
18 May/June 2008 Published by the IEEE Computer Society 0272-1716/08/$25.00 © 2008 IEEE

Procedural Methods for Urban Modeling Tutorial

Procedural Urban Modeling

in Practice
Benjamin Watson ■ North Carolina State University

Pascal Müller ■ Procedural Inc.

Peter Wonka ■ Arizona State University

Chris Sexton ■ Johns Hopkins University

Oleg Veryovka and Andy Fuller ■ Electronic Arts

Procedural modeling is �nally going main-

stream. Until recently it was a boutique

solution, used only when no other options

existed. Now procedural modeling is often the

cost-effective solution, used because the alterna-

tives are too expensive. In �lm,

games, and other applications,

consumers expect richer, higher-

quality digital content for their

dollar. Because budgets won’t al-

low content producers to increase

cost signi�cantly, they have only

one choice: they must improve

their tools. Procedural model-

ing is the primary ingredient in

these tools.

One of the main drivers of

these trends is urban content.

Cities are huge, richly detailed

artifacts often required in digital

productions. Modeling them with

existing, nonprocedural tools can

take hundreds of man-years. Several researchers are

creating procedural techniques speci�cally for auto-

mating city modeling.

A brief history
Computer graphics practitioners have long used

procedural modeling to generate nonurban con-

tent. L-system grammars generate plants,1 while

agent-based particle systems model fuzzy objects

such as �re and smoke2—most famously the “Gen-

esis effect” in Star Trek. Perlin’s noise3 simulates

clouds and natural textures, while Reynolds’

boids4 apply agent-based methods to animate

�ocks, schools, and herds, including stampeding

wildebeests in The Lion King. Genetic techniques

similar to those described by Sims5 will soon see

use in Spore, a game from Electronic Arts (EA).

Synthesizing natural landscapes has a similarly

long research history, but since cities sit on landscapes

this approach applies more directly to urban problems

than the techniques discussed previously. Fournier

and colleagues use stochastic, fractal techniques in-

spired by Mandelbrot.6 Musgrave and colleagues ex-

tend these techniques to model erosion effects.7 More

recently, Zhou and colleagues applied texture syn-

thesis—used to make large, unique textures from

small source patches—to create natural terrain that

respects artist constraints.8 Planetside’s Terragen, a

commercial software package widely used in �lm

and games, implements many of these techniques.

Synthesizing urban terrain
Procedural techniques dedicated to urban synthe-

sis have only begun to appear more recently. Par-

ish and Müller use L-systems to model extensive

street layouts and buildings.9 Given input maps

of geography, population density, and layout con-

straints, their system generates streets, subdivides

land, and creates skyscrapers. Figure 1 shows an

example of road generation.

Film and game studios can no

longer meet audience demand

for visual content by increasing

production budgets. Instead

they are turning to procedural

modeling, particularly for

modeling cities. The authors

review procedural modeling,

examine the CityEngine

tool, and study the use of

procedural urban modeling

in Electronic Arts’ Need for

Speed games.

 IEEE Computer Graphics and Applications 19

Lechner and colleagues use agent-based technol-

ogy to build transportation networks, subdivide

land, allocate use, and manage population den-

sity.10 Their agents adapt to their environment,

letting artists steer development interactively to

meet speci�c application constraints. A recent ex-

tension to their work by Sexton and Watson vec-

torizes the gridded simulation output, producing

realistic, smoothed, urban terrains that you can

import into various geographic information sys-

tem (GIS) tools for further analysis.11

Esch and colleagues support interactive modi�ca-

tion of street layouts through 2D tensor �elds (ten-

sors are a generalization of vectors).12 Artists can

change layouts indirectly by manipulating the tensor

�eld or directly by reshaping the roads themselves.

In gaming and other interactive applications,

the ability to synthesize urban content in real

time would be especially useful. Greuter and col-

leagues describe a �rst pass at this problem, laying

out cities using a simple grid, and creating simple

skyscrapers from input footprints on the �y.13 To

meet real-time constraints, they pay particular at-

tention to caching and limiting computation out-

side the view frustum.

Synthesizing buildings and other structures
In 1971, the architect Stiny introduced shape

grammars to bring a new formalism and rigor

to designing and analyzing architecture.14 Many

designers adopted shape grammars, but they re-

mained largely conceptual tools, synthesizing only

conceptual mass models of buildings and other

structures. Wonka as well as Müller and colleagues

took the next step, introducing split grammars for

synthesizing detailed building facades,15 building

a shape grammar called CGA Shape for creating

entire building exteriors,16 and creating the City-

Engine integrated modeling environment. More

recently, they have used computer vision to auto-

matically generate grammars describing facades.17

Aliaga and colleagues describe a similar system

that facilitates authoring grammars for texturing

building exteriors.18

Merrell generates buildings (and many other

shapes) using a texture-synthesis-inspired tech-

nique.19 The artist partitions a small example

model into parts using a 3D grid. This partition

then generates a set of constraints: two parts might

only be adjacent in the output model if they were

adjacent in the example model. Merrell uses opti-

mized search in this constrained space to generate

output models

Many structures such as bridges and train sta-

tions are best characterized by the layout of their

supporting beams and infrastructure. Pottmann

and colleagues synthesize the quadrilateral, pen-

tagonal, and hexagonal meshes that characterize

many beam layouts.20 They can �nd layouts for

almost any curved surface. Smith and colleagues

automate the design of the truss structures that

support buildings, bridges, and many other struc-

tures.21 Their method accommodates the real-life

engineering constraints that relate geometry to

mass and stress.

Floor plans describe building interiors and of-

ten dictate the appearance of building exteriors,

especially in homes. Harada and colleagues apply

optimization algorithms to the design of 2D ar-

chitectural �oor plans,22 while Martin devises a

grammar that constructs graphs in which nodes

represent rooms and links connections between

rooms.23 He then translates these graphs into in-

terior and exterior building geometry. Hahn and

colleagues generate building �oor plans and cor-

responding 3D interiors in real time by randomly

dividing rectangular �oors into rectangular rooms

and hallways.24 The division respects several basic

architectural constraints such as connecting ad-

jacent hallways and ensuring that small private

rooms are immediately accessible from public

spaces. Like many researchers, Hahn and col-

leagues store and reuse random seeds during real-

time generation, ensuring that a given �oor has

the same �oor plan at each viewing.

Synthesizing other urban content
Urban content is more than building placement

and shape. Legakis and colleagues synthesize “cel-

lular” textures of brick, tile, and masonry for

buildings and other structures.25 Textures respect

component (such as brick) shape, commonly

used tiling patterns, and structure geometry. For

example, brick textures on each side of a corner

re�ect the fact that the same 3D bricks occupy

both textures.

Figure 1.

Examples of

procedural

road synthesis.9

©
 2

0
0
1
 A

C
M

20 May/June 2008

Procedural Methods for Urban Modeling Tutorial

Weathering and wear are important elements

of urban realism. Dorsey and colleagues model

the weathering of stone, including oxidation and

erosion.26 Chen and colleagues simulate weather’s

effects on additional materials and model other

types of weathering, including moss, rust, and dirt

accumulation.27

Without people, cities are ghost towns. Thomas

and Donikian populate cities with cars and pedes-

trians, each with matching behaviors and anima-

tions.28 Maïm and colleagues apply the CityEngine

to generate an annotated city model and interpret

these semantics to automatically populate the

scene and trigger special behaviors in the crowd,

depending on the characters’ location.29

CityEngine applications
One of the most mature procedural modeling

tools available is the CityEngine. Effective use of

the CityEngine, and indeed almost any urban-

modeling tool, requires familiarity with architec-

ture. You should begin by acquiring a good un-

derstanding of basic building elements such as

windows, doors, columns, pilasters, quoins, gates,

roofs, cornices, arches, walls, and ornaments. We

recommend examining one to three architecture

books with labeled illustrations of these elements.

One of the best is by Köpf and Binding, but unfor-

tunately it’s available only in German.30 A similar

book is a Visual Dictionary of Architecture (John

Wiley & Sons, 1996).

The next step is to create grammar rules for

combining these basic elements. Unfortunately,

the existing architectural literature describes these

rules ambiguously; formal and procedural meth-

ods aren’t widely used in architecture and have

little tradition in the �eld. Typically, modelers

must therefore derive rules and structure without

relying strongly on the existing literature.

How dif�cult is using the CityEngine? In the

three example projects we describe, we collaborated

with archeologists, urban planners, and artists to

produce their models and found that shape gram-

mars are as easy to learn as scripting languages.

Users unfamiliar with scripting generated gram-

mars without dif�culty using the CityEngine’s vi-

sual interface or its image-based methods. Soon

the market will render its own judgment: Proce-

dural Inc. plans to release the CityEngine in the

second quarter of 2008.

Work�ow
Work�ow in the CityEngine typically begins

with a speci�c idea stemming from a photograph,

a drawing, an architectural �gure, or a new de-

sign concept (see Figure 2).9,31 The next step is to

analyze the design and �nd the most important

parameters.

For example, consider Le Corbusier’s Cruciform

Skyscraper. Le Corbusier designed several detailed

variations of the skyscraper between 1920 and

1930, with the most famous incarnations appear-

ing in the master plans for his Contemporary City

(1922) or the Plan Voisin (1925). The enormous

(for that time) 60-story skyscrapers were built on

steel frames and encased in huge curtain walls of

glass. They housed both of�ces and the �ats of the

wealthiest urban inhabitants and were set in large,

rectangular, park-like green spaces.

Figure 3 shows a sketch of the skyscraper design

and a visual analysis showing its simpli�ed struc-

ture. During analysis you must name individual

elements and identify important design parame-

ters. Here we choose the names core, spine, wing,

and tooth. We also start with seven parameters

for the main mass of the building: overall height,

ground �oor height, platform height, wing width,

small-wing width, teeth width, and the distance

between two teeth. During this analysis, we also

model detailed textures and individual building el-

ements, such as window geometry. (After several

design projects, you can reuse many previously

created building elements.)

We then encode shape grammar rules for as-

sembling the skyscraper’s crude mass model out

of basic solids (mainly boxes) and for construct-

ing its facades. After con�rming that the resulting

proportions match a speci�c sketch, we carefully

start randomizing parameters to create stochas-

tic rules that generate a whole city. It’s important

to begin with one working instance and then add

randomness gradually, because too much random-

ness creates chaotic, uninteresting designs.

We recommend that new CityEngine users gain

Design idea/concept

Analyze design and parameters

Create elements and textures

Encode design rules

Add stochastic behavior

Generate models

Figure 2. The

work�ow

for a typical

architectural

procedural-

modeling

project.

 IEEE Computer Graphics and Applications 21

experience with this procedure by building several

simple buildings. Just a few well-modeled stochas-

tic buildings can populate a complete city. For ex-

ample, Parish and Müller’s model of New York had

only six different building types.9

A cultural heritage application
Experts and laymen study historical structures

closely. Digital models of these elements of our

cultural heritage are valuable tools for analysis,

reconstruction, and virtual display. While the fo-

cus of cultural heritage digitization is still on 3D

modeling of important major monuments such as

the Parthenon, there’s often additional demand

for modeling larger settlements. Such settlements

might be interesting or might only form the con-

text for a monument.

While archeologists have detailed architectural

knowledge of the monuments and settlements they

study, they have little formal training in CAD or

computer graphics modeling packages. Procedural-

modeling tools such as the CityEngine can bridge

this gap, providing a user-friendly, high-level in-

terface and �lling in detail where the archeologi-

cal record is incomplete.

In close collaboration with archaeologists from

Bonn, we recently reconstructed the ancient Ma-

yan city of Xkipche in Mexico. We describe this

project elsewhere.16 Excavations provided detailed

locations and descriptions of buildings, which

were built primarily in one speci�c architectural

style. Following the work�ow we just described,

we began analyzing the building and identi�ed the

most important parameters. While we could rely

on some drawings and assistance from our archeo-

logical collaborators, we had no formal design de-

scription for the Xkipche style. So, we performed

most of the analysis ourselves, with continual re-

view and comment from archeologists, producing

a building model encoded with 39 shape-grammar

rules and 32 control parameters.

To reconstruct the whole site, archaeologists im-

ported their GIS data (footprints with metadata

such as building height) into the CityEngine and

selected buildings for 3D reconstruction. Archeol-

ogists then interactively de�ned the 32 parameters

of those buildings while examining a 3D build-

ing preview. When the archeologists were satis-

�ed with their reconstruction, they stored each

building’s parameters in the GIS database. The

complete city can be generated and stored on disk

at any time. Figure 4 shows a building model that

we created with our system.

Spine

Tooth

Core

Wing

Figure 3. Top:

Views of Le

Corbusier’s

Cruciform

Skyscraper and

the simpli�ed

design

structure.

Bottom: 3D

depictions

generated with

the CityEngine,

including

mass model

variations

created by

changing

parameters

and a building

with a facade

applied.

Figure 4. A

Mayan building

from Xkipche

in Mexico

generated with

the CityEngine

for a cultural

heritage

project.

22 May/June 2008

Procedural Methods for Urban Modeling Tutorial

Use in urban planning
Urban master planning regulates, directs, and

projects future development in cities. Long be-

fore any of the structures they envision are built,

planners must produce impressive visualizations

of them, which are used both in design competi-

tions and in political decision making. Not only

can procedural modeling simplify the production

of such visualizations, it can also illustrate the re-

maining artistic possibilities through stochastic,

procedural variation.

Urban plans must conform to numerous zoning

regulations, the most important of which is the

building envelope, which de�nes the volume wherein

a building must be designed. Sometimes the enve-

lope is the extruded property line, but setbacks in

the form of angles at the line or distances from

the line are common. Density is controlled using

�oor-area ratios: total �oor area divided by prop-

erty area. (Taller buildings will have higher ratios.)

With the percentage of covered area on each enve-

lope surface, regulations can ensure consistent fa-

cade alignments. Lighting rules limit the shadows

buildings cast. For example, buildings over a certain

height might not be permitted to cast a shadow on

adjacent housing for more than 2 hours.

We implemented a simple prototype to visualize

a master plan for the Dubai World Islands. Figure 5

shows some output from this prototype. We created

rules by analyzing building sketches provided by ur-

ban planners who, like our archeologist collabora-

tors, loaded the 2D plan into the CityEngine and

interactively rede�ned buildings until they were

satis�ed. Ultimately, we would like to incorporate

zoning regulations into the CityEngine as rules, so

that all generated models will conform to them.

The CityEngine in �lm
The traditional production pipeline in the movie

industry is broken down into clearly separated, se-

quential stages. The overall control lies with the

director and producer. The art director supervises

the �rst stage, preproduction, which develops ini-

tial drawings and 3D models. The second stage, if

live action is included, is �lming, which the direc-

tor of photography supervises. The visual-effects

supervisor leads postproduction, the last stage.

Postproduction re�nes preproduction concepts and

combines them with footage from �lming to pro-

duce composited frames. Most computer graphics

work occurs in postproduction and includes the

creation of the �nal 3D textured models, anima-

tions, and lighting.

Because digital effects have become more preva-

lent, pre- and postproduction have become more

integrated. Procedural modeling can strengthen

this integration by providing a single, �exible,

digital representation, saving both time and cost.

For example, in preproduction, artists might de-

scribe initial designs using coarse urban layouts

and 3D building mass models, augmented with

a few detailed facade designs to convey overall

appearance. As the designs mature, even major

adjustments to building layout and shape can be

made without losing facade detail and the work

that de�ned it, because rules are de�ned within

the context of larger-scale designs. Figure 6 shows

how the CityEngine supported such changes dur-

ing movie production.

Procedural urban modeling
in racing games
Demand for procedural technology in game de-

velopment is unique. Over the last decade, video

games have grown into a large and lucrative sec-

tor of the software development and entertainment

industries. The visual complexity of games released

for modern game consoles such as Sony’s Play-

Station 3 and Microsoft’s Xbox 360 now rivals the

visual complexity of computer-generated �lms. This

generates content demand with elements similar to

and distinct from content demand for �lm. Here

Figure 5. Some

results from

the Dubai

World Islands

urban planning

project.

 IEEE Computer Graphics and Applications 23

we look at racing games, a genre that has a vora-

cious appetite for new urban content, and how pro-

cedural modeling is meeting this demand. We focus

on EA’s Need for Speed (NFS) racing games, as one

of the most signi�cant examples of this genre.

Recent NFS games include more than 100 miles

of roads in dense urban, suburban, and rural set-

tings (see Figure 7). Environments vary from real

race tracks and famous world locations to �ctional

locations designed to provide a fun driving expe-

rience. NFS worlds are �lled with thousands of

unique elements or artistic assets such as architec-

tural buildings, objects, signs, lights, and organics

such as trees, bushes, and grass.

Real-time display requirements (at least 30

frames per second) force game assets to conform

to strict budgets, measured in the number of poly-

gons, materials, draw calls, shader complexity, and

texture sizes. The challenge of maintaining high

visual complexity while conforming to these bud-

gets is daunting, and differentiates video game

production from �lm.

Procedural-modeling techniques offer tools that

can speed up development of game assets. Game

artists aren’t looking for a one-button procedural

solution. Instead, they’re interested in procedural

methods that help with tedious tasks and provide

results that adjust to gaming constraints. Proce-

dural methods should free artists to spend time

creating and polishing, rather than performing

mundane, repetitive, and time-consuming tasks.

Fitting procedural modeling to game development
work�ow
Procedural techniques must �t into established

work�ow and production processes. The process

for EA’s NFS games contains three primary stages:

road, terrain, and building development.

With roads, artists are limited to a few unique

tileable textures. Road geometry requires regu-

lar tessellation and UV mapping that guarantees

constant pixel density for all road elements: base

surface, road lines, and details such as grime,

potholes, and cracks. Maintaining pixel density

is particularly challenging at intersections because

roads change shape, require turns, and then wid-

en. Our NFS road tool automates road creation

Figure 6. Some designs for a movie that used the CityEngine in pre- and

postproduction. Top: overall city design. Bottom: Sketches for individual

buildings and procedural building models derived from the design

sketches. Conceptual images by Filip Krnja.

Figure 7. The

world in the

Need for

Speed racing

games includes

visually

complex

and detailed

models of

hundreds

of miles of

roads in city,

suburban, and

rural settings.

24 May/June 2008

Procedural Methods for Urban Modeling Tutorial

and lets artists lay out roads quickly, add tessel-

lation, and apply UV mapping. Roads can change

many times during production. They remain ed-

itable and retain UV mapping no matter how

many modi�cations are made. Authoring sharp

transitions from the road’s edge to dirt or the sur-

rounding environment using repeatable texture is

particularly challenging. Unfortunately, existing

procedural techniques are limited in this area and

don’t yet offer acceptable solutions.

Procedural methods for authoring natural ter-

rains are well established and widely used. Au-

thoring terrain in urban gaming environments

remains dif�cult and includes these challenges:

providing correct shapes, locations, and sizes of

foundations for buildings;

minimizing polygon density to meet memory

budgets;

minimizing unique textures; and

having a uniform UV mapping across the entire

terrain, including building footprints.

Artists populate the terrain with objects including

trees and organics, road signs, light posts, foun-

tains, waterfalls, and buildings. Some objects,

such as shortcuts and hiding spots, involve game-

play, while others are only for viewing and aren’t

interactive.

Authoring buildings is one of the most time-

consuming elements of the NFS production pipe-

line. Artists construct architectural models using

large polygons and texture atlases with tileable and

reusable textures (see Figure 8). They use surface

materials to add unique shading properties such

as re�ections. They must generate normal and off-

set maps accurately for hundreds of buildings and

objects. EA’s artists currently have no procedural

assistance for this work.

A wish list of procedural tools for game development
Procedural methods for placing world objects

would be extremely helpful. To respect asset bud-

gets, such tools must be smart enough to increase

the density of objects close to the car camera and

■

■

■

■

decrease the density of objects far from the car

camera. Artists might want to eliminate parts of

buildings that players will never see.

While organic objects such as trees greatly en-

hance the look and feel of racing games, rendering

them is expensive. Existing procedural methods for

modeling convincing trees require high-resolution

textures and many polygons and can’t meet game

asset budgets. Constructing highly optimized organ-

ic objects by hand is tedious and time-consuming.

Game artists are looking for procedural methods

for modeling organic objects that meet asset bud-

gets and yet remain convincing.

Many games are released on multiple hardware

platforms and must reuse digital content. Each

platform has unique strengths and weaknesses;

accordingly, asset budgets differ widely across plat-

forms. Procedural methods can improve content

reusability by automating control of both model

complexity and local model frequency. For exam-

ple, a procedural tool might place highly detailed

models close to a road and more coarsely detailed

models farther from it.

Procedural urban modeling is becoming increas-

ingly important in industrial practice but can

still improve its �t to industrial work�ows. Pos-

sible improvements include these:

Automated grammar learning. One of the most

challenging aspects of using grammar-based

procedural modelers is producing the rules that

generate the desired models. We’ve cited some

initial work in automating this process,17 but

further work is required.

Visual-grammar interfaces. Grammars are widely

used in procedural urban modeling, but textual

grammar interfaces aren’t well suited for artists

and designers who aren’t �uent in scripting.

Rule libraries. Modifying an existing rule set

(such as a grammar) to meet new requirements

is much simpler than analyzing a design and cre-

ating a new set from scratch. Creating libraries

of useful rule sets representing complete analy-

ses could lower this “bootstrapping barrier.”

Site and structure integration. Buildings are de-

signed to �t their site, and sites are designed to

�t buildings. Most procedural methods focus on

sites or buildings in isolation.

Structure and shading integration. Urban struc-

tures are built from certain common materials

(such as paint and asphalt) and are used in a

speci�c manner (for example, by pedestrians

and cars). Integrating this information into

■

■

■

■

■

(a) (b)

Figure 8.

(a) Architectural

model.

(b) Reusable

and tileable

textures used

in architectural

modeling.

 IEEE Computer Graphics and Applications 25

grammars and rule sets should make procedural

approaches much more powerful.

Procedural detail control. Especially for interac-

tive applications such as games, procedural tech-

niques should respect detail constraints such as

asset budgets by adapting to parameters such as

precomputed and real-time visibility.

Further research in these directions will help realize

the full potential of procedural urban modeling.

References
P. Prusinkiewicz, A. Lindenmayer, and J. Hanan,

“Development Models of Herbaceous Plants for

Computer Imagery Purposes,” Proc. Siggraph, ACM

Press, 1988, pp. 141–150.

W.T. Reeves, “Particle Systems—A Technique for

Modeling a Class of Fuzzy Objects,” Proc. Siggraph,

ACM Press, 1983, pp. 359–375.

K. Perlin, “An Image Synthesizer,” Proc. Siggraph,

ACM Press, 1985, pp. 287–296.

C.W. Reynolds, “Flocks, Herds and Schools: A

Distributed Behavioral Model,” Proc. Siggraph, ACM

Press, 1987, pp. 25–34.

K. Sims, “Evolving Virtual Creatures,” Proc. Siggraph,

ACM Press, 1994, pp. 15–22.

A. Fournier, D. Fussell, and L. Carpenter, “Computer

Rendering of Stochastic Models,” Comm. ACM, vol.

25, no. 6, 1982, pp. 371–384.

F.K. Musgrave, C.E. Kolb, and R.S. Mace, “The

Synthesis and Rendering of Eroded Fractal Terrains,”

Proc. Siggraph, ACM Press, 1989, pp. 41–50.

H. Zhou et al., “Terrain Synthesis from Digital

Elevation Models,” IEEE Trans. Visualization and

Computer Graphics, vol. 13, no. 4, 2007, pp. 834–848.

Y.I.H. Parish and P. Müller, “Procedural Modeling

of Cities,” Proc. Siggraph, ACM Press, 2001, pp.

301–308.

T. Lechner et al., Procedural Modeling of Land Use in

Cities, tech. report NWU-CS-04-38, Dept. Computer

Science, Northwestern Univ., 2004.

C. Sexton and B. Watson, “Vectorization of Gridded

Urban Land Use Data,” ACM Siggraph Posters, ACM

Press, 2007, p. 71.

G. Esch et al., Interactive Procedural Street Modeling,

tech. report CS07-10-01, Dept. Computer Science,

Oregon State Univ., 2007.

S. Greuter et al., “Real-Time Procedural Generation

of ‘Pseudo In�nite’ Cities,” Proc. 1st Int’l Conf.

Computer Graphics and Interactive Techniques in

Australasia and South East Asia (Graphite 03), ACM

Press, 2003, pp. 87–94.

G. Stiny and J. Gips, “Shape Grammars and the

Generative Speci�cation of Painting and Sculpture,”

■

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Proc. IFIP Congress 71, North-Holland, 1972, pp.

1460–1465.

P. Wonka et al., “Instant Architecture,” ACM Trans.

Graphics (Proc. Siggraph), vol. 22, no. 3, 2003, pp.

669–677.

P. Müller et al., “Procedural 3D Reconstruction of

Puuc Buildings in Xkipche,” Proc. Eurographics Symp.

Virtual Reality, Archaeology and Cultural Heritage

(VAST 06), Eurographics, 2006, pp. 139–146.

P. Müller et al., “Image-Based Procedural Modeling

of Facades,” ACM Trans. Graphics (Proc. Siggraph),

vol. 26, no. 3, 2007, article no. 85.

D. Aliaga, P.A. Rosen, and D.R. Bekins, “Style Grammars

for Interactive Visualization of Architecture,” IEEE

Trans. Visualization and Computer Graphics, vol. 13,

no. 4, 2007, pp. 786–797.

P. Merrell, “Example-Based Model Synthesis,” Proc.

2007 Symp. Interactive 3D Graphics and Games (I3D

07), ACM Press, 2007, pp. 105–112.

H. Pottmann et al., “Geometry of Multi-Layer Freeform

Structures for Architecture,” ACM Trans. Graphics

(Proc. Siggraph), vol. 26, no. 3, 2007, article no. 65.

J. Smith et al., “Creating Models of Truss Structures

with Optimization,” Proc. Siggraph, ACM Press,

2002, pp. 295–301.

M. Harada, A. Witkin, and D. Baraff, “Interactive

Physically-Based Manipulation of Discrete/Continuous

Models,” Proc. Siggraph, ACM Press, 1995, pp. 199–208.

J. Martin, “Procedural House Generation: A Method

for Dynamically Generating Floor Plans,” Proc.

Symp. Interactive 3D Graphics and Games: Posters,

ACM Press, 2006.

E. Hahn, P. Bose, and A. Whitehead, “Persistent

Realtime Building Interior Generation,” Proc. 2006

ACM Siggraph Symp. Videogames, ACM Press, 2006,

pp. 179–186.

J. Legakis, J. Dorsey, and S. Gortler, “Feature-Based

Cellular Texturing for Architectural Models,” Proc.

Siggraph, ACM Press, 2001, pp. 309–316.

J. Dorsey et al., “Modeling and Rendering of

Weathered Stone,” Proc. Siggraph, ACM Press, 1999,

pp. 225–234.

Y. Chen et al., “Visual Simulation of Weathering

by Y-Ton Tracing,” ACM Trans. Graphics (Proc.

Siggraph), vol. 24, no. 3, 2005, pp. 1127–1133.

G. Thomas and S. Donikian, “Modelling Virtual Cities

Dedicated to Behavioural Animation,” Computer

Graphics Forum, vol. 19, no. 3, 2000, pp. 71–80.

J. Maïm et al., “Populating Ancient Pompeii with

Crowds of Virtual Romans,” Proc. Eurographics Symp.

Virtual Reality, Archaeology and Cultural Heritage

(VAST 07), Eurographics, 2007, pp. 109–116.

H. Köpf and G. Binding, Bildwörterbuch der

Architektur (Gebundene Ausgabe) [Visual Dictionary

of Architecture], Kröner, 2005 (in German).

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

26 May/June 2008

Procedural Methods for Urban Modeling Tutorial

P. Müller et al., “Procedural Modeling of Buildings,”

ACM Trans Graphics (Proc. Siggraph), 2006, vol. 25,

no. 3, pp. 614–623.

Benjamin Watson is an associate

professor of computer science at

North Carolina State University.

His Design Graphics Lab focuses on

the creation of meaning in imagery

and spans the intersections between

graphics and perception, design, and

interaction. His work has been applied in digital enter-

tainment, computer security, �nancial analysis, educa-

tion, and medical assessment. Watson earned a doctorate

in computer science at the Georgia Institute of Technol-

ogy. He cochaired the Graphics Interface 2001, IEEE VR

2004, and ACM I3D 2006 conferences and was copro-

gram chair of I3D 2007. He’s an ACM and senior IEEE

member. Contact him at bwatson@ncsu.edu.

Pascal Müller is cofounder and

CEO of Procedural Inc., a compa-

ny specialized in software for the

ef�cient creation of 3D buildings

and cities. His main interests are

procedural and image-based mod-

eling, visual effects production,

31. generative design, and architecture. During his PhD

thesis at the Computer Vision Laboratory at ETH Zur-

ich, Muller developed the CityEngine and published sev-

eral scienti�c papers. Contact him at pascal.mueller@

procedural.com.

Peter Wonka is an assistant pro-

fessor in the Department of Com-

puter Science and Engineering of

Arizona State University. His re-

search interests include real-time

rendering, procedural urban mod-

eling, and the application of com-

puter graphics and visualization to various urban

planning problems. Wonka received a PhD in com-

puter science and an MS in urban planning from the

Vienna University of Technology. He’s a member of the

Partnership in Research and Spatial Modeling lab.

Contact him at pwonka@gmail.com.

Chris Sexton is a researcher at

the Johns Hopkins University Ap-

plied Physics Laboratory. His re-

search interests center on urban

modeling and capture. Sexton re-

ceived an MS in computer science

from North Carolina State Uni-

versity. Contact him at cgsexton@gmail.com.

Oleg Veryovka is a technical direc-

tor at Electronic Arts. He leads de-

velopment of computer graphics

software and tools for the best-

selling Need for Speed series of

computer games. His research areas

are texture control in image half-

toning, nonphotorealistic and stylized rendering, pres-

ervation of image detail, and image quality measures.

Veryovka received a PhD in computer graphics from the

University of Alberta. Contact him at olegv@ea.com.

Andy Fuller is an associate com-

puter graphics supervisor at Elec-

tronic Arts. He has worked full

time in the computer game develop-

ment industry since 1994 (includ-

ing porting the original Need for

Speed onto the Sega Saturn). Fuller

received a two-year civil engineering degree from Bell-

ingham Technical College and studied at the Seattle Art

Institute. Contact him at afuller@ea.com.

For further information on this or any other comput-

ing topic, please visit our Digital Library at http://

www.computer.org/csdl.

