items, the model
given by Equation 1 is modified so that the product over m = 1, …, M is replaced by a product
over the items observed for that individual. A test of the null hypothesis that data are missing
completely at random appears in the output.

OVERVIEW OF PROC LCA FOR THE SAS SYSTEM
Data Preparation and Exploratory Data Analysis

Coding items measuring the latent class variable—Response categories of items
measuring the latent class variable must be coded with sequential integer values from 1 to R,
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where R is the number of response categories for that particular item. The procedure recognizes
SAS system missing values (.) as the code for missing data. After the coding has been done, a
helpful preliminary step in any LCA is exploring overall relations among pairs of items by
conducting cross-tab analyses. For example, this can help reveal highly related items that may
be partially redundant indicators of a latent variable, functioning as parallel items.

Coding the grouping variable—Only one grouping variable can be included, although
two or more grouping variables can be crossed to create a single grouping variable (e.g., gender
and minority status can be crossed to create a four-level grouping variable: female minorities,
male minorities, female not minorities, male not minorities). The grouping variable should be
coded with consecutive integers starting with 1 (in the preceding example, the groups would
be coded 1, 2, 3, 4).

Coding the covariates—All covariates are treated as numeric in the statistical model.
Categorical covariates should be coded as a dummy variable (or a set of r − 1 dummy variables
if there are r > 2 response categories). Continuous covariates can be transformed to z scores to
aid interpretation by producing standardized logistic regression coefficients.

Basic Model Specification: Required Elements
Table 1 summarizes the statements available in PROC LCA. The SAS data file to be analyzed
must be specified using the DATA option. The data file can contain more variables than will
be used in the analysis and must contain at least two categorical variables to be used as
indicators for the latent class model. There are two ways to organize data for use in PROC
LCA. Most users will organize the data file in the most commonly used way, with one record
per individual. This data structure is required if covariates are to be included in the model.
However, PROC LCA also can handle data that are aggregated into response patterns (i.e., one
record for each unique set of responses to all items). Aggregated data should have one record
per response pattern with a count variable indicating the number of participants with that
particular pattern. An item indicating a grouping variable can be included in the response
pattern, but covariates cannot be included. The count variable must be specified in the FREQ
statement when data are aggregated into response patterns (this statement should not be used
if data are not aggregated). One advantage to aggregating data is that the estimation time can
be reduced. An example using the FREQ statement can be found in the PROC LCA User’s
Guide (Lanza, Lemmon, Schafer, & Collins, 2007).

We recommend that all new analyses begin with fitting a baseline model with no grouping
variable or covariates. Appendix A shows an example of SAS syntax to call PROC LCA for
a baseline latent class model. Note that title statements can be used within the procedure call.
The NCLASS statement is used to specify the number of latent classes that are to be estimated.
Next, two or more categorical variables to be used as indicators of the latent classes must be
listed in the ITEMS statement.

The CATEGORIES statement is used to list the number of response categories in each of the
variables listed in the ITEMS statement. The number of arguments here must equal the number
of variables listed in the ITEMS statement, and the order of the numbers must correspond to
the order of the listed items. The range of valid values is from 2 to 99.

The baseline model specified in Appendix A uses the SEED statement to specify a seed for
generating random starting values. Starting values are discussed later, but it is worth noting
that estimation requires either a random seed or a SAS data set containing user-specified
starting values.
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Model Assessment
A good starting point for identifying an optimal baseline model is to fit a sequence of models
with two classes, three classes, and so on. A variety of tools can be used together for model
selection, including the likelihood-ratio G2 statistic, Akaike’s Information Criterion (AIC;
Akaike, 1974) and Bayesian Information Criterion (BIC; Schwarz, 1978). In addition, model
interpretability should be considered. For example, each class should be distinguishable from
the others on the basis of the item-response probabilities, no class should be trivial in size (i.e.,
with a near-zero probability of membership), and it should be possible to assign a meaningful
label to each class.

Although models with different numbers of latent classes are technically nested, the
distribution of the likelihood ratio statistic comparing two models should not be compared to
a chi-square; the difference G2 statistic can be used only in a rough way to compare model fit.
The AIC and BIC are penalized log-likelihood model information criteria that can be used to
compare competing models (e.g., models with different numbers of latent classes) fit to the
same data. A smaller AIC and BIC for a particular model suggests that the trade-off between
fit and parsimony is preferable.

Expanded Model Specification: Multiple Groups LCA and LCA With Covariates
Multiple-group LCA—A grouping variable can be used in LCA in much the same way as
in multiple-group structural equation modeling. All parameters can be estimated conditional
on group membership, allowing class membership probabilities and item-response
probabilities to differ across groups. It is often advisable to establish whether measurement
invariance across groups holds before making conclusions about group differences in class
membership probabilities. Appendix B shows an example of SAS code for multiple-group
LCA.

Multiple-group LCA can be conducted by specifying the grouping variable in the GROUPS
statement. When the GROUPS statement is used, the user might wish to provide labels (up to
eight characters each) for the groups using the GROUPNAMES statement. The order of the
labels must correspond to the order of the integers denoting the groups. Cases with missing
data for the grouping variable are automatically deleted. (The number of cases used in the
analysis is noted in the output file.)

Measurement invariance across groups—Often when a grouping variable is included
it is important to test for measurement invariance across groups. To do this, a model with free
estimation of the ρ parameters can be compared to the same model that includes restrictions
equating the ρ parameters across groups. (This set of restrictions can be imposed by specifying
the keyword groups in the MEASUREMENT statement.) Because these two models are nested
and the distribution of the likelihood-ratio difference test is asymptotically chi-square, model
fit can be compared by examining the difference between the G2s from each model in the usual
way, by comparing the G2 difference to a chi-square distribution with degrees of freedom equal
to the difference in degrees of freedom. A significant p value suggests that the null hypothesis
of measurement invariance should be rejected. This implies that the meaning of the latent
classes may differ across groups to some extent, and therefore caution should be used in
interpreting group differences in the latent class membership probabilities. Examination of the
ρ parameters in the unconstrained model can shed light on the nature and extent of group
differences in the interpretation of the latent variable. If the group differences in measurement
are severe, it may be prudent to conduct the modeling separately for each group, providing
group-specific interpretations of the latent classes. Often, however, just one or two specific
item-response probabilities may function differently across groups, suggesting possible
modifications that can be made to the overall measurement model (e.g., freely estimating one

Lanza et al. Page 5

Struct Equ Modeling. Author manuscript; available in PMC 2009 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



or more ρ parameters in each group). When the null hypothesis is not rejected, measurement
invariance can be imposed in the LCA model, implying that there is equivalent meaning of the
latent classes across groups.

LCA with covariates—Covariates can be incorporated in the latent class model by
specifying the variable names in the COVARIATES statement. The probability of class
membership depends on the values or levels of the covariates through multinomial logistic
regression, where the dependent variable is latent (latent class membership). When a grouping
variable is included in LCA with covariates, the multinomial logistic regression parameters
are estimated for each group. The item-response probabilities (ρ parameters) do not depend on
the values or levels of the covariates.2

The REFERENCE statement specifies the number of the latent class (an integer) to serve as
the reference class for the multinomial logistic regression. The default reference class is Class
1.

Cases with missing data for a covariate are automatically deleted. (The number of cases used
in the analysis is noted in the output file.) See Appendix C for an example of SAS code for a
model involving covariates.

By default, the log-likelihood test for the overall effect of each covariate is reported in the
output. For each covariate, a significant result (e.g., p < .05) provides evidence that the covariate
is a significant predictor of class membership. If significance tests for covariates are not of
interest, the NOBETATEST option can be used to suppress them, which saves on the time
needed for model estimation.

Estimation Options
PROC LCA employs the EM (expectation-maximization) algorithm to produce maximum
likelihood estimates of all model parameters. (The ESTIMATION statement can be used to
specify the estimation method to be employed. Currently, the only method available, and the
default, is EM.) Based on a data set, a particular model specification, and starting values for
the parameters, the algorithm iterates between the Expectation (E) step and the Maximization
(M) step until either the convergence criterion is achieved or the maximum number of iterations
is reached.

Convergence index and convergence criterion—The convergence index used in
PROC LCA is the maximum absolute deviation (MAD) between parameter sets in successive
iterations. The EM algorithm stops iterating when MAD falls below a specified value, called
the convergence criterion. The default convergence criterion in PROC LCA is MAD = .000001;
a different value can be specified using the CRITERION statement. A larger value for the
convergence criterion results in convergence in fewer iterations, but noticeable additional
improvement in parameter estimates is possible. A smaller value for the convergence criterion
requires more iterations to converge, but once convergence is reached, little improvement in
estimation is possible.

2The fitting paradigm used for this model is based on an assumption of simple random sampling. Although data that do not meet this
assumption can, and often are, used for latent class modeling, it is possible for the interpretation of one or more latent classes to change
after the addition of covariates. If the ρ parameters change substantially with the addition of a covariate, there is evidence that the data
are not representative of the population, and evidence of lack of model fit for the overall population. If this occurs, it might be worthwhile
splitting the sample based on levels of the covariate and examining the latent class model separately for each subsample. Fitting latent
class models in samples that are not simple random samples is a topic of current research (see, e.g., Asparouhov, 2005).
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Maximum number of iterations—The MAXITER statement can be used to specify the
maximum number of iterations to be performed by the EM estimation procedure. If
convergence is reached prior to the value specified in the MAXITER statement, the procedure
terminates normally. Most latent class models converge well before the default value of 5,000
iterations. Very slow convergence can be a sign of underidentification.

Starting values—Random starting values for the ρ parameters can be generated in PROC
LCA by specifying any positive integer value in the SEED statement (default starting values
of 1/NCLASS for γ parameters and 0 for β parameters are used). Use of an identical seed
reproduces an analysis exactly. In most cases, random starting values suffice. However, in
some cases the user might wish to provide starting values in a SAS data file by specifying the
file-name in the START option. (Note that either the SEED statement or the START option
must be included.) The structure of this file must be identical to that of the file created with
the OUTPARAM option (see the section on optional output later). This data file must contain
starting values for the γ, β, and ρ parameters, although focus should be given to values for the
ρ parameters. We recommend using the default starting values for the γ parameters (1/
NCLASS) and the β parameters (values of 0), as they will have little effect on estimation. If
starting values are provided for ρ parameters using the START option and a SEED is specified,
user-provided starting values are ignored. See Appendix A for an example using the SEED
statement, and Appendix 2 in the PROC LCA User’s Guide (Lanza et al., 2007) to see how to
provide starting values in a SAS data set.

Parameter restrictions—The RESTRICT option allows the user to specify parameter
restrictions for the ρ and γ parameters. A SAS data file containing parameter restrictions is
specified here. The structure of this file must be identical to that of the file created with the
OUTPARAM option (see the section on optional output later). Restrictions for β parameters
are not available; all restriction values for these parameters should be set to the value one,
indicating free estimation. Parameter restrictions for the ρ parameters can be useful to help
achieve model identification or to test specific hypotheses about the measurement of the latent
class variable. Appendix 2 in the PROC LCA User’s Guide (Lanza et al., 2007) demonstrates
user-provided parameter restrictions.

Restrictions provided for each parameter in a SAS data file must be integers of value zero or
higher. The following restrictions for ρ and γ parameters are possible:

• Values of zero indicate that a particular parameter is to be fixed to its corresponding
starting value. If the user wishes to fix parameter estimates to a specific value, the
START option must be used in conjunction with the RESTRICT option.

• Values of one indicate that a particular parameter is to be freely estimated (this is the
default for all parameters when the RESTRICT option is not used).

• Integer values of two or greater are used to specify an equivalence set. Estimates for
all ρ or γ parameters with the same value are constrained equal to one another; in other
words, a single parameter is estimated for each set.

If the MEASUREMENT statement is used in conjunction with the RESTRICT option, user-
provided restrictions corresponding to ρ parameters for Group 1 are applied to all subsequent
groups. Additional information on the use of parameter restrictions can be found in the WinLTA
User’s Guide (Collins et al., 2002).

Model identification—Model identification is an issue that should be explored in LCA, as
in all latent variable models. The optimal solution to a model can be difficult to identify if the
amount of information provided is small relative to the number of parameters being estimated.
Information refers to several things, including the number of participants and the number of
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items. In general, complex latent class models (e.g., models with a large number of latent
classes, groups, or covariates) require more information than simple ones. The best way to
detect identification problems or local optima (i.e., solutions other than the optimal one) is to
fit the same model using multiple sets of starting values. This can be done by calling the
procedure repeatedly with different seeds specified. (Advanced SAS users easily can set up a
macro to call the procedure repeatedly.) Even well-identified models can land on a different
solution occasionally; if the solution with the smallest log-likelihood is arrived at using the
majority of the seeds, one can have confidence that it is the optimal solution. If an identifica-
tion problem is observed, providing reasonable parameter restrictions in the ρ parameters often
can solve the problem.

Optional Output: Parameter Estimates, Posterior Probabilities, and Verbose Output
Parameter estimates—Parameter estimates are displayed in the PROC LCA output, which
is sufficient for many users. In the output, estimates are displayed with four significant digits.
Users who wish to see the parameter estimates displayed with greater precision might wish to
save the parameter estimates to a SAS file using the OUTEST or OUTPARAM option. These
options produce files with identical content but different structures.

The OUTEST option produces a SAS data file with the specified name in which all final
parameter estimates are saved in a single record, with a unique variable name for each
parameter estimate. The OUTPARAM option produces a SAS data file with the specified name
that contains final parameter estimates presented in a user-friendly format. Estimates can be
identified by the first four columns: Parameter Type (PARAM), Group Number (GROUP),
Variable Name (VARIABLE), and Response Category (RESPCAT). Values for PARAM must
be one of the following character strings: gamma, beta, or rho. The number of lines in each
parameter set depends on the number of groups, covariates, indicators, and the number of
response categories for each indicator. In each record, the final parameter estimates for each
latent class are presented for that particular combination of Parameter Type, Group Number,
Variable Name, and Response Category.

Because the START and RESTRICT options require SAS data files of the same format as the
file generated by the OUTPARAM option, an easy way to specify starting values or parameter
restrictions is to start by running a preliminary model invoking the OUTPARAM option.
Running just one iteration would suffice for this step, which can be accomplished using the
MAXITER statement. The SAS data file can then be renamed and modified by replacing the
preliminary parameter estimates with either starting values or parameter restrictions. The
modified file can be input in a subsequent run using the START or RESTRICT option. This
practice ensures that the correct structure for the starting values and restrictions SAS data files
is used.

Posterior probabilities—Bayes’s theorem can be used to compute each individual’s
probability of membership in each latent class. The theorem, which is based on individuals’
responses to the latent class indicators, values on covariates, and group membership, as well
as the estimated model parameters, is:

(4)

These values, referred to as posterior probabilities of latent class membership, can be saved to
a SAS data file by specifying a file name in the OUTPOST option. The format of this file is
the same as that of the original SAS data file (one record per individual, or aggregated if the
FREQ option is used). For each latent class, one variable containing the posterior probability
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of membership in that latent class is appended (the new variables are labeled POSTLC1,
POSTLC2, etc.). When data are structured with one record per individual, the ID statement
can be used to specify one or more variables in the analysis data set that are to be included in
the OUTPOST SAS data file. For example, by listing the case identifier in the ID statement,
this identifier is carried through to the OUTPOST data file, allowing the file containing
posterior probabilities to be merged with other data files. See Appendix C for an example using
the ID statement. Note that more than one variable can be specified in the ID statement; all
variables listed here are included in the OUTPOST data file. An application of posterior
probabilities is described later.

When data are organized with one record per individual, the OUTPOST data file contains the
following variables: items indicating the latent class variable (listed in the ITEMS statement),
the grouping variable, the covariates, the posterior probabilities, and any variables specified
in the ID statement. When data are aggregated, the OUTPOST data file contains the following
variables: items indicating the latent class variable (listed in the ITEMS statement), the
grouping variable, the count variable (listed in the FREQ statement), and the posterior
probabilities, which are the same for all individuals with a specific response pattern.

Verbose output—The VERBOSE_OUTPUT option produces more detailed output that
includes the following: restrictions used for all parameters, starting values used for all
parameters, and the iteration history (this shows the MAD and value of the log-likelihood at
each iteration). Listing of the output in SAS can be suppressed using the NOPRINT option.
This can be useful when the parameter estimates are being saved to a file (using the OUTEST
or OUTPARAM options) but no output is needed.

Postprocessing in SAS
Individuals’ posterior probabilities of latent class membership can be useful tools for describing
the latent classes and assessing the accuracy with which individuals can be assigned to latent
classes. Using the posterior probabilities saved in the optional OUTPOST SAS data file,
individuals can be assigned to the class in which they have the highest posterior probability of
membership (this is sometimes referred to as the maximum-probability assignment rule). If
class membership is treated as known, describing classes can be done in a straightforward
manner, for example, by using analysis of variance to test for mean differences across class in
some characteristic. However, unless the probability of membership in a particular latent class
is one for an individual, there is uncertainty associated with latent class membership. Because
this uncertainty generally is not modeled when subsequent analyses are done using latent class
assignment as a variable, it is important to interpret the results of such analyses with caution.

Posterior probabilities can be useful indicators of the assignment accuracy of a model. If
individuals are assigned using maximum-probability assignment, the average posterior
probability of membership can be calculated for membership in each class, given class
assignment. An average close to one for the assigned class suggests that one can have high
certainty about true class membership for those individuals. The average posterior probabilities
can then be used to calculate the odds of correct classification for each class (Nagin, 2005) and
the overall entropy (Celeux & Soromenho, 1996). These diagnostic tools are useful for judging
the confidence one can have when assigning individuals to classes. When the classes are more
distinct, posterior probabilities tend to be closer to one for a single class, and closer to zero for
the remaining classes (see Nagin, 2005, for simulation results). Although posterior probabilities
close to zero and one are desirable, particularly if class assignment is conducted, they are not
necessarily an indicator of model fit.

Note that if there are participants with all missing indicator data, their posterior probabilities
will be equal to the overall class membership probabilities. When assigning individuals to
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classes based on their maximum posterior probability, it might make sense to include only
those individuals who have responded to at least one of the indicators.

A STEP-BY-STEP EXAMPLE OF LCA: ALCOHOL BEHAVIOR LATENT
CLASSES

The example used here to illustrate PROC LCA explores latent classes of alcohol use behavior
among high school seniors in the United States. Data are from the 2004 cohort of the public
release of the Monitoring the Future study (Johnston, Bachman, O’Malley, & Schulenberg,
2004). The sample consists of 2,490 high school seniors (48% boys, 52% girls) who answered
at least one question on alcohol use. The goals of the study are to explore alcohol use behavior
in this population, examine gender differences in the measurement of alcohol use and in alcohol
use behavior, and explore whether grades and skipping school are predictive of alcohol
behavior class membership.

Seven binary indicators of drinking behavior were used in the latent class model. The indicators
measured lifetime alcohol use (more than just a few sips), past-year alcohol use, past-month
alcohol use, lifetime drunkenness, past-year drunkenness, past-month drunkenness, and five
or more drinks in a row during the last 2 weeks. Each indicator was coded 1 (behavior not
reported) or 2 (behavior reported). Additional variables used in this example were an indicator
of sex, a binary variable indicating whether participants have skipped an entire day (or more)
of school in the previous month, and a continuous measure of grades. Table 2 shows the
distribution of all variables used in the example.

The following three research questions were addressed:

1. Are there underlying types of drinking behavior? In other words, is there a latent class
structure that adequately represents the heterogeneity in drinking behavior among
high school seniors? If so, what are the types and their corresponding prevalence?

2. Is the measurement of drinking behavior latent classes invariant across sex? In other
words, does the same class structure for drinking behavior hold for males and females?
This question does not imply that the prevalence of drinking classes would be constant
across sex, just the measurement of drinking classes.

3. Are grades or skipping school days predictive of membership in drinking behavior
classes?

Research Question 1: Baseline Model Selection
As Table 3 shows, the drop in G2 relative to the drop in degrees of freedom is substantial with
each additional class up to the five-class model; the addition of classes beyond five provides
essentially no improvement in fit, so based on the G2 statistic the five-class model appears best.
The AIC and BIC values shown in Table 3 agree with the G2 statistic, also indicating that the
five-class model is the best among these models.

An inspection of the parameter estimates from the five-class model suggests that the classes
are distinguishable and nontrivial, and meaningful labels can be assigned to each. Each column
of Table 4 shows, for each class, the assigned label and probability of membership, as well as
the item-response probabilities for endorsing each item. For example, 17.9% of high school
seniors are expected to belong to the nondrinkers class; these individuals are not expected to
endorse any of the seven drinking questionnaire items. Similarly, 33.5% are expected to belong
to the heavy drinkers class, with very high probabilities of endorsing all seven items. The
remaining classes are the experimenters (21.9%), drinkers (9.3%), and occasional bingers
(17.4%).
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Before selecting a final baseline model, identification should be examined. It helps to look at
the log-likelihood value across iterations to see if convergence was achieved smoothly (the
iteration history can be printed by specifying the VERBOSE_OUTPUT option). In addition,
the estimation should be repeated using different seeds to try different sets of starting values.
Models that are identified will have one dominant solution that is arrived at most frequently
among various sets of starting values. Solutions should be considered to be identical if the log-
likelihood and parameter estimates are replicated, regardless of the somewhat arbitrary order
of the latent classes. In this example, the five-class model appeared to be identified, and was
selected as the baseline model of alcohol use behavior among high school seniors.

Research Question 2: Multiple-Groups LCA
Once a baseline latent class model is selected, the user might wish to incorporate grouping
variables or covariates. Sex was added to the five-class model as a grouping variable. To test
whether measurement is invariant across sex, this model was run with all parameters freely
estimated and again with item-response probabilities constrained equal across groups (see
Appendix B for the model specification). The G2 statistic was 27.8 (df = 177) for the freely
estimated model and 61.4 (df = 212) for the constrained model, resulting in a likelihood-ratio
difference test statistic of 33.6 (df = 35). This difference is not statistically significant, providing
strong evidence that measurement invariance across sex holds. The item-response probabilities
were held equal across sex for all remaining analyses that include sex as a grouping variable.

Because measurement invariance held, sex differences in class membership probabilities (γ
parameters) could be interpreted with confidence that the classes have exactly the same
meaning for males and females. Males and females were equally likely to belong to the
nondrinkers class (18.0% of males, 18.1% of females), experimenters class (22.0% of males,
22.7% of females), and drinkers class (9.5% of males, 9.5% of females), whereas females were
more likely to belong to the occasional bingers class (12.9% of males, 21.3% of females) and
males were more likely to belong to the heavy drinkers class (37.7% of males, 28.5% of
females).

Research Question 3: LCA With Covariates
In the example, grades and an indicator of whether the adolescent had skipped school in the
past month were added as covariates. To simplify interpretation, each covariate was added
separately in the latent class model, although both covariates (and their interaction, if desired)
could be included in a single model. The nondrinkers class (Class 5) was specified as the
reference class for the multinomial logistic regression. (Appendix C shows the model
specification for both models.)

Both grades (p < .0001) and skipped school (p < .0001) were strong predictors of latent class
membership. Table 5 shows the β parameters for the effect of each covariate, as well as odds
ratios (exponentiated β parameters). For grades, the inverse of the odds ratio is also shown to
facilitate interpretation.

For skipped school (a dummy variable), odds ratios are interpreted as the increase in odds of
membership in a particular latent class relative to the reference class given that an adolescent
has skipped school in the past month. For example, adolescents who skipped school were 50%
more likely to be in the experimenters class than the nondrinkers class, twice as likely to be in
the drinkers class than the nondrinkers class, and so on. The most striking finding is that
adolescents who skipped school were five times more likely to belong in the heavy drinkers
class than the nondrinkers class.
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For grades (a standardized variable), odds ratios are interpreted as the increase in odds of
membership in a particular latent class relative to the reference class corresponding to a one-
unit increase in the covariate. When odds ratios are less than one, the inverse often can be
interpreted more easily. For example, for every 1 SD lower in grades, adolescents were 20%
more likely to be in the experimenters class than the nondrinkers class, 40% more likely to be
in the drinkers class than the nondrinkers class, and so on. Again, the strongest effect of grades
appears for heavy drinkers, such that for every 1 SD lower in grades, adolescents were 60%
more likely to belong in this class than the nondrinkers class. The reference class can be
respecified to obtain odds ratios for different pairwise comparisons.

Plots of class membership probabilities across levels of the covariates—One
helpful tool for interpreting the effect of covariates on the latent class variable is plots showing
the prevalence of each latent class across levels of each covariate. To do this, a Microsoft Excel
spreadsheet was created with a range of values on the covariates. For skipped school, class
membership probabilities are plotted in Figure 1 for those who did not skip school in the
previous month, and for those who did skip school. Probabilities of membership in the
nondrinkers, experimenters, and drinkers classes were lower for individuals who skipped
school, and the probability of membership in the heavy drinkers class was twice as high for
those individuals. For grades, class membership probabilities are plotted in Figure 2 for values
ranging from −2.0 to 2.0 on the standardized grades variable (increments of 0.1 SD were used).
Individuals with grades at least 1.5 SD above the mean were most likely to belong to the
nondrinkers class. The experimenters, drinkers, and bingers classes were not strongly related
to grades. Membership in the heavy drinking class was strongly predicted by grades, with
nearly half of the lowest graded individuals expected to belong to this class.

CONCLUSIONS
Scientists are increasingly using latent class models to identify underlying subgroups of
individuals who share important characteristics or behaviors. PROC LCA provides a simple,
convenient approach to estimating these models in the SAS environment. The procedure is
available for download free of charge at http://methodology.psu.edu. Multiple-group LCA and
LCA with covariates provide two important and useful extensions to the traditional latent class
model. PROC LCA provides the basis for future work on additional features and modeling
extensions, including a SAS procedure for latent transition analysis, where transitions over
time in latent class membership are modeled using longitudinal data.
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FIGURE 1.
Class membership probabilities as a function of whether adolescents skipped school in the past
30 days.
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FIGURE 2.
Class membership probabilities as a function of grades in school (standardized).
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TABLE 1

Summary of PROC LCA Statements and Options

Syntax Required Description

PROC LCA ✓ Invokes the procedure

Options

 DATA ✓ Specifies SAS data file to be analyzed

 VERBOSE_OUTPUT Shows starting values, parameter restrictions, and
maximum absolute deviation and log-likelihood
at each iteration

 OUTEST Saves parameter estimates to SAS data file in one
record

 OUTPARAM Saves parameter estimates to SAS data file

 OUTPOST Saves posterior probabilities to SAS data file

 NOPRINT Suppresses printing of output

 START Allows user to provide starting values

 RESTRICT Allows user to specify parameter restrictions for
item-response probabilities

 NOBETATEST Suppresses tests of significance for covariates

Statements

 NCLASS ✓ Specifies number of latent classes

 ITEMS ✓ Declares variables that indicate latent class
variable

 CATEGORIES ✓ Specifies number of response categories in items

 ID Declares identifier and other variables to retain in
posterior probabilities SAS file

 GROUPS Declares categorical grouping variable

 GROUPNAMES Specifies a label for each group

 COVARIATES Declares variables to include as covariates

 REFERENCE Specifies latent class to use as reference group in
prediction from covariates

 FREQ Declares frequency count variable, to use when
data are aggregated

 ESTIMATION Specifies estimation procedure

 SEED ✓a Specifies seed for random number generator

 MEASUREMENT Invokes measurement invariance across groups

 MAXITER Specifies maximum number of iterations

 CRITERION Specifies convergence criterion for maximum
absolute deviation

a
SEED statement is required only if the START option is not included in the PROC LCA statement.
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TABLE 2

Descriptive Statistics

Variable in Model Code Label Frequency (Valid %)

Indicators of latent class

 Lifetime alcohol use 1 No 442 (18.1)

2 Yes 2,001 (81.9)

. Missing 47

 Past-year alcohol use 1 No 652 (26.8)

2 Yes 1,784 (73.2)

. Missing 54

 Past-month alcohol use 1 No 1,235 (50.5)

2 Yes 1,210 (49.5)

. Missing 45

 Lifetime drunkenness 1 No 988 (42.7)

2 Yes 1,325 (57.3)

. Missing 177

 Past-year drunkenness 1 No 1,182 (51.2)

2 Yes 1,126 (48.8)

. Missing 182

 Past-month drunkenness 1 No 1,672 (71.4)

2 Yes 668 (28.6)

. Missing 150

 5+ drinks in past 2 weeks 1 No 1,773 (74.2)

2 Yes 617 (25.8)

. Missing 100

Grouping variable

 Sex 1 Male 1,098 (47.7)

2 Female 1,204 (52.3)

. Missing 188

Categorical covariate

 Skipped school 0 No 1,478 (67.1)

1 Yes 725 (32.9)

. Missing 287

% Missing M (SD)

Continuous covariate

 Grades (standardized) 8.8 0.0 (1.0)
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TABLE 3

Comparison of Baseline Models

No. of Classes Likelihood Ratio G2 Degrees of Freedom AIC BIC

2 2561.5 112 2591.5 2678.8

3 910.7 104 956.7 1090.5

4 209.1 96 271.1 451.5

5 3.5 88 81.5 308.4

6 3.5 80 97.5 371.0

7 2.8 72 112.8 432.9

Note. Boldface type indicates the selected model. AIC = Akaike’s Information Criterion; BIC = Bayesian Information
Criterion.
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APPENDIX A

SAS SYNTAX FOR BASELINE MODEL

Five-Class Model

PROC LCA DATA=drugs;

  TITLE2 ‘5-class model, 7 items’;

  NCLASS 5;

  ITEMS alc_life alc_yr alc_mo alc_5up drunk_life
drunk_yr drunk_mo;

  CATEGORIES 2 2 2 2 2 2 2;

  SEED 861551;

RUN;
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APPENDIX B

SAS SYNTAX FOR MODELS WITH A GROUPING VARIABLE

Five-Class Model With Sex as a Grouping Variable and All Parameters Estimated Freely

PROC LCA DATA=drugs;

  TITLE2 ‘5-class model, 7 items, by sex (no
measurement invariance)’;

  ID caseid;

  NCLASS 5;

  ITEMS alc_life alc_yr alc_mo alc_5up drunk_life
drunk_yr drunk_mo;

  CATEGORIES 2 2 2 2 2 2 2;

  GROUPS sex;

  GROUPNAMES male female;

  SEED 861551;

RUN;

Five-Class Model With Sex as a Grouping Variable, With Measurement Invariance Imposed
Across Groups

PROC LCA DATA=drugs;

  TITLE2 ‘5-class model, 7 items, by sex (measurement
invariance)’;

  ID caseid;

  NCLASS 5;

  ITEMS alc_life alc_yr alc_mo alc_5up drunk_life
drunk_yr drunk_mo;

  CATEGORIES 2 2 2 2 2 2 2;

  GROUPS sex;

  GROUPNAMES male female;

  MEASUREMENT groups;

  SEED 861551;

RUN;
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APPENDIX C

SAS SYNTAX FOR MODELS WITH COVARIATES

Five-Class Model With Grades in School as Covariate

PROC LCA data=alcohol;

  TITLE2 ‘5 drinking classes, grades as covariate’;

  ID caseid;

  NCLASS 5;

  ITEMS alc_life alc_yr alc_mo drunk_life drunk_yr
drunk_mo alc_5up;

  CATEGORIES 2 2 2 2 2 2 2;

  COVARIATES grades;

  REFERENCE 5;

  SEED 861551;

RUN;

Five-Class Model With Skipped School as Covariate

PROC LCA data=alcohol;

  TITLE2 ‘5 drinking classes, skipping school as
covariate’;

  ID caseid;

  NCLASS 5;

  ITEMS alc_life alc_yr alc_mo drunk_life drunk_yr
drunk_mo alc_5up;

  CATEGORIES 2 2 2 2 2 2 2;

  COVARIATES skip;

  REFERENCE 5;

  SEED 861551;

RUN;
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