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Procedural modeling is �nally going main-

stream. Until recently it was a boutique 

solution, used only when no other options 

existed. Now procedural modeling is often the 

cost-effective solution, used because the alterna-

tives are too expensive. In �lm, 

games, and other applications, 

consumers expect richer, higher-

quality digital content for their 

dollar. Because budgets won’t al-

low content producers to increase 

cost signi�cantly, they have only 

one choice: they must improve 

their tools. Procedural model-

ing is the primary ingredient in 

these tools.

One of the main drivers of 

these trends is urban content. 

Cities are huge, richly detailed 

artifacts often required in digital 

productions. Modeling them with 

existing, nonprocedural tools can 

take hundreds of man-years. Several researchers are 

creating procedural techniques speci�cally for auto-

mating city modeling.

A brief history
Computer graphics practitioners have long used 

procedural modeling to generate nonurban con-

tent. L-system grammars generate plants,1 while 

agent-based particle systems model fuzzy objects 

such as �re and smoke2—most famously the “Gen-

esis effect” in Star Trek. Perlin’s noise3 simulates 

clouds and natural textures, while Reynolds’ 

boids4 apply agent-based methods to animate 

�ocks, schools, and herds, including stampeding 

wildebeests in The Lion King. Genetic techniques 

similar to those described by Sims5 will soon see 

use in Spore, a game from Electronic Arts (EA).

Synthesizing natural landscapes has a similarly 

long research history, but since cities sit on landscapes 

this approach applies more directly to urban problems 

than the techniques discussed previously. Fournier 

and colleagues use stochastic, fractal techniques in-

spired by Mandelbrot.6 Musgrave and colleagues ex-

tend these techniques to model erosion effects.7 More 

recently, Zhou and colleagues applied texture syn-

thesis—used to make large, unique textures from 

small source patches—to create natural terrain that 

respects artist constraints.8 Planetside’s Terragen, a 

commercial software package widely used in �lm 

and games, implements many of these techniques.

Synthesizing urban terrain
Procedural techniques dedicated to urban synthe-

sis have only begun to appear more recently. Par-

ish and Müller use L-systems to model extensive 

street layouts and buildings.9 Given input maps 

of geography, population density, and layout con-

straints, their system generates streets, subdivides 

land, and creates skyscrapers. Figure 1 shows an 

example of road generation.

Film and game studios can no 

longer meet audience demand 

for visual content by increasing 

production budgets. Instead 

they are turning to procedural 

modeling, particularly for 

modeling cities. The authors 

review procedural modeling, 

examine the CityEngine 

tool, and study the use of 

procedural urban modeling 

in Electronic Arts’ Need for 

Speed games. 
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Lechner and colleagues use agent-based technol-

ogy to build transportation networks, subdivide 

land, allocate use, and manage population den-

sity.10 Their agents adapt to their environment, 

letting artists steer development interactively to 

meet speci�c application constraints. A recent ex-

tension to their work by Sexton and Watson vec-

torizes the gridded simulation output, producing 

realistic, smoothed, urban terrains that you can 

import into various geographic information sys-

tem (GIS) tools for further analysis.11

Esch and colleagues support interactive modi�ca-

tion of street layouts through 2D tensor �elds (ten-

sors are a generalization of vectors).12 Artists can 

change layouts indirectly by manipulating the tensor 

�eld or directly by reshaping the roads themselves.

In gaming and other interactive applications, 

the ability to synthesize urban content in real 

time would be especially useful. Greuter and col-

leagues describe a �rst pass at this problem, laying 

out cities using a simple grid, and creating simple 

skyscrapers from input footprints on the �y.13 To 

meet real-time constraints, they pay particular at-

tention to caching and limiting computation out-

side the view frustum.

Synthesizing buildings and other structures
In 1971, the architect Stiny introduced shape 

grammars to bring a new formalism and rigor 

to designing and analyzing architecture.14 Many 

designers adopted shape grammars, but they re-

mained largely conceptual tools, synthesizing only 

conceptual mass models of buildings and other 

structures. Wonka as well as Müller and colleagues 

took the next step, introducing split grammars for 

synthesizing detailed building facades,15 building 

a shape grammar called CGA Shape for creating 

entire building exteriors,16 and creating the City-

Engine integrated modeling environment. More 

recently, they have used computer vision to auto-

matically generate grammars describing facades.17 

Aliaga and colleagues describe a similar system 

that facilitates authoring grammars for texturing 

building exteriors.18

Merrell generates buildings (and many other 

shapes) using a texture-synthesis-inspired tech-

nique.19  The artist partitions a small example 

model into parts using a 3D grid. This partition 

then generates a set of constraints: two parts might 

only be adjacent in the output model if they were 

adjacent in the example model. Merrell uses opti-

mized search in this constrained space to generate 

output models 

Many structures such as bridges and train sta-

tions are best characterized by the layout of their 

supporting beams and infrastructure. Pottmann 

and colleagues synthesize the quadrilateral, pen-

tagonal, and hexagonal meshes that characterize 

many beam layouts.20 They can �nd layouts for 

almost any curved surface. Smith and colleagues 

automate the design of the truss structures that 

support buildings, bridges, and many other struc-

tures.21 Their method accommodates the real-life 

engineering constraints that relate geometry to 

mass and stress.

Floor plans describe building interiors and of-

ten dictate the appearance of building exteriors, 

especially in homes. Harada and colleagues apply 

optimization algorithms to the design of 2D ar-

chitectural �oor plans,22 while Martin devises a 

grammar that constructs graphs in which nodes 

represent rooms and links connections between 

rooms.23 He then translates these graphs into in-

terior and exterior building geometry. Hahn and 

colleagues generate building �oor plans and cor-

responding 3D interiors in real time by randomly 

dividing rectangular �oors into rectangular rooms 

and hallways.24 The division respects several basic 

architectural constraints such as connecting ad-

jacent hallways and ensuring that small private 

rooms are immediately accessible from public 

spaces. Like many researchers, Hahn and col-

leagues store and reuse random seeds during real-

time generation, ensuring that a given �oor has 

the same �oor plan at each viewing.

Synthesizing other urban content
Urban content is more than building placement 

and shape. Legakis and colleagues synthesize “cel-

lular” textures of brick, tile, and masonry for 

buildings and other structures.25 Textures respect 

component (such as brick) shape, commonly 

used tiling patterns, and structure geometry. For 

example, brick textures on each side of a corner 

re�ect the fact that the same 3D bricks occupy 

both textures.

Figure 1. 

Examples of 

procedural 

road synthesis.9
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Weathering and wear are important elements 

of urban realism. Dorsey and colleagues model 

the weathering of stone, including oxidation and 

erosion.26 Chen and colleagues simulate weather’s 

effects on additional materials and model other 

types of weathering, including moss, rust, and dirt 

accumulation.27

Without people, cities are ghost towns. Thomas 

and Donikian populate cities with cars and pedes-

trians, each with matching behaviors and anima-

tions.28 Maïm and colleagues apply the CityEngine 

to generate an annotated city model and interpret 

these semantics to automatically populate the 

scene and trigger special behaviors in the crowd, 

depending on the characters’ location.29

CityEngine applications
One of the most mature procedural modeling 

tools available is the CityEngine. Effective use of 

the CityEngine, and indeed almost any urban- 

modeling tool, requires familiarity with architec-

ture. You should begin by acquiring a good un-

derstanding of basic building elements such as 

windows, doors, columns, pilasters, quoins, gates, 

roofs, cornices, arches, walls, and ornaments. We 

recommend examining one to three architecture 

books with labeled illustrations of these elements. 

One of the best is by Köpf and Binding, but unfor-

tunately it’s available only in German.30 A similar 

book is a Visual Dictionary of Architecture (John 

Wiley & Sons, 1996).

The next step is to create grammar rules for 

combining these basic elements. Unfortunately, 

the existing architectural literature describes these 

rules ambiguously; formal and procedural meth-

ods aren’t widely used in architecture and have 

little tradition in the �eld. Typically, modelers 

must therefore derive rules and structure without 

relying strongly on the existing literature.

How dif�cult is using the CityEngine? In the 

three example projects we describe, we collaborated 

with archeologists, urban planners, and artists to 

produce their models and found that shape gram-

mars are as easy to learn as scripting languages. 

Users unfamiliar with scripting generated gram-

mars without dif�culty using the CityEngine’s vi-

sual interface or its image-based methods. Soon 

the market will render its own judgment: Proce-

dural Inc. plans to release the CityEngine in the 

second quarter of 2008.

Work�ow
Work�ow in the CityEngine typically begins 

with a speci�c idea stemming from a photograph, 

a drawing, an architectural �gure, or a new de-

sign concept (see Figure 2).9,31 The next step is to 

analyze the design and �nd the most important 

parameters.

For example, consider Le Corbusier’s Cruciform 

Skyscraper. Le Corbusier designed several detailed 

variations of the skyscraper between 1920 and 

1930, with the most famous incarnations appear-

ing in the master plans for his Contemporary City 

(1922) or the Plan Voisin (1925). The enormous 

(for that time) 60-story skyscrapers were built on 

steel frames and encased in huge curtain walls of 

glass. They housed both of�ces and the �ats of the 

wealthiest urban inhabitants and were set in large, 

rectangular, park-like green spaces.

Figure 3 shows a sketch of the skyscraper design 

and a visual analysis showing its simpli�ed struc-

ture. During analysis you must name individual 

elements and identify important design parame-

ters. Here we choose the names core, spine, wing, 

and tooth. We also start with seven parameters 

for the main mass of the building: overall height, 

ground �oor height, platform height, wing width, 

small-wing width, teeth width, and the distance 

between two teeth. During this analysis, we also 

model detailed textures and individual building el-

ements, such as window geometry. (After several 

design projects, you can reuse many previously 

created building elements.) 

We then encode shape grammar rules for as-

sembling the skyscraper’s crude mass model out 

of basic solids (mainly boxes) and for construct-

ing its facades. After con�rming that the resulting 

proportions match a speci�c sketch, we carefully 

start randomizing parameters to create stochas-

tic rules that generate a whole city. It’s important 

to begin with one working instance and then add 

randomness gradually, because too much random-

ness creates chaotic, uninteresting designs.

We recommend that new CityEngine users gain 

Design idea/concept

Analyze design and parameters

Create elements and textures

Encode design rules

Add stochastic behavior

Generate models

Figure 2. The 

work�ow 

for a typical 

architectural 

procedural-

modeling 

project.
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experience with this procedure by building several 

simple buildings. Just a few well-modeled stochas-

tic buildings can populate a complete city. For ex-

ample, Parish and Müller’s model of New York had 

only six different building types.9

A cultural heritage application
Experts and laymen study historical structures 

closely. Digital models of these elements of our 

cultural heritage are valuable tools for analysis, 

reconstruction, and virtual display. While the fo-

cus of cultural heritage digitization is still on 3D 

modeling of important major monuments such as 

the Parthenon, there’s often additional demand 

for modeling larger settlements. Such settlements 

might be interesting or might only form the con-

text for a monument.

While archeologists have detailed architectural 

knowledge of the monuments and settlements they 

study, they have little formal training in CAD or 

computer graphics modeling packages. Procedural-

modeling tools such as the CityEngine can bridge 

this gap, providing a user-friendly, high-level in-

terface and �lling in detail where the archeologi-

cal record is incomplete.

In close collaboration with archaeologists from 

Bonn, we recently reconstructed the ancient Ma-

yan city of Xkipche in Mexico. We describe this 

project elsewhere.16 Excavations provided detailed 

locations and descriptions of buildings, which 

were built primarily in one speci�c architectural 

style. Following the work�ow we just described, 

we began analyzing the building and identi�ed the 

most important parameters. While we could rely 

on some drawings and assistance from our archeo-

logical collaborators, we had no formal design de-

scription for the Xkipche style. So, we performed 

most of the analysis ourselves, with continual re-

view and comment from archeologists, producing 

a building model encoded with 39 shape-grammar 

rules and 32 control parameters.

To reconstruct the whole site, archaeologists im-

ported their GIS data (footprints with metadata 

such as building height) into the CityEngine and 

selected buildings for 3D reconstruction. Archeol-

ogists then interactively de�ned the 32 parameters 

of those buildings while examining a 3D build-

ing preview. When the archeologists were satis-

�ed with their reconstruction, they stored each 

building’s parameters in the GIS database. The 

complete city can be generated and stored on disk 

at any time. Figure 4 shows a building model that 

we created with our system.

Spine

Tooth

Core

Wing

Figure 3. Top: 

Views of Le 

Corbusier’s 

Cruciform 

Skyscraper and 

the simpli�ed 

design 

structure. 

Bottom: 3D 

depictions 

generated with 

the CityEngine, 

including 

mass model 

variations 

created by 

changing 

parameters 

and a building 

with a facade 

applied. 

Figure 4. A 

Mayan building 

from Xkipche 

in Mexico 

generated with 

the CityEngine 

for a cultural 

heritage 

project.
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Use in urban planning
Urban master planning regulates, directs, and 

projects future development in cities. Long be-

fore any of the structures they envision are built, 

planners must produce impressive visualizations 

of them, which are used both in design competi-

tions and in political decision making. Not only 

can procedural modeling simplify the production 

of such visualizations, it can also illustrate the re-

maining artistic possibilities through stochastic, 

procedural variation.

Urban plans must conform to numerous zoning 

regulations, the most important of which is the 

building envelope, which de�nes the volume wherein 

a building must be designed. Sometimes the enve-

lope is the extruded property line, but setbacks in 

the form of angles at the line or distances from 

the line are common. Density is controlled using 

�oor-area ratios: total �oor area divided by prop-

erty area. (Taller buildings will have higher ratios.) 

With the percentage of covered area on each enve-

lope surface, regulations can ensure consistent fa-

cade alignments. Lighting rules limit the shadows 

buildings cast. For example, buildings over a certain 

height might not be permitted to cast a shadow on 

adjacent housing for more than 2 hours.

We implemented a simple prototype to visualize 

a master plan for the Dubai World Islands. Figure 5 

shows some output from this prototype. We created 

rules by analyzing building sketches provided by ur-

ban planners who, like our archeologist collabora-

tors, loaded the 2D plan into the CityEngine and 

interactively rede�ned buildings until they were 

satis�ed. Ultimately, we would like to incorporate 

zoning regulations into the CityEngine as rules, so 

that all generated models will conform to them.

The CityEngine in �lm
The traditional production pipeline in the movie 

industry is broken down into clearly separated, se-

quential stages. The overall control lies with the 

director and producer. The art director supervises 

the �rst stage, preproduction, which develops ini-

tial drawings and 3D models. The second stage, if 

live action is included, is �lming, which the direc-

tor of photography supervises. The visual-effects 

supervisor leads postproduction, the last stage. 

Postproduction re�nes preproduction concepts and 

combines them with footage from �lming to pro-

duce composited frames. Most computer graphics 

work occurs in postproduction and includes the 

creation of the �nal 3D textured models, anima-

tions, and lighting.

Because digital effects have become more preva-

lent, pre- and postproduction have become more 

integrated. Procedural modeling can strengthen 

this integration by providing a single, �exible, 

digital representation, saving both time and cost. 

For example, in preproduction, artists might de-

scribe initial designs using coarse urban layouts 

and 3D building mass models, augmented with 

a few detailed facade designs to convey overall 

appearance. As the designs mature, even major 

adjustments to building layout and shape can be 

made without losing facade detail and the work 

that de�ned it, because rules are de�ned within 

the context of larger-scale designs. Figure 6 shows 

how the CityEngine supported such changes dur-

ing movie production.

Procedural urban modeling  
in racing games
Demand for procedural technology in game de-

velopment is unique. Over the last decade, video 

games have grown into a large and lucrative sec-

tor of the software development and entertainment 

industries. The visual complexity of games released 

for modern game consoles such as Sony’s Play-

Station 3 and Microsoft’s Xbox 360 now rivals the 

visual complexity of computer-generated �lms. This 

generates content demand with elements similar to 

and distinct from content demand for �lm. Here 

Figure 5. Some 

results from 

the Dubai 

World Islands 

urban planning 

project.
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we look at racing games, a genre that has a vora-

cious appetite for new urban content, and how pro-

cedural modeling is meeting this demand. We focus 

on EA’s Need for Speed (NFS) racing games, as one 

of the most signi�cant examples of this genre.

Recent NFS games include more than 100 miles 

of roads in dense urban, suburban, and rural set-

tings (see Figure 7). Environments vary from real 

race tracks and famous world locations to �ctional 

locations designed to provide a fun driving expe-

rience. NFS worlds are �lled with thousands of 

unique elements or artistic assets such as architec-

tural buildings, objects, signs, lights, and organics 

such as trees, bushes, and grass.

Real-time display requirements (at least 30 

frames per second) force game assets to conform 

to strict budgets, measured in the number of poly-

gons, materials, draw calls, shader complexity, and 

texture sizes. The challenge of maintaining high 

visual complexity while conforming to these bud-

gets is daunting, and differentiates video game 

production from �lm.

Procedural-modeling techniques offer tools that 

can speed up development of game assets. Game 

artists aren’t looking for a one-button procedural 

solution. Instead, they’re interested in procedural 

methods that help with tedious tasks and provide 

results that adjust to gaming constraints. Proce-

dural methods should free artists to spend time 

creating and polishing, rather than performing 

mundane, repetitive, and time-consuming tasks.

Fitting procedural modeling to game development 
work�ow
Procedural techniques must �t into established 

work�ow and production processes. The process 

for EA’s NFS games contains three primary stages: 

road, terrain, and building development.

With roads, artists are limited to a few unique 

tileable textures. Road geometry requires regu-

lar tessellation and UV mapping that guarantees 

constant pixel density for all road elements: base 

surface, road lines, and details such as grime, 

potholes, and cracks. Maintaining pixel density 

is particularly challenging at intersections because 

roads change shape, require turns, and then wid-

en. Our NFS road tool automates road creation 

Figure 6. Some designs for a movie that used the CityEngine in pre- and 

postproduction. Top: overall city design. Bottom: Sketches for individual 

buildings and procedural building models derived from the design 

sketches. Conceptual images by Filip Krnja. 

Figure 7. The 

world in the 

Need for 

Speed racing 

games includes 

visually 

complex 

and detailed 

models of 

hundreds 

of miles of 

roads in city, 

suburban, and 

rural settings.
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and lets artists lay out roads quickly, add tessel-

lation, and apply UV mapping. Roads can change 

many times during production. They remain ed-

itable and retain UV mapping no matter how 

many modi�cations are made. Authoring sharp 

transitions from the road’s edge to dirt or the sur-

rounding environment using repeatable texture is 

particularly challenging. Unfortunately, existing 

procedural techniques are limited in this area and 

don’t yet offer acceptable solutions.

Procedural methods for authoring natural ter-

rains are well established and widely used. Au-

thoring terrain in urban gaming environments 

remains dif�cult and includes these challenges:

providing correct shapes, locations, and sizes of 

foundations for buildings;

minimizing polygon density to meet memory 

budgets;

minimizing unique textures; and

having a uniform UV mapping across the entire 

terrain, including building footprints.

Artists populate the terrain with objects including 

trees and organics, road signs, light posts, foun-

tains, waterfalls, and buildings. Some objects, 

such as shortcuts and hiding spots, involve game-

play, while others are only for viewing and aren’t 

interactive.

Authoring buildings is one of the most time-

consuming elements of the NFS production pipe-

line. Artists construct architectural models using 

large polygons and texture atlases with tileable and 

reusable textures (see Figure 8). They use surface 

materials to add unique shading properties such 

as re�ections. They must generate normal and off-

set maps accurately for hundreds of buildings and 

objects. EA’s artists currently have no procedural 

assistance for this work.

A wish list of procedural tools for game development
Procedural methods for placing world objects 

would be extremely helpful. To respect asset bud-

gets, such tools must be smart enough to increase 

the density of objects close to the car camera and 

■

■

■

■

decrease the density of objects far from the car 

camera. Artists might want to eliminate parts of 

buildings that players will never see.

While organic objects such as trees greatly en-

hance the look and feel of racing games, rendering 

them is expensive. Existing procedural methods for 

modeling convincing trees require high-resolution 

textures and many polygons and can’t meet game 

asset budgets. Constructing highly optimized organ-

ic objects by hand is tedious and time-consuming. 

Game artists are looking for procedural methods 

for modeling organic objects that meet asset bud-

gets and yet remain convincing.

Many games are released on multiple hardware 

platforms and must reuse digital content. Each 

platform has unique strengths and weaknesses; 

accordingly, asset budgets differ widely across plat-

forms. Procedural methods can improve content 

reusability by automating control of both model 

complexity and local model frequency. For exam-

ple, a procedural tool might place highly detailed 

models close to a road and more coarsely detailed 

models farther from it.

Procedural urban modeling is becoming increas-

ingly important in industrial practice but can 

still improve its �t to industrial work�ows. Pos-

sible improvements include these:

Automated grammar learning. One of the most 

challenging aspects of using grammar-based 

procedural modelers is producing the rules that 

generate the desired models. We’ve cited some 

initial work in automating this process,17 but 

further work is required.

Visual-grammar interfaces. Grammars are widely 

used in procedural urban modeling, but textual 

grammar interfaces aren’t well suited for artists 

and designers who aren’t �uent in scripting.

Rule libraries. Modifying an existing rule set 

(such as a grammar) to meet new requirements 

is much simpler than analyzing a design and cre-

ating a new set from scratch. Creating libraries 

of useful rule sets representing complete analy-

ses could lower this “bootstrapping barrier.”

Site and structure integration. Buildings are de-

signed to �t their site, and sites are designed to 

�t buildings. Most procedural methods focus on 

sites or buildings in isolation.

Structure and shading integration. Urban struc-

tures are built from certain common materials 

(such as paint and asphalt) and are used in a 

speci�c manner (for example, by pedestrians 

and cars). Integrating this information into 

■

■

■

■

■

(a) (b)

Figure 8.  

(a) Architectural 

model.  

(b) Reusable 

and tileable 

textures used 

in architectural 

modeling.
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grammars and rule sets should make procedural 

approaches much more powerful.

Procedural detail control. Especially for interac-

tive applications such as games, procedural tech-

niques should respect detail constraints such as 

asset budgets by adapting to parameters such as 

precomputed and real-time visibility.

Further research in these directions will help realize 

the full potential of procedural urban modeling. 
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