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It is common to establish shock and vibration design and/or test criteria for equipment 
mounted on a structure by computing a conservative upper bound for the spectrum of 
the dynamic load induced response of the structure based upon predicted or measured 
spectra at various points. This task is usually accomplished by one offive procedures, 
namely, the computation from the available spectra of a simple envelope, a normal 
tolerance limit, a distribution-free tolerance limit, an empirical tolerance limit, or a 
normal prediction limit. These five procedures are reviewed and illustrated usinR the 
power spectra computed from vibration signals measured during the lift-off of a large 
launch vehicle at 12 locations in a structural region where equipment will be mounted. 
The results are compared and the merits and liabilities of the various procedures are 
discussed. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The procedures commonly used to predict the 

response of structural systems to low frequency 

dynamic loads (below about the 10th normal 

mode of the structure) generally produce motions 

at the specific locations and/or forces in the spe­

cific structural members of interest in the formula­

tion of design and test criteria. On the other hand, 

many procedures used to predict the structural 

responses to higher frequency dynamic loads, as 

well as the direct measurement of the responses 

on an existing structural system, yield only spec­

tra for motions at point locations. In some cases, 

the response predictions or measurements might 

be made at the specific locations of interest in the 

Received for publication May 22, 1995; Accepted Decem­
ber 27, 1995. 

Shock and Vibration, Vol. 3, No.3, pp. 211-221 (1996) 
© 1996 by John Wiley & Sons, Inc. 

formulation of design and/or test criteria, e.g., 

the attachment points for equipment mounted on 

the structure. In most cases, however, the loca­

tions for response predictions or measurements 

do not correspond exactly to the specific points 

of interest; even if they do, the equipment to be 

mounted at those points is often not modeled for 

the predictions or is not in place for the measure­

ments. Hence, it is necessary to pool the pre­

dicted or measured responses at various locations 

to obtain a single spectrum that will conserva­

tively bound the spectra for the responses at all 

points in a structural region, including the specific 

points of interest. This approach requires that the 

structural system be divided into a collection of 

structural regions, often referred to as "zones." 
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A conservative bound on the spectra for the re­

sponses at all points in a single zone is commonly 

called the zone "limit." 

BACKGROUND 

Before detailing the various procedures for estab­

lishing limits on the dynamic load induced struc­

tural responses in a zone, several issues should 

be clarified, including the definition of zones, de­

termination of zones, unbiased selection of re­

sponse points, and definitions of response terms. 

Definition of Zones 

Assume the high frequency dynamic load induced 

responses at all points on a structural system 

(e.g., an aerospace or automotive vehicle) are 

of interest. The responses may be stationary or 

nonstationary random vibrations, periodic or 

other deterministic vibrations, or transients in­

cluding pyroshocks. In any case, the responses 

at various points on the structure will typically 

vary widely from one location to another. The 

goal in zoning is to divide the structure into re­

gions or zones such that the responses at all points 

within each zone are reasonably homogeneous, 

meaning the spectra for the responses at all points 

can be described by a single spectrum that will 

exceed most or all of the spectra at the individual 

points without severely exceeding the spectrum 

at any point. It is also required that the selected 

zones correspond to structural regions of interest 

in the formulation of design and test criteria. For 

example, if the ultimate goal is the definition of 

vibration inputs to equipment that will be 

mounted on the structure, as required to derive 

test specifications, a single zone should include all 

the attachment points for at least one equipment 

item, and preferably for several equipment items. 

On the other hand, it is not necessary for a zone 

to be a single contiguous structural region. For 

example, all frames of a given size in a structural 

system, no matter where they are located, might 

constitute a single zone if the responses of those 

frames are similar. 

Determination of Zones 

There are direct analytical techniques that can be 

used to arrive at structural zones based upon tests 

for the statistical equivalence of the spectra for 

the predicted or measured responses at various 

locations on the structure (e.g., Bendat and Pier-

sol, 1986). However, the zoning operation is usu­

ally accomplished based upon engineering judg­

ment, experience, and/or a cursory evaluation 

of predicted or measured spectra. For example, 

engineering judgment dictates that frame and 

panel structures should represent different zones, 

because the response of light panels will generally 

be higher than the response of heavier frames. 

For aerospace vehicles, experience suggests that 

the aft structural regions exhibit higher responses 

during flight than the forward structural regions, 

meaning even similar structures in the forward 

and aft regions of the vehicle usually must be 

represented by different zones. Responses nor­

mal to the surface of a panel structure are gener­

ally higher than those in the plane of the panel, 

so the responses along different orthogonal axes 

might be divided into separate zones. Beyond 

such engineering considerations, a visual inspec­

tion of the spectra for the predicted or measured 

responses over the structure can be used to group 

locations with responses that have similar spec­

tral magnitudes. 

Unbiased Selection of Response Points 

All of the procedures to establish zone limits as­

sume the available spectra for a given zone are 

predicted or measured at locations that are repre­

sentative of all points of interest in that zone. 

Ideally, this would be achieved by a random se­

lection from all possible response points within 

the zone. In practice, a random selection usually 

is not feasible because the predictions or mea­

surements are commonly made before the zones 

are selected; in fact, the spectra for the predicted 

or measured responses are often used to establish 

the zones, as discussed above. In some cases, 

however, the predictions or measurements may 

be made at those points where equipment items 

are mounted. If the ultimate goal is to establish 

test criteria for those equipment items, this would 

constitute a good selection of response points, 

even though such mounting points might not be 

representative of all points within the zone. In 

any case, it is important to assess the locations 

represented by the available predicted or mea­

sured spectra to assure that they are typical of 

all points of interest in the zone. 

Definitions of Response Terms 

To simplify later developments and discussions, 

the following terms are defined. The spectrum 
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(spectral value versus frequency) for the dynamic 

load induced structural response at any point 

within the zone of interest is x. Assuming the 

structural response is predicted or measured in 

terms of acceleration, the spectrum may be a 

power spectrum (also called an auto spectrum) in 

g2/Hz for a random vibration response, an energy 
spectrum in g2- sec /Hz for a transient response, a 

line spectrum in g for a periodic vibration re­

sponse, or a shock response spectrum in g for a 

shock response, depending on the type of dy­

namic environment and the spectral analysis pro­

cedure employed. See Himelblau et al. (1994) for 

details on the spectral descriptions of structural 

responses. The spectrum for the dynamic load 

induced structural response that is predicted or 

measured at the ith point (i = 1,2, ... , n) within 

the zone of interest is Xi' The spectral value 

in the jth frequency resolution bandwidth 

(j = 1, 2,. . ., m) for the dynamic load induced 

structural response that is predicted or measured 

at the ith point (i = 1, 2, ... , n) within the zone 

of interest is xu' The largest spectral value in 

the jth frequency resolution bandwidth for the 

predicted or measured dynamic load induced 

structural responses at the n points where predic­

tions or measurements are made within the zone 

of interest, Xhj' is the largest value of Xu (i = 1, 
2, ... , n). 

ENVELOPE LIMITS 

The most common way to arrive at a limit for the 

structural response spectra within a zone is to 

superimpose the spectral responses predicted or 

measured at n points within that zone, Xu (i = 1, 

2, ... , n), and then to select and plot the maxi­

mum spectral values in the various frequency res­

olution bandwidths, i.e., Xhj (j = 1,2, ... , m). 

This yields an envelope that, for simplicity, is 
often smoothed using a series of straight lines 

(usually no more than seven lines with slopes of 

0, ±3dB/octave, or ±6dB/octave). The computa­

tion of unsmoothed and smoothed envelopes is 

illustrated in Fig. 1 using the power spectra for 

12 vibration measurements made at different loca­

tions in a selected structural zone of a large launch 

vehicle during lift-off. The individual spectra were 

all computed using a one-sixth octave band fre­

quency resolution. 

The envelope approach is simple to apply, but 

it poses two significant problems. 

Frequency, Hz 

FIGURE 1 Envelope for 12 measured vibration re­

sponse spectra within a zone. 

1. It does not provide a specific probability 

that the envelope at a given frequency will 

exceed the spectrum for the response at 

some other location of interest. However, 

if the number of predicted or measured 

spectra is sufficiently large, this deficiency 

can be removed by a distribution-free toler­

ance limit computation, to be discussed 
later. 

2. It can produce somewhat different results 

depending on the frequency resolution of 

the predicted or measured spectra; i.e., 

spectra computed in narrow bandwidths 

will display substantially higher peak mag­

nitudes, and thus higher envelope values, 

than spectra computed in, say, one-third 

octave bandwidths. 

There is a final problem that applies to all pro­

cedures. Specifically, for the usual case where 

the envelope is smoothed by a series of straight 

lines, the procedure becomes somewhat subjec­

tive in terms of the number of straight lines that 

are used, and whether all spectral peaks are enve­

loped or some are clipped. This problem is often 

addressed by using some systematic method for 

determining which spectral peaks will be either 

fully covered or partially clipped by the smoothed 

envelope. For example, a commonly used rule 

is that all narrowband spectral peaks should be 

clipped by 3 dB. Another rule is that all spectral 

peaks with a bandwidth less than 5% of center 

frequency should be clipped to the level where 

the bandwidth is 5% of center frequency. Perhaps 

the best approach is to compute all spectra with 

a resolution bandwidth that is proportional to fre­

quency, say one-sixth octave bands, and then 

envelope all peaks without clipping, as is done in 

Fig. 1. 
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NORMAL TOLERANCE LIMITS 

A more definitive way to arrive at a conservative 

limit for the structural response spectra within a 

zone is to compute a normal tolerance limit for the 

predicted or measured spectra in each frequency 

resolution bandwidth. Normal tolerance limits 

apply only to normally distributed random vari­

ables. The point-to-point (spatial) variation of 

structural responses to stationary, nonstationary, 

and transient dynamic loads is generally not nor­

mally distributed. However, there is considerable 

empirical evidence (e.g., Piersol, 1971) that the 

logarithm of the spectral values for any motion 

parameter describing the response or structures 
from one point to another does have an approxi­

mately normal distribution; i.e., the spatial distri­

bution of structural response spectra in a specific 

frequency resolution bandwidth approximately 

fits a lognormal distribution. Hence, by simply 

making the logarithmic transformation 

(1) 

a normal tolerance limit can be computed for the 
spectral values in the jth frequency resolution 

bandwidth from the transformed predictions or 

measurements, Yij (i = 1, 2,. . ., n). Specifically, 

the normal tolerance limit for Yj' denoted by 
NTLv(n, f3, 'Y), is defined as the value that will 

exceed at least the f3 portion of all possible values 

of Yj with a confidence coefficient of 'Y, and is 
given by 

(2) 

j=I,2, ... ,m, 

where Yj is the sample average and sv. is the sample 
standard deviation of Y in the jth frequency resolu­

tion bandwidth, given by 

1 2:,n (y -2 
n - 1 ;=1 ij - Y) . (3) 

The normal tolerance limit in the original engi­

neering units of x can be retrieved by 

In Eq. (2), the term kn ,{3;Y is called the normal 
tolerance factor, and is a tabulated value; a tabu­

lation of kn ,{3;y for selected values of n, f3, and 'Y 

is presented in Table 1, which is extracted from 

Bowker and Lieberman (1975) and other sources. 
Note in Table 1 that for n = 00, 

where f.tv. is the true mean and cry. is the true 
standard' deviation ofy in thejth frequ'ency resolu­

tion bandwidth, and z'" is the a = (1 - f3) percent­
age point ofthe standardized normal distribution, 

which is tabulated in any statistics textbook (e.g., 

Guttman et aI., 1982). The confidence coefficient 

associated with Eq. (5) is 100%, independent of 

the value of a. Also, Eq. (5) is sometimes rou­

tinely substituted for Eq. (2) with Yj and Sy. replac­

ing f.tv. and cry., but this should never be done 
, J J 

unless the number of available predictions or 

measurements within the zone is n > 50. 

As an illustration, the normal tolerance limit 
versus frequency for the data in Fig. 1 computed 

Table 1. Normal Tolerance Factors for Upper Tolerance Limit 

'Y = 0.50 'Y = 0.75 'Y = 0.90 

n f3 = 0.90 f3 = 0.95 f3 = 0.99 f3 = 0.90 f3 = 0.95 f3 = 0.99 f3 = 0.90 f3 = 0.95 f3 = 0.99 

3 1.50 1.94 2.76 2.50 3.15 4.40 4.26 5.31 7.34 

4 1.42 1.83 2.60 2.13 2.68 3.73 3.19 3.96 5.44 

5 1.38 1.78 2.53 1.96 2.46 3.42 2.74 3.40 4.67 

7 1.35 1.73 2.46 1.79 2.25 3.13 2.33 2.89 3.97 

10 1.33 1.71 2.42 1.67 2.10 2.93 2.06 2.57 3.53 

15 1.31 1.68 2.39 1.58 1.99 2.78 1.87 2.33 3.21 

20 1.30 1.67 2.37 1.53 1.93 2.70 1.76 2.21 3.05 

30 1.29 1.66 2.35 1.48 1.87 2.61 1.66 2.08 2.88 

50 1.29 1.65 2.34 1.43 1.81 2.54 1.56 1.96 2.74 
00 1.28 1.64 2.33 1.28 1.64 2.33 1.28 1.64 2.33 
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with (3 = 0.95 and y = 0.50 is shown in Fig. 2. 

This limit is commonly referred to as the 95% 

normal tolerance limit with 50% confidence, or 

simply the 95/50 limit, and is interpreted as the 

limit that will exceed the response spectral values 

for at least 95% of all points within the zone with 

50% confidence. Note the 95/50 limit in Fig. 2 is 

similar to the envelope for the 12 measurements 

at most frequencies, but it could be higher or 

lower than the envelope depending on the values 

of (3 and y.Also, computed normal tolerance lim­

its are sometimes smoothed by a series of straight 

lines, as illustrated in Fig. 2. This step involves 

subjective judgments that pose the problems dis­

cussed earlier for the envelope procedure. 

The normal tolerance limit provides two major 

advantages over the envelope approach. 

1. It provides a limit that will not be exceeded 

at each frequency by the spectral values 

for a well-defined fractional portion (3 of all 

locations in the zone with a well-defined 

confidence coefficent y. 

2. Because the limit is computed using average 

values (the sample average and standard de­

viation), it is not as sensitive as the envelope 

to the frequency resolution of the predicted 

or measured spectra. 

On the other hand, the procedure does pose one 

major problem, namely, its sensitivity to the as­

sumption that the spatial distribution of the re­

sponse spectral values in each frequency resolu­

tion bandwidth is lognormal within the zone. This 

assumption might come into question for the 

higher values of (3 and/or y. 

Distribution-Free Tolerance Limits 

Distribution-free tolerance limits circumvent the 

primary problem associated with normal toler-
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FIGURE 2 95/50 normal tolerance limit for vibration 

response spectra in Fig. 1. 
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FIGURE 3 Empirical distribution for normalized vi­

bration response spectra in Fig. 1. 

ance limits, namely, the lognormal assumption for 

the spatial distribution of the structural response 

spectral values xij within the zone. This assump­

tion is eliminated by fixing the tolerance limit to 

be the maximum spectral value xhj in each of 

the m frequency resolution bandwidths, i.e., the 

distribution-free tolerance limit, denoted by 

DFLx(n, (3, y), is simply the unsmoothed enve­
lope of the predicted or measured spectra. From 

Guttman et al. (1982), the fraction portion (3 of 

all response spectral values that will be less than 

the maximum spectral value Xhj with a confidence 

coefficient y, can be determined using order sta­
tistics to be 

DFLx(n, (3, y) = Xhj' y = 1 - W. (6) 

The interpretation of distribution-free tolerance 

limits is the same as for normal tolerance limits, 

i.e., Xhj is the value that will exceed at least the 

(3 portion of all possible values of xij with a confi­

dence coefficient of y. For example, the un­

smoothed envelope for the data in Fig. 1 repre­

sents the tolerance limit that will exceed the re­

sponse spectral values for at least 95% of all 

points in the zone with 46% confidence. As for the 

envelope procedure, the computed distribution­

free tolerance limits are sometimes smoothed 

with a series of straight lines. This smoothing 

is illustrated in Fig. 1. Again, this step involves 

subjective judgments that pose the problems dis­

cussed earlier for the envelope procedure. 

The primary advantage of the distribution-free 

tolerance limit is that it provides a statistical 

bound that is not sensitive to the spatial distribu­

tion of the response spectral values within the 

zone. However, it does pose two problems. 

1. The procedure does not permit an indepen­

dent selection of the values for (3 and y. The 

usual approach is to select a desired value 

for the fractional portion (3, and accept 



216 Piersol 

whatever value of the confidence coefficient 

'Y that results from Eq. (6). However, for 

a small number of predicted or measured 

spectral values, say n :::; 13, the confidence 

coefficient will be 'Y < 0.5 for values of 

{3 ~ 0.95. 

2. As for the envelope approach, the proce­

dure can produce somewhat different re­

sults depending on the frequency resolution 

of the predicted or measured spectra. 

EMPIRICAL TOLERANCE LIMITS 

A third method of selecting a conservative limit 

for the structural response spectra within a zone 

is to determine an empirical distribution function 

for the predicted or measured spectral values, 

and then select some large percentile xf3 from the 

distribution (the value of x that exceeds (3 portion 

of the available values) to be a conservative limit, 

referred to as an empirical tolerance limit. Ideally, 

this would be done independently for the spectral 

values in each frequency resolution bandwidth. 

In practice, it is rare to have predictions or mea­

surements at enough locations to allow an inde­

pendent determination of a large percentile for 

the values in each frequency resolution band­

width; i.e., for {3 = 0.95, at least 20 values are 

needed to determine a limit. Hence, it is common 

to normalize the spectral values in each frequency 

resolution bandwidth to a common mean value, 

and then pool all the spectral values to arrive at 

a single distribution function for the determina­

tion of a limit that covers (3 portion of the values. 

Of course, this pooling approach assumes the spa­

tial distribution of the spectral values is the same 

in all the frequency resolution bandwidths. 

Given a total of n predicted or measured spec­

tra within the zone covering m frequency resolu­

tion bandwidths, xijU = 1,2, ... , n andj = 1, 

2, ... , m), the specific procedure is as follows: 

1. Compute the average of the spectral values 

in each frequency resolution bandwidth, 

i.e. , 

(7) 

2. Divide the spectral values in each frequency 

resolution bandwidth by the average in that 

bandwidth to obtain the normalized values 

uij, i.e., 

(8) 

3. Pool the normalized values in all frequency 

resolution bandwidths to obtain a single set 

of values Uk (k = 1, 2, . . . , nm), and rank 

order the pooled normalized values from 

the smallest to the largest to obtain the set 

U(k) , i.e., 

(k) = 1 is the smallest value of Uk , 

(k) = 2 is the next smallest value of Uk' 

(k) = nm is the largest value of Uk. 

4. Select that normalized value uf3 that covers 

(3 portion of all the pooled normalized val­

ues, i.e., 

(k) 
uf3 = U(k) where - = (3. (10) 

nm 

5. Determine the limit value xf3.i in each fre­

quency resolution bandwidth by multiply­

ing the average for each bandwidth by the 

normalized limit uf3 to obtain the empirical 

tolerance limit, denoted by ETL,({3), i.e., 

As an illustration, the empirical distribution 

for the normalized values of the spectral data 

in Fig. 1 is detailed in Fig. 3, and the 95% 

empirical tolerance limit is shown in Fig. 4. 

Note that the distribution in Fig. 3 is close 

Frequency, Hz 

95/SOEmpir. 
Tolerance 
Limit 

FIGURE 4 95/50 empirical tolerance limit for vibra­

tion response spectra in Fig. 1. 
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to lognormal, but the empirical tolerance limit 
approach is applicable to data with any spatial 

distribution. The multiplier determined from 

the rank-ordered, normalized spectral values 

in Fig. 3 to arrive at the 95% limit in Fig. 4 is 

u(3 = 3.37. Of course, this value of u(3 is an 

estimate that is computed from a statistical 

sample of 492 values and, hence, may be larger 

or smaller than the true value, u(3' for all points 

in the zone. The statistical variability of the 

estimate u(3 is governed by the binomial proba­
bility function (see Guttman et al. 1982) and, 

hence, an upper bound, U(3 = CU(3(C > 1), 

could be determined to produce a limit in Eq. 

(11) that exceeds the spectral values at (3 por­

tion of the points in the zone with a high level 

of confidence. In practice, however, it is cus­

tomary to use the value of u(3 computed from 

Eq. (10) without modification, meaning the 

confidence coefficient associated with the limit 

in Eq. (11) is essentially y = 0.50; i.e., the 

empirical tolerance limit derived in Eq. (11) is 

the value of x that will exceed the response 

spectral values at the 95150 limit. As for the 

other procedures, the computed empirical tol­

erance limits are sometimes smoothed by en­

veloping with a series of straight lines. This 

smoothing is illustrated in Fig. 4. Again, this 

step involves subjective judgments that pose 

the problems discussed earlier for the enve­

lope procedure. 

Like the distribution-free tolerance limit, 

the empirical tolerance limit does not require 

a specific probability function to be assumed 

for the spatial distribution of the response spec­

tral values within the zone. Also, like the nor­

mal tolerance limit, it is not as sensitive as the 

envelope to the frequency resolution of the 

predicted or measured spectra. However, the 

procedure does pose some other problems. 

1. If the spectral values in all frequency resolu­

tion bandwidths are pooled to arrive at the 

empirical distribution, it is sensitive to the 

assumption that the spatial distribution is 

the same in all bandwiths. 

2. It is most effective when response predic­

tions or measurements are available at a 

reasonable number of points (generally, 

n > 10), and further requires extensive com­

putations. 

3. It provides a limit with a confidence coeffi­

cient of y = 0.50 only, unless further exten­

sive computations are performed. 

NORMAL PREDICTION LIMITS 

The final way to arrive at a conservative limit for 

the structural response spectra within a zone is 

to compute a normal prediction limit for the pre­

dicted or measured spectra in each frequency res­

olution bandwidth. As for normal tolerance lim­

its, normal prediction limits apply only to 

normally distributed random variables. Hence, 

the logarithmic transformation in Eq. (1) is again 

required to obtain an approximately normal distri­

bution for the transformed spectral values, Yij = 

1,2, ... , n.The normal prediction limit, denoted 

by NPLv(n, y), is defined as the value that will 

exceed the next predicted or measured value ofYj 

with a confidence coefficient of y, and is given by 

a= l-y, j= 1,2, ... ,m, 

where Yj is the sample average and Sv is the sample 

standard deviation of yin thejth frequency resolu­

tion bandwidth, as defined in Eq. (3), and t(n-I);<> 

is the a = 1 - y percentage point of Student's t 

variable with n - 1 degrees of freedom, which is 

tabulated in any statistics textbook. The normal 

prediction limit in the original engineering units 

of x can be retrieved by 

The normal prediction limit should not be con­

fused with the normal tolerance limit given by 

Eq. (4), which defines an upper limit that will 

exceed at least (3 portion of all possible values 

of x with a confidence coefficient of y. 

Very few statistics textbooks cover normal 

prediction limits, so a brief derivation follows. 

Assume Y is a normally distributed random vari­

able that is sampled to obtain n predicted or mea­

sured values, Yi (i = 1,2, ... , n). Now let a new 

random variable U be defined as the difference 

between the next value of Y that will be predicted 

or measured (Yi' i = n + 1) and the average of 

the previous n values ofy (Yi = 1,2, ... , n), i.e., 

1 n _ 

U = Y(n+l) - - L Yi = Y(n+l) - y. (14) 
n i~l 

The mean value of U is zero, i.e., 

fLv = E[u] = E[Y(n+I)] - E[y] = fLy - fLy = 0, (15) 
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where E[ ] denotes the expected value opera­

tion. The standard deviation of v is given by 

(16) 

= (Tv)1 + 1.. 
- n 

Assuming v is normally distributed, as it must be 
ify is normally distributed, the standardized value 

of v in terms of sample values, with /-Lv = 0, is 

.!!.. = tCn-I) = Y(nR+I) - Y , (17) 
Sv 1 

Sv 1 +-
- n 

where ten-I) is Student's t variable with n - 1 
degrees of freedom. Rearranging the terms in Eq. 

(17) yields 

Y(n+l) = Y + W t(n-I)s,., (18) Vl-r~ _ 

which gives the normal prediction limit in Eq. 

(12) for that u percentage point of Student's t 

variable corresponding to the desired confidence 

coefficient 'Y = 1 - u. It should be mentioned 

that 'Y is sometimes referred to as a probability 

in this application, but it is more correctly re­

ferred to as a confidence coefficient because the 

magnitude of the limit is dependent upon the val­

ues of the predicted or measured data. 

As an illustration, the normal prediction limit 
versus frequency for the data in Fig. 1 computed 

with 'Y = 0.95 is shown in Fig. 5. This limit is 

10° 
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FIGURE 5 95% normal prediction limit for vibration 

response spectra in Fig. 1. 

commonly referred to as the 95% prediction limit 

for the spectral values of the next predicted or 

measured response at a randomly selected point 

within the zone. Note that the 95% normal predic­

tion limit in Fig. 5 falls slightly above the 95/50 

normal tolerance limit for the same spectral data 

in Fig. 2 at all frequencies. As for tolerance limits, 

normal prediction limits are often smoothed by 

enveloping with a series of straight lines, as illus­

trated in Fig. 5. Again, this step involves subjec­

tive judgments that pose the problems discussed 

earlier for the envelope procedure. 

Equation (12) defines the prediction limit for 

the next value of Y [i.e., Y(n+I)J based upon the 
sample average and standard deviation for the 

previous n values, Yi (i = 1, 2, ... , n). This 

equation can be used to establish the limit that 

will exceed the next two values of Y [i.e., Y(n+l) 

and YCn+2)] by simply squaring 'Y. For example, if 
the NPLv(n, 'Y) in Eq. (12) is determined for the 
next value of Y with a confidence coefficient of 

'Y = 0.95, that same limit will apply to the next 

two values of Y with a confidence coefficient of 

'Y = 0.952 = 0.90. Conversely, if a limit for the 

next two values of Y with a confidence coefficient 
of'Y = 0.95 is desired, Eq. (12) can be solved for 

NPL,,(n, 'Y) with a confidence coefficient of'Y = 

YO.95 = 0.975. The same procedure can be used 
to determine a normal prediction limit for any 
number of future values of y. It should be noted, 

however, that the normal prediction limit is un­

bounded as the number of values n becomes large. 
The normal prediction limit is somewhat sim­

pler to apply than any of the tolerance limits be­

cause it involves only one probability related pa­

rameter, namely, a confidence coefficient 'Y. Also, 

like the normal tolerance limit, it is not as sensi­

tive as the envelope to the frequency resolution of 

the predicted or measured spectra. On the other 

hand, the normal prediction limit poses two im­
portant problems. 

1. The procedure is sensitive to the assump­

tion that the spatial distribution of the re­
sponse spectral values in each frequency 

resolution bandwidth is lognormal within 

the zone. This assumption might come into 

question for the higher values of 'Y. 

2. The procedure provides a conservative limit 

for only one or some other specific number 

of future response predictions or measure­

ments at randomly selected points within 

the zone, rather than to the responses at all 

locations within the zone. 
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ASSESSMENTS 

Using the n = 12 vibration measurements with the 

power spectra shown in Fig. 1, the five different 

methods for arriving at conservative limits for 

random dynamic load induced structural re­

sponses within a zone are compared in Fig. 6. The 

three tolerance limits in Fig. 6 cover the response 

spectra for at least f3 = 0.95 portion of all points 

within the zone, and are computed with similar 

confidence coefficients, namely, y = 0.46-0.50. 

The normal prediction limit in Fig. 6 covers the 

response spectrum at the next randomly selected 

point within the zone with a confidence coefficient 

(probability) of y = 0.95. The following interest­

ing features in Fig. 6 should be noted. 

1. The distribution-free and empirical toler­

ance limits are similar at most frequencies. 

This is consistent with the fact that these 

two tolerance limits do not involve a lognor­

mal assumption and further have similar 

confidence coefficients, i.e., y = 0.46 and 
0.50, respectively. 

2. The normal tolerance limit is somewhat 

higher at many frequencies than the distri­

bution-free and and empirical tolerance lim­

its, even though it has a similar confidence 

coefficient, i.e., y = 0.50. This discrepancy 

probably reflects a slight inaccuracy in the 

lognormal assumption associated with the 

normal tolerance limit. 

3. The normal prediction limit is higher than 

all three of the tolerance limits at most fre­

quencies. However, if the tolerance limits 

were computed with a higher confidence co­

efficient, they would probably exceed the 

normal prediction limit. 

10° 
95/46 Distribution-free tolerance limit (envelope) 

95/50 Nanna! tolerance limit 

95/50 Empirical tolerance limit 

95% Normal prediction limit 

Frequency, Hz 

FIGURE 6 Comparison of various limits for vibration 
response spectra in Fig. 1. 

It is also interesting to view how the various 

limits vary with an increasing number of predicted 

or measured spectra. Assuming the mean and 

standard deviation for the predicted or measured 

spectra do not vary with n, the following can 
be anticipated. 

1. For the normal tolerance limit defined in 

Eq. (2), if the values of f3 and yare fixed, 

the limit will decrease slightly as n increases 

due to the slightly smaller value of kn .!3.y 

given in Table 1. For example, if f3 = 0.95 

and y = 0.50, kn.!3.y decreases from 1.69 to 

1.65 as n increases from 12 to 50. 

2. For the distribution-free tolerance limit de­

fined in Eq. (6), if the value of f3 is fixed (y 

cannot be fixed independent of n), the limit 

will increase as n increases because the en­

velope of all predicted or measured spectra 

will generally increase with larger numbers 

of spectral values. However, the value of y 

will also increase, meaning the higher limit 

corresponds to a higher confidence of ex­

ceeding the spectral values for at least f3 
portion of all points in the zone. For exam­

ple, if f3 = 0.95, the limit increases as the 

envelope increases, and y increases from 

0.46 to 0.92 as n increases from 12 to 50. 

3. For the empirical tolerance limit defined in 

Eq. (11), if the value of f3 is fixed and y = 
0.50, there will be some statistical varia­

tions, but the expected value of the limit 

will not change as n increases, i.e., for 50% 

confidence with any value of f3, the empiri­

cal tolerance limit is the same for n = 12 

and 50. 

4. For the normal prediction limit defined in 

Eq. (12), if the value of y is fixed, the limit 

will decrease slightly as n increases due to 

small decreases in both the multiplier 

VI + lin and the value of t(n-l);a' For ex­
ample, if y = 0.95, the product VI + lin 

t(n-l);a decreases from 1.87 to 1.69 as n in­

creases from 12 to 50. 

As a final point of discussion, it should be em­

phasized that the various limits detailed here yield 

the maximum expected spectral response with 

any desired degree of conservatism at any point 

within a defined structural zone in terms of a 

motion parameter, commonly acceleration. Such 

limits are applicable to the general description of 

structural responses to dynamic loads, but care 

must be exercised when interpreting the limits as 
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Table 2. Comparative Merits of Procedures to Compute Maximum Structural Responses 

Tolerance Limit Normal 

Prediction 

Feature Envelope Normal Dist.-Free Empirical Limit 

Relatively easy to compute 

Highly sensitive to frequency resolution band 

width of spectral data 

Defines fractional portion f3 of responses 

exceeded with confidence coefficient y 

Fractional portion f3 and confidence coefficient y 

can be independently selected 

Provides statistically reliable results for a small 

sample size 

Applies to spectral data with any spatial distribu-

tion function 

NA, not applicable. 

a spectral input to equipment items that may be 

mounted on the structure. Specifically, when a 

spectral limit for a zone is used to formulate dy­

namic test criteria for equipment that will be 

mounted in that zone, it must be remembered that 

a relatively heavy equipment item will load the 

structure and, hence, see input motions that may 

be subtantially less than those given by the com­

puted limit for the structural responses. This 

problem is particularly severe at the resonance 

frequencies ofthe equipment, where the apparent 

mass of the equipment becomes quite large (see 

Smallwood, 1976) and the equipment essentially 

behaves like a dynamic absorber (see Reed, 

1988). There are several ways to address this 

problem, but the most desirable approach is to 

superimpose an input force limit on the input mo­

tion limit in the test criteria, as discussed by 

Scharton (1995). 

CONCLUSIONS 

The comparative merits of the various procedures 

for computing maximum structural responses 

from predictions or measurements at selected 

points are summarized in Table 2. There may be 

circumstances where anyone of the procedures 

might be preferred over the others. In most cases, 

however, if it is reasonable to assume the struc­

tural responses follow a lognormal distribution, 

the normal tolerance limit is generally preferred 

because it can be easily computed with any de­

sired combination of values for the fractional por­

tion {3 of the structural responses covered by the 

Yes 

Yes 

No 

NA 

NA 

Yes 

Yes Yes No Yes 

No Yes No No 

Yes Yes Yes No 

With 

Yes No difficulty NA 

With data 

Yes No pooling Yes 

No Yes Yes No 

limit and the confidence coefficient 'Y. On the 

other hand, if the number of available predictions 

or measurements is relatively large, say n > 13, 

and there is reason to question the lognormal as­

sumption for the spatial distribution of the struc­

tural responses, either the distribution-free or em­

pirical tolerance limit would be more reliable. 

Finally, if there is an interest only in the structural 

response at one location for one dynamic load 

event, the normal prediction limit is more appro­

priate than any of the tolerance limits. 

The material presented in this article resulted from 

studies funded by the Jet PropUlsion Laboratory (JPL) , 

California Institute of Technology, Pasadena, CA. Mr. 

Harry Himelblau of JPL directed the studies. The au­

thor is grateful to JPL for their support, and to Harry 

Himelblau for his careful review of the material in 

this article. 
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