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Figure 1: Our method procedurally generates structures with graded material elasticities, which can be directly fabricated.
Here the user paints elasticity on a 3D model to create a flexible figurine. Model: Moomin (thing:1173447) by Jeroentjj.

Abstract

Microstructures at the scale of tens of microns change the
physical properties of objects, making them lighter or more
flexible. While traditionally difficult to produce, additive
manufacturing now lets us physically realize such microstruc-
tures at low cost.

In this paper we propose to study procedural, aperiodic
microstructures inspired by Voronoi open-cell foams. The
absence of regularity affords for a simple approach to grade
the foam geometry — and thus its mechanical properties —
within a target object and its surface. Rather than requiring
a global optimization process, the microstructures are di-
rectly generated to exhibit a specified elastic behavior. The
implicit evaluation is akin to procedural textures in com-
puter graphics, and locally adapts to follow the elasticity
field. This allows very detailed structures to be generated
in large objects without having to explicitly produce a full
representation — mesh or voxels — of the complete object:
the structures are added on the fly, just before each object
slice is manufactured.

We study the elastic behavior of the microstructures and pro-
vide a complete description of the procedure generating them.
We explain how to determine the geometric parameters of
the microstructures from a target elasticity, and evaluate the
result on printed samples. Finally, we apply our approach to
the fabrication of objects with spatially varying elasticity, in-
cluding the implicit modeling of a frame following the object
surface and seamlessly connecting to the microstructures.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org. c©
2016 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
SIGGRAPH ’16 Technical Paper, July 24–28, 2016, Anaheim, CA
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925922

Keywords: 3D printing, additive manufacturing, procedu-
ral modeling, material design

Concepts: •Computing methodologies→ Shape mod-
eling;

1 Introduction

Additive manufacturing enables the fabrication of objects
having unprecedented complexity. This capability is often
understood in terms of the overall shape of objects. However,
it is also possible to fabricate parts filled with microstruc-
tures — having intricate internal details in the order of tens
of microns. The macro-scale mechanical properties of the
object are then directly influenced by the geometry of the
microstructures. In particular, careful design of the struc-
tures affords for parts that are lighter while remaining rigid
enough for their intended use. This reduces material usage,
shipping and transportation costs. In addition, inner struc-
tures can progressively vary within the object and adapt
to varying rigidity requirements between regions subject to
different stresses.

There are several challenges to achieve these goals. First,
the fine scale geometry of the structures has to produce
the desired large scale elastic behavior. This often implies
formulating challenging global optimizations, either to di-
rectly synthesize the fine scale geometry or to fill the shape
with precomputed microstructures (see Section 2). Second,
the structures are very small compared to the size of the
objects (e.g. tens of microns versus tens of centimeters).
Therefore, the meshes describing the models become quickly
prohibitively large, posing important computational chal-
lenges for simulation, visualization, and fabrication. Third,
the structures have to enforce fabricability constraints. The
main industrial processes have different requirements de-
pending on whether they locally deposit material (e.g. fused
filament fabrication, resin droplets) or whether they locally
solidify a bed of material itself acting as a support (e.g. se-
lective laser sintering). In the first case the structures should
not present any disconnected parts during fabrication, while
in the second case they should not enclose non-solidified
material in pockets.

To answer these challenges we draw inspiration from proce-
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dural noises in computer graphics, where an infinite amount
of content is produced at low, constant memory cost while
precisely controlling the statistical properties of the pro-
duced noises [Lagae et al. 2009]. This hints at the possibility
of generating procedural, stochastic microstructures that di-
rectly exhibit the desired elastic behavior, without further
optimization. Our approach explores this idea and defines a
procedure to synthesize open-cell foams that enforce fabri-
cation requirements while having precisely controlled elastic
properties. The foam parameters can vary spatially to follow
gradients of elasticity.

As the microstructures are procedural we only generate their
details when needed for fabrication. Typically, evaluation
happens at the slice level, just before sintering or curing a
layer of material. The microstructures are stochastic and
aperiodic in nature. Stochasticity results in an exceptionally
good isotropic behavior, and lets us grade the properties with-
out introducing discontinuities along pre-defined boundaries.
Aperiodicity removes the need for a global optimization when
conforming the structures to a surface.

Our contributions are:

• The definition of procedural Voronoi foams that can
be evaluated very efficiently, have precisely controlled
isotropic elastic behavior, and can be spatially graded
to produce gradients of elasticity.

• A methodology to derive an inverse mapping, from
a target elasticity to the parameters driving the mi-
crostructure generation.

• A complete implementation that maps well to stackless,
massively parallel architectures.

• Applications to the 3D fabrication of objects filled with
procedural Voronoi foams, with proper handling of the
outer object frame.

The result is an algorithm that generates microstructures
with a prescribed elastic behavior on the fly, during fabri-
cation. No optimization process is required to adapt to a
different object or to match a graded elasticity field. There is
no limit to the size of the printable objects as the microstruc-
tures never fully reside in memory. Therefore, our approach
will naturally scale with future technology as the resolution
and size of printable object increases.

Scope of the Paper. Isotropic elastic materials are de-
scribed by two parameters: Young’s modulus and Poisson’s
ratio. Intuitively the Young’s modulus captures how rigid or
soft an object is, while the Poisson’s ratio captures how one
dimension stretches with another. In this work we focus on
varying the Young’s modulus while preserving the Poisson’s
ratio of the base material.

For spatially varying elasticity we assume the target scalar
field is given as input and do not consider its computation.

2 Related Work

Modeling for Fabrication. In the recent years there has
been a strong interest in techniques helping the user to de-
sign physical objects with controlled behaviors, for instance
to avoid fragile regions and reinforce them [Umetani and
Schmidt 2013; Zhou et al. 2013; Stava et al. 2012], to al-
low the user to balance shapes [Prévost et al. 2013; Bächer

et al. 2014], or to produce strong yet lightweight inner struc-
tures [Wang et al. 2013; Lu et al. 2014]. These latter ap-
proaches are related to our work in that they seek to produce
structures of maximum rigidity under a prescribed volume to
strengthen 3D printed objects. However, these approaches
rely on global optimization of as rigid as possible macro-scale
structures, while we focus on the procedural generation of
micro-structures with controlled elastic properties.

Graded Elasticity. In the field of mechanical engineering
Sigmund et al. [1995; 1999] introduced the optimization of
micro-scale structures to achieve specific macro-scale behav-
iors, such as controlled elasticity. A key idea is to consider
the behavior of a composite material, made of infinitely
many repetitions of a base material tile. This limit behavior
is captured by the theory of homogenization for linear elas-
ticity [Allaire 2012] which relates the unit material tile to
the elastic properties of its (infinite) periodic tiling. We pro-
vide more details in the supplemental material. Therefore,
most techniques pose an inverse homogenization problem,
optimizing for a tile producing a target elastic behavior [Sig-
mund 1994; Zhou and Li 2008; Radman et al. 2013; Xia and
Breitkopf 2015]. Andreassen et al. [2014] include fabrication
constraints in the structure optimization.

In the field of computer graphics the design of materials for
fabrication has become an important direction of research, as
we strive to enable artists and designers to physically realize
virtual models of deformable objects [Skouras et al. 2013; Xu
et al. 2015; Pérez et al. 2015]. Bickel et al. [2010] proposed
a data-driven approach to design materials with prescribed
deformation. Base materials are stacked by an optimizer to
obtain the target properties. Schumacher et al. [2015] extend
this idea in two ways. First, elementary material tiles are
optimized by homogenization to cover a large spectrum of
elastic behaviors. Second, a process globally optimizes for
a choice of tiles in a grid covering the object, to achieve
the desired, spatially varying elastic behavior. The process
considers fabrication constraints and connectivity between
adjacent tiles. Panetta et al. [2015] take a different approach,
by optimizing for an optimal family of elementary tiles among
a large — but restricted — set of possibilities. The tiles take
into account fabrication and connectivity constraints. Once
the best family is determined, it is possible to arrange the
tiles in a grid such as to obtain a spatially varying elasticity.

These works achieve impressive results at relatively low com-
putational costs, thanks to the regularity of the grid and
the periodicity assumptions: homogenization is performed
on a single base tile instead of having to rely on a global
optimization, and the periodicity affords for compact descrip-
tions [Pasko et al. 2011]. However, the tile-based approach
has a number of drawbacks. First, grading the material by
changing the tiles within the grid requires careful handling of
the interface between neighboring tiles. Either the tiles are
pre-optimized to have matching boundaries [Panetta et al.
2015], or a global selection process is required to strike a
compromise between continuity across neighbors, grid dis-
cretization and elasticity objectives [Schumacher et al. 2015].
The global optimization does not scale well with the size of
the structures and objects — especially as it is desirable to
produce the smallest possible tiles to converge towards the
limit behavior computed by homogenization. Our approach
solves this thanks to a direct and simple relationship between
elastic properties and geometric parameters. Second, it is
often desirable to conform the elasticity field to the object
surface, for instance having a more rigid crust within a dis-



tance of the surface. The global periodic nature of the grid
makes this difficult. One possible way is to optimize for a 3D
parameterization of the grid within the object. While this is
a topic of intense research (related to hexahedral meshing),
this remains difficult [Staten 2007], and the effect on the
final elastic properties is hard to precisely establish. Instead,
we seek to produce stochastic, aperiodic structures which
are by nature simpler to conform to the gradients of a field
as they do not require specific spatial alignments. Finally,
the isotropy of periodic tilings is equal to that of the opti-
mized base tile, while the isotropy of stochastic foams further
improves with larger extents of foams.

Efficient Microstructure Generation. Pasko et al. [2011]
considered procedural definitions of periodic microstructures.
The parameters of the microstructures can vary spatially to
produce graded materials [Fryazinov et al. 2013], for instance
to reinforce an object following a cross-sectional stress anal-
ysis [Li et al. 2015]. Brennan-Craddock [2011] computes the
intersection of the object and periodic microstructures on
a per-slice basis. A frame structure is built on the object
surface by subtracting the microstructure cells from a thick
surface shell. Our frame structure follow a similar intuition
for the case of Voronoi foams. OpenFAB [Vidimče et al.
2013] provides a specialized language to describe procedural
microstructures. The geometric details are efficiently evalu-
ated at slicing time, streaming voxels to the printer. Similar
to these approaches, we evaluate the microstructures pro-
cedurally during slicing. However, the microstructures we
generate are aperiodic graded foams whose Young’s modulus
is directly and precisely controlled.

Recent works consider the problem of generating non-
periodic microstructures with varying density. The adaptive
voids approach [Medeiros e Sá et al. 2015] relies on a subdivi-
sion scheme to produce denser structures near the surface of
an object. Brackett et al. [2014] perform a sequential dither-
ing of a density field to keep a subset of points, which are
then used to define an open-cell foam. While closely related
to our work, these approaches do not explicitly control the
Young’s modulus of the produced structures, nor afford for
an efficient parallel evaluation.

Recent software for additive manufacturing propose mi-
crostructure generation packages. In particular, Within-
Labs [Autodesk 2016] proposes trabecular structures resem-
bling Voronoi foams. While the parameters can be varied,
to the best of our knowledge there is no direct control of
the Young’s modulus and the structures are not defined by
a procedure akin to procedural solid textures.

Open-Cell Foams. Our procedural microstructures belong
to a specific class of microstructures known as open-cell
foams. These structures occur naturally and can be obtained
from physical processes in a variety of materials including
metals. Therefore, in the field of mechanical engineering
there has been a strong interest in modeling and analyzing
the properties of these structures.

Interestingly, naturally occurring open-cell foams are often
idealized as edges of Voronoi cells [Gibson and Ashby 1997].
As we propose to generate foams from procedurally gen-
erated Voronoi diagrams, these works are highly relevant
for the study of the mechanical behavior of our structures.
In particular, from these studies we can expect the follow-
ing properties: 1) the elastic behavior of open-cell irregular
foams is highly isotropic [Luxner et al. 2007], and 2) their

Young’s modulus relate almost linearly to their geometric
parameters (thickness, density) [Gibson and Ashby 1997;
Roberts and Garboczi 2002]. This is an exceptionally good
property for our purpose of producing graded elastic materi-
als, as the simple relationship affords for a direct derivation
of structure parameters given an elasticity target. We verify
that our structures meet these observations in Section 4.3.

Prior studies also indicate that the Poisson’s ratio of open-
cell foams does not significantly vary [Gibson and Ashby
1997], and our structures indeed share this limitation.

3 Procedural Voronoi Foam Generation

We now introduce our approach for the procedural genera-
tion of open-cell foams. We describe the procedural synthesis
of the structures in Section 3.1 and discuss implementation
in Section 3.2. We explain how to derive the parameters of
the structures from a desired target elastic behavior in Sec-
tion 4 and present results and applications in Section 5.

3.1 Procedural Generation

We seek to define aperiodic procedural structures akin to
procedural textures in computer graphics. The structure is
defined as a function F : R

3 → {0, 1} which is evaluated
during display and slicing at every point in space, at the
desired resolution.

To have the computational advantages of procedural tex-
tures, F has to follow a number of requirements [Lagae et al.
2010], that we summarize as follows: 1) F has to evaluate
in constant time and constant memory regardless of the
point of evaluation. 2) The size of F — its program and
built-in data — has to be independent from the size of the
generated content. This is the case of our technique which
produces arbitrary large aperiodic content from a constant,
small memory footprint (a few hundreds of bytes).

In addition, the structure has to enforce geometric require-
ments to be printable. First, there should be a minimal
number of pockets (holes) enclosing printing material. This
advocates for an open-cell structure made of beams along
the edges of a cellular structure. Second, there should be no
disconnected parts appearing during fabrication. It is easy
to see that convex cells enforce this property everywhere
but at the boundary (which we discuss in Section 5.3). The
convex cells of Voronoi diagrams are therefore well suited.

Our procedural Voronoi foams are defined by two parameters:
the density ρ of Voronoi seeds per unit volume (seeds/mm3),
and the radius τ of the beams along the edges (mm). Density
may vary spatially and is given as a function, i.e. at a given
point x the desired density is ρ(x). We assume the variations
to be smooth compared to the size of the structure cells.

Open-Cell Voronoi Foams. We seek to design a procedural
function Fρ,τ that produces beams of thickness 2τ along
the edges of a Voronoi cell structure having a density ρ. In
addition, we would like to allow for ρ to be spatially varying.
Our procedural generation is inspired by the seminal work on
cellular solid textures by Worley [1996], revised to produce
an open-cell structure. We further extend the procedural
scheme to afford for spatially varying densities.

Worley defines procedural cellular textures by using pseudo-
random sequences to generate seeds in a virtual grid, fol-



(a) Density field.

→

(b) Gather seeds.

→

(c) Evaluate structure.

→

(d) Voronoi edge beams.

Figure 2: 2D overview of Algorithm 1. (a) Input query point q and density field ρ. (b) The seeds that could contribute to the
Voronoi cell of N [0] (which is the seed closest to q) are gathered (Algorithm 2). (c) The bisectors of the seed pairs influencing
q are computed. (d) Finally, the algorithm checks whether q lies inside a beam of radius τ along the Voronoi edge.

lowing a Poisson distribution (not to be confused with a
Poisson disc distribution). Given an evaluation point q the
seed closest to q is determined. The seed id is used to derive
a color value at q, for instance coloring each Voronoi cell
differently. The set of grid cells that can have an influence is
limited to cells neighboring q. This stems from the fact that
each cell contains at least one seed — a deviation from a
pure Poisson distribution to enable efficiency [Worley 1996]

— and, therefore, the closest seed is necessarily within the
2-ring of neighboring cells. This leads to the constant time
evaluation property, as the number of considered seed points
remains below a constant everywhere in space.

Our algorithm achieves similar properties while generating
the edges of a Voronoi open-cell foam. Given an evaluation
point q our goal is to write a function returning 0 (empty)
if q is not inside a beam of the structure and 1 (solid) oth-
erwise. The pseudo-code of our structure generation is in
Algorithm 1, and a graphical overview is in Figure 2. It starts
by generating all the seeds that could contribute to the defi-
nition of the Voronoi cell by calling algorithm GatherSeeds
(line 1) — we detail this algorithm later. We next enumer-
ate all the line equations of the edges (line 4) and for each
compute pl, the point closest to q on the line (line 5). If the
distance between q and the edge is greater than the beam
radius τ (line 6), q is not influenced by this edge. Otherwise,
q might be inside a beam. To be certain that it is the case,
we have to verify that pl is indeed on an edge of the Voronoi
cell containing q. A counter example is illustrated in Fig-
ure 3. We verify this by considering whether pl belongs to the
Voronoi cell of a neighboring seed (lines 8-11). If that is the
case, then we ignore this line equation (line 10). Otherwise,
q is in a solid region and we return 1 (solid) line 13.

We next discuss how the seeds are gathered and generated.

Gathering Seeds. Algorithm 1 requires all seeds that can
influence the result at q. If some required seeds were to be
missed, the produced structure could fail to print or break.
However, we only need to be conservative: as long as we have
a superset of the required seeds, the algorithm will produce
the correct result.

We generate seeds in a grid, and we guarantee that all grid
cells receive at least one seed. This bounds the number of
grid cells that we have to consider. As explained in Figure 4,
the Voronoi cell of a seed cannot be influenced beyond a
2-ring of neighbors.

Algorithm 1: EvalStructure Fρ,τ (q)

Input: Density field ρ, beam radius τ , query point q.
Output: Voxel state ∈ {0, 1}

1 N ← GatherSeeds(q) ; // seeds influencing q

2 for i← 1 to |N | do
3 for j ← i + 1 to |N | do
4 bl← BisectorLineEquation(N [0], N [i], N [j]);
5 pl← ClosestP ointOnLine(q, bl);
6 if ‖q − pl‖ 6 τ then
7 accept ← true;
8 for k ← 1 to |N | do
9 if ‖N [0]− pl‖ > ‖N [k]− pl‖ then

10 accept ← false;
11 break;

12 if accept then
13 return 1

14 return 0

Figure 3: In this counterexample, all the seeds lie on the
same 3D plane (cross section shown). The closest point pl
to the bisector line of N [0], N [i], and N [j] is at a distance
τ − ǫ, where ǫ > 0. However, pl does not belong to any edge
of the Voronoi cell of N [0] (shaded in blue).

Algorithm 2 gives the pseudo-code for gathering the seeds
around q. The evaluation point q might belong to the Voronoi
cell of any of the seeds within (at most) a 2-ring radius. We
therefore first search for the seed closest to q, and then gather
seeds with a 2-ring around the closest seed. SubdivideCell
produces at least one seed per grid cell — possibly more with
spatially varying density. We detail this algorithm next.



Algorithm 2: GatherSeeds(ρ, q)

Input: Density field ρ, query point q.
Output: Set of seeds possibly influencing q

1 N ← ∅ ;
2 V isited← ∅ ;
3 cq ← GridCellEnclosing(q) ;
4 closest←∞ ;
5 for cell ∈ T woRingNeighborhood(cq) do
6 V isited← V isited ∪ {cell};
7 seeds← SubdivideCell(ρ, cell.center, cell.length);
8 N ← N ∪ seeds;
9 for s ∈ seeds do

10 if ||s− q|| < ||closest− q|| then
11 closest← s;

12 cs← GridCellEnclosing(closest) ;
13 for cell ∈ T woRingNeighborhood(cs) \ V isited do
14 N ← N ∪ SubdivideCell(ρ, cell.center, cell.length);

15 return N

Figure 4: Left: We consider the Voronoi cell of a seed
located anywhere in the green square, and how it is influenced
by another seed in the red square. The red grid square is
within the second ring of neighbors of the green grid square.
Each pair of seeds in the green/red squares defines a possible
bisector, which might be a face of the Voronoi cell of the green
seed. The opposite half-space cannot belong to the Voronoi
cell. This is illustrated for a single pair of seeds in the figure
(green/red dots). We define the shadow of the red square as
the intersection of all the half-spaces from all possible pairs of
green/red seeds. The shadow is shown in gray ; it represents
the region of space that cannot possibly be part of the Voronoi
cell of the green seed: regardless of the position of the seeds,
the shadow is always cutout by the bisectors. Right: The
shadows of all grid squares in the 2-ring completely cover the
space beyond. Therefore, no seed outside of the 2-ring can
have an influence on the Voronoi cell of the green seed.

Seed Generation and Density Control. We now describe
SubdivideCell. It generates seeds in each cell, at least one
and possibly more by subdividing to locally adapt to density.
Conceptually our technique is based on a primal subdivision
of the coarsest density grid, where each parent cell is split
regularly in eight children. It is important to recall, however,
that the grids are never stored: all computations happen
implicitly and on the fly. We refer to the first level of grid
cells as the coarse grid cells (between 2mm and 5mm in
our implementation). Another important design goal of our
subdivision process is to avoid bias: The statistics of the
point distributions remain constant — up to a scaling factor

— at all density levels.

The pseudo-code is given in Algorithm 3 for the general case
of a spatially varying density field. Given a grid cell of size
l and center c, we compute the number of seeds it has to
contain as l3 × ρ(c) (line 2, cell volume times density). We
evaluate the density at the cell center, but more elaborate
schemes could be used (e.g. multi-point evaluation, or pre–
integration of ρ in a summed area table). The field ρ is
clamped to a minimum value to ensure that the coarsest cells
always receive at least one seed. When the target number of
seeds in a cell is above 23 — there is more than exactly one
seed per subdivision child of the current cell — we recurse
and subdivide the cell (line 13). Otherwise, we randomly
select n = ⌊l3 × ρ⌋ distinct children and draw exactly one
seed in each (lines 4-7). We take into account the remaining
fraction f = t − n by drawing an additional sample in a
next child cell, with probability f (lines 8-10). Note that
all random number generators are pseudo-random sequences
seeded by the grid cell coordinate. Therefore, for a same
initial grid cell, the exact same set of seeds is produced.

The pseudo-code in Algorithm 3 cannot be implemented
directly on massively parallel architectures (GPUs) due to
the recursive calls. We present in the supplemental material
a stackless iterative version that maps well to massively
parallel processors.

Algorithm 3: SubdivideCell

Input: Density field ρ, cell center c, cell size l.
Output: A set of seed, with a density driven by ρ

1 N ← ∅ ;

2 t← l3 × ρ(c) ; // target number of seeds in current cell

3 if t 6 23 then
4 I = RandomP ermutation(subcells);
5 nmin = ⌊t⌋ ; // minimum number of samples to draw

6 for i← 0 to nmin − 1 do
7 N ← N ∪ {RandomSampleInSubcell(I[i])};

8 p← random(0, 1);
9 if p 6 (t− nmin) then

10 N ← N ∪ {RandomSampleInSubcell(I[nmin])};

11 else
12 for subcell ∈ currentCell do
13 N ← N∪ SubdivideCell(ρ, subcell.center, l/2);

14 return N

Beam Radii. The radii of the beams are directly controlled
by τ during evaluation (Algorithm 1, line 6). While this
value may also vary spatially (τ(q)) we only vary density in
our approach (see Section 4.2).

We next discuss how to select the parameters to reach a
target elastic behavior.

3.2 Implementation

We implement our technique in an image-based slicer, which
either directly sends images to the printer (SLA) or extracts
contours (SLS). We slice at a resolution between 10µm and
50µm per pixel.

The procedural foam is implemented as an OpenCL kernel
processing all pixels of a slice in parallel on a GPU. In
addition, we implement a supersampling procedure to obtain
gray-scale exposure levels on SLA processes. This is done by



performing supersampling around the evaluation point q in
a small loop around lines 6-13 of Algorithm 1, counting the
number of times q + ǫ lies within the beam.

Exact beam contours could be extracted by locally construct-
ing the explicit geometry of the Voronoi cells around q in
the manner of Algorithm 1. We found this approach less
convenient than our implicit description that fits very well
existing massively parallel architectures, and avoids having
to union beam geometries explicitly.

4 Foams With Controlled Elasticity

We now consider the problem of selecting the microstructure
parameters (ρ, τ) to achieve a target elastic behavior. This
is done by statistical analysis of the homogenized elasticity
tensor of Fρ,τ , for different parameters.

4.1 Analysis Using Homogenization

For a choice of (ρ, τ) we produce a periodic version of the
structure in a base volume, and apply homogenization to
compute the elastic tensor of the corresponding periodic me-
dia. By doing this for many choices of (ρ, τ) we reconstruct
the underlying relationship between ρ, τ and the elastic
properties (Young’s modulus, Poisson’s ratio). The graph
resulting from this analysis is shown in Figure 5. It is ob-
tained for a material with a unit Young’s modulus (= 1)
and a Poisson’s ratio v = 0.3 which matches most plastics.
Only changing the Poisson’s ratio requires re-running the
simulation as results scale linearly with Young’s modulus.

We perform homogenization on a grid of hexahedral ele-
ments (see supplemental material for details). The size of
the elements is chosen to properly capture the beams; our
experiments showed that using half the diameter gives stable
results. The stiffness of each element is computed by calling
our implicit procedural function with super-sampling, which
returns the volume of structure intersected by the element.

Homogenization of Aperiodic Foams. With this approach
we are making an important assumption. Our structures are
not periodic: they form an aperiodic foam of constant den-
sity in space. We therefore assume that the overall behavior
of the aperiodic foam is similar to the periodic behavior of
a sufficiently large base volume. To determine the size of
the base volume we rely on the expected isotropic behavior
of irregular open-cell foams [Luxner et al. 2007]. We per-
form homogenization for volumes of increasing spatial extent
and consider the deviation of the computed tensor from a
perfectly isotropic tensor.

The homogenized tensor is a full symmetric tensor composed
of 21 independent variables. We approximate the full ten-
sor with the tensor of an isotropic material and consider
the residual error. The tensor of an isotropic material is
expressed from only two independent variables — Young’s
modulus and Poisson’s ratio — and we denote it as CI (E, v).
Its expression is given in the supplemental material.

Similarly to [Schumacher et al. 2015] we approximate the
homogenized elasticity tensor CH by minimizing:

ξ(CH) = min
E,v

∥∥CI (E, v)− CH
∥∥2
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(ρ, τ). For each (ρ, τ) we generate multiple instances of foams
using different random seeds. As can be seen the dots tightly
cluster, indicating that randomness has little impact on the
elastic properties. The maximum deviation after the fitting is
3.3% of the Young’s modulus. The data points are used to fit
a polynomial function (see Section 4). For clarity, the graph
shows a subset of our data that extends to higher densities
for lower beam radii.

0.0 0.2 0.4 0.6 0.8 1.0

Volume ω

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Is
o
tr

o
p

y
e
rr

o
r

20

30

40

50

60

H
o
m

o
g
e
n

iz
a
ti

o
n

g
ri

d
e
x
te

n
t
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simulated volume — and error ξ(CH) of the approximation
of the ideal isotropic tensor (i.e. divergence from isotropy).
As the spatial extent of the simulated volume grows the tensor
tends towards the ideal isotropic tensor.

, where EM is the upper bound Young’s modulus of the
solid base material. The expression of CI is nonlinear with
respect to E, v and we therefore solve this minimization with
a nonlinear optimizer [Johnson 2007].

The approximation error measures whether homogenization
was able to properly capture the isotropic behavior of the
structure. Figure 6 reports the error in isotropy for various
grid sizes. In practice, we find that a volume having at least
60 × 60 × 60 hexahedral elements provides a stable result
across a wide range of beam radii.

Collecting Data Points. In a one-time precomputation we
generate a large number of pairs (ρ, τ). We uniformly sample



ρ and τ to cover the range that can be fabricated (see Sec-
tion 4.2). For each selection of (ρ, τ), we generate a number of
different structure realizations by varying the global random
seed. We compute the Young’s modulus and Poisson’s ratio
obtained by applying homogenization on each unit volume.
This gives us a large number of data points characterizing
the elastic behavior of the structures, as shown in Figure 5.

We then fit a polynomial function P on the experimental re-
sults to correlate the density, beam radius, and Young’s mod-
ulus. We optimize for the coefficients of a degree 4 polyno-
mial by least square fitting, minimizing

∑
i
(P(ρi, τi)− Ei)

2.
The resulting polynomial fit is shown in Figure 5.

4.2 Deriving Parameters for a Target Elasticity

We now describe how to select ρ and τ to achieve a target
Young’s modulus. As can be seen in Figure 5, for a given
target elasticity multiple choices of ρ and τ are possible: the
full isocurve where P(ρ, τ) = Etarget. Our preferred strategy
to select the values of ρ and τ is to obtain structures that are
as dense as possible, to remain close to the limit behavior
computed by homogenization. The limiting factor is the
minimal printable beam radius, which we denote as τmin.
To maximize density, we fix τ = τmin. As densities increases
with a fixed radius, we reach a point where the block of mat-
ter is full. There is no need to further increase density, which
leads to a density upper bound ρmax = 1

(2τmin)3 . The result-

ing curve is extracted from the polynomial shown in Figure 5
by intersecting it with the plane τ = τmin — in practice we
use τmin ∈ [0.2, 0.3] mm depending on the printer.

For high densities, just before reaching a full block of matter,
small pockets start to appear. This is due to the edges of
the Voronoi cells merging together. As measured in Figure 7
the volume captured by pockets never exceeds 4%, and is
negligible for relative volumes below 0.7.
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Figure 7: Relative volume ω and volume of pockets (%).
Pockets have a negligible impact under a relative volume of
0.7 and go up to 4% of the full volume around 0.9 relative
volume. Thanks to the quasi-linear relationship between rel-
ative volume and Young’s modulus, we can expect at most a
similar error on the elastic behavior.

Other strategies could be developed. For instance, for aes-
thetic purposes a user could use thicker beams and a lower
density to reveal the structures at the same elasticity.

4.3 Elastic Behavior: Properties and Analysis

The collection of data points we produced for the parameter
fitting lets us fully characterize our procedural foams. We
now compare our results to the open-cell foams literature
and verify our microstructures behave as expected.

4.3.1 Elasticity

The linear elastic response of low density (0.04 < ω < 0.5)
open-cell foams is described by the following model [Gibson
and Ashby 1997]:

Ef

Es

= C
(

ωf

ωs

)n

(2)

, where the subscript f denotes the foam and s denotes a
solid block of base material.

ωf

ωs
defines the relative volume

ω. The constants C and n change depending on the foam
family [Roberts and Garboczi 2002].

Figure 8a shows the relationship between the relative volume
and the Young’s modulus E of our procedural foams. We fit
the model for low density foams on the range 0.04 < ω < 0.5,
using C = 0.85 and n = 1.95. As can be observed, our data
fits this model very well.

Figure 8b shows the Poisson’s ratio of our structures, and
as can be seen it remains stable. While different materials
will give different values of Poisson’s ratio, it always remains
stable around the Poisson’s ratio of the base material as
observed by Gibson and Ashby [1997] on open-cell foams.
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Figure 8: Relative Young’s modulus and Poisson’s ratio.
The base material has a Poisson’s ratio of 0.3. The Poisson’s
ratio tends to 0.5 for low densities, and to the base material
Poisson’s ratio for high densities.

4.3.2 Randomization

Our procedural foams are based on a (pseudo) random pro-
cess. Therefore, it is important to consider whether different
realization using the same base parameters ρ, τ produce a
consistent Young’s modulus. Figure 5 reveals this as for each
pair (ρ, τ) we produced three different realizations. Close
inspection reveals that the different realizations do not per-
fectly match. The largest deviation to the fitted polynomial
is 3.3% of the Young’s modulus and therefore is negligible.
This is in agreement with the literature where it was observed
that randomization has little influence on the linear elastic
properties of open-cell foams [Van Der Burg et al. 1997].

4.3.3 Regularity

Studies of naturally occurring foams often discuss the regu-
larity of the foam, which in our case measures the minimum
distance between Voronoi seeds in a bounded domain using
the same number of seeds. A Poisson disc distribution pro-
vides the most regular cases, while a random point process
is the less regular. Our procedural foams lie in-between.



Our seed generation draws at least one sample per grid
cell. This is known to be a crude — yet very efficient —
approximation of a Poisson disc distribution [Cook 1986].
The approximation is less evenly spaced than a high-quality
Poisson disc distribution. However, less regular foams exhibit
a better isotropy [Luxner et al. 2007], which is also desirable.
Therefore, we believe that our jittered grid approximation
is a good compromise between computational efficiency and
elastic properties, while allowing for graded densities.

5 Applications and Results

We now experimentally challenge the behavior of our foams.
In Section 5.1 we compare their isotropy to recent tile-based
techniques, in Section 5.2 we measure actual printed samples,
and in Section 5.3 we describe a complete application to fill
3D models with graded elasticity.

5.1 Isotropic Behavior Versus Periodic Tiles

Figure 9 compares the isotropy of the tensors computed
by homogenization using tile-based methods. The method
of Panetta et al. [2015] explicitly constructs isotropic tiles.
When discretized in our homogenization process they pro-
vide close to perfect isotropy; the measured error is due
to the limited numerical precision. At a same scale and
resolution our structures exhibit lower isotropy; however,
performing homogenization with increasingly larger volumes
reveals that the residual quickly decreases (see Figure 6).
This shows that filling larger volumes with procedural foams
improves isotropy — a property that stems from the aperi-
odic stochastic nature of Voronoi foams. Figure 9 also shows
a tile with a less isotropic behavior (manually designed to
match [Schumacher et al. 2015]).

[Panetta et al. 2015] [Schumacher et al. 2015]
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Figure 9: Relative distance ξ̃ to an ideal isotropic tensor, for
a fixed voxel size and a resolution of 80× 80× 80. Both pairs
have a similar Young’s modulus. The small isotropy error
of the tile from [Panetta et al. 2015] (left) is due to limited
numerical precision and decreases with finer discretization.
As larger volumes are simulated, the isotropy of our structures
quickly improves (see also Figure 6).

5.2 Experimental Results on Printed Samples

We verify the predicted elastic behavior of our foams on
printed samples. We print two families of four samples with
varying Young’s modulus. Each family uses a different ran-
dom seed. All samples are printed on a B9Creator V1.2 using
red-cherry material. The two families are visible in Figure 10.

We put each sample on a high precision scale and impose
to each a same small displacement. We then measure the
weight applied to the sample onto the scale (canceling out the
structure weight). Due to the limited maximum measurable

Family
Target

Young’s
modulus

Density by
polynomial

Object
weight (g)

Measured
Weight (g)

1

0.0045 0.0097 1.47 35.9

0.00675 0.0168 1.66 57.98

0.009 0.025 1.82 100.82

0.01125 0.0332 1.91 147.36
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Figure 10: Compression tests on printed samples. The
measured weight is expected to be linearly correlated with the
target Young’s modulus.

weight of the scale we consider samples with relatively close
Young’s modulus. The results are reported in Figure 10. We
obtain a good correspondence between the measured data
and the prediction; the average deviation of the Young’s
modulus from linear correlation (dashed line in Figure) is
0.001434, that is less than 0.2% absolute error, and 25%
relative error.

For reproducibility please note that the SLA print process,
the subsequent cleanup and the material curing all have
significant variabilities. We noticed on a few prints (2 out of
16) an incorrect final weight — we discarded these samples.
We also noticed that the elastic behavior significantly changes
in the first few hours after the print completed. Similarly
to [Panetta et al. 2015] we wait for 24 hours before taking
measurements.

5.3 Procedural Foam with Elasticity Gradients

The process we have described in Section 4 is capable of gen-
erating graded structures, with a spatially varying Young’s
modulus. We exploit this property to generate objects with
controlled elastic properties. The user inputs the spatially
varying Young’s modulus as a scalar field in space, which
we denote E(x), with x a point in space. Our technique
does not put any requirement on how the field is encoded



(e.g. implicit function or interpolated from a grid), but it
is expected that the field varies smoothly compared to the
size of the Voronoi cells. Violating this expectation will not
result in an incorrect structure, but the produced elasticity
gradient will not be a good match to the input field.

The target Young’s modulus field is converted upon lookup
into a target density following the approach proposed in Sec-
tion 4.2 — this requires a simple tabulation computed from
Figure 5. This directly drives ρ in Algorithm 1. Unless
otherwise specified, the beam radius remains fixed at τmin.

There are two main usage scenarios for our technique. A first
scenario is to fill the inside of objects that have to remain
rigid — simply adapting the inner density to varying stresses.
In such a case the outer hull of the object remains solid and
there is no additional challenge. The second scenario is to
produce objects that can deform — flexible prosthesis and
robot parts, toys. In such a case, printing the outer hull
of the object would be detrimental to its flexibility. We
therefore propose an object frame generation well suited to
our approach. This frame is visible on all our 3D printed
objects. It is fully procedural and only assumes that we have
access to a (narrow band) distance field from the surface.

Object Frame. The key idea of our frame generation is to
intersect the faces of the Voronoi diagram with a thick shell
just below the surface, while taking care of cases where faces
are almost parallel to the surface. Figure 11a explains our
frame generation process. q is the query point and we want
to know if it belongs to the solid structure or not. Here we
consider two seeds s1, s2 among the closest seeds from q as
obtained from Algorithm 1. If the point q is too close from
the surface, we need to keep the intersection of the Voronoi
faces with the frame (in addition to the regular Voronoi
edges). Simply using the distance from q to the bisector
of {s1, s2} would yield the region colored in light orange,
whereas we would like to select the point q iff it belongs
to the beam of center c and thickness t (in light purple).
However, we don’t know the exact position of c, but only
the distance to the border d, the distance to the bisector x,
and an estimate of the angle formed by the surface and the
bisector at point q, that we call α. Assuming the surface
is locally planar the rest follows from basic trigonometry:
knowing l1 + l2 = d

sin(α)
, and l2 = x

tan(α)
, we can compute y

and test whether x2 + y2
6 t2.

Printed Results. We now apply our approach to produce a
variety of 3D printed results. We use two different printers:
a B9Creator with red-cherry resin and an Autodesk Ember
with standard clear resin. All these prints are prepared using
our image based in-house slicer using the implicit procedural
foam generation.

Our SLA printers require support structures. The objects
we printed do not themselves require support — a property
preserved by our microstructures but for a few cases along the
object frame. These cases are rare, for illustration we selected
one in Figure 11b (top of rightmost case). Table 1 shows the
amount of volume filtered out due to those constraints. We
filter them out during out-of-core slice generation, keeping
track of connected components from one slice to the next.
Adapting support techniques to our microstructures is left as
future work — a possibility would be to connect a standard
support to the closest microstructure beam. Figure 12 shows
the location of isolated voxels filtered out before printing on
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~nsurface
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(a) Scheme of the surface query.

(b) A cylinder with 3 possible frames.

Figure 11: Top: 2D planar cut orthogonal to the surface
(top black line). The goal is the produce the beam which cross
section is drawn as a circle. The purple line is a Voronoi
face intersected by the view plane. Bottom: Extreme case
of a frame on a small cylinder. From left to right, no frame,
frame obtained by intersecting the Voronoi faces with the
surface naively, frame obtained with our approach.

SLA printers. SLS printers do not require support and can
directly print our objects.

Figure 12: Illustration of the isolated voxels filtered out
for resin printers. Removed percentage for each example is
reported in Table 1. Greyscaled values in voxels (section 3.2)
have been thresholded at isovalue 0.5 to show a binary design.

Figure 13 shows a very simple case of graded material applied
to a 3D model. Figure 14 is a detailed 3D model filled with
a spatially varying structure, denser along the surface and
coarser inside. Note how the frame preserves the surface de-
tails. Figure 17 is a similar case on a sliced sphere, revealing
the deformation behavior. Figure 18 is a model with varying
elasticity. The model deforms as expected when pushing its
head sideways. The object frame has a limited impact on the
deformation behavior, while producing a much more visually



pleasing object. It is however difficult to quantify precisely
the mechanical influence of the frame. Figure 15 illustrated
an android finger with built-in flexible articulations. Fig-
ure 1 shows a more complex case of a painted object, where
we added a support manually. Figure 16 shows how the
elasticity field can be controlled, e.g. by the SIGGRAPH
logo. Figure 19 illustrates how the elasticity field can be used
to produce additional effects, such as anisotropic behaviors.
Table 1 gives detailed statistics on all these prints, including
average time per-slice. The throughput of our implementa-
tion averages to 7.8M pixel/sec on the slice images on an
Intel R© CoreTM i7-4770K @ 3.50GHz, 16 GB RAM with a
Titan Black NVidia GPU.

Large Objects. Our approach scales trivially with object
size. While we are currently limited in the size of objects we
can print, we illustrate this by producing a microstructure
in a model that is about one meter in size. The sliced
equivalent has 5 tera-voxels — but of course only a single
slice (15402×19814) would have to fit in the printer memory.
Figure 20 provides closeups of the depth map obtained by
raycasting the implicit structure generated by our algorithm.

6 Discussion and Limitations

Our technique has a number of limitations. The foams only
exhibit their target properties when a sufficiently large vol-
ume is printed — a limitation shared by all approaches
relying on homogenization. This is however aligned with our
goal of producing dense microstructures in large objects.

Compared to regular structures the stochastic nature of the
foams produces more localized stresses. We have observed
that a few beams fail under large deformations, perhaps
earlier than on regular structures. This is specially the case
along object frames with the Ember standard resin, which is
more brittle. This would require further studies, noting that
crushing behaviors of naturally occurring open-cell foams
have received some interest [Gaitanaros et al. 2012].

Contrary to tile-based approaches we currently cannot pro-
vide spatially varying Poisson’s ratios. Studying stochastic
structures that can vary both Young’s modulus and Poisson’s
ratio is an interesting direction of future work. Generat-
ing structures with anisotropic behaviors is another natural
venue for further studies.

7 Conclusion

The main advantages of our approach stem from the implicit
formulation of stochastic microstructures. This has signifi-
cant computational advantages by allowing for evaluation at
slicing time and by avoiding to resort on global optimizations
for each new object. The aperiodic and stochastic nature of
the foams provide a simple and efficient way to grade the
structures and to conform to target elasticity fields in space,
without introducing artificial boundaries.

While we took a strict interpretation on the procedural na-
ture of our structure generation, it is clear that other com-
putational schemes could be envisioned. The important
fundamental properties are 1) that the evaluation of the
structure remains local and independent from the overall
size of the domain and 2) that the elastic properties relate
to the structure parameters through a simple relationship
avoiding complex parameter fitting during evaluation.

Our approach deviates significantly from both the periodic
tiling of microstructures and the optimization of macrostruc-
tures, by making a link between microstructures and proce-
dural solid textures with controlled statistics in computer
graphics. We believe there are many other such structures to
be discovered, and hope our work will spark further interest
in procedurally generated, stochastic microstructures.

flexible

rigid

Figure 13: A simple graded ellipsoid.
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