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Abstract

The application of Digital Image and Volume Correlation techniques to obtain displacement 
fields from images has become ubiquitous in experimental fracture mechanics. In this paper, a 
procedure to extract the J-integral (J) from three-dimensional displacement fields obtained 
using digital volume correlation is presented. The procedure has been specifically adapted to 
allow for experimental noise and errors, such as poorly defined crack front displacements, 
smearing of the displacement field across the crack faces and knowledge of the imprecise crack 
front location. The implementation is verified using analytical crack tip fields perturbed with 
synthetic image correlation errors to characterise the response of J. The method is then applied 
to experimental results using a Magnesium alloy WE43 loaded elastically in mixed-mode. The 
steps outlined are intended as a guideline for application of the volume integral from 
displacement fields to allow for accurate calculation of J along a crack front embedded within 
the volume. 
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Symbols
Crack extension in the global and reference state respectively𝐴𝑐, 𝐴𝑐
Cauchy stress tensor𝜎𝑖𝑗

 Infinitesimal strain tensor𝜀𝑖𝑗
 Displacement vector in the global, interpolated and reference state respectively𝑈𝑖, 𝑢𝑖, 𝑢𝑖

Strain energy density𝑤
Integration volume in the global and reference state respectively𝑉, 𝑉
Crack extension function𝑞
Poisson’s ratio𝑣
Young’s modulus𝐸
J-integral𝐽
Crack front 𝑆
Crack front segment𝑛

 Integration volume breadth ( )∆𝑆 𝑥3
 , Co-ordinate system in the global and reference state respectively 𝑥𝑖 𝑥𝑖

Integration volume width ( ) or height ( ) ∆𝑥 𝑥1 𝑥2
Crack tip location𝑂𝑖

 Crack front direction 𝐿𝑖
Crack normal direction𝑀𝑖
Crack propagation direction𝑁𝑖

, Start and end points of crack path.𝑃1
𝑖 𝑃2

𝑖
Rotation matrix𝑹
mask height in reference state𝑟𝑚
displacement vector 𝒕
Transformation matrix𝑻
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1 Introduction

The application of Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) 
techniques to obtain displacement data fields from images has become ubiquitous in 
experimental fracture mechanics. Many examples now exist that demonstrate the successful 
extraction of fracture parameters, such as stress-intensity factors obtained by McNeill et al. [1], 
Lim et al. [2] and Roux et al. [3], mixed-mode problems addressed by Rethore and Gravouil  
[4],  Yoneyama et al. [5,6] and Sistaninia et al. [7] and energy approaches such as the J-integral 
by Yoneyama et al.  [8] and the authors of this work [9,10], to name but a few.

A significant limitation of image correlation approaches (compared to others such as Moire 
interferometry) is the reduced accuracy experienced near the strain concentration at the crack 
tip. State-of-the art subset based correlation techniques suffer from smearing of information 
across the crack faces resulting in spurious displacement and strain readings. It is therefore 
imperative for DIC and DVC based fracture property extraction methods to account for these 
sources of error by: i) using significantly more complex (and generally in-house developed) 
correlation techniques (e.g. subset splitting [11]); ii) replacing poorly defined or missing data 
in these regions (e.g. with numerical approximations of the material after the crack front has 
been found [12,13]); or iii) developing methods that allow for the selection of data remote from 
the crack tip thereby eliminating the need for accurate displacement data near the crack faces 
and crack front [10]. 

Similarly, the knowledge of the crack tip location may be critical when extracting fracture 
parameters from experimentally obtained displacement fields. Often, it is not possible to define 
an exact crack tip or front location and complex segmentation and optimisation techniques 
have been developed that aim to best identify the crack tip location [14,15].

Random permutations in the signal (light or x-ray) also result in noise in the individual vectors 
of the displacement fields. DIC noise is typically reported at 0.01 and 0.02 pixel for in-plane 
and out-of-plane respectively [16], while DVC tends to achieve much lower accuracies, which 
are typically reported as 0.05 to 0.1 voxels [17]. This is mainly due to the reliance of DVC on 
there being a suitable distribution (shape, size, brightness) of natural features within the 
material volume [18], whereas DIC can utilise artificially applied and optimal speckle patterns 
with high contrast.

Some of these problems can be overcome when using field fitting approaches, whereby optimal 
analytical solutions to crack tip displacement fields are fitted to the measured displacement 
data [5]. However, field fitting approaches may be ill-suited to cases where the crack tip region 
is poorly defined, as in large-scale plasticity, crack branching, or micro-cracking (e.g. graphite 
or concrete) [19]. Furthermore, displacement fields in regions near the crack tip are a challenge 
to measure [20]. This is because both DIC and DVC usually assume a small set of deformation 
parameters (i.e. translation, dilatation and shear strains and in some cases rotation) for 
efficiency purposes. As a result, sharp discontinuities and crack tip singularities tend to be 
inconsistent with the assumed deformations within a subset (region of analysis), causing poor 
correlation in crack tip regions [11,21]. As such, the J-integral provides better suited tool for 
extracting, from experimentally determined displacement fields, the fracture parameters that 
describe the action on the crack tip. In the DIC form, as previously presented by the authors 
[9,10], high strain regions near the crack can be omitted under the assumption of a plane stress 
state, provided that the crack path does not leave the J-integral contour. In the volumetric form 
of the J-integral [22], the displacement fields around the crack front are required since the 
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integral encapsulates a predefined region of interest that necessitates data along the crack front 
[22].  

This presents a problem when using DVC computed displacement fields to obtain J-integral 
based fracture parameters. The poorly defined displacement fields, in combination with the 
need of accurate displacement data around the crack front, creates a need for an unique 
implementation of the J-integral. One method to overcome this is the replace the missing, or 
censored, data using the Finite Element (FE) framework, as presented by Bahrli et al. [12]. 
However, this requires extrapolation from the measured data in order to define a displacement 
field in the cracked region, which in turn requires assumptions on the material properties 
(plasticity, microcracking) in this region, and the method cannot consider the effects of 
complex fracture mechanics such as  crack branching or bridging.  This extrapolation also 
requires knowledge of the precise crack front location.  Another method, which the authors are 
aware of, is to adapt the volumetric formulation to allow for poorly defined crack front 
displacement data. However, such work has not been reported in the open literature.

We present an alternative procedure for computing the J-integral directly from DVC 
displacement data. The work is therefore similar to the analysis performed on surface J-
integrals that has previously been presented by the authors [9,10]. This paper presents a 
procedure and formulation of the J-integral that is better suited for DVC displacement data. 
Typical sources of errors are studied using synthetically generated displacement fields and 
errors. Subsequently, the procedure is applied to an experimental case study. The experimental 
results are obtained at sub-critical loads, with elastic deformation, and validation is performed 
against simulations using the finite element software Abaqus that uses the volume integral as 
detailed in [22,23].

2 Three-dimensional framework

In this work, the premise for the three-dimensional (volumetric) framework of the J-integral 
(J) is that global DVC computed displacement data is available in the vicinity of the crack front 
in a Cartesian co-ordinate system  given by , and that the mechanical (deformation) 𝑿𝑖 𝑈𝑖
properties for the material are known (i.e. the relationship between the strain and stress 
tensors). To subsequently compute J values along the crack front, the volumetric form 
presented by Shih et al. [22] is adopted. It is noted that the volumetric J formulation differs 
from the classical two-dimensional formulation in that the contour is not represented by a line 
or area, but as a surface encapsulating a specified region, i.e. volume, .𝑉

J is calculated for , which is centred at  along the crack front  as show in Error! 𝑉 𝑂𝑖 𝑆𝑖
Reference source not found.. A convention is used where the global coordinates system  is 𝑿𝑖
designated by an uppercase and a local Cartesian co-ordinate system  is designated by a 𝒙𝑖
lowercase at the crack front. The local co-ordinate system is centred at  with  in the crack 𝑂𝑖 𝒙1
plane and perpendicular to the crack front,  normal to the crack plane and  tangential to 𝒙2 𝒙3
the crack front.

Similar to the adaptation of the line integral to an equivalent domain integral in the two-
dimensional formulation, the volumetric formulation takes on an equivalent volumetric domain 
integral given by Eq. (1). The volumetric integral allows for more data points to be considered, 
compared to alternative formulations, and is therefore better suited for full-field data [9].
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𝐽 =
1
𝐴𝑐∫

𝑉
(𝜎𝑖𝑗

∂𝑢𝑖

∂𝑥1
―  𝑤𝛿1𝑗) ∂𝑞

∂𝑥𝑗
𝑑𝑉 (1)

Eq. (1) contains a displacement derivative, , in the  direction, a Cauchy stress tensor, ∂𝑢𝑖/∂𝑥1 𝒙1
, a strain energy density,  and , which is the derivative of a virtual crack extension 𝜎𝑖𝑗 𝑤 ∂𝑞/∂𝑥𝑗

function, , defined by Eq. (5).  is obtained using Eq. (6) and is directly dependant on the 𝑞 𝐴𝑐
choice in .  is the Kronecker delta.𝑞 𝛿1𝑗

 is calculated using Eqs. 2 and 3. In this work, Eq. (2) is given under the assumptions of a 𝜎𝑖𝑗
linear-elastic isotropic material, however, more complex mechanical behaviour models may be 
used such as presented by [12].

 𝜎𝑖𝑗 =
𝐸

1 + 𝑣[𝜀𝑖𝑗 +
𝑣

1 ― 2𝑣𝜀𝑘𝑘𝛿𝑖𝑗] (2)

 and  are the Young’s modulus and Poisson’s ratio respectively.  is the symmetric strain 𝐸 𝑣 𝜀𝑖𝑗
tensor calculated using the displacement gradients, , in Eq. (3).∂𝑢𝑖/∂𝑥𝑗

𝜀𝑖𝑗 =
1
2(∂𝑢𝑖

∂𝑥𝑗
+

∂𝑢𝑗

∂𝑥𝑖) (3)

The strain energy density, , is calculated using Eq. (4).𝑤

𝑤 = ∫𝜎𝑖𝑗𝑑𝜀𝑖𝑗 (4)

The crack extension function, , requires a function that is sufficiently smooth and that is 𝑞
constrained at its boundaries by Eq. (5)

𝑞 = {1 on 𝑂𝑖 
0 on the outer edge of 𝑉 (5)

 is obtained by integrating  along crack front segment  as defined by Shih et al. [22] 𝐴𝑐 𝑞 ∆𝑆
using Eq. (6). 

𝐴𝑐 = ∫
𝛥𝑠

𝑞 𝑑𝑆 (6)

Eqs. 2 and 3 assume material specific mechanical behaviour properties within  and so  is 𝑉 𝐽
computed on the basis that the mechanical (deformation) behaviour is known.  In the presented 
form, J is a function of ,  and  No load or crack length measurements are required to 𝑈𝑖 𝐸 𝑣.
evaluate J.

The distinct feature of the -integral is its contour independence. In the two-dimensional 𝐽
formulation, with an absence of out-of-plane ( ) stresses under a plane stress assumption (or 𝒙3
strains, under a plane strain assumption), contours can be arbitrarily chosen so that the crack 
tip region is excluded. This significantly reduces error in the computation of J and is especially 
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important when considering experimental data that have a significantly higher error than, for 
example, finite element computed data [9]. In the three-dimensional formulation, the contour 
will inherently include crack tip data as out-of-place stresses are present [22]. Therefore, the 
contours cannot be taken in such a way that the crack tip region is excluded. However, as shown 
in Section 3, careful consideration of  can allow for a computation of J from experimental 𝑞
data with significantly reduced error without affecting contour independence.

3 Numerical implementation

Consider the crack front depicted in Error! Reference source not found.a. In the presented 
approach, three aspects are required for the computation of J from the respective DVC 
displacement data, namely crack-tip segmentation, integration volume mapping, masking and 
summation of the integrand. The procedure is outlined below and the implementation is done 
using Matlab ver. 9.6 software package, where the DVC computed displacement field data with 
the respective position data are imported into Matlab’s workspace. 

3.1 Crack tip segmentation

The first step requires  to be aligned with the crack front and therefore necessitates knowledge 𝑉
of the crack tip location and orientation. Since J is computed at specific locations along the 
crack front, the number of J values obtained is dependent on the choice in  number of 𝑛
segments. Using the procedure outlined by [24],  is divided in  segments, between  and 𝑆𝑖 𝑛 𝑃1

𝑖
 with each segment located at  with known orientation  (crack path),  (crack 𝑃2

𝑖 𝑂𝑛
𝑖 𝑳𝑛 𝑴𝑛

direction) and  (crack normal) as depicted in Error! Reference source not found.a. Each 𝑵𝑛

segment has a width of . In this work, the crack tip location and direction is visually, ∆𝑆
however, other methods are available [12,15,25]. 

3.2 Integration Volume mapping

The second step involves mapping  to the respective crack tip location and orientation. For 𝑉
this, additional steps are required that are outlined below, which involve: i) setting up a 
reference volume ; ii) mapping of the reference volume in the global domain; iii) extracting 𝑉
nodal displacements by means of interpolation; and iv) mapping these back to the reference 
state. 

i)  is of unit size, has an orientation that is aligned with the horizontal, vertical and normal 𝑉
coordinate system for ,  and respectively, the crack plane is aligned with , the 𝒙1 𝒙2 𝒙3 𝒙1
crack tip is located the origin, and the crack is assumed to propagating in the  direction, 𝒙1
i.e. the crack normal aligned with  as shown in in Error! Reference source not found.a. 𝒙2
A convention is adopted, whereby the reference volume’s symbols use a top hat.

The reference volume has regularly spaced position data in  to allow for simple 𝒙𝑖
differentiation and integration, as shown in Error! Reference source not found.b (cross-
section of the mid-plane). No advantage is seen in numerical differentiation and integration 
approaches that require point wise evaluation (i.e. such as in FE implementation). This 
requires the knowledge of shape function derivatives and their respective Jacobian at each 
data point. The relatively noisy nature of DVC coupled with the inherent subset smearing 
does not, in the authors’ opinion, warrant such implementation complexities. It is shown 
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later, that the choice in  has the greatest influence when dealing with smeared and noisy 𝑞
crack tip data and crack tip position accuracy.

The crack extension function, , is defined as per Eq. (5) and is a function of . J is written 𝑞 𝒙𝑖
with respect to the local co-ordinate system of , with  defined as vector components in 𝑉 𝑞
which J is the projection onto the  vector field ( ). The form given in Eq. 𝑞 𝐽 = 𝐽𝑖𝑞𝑖 (𝑖 = 1,2,3)
(5) is equivalent to computing  in vector form if  is pointing in the crack growth direction 𝐽 𝑞𝑖
(i.e. ). The reader is referred to Kuna [26] for more details on the vector form of  𝑞2 = 𝑞3 = 0
the volume integral.

Three functions are considered for . It is noted that for the evaluation of J, Eq. (1) requires 𝑞
the derivates of  with respect to . Thus, the choice in  is such to either allow for simple 𝑞 𝒙𝑖 𝑞
numerical implementation (i.e. constant gradients) or to inherently remove poorly defined 
displacement data near the crack tip (i.e. by setting a near zero gradient at the crack tip). A 
representation of the  function derivatives, , is shown in Error! Reference source 𝑞 ∂𝑞/∂𝑥𝑗 
not found..
 
The choice of a ‘linear’ function results in constant gradient with a minimal gradient value. 
A polynomial (in this work a 4th order polynomial was chosen) results in steeper gradient 
at the outer edges in  (away from the crack tip) and near zero gradient at the crack tip 𝑉
region. A piecewise linear function (termed ‘contour’) results in a constant gradient near the 
outer edges in  and zero gradients at the crack tip. As mentioned above, the inherent nature 𝑣
of J in the volume, which encapsulates a segment along a crack front, is that crack tip data 
will always be included. As such the contour function does not consider a piecewise linear 
function in . This ensures that the gradients in  are at a minimum near the crack tip.  𝒙3 𝒙3 𝐴𝑐
is based on the choice in q, and is calculated using Eq. (6).

A mask is defined over  that is centred along the crack (Fig. 2b). The mask defines those 𝑉
displacement data points that are judged to have been significantly smeared near the crack 
and therefore are not considered to be accurate enough for the evaluation of J. In the present 
analysis of a planar crack, the mask is cuboid in shape, has unit thickness, a length of 0.5 
and defined by height , as shown in Error! Reference source not found.b. Data points 𝑟𝑚
included in the mask are replaced by means of extrapolation (detailed in Section 3.3).

ii) Mapping of  to  is achieved by mapping the position co-ordinates of the reference 𝑈𝑖 𝑉
volume domain  to the global domain . This operation requires the knowledge of a 𝒙𝒊 𝒙𝑖
transformation matrix  at each integral segment computation .  comprises of a scaling 𝑻 𝑛 𝑻𝑛

matrix  (taken as constant across all segments), a rotation matrix  and a translation  𝜶 𝑹𝑛

vector , which are assembled as given in Eq. (7).𝒕𝑛

𝑻𝑛 = [𝜶𝑛𝑹𝑛 0
𝒕𝑛 1] (7)

 is a diagonal matrix and determines the size of . In this work  so that the 𝜶 𝑉 𝛼11 = 𝛼22 = 𝑐
volume length and height are defined by  and are equal in  and .  represents 𝑐 𝒙1 𝒙2 𝛼33 = ∆𝑆
a volume width that is equal to the segment length.  is dependent on the crack tip 𝑹𝑛

orientation and is obtained using Eq. (8).  is dependent on the crack tip position and is 𝒕𝑛

obtained using Eq. (9).
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𝑹𝑛 = [𝑴𝑛,𝑵𝑛,𝑳𝑛] (8)

𝒕𝑛 = 𝑶𝑛 (9)

The mapping of the  to  is undertaken by using Eq. (10). 𝑉 𝑉

[𝒙 
1 ] = 𝑻𝑛[𝒙

1] (10)

iii)Interpolation of the displacement field is undertaken using linear interpolation to obtain 
displacement values at . The interpolation method uses a Delaunay triangulation method 𝒙
as outlined by [27]. Similar to the argument presented in i) it is in the authors’ opinion that 
higher order interpolation schemes do not improve the accuracy in the computation of J. In 
fact, it is argued that due to the noise nature of DVC data, higher interpolation schemes may 
result in an increase of error as a result of Runge's phenomenon [28].

iv)Subsequently, the interpolated displacement field is mapped back to the reference state 
using Eq. (11).

𝑢𝑖 =  [𝑹𝑛]𝑇𝑢𝑖 (11)

where  is the transpose of  and  is the interpolated displacement data.  is scaled [𝑹𝑛]𝑇 𝑹𝑛 𝑢𝑖 𝐴𝑐
by  to compute its equivalent value in the reference state, i.e. .  is scaled ∆𝑆 𝐴𝑐 = 𝐴𝑐 ∙ ∆𝑆 𝑑𝑉
by  to compute its equivalent value in the reference state, i.e. .2∆𝑆𝛼 𝑑𝑉 = 𝑐2∆𝑆

3.3 Masked data

Before the computation of J, it is important to address the masked data close to the crack faces, 
particularly if a mixed-mode type loading case is expected. Similar to the method presented by 
the author’s for computing mixed-mode J-integral solutions from surface displacement data 
[9], masked field data is replaced using an iterative least-squares polynomial fitting method 
developed by Garcia et al. [29] and Wang et al. [30].  The number of iterations used is 100. It 
is noted that this approach is limited to low displacement gradient regions and smaller masked 
areas. This is due to the inherent inability of polynomial functions to represent crack tip fields 
that represent discontinuous and singular values. 

3.4 Summation of the integrand

The numerical integration of  requires the computation of its displacement gradients , 𝑉 𝑑𝑢𝑖/𝑑𝑥𝑗
which in turn are used to compute the strain tensor using Eq. (4), the stress tensor using Eq. (3) 
and the strain energy density using Eq. (5) at each data point in .  The choice of  determines 𝑥𝑖 𝑞

 and  as illustrated in Fig. 3. The computation of  then becomes a simple summation 𝑑𝑞/𝑑𝑥𝑖 𝐴𝑐 𝐽
of the terms listed in Eq. (1). 
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4 Errors of the volume J-integral

There several sources of error to consider when computing J from DVC displacement data. 
Firstly, as with any experimental measurement technique, the DVC computed displacement 
field contains random noise. Furthermore, regions near the crack faces and tip are prone to 
errors. These can arise from the effects of image artefacts introduced in the reconstruction 
process [31], or may be due to DVC smearing at the crack faces [32]. Secondly, knowledge of 
the crack alignment and location is required in order to position the integration volume, and 
while sophisticated crack segmentation algorithms exist to aid segmentation, these always 
include some measure of uncertainty [32]. Thirdly, a reasonably accurate knowledge of 
material properties is required in order to compute stress values from the strain field [10].

A pragmatic approach was adopted to quantify the influence of the above errors in the 
computation of J. Synthetic displacement data were generated using the finite element (FE) 
method, whereby a known error was imposed, and its effect in the computation of J was 
therefore isolated. Furthermore, J’s contour independence served as an indicator to assess valid  
computations. Contour independence was inferred when fluctuations of less than 5% over five 
contours were achieved. Three contour type functions were considered, as shown in Fig. 3; the 
contour (piecewise linear) function used a contour width of three.

The error analysis utilised a parallel approach of an Abaqus and an in-house developed linear-
elastic FE model. A unit size cuboid geometry was generated, with the crack tip orientated at 
the origin (Fig. 4). The Abaqus model (ver. 6.13) comprised 65800 quadratic 20-node brick 
elements (C3D20) with collapsed quarter points along the crack front. J-integral values were 
computed over ten contours using Abaqus’ built-in functionality. The in-house developed FE 
model comprised of 127500 linear eight-node brick elements. The grid of element nodes were 
arranged in such a way that the computation of J does not require any interpolation (Section 
3.2.iii) and thereby errors due to interpolation are excluded (no crack tip mesh refinement was 
undertaken). J values were computed in this model, using the above-presented technique, over 
ten contours. Both models used Young’s modulus of 10 GPa and a Poisson’s ratio of 0.3. 
Displacement boundary conditions were applied at the top and bottom surface nodes of the unit 
size cuboid, such that the sample is loaded either in a crack opening mode (i.e. in the  𝑈2
direction, designated as ), in-plane shear (i.e. in the  direction, designated as ), out-𝐵𝐶1 𝑈1 𝐵𝐶2
of-plane shear (i.e. in the  direction, designated as ) or a combination of the three 𝑈3 𝐵𝐶3
(designated as . Fig. 4a illustrates the application of .𝐵𝐶1,2,3) 𝐵𝐶1

The error analysis presented in Fig. 5 and 6 considered a Monte Carlo analysis of 1000 runs 
applied on the in-house FE generated displacement data, providing the influence on the 
computation of J of normally distributed random displacement noise and rigid body (crack tip) 
misalignment. The respective displacement boundary conditions are applied in such a way that 
an average J along the crack path of unity is obtained. For , ,  and  this 𝐵𝐶1 𝐵𝐶2 𝐵𝐶3 𝐵𝐶1,2,3
equated to displacement magnitudes of , ,  and  7.45 ∙ 10 ―2 2.96 ∙ 10 ―1 2.98 ∙ 10 ―1 5 ∙ 10 ―2

units respectively.  The error in J was subsequently calculated on the basis of the difference 
between the unit value (i.e. no error) and error analysis for each crack segment along the crack 
path, expressed as a percentage. 

It is worth noting, that the above presented error analysis did not consider the influence of 
reconstruction and crack smearing errors on the computation of J. Initial analysis showed that 
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these sources of error do not result in contour independence and therefore do not obtain valid 
J computations. Errors in the knowledge of material properties are simply a scaling error when 
a linear-elastic material is assumed, and so have not been considered.

Fig. 5 shows the mean, upper and lower bounds of displacement noise versus the error in the 
computation of J. Considering a typical limit of DVC measurement accuracy of approximately 
0.1 voxels (LaVision product manual, DaVis 8.4) and the unit size sample geometry, an 
assumed (typical for experimental data) image volume of 1000x1000x1000 voxels would 
equate to a displacement accuracy of   units. For ,  and  this equate to a 1 ∙ 10 ―4 𝐵𝐶1 𝐵𝐶2 𝐵𝐶3
1.34%, 0.0338% and 0.0336% displacement noise respectively. Similarly, Fig. 6 shows the 
mean, upper and lower bounds of crack tip misalignment (i.e. rigid body movement of  in  𝑉 𝑋1
and  directions) to establish the sensitivity of J with respect to crack tip alignment. The 𝑋2
percentage misalignment reported is with respect to the integration volume size, which at its 
limit (10 contours) represents 200 voxels or 0.2 units  (i.e. a 1% crack tip location error is 
equivalent to 2 voxels or  units). Since the fracture mechanics framework uniquely 2 ∙ 10 ―3

represents the displacement field around any crack tip, an equivalent error estimate in J may 
be calculated by scaling the calculated J by the error estimates shown in Fig. 5 and 6 with the 
J value obtained in other experiments (for an approximately similar displacement accuracy).

Fig. 5 and 6 illustrate two features: Firstly, a shearing type loading results in a significantly 
higher error. This is consistent with findings reported for J values computed from DIC (surface) 
data [9] and is attributed to the higher strain energy density values along the crack faces. It 
highlights the importance of adequate masking and data replacement when mixed-mode 
loading is expected. Further testing, not shown, included a mask of varying width . The 𝑟𝑚
results show that the data replaced using the iterative least-squares polynomial fitting (Section 
3.3) was robust in maintaining contour independence and accurate J computations. Secondly, 
the type of  function (Fig. 3) has a notable effect on the J error. A compromise exists - a linear 𝑞

 function shows less sensitivity to random displacement noise, whereas a contour type 𝑞
function shows an order of magnitude reduction in error for crack tip location. The polynomial 
function does not seem to offer any significant improvement for either of these considerations. 
This compromise exists due to the gradients of the  function. As mentioned above, a linear  𝑞 𝑞
results in the lowest possible gradients and thereby, the displacement noise error is minimised. 
However, data along the crack face and tip are considered, thereby making a linear contour 
function significantly more susceptible to alignment errors; which is less of the case for the 
contour function as only gradients in the  are considered. 𝑥3

Considering the noisy nature of DVC displacement data, reconstruction errors, crack smearing 
and crack segmentation difficulties, it is recommended that a contour function is chosen with 
a low gradient, i.e. with a large contour width. A 1 to 2 % displacement error and a 1 to 2 % 
crack tip location uncertainty equate to uncertainty in the computation of J between 0.8 to 3.2 
% for a crack opening mode. This error significantly increases for shear type loading to 
approximately 5 to 18.5 %.

5 Verification on experimentally obtained DVC displacement fields

The previous section highlighted two prominent sources of error that are related explicitly to 
DVC computed displacement data. It was shown that in the volumetric form, J is sensitive to 
mixed-mode data, for which displacement noise and crack alignment can play an important 
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role. Careful consideration in  allows for less sensitivity concerning crack tip alignment in the 𝑞
crack propagation ( ) and crack plane ( ) directions. To test the robustness of the presented 𝒙1 𝒙2
method, a material with natural contrast pattern was studied under mixed-mode loading. 
Magnesium alloy (WE43), which has high commercial value due to its good castability, high 
strength, high creep resistance, high corrosion resistance and high flame (ignition) resistance, 
was chosen. WE43 is widely used for structural components in aircraft for weight savings, and 
orthopaedic implants due to its biocompatibility [33].

5.1 Materials

Magnesium alloys, such as WE43 that contains 4wt% Yt and 3wt% Nd, produce good speckle 
contrast in X-CT reconstructions due to the attenuation variations between the Magnesium bulk 
material and precipitates that are richer in rare earth elements [34,35] and is therefore well 
suited for DVC [36]. Precipitates with strong X-ray attenuation are quite visible in the 
reconstructed image (shown by a central slice in Fig. 7b). Brightening effects close to the edges 
of the sample and the notch should not be mistaken for variations in precipitate density. Rather, 
this is due to beam-hardening, which is a common (and persistent in this case) X-CT image 
artefact. The beam hardening is a constant artefact in this dataset, and so did had little effect 
the DVC analysis [37]. 

The specimen geometry is shown in Fig. 7. The specimen was rectangular over the gauge 
region of 50 mm in length ( ). The gauge cross-section had a width ( ) and thickness ( ) 𝑿3 𝑿1 𝑿2
of 10 x 20 mm respectively. The notch was machined using wire-Electrode Discharge 
Machining (wire-EDM with a 0.3 mm diameter wire) to minimize residual stresses and work 
hardening that would result from mechanical notch cutting methods. The notch was machined 
at an angle of 30° to each of the global axes . The loading of the sample was such that the 𝑿𝑖
bottom end was loaded in shear in the direction under displacement control using a 𝑿1 
translation stage with an accuracy of 0.01 mm. 

5.2 Tomography 

Tomographs were obtained using Stellenbosch University’s X-CT scanner facility using a 
General Electric Phoenix VTomeX L240 microCT scanner with a 2048 × 2048 pixel detector 
with a 16-bit depth [38]. Optimized parameters were selected according to the guidelines set 
out in [39]. X-ray settings included 220 kV and 200 μA and copper beam filtration of 1.5 mm, 
with a voxel size set to 15 μm. Image acquisition time was 500 ms per image and images were 
recorded in 2000 rotation steps during a full 360-degree rotation of the sample. At each step, 
the first image was discarded, and the subsequent three images averaged to provide high image 
quality. Detector shift was activated to minimize ring artefacts, and automatic scan optimizer 
was activated to eliminate artefacts due to possible sample movement or X-ray spot drift. 
Reconstruction was performed in system-supplied Datos reconstruction software.

Three X-CT images were taken to obtain two DVC datasets: one loaded reference image, one 
unloaded image with an applied displacement of 1 mm in at the bottom grip region while 𝑿1
the top grip remainedfixed, and one unloaded image with a rigid body displacement of 1 mm. 
All displacements were assumed to be elastic as correlation was taken with reference to the 
loaded image.
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A centralized region consisting of 1260 x 1860 x 2024 voxels ( ,  and was extracted 𝑿1 𝑿2 𝑿3) 
and reduced to 8 bits for improved computational efficiency when computing DVC 
displacements (Fig. 7a). The crack geometry was inferred from the known notch geometry and 
the tomography images. To improve its estimate, a best-fitting linear plane was fitted by using 
a least-squares approach, whereby the crack front shape was assumed linear between  and 𝑃1

𝑖
 with constant  and  vectors. 𝑃2

𝑖 𝑁𝑖 𝑀𝑖

5.3 DVC

The DVC analysis was performed with DaVis (ver. 8.3) volume correlation software using a 
fast Fourier transform (FFT). Image correlation used an initial subset size of 200 and a final 
subset size of 80 voxels and a step size of 20 voxels (75% overlap). The rigid body 
displacement dataset revealed an experimental accuracy of 1.4 µm (i.e. ~ 0.1 voxels), which is 
comparable to precision reported in the literature on a similar subset size [21,40]. Background 
noise was calculated as 0.36 µm by correlating the two identically loaded datasets. The  𝑈1
displacement field over the ROI is shown in Fig. 8a at  and .𝑋1 = 0 𝑋2 = 0

The DVC datasets resulted in 44 x 74 x 60 displacement data points ( ,  and . The 𝑿1 𝑿2 𝑿3)
computed DVC displacement data and crack geometry were imported into the Matlab 
environment, following rigid body rotation removal using the Euler angle extraction 
methodology of Mostafavi et al. [36].

5.4 Finite element simulation

Three-dimensional finite element (FE) simulation of the experimental setup was carried out 
using Abaqus ver. 6.13. The elastic properties of Mg WE43 were taken as provided by the 
manufacturer with Young’s modulus of 44 GPa and a Poisson’s ratio of 0.35. The linear-elastic 
model comprised of 105200 quadratic 20-node brick elements (C3D20) as shown in Fig. 9. 
The model used quadratic elements with quarter-point elements along the crack front, an initial 
radial element width of 0.3 mm at the notch mouth, converging to 0.01 mm (after 10 rings of 
elements) at the crack front, as shown in the magnified window in Fig. 9. Displacement 
boundary conditions were applied using the displacements applied at the BC. This way, the 
specimen loading could be simulated as close as possible to the experimental setup. 
Subsequently, J values were computed using Abaqus’ built-in functionality over ten contours, 
termed as . In parallel, the FE computed nodal displacements and the crack front 𝐽𝐴𝑏𝑎𝑞𝑢𝑠
geometry were imported into the Matlab environment for processing using the procedure 
presented in Section 3.

5.5 J-integral computation

The crack segment between  and  and integration volume  are shown in Fig. 8b.  The 𝑃1
𝑖 𝑃2

𝑖 𝑉
integration volume thickness was chosen as  mm (i.e. approximately three DVC data ∆𝑆 = 0.6
points in ) , and width and height was  mm thus considering nine J computation 𝒙3 ∆𝑥 = 4.8
points along the crack path (i.e. in  and ). It is estimated that the crack tip alignment 𝒙1 𝒙2
concerning the integration volume was < 1% (to 5 voxels or 75 µm), as the notch tip of radius 
150 µm was easily visible in the Tomographs. A crack mask  mm (i.e. four subsets) 𝑟𝑚 =  1.2
was used. J values were computed using the contour function.

Page 12 of 27Strain

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Fig.10 shows the DVC computed displacement data over the integration volume V at . 𝑥3 = 0
The data shows the mixed-mode nature of the crack loading, whereby significant mode III type 
loading is present. This is to be expected as the sample loaded in shear perpendicular to the 
notch tip.

Both DVC and FE displacement data were used to compute J along the defined crack (termed 
 and  respectively) using the procedure as outlined in Section 3. Both DVC and FE 𝐽𝐷𝑉𝐶 𝐽𝐹𝐸

displacement data was chosen to compare best: i) the course mesh of the presented approach 
with an ideally meshed notch tip (FE) and; ii) estimate the influence of experimental error 
(displacement noise and crack tip position).

5.6 Results and discussion

The mean normalised J computations are shown in Fig. 11a for the equivalent DVC, FE, and 
Abaqus computations. Fig. 11b illustrates the contour independence for the first four 
computations along the crack path for the DVC displacement data. The difference when 
computing J from FE and DVC data is 6.2 % indicating the combined error of displacement 
noise and crack tip position uncertainty. This is in agreement with the estimated error, 
presented in Section 4, of 7 %. The experimental error in the computation of J is approximated 
correlating the loaded and two unloaded datasets (not shown) resulting in a maximum deviation 
of  5.2 %, indicating the strong influence of DVC displacement noise when computing J from 
DVC displacement data. 

Considering the differences between the FE and Abaqus J computations a smoothing effect 
near the edges of the specimen is highlighted. The relatively large integration volume of 4.8 
mm, when considering that the Abaqus contours are taken 0.1 mm from the crack tip, results 
in less sensitivity in capturing variations in J along the crack front. This is attributed to the 
larger integration volume being less sensitive to localised strain gradients, which are more 
apparent near the edge of the specimen where the stress-strain conditions change from plane 
strain to plane stress.

The agreement between the measured and predicted J values demonstrates the effectiveness of 
using DVC data to obtain fracture parameters of the loaded sample. This study shows that high-
resolution X-CT can be used to reliably quantify the energy release rate, measured employing 
the J-integral. The study furthermore highlights that J is highly effective for the computations 
of fracture properties in the volume when using DVC data. Whiel sensitive to displacement 
noise, J does not require the exact knowledge of the crack tip position. When a mode I type 
loading is expected, an error less than 1 % can be expected in J. This is especially advantageous 
for materials where the location of the crack tip is difficult to identify, such as nuclear graphite 
[19].

6 Conclusions

A simple procedure for evaluating the J-integral in its volumetric form from DVC computed 
displacement data has been presented and verified against experimental data for a mixed-mode 
loaded crack. DVC computed displacement data present unique challenges due to noise, 
erroneous data near crack faces and imprecise knowledge of the crack tip position.
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- The procedure for the robust extraction of -integral values uses a specifically defined 𝐽
 function, along a three-dimension crack front. 𝑞

- Common errors associated with DVC computed displacement data were quantified 
using analytical displacement data to assign confidence intervals. In the presented form, 
the J-integral shows sensitivity to displacement noise; however, it does not require the 
exact knowledge of the crack tip. 

- Analysis of the J-integral obtained from an experimental study of a mixed-mode 
problem, using a Magnesium WE43 alloy with an inclined single edge rounded notch 
to represent a crack, found a good agreement with the analytical solution from an FE 
model. -integral values along the crack front could be determined to within 6.2 % of 𝐽
the finite element solution.
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Fig. 1. 𝑞 function gradients for linear, Polynomial (4th order) and contour (pricewise linear) 
functions. 
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Fig. 4. (a) Unit volume showing boundary conditions (arrow), crack path 𝑃, crack 
segmentation and integration volume 𝑉. (b) showing the respective J values commuted along 

the crack path 𝑃. (c) J contours for points 1 – 5 shown in (b) indicating J convergence. 
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J error [%] J error [%] J error [%] 

1 % 0.72 ± 0.079 3.9 ± 0.59 4.4 ± 0.24 

2 % 2.9 ± 0.32 15.3 ± 2.3 16.8 ± 1.1 

5 % 18 ± 2.1 95 ± 14 103 ±  6.9 

 
Fig. 5. Influence of random displacement noise on the computation of J. The table below 

provides values for the contour 𝑞 function. 
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J error [%] J error [%] J error [%] 

1 % 0.20 – 0.10 0.27 – 0.10  5.2 – 1.3  

2 % 0.72 – 0.27 0.42 – 0.25 13 – 3.3 

5 % 2.6 – 0.84  0.38 – 0.61 44 – 9.8 

 
Fig. 6. Influence of integration volume position relative to crack front location. The table 

below provides values for the contour 𝑞 function. 
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Fig. 8.(a) 𝑈" DVC computed displacement planes. (b) Analysis region showing the crack 
path 𝑃, crack segmentation centres 𝑂%, and crack orientation defined by 𝑀% and 𝑁%. 
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Fig. 9. Equivalent FE model of experimental setup. Insert showing notch tip mesh detail 

allowing for 10 J contours.  
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Fig. 10. DVC displacement for an integration volume at position n=4 (indicated in Fig. 11). 

Displacements are shown for at 𝑥" = 0. 
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Fig. 11. Mean normalised J values along the crack path from the experiment and equivalent 
FE model. (b) J contours for points 1 – 4 shown in (a) indicating J convergence. 
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