
Procedural 3D Building Reconstruction using Shape Grammars and Detectors

Markus Mathias∗, And̄elo Martinović∗, Julien Weissenberg†, Luc Van Gool∗†

∗ESAT-PSI/Visics

K.U.Leuven

Leuven, Belgium

{Markus.Mathias, Andelo.Martinovic, Luc.VanGool}@esat.kuleuven.be

†Computer Vision Laboratory

BIWI/ETHZ

Zürich, Switzerland

weissenberg@vision.ee.ethz.ch

Abstract—We propose a novel grammar-driven approach
for reconstruction of buildings and landmarks. Our approach
complements Structure-from-Motion and image-based anal-
ysis with a ‘inverse’ procedural modeling strategy. So far,
procedural modeling has mostly been used for creation of
virtual buildings, while the inverse approaches typically focus
on reconstruction of single facades. In our work, we reconstruct
complete buildings as procedural models using template shape
grammars. In the reconstruction process, we let the grammar
interpreter automatically decide on which step to take next.
The process can be seen as instantiating the template by
determining the correct grammar parameters. As an example,
we have chosen the reconstruction of Greek Doric temples. This
process significantly differs from single facade segmentation
due to the immediate need for 3D reconstruction.

I. INTRODUCTION

Over the last years, the efficient creation of 3D mod-

els, ranging from single landmarks up to whole cities,

has received increasing interest. Hereby landmarks play

a particularly important role. Structure-from-Motion (SfM)

approaches are popular methods to build such models from

image sequences. They do not require expensive hardware

and the images can be re-used for model texturing. Yet,

SfM has problems which have proven to be difficult to

solve [1]. It is doubtful whether further refinements to the

typical SfM pipelines, i.e. better bottom-up processing, can

overcome these issues. Therefore, it is worth exploiting prior

knowledge about the scene. In the case of buildings, such

knowledge can be provided through shape grammars, which

describe the structure of buildings. Procedural modeling,

based on such grammars, is a powerful method to efficiently

produce 3D building models [2]. It offers a lightweight

semantically meaningful representations instead of huge

mesh files. However, procedural modeling has mainly been

used for the creation of new virtual buildings, not for

reconstruction of existing ones. The process of ‘inverse’

procedural modeling has so far essentially been limited to

the analysis of facades.

(a) Sparse point cloud (b) Pruned detections in 3D

(c) One of the input images (d) Our final reconstruction

Figure 1. Reconstruction of the Temple of Poseidon in Paestum, Italy

We propose to create 3D models of buildings, by com-

bining SfM, building element (‘asset’) detection, and in-

verse procedural modeling. The latter incorporates a shape

grammar interpreter which drives the process. The usage

of asset detectors avoids fragile segmentation processes and

leverages recent progress in object class recognition. As

grammars are specific for a particular building style, like

our Doric temples illustration, they need to be pre-selected

correctly. This is not critical however, as one can automat-

ically mine images and information from Wikipedia pages

of landmark buildings [3]. The Wikipedia pages typically

specify the building style. This is also the case for the

examples shown in this paper. It is also important to note

that the mined images often do not allow for a complete

SfM reconstruction.

The remainder of the paper is organized as follows:

Sec. II discusses the related work. Sec. III describes the

four main components of our system, namely the grammar

interpreter (Sec. III-A), the asset detector (Sec. III-B), the

3D reconstruction module (Sec. III-C) and the vision module

(Sec. III-D). Sec. IV describes how these work together

to instantiate a procedural 3D model. The validity of our

approach is shown in a case study in Sec. V. Finally, Sec.

VI concludes the paper.

II. RELATED WORK

In the field of urban architecture modeling, numerous ap-

proaches are available. In the following we give an overview

of representative works.

Grammar-based architectural modeling has a long history.

In 1975, Stiny [4] introduced the idea of shape grammars.

These were successfully used in architecture, but due to their

over-expressiveness the applicability for automated genera-

tion of buildings was limited. A breakthrough came with

the introduction of split grammars [5], with mechanisms

to enable automatic rule derivation. Further development of

this idea led to the introduction of CGA Shape [2], a shape

grammar designed for the procedural generation of large-

scale urban models [6], [7].

A framework for interactive grammar editing has been

introduced by Lipp et al. [8], making procedural modeling

more accessible. Approaches to derive grammar rules from

input images have been presented by [9]–[11]. While the first

approach uses an interactive method to construct a grammar

from the images, the others try to automate this process,

relying on regular and repetitive facade patterns. In their

recent work, Vanegas et al. [12] use a rewriting grammar

to describe the building geometry, based on aerial imagery.

Cornelis et al. [1] present an approach for stereo-based, real-

time, but simplified 3D scene modeling. Gallup et al. [13]

has demonstrated a way to also handle non-planar surfaces.

An approach for automatic partitioning of buildings into

individual facades has been described by [14], while [15]

uses the concept of facades to reconstruct street-side models

of buildings.

Probabilistic approaches have gained ground since the

influential work of Dick et al. [16], where a model-

based, Bayesian approach with Markov Chain Monte Carlo

(MCMC) optimization is used. Alegre and Dellaert [17] use

a stochastic context-free grammar and MCMC methods to

deduce semantic information from building facades, rely-

ing on color constancy and rectangular shapes of facade

elements. Ripperda and Brenner [18] apply reversible jump

MCMC methods for facade reconstruction, together with a

formal grammar for facade description. Recently, Teboul et

al. [19] have used a coarse probabilistic interpretation of

the facade to match the instantiated grammar model to the

observed image. In order to find the grammar parameters,

they kick-start the process with a pixel-wise segmentation

and labeling step and then employ an algorithm for random

walk exploration of the grammar space.

Our approach combines the robustness of a top-down

grammar-based approach with the flexibility of the bottom-

up image-based approach. Our main contributions are: (1)

The reconstruction process is guided by the grammar. In-

stead of the developers having style-specific guidelines in

mind when producing the system, a grammar interpreter

tool renders the process more generic. It is the grammar

that decides on what to do when. Moreover, structures

that may not even be visible can be filled in. (2) Rather

than relying on fragile segmentation processes to kick-start

the semantic analysis, the grammar chooses the matching

available detectors to assign initial semantic labels to image

regions. (3) The system learns from its previous results.

For instance, asset detectors self-improve by using earlier

results as additional training material. This also allows us

to start with rather generic asset detectors, which have not

been developed uniquely for the targeted style.

III. MAIN SYSTEM COMPONENTS

Our system is composed of four main components:

• Grammar interpreter: Analyzes the input shape

grammar, extracts semantic information and leads the

reconstruction process.

• 3D reconstruction module: Generates a 3D point

cloud from the input images through uncalibrated SfM.

• Asset detectors: Extracts bounding boxes of ‘assets’

(building substructures) in the images.

• Vision module: Improves the detections by using 3D

and the semantic information coming from the gram-

mar.

We will use ’shape symbol’ to refer to a string or name

in the grammar, which refers to a class of shapes. In case

a detector is available for that class of shapes, that type of

shape is referred to as an ‘asset’. Windows, doors, or pillar

shafts are examples of assets in our system.

The input to our system is thus a set of images of the

building to reconstruct, a database of asset detectors and a

style grammar whose class of possible derivations includes

the building of interest. The above components are generic

and have each been elaborated to the point where they

support the Doric temple showcase. For instance, we have

trained detectors of capitals and pillar shafts, but would not

have detectors for important elements in other styles yet

(except for very general classes like windows and doors).

Similarly, CGA shape grammars come with a gamut of

rules, of which our system handles Repeat and Split rules.

A simple CGA grammar is given in Fig. 3. The Doric

temple CGA grammar underlying this paper is provided as

supplementary material.

Fig. 2 shows how the parts of the system interact. First

(1), the grammar interpreter initializes the vision module

with a list of shape symbols automatically extracted from the

grammar. They are then compared with the list of symbols

that represent trained asset detectors from our database.

The matching symbols (assets) are identified, reported to

the grammar interpreter (2) and the detection (Sec. III-B)

Figure 2. The proposed system.

process is initialized for those assets resulting in detection

bounding boxes in all input images (3-4).

The images are fed into the 3D reconstruction module

ARC3D [20] to obtain a sparse 3D point cloud and the

camera parameters from the building (5-6). For the matched

symbols (detectable assets) the grammar interpreter parses

the grammar to find structural information e.g. spatial con-

figuration or repetitions of these symbols (step 7).

The vision module (Sec. III-D) uses a plane fitting al-

gorithm to extract the dominant planes of the building.

The detections from all images are projected into 3D and

re-weighted based on consensus in 3D and the structural

information. The output of this vision module are the sizes

of the detected assets and their color, the footprint for the

building and the parameters for the structural configurations

(step 8). Finally the building can be instantiated by the

grammar interpreter by using the extracted parameters.

A. Grammar Interpreter

In this paper we use CGA Shape grammar for the descrip-

tion of our procedural models. CGA Shape has been success-

fully employed in various urban reconstruction applications

[2], [7], it has a standardized description with powerful

shape operations while remaining readable to humans and

a commercial tool (CityEngine) exists for rendering 3D

models from CGA Shape rules [6]. The CGA Shape gram-

mar supports a very large number of different operations

and functions in its rules, which are outside the scope of

this paper. Therefore, we only present the essence of the

grammar.

1) Grammar definition: The grammar is defined by four

components [2]:

• A finite set of shapes S = {S1 . . . Sn}
• A finite set of attributes A = {A1 . . . Am}
• A finite set of shape operations O = {O1 . . . Ok}
• A finite set of production rules R = {R1 . . . Rl}:

pred → (cond) succ,

where the pred(ecessor) shape is replaced by the

succ(essor) shape, if the cond(ition) evaluates to true.

Model production starts from an initial shape, which is most

commonly the building footprint. This shape is gradually

refined as rules are successively applied. We now concisely

describe these concepts. For more details see [2].

2) Shapes: Each shape consists of a symbol, geometric

and numeric attributes. The symbol is the identifier of a

shape, and is usually just a string. Geometric attributes

correspond to the scope, an oriented bounding box in space,

which is defined by the starting point, three main direction

vectors and a size vector. Each shape can be either a terminal

or a non-terminal. The latter is replaced by other shapes

using the production rules. Terminal shapes correspond to

simple geometric primitives, like cubes, planes, etc. or more

complex full 3D meshes.

3) Shape Operations:

• Scope operations modify the scope of a given shape

and include translation, rotation, and resizing.

• Split operations split the scope along a given axis, with

split sizes as attributes.

• Repeat operations indicated with a ’*’ repeat a shape

in a given direction as long as there is enough space.

In CGA Shape they are written as a part of a split rule.

The actual number of instantiated shapes depends on

the rule attributes and the scope size of the predecessor

shape. E.g. a window tile gets repeated over the whole

length of a floor.

• Component split operation splits 3D scopes into

shapes of lesser dimension, e.g. faces, edges, or ver-

tices.

4) Automatic Extraction of Semantic Information: In

order to get the semantics of the building from a given

shape grammar, we automatically construct a tree-like struc-

ture. Its nodes represent shapes, split, component split and

repeat operations, capturing the structure of the building.

The process begins with the extraction of shape symbols,

and their classification as terminal or non-terminal shape

symbols. In the next step, the rule set is analyzed, creating

the tree structure. The interpreter also extracts the attributes

from the grammar and assigns them to the appropriate nodes

in the tree. An example grammar and its tree structure are

Figure 3. An example CGA grammar is shown on the left. The resulting shape tree is in the middle, and the rendered model with the default values on
the right.

shown in Fig. 3.

After the interpreter has analyzed the input grammar, the

extracted symbols are fed to the vision module, which then

returns the list of detectable assets. The assets constrain the

grammar interpreter to extract only structure and compo-

sition information pertaining to assets. For each asset, it

queries the semantic shape tree to retrieve the number and

direction of repeat configurations the shape symbol appears

in. This information is then sent to the vision module to

re-weight the existing detections (see Sec. III-D).

In the next step, we perform queries on all pairs of assets,

determining their possible mutual composition. Assets typ-

ically correspond to multiple shapes in the shape hierarchy.

Therefore, we check if all of the instances of one asset are

in the same configuration with instances of a second asset.

The configurations we can extract from the shape tree are:

• One shape is part of another shape

• One shape is on top/left/bottom/right of the other,

relative to parent scope

For the Doric temple example, the system notices that

capitals are on top of shafts, and such coupling information

is passed on to the vision module. Similarly, it would notice

that windows are parts of facades, but not always on top of

doors.

B. Asset detector

An important part of the strategy is to keep avail-

able a large set of asset detectors. We have used Felzen-

szwalb’s [21], trained on a few hundred hand-labeled exam-

ples for each asset. The detectors output bounding boxes of

image regions where the asset was found, together with a

score. Of course, there are the usual false positives and false

negatives. The exploitation of the grammar helps the vision

module in re-weighting or pruning those or just reducing

their weight.

Another important aspect of our system is its ability to

improve the detectors based on its previous ‘experience’. For

instance, the capital and shaft detectors that are activated to

(a) General detector (b) Specialized detector

Figure 4. Comparison of the general detector and the retrained specialized
one.

handle the Doric temples in this paper have been trained on

a diverse set of examples, including Ionic and Corinthian

style in addition to Doric ones. As the system arrives at

high confidence detections during the re-weighting process,

it can then collect specific training examples to specialize

the current general detector to one better suited for Doric

temples as shown in the example Fig. 4. This online learning

increases the chances of success to reconstruct the next Doric

temple as demonstrated in V-A.

C. 3D reconstruction module

For the creation of a 3D point cloud from the images

of a building, we use the publicly available, online web

service ARC3D [20]. It employs a SfM approach which

also estimates the camera positions and calibrations. The

meshed surfaces provided by ARC3D are not used, as its

3D information is only needed to support our system and

not to deliver parts of the output model. One can imagine

that one might eventually want to use part of the ARC3D

meshes for ornamental structures, if they were not available

as assets.

D. Vision module

While the grammar interpreter guides the reconstruction

process, the vision module gathers the information from the

3D data, the detectors and is responsible for substantiating

Figure 5. Plane estimation process: The first image shows the entire point
cloud, then the planes are estimated in the reduced point cloud and shown
in the cleaned complete point cloud.

the semantic information extracted from the grammar. It

consists of four main components.

(1) The plane estimator, that extracts the dominant planes

from the sparse 3D point cloud. (2) The module for 3D rea-

soning is responsible for projecting the 2D object bounding

boxes from the images into 3D and to estimate the assets

sizes. (3) The spatial relations between different assets is

utilized to re-weight matching assets by the module for

spatial configurations. (4) Eventually, detections for assets

that appear in a repeat rule of the grammar are enhanced by

similarity detection.

The modules for 3D reasoning, spatial configuration and

similarity detection implement a re-weighting scheme (wi
3D,

wi
sp and wi

sim) of the detection score Si
det of the i-th

detection. The final score Si
final is calculated as:

Si
final = Si

det · wi
3D · wi

sp · wi
sim (1)

1) Plane estimator: We apply RANSAC [22] as the

basic algorithm to extract facades from the point cloud. To

improve the quality of the detected planes we reduce the

point cloud to points that project into detection bounding

boxes in the images. This leads to planes going through the

assets of interest. We set the inlier threshold proportional to

the size of the point cloud. We stop extracting planes when

the number of inliers of the final estimate is less than a

given fraction of the total number of points. Furthermore,

as soon as we have more than two planes detected, we

calculate the gravity vector and the ground plane through the

vector product of the plane normals, under the assumption

of vertical planes. The footprint of the temple is extracted

from the intersection of the ground plane with the facade

planes. Fig. 5 illustrates the process of finding the planes.

2) 3D reasoning module: The planes detected in the

sparse 3D model are used to back-project the bounding

boxes from all views into 3D. In the planes in 3D overlap-

ping detections are clustered. The clusters Cj are found in a

greedy fashion. The detections get sorted by their score and

starting from the best scoring detection as a cluster center, all

overlapping detections are added to that cluster. A detection

that does not overlap with any previous defines a new cluster.

The weight w3D accounts for the size of the cluster and the

‘rectangularity’ of the detection. The latter is defined by

the ratio Ap/Abr, the area of the polygon Ap obtained by

back-projecting an image detection bounding box onto the

(a) Detections (b) Intersection and size esti-
mation

Figure 6. Determining the assets size: the red and green arrows indicate
the estimated height and width respectively.

3D asset plane and the area of the corresponding polygon’s

minimum bounding rectangle Abr. This rectangularity ratio

decreases the influence of detections that come from cameras

with a non-perpendicular angle to the plane, as detections

coming from an angle oblique to the plane produce spread

polygons in 3D. Every detection belongs to a cluster Cj,

represented by the cluster center (the detection of the cluster

with the highest score). The ratio of the size of the cluster

|Cj| and the number of times n the cluster center can be

seen by cameras rates the size of the cluster.

wi
3D =

Ap

Abr

· |Cj|
n

(2)

After thresholding by detection scores, cluster size and

rectangularity, the remaining detections belonging to each

cluster are used to find the spatial extent of the detected

assets (see Fig. 6). The intersection area of these back-

projected detections is orthogonally projected to the x and

y axes (the y axis being aligned with the gravity vector) to

find the asset’s dimensions (red and green arrow).

3) Module for spatial configurations: This module uses

semantic information coming from the grammar interpreter.

The re-weighting wi
sp is based on the spatial configura-

tions of detections. The grammar interpreter informs the

vision module about the possible spatial relations (c1 . . . ck)
between two elements. For these elements the following

relations are possible: “left of”, “right of”, “top of” and

“bottom of”. If one of these configurations is reported by

the grammar interpreter, the vision module verifies them in

the 3D plane.

wi
sp =

1

k

k
∑

t=1

wi,t
sp (3)

wi,t
sp =

{

α if detection fits ct

1 otherwise
, t ∈ (1 . . . k) , α > 1

The score of every detection that appears in a given rela-

tion is boosted by a constant multiplier α (in our experiments

Figure 7. Similarity voting space for a single detection (red rectangle).

α = 1.1).

4) Similarity detection: When the grammar interpreter

informs the vision module that an asset appears in a repeat

rule, it expects as an answer the repeat distance. The similar-

ity detection not only extracts this parameter but calculates

a new weight wi
sim for the detections of the repeat rule. For

detections with no information about repetition wi
sim is set

to 1. The presence of a repeat rule implies directly that the

asset included in that rule will appear several times along

a given axis. This module searches for this periodicity. It

helps the detection performance in three ways. Assets that

have not been detected so far can be inferred by similarity

to a detected one. As the repeat is defined along an axis,

the repeated assets are expected to lie on a certain line, the

similarity line. The relative distance of the repeated assets

to that similarity line defines wi
sim. The parameter for the

repeat distance is found as a byproduct of the repetition

detection.

Fig. 7 shows the structures deemed similar for the detec-

tion marked with a red rectangle.

Similarity voting: For every image a global voting

space (accumulator) is created. The similarity voting is based

on local image features. Every feature Ft is described by

its position pt, its scale st and the feature descriptor dt,

i.e. Ft = (pt, st,dt). The algorithm iterates over all asset

detections in an image and uses an ISM-like voting scheme

[23] to find similar detections.

Starting with one detection, the set of indices I denotes

all features Fi inside that detection bounding box. They get

assigned a vote vector vi to the center of the box. The

indices J refer to the remaining features Fj outside. For

each feature Fj we determine the vote vector by a nearest

neighbor search as follows:

vj =
sj

sk

· vk with k = argmin
i∈I

{||di − dj ||} (4)

Now, every image feature Ft is associated with a vector vt

and cast a vote by adding a Gaussian kernel with standard

deviation σ centered at pt + vt to the accumulator. The

process is repeated for all detections of the image resulting

in one voting space per image.

In our implementation we use Hessian Affine interest

points [24] and SIFT feature descriptors [25]. The value for

σ is set dependent of the mean detection bounding box size

of the current image.

Similarity Line Extraction: Similarity lines are detected

separately for each image that contains detections. The best

similarity lines are found by the lines through the maxima

of that voting space using RANSAC [22]. The number of

similarity lines searched per image depends on the number

of planes seen in the image and on the given grammar. E.g.

a split-rule immediately in front of a repeat rule implies to

search for more than one line per plane. Maxima of the

voting space that lie on that line but do not correspond to

any detection in the image are used to infer new detections.

Finding the re-weighting factor: The similarity lines

found in all images are back-projected onto the planes of

the model. The back-projection lines all vote in a Hough

space to find the globally best similarity lines. Detections

not corresponding to these lines are considered as outliers

and are re-weighted based on their distance to the lines.

wi
sim = e−

d
2

2σ2 ,where σ =
∆

4
√

2 log 2
(5)

The value for σ is calculated according to the mean de-

tection bounding box extent ∆ along the axis perpendicular

to the similarity line.

Repeat distance: Even if a detection is not perfectly

centered at the detected asset, the maxima in the voting space

of this detection are shifted equally from the center, resulting

in equal distances between the maxima of the voting space.

For a fronto-parallel view, an extra voting space is generated

tracking these distances for all detections in all images.

The maximum of that voting space is the parameter used

as the repeat distance (period). By using frontal views, the

distances are less error prone to errors in the plane detection

process.

IV. GRAMMAR ATTRIBUTE ESTIMATION

At the end of the recognition stage, we have the estimated

values of asset sizes and the spacing of assets in repeat

configurations. We also have the estimated size of the

building footprint. The grammar interpreter then translates

these parameters into the appropriate grammar attributes.

In a typical scenario, the grammar will have additional

attributes that we cannot estimate using the asset detectors

alone (e.g. ornaments). For these attributes we use the default

values present in the grammar. This approach enables us

to “give an educated guess” for objects not visible in the

images, but which have to be there due to the structural

constraints imposed by the grammar.

V. CASE STUDY - DORIC TEMPLES

Classical temples conform to strict architectural rules,

which have been thoroughly analyzed in literature [26].

These rules have been converted into a shape grammar

representation. We show the reconstructions of three Greek

Figure 8. Reconstruction of the Parthenon replica in Nashville and the Temple of Athena.

Doric temples: The Parthenon in Nashville, a full-scale

replica of the original Parthenon in Athens. The Temple of

Athena (also known as Temple of Ceres) and the Temple of

Poseidon, both archaic Doric temples in the ancient city of

Paestum. The results are summarized in this section. Fig. 1

shows steps of the reconstruction process for the Nashville

temple.

A. Asset Detectors

To train our asset detectors we use the publicly available

implementation of Felzenszwalb’s detector [21]. To cope

with the higher variability in different types of capitals we

have trained this detector as a two component detector,

whereas the shaft detector consists of only one. For our first

detector we hand-labeled a few temple images of different

styles, resulting in 189 annotations for capitals and 204 for

shafts.

The reconstruction of the Temple of Poseidon resulted in

188 + 124 (capitals+shaft) newly gathered samples that we

added to the training set, now specialized in Greek Doric

temples. Keeping the false positive rate fixed at 2.2% for

capitals and 5.4% for shafts we increased our detection rate

by 7.31% and 14.89% respectively.

B. Temple Grammar

A very simplified version of a grammar that describes
classical temples is described in this section. We focus on
the colonnade (the sequence of columns) as this is the most
relevant part which contains our detectable assets1.

Colonnade -->

split(x){Column | {columnSpacing:Column }* | Column}

Column -->

split(y){shaftHeight:Shaft | capitalHeight:Capital}

Shaft --> i(shaftAsset)

Capital --> i(capitalAsset)

The colonnade is first split in the x direction into columns.

Note that the repeat (marked with the *) does not include all

columns. The side columns are handled separately resulting

in a different spacing between the repeated columns and

the the spacing to the left and right column. This fact is

directly captured in the grammar rules, but cannot easily

1The full grammar for our experiments is available in the supplementary
material.

Reconstruction Original Ratio

temple width 24.26 24.26 1.0
temple length 58.51 59.98 0.98
shaft width 2.13 2.11 1.01
column height 9.28 8.88 1.04
capital width 2.56* 2.72 0.94
capital height 1.37* 1.04 1.32
inter-column distance 4.45 4.48 0.99

Table I
SIZE COMPARISON FOR THE TEMPLE OF POSEIDON.

be inferred from the images alone. A column is further

divided into capital and shaft. Due to this rule, the grammar

interpreter informs the vision module about the relation

“capital on top of shaft”. The insert rule replaces the 3D

volume by an asset from the database. As seen in the

excerpt above, the parameters for column spacing, capital

height and shaft height appear directly in these rules. The

remaining parameters, namely the column width, shaft width

and temple color are extracted from the full derivation tree.

The lot size is estimated from the point cloud and not

directly encoded in the grammar. Further parameters are

either dependent on the estimated attributes or set to default

values (e.g. the roof angle).

C. Results

Fig. 8 shows instantiations of the Parthenon replica in

Nashville and Temple of Athena, respectively. Properties

like the number of columns can easily be found from the

detections. These are not grammar attributes but can be

inferred through the instantiation process. In table I, we

compare the dimensions of Temple of Poseidon with our

estimations. All parameters are scaled to the size of the

temple width. Sizes measured in the images are marked (*),

while the groundtruth sizes are taken from [27]. Column

height is the size of capital height + shaft height. The large

error for the capital height can be explained by the view

angles at which the pictures were taken (ground imagery).

This results in the capital appearing taller than it really is.

VI. CONCLUSION AND FUTURE WORK

This paper has introduced a novel way of 3D building

reconstruction using shape grammars. As opposed to pre-

vious approaches, the grammar drives the reconstruction

process. Also, detectors provide a good starting point for

estimation of the grammar parameters. Furthermore, the

system improves itself by automatically specializing the

applied detectors. The validity of our approach is shown

on a case study of classical Doric temples.

As future work, we will extend the set of CGA rules

to extract information from. Furthermore, a matching phase

between the estimated model and the original images will

be added to verify and fine-tune the estimations of the

parameters. We plan to also use this matching for the

inclusion of extra shapes via the ARC3D meshes (like

ornamentation) and to add effects of destruction and erosion

as parts to be displaced or taken off the original model.

ACKNOWLEDGMENT

The research leading to these results received funding

from the EG 7FP V-City, The Virtual City (2008-2011, n.

231199) and from the EG 7FP IP 3D-COFORM project

(2008-2012, n. 231809).

REFERENCES

[1] N. Cornelis, B. Leibe, K. Cornelis, and L. J. V. Gool, “3d
urban scene modeling integrating recognition and reconstruc-
tion,” IJCV, vol. 78, no. 2-3, pp. 121–141, 2008.

[2] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. J. V. Gool,
“Procedural modeling of buildings,” ACM Trans. Graph.,
vol. 25, no. 3, pp. 614–623, 2006.

[3] T. Quack, B. Leibe, and L. Van Gool, “World-scale mining
of objects and events from community photo collections,” in
CIVR, ser. CIVR ’08. New York, NY, USA: ACM, 2008,
pp. 47–56.

[4] G. Stiny, “Pictorial and formal aspects of shape and shape
grammars,” 1975, birkhauser Verlag, Basel.

[5] P. Wonka, M. Wimmer, F. X. Sillion, and W. Ribarsky,
“Instant architecture,” ACM Trans. Graph., vol. 22, no. 3,
pp. 669–677, 2003.

[6] Procedural, “CityEngine,” http://www.procedural.com/, 2010.

[7] D. Kimberly, B. Frischer, P. Mueller, A. Ulmer, and S. Hae-
gler, “Rome reborn 2.0: A case study of virtual city re-
construction using procedural modeling techniques,” in CAA,
2009, pp. 62–66.

[8] M. Lipp, P. Wonka, and M. Wimmer, “Interactive visual
editing of grammars for procedural architecture,” ACM Trans.
Graph., vol. 27, no. 3, 2008.

[9] D. G. Aliaga, P. A. Rosen, and D. R. Bekins, “Style grammars
for interactive visualization of architecture,” IEEE Trans. Vis.
Comput. Graph., vol. 13, no. 4, pp. 786–797, 2007.

[10] P. Muller, G. Zeng, P. Wonka, and L. Van Gool, “Image-
based procedural modeling of facades,” ACM Trans. Graph.,
vol. 26, no. 3, p. 85, 2007.

[11] L. J. V. Gool, G. Zeng, F. V. den Borre, and P. Müller,
“Towards mass-produced building models,” in PIA07, 2007,
pp. 209–220.

[12] C. Vanegas, D. Aliaga, and B. Benes, “Building reconstruc-
tion using manhattan-world grammars,” in CVPR, 2010, pp.
358–365.

[13] D. Gallup, J.-M. Frahm, and M. Pollefeys, “Piecewise planar
and non-planar stereo for urban scene reconstruction,” in
CVPR, 2010, pp. 1418–1425.

[14] P. Zhao, T. Fang, J. Xiao, H. Zhang, Q. Zhao, and L. Quan,
“Rectilinear parsing of architecture in urban environment,” in
CVPR, 2010, pp. 342–349.

[15] J. Xiao, T. Fang, P. Zhao, M. Lhuillier, and L. Quan, “Image-
based street-side city modeling,” ACM Trans. Graph., vol. 28,
no. 5, 2009.

[16] A. R. Dick, P. H. S. Torr, and R. Cipolla, “Modelling and
interpretation of architecture from several images,” IJCV,
vol. 60, pp. 111–134, November 2004.

[17] O. Alegre and F. Dellaert, “A probabilistic approach to the
semantic interpretation of building facades,” in Int. Workshop
on Vision Techniques Applied, 2004, pp. 1–12.

[18] N. Ripperda and C. Brenner, “Reconstruction of façade
structures using a formal grammar and rjmcmc,” in DAGM-
Symposium, 2006, pp. 750–759.

[19] O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios,
“Segmentation of building facades using procedural shape
priors,” in CVPR. IEEE, 2010, pp. 3105–3112.

[20] M. Vergauwen and L. V. Gool, “Web-based 3d reconstruction
service,” Mach. Vision Appl., vol. 17, no. 6, pp. 411–426,
2006.

[21] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan, “Object detection with discriminatively trained
part-based models,” IEEE Trans. on PAMI, vol. 32, pp. 1627–
1645, 2010.

[22] M. A. Fischler and R. C. Bolles, “Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography,” Commun. ACM, vol. 24,
pp. 381–395, June 1981.

[23] B. Leibe, A. Leonardis, and B. Schiele, “Combined object cat-
egorization and segmentation with an implicit shape model,”
in ECCV workshop on SLCV, 2004, pp. 17–32.

[24] K. Mikolajczyk and C. Schmid, “Scale & affine invariant
interest point detectors,” IJCV, vol. 60, pp. 63–86, October
2004.

[25] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, no. 2, p. 91, Nov. 2004.

[26] J. Summerson, The Classical Language of Architecture,
1st ed. MIT Press, 1996.

[27] TUFTS University, “Perseus digital library,” http://www.
perseus.tufts.edu/hopper/, 2010.

