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Procedural Noise using Sparse Gabor Convolution∗
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Figure 1: (Left) We present a procedural noise that offers accurate spectral control. The user can interactively manipulate the power
spectrum. (Middle) We apply the noise to a surface without the need for texture coordinates, and provide high-quality anisotropic filtering.
Thanks to increased expressiveness of the noise, a simple colormap is enough to produce visually interesting textures. (Right) Since our
surface noise does not require a texture parameterization, the surface can evolve dynamically and even sustain topology changes.

Abstract

Noise is an essential tool for texturing and modeling. Designing
interesting textures with noise calls for accurate spectral control,
since noise is best described in terms of spectral content. Textur-
ing requires that noise can be easily mapped to a surface, while
high-quality rendering requires anisotropic filtering. A noise func-
tion that is procedural and fast to evaluate offers several additional
advantages. Unfortunately, no existing noise combines all of these
properties.
In this paper we introduce a noise based on sparse convolution and
the Gabor kernel that enables all of these properties. Our noise
offers accurate spectral control with intuitive parameters such as
orientation, principal frequency and bandwidth. Our noise supports
two-dimensional and solid noise, but we also introduce setup-free
surface noise. This is a method for mapping noise onto a surface,
complementary to solid noise, that maintains the appearance of the
noise pattern along the object and does not require a texture pa-
rameterization. Our approach requires only a few bytes of storage,
does not use discretely sampled data, and is nonperiodic. It supports
anisotropy and anisotropic filtering. We demonstrate our noise us-
ing an interactive tool for noise design.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: noise, procedural texture, rendering, shading

1 Introduction

Visual complexity is a key ingredient of compelling computer gen-
erated imagery. Randomness, or noise, was identified early on as
a useful tool for generating that visual complexity. Since its intro-
duction by Perlin [1985], noise has become an essential modeling
tool in computer graphics. It is mainly used in procedural modeling
and texturing [Ebert et al. 2002], but also in other areas of computer
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graphics, such as animation and simulation [Bridson et al. 2007].

Noise is used in many different contexts, and should therefore be as
versatile as possible. This is witnessed by the procedural nature of
noise, which is probably one of its most significant advantages: it is
compact, described by only a few parameters, yet it can be quickly
evaluated at any point in space. This makes it very suitable for ren-
dering. The random nature of noise means that it is best described
in terms of spectral content or energy in each frequency band. Con-
trolling the appearance of noise, e.g., for modeling, therefore re-
quires spectral control. Noise is mainly used for adding details
to surfaces. This is typically achieved by traditional texture map-
ping using a two-dimensional noise, or using a solid noise. Solid
noise is not subject to artifacts, such as distortions and seams, and
is setup free. This means that surfaces can be textured without pre-
processing, such as a texture parameterization, regardless of com-
plexity. Setup-free surface noise is not only simple and convenient,
but also essential, when surfaces are implicit, point sampled or dy-
namic. High-quality rendering of noise requires anisotropic filter-
ing to avoid artifacts. This requires noise to be anisotropic. Of
course, noise should also be fast to evaluate.

From the above, it is clear that we want a procedural noise with
accurate spectral control, providing setup-free surface texturing. In
addition it should be anisotropic and allow high-quality anisotropic
filtering. Many previous noises have a subset of these properties
(Sec. 1.1); none of them however provides them all. In this paper
we introduce a noise that does have them all:

• We introduce a new procedural noise with accurate spectral
control using Gabor kernels, by extending sparse convolution
noise [Lewis 1989]. Our noise has a memory footprint of only
a few bytes, is nonperiodic and is anisotropic.

• We introduce setup-free surface noise with high-quality
anisotropic filtering, a method for mapping noise onto a sur-
face that does not require a texture parameterization. Surface
noise is complementary to solid noise: it maintains the aspect
of a two-dimensional noise pattern along the object. Solid
noise is supported as well.

• We demonstrate a powerful interactive design tool for noises
and procedural textures, based on the intuitive properties of
our noise (frequency, orientation and bandwidth).

Our new procedural noise is illustrated in Fig. 1 using our interac-
tive tool for noise design. First, we create an anisotropic noise. The
inset displays the widget for spectral control and the main image
displays the corresponding noise. Next, we add an isotropic noise.
Then, we create a procedural texture by combining the noise with
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a color map, and we render a surface with the procedural texture
using anisotropic filtering. Finally, we apply the noise to an impicit
surface whose topology can change interactively.

1.1 Related Work

We group the desirable properties of noise into five categories, and
discuss related work as a function of these properties.

Procedural Perlin noise [Perlin 1985] is likely the most popular
noise in computer graphics. Key to the success of Perlin noise is
that it is procedural. According to the advantages of a procedural
representation identified by Ebert et al. [2002], noise should have
compact storage requirements, should not be based on discretely
sampled data, should be nonperiodic, and should be intuitively pa-
rameterized. These properties imply that noise should be evaluated
on the fly rather than stored.

Spectral Control Noise is a modeling tool, and therefore con-
trolling the appearance of noise is of key importance. The power
spectrum of the noise, which describes the contribution of each fre-
quency band, is a powerful and natural framework for controlling
it [Perlin 1985; Lewis 1989; Perlin and Hoffert 1989]. Perlin noise
achieves spectral control by using a weighted sum of band-limited
octaves of noise. However, Cook and DeRose [2005] showed that
Perlin noise is only approximately band limited, and is therefore
subject to aliasing and detail loss. Although Perlin repeatedly im-
proved his noise [Perlin 2002; Olano et al. 2002], this problem was
not addressed. Therefore, most recent work focuses on constructing
band-limited noise [Cook and DeRose 2005; Kensler et al. 2008].
However, band-limited noise is not a goal by itself, it is only a
means for controlling the power spectrum of the noise. Moreover, a
weighted sum of octaves of noise does not provide the desired spec-
tral control. This was already recognized by Lewis [1989], who
introduced solid procedural noises with improved control over the
power spectrum.

Surface Noise Noise is commonly used for texturing surfaces.
Traditional texturing requires a surface parameterization, which
usually introduces distortions and discontinuities. This means that
surface noise cannot always be obtained by simply mapping a two-
dimensional noise texture onto a surface [Goldberg et al. 2008].
Perlin [1985] and Peachy [1985] introduced solid texturing, an
attractive alternative for traditional texturing not subject to these
problems. Solid texturing does not require a surface parameteriza-
tion and is setup free. Therefore, noise on a surface is typically ob-
tained using solid noise, even when not modeling a solid material.
However, Cook and DeRose [2005] showed that mapping band-
limited solid noise onto a surface does not result in band-limited
surface noise. This means that surface noise also can not be ob-
tained by simply mapping solid noise onto a surface. Moreover,
solid noise and surface noise have a distinct appearance. Noise
should therefore differentiate between two-dimensional noise, sur-
face noise and solid noise, and, similar to solid noise, surface noise
should be setup free.

Anisotropy High-quality rendering requires anisotropic filtering
to avoid aliasing. Band-limited isotropic noise can be isotropically
filtered using frequency clamping, that is by disabling octaves in
the sum of weighted octaves that would result in aliasing [Cook
and DeRose 2005]. Hart et al. [1999] addressed isotropic filtering
of procedural solid textures by prefiltering the color lookup table.
However, Goldberg et al. [2008] showed that anisotropic filtering
requires anisotropic noise. Anisotropic noise is also useful to model
anisotropic phenomena.

Fast to Evaluate Noise was introduced in the context of off-line
rendering, but has recently become more accessible to interactive
applications [Hart 2001; Olano 2005; Frisvad and Wyvill 2007;

Goldberg et al. 2008]. Noise is used in many different contexts,
ranging from games to production rendering. Therefore, noise
should be interactive and enable a speed vs. quality trade-off.

None of the existing noises has all of these properties, which is
illustrated in Tab. 1 (Sec. 7). For example, wavelet noise [Cook
and DeRose 2005] and the noise of Kensler et al. [2008] are band
limited and support setup-free surface noise, but do not support
anisotropic noise or anisotropic filtering, and the noise of Goldberg
et al. [2008] supports anisotropic noise and anisotropic filtering, but
does not support solid noise or setup-free surface noise.

In the following sections, we first explain how the Gabor
kernel combined with sparse convolution produces band-limited
anisotropic noise with accurate spectral control (Sec. 2). We then
generalize to more complex spectra using a random sampling of the
parameters of the Gabor kernels during sparse convolution (Sec. 3).
We next discuss procedural, on-the-fly noise evaluation (Sec. 5),
and detail our anisotropically filtered setup-free surface noise. Re-
sults and comparisons are given in Sec. 6 and Sec. 7.

2 Band-Limited Anisotropic Noise

In this section we present our procedural band-limited anisotropic
noise. We review sparse convolution noise (Sec. 2.1), general-
ize sparse convolution noise as a random pulse process (Sec. 2.2),
show that our choice of Gabor kernel as a pulse is well motivated
(Sec. 2.3), and formulate our anisotropic noise as a random pulse
process using a Gabor kernel (Sec. 2.4). We assume that the reader
is familiar with Fourier analysis (e.g., Bracewell [1999]).

2.1 Sparse Convolution Noise

In 1989, Lewis introduced sparse convolution noise, a procedural
noise that offers improved control over the power spectrum. Lewis
defines sparse convolution noise N as a convolution of a kernel h
and a Poisson impulse process

N (x, y) =

»

h ∗
X

i

wiδ(xi,yi)

–

(x, y) , (1)

where ∗ denotes convolution, δ is the impulse and δ(xi,yi) (x, y) =
δ (x − xi, y − yi). The Poisson impulse process consists of im-
pulses of uncorrelated intensity {wi} at uncorrelated locations
{(xi, yi)}. Lewis calls this process sparse white noise, because it
consists of only a few scattered impulses and has a constant power
spectrum. The power spectrum of sparse convolution noise is that
of the kernel scaled by a constant, which follows from the Convo-
lution Theorem. Lewis used the radially symmetric smooth cosine
kernel

h(r) = 1/2 + 1/2 cos (πr) (|r| < 1). (2)

Lewis procedurally evaluates sparse convolution noise by introduc-
ing a grid, and generating the positions and weights of the kernels
in each cell on the fly. The grid reduces the evaluation of the noise
to the grid cells close to the point of evaluation. An example of
sparse convolution noise is shown in Fig. 8(b).

2.2 The Random Pulse Process

Sparse convolution noise is a random pulse process in which the
pulse is the radially symmetric smooth cosine kernel. The random
pulse process Y is defined as a sum of randomly weighted and po-
sitioned pulses

Y (x) =
X

i

wih (x − xi) , (3)

where h is the pulse, the random locations {xi} are governed by a
Poisson distribution with mean λ, called the impulse density, and
the weights {wi} are realizations of a random variable W . In this
work, we assume that the random variable W has zero mean. Note
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Figure 2: The Gabor kernel. (a) Gaussian envelope. (b) Harmonic. (c) Gabor kernel. (d) Gabor kernel, 3D plot. (e) Fourier transform of
Gabor kernel. (f) Fourier transform of Gabor kernel, 3D plot.

that the location of the impulses follows a uniform random distri-
bution, and therefore, the number of impulses per unit area, or im-
pulse density λ, follows a Poisson distribution. Poisson processes
and shot noise, the family of stochastic processes that the random
pulse process belongs to, are well known in statistics [Papoulis and
Pillai 2002, 10.2; van Etten 2005, 8].

The random pulse process has zero mean, and the variance σ2
Y of

the process is

σ
2
Y = λE

h

W
2

i

Z

∞

−∞

h
2
(x) dx, (4)

where E denotes expectation value. The power spectrum of the
process is

SY Y (f) = λE
h

W
2

i

|H (f)|2 , (5)

where H is the Fourier transform of the pulse h. The total power
equals σ2

Y , which follows from Rayleigh’s Theorem. The ampli-
tude distribution of shot noise tends to a normal distribution as the
impulse density λ increases [Papoulis 1971]. Therefore, the ampli-
tude distribution of the process can be approximated by a normal
distribution with zero mean and variance σ2

Y .

2.3 The Gabor Kernel

The key to accurate control over the power spectrum of the random
pulse process is the choice of an appropriate pulse. Our main in-
sight is that the pulse should be parameterized and have compact
support in the spatial domain to enable efficient procedural eval-
uation, and also have compact support in the frequency domain to
enable precise control over the power spectrum. We therefore chose
the Gabor kernel [Gabor 1946] which has all of these properties. In
some sense, this is the theoretically optimal choice of pulse in this
context, since Gabor showed that the kernel has the smallest joint
uncertainty in both domains.

The Gabor kernel is a multiplication of a Gaussian envelope and
a harmonic (Fig. 2(a)-(d)). We use a two-dimensional real Gabor
kernel of the cosine type, parameterized by magnitude, frequency,
and width. The Gabor kernel g is

g (x, y) = Ke
−πa2

“

x2+y2
”

cos [2πF0 (x cos ω0 + y sin ω0)] , (6)

where K and a are the magnitude and width of the Gaussian en-
velope, and (F0, ω0) is the frequency of the harmonic in polar co-
ordinates. F0 and ω0 are the magnitude and the orientation of the
frequency. The Fourier transform of the Gabor kernel G is

G (fx, fy) =
K

2a2



e
−

π
a2

h

(fx−F0 cos ω0)2+(fy−F0 sin ω0)
2

i

+e
−

π
a2

h

(fx+F0 cos ω0)2+(fy+F0 sin ω0)
2

iff

,

(7)

where (F0 cos ω0, F0 sin ω0) is the frequency of the harmonic in
Cartesian coordinates. The Fourier transform consists of two iden-
tical Gaussians, one located at the frequency of the harmonic, and
its symmetric counterpart (Fig. 2(e)-(f)), which follows from the
Convolution Theorem.

The parameters of the Gabor kernel have an intuitive meaning in
both domains. The frequency (F0, ω0) of the harmonic corresponds
to the location of the Gaussian in the frequency domain, and the
width a of the Gaussian envelope corresponds to the width of the
Gaussian in the frequency domain. The frequency (F0, ω0) can
therefore be interpreted as the principal frequency, and the width
a as the bandwidth, the range of frequencies around the principal
frequency. The full width at half maximum, a parameter commonly
used to describe the width of a function, of the Gaussian envelope
and the Gaussian in the frequency domain is approximately 1/a
(Fig. 2(a)) and a (Fig. 2(e)).

Gabor kernels were introduced in 1946 by Gabor to study com-
munication theory. Gabor kernels are frequently used in computer
vision, e.g., for texture analysis and synthesis [Navarro and Portilla
1996], as well as in perception.

2.4 Band-Limited Anisotropic Noise

We can now define our new band-limited anisotropic noise N as a
random pulse process, with the Gabor kernel g as a pulse

N (x, y) =
X

i

wig (x − xi, y − yi) . (8)

We derive the properties of this band-limited anisotropic noise from
the properties of the random pulse process and the Gabor kernel.
The noise has zero mean, and the variance of the noise is (Eq. (4))

σ
2
N = λE

h

W
2

i

Z

∞

−∞

Z

∞

−∞

g
2
(x, y) dx dy. (9)

The power spectrum of the noise is (Eq. 5)

SNN (fx, fy) = λE
h

W
2

i

|G (fx, fy)|2 . (10)

The intensity distribution of the noise can be approximated by a
normal distribution with zero mean and variance σ2

N .

The power spectrum of band-limited anisotropic noise is the power
spectrum of the Gabor kernel scaled by the constant λE

ˆ

W 2
˜

.
This means that we can control the power spectrum of the noise
using the intuitive parameters of the Gabor kernel. The magnitude
K, the orientation ω0 and the magnitude F0 of the frequency, and
the width a of the Gabor kernel correspond to the magnitude, ori-
entation, principal frequency and bandwidth of the noise. An ex-
ample of band-limited anisotropic noise is shown in Fig. 3. The
accompanying video illustrates how the individual Gabor kernels
are combined to form the noise.

3 Noise with On-The-Fly Spectral Control

We achieve spectral control by using a different Gabor kernel for
each impulse, with parameters randomly sampled from a paramet-
ric description of the desired power spectrum. This is a very pow-
erful way to generalize the noise defined by Eq. (8), allowing us to
define band-limited isotropic noise (Sec. 3.1) and noise with con-
trollable band-limits (Sec. 3.2). Using our method, it is also easy to
develop a system for interactive noise design (Sec. 3.3).
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Figure 3: Band-limited anisotropic noise. (a) Anisotropic noise
with intensity histogram (gray) and expected intensity distribution
(red). (b) Power spectrum. (c) Analytical power spectrum.
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Figure 4: Band-limited isotropic noise. (a) Isotropic noise with
intensity distribution. (b) Power spectrum with radially averaged
power spectrum. (c) Analytical power spectrum.

3.1 Band-Limited Isotropic Noise

We define our new band-limited isotropic noise N as a random
pulse process

N (x, y) =
X

i

wig (x − xi, y − yi; ω0,i) , (11)

where the pulse is a Gabor kernel with a random frequency orien-
tation, and the frequency orientations {ω0,i} are realizations of a
random variable with a continuous uniform distribution on the in-
terval [0, 2π).

Similar to band-limited anisotropic noise, we derive the properties
of this band-limited isotropic noise from the properties of the ran-
dom pulse process and the Gabor kernel. The power spectrum of
the noise, obtained by integrating the pulse over all possible orien-
tations [van Wijk 1991], is

SNN (fx, fy) = λE
h

W
2

i 1

2π

Z 2π

0

|G(fx, fy; ω0,i)|2 dω0. (12)

The total power of the noise is equal to the total power of band-
limited anisotropic noise. Therefore, the variance of the noise is
equal to the variance of band-limited anisotropic noise. The inten-
sity distribution of the noise can therefore also be approximated by
a normal distribution with zero mean and variance σ2

N .

The power spectrum of band-limited isotropic noise is radially sym-
metric, because the noise is isotropic. In terms of radial frequency

f2
r = f2

x + f2
y , the power spectrum is

SNN (fr) = λE
h

W
2

i K2

2a4
e
−2π

a2

“

f2
r +F2

0

” »

1 + I0

„

4πF0

a2
fr

«–

, (13)

where I0 is the modified Bessel function of the first kind.
By approximating the Bessel function I0 with an exponential
[Abramowitz and Stegun 1964, 9.7.1], and because the region of
interest of the power spectrum is the region near the principal fre-
quency (fr ≈ F0), we can approximate the power spectrum by

SNN (fr) ≈ λE
h

W
2

i K2

4
√

2πF0a3
e
−2π

a2 (fr−F0)2

. (14)

Similar to band-limited anisotropic noise, this is a Gaussian with a
principal frequency of F0 and a width of a (inset in Fig. 4(b)).

We control the power spectrum of band-limited isotropic noise in
the same way as the power spectrum of anisotropic noise, although
the orientation of the frequency ω0 is integrated out. Our band-
limited isotropic noise is the first noise that allows precise control
over the principal frequency and the bandwidth of the noise. An
example of band-limited isotropic noise is shown in Fig. 4. Note
how a ring is formed in the frequency domain due to the integration
of the orientation.

3.2 Noise with Controllable Band-Limits

We generalize band-limited anisotropic and isotropic noise to noise
with controllable band-limits, which has a power spectrum that cov-
ers a specific region of frequency space.

A region of frequency space can be described in polar coordinates
by an annular sector [F0,min; F0,max) × [ω0,min; ω0,max) (see
Fig. 7 for examples). This region contains all frequencies with a
magnitude between F0,min and F0,max, and an orientation between
ω0,min and ω0,max. By randomly sampling the parameters F0 and
ω0 of the Gabor kernel associated with each impulse, a noise with a
power spectrum equal to this region of frequency space is obtained.
The bandwidth parameter a controls the fall-off of the transition
near the edge of the annular sector.

Noise with controllable band-limits generalizes band-limited
anisotropic noise (F0,min =F0,max =F0, ω0,min =ω0,max =ω0),
band-limited isotropic noise (F0,min = F0,max = F0, ω0,min =
0, ω0,max = 2π), but also includes band-limited isotropic noise
with a precise control over the frequency range [F0,min, F0,max)
and the fall-off a of the band-limit, and non-band-limited noise
(F0,min =F0,max =0).

3.3 Interactive Noise Design

We have developed an interactive tool for noise design. The tool
is based on widgets for band-limited anisotropic and isotropic
noise, noise with controllable band-limits, and linear combinations
of these. The widgets allow the user to manipulate the power
spectrum of the noise on diagrams similar to the ones shown in
Fig. 3(c) and 4(c). We have observed that this results in straight-
forward interaction. The best way to appreciate the interactive tool
and widgets is to watch the accompanying video.

4 Procedural Evaluation

The procedural evaluation of our noise is similar to that of sparse
convolution noise [Lewis 1989] and cellular noise [Worley 1996].
Similar to Lewis (see Sec. 2.1) and Worley, we introduce a grid, and
generate the properties of the Gabor kernels in each cell on-the-fly
using a pseudo-random number generator. The cell size of the grid
equals the radius of the Gabor kernels, which reduces the evalua-
tion of the noise to the cell containing the point of evaluation and
the direct neighboring cells. In this section we discuss these compo-
nents in more detail. Pseudocode is provided in the appendix, and
compilable C++ example code is provided in the auxiliary material.

Grid In order to introduce a grid, we truncate the Gabor kernel,
since it has an infinite support. We truncate the kernel where the
Gaussian envelope reaches 5% of its peak value K, which corre-
sponds to a kernel radius of roughly 1/a (dashed line in Fig. 2(a)).
This introduces a small discontinuity in the noise, which in our ex-
perience does not affect the visual appearance, even when the noise
derivative is used [Perlin 2002]. If required, this discontinuity could
be alleviated by truncating at a larger kernel radius, or avoided by
multiplying with a continuous window function. Note that, in con-
trast to the other parameters of the noise, the spatial variation of the
bandwidth is restricted, because the cell size is coupled to the width
of the Gabor kernel.
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(a) Projection. (b) Iso. surf. frames. (c) Iso. surf. noise. (d) Aniso. surf. frames. (e) Aniso. surf. noise. (f) Discontinuity.

Figure 5: Setup-free surface noise. (a) Projection of the three-dimensional Poisson distribution onto the tangent plane. (b) Randomly
oriented local surface frames for isotropic surface noise. (c) Isotropic surface noise. (d) Local surface frames aligned with a vector field for
anisotropic surface noise. (e) Anisotropic surface noise. (f) The discontinuous face normals used on the left result in a noise discontinuity,
while the smooth vertex normals used on the right ensure continuity.

Pseudo-Random Number Generator The properties of the Ga-
bor kernels in each cell are generated on-the-fly using a pseudo-
random number generator. We use the linear congruential generator

xn+1 = 3039177861 xn (mod 2
32

), (15)

introduced by Borosh and Niederreiter [1983]. This generator is
fast, and, despite its simplicity, optimal with respect to statistical
independence of successive pseudo-random numbers.

Seeding Strategy To ensure consistency, the pseudo-random
number generator associated with a cell always has to be initialized
with the same seed. If a periodic noise with period N is required,
we determine the seed for the cell with coordinates (x, y) as

seed (x, y) = ((y%N) N) + (x%N) + o, (16)

which corresponds to enumerating the cells in row-major order. If a
nonperiodic noise is required, we use Morton order [Morton 1966].
This seeding strategy ensures that the noise always returns the same
value when evaluated at the same location. The noise is randomized
by adding a global random offset o. In contrast to Lewis and Wor-
ley, we do not use a random seeding strategy. This is not required
because the sequences of pseudo-random numbers produced for ev-
ery seed are uncorrelated.

Cell and Kernel Properties The number of impulses in a cell is
randomly generated according to a Poisson distribution. We use
the algorithm of Knuth for small means [Knuth 1997, 3.4.1]. We
express the impulse density λ in expected number of impulses N
per kernel area πr2, which corresponds to an impulse density of
N/π impulses per cell. The properties associated with the Gabor
kernels, such as their position and weight, are randomly generated
according to the corresponding probability distributions. For the
weights, we use a random variable W with a continuous uniform
distribution on the interval [−1, +1]. All random numbers are gen-
erated using the properly seeded pseudo-random number generator
associated with the cell.

We have implemented the procedural evaluation for the CPU and
GPU. Our current GPU implementation is a straightforward map-
ping of the procedural evaluation to a GPU pixel shader. A faster
GPU implementation could be obtained by exploiting spatial co-
herence using recent GPU architectures, rather than independently
evaluating noise in every pixel. It might also be worthwile to inves-
tigate the use of random number generators designed for the GPU
[Tzeng and Wei 2008].

Our noise has a memory footprint of only 32 bytes (see example
code). Our procedural evaluation allows a speed vs. quality trade-
off by adapting the impulse density and by using approximate trans-
formation methods. We typically use 100 impulses per kernel in our
CPU implementation, although good results are already obtained at
lower impulse densities, and 25 to 50 impulses per kernel in our
GPU implementation (values used in all video examples).

We have validated our procedural CPU and GPU implementations
by verifying that the power spectrum converges to the analytical
power spectrum (Fig. 3 and 4), and by comparing the results to
those of a non-procedural CPU implementation based on frequency
filtering of white noise (Fig. 8(f)-(h)).

5 Anisotropically Filtered Surface Noise

Our noise generalizes to arbitrary dimensions. However, many ap-
plications require noise on a surface, and high-quality rendering
requires anisotropic filtering. In this section we therefore present
surface noise (Sec. 5.1) that is anisotropically filtered (Sec. 5.2).

5.1 Setup-Free Surface Noise

Cook and DeRose [2005] obtain surface noise by performing a
weighted line integral of solid wavelet noise along the direction
perpendicular to the surface. Goldberg et al. [2008] obtain surface
noise by mapping two-dimensional noise onto the surface and com-
pensating for distortion introduced by the texture parameterization.
Our noise is compatible with both approaches, but also admits a
direct formulation of surface noise.

Similarly to Lefebvre et al. [2005], we locally project kernels onto
the surface. We obtain surface noise at a point on a surface p with
surface normal n by projecting a three-dimensional Poisson dis-
tribution on the plane determined by p and n, and evaluating our
two-dimensional noise in that plane (Fig. 5(a)). Isotropic surface
noise is obtained by randomly orienting the local surface frame of
each Gabor kernel (Fig. 5(b)-(c)), and anisotropic surface noise by
aligning the local surface frame with a vector field that guides the
anisotropy (Fig. 5(d)-(e)). The two-dimensional Poisson distribu-
tion in the tangent plane with impulse density λ is obtained by pro-
jecting all points of a three-dimensional Poisson distribution with
impulse density λ/2r inside the cylinder with radius r, height 2r,
center p and orientation n onto the plane. The points are generated
on-the-fly, similar as in Sec. 4, using a three-dimensional grid. The
weight of a point is defined as one minus the distance to the plane
divided by r, which avoids the generation of an additional random
number. Note that this method is similar in spirit to the method
of Cook and DeRose, but is more efficient because it avoids the
explicit integration.

Our isotropic surface noise is setup free, and is not tied to a specific
geometry representation. Our anisotropic surface noise is setup free
as well. We generate the vector field that guides the anisotropy pro-
cedurally by computing a local surface frame from the surface nor-
mal and a global direction, but the vector field can also be designed
by the user [Zhang et al. 2007; Fisher et al. 2007].

Our surface noise implicitly assumes that texture detail is small
compared to geometric detail, a common assumption in texturing.
A limitation of surface noise is that a discontinuity in the surface
normal results in a discontinuity in the noise. If this behavior is not
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❞

unfiltered noise filtered noise

❞

unfiltered noise filter reference filtered noise

(a) Isotropic noise.

❞

unfiltered noise filtered noise

❞

unfiltered noise filter reference filtered noise

(b) Anisotropic noise.

Figure 6: Anisotropic filtering. (a) Isotropic noise. (b) Anisotropic noise. (Top row) Tilted plane with unfiltered and anisotropically filtered
noise with close-ups. (Bottom row) Power spectrum of the unfiltered noise, frequency domain filter in texture space, reference power spectrum
and power spectrum of the anisotropically filtered noise of the circled pixel.

desired, then a continuous normal should be used instead (Fig. 5(f)).

5.2 Anisotropic Filtering

Anisotropic texture filtering can be formulated as a convolution of
a texture with a filter in the spatial domain, or as a multiplication in
the frequency domain. We exploit the spectral control of our noise
to achieve high-quality anisotropic filtering of surface noise.

We use the analytic formulation of anisotropic filtering of Heck-
bert [1989]. The filter in image space is the Gaussian

f (x, y) =
1

σ
√

2π
e
−

1
2σ2

“

x2+y2
”

, (17)

where σ is the width of the Gaussian. The corresponding frequency
domain filter in texture space is the Gaussian

F
“

J
T

[fu fv ]
T

”

= e
−2π2σ2[fu fv ]JJT [fu fv ]T

, (18)

where J is the Jacobian of the mapping from image to texture coor-
dinates. The power spectrum of anisotropically filtered noise is ob-
tained by multiplying the power spectrum of unfiltered noise with
the frequency domain filter (power spectra in Fig. 6). In the fre-
quency domain, our noise is a sum of Gaussians. The frequency
domain filter is a Gaussian as well. Because Gaussians are closed
under multiplication, anisotropically filtered noise is again a sum
of Gaussians. This means that we can generate anisotropically fil-
tered noise by simply adjusting the parameters of each Gabor kernel
based on J and σ when evaluating the noise.

We obtain the parameters of the anisotropically filtered Gabor ker-
nel K′, a′, F ′

0 and ω′
0 as follows. We express Gaussians using the

notation
N (f ; µ, Σ) = e

−
1
2
(f−µ)Σ−1(f−µ)T

, (19)

where µ and Σ generalize the mean and standard deviation of the
Gaussian, f and µ are two-dimensional vectors, and Σ is a 2 × 2
matrix. Using this notation, the frequency domain filter in texture
space is (Eq. (18))

NF (f ; 0, ΣF ) , Σ
−1
F = 4π

2
σ

2
“

JJ
T

”

, (20)

and the unfiltered Gabor kernel in the frequency domain is (Eq. (7))

NG (f ; µG, ΣG) , µG = (F0 cos ω0, F0 sin ω0), Σ
−1
G =

2π

a2
I. (21)

The anisotropically filtered Gabor kernel in the frequency domain
is the product of the frequency domain filter in texture space NF

and the unfiltered Gabor kernel in the frequency domain NG

NF (f ; 0, ΣF ) NG (f ; µG, ΣG) =

N (0; µG, ΣF + ΣG) NF G (f ; µF G, ΣF G) ,

ΣF G =
“

Σ
−1
F + Σ

−1
G

”

−1
, µF G = ΣF G

“

Σ
−1
G µG

”

. (22)

This is again a Gaussian in frequency space, or a Gabor kernel. The
parameters (F ′

0, ω
′
0) of the anisotropically filtered Gabor kernel are

the polar coordinates of µFG, and a′ and K′ are

a
′2

= 2π
q

|ΣF G|, K
′
= K

a′2

a2
N (0; µG, ΣF + ΣG) . (23)

The Gaussian of Eq. (22) is in general anisotropic. We approximate
this anisotropic Gaussian in frequency space with a Gabor kernel,
which is an isotropic Gaussian. Although this approximation could
be avoided by using Gabor kernels with an anisotropic Gaussian
envelope, it works very well in practice. This is illustrated in Fig.6.

This method is not limited to a specific rendering paradigm. The
partial derivatives of the Jacobian can be obtained using ray differ-
entials [Igehy 1999] in renderers based on ray tracing, and using
finite differencing in renderers based on rasterization.

Filtering procedural textures obtained by nonlinear transformations
of noise is an unsolved problem. However, our noise is more ex-
pressive than previous noises, and in many cases removes the need
for nonlinear transformations. In Sec. 6 we show that most pro-
cedural textures can be obtained using only our noise and a color
lookup table. We anisotropically filter these procedural textures by
filtering the noise, as described above, and the color lookup table,
with a method similar to Hart et al. [1999].

6 Results

We show several noise patterns and procedural textures generated
with our application for interactive noise design in Fig. 1, Fig. 7 and
the accompanying video. Note that all surfaces are triangle meshes,
and that surface noise is anisotropically filtered unless noted oth-
erwise. We demonstrate a wide range of procedural textures gen-
erated using only our noise and a color map. This includes typi-
cal procedural solid textures (e.g., the marble vase and the wooden
statuette in Fig. 7), but also cellular-like textures (e.g., the snake
skin in Fig. 7). We show that in addition to anisotropic filtering,
anisotropic noise is also useful for modeling anisotropic textures
(e.g., the straw hat, the wooden chair and the tree bark in Fig. 7)
and even structured textures (e.g., the textile cushion in Fig. 7).
This extends the range of textures that can be generated proce-
durally. We demonstrate that our method for anisotropic filtering
results in high-quality animations and does not introduce artifacts
such as swimming (see video). We show that our surface noise does
not require a texture parameterization by texturing an implicit sur-
face that changes shape and topology interactively (see video and
Fig. 1). This would not be possible with traditional texture map-
ping or with surface noise that is not setup free. We demonstrate
that solid noise is not a substitute for surface noise by illustrating
the difference between solid noise and surface noise (see straw hat
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Granite vase. Textile cushion. Straw hat. Leather boot. Rusty car. Wooden chair. Snake skin. Tree bark.

Figure 7: Results. (Top row) Several noise patterns generated with band-limited anisotropic and isotropic noise. (Middle) Several procedural
textures generated with our application for interactive noise design. The marble vase and the wooden statuette are generated with solid noise.
The granite vase, textile cushion, straw hat, leather boot, rusty car, wooden chair, snake skin and tree bark are generated with filtered surface
noise. (Bottom rows) The color maps, noises and widgets used for the procedural textures generated with surface noise.

example in video). We achieve frame rates of roughly 30 frames
per second at a resolution of 800× 600 using an NVIDIA GeForce
GTX 280 (see video), making our noise well-suited for interactive
applications.

7 Comparison and Discussion

In this section we compare our noise with Perlin noise, sparse con-
volution noise, wavelet noise, the noise of Goldberg et al., and the
noise of Kensler et al. The noises and their power spectra are shown
in Fig. 8, and a feature matrix of the noises is shown in Tab. 1.

Perlin Noise & Kensler’s Noise Perlin noise [Perlin 2002] and
the noise of Kensler et al. [2008] do not support anisotropic noise or
anisotropic filtering. Kensler et al. also use a projection method for
surface noise. However, the projection does not preserve the Perlin
noise lattice, and it is not clear how this affects the properties of the
surface noise.

Sparse Convolution Noise & Spot Noise Our work is inspired
by sparse convolution noise [Lewis 1984; Lewis 1989] but is also
related to spot noise [van Wijk 1991], a method for synthesizing
stochastic textures for visualizing scalar and vector fields. Both
methods offer some form of spectral control. However, Lewis only
used a radially symmetric smooth cosine kernel, and spot noise does
not have the properties of a procedural noise function.

Wavelet Noise Wavelet noise [Cook and DeRose 2005] does not
support anisotropic noise or anisotropic filtering. Setup-free surface
noise is obtained by performing a weighted line integral of solid
noise. However, the storage requirements of solid wavelet noise
are significant, a tile with a resolution of 2563 requires 64 MB of
storage. The noise is only approximately isotropic. The square
feature in the power spectrum (Fig. 8(c)), caused by the separable
B-splines, indicates an undesirable axis-aligned directional prefer-
ence in the noise.
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(a) Perlin noise. (b) Lewis’ noise. (c) Wavelet noise. (d) Goldberg’s. (e) Kensler’s. (f) Ours, CPU. (g) Ours, GPU. (h) Ours, valid.

Figure 8: Isotropic noises and their power spectra. (a) Perlin noise. (b) Sparse convolution noise. (c) Wavelet noise. (d) The noise of
Goldberg et al. (e) The noise of Kensler et al. (f) Our noise, CPU implementation. (g) Our noise, GPU implementation. (h) Our noise,
validation.

Perlin Lewis’ Wavelet Goldberg’s Kensler’s our
noise noise noise noise noise noise

procedural
storage requirements1 O(N) O(N) O(Nd) O(Nd) O(dN) O(1)
absence of discretely sampled data X X X X X

non-periodicity X

parameters2 disc. sc. & or. cont. K a F0 ω0
controllable

bandlimited X X X X

spectral control limited limited limited limited limited accurate
design weights kernel weights weights weights widgets

surface noise
two dimensional noise X X X X X X

surface noise X X X X

solid noise X X X X X

setup free surface noise X X X

anisotropic noise
isotropic noise X X X X X X

anisotropic noise X X

isotropic filtering X X X

anisotropic filtering X X

fast to evaluate
interactive X X X X X X

trade quality for speed X X X X X X

1 Storage requirements are expressed in function of the period N and the number of dimensions d.
2 disc. sc. & or. : discrete scale and orientation — cont. K a F0 ω0 : continuous K, a, F0 and ω0.

Table 1: Noise feature matrix. Feature matrix showing Perlin noise, sparse convolution noise, wavelet noise, the noise of Goldberg et al., the
noise of Kensler et al. and our noise versus the properties identified in Sec. 1.1.

Goldberg’s Anisotropic Noise The noise of Goldberg et
al. [2008] is impractical for solid noise, because it has storage re-
quirements similar to wavelet noise. Surface noise is obtained by
mapping two-dimensional noise onto the surface and compensating
for distortions. Therefore, the noise requires a surface parameteri-
zation and a method for handling seams. This removes one of the
major advantages of procedural texturing, that is that any surface
can be textured without preprocessing. The noise stores discretely
sampled data and is therefore potentially subject to discretization
artifacts. Similar to wavelet noise, the noise is potentially subject
to repeating patterns if only a single tile is used.

Performance Tab. 2 shows the performance of our 2D noise and
unfiltered and filtered surface noise, in frames per second (FPS)
and megapixels per second (MPixels/s), using an NVIDIA GeForce
GTX 280. In comparison, the noise of Goldberg et al. [2008], one
of the fastest noises, runs at 538 FPS and 258 MPixels/s, (4 octaves,
800×600). This means that, assuming 30 impulses per cell, our 2D
noise is about 4 times slower, while our filtered surface noise is 40
times slower, but offers accurate spectral control, is setup free, and
is truly procedural. Although our noise is not as fast as most other
noises, it runs at interactive rates and enables a speed vs. quality
trade-off.

# impulses/cell 20 30 40 50

FPS 290/111/50 201/76/34 156/61/26 126/53/22

MPixels/s 76.2/19.6/8.9 52.8/13.5/6.1 41.0/10.8/4.6 33.2/9.4/3.9

performance figures: 2D noise/unfiltered surface noise/filtered surface noise

2D noise: 512 × 512, surface noise: 175.516 visible pixels

Table 2: Noise performance. Performance of our 2D noise and
unfiltered and filtered surface noise, in frames per second and
megapixels per second, using an NVIDIA GeForce GTX 280.

Interference Patterns Very narrowly band-limited noise may ex-
hibit interference patterns (see e.g., Fig. 7, top row, fourth pat-
tern). This is because very narrowly band-limited noise consists
only of harmonics with frequencies very close to the principal fre-
quency. These harmonics slowly transition between perfectly in
phase, causing constructive interference, and perfectly out of phase,
causing destructive interference. We have verified that the interfer-
ence patterns are not artifacts introduced by the procedural evalu-
ation using our non-procedural CPU implementation based on fre-
quency filtering.

Spectral Control Our noise offers more accurate spectral con-
trol than a weighted sum of octaves. A weighted sum can only
roughly approximate a desired power spectrum, because of the
coarse discretization of frequency space, and therefore offers only
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limited spectral control. The resulting approximation errors can
be visually noticeable and affect noise design and noise filtering.
Although the approximation can be improved by using a finer
discretization, this increases storage requirements and evaluation
cost. Our noise samples a parameteric description of the desired
power spectrum instead of discretizing frequency space, and there-
fore offers more accurate spectral control. This is demonstrated in
Sec. 3.1, 3.2 and 5.2.

Procedural Our noise has a memory footprint of only a few
bytes, does not rely on discretely sampled data, is nonperiodic,
and has intuitive parameters, and is therefore truly procedural. Our
noise is also mathematically elegant and its properties are charac-
terized analytically.

8 Conclusion

We consider accurate spectral control and setup-free surface noise
to be the two most important advantages of our new procedural
noise. Setup-free surface noise allows the user to map any tex-
ture designed with our noise onto a surface, while maintaining the
appearance of the texture, without precomputation and undesired
artifacts such as distortions and seams. Accurate spectral control al-
lows the user to benefit from increased noise expressiveness, more
advanced modeling capabilities and improved rendering quality.

A promising direction for future research is modeling procedural
textures by example by guiding our noise with parametric descrip-
tions of power spectra derived from real world textures. Other in-
teresting topics for future work are decoupling the bandwidth of
the noise and the size of the grid to enable noise with unrestricted
spatially varying bandwidth, extending our method for anisotropic
filtering to solid noise, and investigating the possibilities of other
kernels and Gabor kernels with more parameters.
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Pseudocode

1   class pseudo_random_number_generator

2   {

3   public:

4     void seed(unsigned s) { x = s; }

5     unsigned next() { x *= 3039177861; return x; }

6     float uniform_0_1() { return float(next()) / float(UINT_MAX); }

7     float uniform(float min, float max)

8       { return min + (uniform_0_1() * (max - min)); }

9     unsigned poisson(float mean)

10     {

11       float g = exp(-mean);

12       unsigned em = 0;

13       double t = uniform_0_1();

14       while (t > g) {

15         ++em;

16         t *= uniform_0_1();

17       }

18       return em;

19     }

20   private:

21     unsigned x;

22   };

23

24   float cell(int i, int j, float x, float y)

25   {

26     unsigned s = morton(i, j) + random_offset;

27     if (s == 0) s = 1;

28     pseudo_random_number_generator prng;

29     prng.seed(s);

30     unsigned number_of_impulses = prng.poisson(number_of_impulses_per_cell);

31     float sum = 0.0;

32     for (unsigned i = 0; i < number_of_impulses; ++i) {

33       float x_i = prng.uniform_0_1(), y_i = prng.uniform_0_1();

34       float w_i = prng.uniform(-1.0, +1.0);

35       float omega_0_i = prng.uniform(0.0, 2.0 * M_PI);

36       sum += w_i * gabor(K, a, F_0, omega_0_i,

37           (x - x_i) * kernel_radius, (y - y_i) * kernel_radius);

38     }

39     return sum;

40   }

41

42   float noise(float x, float y)

43   {

44     x /= kernel_radius, y /= kernel_radius;

45     float sum = 0.0;

46     for (int i = -1; i <= +1; ++i)

47       for (int j = -1; j <= +1; ++j)

48         sum += cell(int(x) + i, int(y) + j, frac(x) - i, frac(y) - j);

49     return sum;

50   }

Figure 9: Pseudocode for isotropic noise.
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