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Procedures for Computing

One- and Two-Dimensional Integrals of Functions

With Rapid Irregular Oscillations

By David Levin

Abstract. A collocation procedure for efficient integration of rapidly oscillatory functions is

presented. The integration problem is transformed into a certain O.D.E. problem, and this is

solved by a collocation technique. The method is also extended to two-dimensional integra-

tion, and some numerical results are appended showing the efficiency of the method in

handling difficult cases of rapid irregular oscillations.

1. The Procedure for One-Dimensional Integrals. We consider integrals of the

form

(1.1) I=[hf(x)e«^dx,
Ja

where / is smooth and "nonoscillatory" and | q'(x) |» (b — a)~x. Two practical

methods for evaluating rapidly oscillatory integrals are described in [1], the use of

approximation as in Filon's method [3], [4] and the speedup method of Longman [5].

Formally both methods are applicable to any integral of the form (1.1), but their

best performance is for the case of a constant frequency q' = W. In this note we

present an efficient method which is applicable for cases of varying frequency q'

using only a small number of values of/ and q' in [a, b] and the values q(a) and

q(b).

The proposed method follows the spirit of Filon's method. It is based upon the

fact that if/were of the form

(1.2) f(x) = iq'(x)p(x) +p'(x) = Lmp(x),       a<x<b,

then the integral could be evaluated directly as

/= f (iq'(x)p(x) + p'(x))e">Mdx = (" -f(p(x)e,'<^) dx
(13)

= p(b)e'"(h) -p(a)e^a\

Equation (1.2) can be considered as a differential equation for p(x), and any

solution of this equation can be used in (1.3) for evaluating /. The general solution

of this equation is

(1.4) p(x) = e-¡"(x)
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532 DAVID LEVIN

so that in general/) is as oscillatory as the integrand in (1.1). Therefore, the problem

of computing p is no less difficult than the original problem of computing /.

However, if the functions / and q' are slowly oscillatory, then there also exists a

slowly oscillatory solution p0 of (1.2) (see Appendix). By looking for this/?0 we avoid

all the difficulties caused by the rapid oscillations. Writing the general solution of

(1.2) as

(1.5) p(x) =p0(x) + ce-'«*

and using this form in (1.3), we get

(1.6) / = Jp0(¿)e'^-p0(a)^<a>.

Therefore, p0(a) and p0(b) are actually all we need. A problem arises since we do

not have any initial condition for p0. Furthermore, even if p0(a) were known, any

forward integration scheme for (1.2) will develop high oscillations due to round-off

errors. However, the rapidly oscillatory homogeneous solution ce~,q(x) can be

excluded automatically by solving (1.2) by collocation using slowly oscillatory basis

functions. By this method p0 is singled out without specifying any boundary

conditions. An «-point collocation approximation to the solution of (1.2) is defined

as
n

(1.7) P„(x)= 2 "tkuk(x),
k=\

where {uk}"k=x are some linearly independent basis functions, and the coefficients

{ak}"k=] are determined by the n collocation conditions

(1.8) LWptt(Xj)=f(Xj),      j=\,2,...,n,

where {x ■}"_, are distinct points in [a, b]. As is shown in Section 3, it is preferable in

this case to choose the endpoints a and b as collocation points. The procedure

suggested for an «-point approximation Inlo I = jab f(t)eiq{l) dt is as follows:

(a) Choose a set of linearly independent functions {uk)"k=x (these functions should

be suitable for approximating functions with an oscillatory nature similar to that of

/)•

(b) Solve, for {ctk}"k=\, the system of collocation equations

n n

(1.9) 2 *ku'k(Xj) + iq'(Xj)  2 akuk(xj) =f(xj),       j = 1,2,...,«,
k=\ k=\

where {xy}"=1 are regularly distributed in [a, b], a = x, < x2 < ■ ■ • < xn = b.

(c) Compute the approximation In to / as

(1.10) /„= 2 etkuk(b)e'"^ -  2 akuk(a)e'«°\
k=\ k=\

The above procedure can also be viewed as the expansion method [1, p. 122] using

the functions

(1.11) <f>k(x) = u'k(x) + iq'(x)uk(x),       k= 1,2,...,«,

as basis functions for interpolating/at x,, x2,... ,xn. The "moments" of <¡>k required

for the application of the expansion method are simply

(1.12) xpk = ¡b^k(x)e"i(x)dx = uk(b)ei,,{b) - uk(a)e">(a).
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The above differential equation approach provides us with a better recognized tool

for investigating this procedure. By analyzing the differential equation one may be

able to find a set {uk)"k=x suitable for the collocation approximation (see Example

4). One may also be able to use some results on the choice of collocation points [2]

(with the restrictions x, = a and x„ = b).

We remark that a similar idea can be used to evaluate rapidly oscillatory sums of

the type
N

2 f(m)e'«m).
m = 0

We proceed by presenting the method for the two-dimensional case. The generaliza-

tion to higher dimensions is evident.

2. The Procedure for Two- Dimensional Integrals Over Rectangular Regions. Here

we consider integrals of the form

(2.1) I=fb[df(x,y)e^x^dxdy,
Ja   Jc

where / is nonoscillatory, qx(x, y) » (b — a)~x, and qy(x, y) » (d — c)~l. The

method of Section 1 is easily adaptable to this case, only here we require knowledge

of /, qx, qy and qxy over the rectangle [a, b] X [c, d] and the values of q at its

corners.

In analogy to the differential equation (1.2) we introduce here the differential

equation

(2.2) L(2)p = pxy + iqyPx + iqxPy + (iqxy - qxqy)p = f.

If we could find a solution p of this equation, then the integral / is readily obtained

as

(2.3) / = p(b, d)e,«b'd) - p(a, d)e^a-d) - p(b, c)ei"(h-c) + p(a, c)e'«(a-c>.

This can be shown by using the equality

(2-4) fafy[Pe'q]   =[PXy + iayPx + 'IxPy + Ulxy ~ aXRy)p\e'1'■

Here also we are going to use the collocation technique with "nonoscillatory" basis

functions to find an approximation to the nonoscillatory solution p0 of Eq. (2.2), i.e.,

(a) we choose a set of suitable "nonoscillatory" linearly independent functions

{«*}* = !•
(b) We solve, for {ak)"k=x, the system of collocation conditions

(2.5) L<2> 2 «kuk
k=\

(xj,yj)=f(xj,yj),    f= 1,2,...,«,

where {(x¡, ^)}"=i  are regularly distributed in [a,b]X[c,d]. Here also it is

advisable to include the corners as collocation points.

(c) Form the approximation /„ to / by using the approximation pn = 2¡J=1 akuk

instead of p in (2.3).

3. Practical Application of the Method and Numerical Experiments. The method

described above reduces the problem of integrating rapidly oscillatory functions to

solving linear systems ((1.9) or (2.5)). To avoid the difficulties of large linear systems,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



534 DAVID LEVIN

we must keep a low order « of the approximations and improve the accuracy by

subdividing the given domain of integration. Another possibility is to use finite

support basis functions, e.g., 5-splines, in the collocation approximation to obtain

linear systems with banded (or block banded) matrices. In many cases a clever

choice of the basis functions {uk) can yield a very good approximation to the

integral over a large or even infinite interval. For example, in the one-dimensional

case, if q(x) is a polynomial in x and if fix) is of the form

(3.1) f(x) = rf»e<*>,

where r and s are also polynomials in x, then by inspection of Eq. (1.2) it is clear

that {uk} should be of the form

(3.2) uk(x) = vk(x)e**\

where vk are polynomial (or spline) basis functions.

In the first two examples we consider integrals of the form

(3.3) f f(x)eiiV<n*+cx*>dx,
JD

where W is a large parameter and / is of the type (3.1). D is a finite interval in the

one-dimensional case x = x and a rectangle in the two-dimensional case x = (x, y).

Example 1.

(3.4) 1= [[smxeiW(x+cx2)dx.

We chose to approximate p0 of (1.5) by a polynomial using the monomial basis

functions

(3.5) uk(x)-xk-\       k = 1,2,...,«,

and the coefficients {ak} in (1.10) where computed by solving (1.9) with equidistant

collocation points xy = (j — l)/(« — 1), j = 1,...,«. An IMSL routine (LEQ2C)

was used to solve this complex linear system, and the results were compared to those

obtained by Romberg integration (using the routine DCADRE of IMSL).

For the case W — 500 and c = 1 it takes about 3 cpu seconds to evaluate Re / to 5

correct significant figures, Re / = 4.59859... X 10"4, by DCADRE. The computa-

tion of /„ takes less than 0.1 cpu seconds for « < 10 giving good approximations

to/

Re I5 = 4.60098 X 10~4,       Re /10 = 4.59863 X 10~4.

For larger values of W it becomes of course harder for DCADRE to compute /.

Surprisingly, however, it was found that the approximation I„~ I improves as W

increases, i.e., more significant figures are obtained by In with fixed «. To explain

this phenomenon, we use an asymptotic property of oscillatory integrals: If q' does

not vanish on [a, b], then

V h \0(\/W2)     iî F(a) = F(b) = 0.
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Using (3.6), it is clear that the integral (3.4) is of the order l/W&s W -» oo. On the

other hand, the error in In can be written as

(3.7) / - /„ =/*(/(*) - L^pn(x))e^xUx.
Ja

Using the endpoints a and b as collocation points in (1.9), the integrand in (3.6)

vanishes at a and b and, by (3.6),

(3.8) I-I„ = 0(\/W2)    àsW-*oc.

Thus, if/does not vanish at the endpoints, the relative error reduces as If increases

(3-9) £zi = 0(±)    asïF-oo.

Example 2.

(3.10) l(W,c) - ¡] C cos(x + y)e'wlx+y+c<>x2+>'2)] dx dy.

Here also we used monomials as basis functions

(3.11) {uk)<x = {xy\0<i,j<n-l},

and a square grid of «2 collocation points

(3.12) {(^t.^t)H'.^»-1}-
We denote the resulting approximation by I„i(W, c); its computation involves

solving a complex linear system of order «2.

For W — 100 and c = 1 we got

79(100,1) = -8.572 X 10"5 -3.305 X 10"5/

and

/25(100,1) = -8.595 X 10"5 -3.231 X 10"5/,

where the exact value is

7(100,1) = -8.597 X 10"5 -3.212 X lO"5/.

Here it can be shown that

I(W,c) = 0(\/W2)    as W -^oo

and

l(W,c)-Ini(W,c) = 0(\/W3)    asW^oo.

Therefore, as in the one-dimensional case, the results improve as W increases: For

W = 104 and c - 1 we got

725(104,1) = -6.92088 X 10"9 + 2.53659 X 10"9/

while

/(104,1) = -6.92072 X 10"9 + 2.53674 X 10"9/.

Example 3.

(3.13) /^'expf-^^x.
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536 DAVID LEVIN

In this case the integrand oscillates slowly near x = 0 and infinitely rapidly as x

tends to 1. It is an example of integrals obtained by transforming integrals

oscillating over an infinite range to a finite interval. This particular integral originates

from the integral

/•OO p'x

(3.14) /=/    --</x = 0.3785504 + 0.3433779/.
Jo    (x + I)2

Applying the technique of Section 1 to the integral (3.13), we obtained the

differential equation

(3.15) ^ + _L_^ = 1.
(1 -x)

To avoid computational problems at x = 1, we applied the collocation method (with

the monomial basis functions) to the equation

(1 - xfp' + ip = (1 -x)2.

The results show that the method can compete with any other method for evaluating

the infinite integral (3.14):

75 = 0.3809 + 0.3442/',

710 = 0.378566 + 0.343380/,

715 = 0.3785503 + 0.3433777/.

Example 4.

(3.16) I(W) = f2"log x sin Wxdx.

This is an example of an oscillatory integral with a singularity, also considered in [1,

p. 126]. Writing /( W) as

(3.17) I(W) = \m[j2"logxe,Wxdx\,

we can apply the method of Section 1, i.e., we look for an approximation to the

nonoscillatory solutionp0(x) of the differential equation

(3.18) Lmp(x) =p'(x) + iWp(x) = logx.

It can easily be verified that near x = 0 the solution of (3.18) can be expanded as

00 oo

(3.19) p(x) = 2 a,xl + logx 2 &,*'•
;=o ;=o

Therefore, we look for an approximation pn = 2"k=x akuk to p0 using the basis

functions

(3.20) uk(x)

x(k~x^2,      Ac odd,

k^\.

xk/2logx,    k even,
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To enable collocation of (3.18) at x = 0, we must take a2 — 1. Then, since Lmu2(x)

= L(1)(xlogx) = logx + 1 + iWxlogx, the singular term logx can be subtracted

from both sides of the collocation equations (1.8).

To get satisfactory approximations we subdivided the integral as

r2ir      /-0.2       r\        /-2       r3      /-4       r5       rl-n

(3-21> /     = /     +/    +/+/+/  +/   +/    ■•'0 ■'0 ■'0.2      J\        J2       J3       ,/4       J5

The special basis functions in (3.20) were being used only in the interval [0,0.2],

while the simple monomial basis functions in (3.5) were being used in the other six

subintervals [0.2,1 ],...,[5,2ir]. Denoting by In(W) the sum of the seven «th order

approximations to the seven integrals on the right-hand side of (3.21), the following

approximations to 7(30) = -0.1938773 were obtained:

76(30) = -0.1938870,       710(30) = -0.1938763.

These approximations are significantly better than those given in [1] using the Filon

method.

Appendix. We would like to show that if / and q are slowly oscillatory and

| q'(x) |» 1, then the differential equation ((1.2))

(A.l) L^p=p' + iq'p=f

has a particular solution p0 which is slowly oscillatory in comparison with the

rapidly oscillatory homogeneous solution e'q.

Instead of counting zeros we shall use a spectral characterization for the oscilla-

tory behavior of functions. Let us write q as ^(x) = Wu(x), where 0 <| u'(x) |< 1,

and let x(f ) be the inverse of u(x), u(a) < £ *£ u(b). Actually, we should assume

that/(x(£))/<7'(x(£)) is slowly oscillatory, i.e., that its spectrum is bounded

(A.2) 4tTtI = r°G(w)e'^ dw,       0<W0« W.
q (x(i))     J-w0

Then the slowly oscillatory particular solution of (A.l) is

ft. iï t  \     », 7^o G(w)e*w"W J
(A-3) Po(x) = WI )   '       .  dw.

J-wa   t(w + W)

This can be verified by computing Lmp0:

Lmp0(x) =p'0(x) + iq'(x)p0(x)

= w r° -, G(WrL ["'(^)gMW + iWu'(x)eiw«xA dw
J-w0 t(w + W)

= q'(x) ¡WoG(w)e'^ dw = q>(x) ^"[^ = f(x).
J-w0 q(x(u(x)))

The particular solution (A.3) is slowly oscillatory in comparison with e'q(x) since its

spectrum is bounded in [-W0, W0] and WQ « W.
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