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Tel: (525) 7476558, 3756 and 3758

Fax: (525) 7477002

Harold V. McIntosh §

Departamento de Aplicación de Microcomputadoras
Instituto de Ciencias, UAP

Apartado Postal 461 (72000) Puebla, Puebla, México
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Abstract

Two algorithms for calculating reversible one-dimensional cellular automata of neighborhood size 2 are
presented. It is explained how this kind of automata represents all the rest. Using two basic properties
of these systems such as the uniform multiplicity of ancestors and Welch indices, these algorithms only
require matrix products and the transitive closure of binary relations to yield the calculation of reversible
automata. The features, advantages and differences of these algorithms are described and results for re-
versible automata of 3, 4, 5 and 6 states are comprised.
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1 Introduction

One way of studying the behavior of a given system is understanding the local interactions of its parts.
Cellular automata are perhaps the simplest model for this kind of analysis. The concept of cellular automata
began with the work of John von Neumann [15] for proving the existence of self-reproductive system. The
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theory of cellular automata followed a gradual development and acquires new interest thanks to the work of
John Conway and the automaton called “ Life ” [3], which is able to yield complex global behaviors in spite
of its simple local interactions. Another important work in the field is made by Stephen Wolfram [16] who
analyzed the characteristics from one set of one-dimensional rules instead of a particular one.

A special type of cellular automaton is that where the system can return to previous stages, these are
reversible automata. Reversible one-dimensional cellular automata were carefully studied by Gustav A.
Hedlund as automorphisms of the shift dynamical system [4]. Another important papers in the theory of
reversible automata are those made by Masakazu Nasu [12] using a graph-theoretical approach and by Jarkko
Kari using block permutations [7].

Reversible cellular automata are systems where the information is conserved during its evolution, for this
reason they present a very interesting mathematical theory, and have been used as models for data ciphering,
information coding [8] and simulation of reversible physical phenomena [14], [16] among other applications.

In this way, an important work is to enumerate all the possible reversible one-dimensional cellular automata.
This search begins with the paper by Amoroso y Patt [1], and has been continued by Tim Boykett [2] using
an algebraic approach, by David Hillman [5] using chains of symbols and recently by Hendrik Moraal [11]
using graph-theoretical tools.

This paper presents the properties of these systems and proposes two original procedures for calculating
and classifying all the possible reversible one-dimensional cellular automata of 3, 4, 5 and 6 states. One
algorithm is based in forming the state-pair matrix for reviewing its cycles. The other consists of using the
connectivity matrix of each state. In this way, with very simple matrix operations (products and transitive
closures) these algorithms detect the invertible behavior of reversible one-dimensional cellular automata.

The paper is organized as follows: section 2 explains the operation of one-dimensional cellular automata with
special emphasis in the reversible case. It also shows that every one-dimensional cellular automaton can be
simulated by another of neighborhood size 2. In this way, it is enough to analyze this case for understanding
the rest. Section 3 presents the detection of reversible automata by means of the state-pair matrix. The
operation, advantages and limits of this algorithm are explained. Section 4 illustrates how the connectivity
matrices are used for detecting the reversible behavior. It is also explained the advantages and limits of this
algorithm with regard of the previous one. Section 5 uses both algorithms for yielding and classifying all the
reversible one-dimensional cellular automata of 3, 4, 5 and 6 states. It is described how the automata are
generated and classified, showing besides some additional procedures implemented for improving the task.
Finally, section 6 provides the concluding remarks of the paper.

2 Basic concepts

A one-dimensional cellular automaton is composed by a one-dimensional array of cells, where each takes
one state from a given finite set K. If the array is infinite, then every cell is indexed by an element of Z
and an assignation from each element in Z into a single element in K is given. Each assignation of the
one-dimensional array is a configuration of the automaton. The cardinality of the set K is presented by k,
and for n ∈ z+, Kn defines the set of sequences of n states.

For a given configuration, every cell evolves depending on its current state and the state of its r neighbor
cells at each side; r is called the neighborhood radius and 2r + 1 is called the neighborhood size, where
2r + 1 ∈ Z+ and K2r+1 is the set of neighborhoods of the automaton. The mapping ϕ : K2r+1 → K is
called the evolution rule of the automaton. All the cells in the configuration update their values at the same
time according to the evolution rule, and the whole configuration evolves in a new one, yielding the global

2



evolution of the system. Thus, the global evolution of the automaton depends on the local interaction of its
parts.

Sequences of 2r + 1 cells generate individual states and sequences of n + 2r states generate sequences of
n states, in this way, a sequence of n + 2r cells contains n neighborhoods where each overlaps with its
contiguous neighborhoods in 2r cells. For n ∈ Z+, a sequence w ∈ Kn+2r is ancestor of v ∈ Kn if w evolves
in v applying the evolution rule ϕ to all the neighborhoods in w.

Given some evolution rule, a sequence of states evolves in a single way, but it can be generated by one, many,
or no ancestors. The set of sequences without ancestors is the Garden of Eden of the automaton defined by
this rule. A cellular automaton is reversible if each configuration has a single ancestor and the Garden of
Eden does not exist.

These systems were widely studied by the papers of Gustav A Hedlund y Masakazu Nasu, which show that
these systems hold the following properties:

1. Every finite sequence of states has the same number of ancestors that all the others, and this number
is equal to k2r, which is the average of ancestors per state. This property is called the principle of
uniform multiplicity of ancestors [9].

2. For n0 ∈ Z+ and n ≥ n0, every sequence in Kn holds that its ancestors have three parts (left, central
and right) in their structure, each indexed respectively by L, M and R, where LR = k2r and M = 1.
In other words, the ancestors share the same central part and differ at the ends.

3. For n0 ∈ Z+ and n ≥ n0, the ancestors of each sequence in Kn fulfill that one of their L left endings
is equal to one and only one of their R right endings.

For a reversible automaton with evolution rule ϕ, property 2 implies that there is another inverse rule ϕ−1

which makes invertible the evolution of the automaton. For every finite configuration with at least n0 cells,
property 3 says that it has a single ancestor, assuring the reversibility of the automaton.

Before presenting the algorithms for detecting the reversible behavior in one-dimensional cellular automata,
it will be explained how any cellular automaton can be simulated by another with neighborhood size 2,
which makes simpler the detection [2] [6]. Given a cellular automaton of k states, neighborhood radius r
and evolution rule ϕ, for w ∈ K2r, the ancestors of w has 4r cells. Take a new set S of states such that its
cardinality | S | is equal to k2r. Then there is a bijection from K2r to S and | S2 |= k4r. In this way, the
mapping K4r → K2r induced by ϕ can be also presented by τ : S2 → S, but τ is the evolution rule of a
cellular automaton with neighborhood size 2. With this procedure, any automaton is simulated by another
of neighborhood size 2 and it is enough to detect reversible automata of neighborhood size 2 for including
all the other cases.

For reversible one-dimensional cellular automata of k states and neighborhood size 2, the properties previ-
ously explained are now as follows:

1. Each sequence has k ancestors.

2. For n0 ∈ Z+ and n ≥ n0, the ancestors of each sequence in Kn begin with L distinct states and finish
in R different states, with LR = k, sharing at least one common internal state.

3. For n0 ∈ Z+ and n ≥ n0, the ancestors of each sequence in Kn have one initial state equal to one final
state.
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Now the algorithms for detecting the reversible behavior of one-dimensional cellular automata with neigh-
borhood size 2 will be presented.

3 Algorithm using the state-pair matrix

A fast and effective algorithm for reviewing the reversibility of a given evolution rule is provided by the
state-pair matrix [10]. For automata with neighborhood size 2, the evolution rule is presented by a matrix,
where the row indices are the left cells of the neighborhoods and the column indices are the right cells of
them. Each entry in the matrix takes the value of the state in which the neighborhood represented by its
indices evolves. For constructing the state-pair matrix take all the ordered pairs of states in the automaton,
these pairs will be the indices by rows and columns of the state-pair matrix and its order is k2.

Given an evolution rule ϕ and two ordered pairs (i1, j1), (i2, j2) where im, jm ∈ K, m = 1, 2, the entry
((i1, j1), (i2, j2)) at the state-pair matrix is defined as follows:

((i1, j1), (i2, j2)) =

 1 if ϕ(i1, i2) = ϕ(j1, j2)

0 in other case
(1)

The state-pair matrix is a 0− 1 matrix and shows what pairs of states evolve in the same state. In this way
a binary relation is established between ordered pairs of states. With the transitive closure of this relation,
its connected components are obtained. Every connected component represents two cyclic ancestors of the
same sequence.

If a given connected component contains an ordered pair where both elements are different one another, then
there is a sequence of states with two different cyclic ancestors and the automaton is not reversible. Then
for detecting if a given one-dimensional cellular automaton is reversible, the state-pair matrix is formed, its
transitive closure is calculated and its connected components are verified. If the only connected component
so formed is by ordered pairs where both elements are equal then the automaton is reversible, in other case
the rule is discarded (Table 1).

Evolution rule State-pair matrix Transitive closure

0 1 2
0
1
2

 2 2 0
0 0 2
1 1 1



00 01 02 10 11 12 20 21 22
00
01
02
10
11
12
20
21
22



1 1 0 1 1 0 0 0 1
0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 0
1 1 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1



00 01 02 10 11 12 20 21 22
00
01
02
10
11
12
20
21
22



1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1



Table 1: Reversible one-dimensional cellular automata of 3 states, neighborhood size 2, and Welch indices
L = 1 and R = 3. The state-pair matrix and its transitive closure are presented, note that the only connected
component is composed by {(0, 0), (1, 1), (2, 2)}.

The number of necessary steps to form the state-pair matrix is O(k4) and the transitive closure of each
matrix is calculated by Warshall’s algorithm [13] which is O(k6). The procedure for checking the connected
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components is O(k4) so the algorithm is polynomial with regard to the number of states, but with a very
big exponent. Besides, the algorithm is identically applied for all the evolution rules to review, in this way a
little increment in the number of states also increases considerably the calculation time. Another observation
is that the algorithm gives no information about the size of the inverse rule.

4 Algorithm using connectivity matrices

Another way of detecting the reversibility of a given evolution rule is using the connectivity matrix of each
state [10]. For any s ∈ K, form a new matrix indexing both rows and columns with the elements of K. In
the matrix, the entry (i, j) is defined as follows:

(i, j) =

 1 if ϕ(ij) = s

0 in other case
(2)

Then each state has a 0 − 1 matrix representing its ancestors. For a bigger sequence take the product of
the connectivity matrices following the order of the states forming this sequence. The product yields a new
matrix showing the ancestors of the sequence. Using the properties exposed in Section 2, the conditions that
a connectivity matrix must hold for presenting the ancestors of a reversible automaton are as follows:

1. The matrix must be a 0− 1 matrix.

2. The sum of elements of each matrix must be equal to k.

3. Each matrix must have one and only one diagonal element equal to 1.

4. Each matrix must have L identical rows, each with R entries equal to 1, the other rows are zero.

5. Each matrix must have R identical columns, each with L entries equal to 1, the other columns are
zero.

Condition 1 assures that there is at most a single form of connecting a state i with another j. Since there
is another form of returning from j to i specified in another connectivity matrix, if there are more ways for
connecting i with j in the matrix then the undefined product alternating both matrices yields a growing
number of ancestors, which contradicts the uniform multiplicity principle.

Condition 2 verifies that the uniform multiplicity of ancestors is fulfilled and conditions 3, 4 and 5 review
the behavior of the matrix with regard of the Welch indices.

In this way a recursive algorithm is defined. The algorithm forms all the possible sequences of states up to
some prefixed length and the connectivity matrix of every sequence is obtained in each step. If the matrix
holds all the conditions previously described, then the extensions of the sequence are not studied and another
different sequence is now analyzed (Table 2).
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0 1 2 3
0
1
2
3


1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0


0 1 2 3

0
1
2
3


0 0 0 0
1 0 0 1
0 0 0 0
1 0 0 1


0 1 2 3

0
1
2
3


0 0 0 0
0 0 0 0
0 1 1 0
0 1 1 0


0 1 2 3

0
1
2
3


0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1



Table 2: Instances of valid connectivity matrices for reversible one-dimensional cellular automata of 4 states,
neighborhood size 2 and Welch indices L = 2 and R = 2.

If the connectivity matrix has any of the following features:

• The sum of elements is different from k.

• The matrix has an element greater than 1.

• The trace of the matrix is different from 1.

• A row has more than R entries distinct from 0.

• A column has more than L entries distinct from 0.

• The matrix presents the ancestors of a sequence with greater length than the prefixed one.

Then the automaton is not reversible and the rule is discarded (Table 3).

Sum greater than 4 Row with 3 positive entries 2 positive diagonal entries An entry greater than 1

0 1 2 3
0
1
2
3


1 1 1 0
1 0 1 0
0 0 0 0
0 0 0 0


0 1 2 3

0
1
2
3


0 0 0 0
1 0 1 1
0 0 0 0
1 0 0 0


0 1 2 3

0
1
2
3


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


0 1 2 3

0
1
2
3


0 1 0 0
0 0 0 0
0 0 0 0
0 2 0 1



Table 3: Some forbidden connectivity matrices for reversible automata of 4 states, neighborhood size 2 and
Welch indices L = 2 and R = 2.

In other case where it is not resolved whether the sequence is reversible or not, then the extensions of the
sequence are studied. Thus with simple matrix products the algorithm detects if a given automaton is
reversible or not.

A problem with the algorithm is the selection of the maximum length for reviewing. This problem was
resolved independently by Nasu [12] and Kari [6] with a length at most of k− 1 if a Welch index is equal to
1. But the question stills open when both indices are different from 1. In this case one bound is provided
by the state-pair matrix reviewing how long a sequence can be without repeating any pair, which yields a
bound equal to k2.

In this way, the prefixed length for stopping the procedure depends on the number of states, and the algorithm
is exponential in the worst case. However, it allows to know the length of the inverse rule, observing the
maximum length where a given connectivity matrix acquires the reversible form. The algorithm also yields
the Welch subsets defining the reversible behavior of a given evolution rule.
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In opposite case to the algorithm using the state-pair matrix, this one does not need to run completely
for discarding some evolution rule, it is enough that the ancestors of a single sequence fail the reversible
conditions for stopping the process.

5 Experimental results

Both process were implemented for calculating reversible one-dimensional cellular automata of 3, 4, 5 and 6
states; for the second and the fourth case there are two types of automata, one with a Welch index 1 and
another with a Welch index 2.

An fundamental point is the generation of the evolution rules to review. The matrix presenting some
evolution rule must hold some special conditions before analyzing its reversibility:

• Each state must appear the same number of times that all the others in the matrix, fulfilling the
uniform multiplicity principle.

• Any state can not appear in the same row more than R times or in the same column more than L
times. Thus, in the case of L or R equal to 1, every column or row respectively is a permutation of K.

• The entry (i, j) must be different from the entry (j, i) and if a given state is placed in the entries (i, j)
and (k, m), then the entries (j, i) and (m, k) must be different as well. These restrictions avoid the
formation of different cyclic ancestors for some sequence of two cells.

With the previous conditions, the number of rules to generate and studying has a very good decrement,
which improves the calculation of reversible one-dimensional cellular automata.

Each rule will be identified by a single number in a suitable base as Stephen Wolfram did assigning a binary
number to every rule in one-dimensional cellular automata of 2 states and neighborhood size 3 [16]. In the
case of automata with neighborhood size 2, every evolution rule is ordered in a descendent way from the
neighborhood ((k − 1)(k − 1)) to the neighborhood (00).

For instance, a one-dimensional cellular automaton of 3 states has nine different neighborhoods. Once
ordered these neighborhoods, they are grouped in blocks of three neighborhoods and each block is identified
by a single number in base 27, taking the leftmost element of the block as the most significative one. For
automata of 4 states the same process is applied grouping the evolution rule in blocks of two cells and using
numbers in base 16. For automata of 5 states, the first ordered neighborhood is not grouped and the rest is
grouped in blocks of two cells, numbering each block with a number in base 25.

For a given evolution rule, equivalent evolution rules are yielded reflecting, applying symmetry, permuting
states or a combination of these operations in the initial evolution rule [17]. In this way, the evolution rules
will be clustered, where two rules in a cluster are equivalent. Every cluster is identified by its rule with the
smallest number in the corresponding base.

All these features and both algorithms for proving the reversibility of possible invertible evolution rules were
implemented in a standard C program over a Macintosh G4 Dual, and results for one-dimensional cellular
automata of 3, 4, 5 and 6 were obtained (Table 4).
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No. states Welch indices Total clusters Inverse size No. clusters

3 L=1,R=3 2 2 2

4 L=1,R=4 8 2 5

3 3

L=2,R=2 3 2 3

3 0

5 L=1,R=5 132 2 17

3 50

4 65

6 L=1,R=6 14570 2 83

3 1216

4 5631

5 7640

L=2,R=3 3079 2 920

3 1651

4 508

5 0

Table 4: Results of the processes for calculating reversible automata.

The program for 3 and 4 states runs in a time smaller than one second with both algorithms. For 5 states
the search takes thirty seconds by the algorithm using connectivity matrices and forty-five seconds by the
algorithm using the state-pair matrix. For 6 states the algorithm using connectivity matrices was only
applied by its better performance, and it takes eleven hours for L = 1 and nine hours for L = 2. For 7 states,
both algorithms are impractical by the huge number of rules to generate.
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6 Concluding remarks

The algorithms for calculating reversible one-dimensional cellular automata have allowed to know and classify
these systems both for their behavior and for their complexity. It is one of the problems where increasing
the number of states also increments the run time in a huge amount, still for small values as it was seen in
the previous results.

Another observation is that the algorithm using connectivity matrices which has the greatest order in the
worst case is the faster one. In this way the order of its average case must be smaller than the order
of the algorithm using state-pair matrices. To know the order of the average case of the algorithm using
connectivity matrices is an open question, it is the same that knowing the average of the number of sequences
to review for detecting if a given evolution rule is irreversible, and the average length of the sequences where
it happens. These questions are not easily solved for evolution rules like the ones generated by the previous
program.

Finally, for the case of reversible automata with both Welch indices different from 1, evolution rules with an
inverse neighborhood longer than k − 1 were not found, different from the case of reversible automata with
a Welch index 1. This result suggests that k − 1 can be a general bound for all reversible one-dimensional
cellular automaton, which is an important property to formalize.
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