
TECHNICAL REPORT

Report No. CSAI2006-01
Date: December 2006

Proceedings of CSAW’06

John Abela
Angelo Dalli
Kristian Guillaumier
(editors)

Department of Computer Science & A.I.

University of Malta

Msida MSD 06

MALTA

Tel: +356-2340 2519

Fax: +356-2132 0539

reports@cs.um.edu.mt

http://www.cs.um.edu.mt/~reports





Proceedings of CSAW’06

John Abela

University of Malta

jabel@cs.um.edu.mt

Angelo Dalli

University of Malta

angelo.dalli@um.edu.mt

Kristian Guillaumier

University of Malta

kguil@cs.um.edu.mt

Abstract: This report contains the proceedings of the fourth Com-
puter Science Annual Workshop (CSAW’06) — the research work-
shop held by the Department of Computer Science and AI of the
University of Malta.





���������
�

�

����������	�
������
���
��
	���

���������������
����

��������	
�������

�������
�
�����

�

����
�
���������	��
���

�����	
����

�

����
���
����	�

�
�����	����
��	����
���������

	������

�
���

�������� ����	�

�����	���������

�

����
���������


����
��������	!�
���"
����	������	

���#
�
�
���

��������������

�������
�
�����

�

�
�����$���������

�
��%
������	��&
�������

�������������	�

�����
��������������������

�

�
�#
�
�
���
�����������"�����	��
�'�(����������

	�

�����
�����������������������

�

�
����	��
���
��������
�����
�����������
�	������	���	��	�
����
���������	���	�

"��
���

�����������������

�

#��'�(�"��	���
���
�����	���������	����������
�!��
�%
��
���&
���
������������

�
� ������!�������

�������
�
�����

�

��
���

���)��	����)�	�
������#��������

�������������"������#����

�

��	�����
�������
*"���
�����
���	�	�
��#
��
�����	��
��+�
�	�

	������$�����

�

"������������

�
������
���$���
��,����
���
������������		�������

�

%�� ���"�!����
���&�

�

%�
���
��$��(����������

�
��	�

'���
����"!����!�����

�

"�	��
����� -	��
���	���
��� ��

�����������

�

&���
��
���
���

���)�(������	���	�������(�������
���	�	����
���������	��
������

���	���
�������

"������#�����"�����������������

�



,���.�����	
�������������
������,����	����
������

�����(�������
���&�

�

)
������&���
��"���/����
�����������

	������
��0�����	���
��+

!���!���'�(�

����	��
�������
���	�

�����
�������
����

�

���
���������		�������

�
��'�(�����	��
�
�+

!���!������
���	�

�����
�������
����

�

��+������
�����	

�
������*"�����
���������	��
�,���
�	�

)�������
�����
������

�

���
������&
�������� �
�����

��
��%
����������,
��������!�
��

��������������"������#����

�

%1,%� ����� �����
�����
���
�,������
������,��������
��
�

'� ����������
���&�

�

��
�����$�������

��	�
��&
�������"���
�����
����

'����
���$*����!�����"������#����



Service Discovery and Composition: PreDiCtS Approach 
Charlie Abela 

University of Malta 
Department of Computer Science and AI 

+356 2590 7295 

charlie.abela@um.edu.mt

Matthew Montebello 
University of Malta 

Department of Computer Science and AI 
+356 2340 2132 

matthew.montebello@um.edu.mt 
 

ABSTRACT 
The proliferation of Web Services is fostering the need for 
service-discovery and composition tools to provide more 
personalisation during the service retrieval process. In this paper, 
we describe the motivating details behind PreDiCtS, a framework 
for personalised service-retrieval. In our approach we consider 
that similar service composition problems can be tackled in a 
similar manner by reusing and adapting past composition best 
practices or templates. The proposed retrieval process uses a 
mixed- initiative technique based on Conversational Case-Based 
Reasoning (CCBR), that provides i) for a clearer identification of 
the user’s service requirements and ii) based on these 
requirements, finds suitable service templates that satisfy the 
user’s goal. We discuss how retrieval can vary through the use of 
different CCBR algorithms and how adaptation can be performed 
over the retrieved templates thus providing the personalisation 
feature in PreDiCtS.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence] Learning 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Web Services, Conversational Case-Based Reasoning, Semantic 
Web 

1. INTRODUCTION 
Reusability and interoperability are at the core of the Web 
Services paradigm. This technology promises seamlessly 
interoperable and reusable Web components that facilitate rapid 
application development and integration. When referring to 
composition, this is usually interpreted as the integration of a 
number of services into a new workflow or process. A number of 
compositional techniques have been researched ranging from 
both, manual and semi-automatic solutions through the use of 
graphical authoring tools, discussed in [24], [22], to automated 
solutions based on techniques such as AI planning, used in [20], 
[25] and others.  

The problem with most of the composition techniques mentioned 
above is three fold (i) such approaches attempt to address service 
composition by composing web services from scratch, ignoring 
reuse or adaptation of existing compositions or parts of 
compositions, (ii) it is assumed that the requester knows exactly 
what he wants and how to obtain it and (iii) composing web 
services by means of concrete service interfaces leads to tightly-
coupled compositions in which each service involved in the chain 
is tied to a Web service instance. Using this approach for service 
reuse, may lead to changes in the underlying workflow which 

range from slight modifications of the bindings to whole re-
designing of parts of the workflow description. Therefore in our 
opinion, services should be interpreted at an abstract level to 
facilitate their independent composition. [13] adds, “abstract 
workflows capture a layer of process description that abstracts 
away from the task and behaviour of concrete workflows”, and 
this allows for more generalisation and a higher level of 
reusability. A system can start by considering such abstractly 
defined workflow knowledge and work towards a concrete 
binding with actual services that satisfy the workflow.  

The reuse of abstract workflows brings with it a set of other 
issues, such as the way that these workflows are generated, stored 
and retrieved. Therefore when deciding on which solution to 
adopt we considered the following motivating points: 

 Reusability of compositions has the advantage of not 
starting from scratch whenever a new functionality is 
required. 

 For effective reusability, a higher level of abstraction has 
to be considered, which generalises service concepts and is 
not bound to specific service instances. 

 Personalisation of compositions can be achieved by first 
identifying more clearly the user’s needs and then allowing 
for reuse and adaptation of these past compositions based 
on these needs. 

 Compositions can be bound with actual services thus 
making them concrete. 

In our approach we wanted to put the user (developer or 
otherwise) in a situation whereby he can reuse existing templates. 
Infact this approach is similar to that adopted in [21], [25], [11], 
and [27] which use pre-stored abstract workflow definitions or 
templates in their composition framework.  

This kind of reusability has been widely investigated in work 
related to Case-Based Reasoning (CBR), which is amenable for 
storing, reusing and adapting past experience for current 
problems. Nevertheless CBR restricts the user to define a 
complete problem definition at the start of the case-retrieval 
process. Therefore a mixed-initiative technique such as CCBR [6] 
is more appropriate since it allows for a partial definition of the 
problem by the user, and makes use of a refinement process to 
identify more clearly the user’s problem state.  

In this paper we want to present, the motivation behind, and a 
prototype of the PreDiCtS framework. Through this framework 
we allow for i) the encoding and storing of common practices of 
compositions or templates within cases and ii) for the retrieval, 
reuse and adaptation of these cases through CCBR. 

PreDiCtS’ case definition is based on the CCBROnto ontology. 
This ontology is based on OWL and has been discussed in [3] and 
[4]. Each case definition is composed of three main components 



that capture different knowledge related to a particular service 
template. The case-context defines information related to the case 
creator and provides a means through which a case-utility history 
is maintained. Each case encodes the problem to which it can 
provide a solution in the form of a set of question-answer pairs 
(qapairs). It is through this set of qapairs that the retrieval process 
can present the solution which represents the service workflow 
definition. Each solution is defined through an OWL-S [19] 
service definition. This includes both service profile and process 
descriptions. The latter is important since it defines the actual 
service workflow information.  

Given a new problem or service template request, the PreDiCtS’ 
approach allows first to retrieve a ranked list of past, similar 
templates which are then ranked and suggested to the requester. 
Through a dialogue process the requester can decide when to stop 
this iterative-filtering phase, and whether to reuse or adapt a 
chosen case.  

In a future extension to this work it is envisioned that, given a 
suitable case, a mapping is attempted between the features found 
in the chosen template, to actual services found in a service 
registry. An AI planning component can be used at this stage to 
handle this mapping from an abstract to a concrete, executable 
workflow.  

The rest of this paper is organized as follows. In Section 2 we will 
give some brief background information on CCBR and its 
application in various domains. In Section 3 we will present the 
architecture of PreDiCtS and discuss implementation details 
mainly focusing on the case-creator and case-retriever 
components, making references to a typical travelling scenario. 
We evaluate the prototype in Section 4 and in Section 5 we 
discuss future work and extensions. In the final section we 
provide some concluding results. 

2. CONVERSATIONAL CASE-BASED 

REASONING 
Case-Based Reasoning is an artificial intelligence technique that 
allows for the reuse of past experience to solve new problems. 
The CBR process requires the user to provide a well-defined 
problem description from the onset of the process, but users 
usually cannot define their problem clearly and accurately at this 
stage. On the other hand, CCBR allows for the problem state to be 
only partially defined at the start of the retrieval process. 
Eventually the process allows more detail about the user’s needs 
to be captured by presenting a set of discriminative and ranked 
questions automatically. Depending on the user’s supplied 
answers, cases are filtered out and incrementally the problem state 
is refined. With each stage of this problem refinement process, the 
system presents the most relevant solutions associated to the 
problem. In this way the user is kept in control of the direction 
that this problem analysis process is taking while at the same time 
she is presented with solutions that could solve the initial 
problem. If no exact solution exists, the most suitable one is 
presented and the user is allowed to adapt this to fit her new 
requirements. Nevertheless, this adaptation process necessitates 
considerable domain knowledge as explained in [18], and is best 
left for experts. 

One issue with CCBR is the number of questions that the system 
presents to the user at each stage of the case retrieval process. 
This issue was tackled by [14] which defined qapairs in a 
taxonomy and by [2] through the use of knowledge-intensive 

similarity metrics. In PreDiCtS we took into account the 
possibility that the user opts to use different similarity measuring 
algorithms for different domains. Infact two approaches are 
allowed (with the possibility of adding others). One of these 
approaches is based on the similarity measure defined in [6] and 
used by [26] to handle workflow reuse. Another similarity 
measure is based on the taxonomic theory defined in [14]. 
Through this similarity technique, the abstract relations between 
qapairs and in particular the sub-class relation are considered to 
reduce the number of questions that the user is presented in each 
retrieval cycle.  

2.1 Uses of CCBR 
CCBR is mostly associated with customer-support systems, 
though its benefits have been tested in various other fields such 
as, business process and workflow management, software-
component retrieval and in connection with Recommendation 
systems. In what follows we will consider the above scenarios in 
more detail. 

2.1.1 Business Process and Workflow Management 
Weber in her thesis [26] combines CCBR with rules and presents 
a solution for business process management. The created 
prototype is called CBRFlow and allows for more flexibility and 
adaptability in the management of workflows. The adopted hybrid 
approach takes the best of rule-based and case-based reasoning, 
though the rule-based component is allowed to have some 
precedence over the case-based component. Rules are generated 
from domain knowledge while case-based reasoning is used when 
no rules are available or updates to a rule exist in the form of 
cases.  

The CCBR component uses the same case-similarity metric as 
that described by [6]. This similarity is computed by finding the 
difference between the number of the shared and conflicting 
observations, and then dividing the result by the total number of 
observations in a case. A normalisation function is used to set the 
result within the interval [0, 1].  

2.1.2 Software Component Retrieval 
In [1] the CCBR technology is used to solve the problem of 
software component retrieval, especially when the number of 
components involved is large. The proposed solution is called 
Conversational Component Retrieval Model or CCRM. A case 
represents a component and a knowledge-intensive CBR 
methodology is used to explore the context-based similarities 
between the user’s query and the stored components.  

A frame-based knowledge representation and reasoning 
system called CREEK [10] is used to unify the component-
specific cases and the general domain knowledge. A knowledge-
intensive similarity calculation is used to determine which 
knowledge in the knowledge base is relevant to the retrieval 
process and to calculate the similarity between a new case and the 
stored cases.  

The question-answer interaction during the conversation is 
motivated by the fact that qapairs are easily understood and that 
the most informative and discriminating ones are presented to the 
user during a conversation. For this reason a set of predefined 
questions together with possible answers for each slot (i.e. for 
each relation between two concepts) are specified and an 



information-gain metric algorithm is used to quantitatively 
measure the information that each slot can provide. 

In our work we intend to resort to such frame structures through 
the use of OWL ontologies, in particular CCBROnto. We define 
cases whose solutions are service templates. These templates will 
be defined through a process definition language, such as OWL-S, 
though it is possible to use other languages, such as WS-BPEL. 

2.1.3 CCBR and Recommendation Systems 
[18] presented a web-based CCBR solution which is able to 
recommend solutions to scientist seeking resources (such as codes 
and data) related to an Earthquake Simulation Grid provided by 
the ServoGrid project [23]. 

A number of grid related ontologies were developed in RDF and 
these are used to represent case descriptions. Thus a case is 
considered to be a set of RDF triples. A domain independent CBR 
engine based on the Indiana University Case-Based Reasoning 
Framework (IUCBRF) [16] is used. 

The implemented prototype uses the RDF ontologies to present 
questions about the desired resource characteristics and, typically 
to the CCBR process, which ranks cases based on the chosen 
answers. During each iteration, the system provides 
discriminating questions in a ranked order so that the irrelevant 
cases are incrementally filtered out. 

Each case definition contains the problem and solution 
descriptions together with bookkeeping information such as the 
time of case creation, the contexts in which the case applies and 
also source or provenance information. Both the problem and 
solution are represented by a set of predefined features, where 
each feature is an RDF triple. During case-base initialisation, all 
possible <predicate - predicate value> pairs are extracted from 
the ontology and presented as features. The case retrieval 
mechanism is based on a threshold method which compares the 
set of features present in both user and case-problem definitions. 
Cases are ranked based on the number of common features whose 
values are consistent. Cases with unknown features or having 
inconsistent feature values are eliminated from the process. 

The way in which cases are defined through RDF is consistent 
with how we envision our own solution. Though in this case, all 
generated triples are equally considered as possible qapairs. 
Furthermore, it seems that no reasoning was done on the RDF 
data, thus no advantage was taken from this when qapairs were 
presented to the user. In our solution we want to be able to exploit 
as much as possible the logic behind the concepts and relations 
within a case description by using an OWL reasoner. For example 
given that, a question related to some particular concept has 
already been presented to the user, it is superfluous to present 
another question whose concept is more generic than the one 
associated with the previous question.  

2.2 Taxonomic CCBR 
Taxonomic CCBR (TCCBR) tries to tackle the pervasive issue of 
expressing case contents and features at different levels of 
abstraction. The solution is based on the ability to make use of 
feature taxonomies.  

The motivation behind the use of TCCBR is highlighted by three 
sources of abstraction: 

 the different levels of domain expertise between users and 
developers 

 the variations in information availability and the cost of 
acquiring it 

 the variations in decision-making needs 

If abstraction is ignored then problems such as unwanted 
correlation between features, redundancy in the number of 
questions presented to the user during conversation and 
inconsistencies in the case representations when new features are 
added are most likely to occur. TCCBR is defined to include: 

 A set of questions which are used for indexing the cases. 
Each question can be associated with a set of answers. 

 A set of taxonomies each one representing a set of qapairs 
which are related through either an is-a-type-of or is-a-part-
of relation. 

 A set of cases each having a problem definition in the form 
of a set of qapairs and a solution. 

Furthermore, in TCCBR two important rules have to be applied to 
the set of qapairs in a defined case: 

i. Only one qapair from a particular taxonomy can be 
included in each case 

ii. The most specific available and applicable qapair is used to 
represent the case 

The process of TCCBR as explained by [14] is divided into three 
main tasks (the third is optional though): 

i. Case retrieval 

ii. Conversation 

iii. Case Creation 

Case retrieval is subdivided into three main steps referred to as 
searching, matching, ranking and selecting. During this phase, 
cases are retrieved and ranked based on the questions that the user 
has chosen to answer. On the other hand the conversation process 
involves the identification and ranking of the most appropriate 
questions to present to the user after each iteration. If no suitable 
solution is found then a new case may be defined by specifying a 
new set of questions (or reuse existing questions) and a solution 
for this new problem. 

The approach taken in TCCBR is very relevant to our research 
goal and infact this is one of the retrieval techniques adopted in 
PreDiCtS. The main theory behind TCCBR is discussed in detail 
in [14] and though we will make reference to this work we will 
not explain it here. Nevertheless in what follows we will explain 
in detail any deviations that we have taken from this original 
theory.  

3. PreDiCtS 
The PreDiCtS framework allows for the creation and retrieval of 
cases (the adaptation process is in the pipeline). The respective 
components that perform these two tasks are the CaseCreator and 
the CaseRetrieval (See Figure 1). PreDiCtS is written in Java and 
is developed in Eclipse. It uses a MySQL database to store the 
cases, which are based on CCBROnto, and makes use of both 
Jena and the OWL-S APIs.  



Rank Questions

Problem Description

Create New Case Case Base

Retrieve
Case

User

Knowledge

Engineer

1. Initiate Dialog

2. Ranked Questions

3. Answer selected

Questions

4. Ranked Cases

New Case

QA Pairs
Base

Domain & Service

Ontologies

 

Figure 1: CCBR cycle adopted in PreDiCtS 

To explain how PreDiCtS can be used to create and retrieve 
service templates we will make use of a typical travelling 
scenario, described in the next section. We will then explain how 
cases, which represent different problems related to this domain 
and their respective solutions, are created through the 
CaseCreator. Retrieval is handled by the CaseRetrieval 
component which allows the user to adopt different CCBR 
algorithms to find the cases with the most suitable service 
template. Figure 2 represents the main components in our 
framework. 

3.1 Travelling Scenario 
The travelling situation that we want to model here is related to an 
academic who wants to go abroad to attend a conference. The 
defined cases should represent the problem from an advisor’s 
perspective and present a solution based on this knowledge. An 
advisor in this situation could have the role of a travelling agent, 
who is asking his client questions to identify what the latter 
requires so that he can eventually suggest the best solution.  

Goal: User is to attend an event on some particular date in some 
particular location. A part of a travelling domain ontology is 
shown in Figure 3. 

 Looking at the ontology it is noticed that the concept Person is 
associated with three disjoint branches or taxonomies, Event, 
Accommodation and Transport. Thus the questions should be 
related to any of these taxonomies.  

PreDiCtS

<<subsystem>>

Creator

<<subsystem>>

Retriever

<<subsystem>>

Maintenance
<<subsystem>>

Adaptation

Case

Creator

Case

Retriever

Case

Adaptor

predicts:ccbr

Configurator

Case Base

Maintenance

OWL-S MySQL-Connector

 

Figure 2: System Component Summary 

After having identified the important aspects of the domain, we 
start by looking at the ontology to identify which typical 
questions might be asked in this situation. Questions should 
ideally capture a single aspect of the domain. For example, the 
most generic questions that are immediately identified are: Do 
you want to attend for an Event?, Do you want to use Transport? 
and Do you want to reserve an Accommodation?. Other questions, 
such as Do you want to use a Plane? And Do you want to stay in 
a Hotel? can be considered as being subsumed by the former set. 
The associated answer types for such questions are typically 
either a Yes or a No.   

StartDate

Accomodation

HostelHotel

City

EndDate Train

Airplane

Transport

Person

Conference

attendsFor

hasEndDate

hasLocation

hasStartDate
reserves

is-a-type-of is-a-type-of

uses

is-a-type-of
is-a-type-ofEvent

is-a-type-of

Coloured nodes represent disjoint sub-roots
has* relations are considered as part-of relations
is-a-type-of are subsumption relations
other relations, link disjoint nodes together  

Figure 3: Travelling Domain Ontology 

In Table 1 below we have listed some of these questions and have 
also associated them with a triple from the ontology. Each qapair 
is assigned a unique QID reference for that particular set. The 
appropriate link between the set of qapairs and the solution has to 
be defined by the creator. We adopt the methodology presented 
by [17] in which domain and task-knowledge are linked together. 



Table 1: qapairs set for the Travelling Domain 

QID Description
Triples Set

<Subject, Predicate, Object>

1 Problem is a Travelling Problem? <TravellingProblem, subClassOf, Problem>

2 Do you want to attend a Conference? <AttendConference, subClassOf, TravellingProblem>

3 Do you need transportation? <Transportation, subClassOf, AttendConference>

4 Do you want to use a plane? <Airplane, subClassOf, Transportation>

5 Do you want to use a train? <Train, subClassOf, Transportation>

6 Do you want accommodation? < Accommodation , subClassOf, AttendConference >

7 Do you want to stay in a hotel? <Hotel, subClassOf, Accommodation>

8 Do you want to stay in a hostel? <Hostel, subClassOf, Accommodation>

9 Is Conference registration required? <Conference, subClassOf, AttendConference>
 

The domain is used to provide datatype information relevant to 
the service inputs and outputs. In our case the task knowledge is 
defined through an OWL-S definition. Thus for example the triple 
<Hotel, subClassOf, Accommodation> will provide, in the 
solution, a generic place holder for a Hotel Reservation service. 
Other services that might be useful to include in the solution are 
Flight Booking, Train Reservation, Hostel Reservation and 
Conference Registration services. Figure 4 represents a UML 
Activity Diagram of a particular solution for this domain. The use 
of this graphical representation to define a service workflow has 
also been adopted by [22] and [8]. 

Flight

Reservation

Service

Conference

Registration

Service

Train

Ticket-Booking

Service

Hotel

Reservation

Service

 

Figure 4: UML Activity Diagram for the Service Workflow 

3.2 Case Creation 
During case creation the expert user can define and add a new 
case to the case base. As already explained earlier, in CCBR a 
case consists of a case description and a problem and solution 
state. In PreDiCtS though, a case ci is defined as a tuple: 

c i = (dsc i, cxt i, {q1a3….qiaj}, acti, hsti) where; 

dsc i is a textual description for the particular case. 

cxti represents a set of context related features, such as Role and 
CaseCreator information based on the foaf:RDF ontology 
definition. 

{q1a3….qiaj} is a representation of the problem state by a set of 
qapairs 

act i denotes the solution which is represented by service 
composition knowledge stored in an abstract template. 

hst i, is the usage history associated with each case. 

Each case is based on the CCBROnto ontology which is described 
in more detail in [4] and can be found at [9]. The CaseCreator UI 
(see Figure 5) allows the user to add all the necessary information 
which is then translated into a CCBROnto case-representation in a 
manner transparent to the user.  

 

Figure 5: CaseCreator UI in PreDiCtS 

The context description cxt, is important in an open-world such as 
the Web since this will be used as a discriminating feature during 
case retrieval. The action or solution definition act, represent the 
service compositional knowledge and can be defined through any 
composition language. In PreDiCtS we are using parts of an 
OWL-S service description, but the framework can be easily 
extended to work with other service languages such WS-BPEL. 
hsti is an other feature which represents the usage-history of each 
case. This history could provide either positive (i.e. case was 
found useful) or negative feedback (i.e. implying that aspects of 
the case were not found ideal by past users) to the case user. This 
history information is used to generate a reputation value during 
case retrieval.  

 

Figure 6: Question-Answer Pair Design Tool 

An important aspect to consider when creating a new case is the 
definition of the problem through a set of qapairs. PreDiCtS’ 
retrieval component uses two approaches to find suitable cases, 
one of which is based on an adapted version of TCCBR. For this 
reason a special qapairs-creation tool, shown in Figure 6, is 
provided that allows the user to easily associate a new qapair 
definition with domain ontology concepts.  

Some adaptations have been made to the TCCBR theory to allow 
the system to work with ontologies and to be able to handle the 
open-world aspects required when defining the service template.  

3.2.1 Rule 1 
Only one qapair from a taxonomy can be included in a case (i.e. 
there is no abstract relation between concepts relating each qapair 



in case). This is similar to TCCBR, unless these concepts 
associated to these qapairs are specifically defined as disjoint 
within the taxonomy.  

Example: 

<owl:Class rdf:ID="Hotel">

   <rdfs:subClassOf rdf:resource="#Accommodation"/>

   <owl:disjointWith rdf:resource="#Hostel"/>

</owl:Class>

<owl:Class rdf:ID="Hostel">

   <rdfs:subClassOf rdf:resource="#Accommodation"/>

   <owl:disjointWith rdf:resource="#Hotel"/>

</owl:Class>

 

Given the above situation a case can contain both questions: 

Accommodation required is Hostel? 

Accommodation required is Hotel ? 

In this way the case covers the situation whereby a user might 
require staying at both a Hotel and a Hostel which are both 
subclasses of Accommodation. 

3.2.2 Rule 2 
The most specific available and applicable qapair is used to 
represent the case. We adapt this rule as is defined in the TCCBR 
theory. We look at a taxonomy as a dialogue composed of an 
ordered set of nodes (qapairs). We start by looking at both the 
domain of discourse and the different services that might be 
required (in the solution) to solve a particular issue. We extract 
those classes that are relevant to the problem that we want to 
model and give them an ordering. This ordering, though abstractly 
defined through the subClassOf relation, does not always imply 
that one class is in effect a subClassOf another, but rather that the 
question associated with that concept will be asked before or after 
another one associated with another concept. Therefore given the 
questions: 

Accommodation required is Hotel? and Do you need 
Accommodation?, the former will be preferred over the latter 
because it is more specific and thus is considered to be closer to 
the solution. 

3.2.3 Rule 3 
We consider a qapair to be associated with a unique concept in 
the taxonomy. Thus for example, the question: 

Accommodation required is Hostel? will be associated to the 
Hostel concept while Do you need accommodation? is associated 
to the Accommodation concept 

We make use of reification to generate more knowledge about 
each statement. Infact a question will be associated with a reified 
statement that threats each component of a triple <subject, 
predicate, object>, as a Resource. 

Example: For the question Do you need accommodation?  

a reified statement with the following subject, predicate and 
object resources will be defined: 

Subject: Accommodation 

Predicate: subClassOf  

Object: AttendConference 

In this example, Accomodation is defined to be a subClassOf 
AttendConference. We envision that this technique will allow us, 
in the future, to work with other types of abstract relations such as 
those similar to is-a-part-of by considering other properties that 
associate classes together. 

3.2.4 Service Template Creation 
The case creator is provided with a visual-composer tool that 
allows him to easily create a workflow with the generic services 
that can solve a specific problem. The UML Activity Diagram 
representation is used to eventually generate an OWL-S Process 
definition. The Process ontology in OWL-S provides for the 
definition of a workflow of services and related properties. Since 
we wanted this description to be as generic as possible, each 
service definition is conceptually linked to an ontology of service-
related concepts. Thus if the user adds a node that represents a 
Flight Reservation service, a generic atomic service definition 
will be generated whose input and output resources are defined by 
some external service-related ontology. 

<process:AtomicProcess rdf:ID="FlightReservationService">

  <process:hasInput>

    <process:Input rdf:about="#FlightReservationInput">

      <process:parameterType

            rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"/>

    </process:Input>

  </process:hasInput>

  <process:hasOutput>

    <process:Output rdf:about="#FlightReservationOutput">

      <process:parameterType

            rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"/>

    </process:Output>

  </process:hasOutput>

</process:AtomicProcess>

In this manner when searching for actual services, these generic 
placeholders will be bound to actual service inputs and outputs. 
The workflow also defines information related to the order of 
execution of the services.  

3.3 Case Retrieval 
The CaseRetriever is responsible for the CCBR retrieval process. 
It takes as input the choice of similarity measure and problem 
domain and presents questions for the user to answer. The 
answered questions will then be used to generate a list of cases 
based on the similarity measure component.  

It is up to the user to decide whether a case from the retrieved set 
of cases is suitable enough to solve his problem. In the situation 
where further problem-filtering is required, the user can decide to 
answer more questions, with the consequence that the list of 
retrieved cases is also filtered down.  

The set of questions presented with every step in this filtering 
process are generated through a conversation-generation 
component which takes care of identifying which questions are 
best suited to be presented to the user in the next step. Different 
conversation-generation algorithms are available in PreDiCtS, 
depending on the type of similarity measure chosen initially by 
the user. 

3.3.1 CaseRetriever UI 
This is divided into three main components (see Figure 7). The 
top-most pane consists of two combo boxes; one displays a list of 
problem-domain ontologies while the other displays the different 
types of similarity methodologies that the retriever is capable of 



using. At present this is limited to two, the Default CCBR and the 
TCCBR (Taxonomic CCBR) methodologies. We envision the use 
of a graph-based retrieval method, GCCBR, based on [7], in the 
near future. 

 

Figure 7: CaseRetriever UI 

The middle left and right panes show two tables. The table on the 
left presents those questions that still require an answer from the 
requester. These are generated by the conversation-generation 
algorithm. They act as a filtering and refinement mechanism for 
the list of retrieved cases. The middle right-hand pane presents a 
table of already answered questions. The bottom pane also 
contains a table component, but this one shows the cases that have 
been retrieved during a CCBR retrieval cycle. 

3.3.2 Default CCBR 
This similarity measure is based on that presented by [6] and 
discussed in Section 2. The following similarity function is used: 

sim1(Q,C ) =
same(Qqa,Cqa) - diff(Qqa,Cqa)

|Cqa |
 

where |Cqa| represents the number of qapairs in the case problem 

definition. This function is also adapted by [26] but a 
normalisation function is also included to keep the similarity 
value between [0, 1]. The normalisation function is as follows: 

sim2(Q,C) = * (sim1(Q,C) + 1)
1

2  

The technique used to present and rank new questions during a 
conversation is based on their frequency in the considered cases, 
though other different techniques could be utilised as defined by 
[2], [15] and others.  

3.3.3 TCCBR  
As discussed earlier in Section 2, retrieval in TCCBR is based on 
two processes, the case-retrieval process and the conversation 
generation process. We will discuss the steps associated to each 
one and any adaptations made in PreDiCtS. 

The searching step, of the case-retrieval process in the original 
TCCBR starts by getting the user’s textually-defined query and 
mapping this with the most similar qapair in the specific domain. 
In PreDiCtS though, the system presents the list of the most 
generic qapairs for a chosen domain, that is, those that are at the 
roots of the specific taxonomies.  

The qapairs are not directly taxonomised, as explained earlier, but 
each question is associated with a triple <subject, predicate, 
object> which is defined in a problem related-ontology. This 
implicitly makes a qapair part of a taxonomy.  

c1

c2

c3

c4

c5

qp1

qp2

qp3

qp4

oc1

oc3

oc5

oc7

 

Figure 8: PreDiCtS qapair Taxonomy 

Considering the situation in Figure 8 above, we assume that the 
set of cases, CQ, and the set of qapairs, QP, are linked to an 
Ontology O as follows: 

case set CQ = {c1,c2, c3, c4,c5,….,ci} 

qapairs in QP = {qp1, qp2, qp3,…., qpj} 

ontology O = {oc1,oc3, oc5,oc7,….., ock} 

where, qp1 can be seen to be present in two cases, c1 and c3, and is 
associated with ontology concept oc1 (this is assumed to be the 
subject from the associated triple). Similarly qp3 is associated 
with ontology concept oc3 (which is the subject in yet another 
triple) and is present in two cases, c2 and c4. In this way qp1 

subsumes qp3 based on the relation between the ontology concepts 
oc1 and oc3. Therefore during a case retrieval cycle, qp1 will be 
asked before qp3 since it is more generic. In a case ci there will 
either be qp1 or else qp3, as per Rule 2 above, this provides for a 
reduction in the redundant questions being presented to the user 
during case retrieval. 

The second step in the case-retrieval process is the matching step 
and in the original TCCBR this involves matching each qapair 
element in QP with the qapairs in each of the candidate cases. A 
ranked list of cases is established based on the following 

similarity measure sim(qpi,pj): 

sim (qpi ,pj) =

1                                if pj ⊆ qpi

(n+1-m)/(n+1+m)  if qpi ⊆ pj

0                               otherwise
 

where,   

qpi is the question-answer pair in the user’s query and  

pj  is the question-answer pair in a candidate case 

n = number of edges between qpi and the root of the taxonomy 

m = number of edges between qpi and pj

Having calculated such similarity between qapairs then an 
aggregate similarity metric is used to calculate the overall 
similarity between the user query QP and a case problem 
description, Pk. This aggregate similarity is calculated as follows: 



Σ sim( qpi , pj )
i∈ QP , j∈ PkSim (QP, Pk) =

T
 

where, T in the original taxonomic theory represents the number 
of taxonomies, here it represents the number of disjoint branches 
in the domain ontology, that are associated with the qapairs. 
Cases are then ranked in a descending order based on this 
aggregate value. 

In PreDiCtS we adopt the same similarity metric except that this 
similarity is computed on the qapairs’ associated concepts rather 
then on the qapairs themselves. With reference to Figure 8 above, 
suppose that in the user’s problem definition there are two 
qapairs, qp1 and qp4, while in the problem definition of the 
candidate case there are three, qp3, qp2 and qp5. 

Based on the associated concepts oc1 and oc3, the qapairs qp1 and 
qp3 are related by a parent-child relation, while the qapairs qp4 
and qp2, which are associated with the concepts oc7 and oc5, are 
bound by a child-parent relation (see Table 2). 

Table 2: qapair/Concept relations 

User's Query Case

q-a pair concept q-a pair concept

qp1 oc1 qp3 oc3

qp4 oc7 qp2 oc5

qp5 oc2

 

The user’s query though, does not contain a qapair in the 
candidate case that is related with qp5. Using the adapted 
similarity metrics defined by TCCBR, we assume the following 
values: 

sim (qp1,qp3) =  sim (oc1,oc3) = 1

sim (qp4,qp2) = sim (oc7,oc5)  = 0.5
 

for which the aggregate similarity will be  

Σ sim (oci , ocj ) = 3
= 0.5

1 +  0.5

 

where the number of taxonomies here is 3 since: 

a. the concepts oc1 and oc5 represent 2 disjoint branches 
in the ontology and  

b. the concept oc2 has to be considered as a separate 
disjoint branch. 

The last phase of the case-retrieval takes the set of cases that are 
retrieved and rank-orders them in descending order based on the 
similarity score obtained from the previous step. Both the TCCBR 
and the PreDiCtS theories handle this step in a similar manner. 

The conversation algorithm in PreDiCtS is the same as that 
defined by the TCCBR theory. The goal is to present the user 
with a ranked list of questions derived from the retrieved cases 
CR. The process starts by considering all qapair taxonomies 
applicable to the cases in CR. The score of each qapair in a 
taxonomy is based on the similarity scores obtained for the node-
related cases. Each node takes the score of all related cases and 
the similarity of each parent node is the accumulation of the 
scores of its child nodes. A backward pass algorithm is used to 
calculate the score of each node. If the user problem definition 

contains a qapair from the taxonomy then the system selects its 
child nodes, else the most specific node that subsumes the set of 
retrieved cases is selected. 

The question score is a tuple that includes <taxonomy score, q-a 
pairs score> as in Figure 9. 

qp1

qp2

qp3

qp4

qp5

qp6

qp7

qp8

c2

c3

c4

c5

c6

c1

Sim= 0.5

Sim= 0.4

Sim= 0.5

Sim= 0.4

Sim= 0.2

Sim= 0.2

0.4

0.7

1.3

0.5

0.5

0.4

0.9

2.7

c2

Sim= 0.5  

Figure 9:Question-Answer pair scoring 

Example: s(qp4) = 1.3 = ((Simc6 = 0.2) + (s(qp7) = 0.4) + s(qp8) 
= 0.7)) 

4. EVALUATION 
In this section we will present the main results of the tests that 
were carried out to evaluate the case retrieval performance in 
PreDiCtS (for a more detailed description see [5]). We considered 
a number of different requests to find suitable cases relevant to 
the travelling domain.  

Table 3: Cases for the Travelling Domain 

Case_ID Solution Problem

CID1 Conference + Hotel + Train QID 5, QID6, QID9

CID2 Conference + Hotel + Airplane + Train QID3, QID5, QID6, QID9

CID3 Conference + Hotel + Airplane QID3, QID6, QID9

CID4 Conference + Hostel + Train QID5, QID8, QID9

CID5 Conference + Hostel + Airplane + Train QID3, QID5, QID8, QID9

CID6 Conference + Hostel  + Airplane QID3, QID8, QID9

CID7
Conference + Hostel + Airplane + Hotel +

Train
QID3, QID5, QID6, QID8, QID9

CID8 Conference + Hotel QID6, QID9

CID9 Conference + Hostel QID8, QID9

 

A list of relevant cases (see Table 3) was developed, where each 
case had a unique CID (case ID). The problem definition 
consisted of sets of qapairs’ ID references where each QID was 
also unique for the particular domain. The solution represented a 
set of services that were stored in a service template. 

Four problems were identified and the performance of both the 
Default CCBR and the TCCBR approaches was considered. The 
identified problems were: 

i. The person (requester) wants to register for a 
conference, travel by train and stay in a hotel. 

ii. The person (requester) wants to attend for a conference, 
requires accommodation and transportation. 

iii. The person (requester) wants to travel by airplane for a 
conference and requires accommodation. 

iv. The person (requester) wants to attend for a conference, 
has to travel by airplane and train and stay at a hotel. 



The main differences between the two approaches were in: 

1. the number of questions that were presented to the 
requester by the conversation-generation algorithm, at 
the end of each retrieval cycle. 

2. the accuracy of the similarity values. 

3. the effect of leading the requester towards the Most 
Suitable Case (MSC). 

The reason behind the first result is attributed to the fact that 
TCCBR considers the abstract relations between qapairs and thus 
limits the number of redundant questions to present to the user at 
each stage. This though, does not come without an initial effort on 
behalf of the case base designer. Infact time has to be dedicated to 
create suitable qapairs taxonomies that reflect a particular 
problem domain and then to associate these to the appropriate 
cases.  

The second and third results both depend on the first one. The 
former is due to the fact that redundant qapairs are not considered 
in the case-similarity computation and this gives a more accurate 
figure at the end. The latter is the end result of the taxonomic 
aspect when designing the qapairs set. Infact this leading effect to 
solution-finding in more pronounced in the TCCBR then in the 
Default CCBR. Though again this is highly dependent on the 
design aspect of the case base. 

5. FUTURE WORK 
In this section we will consider how this work can be extended 
and improved by the inclusion of an adaptation component and 
feedback mechanism.  

5.1 Adaptation 
The addition of this component to PreDiCtS completes the CCBR 
cycle. Adaptation is closely related to the retrieval process, since 
it can be considered as the personalisation of a retrieved case to 
suit more effectively the requester’s needs.  

The main issue that has to be considered is the decomposition of a 
case into its basic components and then the ability to adapt each 
component separately. An adapted case will then be added to the 
case base and tested to ascertain its effect on the case base, after 
which it might be re-adapted or retained in the case base.  

The adaptation of cases can be considered as a personalisation 
process through which the requester or designer can change 
aspects of a case to provide a more suitable problem-solution 
relation. 

The possible changes can include: 

 the addition and removal of services from the template 
definition (or solution) 

 editing of input/output for particular services, including 
changes to associated ontological concepts 

 changes in the order of execution of services or changes to 
the control constructs used 

 adding or removing qapairs that make up the problem 
definition. Editing qapairs is a more complex process and 
will surely have a negative effect on the case base. So great 
care has to be taken in this case. 

The most important aspect of this adaptation component will be 
the UI that provides the visualisation of all subcomponents of the 
case requiring adaptation. A mapping from the template definition 
back to UML activity diagrams is required. This will provide an 
easy way to adapt the solution. This component will be accessed 
also from within the retrieval component, where it would be 
possible to adapt the MSC to obtain a higher similarity to the 
problem at hand. 

5.2 Feedback Mechanism 
In Section 3 we have mentioned the importance of having a 
feedback mechanism included in PreDiCtS. It is a process that 
strives to maximise the usefulness of the case base.  

We have identified that such a mechanism can help: 

 the requesters to identify how a case has been used, by 
whom (here we refer to a process which clusters users not 
the actual person) and whether it has been reputed useful. 

 the designer when importing cases from third-parties, 
since, based on the reputation of cases, then he can decide 
whether to import or not further cases from this source.  

 the designer when performing maintenance on the case 
base; those cases that have a negative reputation may be 
removed from the case base. 

Such reputation mechanism may be based on user feedback such 
as that discussed in [27] and in [15]. It is similar to the feedback 
mechanism of recommendation systems and considers the overall 
feedback given by case users to generate a reputation score. This 
score represents the usefulness of a particular case to solve a 
specific problem. For this reason we have included in CCBROnto 
a way to structure this information as part of the case history. We 
have also identified the need to compute a trust value, for the case 
creator. This trust value will be based on the global reputations of 
the cases provided by that particular case supplier. If the overall 
case-reputation is less then a certain threshold then this implies a 
lower trust level and that source will not be used any more. In a 
way this is similar to how eBay [12] reputes its sellers and buyers, 
though PreDiCtS will take action and remove this source from the 
list of possible case-suppliers. 

6. CONCLUSION  
In this paper we presented the motivation behind PreDiCtS. The 
use of the underlying CCBR technique as a pre-process to the 
service discovery and composition is promising since it provides 
for inherent personalisation of the service request and thus as a 
consequence also more personalised compositions. The tests that 
were performed showed that the design of both the case base and 
qapairs affects the retrieval process and to some extend, this also 
depended on the similarity measure. The most important 
difference between these two similarity measures was infact the 
number of relevant questions that the taxonomic similarity 
measure presented vis-à-vis the frequency based similarity 
measure during the conversation.  

It will be interesting to see how PreDiCtS will continue to 
develop. Meanwhile we hope that the work presented in this paper 
provides an initial step towards the adoption of such mixed-
initiative processes in the personalisation of the discovery and 
composition of Web services. 



7. REFERENCES 
[1] Aamodt, A., Gu, M., Tong, X., Component retrieval using 

conversational case-based reasoning. Proceedings of the 
ICIIP 2004, International Conference on Intelligent 
Information Systems. Beijing, China, October 21 - 23, 2004 

[2] Aamodt, A., Gu, M., A Knowledge-Intensive Method for 
Conversational CBR, Proc. ICCBR'05, Chicago, August 
2005 

[3] Abela, C., Montebello, M., PreDiCtS: A Personalised 
Service Discovery and Composition Framework, in 
proceedings of the Semantic Web Personalisation Workshop, 
SWP 06, Budva Montenegro, 11th-14th June 2006 

[4] Abela, C., Montebello, M., CCBR Ontology for Reusable 
Service Templates, in proceedings of the Demos and Posters 
session of the 3rd European Semantic Web Conference 
(ESWC 2006), Budva, Montenegro, 11th - 14th June, 2006 

[5] Abela, C., Personalised Service Discovery and Composition 
Based on Conversational Case-Based Reasoning, MSc thesis, 
Department of Computer Science and AI, University of 
Malta, September 2006. 

[6] Aha, D.W., Breslow, L.A., Muñoz-Avila, H., Conversational 
case-based reasoning, Applied Intelligence, 14, 9-32. (2001). 

[7] Bernstein, A., Kaufmann, E., Kiefer, C., Bürki, C., SimPack: 
A Generic Java Library for Similarity Measures in 
Ontologies, University of Zurich, Department of Informatics, 
August 2005 

[8] Buckle, M., Abela, C., Montebello, M., A BPEL Engine and 
Editor for the .NET framework, , accepted at the ECOWS 
2005 conference, Växjö Sweden, November 2005 

[9] CCBROnto, http://www.semantech.org/ontologies/CCBR-
Onto.owl 

[10] Creek, http://creek.idi.ntnu.no/ 

[11] Deelman, E., Gil, Y., et al, Mapping Abstract Complex 
Workflows onto Grid Environments, Journal of Grid 
Computing, Vol. 1, No. 1, pp 9--23, 2003 

[12] eBay, http://www.ebay.com 

[13] Goderis, A., et al, Seven bottlenecks to workflow reuse and 
repurposing, 4th Int. Semantic Web Conf., Galway, Ireland, 
6-10 Nov. 2005 

[14] Gupta, K., Taxonomic Conversational Case-Based 
Reasoning, Proceedings of the 4th International Conference 
on Case-Based Reasoning, 2001 

[15] Hefke, M., A Framework for the successful Introduction of 
KM using CBR and the Semantic Web Technologies, I-
Know 2004 

[16] IUCBRF, Indiana University Case-Based Reasoning 
Framework http://www.cs.indiana.edu/~sbog-aert/CBR/ 

[17] Kim, J., Gil, Y., Towards Interactive Composition of 
Semantic Web Services, In AAAI Spring Symposium on 
Semantic Web Services, Palo Alto, California, USA, 2004 

[18] Leake, D., Aktas M.S., Pierce M., Fox, G.C., A Web based 
Conversational Case-Based Recommender System for 
Ontology aided Metadata Discovery. Proceedings of the 
Fifth IEEE/ACM International Workshop on Grid 
Computing (GRID'04),Pages: 69 - 75  

[19] OWL-S, http://www.daml.org/services/owl-s/1.1/ 

[20] Peer, J., A POP-based Replanning Agent for Automatic Web 
Service Composition, Second European Semantic Web 
Conference (ESWC'05), 2005 

[21] Rajasekaran, P., et al, Enhancing Web services description 
and discovery to facilitate composition, First International 
Workshop, SWSWPC, July 2004 

[22] Scicluna, J., Abela, C., Montebello, M., Visual Modelling of 
OWL-S Services, IADIS International Conference 
WWW/Internet, Madrid Spain, October 2004 

[23] ServoGrid project, http://www.servogrid.org/ 

[24] Sirin, E., Parsia, B., et al, Filtering and selecting semantic 
web services with interactive composition techniques, IEEE 
Intelligent Systems, 19(4): 42-49,2004  

[25] Sirin, E., et al, Planning for web service composition using 
SHOP2, Journal of Web Semantics, 1(4):377-396, 2004 

[26] Weber, B., Integration of Workflow Management and Case-
Based Reasoning, Supporting Business Processes through an 
Adaptive Workflow Management System, PhD thesis, 
University of Innsbruck, 2003 

[27] Weber, B., et al, CCBR-Driven Business Process Evolution, 
Proc. 6th Int. Conf. on Case-Based Reasoning (ICCBR'05), 
Chicago, August 2005  

 

 



Learning with Distance

John Abela
Department of Computer Science

Faculty of Science
University of Malta

jabel@cs.um.edu.mt

ABSTRACT
The two main, competing, paradigms in Artificial Intelli-
gence are the numeric (vector-space) and the symbolic ap-
proaches. The debate on which approach is the best for
modelling intelligence has been called the ’central debate in
AI’. ETS is an inductive learning model that unifies these
two, competing, approaches to learning. ETS uses a dis-
tance function to define a class and also uses distance to
direct the learning process. An ETS algorithm is applied to
the Monk’s Problems, a set of problems designed to evaluate
the performance of modern learning algorithms - whether
numeric and symbolic.

Keywords
Machine Learning, ETS, Monk’s Problems

1. INTRODUCTION
Evolving Transformation System (ETS) is a new inductive
learning model proposed by Goldfarb [3]. The main ob-
jective behind this learning model was the unification of
the two major directions being pursued in Artificial Intel-
ligence (AI), i.e. the numeric (or vector-space) and sym-
bolic approaches. In Pattern Recognition (PR), analogously,
the two main areas are the decision-theoretic and syntac-
tic/structural approaches [2]. The debate on which of the
two is the best approach to model intelligence has been go-
ing on for decades - in fact, it has been called the ‘Central
Debate’ in AI [7]. It was McCulloch and Pitts who pro-
posed simple neural models that manifested adaptive be-
haviour. Not much later, Newell and Simon proposed the
physical symbol systems paradigm as a framework for devel-
oping intelligent agents. These two approaches more-or-less
competed until Minsky and Papert published their now fa-
mous critique of the perceptron, exposing its limitations.
This shifted attention, and perhaps more importantly fund-
ing, towards the symbolic approach until the 1980s when
the discovery and the development of the Error Back Prop-
agation algorithm together with the work of Rumelhart et

CSAW 2006 Dec 5­6, Kalkara, Malta

al reignited interest in the connectionist approach.

One of the main ideas in the ETS model is that the con-
cept of distance plays an important, even critical, role in
the definition, specification, and learning of the class. This
paper presents the results of applying an ETS learning al-
gorithm to the task of using distance to learn the classes
in the Monk’s Problems [8], a set of problems designed for
testing modern learning algorithms. The experiments on
the Monk’s Problems were carried out as part of the au-
thor’s Ph.D. programme. A full exposition can be found in
the author’s Ph.D. thesis [1]. Unless otherwise stated, the
definitions, tables and diagrams of this paper are reproduced
from this work.

2. THE ETS MODEL
The main idea that characterizes the ETS model is that
of using distance, i.e. metric or pre-metric function, for
defining a class. Given a domain of discourse O, a class
C in this domain can be specified by a non-empty finite
subset of C which is called the set of attractors, and which
we denote by A, and also by a distance function dC . The
set of all objects in O that belong to C is then defined to
be:

{o ∈ O | dC(a, o) < δ, a ∈ A}.

In other words, the class consists precisely of those objects
that are a distance of δ or less from some attractor. We
illustrate with a simple example. Suppose we want to de-
scribe (i.e. specify) the class (or concept) Cat. Let O be
the set of all animals, C a finite set of (prototypical) cats,
δ as non-negative real number, and dCat a distance func-
tion defined on the set of all animals. Provided that C, δ,
and dCat are chosen appropriately, the set of all cats is then
taken to be the set of all animals that are a distance of δ or
less from any of the attractors, i.e. the set of prototypical
cats. This is depicted below in Figure 1. Here the set C

contains just one prototypical cat. All animals that are in
the δ-neighbourhood of this cat are classified at cats.

This idea borrows somewhat from the theory of concepts
and categories in psychology. The reader is also referred
to [6] for a discussion of Eleanor Rosch’s theory of concept
learning known as Exemplar Theory. Objects are classified
together if they are, in some way, similar. In our example,
all the animals that are cats are grouped together since the
distance between any cat and the prototype is less than the
threshold δ. In other words, an animal is a cat if it is similar



-

Domain of Discourse - Set of All AnimalsO

d

Figure 1: Class Description in the ETS Model.

to the cat prototype. The less distance there is between two
animals, the more similar they are - i.e. distance is a measure
of dissimilarity.

The ETS model is not just about class description, but also
about learning class descriptions of classes from finite sam-
ples to obtain an inductive class description. Let O be a
domain of discourse and let C be a, possibly infinite, set of
related classes in O. Let C be a class in C and let C+ be a
finite subset of C and C− be a finite subset of O whose mem-
bers do not belong to C. We call C+ the positive training
set and C− the negative training set. The learning problem
is then to find, using C+ and C−, a class description for
C. Of course, in practice, this might be, for all intents and
purposes, impossible since if the number of classes in C is
infinite, then C+ may be a subset of infinitely many classes
in C. In other words, no finite subset, on its own, can char-
acterize an infinite set. We therefore insist only on finding a
class description for some class C′ ∈ C such that C′ approx-
imates C. This depends, of course, on having a satisfactory
definition of what it means for a class to approximate an-
other.

In essence, learning in the ETS model involves finding a dis-
tance function that achieves class separation, i.e. a distance
function such that the distance between objects in C+ is
zero or close to zero while the distance between an object in
C+ and an object in C− is appropriately greater than zero.

An ETS algorithm achieves this by iteratively modifying a
(parametrized) distance function such that the objects in C+

start moving towards each other while, at the same time,
ensuring that the distance from any object in C+ to any
object in C− is always greater than some given threshold.

3. KERNEL LANGUAGES
Kernel Languages is an interesting subclass of regular lan-
guages. A kernel language over a finite alphabet Σ is speci-
fied by the pair 〈K, F 〉 where K ⊂ Σ∗ is a finite, non-empty,
set of strings called the set of kernels and F ⊂ Σ+ is a finite,
non-empty, and factor-free set of strings called the set of fea-
tures. Informally, the strings in the kernel language specified
by 〈K, F 〉 are precisely those strings that can be obtained
(generated) by inserting features from F anywhere, in any
order, and any number of times, into the kernel strings of
K. We only require that;

1. features are not inserted inside other features,

2. no feature is a factor1 of any other feature, i.e. F is
factor-free, and

3. no kernel contains a feature as a factor.

We illustrate with an example. Consider the set of kernels
K = {bb, bc} and the set of features F = {ab, ba}. The
following strings in L〈K, F 〉, the language generated from
K and F , are obtained by successive insertions of features
in the kernels: (kernels letters are shown in bold)

bb bc

babb bcab
babbab abbcab
bababbab abbbacab
bababbabab abbbabacab
abbababbabab baabbbabacab
abbababbababab baabbbabacabba

1i.e. a substring



Note that features can be inserted anywhere in a kernel but
not inside another feature. We must point out, however,
that this does not necessarily mean that a string in L〈K, F 〉
cannot contain factors such as aabb which can be formed
by the insertion of the feature ab inside another occurrence
of the same feature. The reason for this is because this
feature can also be formed from the features ab and ba as
follows: bb →ab ab bb →ab baab bb to obtain the string
baabbb which, of course, contains aabb as a factor. Test-
ing for membership in a kernel language is achieved either
by checking if a given unknown string x can be generated
from one of the kernels by a sequence of feature insertions
or, alternatively, by (nondeterministically) deleting features
from x to obtain a kernel. Note that the latter procedure is
equivalent to computing the normal forms of x modulo the
special semi-Thue system, RF , that consists exactly of |F |
rules of the form (f, ε), f ∈ F . The set of rewrite rules of
RF is therefore indexed by F . To determine if x belongs to
L〈K, F 〉 we then need only check whether one of the normal
forms belongs to K.

There are various types of kernel languages. These include
confluent and non-confluent kernel languages, trivial ker-
nel languages, non-congruential kernel languages, and ker-
nel languages with single or multiple kernels. It turns out
that kernel languages have a number of real-world applica-
tions. The Monk’s Problems instances can be encoded as
strings from a kernel language. So can the parity problem
and other interesting real-world problems [1].

4. THE MONK’S PROBLEMS
In the summer of 1991 at the 2nd European Summer School
on Machine Learning held at the Corsendonk Priory in Bel-
gium, a number or researchers proposed a set of problems for
testing the various machine learning algorithms that existed
at the time. This set of problems was called ’The Monk’s
Problems’ . The idea was that the main machine learning
algorithms would be tested and compared using the same
dataset.

The Monk’s Problems are set in an artificial robot world
where a robot can be described by six different attributes as
follows (see Figure 2):

x1 : head shape ∈ {round, square, octagon}
x2: body shape ∈ {round, square, octagon}
x3 : is smiling ∈ {yes, no}
x4: holding ∈ {sword, balloon, flag}
x5: jacket colour ∈ {red, yellow, green, blue}
x6: has tie ∈ {yes, no}

There were three problems in the set. Each problem was a
binary classification task, i.e. that of determining whether
or not a robot belongs to one of three classes. Each problem
consists of a description of the class and a training set that
is a proper subset of the 432 possible robots in the artificial
world. The task of the machine learning algorithm is to
generalize from the training examples and, if possible, to
output a class description of each of the three classes. The
three classes were:

1. Monk1:
(head shape = body shape) or (jacket colour =
red)
124 labelled examples were randomly selected from 432
possible robots. No misclassifications.

2. Monk2:
exactly two of the six attributes have their first

value
169 labelled examples were randomly selected from 432
possible robots. No misclassifications.

3. Monk3:
(jacket colour is green and holding sword) or
(jacket colour is not blue and body shape is not
octagon)
122 labelled examples were randomly selected from 432
possible robots. 5% misclassifications.

The only problem that contained noise was Problem 3. The
intention here was to test the performance of the algorithms
in the presence of noise. Problem 2 is very similar to parity
problems. Problems 1 and 3 are in DNF form and are there-
fore assumed to be solvable by symbolic learning algorithms
such as ID3, AQ, etc. Problem 2 combines attributes in a
way which makes it awkward to express in DNF or CNF.

Table 1, reproduced from [8], lists the results obtained by
the different learning algorithms on the Monk’s Problems
datasets. The experiments were performed by leading re-
searchers in Machine Learning, each of whom was an advo-
cate of the algorithm he or she tested and, in many cases,
the creator of the algorithm itself.

The algorithms tested included the various decision tree
learning algorithms such as ID3 and its variations, mFOIL
- a rather interesting inductive learning system that learns
Horn clauses using a beam search technique, and various
neural networks such as Backpropagation and Cascade Cor-
relation. No algorithm managed to correctly learn all three
classes, although some came very close. In spite of the
fact that the Monk’s Problems are defined in a symbolic
rather than a numeric domain, the best performing algo-
rithms were, perhaps surprisingly, the neural networks.

5. THE VALLETTA ALGORITHM
The main objective of the Valletta algorithm is to investi-
gate the feasibility or otherwise of applying the ETS model
to a grammatical inference problem. The aim is to see if
and how distance could be used to direct the learning pro-
cess and also how such an algorithm would perform in the
presence of noise. Valletta’s learning strategy is based on the
observation that the set of features that partially specify an
unknown kernel language K must necessarily be a subset of
the set of all repeated substrings in C+ - assuming, of course,
that the strings in C+ were drawn at random from K and
that every feature occurs at least twice in C+. Valletta was
designed from the beginning to learn multiple kernel lan-
guages and not just single kernel languages. This is because
all examples of naturally occurring, i.e. real-world, kernel
languages that we came across were all multiple-kernel. It
turns out that learning multiple-kernel languages is much
more difficult than learning single kernel languages. With



Figure 2: Some of the robots in the Monk’s Problems.

Learning Algorithm #1 #2 #3

AQ17-DCI 100% 100% 94.2%
AQ17-HCI 100% 93.1% 100%
AQ17-FCLS 92.6% 97.2%
AQ17-NT 100%
AQ17-GA 100% 86.8% 100%
Assistant Professional 100% 81.3% 100%
mFoil 100% 69.2% 100%
ID5R 81.7% 61.8%
IDL 97.2% 66.2%
ID5R-Hat 90.3% 65.7%
TDIDT 75.7% 66.7%
ID3 98.6% 67.9% 94.4%
ID3, no windowing 83.2% 69.1% 95.6%
ID5R 79.7% 69.2% 95.2%
AQR 95.9% 79.7% 87.0%
CN2 100% 69.0% 89.1%
CLASSWEB 0.10 71.8% 64.8% 80.8%
CLASSWEB 0.15 65.7% 61.6% 85.4%
CLASSWEB 0.20 63.0% 57.2% 75.2%
PRISM 86.3% 72.7% 90.3%
ECOWEB leaf prediction 71.8% 67.4% 68.2%
ECOWEB l.p. & information utility 82.7% 71.3% 68.0%
Backpropagation 100% 100% 93.1%
Backpropagation with weight decay 100% 100% 97.2%
Cascade Correlation 100% 100% 97.2%

Table 1: The published results of the Monk’s Problems.



single-kernel languages one need only find a set of features.
On the other hand, with multiple-kernel languages one also
have to find the kernels without knowing beforehand the the
number of kernels in the unknown language. Besides the ob-
vious computational complexity this problem also poses an
interesting question. Should one find a TS description that
minimizes the number of features or the number of kernels?
Valletta can be instructed to find TS descriptions that mini-
mize either the number of features or the number of kernels.
Valletta has what is called a variable inductive preference
bias. This means that Valletta allows the user to choose
which hypotheses (i.e. TS descriptions) are preferred over
others. This is an important advantage over other learning
algorithms.

Valletta has two main stages. The pre-processing stage searches
for all repeated substrings in C+ and stores them in a re-
peated substring list RC+ . The learning stage then finds a
set of features from RC+ that gives class separation, i.e. a
set of features that optimizes the function

f =
f1

ǫ + f2

,

where f1 is the minimum EvD distance (over all pairs) be-
tween C+ and C−, f2 is the average pair-wise intra-set EvD
distance in C+, and ǫ is a small positive real constant to
avoid divide-by-zero errors. Valletta’s learning stage builds
a structure, the search tree, in which each node represents a
feature set. Valletta expands this tree only on the basis of
f2. This means that Valletta’s search for the set of features
that describes the unknown kernel language K is completely
directed by f2. No other criteria are used to direct the learn-
ing process.

Valletta uses a new string-edit distance function called Evol-
untionary Distance (EvD) [1]. EvD is suitable for describing
kernel languages since it can detect features inserted inside
other features. The idea behind EvD is that, given two
strings and a set of features F , the distance between two
strings can be taken to be the weighted Levensthein dis-
tance (WLD) between the normal forms (modulo RF ) of
the two strings [1]. One important advantage of this tech-
nique is that normal forms are usually much shorter than
the actual strings and this this results in significantly shorter
computation times. The main problem is, of course, how to
efficiently reduce the strings to their normal form modulo
F . This was accomplished using a data structure called a
parse graph. EvD works by first building the parse graphs
for the two strings and then extracting the normal forms
from the parse graphs. The EvD procedure then computes
the weighted Levensthein distance between the normal forms
and the set of kernels that is passed as a parameter.

An explanation of the inner workings of Valletta is beyond
the scope of this paper. The reader is refered to [1] for a full
exposition.

6. RESULTS AND CONCLUSIONS
The Monk’s problems can quite easily be posed as GI 2 prob-
lems. In theory, every learning problem can be posed as a
GI problem. In particular, each of the Monk’s three classes

2Grammatical Inference

of robots can be represented by a confluent kernel language.
For the experiments, a special version of Valletta was de-
veloped. This is simply Valletta but with a much narrower
inductive preference bias. The new version of Valletta was
called Mdina, after Malta’s old capital. Mdina considers
only trivial kernel languages [1]. Mdina successfully learned
problems 1 and 2 but did not learn problem 3. Investiga-
tion showed that this was because the training set was not
structurally complete [4]. The addition of one string made
the training set structurally complete and Mdina was then
able to learn the class.

Mdina served to show that distance can indeed be used to di-
rect the learning process. The experiments also highlighted
the fact that learning algorithms converge to the correct
class if the inductive bias of the algorithm is correct. In his
technical report Thrun describes the Monk’s problems and
the results obtained by the various algorithms does not at-
tempt to analyse or explain the results. We feel the whole
exercise served more to determine whether each algorithm
had the correct inductive bias to learn each of the Monk’s
problem than to determine the actual learning ability of the
various algorithms. Each of the algorithms listed in the re-
port have successfully been used for other learning tasks. We
believe that the apparent inability of some of the algorithms
to learn the Monk’s problems is due more to their type of
inductive bias rather than to anything else. Wolpert [10]
and others have shown that no inductive bias can achieve
a higher generalization accuracy than any other bias when
when considered over all classes in a given domain. In spite
of this, it has been documented that certain bias do perform
better than average on many real-world problems [9]. This
strongly suggests that many real-world problems are ho-
mogenous in nature in that they require very similar induc-
tive biases. This explains why certain learning algorithms
such as ID3 do well on most applications. When learning
algorithms do badly it is very often a case of an incorrect
inductive bias.

7. REFERENCES
[1] Abela, John.ETS Learning of Kernel Languages. Ph.D.

Thesis, University of New Brunswick, Canada, 2002.

[2] Bunke, H. and Sanfeliu, A., (eds). Syntactic and
Structural Pattern Recognition - Theory and
Applications. World Scientific series in Computer
Science, Vol. 7. 1990.

[3] Goldfarb, Lev.On the Foundations of Intelligent
Processes - 1: An Evolving Model for Pattern Learning.
Pattern Recognition, 23, pp. 595-616, 1990.

[4] Michalski, R., Carbonel, J., Mitchell, T., (eds).
Machine Learning - An Artificial Intelligence Approach.
Morgan Kaufmann Publishers Inc. 1983.

[5] Nigam, Sandeep, Metric Model Based Generalization
and The Generalization Capabilities of Connectionist
Models. Masters Thesis, Faculty of Computer Science,
University of New Brunswick, Canada. 1992.

[6] Rosch, Eleanor, H., On the Internal of Perceptual and
Semantic Categories. in Timothy E. Morre, ed.,
Cognitive Development and the Acquisition of
Language, Academic Press. 1973.



[7] J. Stender, and T. Addis (eds). Symbols vs Neurons.
IOS Press, Amsterdam, 1990.

[8] S. Thrun et al. The Monk’s Problems: A Performance
Comparision of Different Learning Algorithms.
Carnegie Mellon University CMU-CS-91-197, December
1991.

[9] Thornton, Chris There is No Free Lunch but the
Starter is Cheap: Generalisation from First Principles
Cognitive and Computing Sciences, University of
Sussex, Brighton, UK, 1999.

[10] Wolpert, D., and Macready, W. No Free Lunch
Theorems for Search, Unpublished MS, 1995.



Performing Fusion of News Reports through the
Construction of Conceptual Graphs

Joel Azzopardi
Department of Computer Science and AI

Faculty of Science
University of Malta

jazz018@um.edu.mt

ABSTRACT
As events occur around the world, different reports about
them will be posted on various web portals. Different news
agencies write their own report based on the information ob-
tained by its reports on site or through its contacts – thus
each report may have its own ‘unique’ information. A per-
son interested in a particular event may read various reports
about that event from different sources to get all the avail-
able information. In our research, we are attempting to fuse
all the different pieces of information found in the different
reports about the same event into one report – thus provid-
ing the user with one document where he/she can find all the
information related to the event in question. We attempt to
do this by constructing conceptual graph representations of
the different news reports, and then merging those graphs
together. To evaluate our system, we are building an op-
erational system which will display on a web portal fused
reports on events which are currently in the news. Web
users can then grade the system on its effectiveness.

1. INTRODUCTION
If one browses the news sites on the World Wide Web (WWW)
such as Reuters 1, or AFP 2, he can find news reports of
events which have happened only minutes before the time
of reading. Each event that occurs can be found reported by
different authors on different news sites. The different re-
ports on the same event usually contain the same back-bone
of the main sub-events but different fine details. Therefore,
for a user to get the whole picture of that event with all
the different details incorporated with it, he/she would have
to read various reports on the same event. Unfortunately,
most of the information in each report would be present in
the other reports as well. Thus to get all the fine details,
the user has to endure reading repeated information.

1http://today.reuters.com
2http://www.afp.com/english/news/?pid=stories

We attempt to address the above issues in our research by
constructing logical representations of the different news re-
ports, and then merging those structures which are repre-
senting reports on the same event. The merged structure
would then contain all the information obtained from the
different reports. This merged structure would then be pre-
sented back to the user as a ‘fused’ report for that event
with unnecessary repetition of the same information.

The news reports are represented using structures similar
to a conceptual graphs, and the construction of these con-
ceptual graphs is performed using surface based approaches
only – i.e. we will not be using approaches which require
deep semantic analysis of the text or a knowledge base. In
our opinion, the use of surface-based approaches is more
appropriate to news reports since they are less computa-
tionally expensive to implement and execute, and also new
names and terms crop up in the news every day – otherwise
the knowledge base will have to be updated regularly. More-
over surface-based approaches will enhance the portability
of our system across different domains since unlike knowl-
edge bases, they can be more general and not limited to
particular domains.

Within our research, we are also attempting to evaluate our
approach in terms of helpfulness to the user.

The structure of the remaining part of this report will be as
follows: in the next section, we describe related work done or
currently being done in the same area as our research. Then
in the following section, we will describe the methodology
implemented in our system. A description of our intended
method of evaluation will follow in the proceeding section,
and in the final section we give our conclusions and our plans
for future work.

2. LITERATURE REVIEW
The aim of Document Fusion is to produce a fused report
which will contain all the relevant information from the dif-
ferent source documents without repetition ([7], [1], [8]).
The reasons behind the need for Document Fusion are vari-
ous, namely:

• Any document/report from any particular source is
never fully objective. On the other hand, a document
built from multiple sources produces more objectivity
([14]),



• Reports from different sources on the same event may
contain different information – in fact reports from dif-
ferent sources may agree with each other, contradict
each other or add new information ([8], [7], [1]).

• Information Fusion may also help in tracking the de-
velopments to reports over time ([8], [14]).

The steps involved in document fusion are ([8], [1], [7], [13]):

1. The segmentation of each document into different seg-
ments,

2. The logical representation of each segment so that each
segment may be compared to segments from other doc-
uments,

3. The construction of the ‘fused’ document.

Information Fusion is most commonly applied to textual
news reports ([8], [1], [7]). However, we also encountered ex-
amples of the application Information Fusion on video news
reports ([14]), and also on search engine result listings ([13]).

Information Fusion involves the segmentation of the dif-
ferent documents and then building relationships between
segments from different documents. In its definition of the
Cross-Document Structure [8] describes relationships which
may occur between paragraphs, sentences, phrases and even
individual words.

These different levels of granularity present different issues.
[7] goes to the coarse side of the spectrum and segments
the documents into paragraphs. According to [7], the use
of paragraph segments simplifies matters since paragraphs
are context-independent and hence fused reports built from
paragraphs taken from different sources will be more read-
able. Furthermore, [7] argues that within the context of
news reports, paragraph units are not too coarse since the
paragraphs within news reports do not usually contain more
than 3 sentences.

In direct contrast to the use of paragraph segments in [7], [1]
claims that even sentence segments are too coarse and each
sentence may contain more than one theme. Thus the con-
struction of the fused report from sentence units may lead
to repetition. [1] recommends the break-down of sentences
into phrases – this eliminates the repetition, but then brings
forward the need to do sentence re-generation to make the
fused report readable.

In our opinion, performing fusion with paragraph segments
will need relatively less processing than fusion with finer
granularities. However, paragraphs are too coarse for fu-
sion, and inevitably if fusion is to be made from paragraph
segments repetition will inevitably occur.

On the other hand, breaking down the sentences into phrases
will necessitate the need for sentence generation after fusion
has been done to ensure readability of the output document.

We attempt to do fusion using sentence-size segments. To
avoid the problem of repetition in the case of sentences con-
taining more than one themes, we will give a priority to the

shorter sentences to be used in the final ‘fused’ document
since these are the most likely to contain only one theme.

To build the relationships between the segments, the seg-
ments are represented using a graph representation ([8], [1])
unless the segments are coarse as in the case of [7]. A partic-
ular representation which is of interest to us is the DSYNT

structure which is described in [1]. The DSYNT is a graph
structure whereby a node is built for each phrase, and a
phrase consists of a verb with 2 nouns.

A representation of concepts and relationships between con-
cepts which is quite similar to the DSYNT structures de-
scribed previously but is more evolved is the Conceptual

Graphs Representation. Conceptual Graph representation
is a representation which is precise but also human readable
([10]). It consists of concept nodes which represent entities,
states, attributes and events, and relation nodes which de-
scribe the relationships between the different concepts ([10],
[4]).

In our research, the ideal representation would be Concep-

tual Graphs. However, the construction of conceptual graphs
from raw text would require semantic information and the
support of a knowledge base as described in [11]. Since we
try to adhere to surface-based approaches, our aim is to
build structures resembling conceptual graphs as much pos-
sible but using surface-based approaches only.

In the construction of graph representation for text, the con-
cepts are first extracted from the text to form the graph
nodes, and then the relationships between the concepts are
built ([6], [3], [9], [3]). Concepts can be defined by certain
pre-defined phrases or by the extraction of proper names
([6], [3]), or otherwise they can be extracted by the use of
heuristic rules ([9], [3]).

In our research, we have used a combination of both ap-
proaches listed above used for concept extraction. A Part-
Of-Speech tagger is used to tag the text, and then heuristic
rules are used to extract the concepts from the text. Over
and above that, simple extraction of proper names is also
done, and any proper names which have not been inserted
as concepts in the previous step, will be inserted now.

We have encountered various approaches to the construc-
tion of relationships between different concepts. On one
hand, there are approaches which build relationships based
on the semantic meaning of the concepts and the words in
the text ([6], [11], [12]). A case of interest is that described in
[11]), whose system uses a lexicon of word canonical graphs
to build all the possible graphs for each sentence. Then,
a semantic knowledge base is used to reject those sentence
graphs which do not make sense semantically. [12] does
not build only relationships according to semantic mean-
ings, but also builds relationships between those words or
phrases which have high frequencies of co-occurrence within
text windows of pre-defined size.

On the other hand, we have more surface-level approaches
which make use of heuristic rules applied on the Part-Of-
Speech tags (produced by a parser) corresponding to the
different words. Examples include [9] which build Noun-



Verb-Noun tuples, and [1] which builds the DSYNT struc-
ture described previously.

Another surface-level approach which is quite different to
those described above is that described in [3]. In this case,
there are two type of constructed relationships between con-
cepts. These are:

• Named Relations – each such relationship consists
of 2 concepts and a relationship name. Such relation-
ships are extracted using heuristic patterns – e.g. the
text ‘president of ’ if used to extract a named relation-
ship between ‘George Bush’ and ’United States’ from
the following sentence: ‘George Bush, president of the

United States’.

• Unnamed Relations – each such relationship con-
sists of two concepts and a relationship strength. These
relationships are built by finding sets of concepts which
have a high co-occurrence rate within the same sen-
tences.

In our research, we are trying to use surface-based approaches
as much as possible. Therefore, the use of knowledge bases
to construct relationships between concepts would go against
our approach and also would prove costly, and probably also
limit the domain in which our system can operate. We think
that the construction of DSYNT structure or NVN tuples is
quite straightforward since the text would have already been
tagged previously for the concept extraction. On the other
hand, the approaches described in [3] are very interesting
and can be applied as well.

3. METHODOLOGY
Our system performs the construction of fused news reports
in the following steps:

1. The downloading of the news reports from different
sources via RSS feeds.

2. The clustering the documents according to their con-
tent,

3. The construction of conceptual representations for each
document,

4. The merging of conceptual representations for docu-
ments within the same cluster,

5. The construction of the fused document.

As we mentioned in the previous section, one of the main
issues in information fusion is to avoid repetition. In our
case, this is handled during the merging of the conceptual
structures used for representations.

3.1 Downloading of News Reports
Within this part, the RSS feeds from a number of pre-defined
sources are downloaded. For each downloaded RSS record,
the system first checks if the corresponding news report has
been downloaded already. If it has not yet been downloaded,
the news report will be downloaded, filtered from the sur-
rounding HTML code, and stored within an XML file to-
gether with the other details specified in the RSS record.

3.2 Document Clustering
The main ‘problem’ within the task of document clustering
is that the number of final document clusters is not known
beforehand.

To tackle this problem, we adapted a technique similar to
that described in [5]. We first index the documents, remove
the stop-words from the indexes and assign term weights to
the index terms using tf-idf measure. Then the similarity of
that documents with each cluster is calculated and if there
exists a cluster with a similarity higher than a pre-defined
threshold, that document is placed within that cluster.

3.3 Building Conceptual Representations for

each Document
The logical representation built within this section is an
entity-relation structure whereby we define the entities (the
‘objects’ within the document) and the relations / actions
occurring between these entities. Noun entities form the en-
tities, and verb entities describe the relations between these
entities.

The steps followed by the system to construct the conceptual
graph are as follows:

1. The contents of the document in question are read and
are tagged using a POS Tagger.

2. The noun entities are extracted from the document’s
contents.

3. The complex noun entities within the document i.e.
entities formed from 2 or more ‘simple’ noun entities
are extracted.

4. The verb entities are extracted. These will be the
names of the named relations between 1 or 2 entities.

5. The relationships between the noun entities (concepts)
are built.

6. The relations are grouped into series of relations which
lead from one to other.

7. Co-referring noun entities are grouped together.

The following sub-sections contain a more detailed descrip-
tion of each step.

3.3.1 Tagging the Document’s Contents
The document’s contents are tagged using Brill’s Part of
Speech tagger [2].

After Brill’s Part of Speech tagger has been employed to tag
the text, some corrections are applied to the resulting tagged
text. Our system reads a text file which contains a list of
tokens each with its own corresponding tag and assigns all
occurrences of these tokens within the document’s text to
that tag.

Finally, the named entities are identified and the tags of the
tokens which make up these names are set to be of type
‘PROPER NOUN’. Named entity extraction is performed



by identifying those tokens which start with an upper-case
letter but do not occur at the start of a sentence. Once
those tokens have been identified, the tokens which occur
at the start of sentences are matched with the list of names
extracted previously, to check whether they also form part
of names.

3.3.2 Extracting the Noun Entities
Noun entity extraction is performed by applying the follow-
ing rules to the tagged text:
<Noun-Entity> = [<Determiner>] (<Adjective>)∗ (<Noun>)+

In other words, a Noun Entity must consists of at least one
noun token, any number of adjective tokens preceding that
noun token, and possibly a Determiner at the start of the
noun entity object.

In cases where a sequence of adjective tokens is found with-
out a noun token at the end, the last adjective in the se-
quence is considered to be a noun token. Occurrences of
such sequences are due to erroneous tagging of text by the
POS tagger.

3.3.3 Building the Complex Noun Entities
Complex noun entities are composed of two or more ‘simple’
noun entities which are linked together by a preposition, or
a conjunction or disjunction. For example if we have the
phrase ‘the president of Iraq’; within the step described in
section 3.2, we identified ‘the president’ and ‘Iraq’ as sep-
arate noun entities. However, it is quite obvious that ‘the
president of Iraq’ is referring to a single entity. By gener-
alization of this example, we can therefore build complex
noun entities using the rule:
<Complex-Noun-Entity> = <Simple Noun Entity>

<preposition>

<Simple Noun Entity>

Another feature of complex noun entities, as used by our
system, is their composite nature – i.e. a complex noun en-
tity may be built using other complex noun entity objects.
In fact, the actual heuristic rule which we used in building
complex noun entity objects is as follows:
<Complex-Noun-Entity> = <Simple Noun Entity>

<preposition>

(<Simple Noun Entity> | <Complex Noun Entity>)

Note from the above rule that we assume complex noun
entities to be right-associative. This is illustrated in the
following example.

Imagine that we have the phrase: ‘The leader of the terror-

ist organization in Iraq’. The simple noun entities within
this phrase are: ‘The leader ’, ‘the terrorist organization’
and ‘Iraq ’. According to the heuristic rule we used to build
the complex noun entities, we first build the complex noun
entity shown in Figure 1.

Then we build the final complex noun entity shown in Figure
2.

3.3.4 Extracting the Verb Entities
Verb Entities are used as names for the relationships be-
tween noun entities. These are extracting by applying the

Figure 1: Representation of ‘the Terrorist Organiza-

tion in Iraq ’

Figure 2: Representation of ‘the leader of the Ter-

rorist Organization in Iraq ’

following rule to the tagged text:
<Verb-Entity> = (<Adverb>)∗ [<Auxiliary>] (<Adverb>)∗

(<Verb>)∗

3.3.5 Building the Relationships between the Noun

Entities (Concepts)
A Named Relation consists of a verb entity, which provides
the name for the relation, and one or two noun entities,
between which the relation is defined.

Named Relations may be subdivided into two groups, namely:

• binary relation – where the verb entity involved is
transitive and the relation is defined between two noun
entities. For example, in the phrase ‘John kicked Mary ’,
we have the relation ‘kicked ’ between ‘John’ and ‘Mary ’,

• unary relation – where there is only one noun entity
object involved since the verb ‘defining’ the relation is
intransitive. For example, in the phrase ‘John died ’,
we have the ‘relation’ ‘died ’ and only the noun entity
‘John’ is involved.

Within this sub-section, we are involved in the extraction
of these types of entities. To perform this extraction, the
system traverses the list of sentence phrases (whose creation
is described is section 3.5), and builds the named relations
by applying the following heuristic rules in the order given
below:

1. <Named Relation> = <Noun Entity>



<Verb Entity>

<Noun Entity>

2. <Named Relation> = <Noun Entity>

<Verb Entity>

<Phrase Delimiter>

3. <Named Relation> = <Verb Entity>

<Noun Entity>

<Phrase Delimiter>

If during the construction of the Named Relations, the sys-
tem finds a temporal entity (a date, or a time string) im-
mediately before or after the entities forming the relations,
it attaches this temporal entity to the relation being con-
structed as an indication of the time/date during which that
relation was established.

3.3.6 Identifying Relations Leading from one to an­

other
Within the same sentence phrase, the system may find more
than one different named relations. If this is the case, and
there is a noun entity which forms part of two relations,
those relations are set to ‘related’ to each other – in the
sense that one relation leads off from the other.

For example, consider the sentence, ‘The attack hindered

the work being done in the country.’ From this sentence,
we may extract two named relations – namely ‘The attack

hindered the work ’, and ‘the work being done in the country ’.
Since there is the noun entity ‘the work ’ being used in both
relations, these two relations are set to be ‘related’ to one
another.

3.3.7 Clustering those noun entities which are refer­

ring to the same object
Within a document, different noun entity objects refer to the
same real-world object. For example, the noun entities ‘the
president of the United States’, ‘George Bush’, ‘the former

governor of Texas’ are all referring to the same real-world
object – namely George Bush, who is the president of the
United States at the time of writing.

Our system attempts to cluster together those noun entities
which are ‘co-referent’ so that we will have as much as pos-
sible a one-to-one relation of entities within the conceptual
structure constructed to real-life objects. In this way, cer-
tain operations, such as the retrieval of all relations which
concern a particular object, are greatly facilitated.

This clustering is done in two parts. In the first part, a
set of ‘significant’ tokens is constructed for each noun en-
tity object where ‘significant’ tokens within a noun entity
are those tokens which are the actual nouns. Those noun
entities which have equivalent sets of ‘significant’ tokens are
clustered together as co-referent.

The second part of the noun entity clustering utilizes the
list on un-named relations whose extraction was described
in section 3.5. In this part, the system traverses the list of
un-named relations, and for each pair of noun entities, it
identifies the two noun entity clusters which contain each

noun entity in question, and merges these two clusters to-
gether.

3.4 Merging Conceptual Graphs
In the previous section, we described the procedure we used
to construct the conceptual graph representation for each
document. Now, we need to identify those entities and re-
lations which are common across the different documents of
the same cluster.

This merging task may be sub-divided into two sub-tasks:

1. The clustering of those noun entity and verb entity
objects which are ‘synonyms’,

2. The clustering of co-referring relations.

3.4.1 Clustering Noun­Entity and Verb­Entity Ob­

jects
A similar process is used to cluster co-referring noun-entity
and verb-entity objects.

The tokens of each noun-entity and/or verb-entity object
are weighted using the tf-idf measure based on the inverted
index for the document cluster. Those tokens which have a
normalized weight of 0.5 or greater are considered to be the
‘defining ’ tokens for that entity object.

When comparing two entity objects, an intersect list of
defining tokens is extracted, as well as the difference list
of defining tokens for those two entity objects. The mem-
bers of the intersect list contribute to the equivalence score
of those two tokens, whilst the members of the difference

list hinder this equivalence score. The two entity objects
are considered to be co-referring if their equivalence score
exceeds a certain threshold.

3.4.2 Clustering the Relations
The approach to the relations’ clustering is based on the
premise that two relations are clustered if they share at least
a co-referring verb entity and a co-referring noun entity
between them, or two co-referring noun entities between
them.

Two relations are considered to share a co-referring verb
entity or a co-referring noun entity if one of the relations
contains a verb (or a noun) entity which forms part of the
same verb-entity (or noun-entity) cluster as a verb (or a
noun) entity from the other relation.

3.5 Building the Fused Report
Once the previous step has been completed, we end up with
a list of conceptual structures representing the concepts and
the relations between them. Since these relations have been
‘merged’ together, we now have a list of ‘unique’ relations
between concepts which represent the different information
found in the different reports. The final step involved in the
construction of the ‘fused’ report is to have the system se-
lect those sentences which contain the relations represented
in conceptual form, and ensure that no relation will be rep-
resented in more than one sentence within the final ‘fused’
document.



4. EVALUATION
Since Document Fusion is a relatively unexplored field, we
have not yet encountered any data corpus which provides
sample fused documents for clusters of input documents.
The information fusion systems described in [13] and [7]
use human assessors to evaluate their results. On the other
hand, [1] evaluates only similarities found across different
documents – this is done by comparing the similar relation-
ships extracted by their system with those extracted by hu-
man judges.

To evaluate our approach to Document fusion, we decided to
build a News Document Fusion system which will be avail-
able on the WWW. This Document Fusion system uses RSS
feeds from different sources to download news reports as
they are published. The downloaded reports would then be
clustered together according to the event they are reporting.
Document Fusion would then be applied on the documents
within each cluster and the ‘fused’ document produced will
be presented to the user on the WWW site.

To evaluate the Document Fusion system, each fused report
on the WWW site will contain links to the original reports,
as well as a form where each user can rate that fused report
based on the inclusion of all the unique information found
in the source reports and the inclusion only once of all the
repeating information.

5. CONCLUSION AND FUTURE WORK
Although we do not yet have evaluation results for our sys-
tem, we are optimistic that our approach is a promising one.
The fact that our system is implemented using surface-level
approaches only greatly expands the domain across which
our system can be operated.

Moreover the representations we use in our approach sim-
plifies the adaptation of our system to other purposes like
Topic Tracking and Information Filtering. In fact, in the
foreseeable future, we intend to adapt our approach to Topic
Tracking and Information Filtering. We intend also to incor-
porate User Modelling so that a user will be shown a ‘fused’
report which suits that particular user – i.e. this ‘fused’ re-
port will contain very few (if any) details on the information
that the user already knows, and concentrates on the ‘new’
details which the user is still to learn about.

6. REFERENCES
[1] R. Barzilay, K. R. McKeown, and M. Elhadad.

Information fusion in the context of multi-document
summarization. In Proceedings of the 37th annual

meeting of the Association for Computational

Linguistics on Computational Linguistics, pages
550–557, Morristown, NJ, USA, 1999. Association for
Computational Linguistics.

[2] E. Brill. A simple rule-based part of speech tagger. In
Proceedings of the third conference on Applied natural

language processing, pages 152–155, Morristown, NJ,
USA, 1992. Association for Computational Linguistics.

[3] R. Byrd and Y. Ravin. Identifying and extracting
relations in text. In NLDB 99 – 4th International

Conference on Applications of Natural Language to

Information Systems, Klagenfurt, Austria, 1999.

[4] M. Chein and M.-L. Mugnier. Conceptual graphs:
fundamental notions. In Revue d’Intelligence

Artificielle, Vol. 6, no. 4, 1992, pages 365–406, 1992.

[5] B. Larsen and C. Aone. Fast and effective text mining
using linear-time document clustering. In KDD ’99:

Proceedings of the fifth ACM SIGKDD international

conference on Knowledge discovery and data mining,
pages 16–22, New York, NY, USA, 1999. ACM Press.

[6] I. Mani and E. Bloedorn. Multi-document
summarization by graph search and matching. In
Proceedings of the Fourteenth National Conference on

Artificial Intelligence, Menlo Park, California, USA,
1997. AAAI Press.

[7] C. Monz. Document fusion for comprehensive event
description. In Proceedings of the workshop on Human

Language Technology and Knowledge Management,
pages 1–8, Morristown, NJ, USA, 2001. Association
for Computational Linguistics.

[8] D. R. Radev. A common theory of information fusion
from multiple text sources step one: cross-document
structure. In Proceedings of the 1st SIGdial workshop

on Discourse and dialogue, pages 74–83, Morristown,
NJ, USA, 2000. Association for Computational
Linguistics.

[9] K. Rajaraman and A.-H. Tan. Knowledge discovery
from texts: a concept frame graph approach. In CIKM

’02: Proceedings of the eleventh international

conference on Information and knowledge

management, pages 669–671, New York, NY, USA,
2002. ACM Press.

[10] J. F. Sowa. Semantics of conceptual graphs. In
Proceedings of the 17th annual meeting on Association

for Computational Linguistics, pages 39–44,
Morristown, NJ, USA, 1979. Association for
Computational Linguistics.

[11] J. F. Sowa and E. C. Way. Implementing a semantic
interpreter using conceptual graphs. IBM J. Res.

Dev., 30(1):57–69, 1986.

[12] N. Stokes and J. Carthy. First story detection using a
composite document representation. In HLT ’01:

Proceedings of the first international conference on

Human language technology research, pages 1–8,
Morristown, NJ, USA, 2001. Association for
Computational Linguistics.

[13] T. Tsikrika and M. Lalmas. Merging techniques for
performing data fusion on the web. In CIKM ’01:

Proceedings of the tenth international conference on

Information and knowledge management, pages
127–134, New York, NY, USA, 2001. ACM Press.

[14] Y. Zhai and M. Shah. Tracking news stories across
different sources. In MULTIMEDIA ’05: Proceedings

of the 13th annual ACM international conference on

Multimedia, pages 2–10, New York, NY, USA, 2005.
ACM Press.



Semantically Annotating the Desktop

Towards a Personal Ontology

Jimmy Borg
Department of Computer Science and AI

University of Malta

jbor059@um.edu.mt

Matthew Montebello
Department of Computer Science and AI

University of Malta

matthew.montebello@um.edu.mt

ABSTRACT
The advent of the World-Wide Web brought with it a prolif-
eration of information from e-mail, forums, chat, sites that
rapidly led to information overload and a subsequent stor-
age problem and maintenance on users’ personal computers.
The desktop has become a repository of data that hosts var-
ious types of files. The recent massive increase in data has
resulted in a continuous attempt to enhance our data organ-
isation techniques and hence to the development of personal
information management software.

In this paper we present an overview of data organisation
techniques related to personal data management that have
been an active research area for decades. We will look at
how personal information managers handle different types
of files, and abstract these file types into a single user inter-
face. Despite their advanced user interfaces, we argue that
traditional personal information managers tend to be very
domain specific and lack in user adaptability. To address
these limitations we propose a semantic desktop application
that exploits the flexibility of semantic web technologies,
and introduces the concept of a Personal Ontology to aid in
data organisation and can be used by other desktop applica-
tions such as information retrieval and intelligent software
agents.

1. INTRODUCTION
With the introduction of the PC, computers have moved
from single purpose to multipurpose machines. Personal
Computers are no longer only used to maintain a database
or to run a payroll application. PCs have become an integral
part of our daily life. On our PC we watch videos, play audio
files, watch TV and store collections of music CDs that we
used to place on a shelf. We can take, store and share digital
photos. We can chat, write emails, maintain calendars and
reminders and store our contact information list. Nowadays
books are being stored in electronic format, libraries are be-
coming online bookstores, magazines and newspapers are
being published digitally and huge collections of scientific

CSAW 2006, MCST Bighi, Malta

papers and articles are accessible through the World Wide
Web.

This popularity of the PC and the World Wide Web has
exposed our machines to a huge amount of new data that
needs to be stored, maintained and easily accessed. It is
no longer a question of whether we have the information,
it has become a question of how we are going to find the
required information. Web search engines do the job very
well but unfortunately their desktop counterparts are still
quite limited. Documents on the desktop are not linked like
web pages and thus algorithms such as PageRank cannot
be used [3]. Ironically enough, in some cases one may find
it more efficient to search for the information on the Web
rather than on his or her own personal computer.

In the rest of the paper we will be discussing the organisation
and retrieval of personal information. In Section 2 we will
define what we mean by personal information, then we will
discuss how we can manage personal information and finally
we will give an overview of different types of personal infor-
mation management software. In Section 3 we will proceed
by proposing the Semantic Desktop, a system that semanti-
cally annotates the data on a user’s personal computer and,
by using standard Semantic Web languages for information
representation, creates a Personal Ontology. We will con-
clude the paper by discussing some possible environments
where the Personal Ontology can be used.

2. PERSONAL INFORMATION
Personal information can be defined as data that a single
user stores on his or her personal computer. This informa-
tion can be of different types and we can produce a never
ending list of information that can be classified as personal.
To get an idea, such information might include;

• Calendar Entries such as birthdays, anniversaries, ap-
pointments, meetings and other significant dates,

• Email Repositories,

• Instant message archives,

• Contact information such as telephone numbers, mo-
bile numbers and postal and email addresses,

• Files of various types such as documents, papers, pho-
tos, digital books, video clips and web pages,



• Various types of lists such as reminders, notes, book-
marks and RSS/Atom Feeds.

In the rest of this section we will discuss ways of how this
personal information can be organised, in other words, per-
sonal information management. We will then give an overview
of different applications that aid in personal information
management, also known as personal information managers.

2.1 Personal Information Management
The area of personal information management has a long
history composed of very interesting examples that helped
in shaping today’s theories. Some even date back to the pre-
computer area, such as the famous article “As we may think”
[2] by Dr.V. Bush. In his article of 1945, Bush describes his
visionary system, Memex, as

“a device in which an individual stores all his
books, records, and communications, and which
is mechanized so that it may be consulted with
exceeding speed and flexibility. It is an enlarged
intimate supplement to his memory.”

Although limited to only analog devices, Memex not only
was able to store different types of mediums but it allowed
searching to be performed in an associative matter, like the
human mind. We can say that today we are very close to this
kind of system since the computer can store and access many
different types of files. Although memory is now becoming
much more affordable, it is not feasible and not necessary for
all the data to be stored on the same machine. Nowadays
the web can be seen as a repository of data that extends
our own storage space. Recent approaches to information
retrieval and organisation such as [1] are based on this idea.

Despite the fact that our mind thinks in an associative man-
ner, we cannot simply eliminate the traditional indexing and
categorisation approach. This approach is the most widely
used and over time it has proved itself to be very efficient
and effective in many situations. For example one cannot
question an indexing approach on a telephone directory or
a categorisation approach on a web directory. However we
might question other areas that we may take as obvious,
such as, “Is a tree organisation the most suitable for a file
structure?” and “Is a relational database an appropriate
storage method for an email repository?”. We will discuss
these issues in more detail in Section 3. We will now proceed
by looking at some personal information managers that are
widely used, and highlight similarities and possible improve-
ments to these tools.

2.2 Personal Information Managers
Personal information managers, or PIMs, are tools that help
users to store, maintain stores, search and retrieve personal
information. In other words a personal information man-
ager’s aim is to aid in the organisation and retrieval of data
in a single user perspective. Typical challenges that personal
information management software encounter are:

Huge amount of information, As we already discussed
in Section 1, personal information managers typically

deal with huge amount of information that we use ev-
eryday, being either information that we directly ac-
cess, for example when reading an email, or informa-
tion that is indirectly accessed by the application, for
example when checking for new emails.

of different type and nature, Information does not only
consist of different types of files but also databases,
archives and online links. For a typical list of personal
information that a user may regularly use one can refer
to the beginning of this section.

coming from different sources The information may not
only be stored on the computer’s hard drive but can
also reside on network drives, servers, web pages or
other online repositories.

As the amount of information that we deal with everyday
is increasing, personal information managers are becoming
more popular since they can minimise the burden from our
memory. One can find applications of different flavours that
target different types of users. Some users use a PIM for
storage and retrieval of data. Others use it as a communica-
tion tool, to send emails, fax and instant massages. Others
try to make their lives more organised by keeping important
calendar dates, to-do lists and meeting reminders. In gen-
eral we can categorise information management software as
PC based, web based or PDA.

PC based packages are the oldest and typically tend to
be the most feature oriented. Most consist of email pro-
grams, contact list, organisers and maybe a calendar. A
typical and very widely used application is Microsoft Out-
look [17], which packages many features under a single user
interface. Other applications such as Lotus Notes [18] offer
a networked flavour, typically more oriented for the busi-
ness class. The application also includes an advanced semi-
automatic meeting scheduler.

Web based solutions usually take an organisational approach
and unlike the PC based applications lack the storage of
large data. Typically these applications range from email
clients to calendars and schedulers. Web applications of-
fer the advantage of accessibility from any internet enabled
machine, not only from the user’s personal computer. A
typical example of a web based system is the relatively new
Google services, which range from an email client, calendar,
scheduler and a document editor.

Personal Digital Assistants, or PDAs, are mobile devices
designed for being used as personal organisers. Their main
merit is mobility, on the other hand, they usually lack in
memory and their functionality depends very much on the
operator’s connectivity. The functionality of PDA software
is very similar to web based systems and typically includes a
combination of email, calendar, reminder, address book and
notes. An interesting, typical feature of PIM software on a
PDA is that it can synchronise with other PIM software on
a personal computer.

In general, these systems are targeted at different classes
of users. The information structure and functions are built
upon the targeted user’s needs, for example Microsoft Out-
look is targeted for a typical home user that needs to access



mail and maybe keep a simple calendar of events. On the
other hand Lotus Notes provides features that are more tar-
geted for the business class of users, providing them with a
more advanced meeting scheduler, email access over a net-
worked environment and an advanced user profile system.
In the next section we will argue that by focusing on the
meaning of the data, rather than the user we can build an
application that adapts itself according to the user’s needs.

3. THE SEMANTIC APPROACH
“The dream behind the Web is of a common

information space in which we communicate by
sharing information. Its universality is essential:
the fact that a hypertext link can point to any-
thing, be it personal, local or global, be it draft
or highly polished. There was a second part of
the dream, too, dependent on the Web being so
generally used that it became a realistic mirror
(or in fact the primary embodiment) of the ways
in which we work and play and socialize. That
was that once the state of our interactions was on
line, we could then use computers to help us anal-
yse it, make sense of what we are doing, where
we individually fit in, and how we can better work
together.” -Tim Berners-Lee [4]

That was the initial vision of Tim Berners-Lee, the creator of
the World Wide Web as we know it today. However we can
note that the second part of his dream is not yet achieved,
and this is where we are moving to, the Semantic Web. He
defines the Semantic Web as

“an extension of the current Web in which in-
formation is given well-defined meaning, better
enabling computers and people to work in coop-
eration.” -Tim Berners-Lee [5]

In the rest of this section we will discuss how we can ap-
ply information management techniques and Semantic Web
technologies to the personal computer in order to improve
personal information management and collaboration.

3.1 A Semantic Desktop
Semantic desktop applications are quite innovative. The
idea evolved from the vision of the Semantic Web itself. The
semantic annotation of data on the desktop will allow for
the integration of desktop applications with the Semantic
Web. The personal computer, as a repository of data, can
be seen as a small Web in itself. By annotating the data
on the PC we will be placing the first building stone for the
Semantic Web. Since the Semantic Web is still in its infancy,
current semantic desktop applications are generally built for
research purposes. Some of these applications include:
Haystack system at MIT [6],
Gnowsis system at DFKI [10],
D-BIN by SEMEDIA [11],
OpenIris by SRI [12] and
Chandler system by the OSA foundation [13].

A typical semantic desktop application can be split into
three main components, namely, the ontology, applications

that create and maintain the ontology and applications that
make use of the ontology. The foundation of the system is
the ontology. This uses standard general purpose languages
for information representation, such as RDF and OWL [14].
A typical ontology stores the semantic metadata of all the
personal information of the user, thus in this paper we will
refer to it as a Personal Ontology. The Personal Ontology
consists of three levels. At its most basic state, the ontology
describes the structure of basic file types. We can call this
the Storage Ontology. The Preferences Ontology is used to
store the user’s preferences and settings, which are not only
used by the semantic desktop application but can be used
by all other applications. The third level of the Personal
Ontology is the Content Ontology and is used to describe
the content of the files.

The second component of a Semantic Desktop system is
a mechanism that modifies the underlying ontology. This
will typically consist of several function specific applications,
such as an email client, a file browser and a calendar. There
are two approaches that one can take when developing a se-
mantic application; the monopolistic approach and the inte-
grative approach. In a monopolistic approach, the semantic
desktop application will replace many existing applications
and group all the functions into a single user interface. Al-
though this method generally sounds neater, it requires the
user to adapt to a new system. An example of such sys-
tem is Haystack. The integrative approach, adapted by the
Gnowsis application, will add extra functionality into the
existing applications and make them interact with the on-
tology. This does not require the user to learn a new system
and it can reduce the development effort. However such ap-
proach may be limited by the flexibility of the third party
applications.

The ontology can be virtually composed of any type of per-
sonal information. It is the applications that create and
maintain the ontology that limits the extent of the Personal
Ontology. Different systems provide different sets of appli-
cations, depending on their scope and size of the project.
Typical, basic functions that one will find present in almost
all systems are emails, calendar events and browser cache.
A common challenge in these systems is the annotation of
the file system. The user spends considerable time building
complex folder classification hierarchies thus it is of vital
importance for the semantic desktop application to use this
information. However the current operating systems lack
the much needed support for file-handling event triggering.
[3] proposes a similar application that uses an in-notify en-
abled Linux kernel while [9] proposes a similar system on
Windows. Having the Personal Ontology created and ap-
propriately maintained, it will become a question of how
the ontology can be used.

3.2 Using the Personal Ontology
We will proceed by identifying possible ways of utilising the
Personal Ontology, most of which consist of quite novel re-
search areas. Data organisation is the most obvious utilisa-
tion of the ontology, and is the main subject that we have
discussed till now. The difference between a semantic desk-
top application and other personal information managers is
that the semantic organiser can change the way of present-
ing the information to the user according to the information



itself. We can illustrate this by a simple scenario regarding
the usage of contact information; in a company the manager
will need to know detailed information about a contact such
as the name and surname, telephone, fax and mobile num-
bers and email and postal addresses. On the other hand in
personal contact list used only for telephone numbers the
user might need to store the name and surname, or maybe
a nickname, the telephone number and possibly a mobile
number. As discussed in [7], by building the user interface
upon the Storage Ontology, the user will be presented with
only the required data.

A key element in every user adaptive system is the context
information. The Personal Ontology can be an invaluable
element for making an application user adaptive. Since the
ontology uses standard semantic web languages, it can be
accessed by any semantic web application, not just by the
Semantic Desktop system. An approach that is quite new to
desktop applications is the use of content ontology, partially
described in [8]. The idea behind the Content Ontology is
to semantically annotate the content of the files, especially
documents and emails. The application will then be able
to analyse the Content Ontology of different files and sug-
gest possible relations between the files. While the Content
Ontology can make the system more adaptive, the Prefer-
ences Ontology can make the system more adaptable and
share a generalised set of user preferences between several
applications.

As P.A. Chirita et al states, in [3], current approaches to
desktop search, such as Google Desktop search [15] on Win-
dows or Beagle [16] on Linux, do not include metadata in
their system but only perform searching using regular text
indexing. This causes such systems to perform poorly when
compared to their web counterparts. The key element that
makes web search systems very effective is the linking be-
tween the elements, which is virtually inexistent on current
file systems. The Personal Ontology, especially if the Con-
tent Ontology level is implemented efficiently, could fill this
gap. The document links can help to apply result ranking
techniques [19] in desktop search algorithms.

The Social Semantic Desktop can be seen as a networked
collection of Semantic Desktops. The idea is to create an
environment where data and metadata can be easily shared
between peers. Peers, or agents on personal computers,
can collaborate together and form communities to exchange
knowledge while reducing the time for users to filter and
file the information [20]. The Semantic Desktop is one of
the three main components of the Social Semantic Desktop.
The Semantic Desktop system, in conjunction with Peer To
Peer services, provides a mechanism for users to share their
information. The third component, Social Software, maps
the social connections between different people into the tech-
nical infrastructure.

Other systems use the ontology for more specific purposes.
For example IRIS provides a Semantic Desktop interface
that builds a desktop ontology which will be used as a learn-
ing environment for the CALO Cognitive Assistant project
[22]. CALO, [21], is a personal assistant that learns by ap-
plying automated machine learning techniques on a user’s
personal data.

4. CONCLUSION
In this paper we have presented techniques that can be used
to semantically annotate personal information on a user’s
personal computer, thus creating a Semantic Desktop. Hav-
ing the data semantically annotated using standard Seman-
tic Web languages make it possible for applications to inte-
grate the desktop with the Semantic Web.

To conclude, we can say that the Semantic Desktop system
goes beyond the purpose of data organisation. The Personal
Ontology can be adopted and used for different purposes
ranging from file organisation, to machine learning environ-
ments, to the creation of a large semantic network where
both users and applications can reason about the shared
knowledge.

5. REFERENCES
[1] D. Elsweiler and I. Ruthven and L. Ma, Considering

Human Memory in PIM, SIGIR 2006 Workshop on
Personal Information Management, August 10-11,
2006, Seattle, Washington

[2] Vannevar Bush, As We May Think, The Atlantic
Monthly, 176(1), p101-108, July 1945

[3] P.A. Chirita and R. Gavriloaie and S. Ghita, Activity
Based Metadata for Semantic Desktop Search, In
Proc. of Second European Semantic Web Conference,
ESWC2005, May 21 - June 1, 2005, Heraklion, Crete,
Greece

[4] Tim Berners-Lee, The World Wide Web: A very short
personal history, http://www.w3.org/People/Berners-
Lee/ShortHistory.html

[5] Tim Berners-Lee, James Hendler, Ora Lassila, The
Semantic Web, Scientific American, May 2001

[6] Haystack Project, http://haystack.lcs.mit.edu/

[7] E. Adar and D. Karger and L.Stein, Haystack:
Par-User Information Environments, Conference on
Information and Knowledge Management, 1999

[8] B. Katz and J. Lin and D. Quan, Natural Language
Annotations for the semantic web, ODBASE, 2002

[9] Leopold Sauermann, The Gnowsis, Using Semantic
Web Technologies to build a Semantic Desktop,
Master’s Thesis, TU Vienna, 2003

[10] Gnowsis Project, http://www.gnowsis.org

[11] D-Bin Project, http://www.dbin.org/

[12] IRIS Semantic Desktop Project,
http://www.openiris.org/

[13] Chandler Project, http://chandler.osafoundation.org/

[14] Web Ontology Working Group

[15] Google Desktop Search Application,
http://desktop.google.com/

[16] Gnome Beagle Desktop Search,
http://www.gnome.org/projects/beagle/



[17] Microsoft Outlook, www.microsoft.com/outlook/

[18] Lotus Notes, http://www.lotus.com/notes/

[19] Stefania Costache, Using Your Desktop as Personal
Digital Library, TCDL Bulletin, 2006

[20] S. Decker and M. Frank, The Social Semantic Desktop,
DERI Technical Report 2004-05-02, May 2004

[21] CALO Project,
http://www.ai.sri.com/software/CALO

[22] A. Cheyer and J. Park and R. Giuli, IRIS: Integrate.
Relate. Infer. Share., In Proc. of Fourth Intl. Semantic
Web Conference Workshop on the Semantic Desktop,
Galway, Ireland, Nov. 2005



 1

 Formal Verification of Enterprise Integration 
Architectures  

Dr. Ernest Cachia 

University of Malta, Msida, Malta 

ernest.cachia@um.edu.mt 

Mark Vella 

University of Malta, Msida, Malta 

mvel0022@um.edu.mt 

 

ABSTRACT  

This is a near-finished paper to be presented in an 
international research conference. 

Weak Bisimulation is a process calculus equivalence relation, 
applied for the verification of communicating concurrent 
systems [Miln 99]. In this paper we propose the application of 
Weak Bisimulation for Enterprise Application Integration 
verification. Formal verification is carried out by taking the 
system specification and design models of an integrated 
system and converting them into value passing CCS (Calculus 
of Communicating Systems) processes. If a Weak 
Bisimulation relation is found between the two models, then it 
could be concluded that the EI Architecture is a valid one. 

The formal verification of an EI Architecture would give 
value to an EI project framework, allowing the challenge of 
cumbersome and complex testing typically faced by EI 
projects [Khan 05], to be alleviated, and thus increasing the 
possibility of a successful EI project, delivered on time and 
within the stipulated budgeted costs. 

This paper shows the applicability of value passing CCS (or 
equivalent) formal notation to model the EI systems 
characteristics, as well as investigates into the computation 
complexity of available weak bisimulation algorithms, in 
order to analyze the applicability of this proposition in real 
life. 

 

1. Background 
 

In the process of searching for an Enterprise Integration 
(EI) specific framework to guide an integration team in the 
strategic implementation of an integrated IT landscape within 
and beyond the scope of a single enterprise, an extensive 
research in the following areas of Enterprise Integration was 
made: -  

 

 Integration and middleware technology [Cumns 02] 
[Linth 03] � for acquiring the understanding of the 
technological mechanisms that make systems integration 
possible. 

 Standards [BPMI][Linth 03] [OMG 04a] [OMG 04b] � 
to be aware of the agreed upon standards in order to 
work on their lines. 

 Scientific foundation [Miln 99] [Press 96] [OMG 04b] � 
in order to be able to add value to the field of Enterprise 
Integration based on the concepts of Computer Science 
and Software Engineering. 

 Challenges [Gar 01] [GB & Ruh 04] [Khan 05] [Linth 
03] [Lubl & Far 02] [Mav 03] [Sif 01] � in order to 
locate those Enterprise Integration specific areas that 
need improvement. 

 Methodology and Best Practices (Linthicum 2003) [Ruh 
et al 00] [Sif 01], [Schm 03] � in order to have the 
knowledge of existing improvement efforts and possibly 
build on them. 
 
The industry research, made up mainly of compiled 

industry reports, articles  [BIJ] [IntCons.] and literature  [Burl 
01] [Cumns 02]  [GB & Ruh 04] [Linth 03] [Ruh et al 00], 
allowed the broad understanding of the current state of EI 
projects in industry; from the projects business drivers, 
technologies and methodologies being used, to the factors 
affecting the success of these projects. On the scientific level, 
the research investigated which areas of computer science and 
software engineering could be applied to EI projects, in order 
to improve the situation of this area. [Miln 99] [Press 96] 
[OMG 04b] 

 
1.1 Software Engineering Principles 

A sound software engineering framework is one that 
delivers high quality software deliverables on budget and on 
time. [Ghezz et al 02] [Press 96] [Somm 04] In the case of an 
EI-specific framework, it is being proposed that in addition 
this would be a framework that is targeted specifically at EI 
systems, that achieves the EI-specific goals and qualities, 
allowing the EI project challenges to be overcome, and thus 
maximizing the probability of success and avoiding project 
failures as identified in [Lubl & Far 02]. 

 

1.2 EI-specific Framework Value 
The proposed value of an EI-specific Project Framework 

could be better explained in the following scenario: take a 
software project manager who has managed traditional 
software projects for some time, but is now faced with the 
challenge of setting up an EI project plan. He/she should be 
aware of the fact that managing an EI project, although still a 
software project, requires a specific management framework 
to address the specific EI challenges. An EI-specific 
management framework would be very beneficial, in this 
particular case, to start building the EI project plan and 
carrying out all the necessary tasks leading to an effectively 
built EI system. 

 
1.3 EI Project Challenges, Goals and Qualities 

Further to what was presented in [Gar 01], according to 
[Lubl & Far 02] and [Herr 04] the main challenges causing 
failure in EI Projects include:  

 

 Lack of standard methodologies � so far only industry 
best practices and EI product specific methodologies 
were found. 

 Lack of proper business process definitions � in fact 
many business models today exist only in the head of 

mailto:ernest.cachia@um.edu.mt
mailto:mvel0022@um.edu.mt


 2

departmental managers and at times these also conflict 
with the understanding of their colleagues. 

 Lack of business units co-operation � In several cases, 
business units only communicate to put the blame on 
each other, and compete fiercely for company budgets. 
On the other hand, EI projects require full business unit 
co-operation. 

 Implementation is more complex than expected � An EI 
implementation usually consists of several 
implementation technologies, packages from different 
vendors, multiple platforms and an unexpected number 
of interface links. 

 Relying too much on integration technology for project 
success � Middleware technology in fact is only an 
enabler of integration implementation but far from being 
a complete software engineering tool. 

 Lack of thorough testing  - this is so, given the newly 
introduced integration level and the enterprise wide 
scope of such systems.  

 Lacking the proper integration team roles � EI projects, 
given their novel nature, are only seen by the IT 
department as just another IT project, and fail to re-
organize the IT roles before the start of these projects. 
 
[Ruh et al 00]  compiled a list of goals and qualities that 

should be reached/exhibited by an EI-specific project 
framework. These are as follows: - 

 

Goals 

 Ensure that the EI architecture and developed 
applications satisfy business needs 

 Describe how to manage the EI process 

 Describe how to work with legacy systems and packaged 
solutions to integrate them 

 Provide guidance on technology selection and 
standardization 

 Ensure that the methodology promotes reuse 

 

Qualities 

 Align IT with the enterprise business strategy 

 Build on a solid enterprise architecture 

 Leverage legacy and commercial software 

 Focus on security 

 
In addition to these goals and qualities, the main strategic 

business value of EI today is that of being an enabler of 
Business Process Management [McGov 01] [McGov 03] 
[Krish 04]. This point was taken into consideration and a 
decision was taken to focus on the Business Process 
Integration [GB and Ruh 04] type of integration, where the 
main focal points of integration are the business process and 
not the applications. Here, Application Integration is only a 
consequence of joining up the business processes, but not the 
main driver. 

 
These goals and qualities along with the EI project 

challenges form the basis for the reasoning underlying an EI-
specific framework. 

 

1.4  Framework Building Blocks 
The foundation of this framework is made up of building 

blocks from the fields of Computer Science, Software 

Engineering and Business Management. These building 
blocks are: -  
Value passing CCS (Calculus of Communicating Systems) or 
equivalent Process Calculus � from the field of Computer 
Science that allows the mathematical modeling of 
communicating concurrent and mobile systems.  [Miln 99] 
CCS allows the formal specification and reasoning of 
communicating concurrent systems. Its applicability to the EI 
domain is shown in section 3 of this paper. 
Unified Modeling Language (UML) � a software 
engineering tool allowing the modeling of software 
specification and design. [OMG 2004b] UML was chosen due 
to the wide adoption in the software engineering world and its 
OMG standard status. 
Business Process Management (BPM) � a business 
management discipline born out from Business Re-
engineering that advocates end to end business process 
modeling, automation and their continuous monitoring and 
optimization. [Burl 01] This building block was made part of 
the project in order to be able address the goal of EI systems 
to be an enable to Business Process Management 
programmes. 

 
This paper concerns only the application of the first 

building block: value passing CCS. More specifically, Weak 
Bisimulation, that is a binary relation on CCS processes [Miln 
99], is being proposed as a possible tool for the verification of 
EI architectures.  

 

1.5 Scope 
The whole process required for completing the formal 

verification of an EI architecture is illustrated in figure 1, 
where the business process model defines the system 
specification and the EI Architecture is the system design that 
is verified against the business process model. 

 
This paper shows the applicability of process calculus 

such as value passing CCS to the domain of EI, present a 
treatment of Weak Bisimulation and the possibilities this 
offers as a formal verification tool, and place the verification 
step within the context of an EI-specific framework. The 
formal specification and design, as well as an in-depth look at 
the verification process will be treated in subsequent papers. 

 

Figure 1 � EI Architecture verification process  

 



 3

2. Formal EI Architecture Verification 

Proposition 
 

Weak Bisimulation (≈) is a process binary equivalence 
relation based on the equivalence of just the observable 
reactions between 2 processes. In other words, as long as the 
second process can match each observable reaction sequence 
of the first process and vice versa, the 2 processes are 
regarded as weak bisimilar, irrespective of their internal 
reactions. Thus Weak Bisimulation is also known as 
observation equivalence, with the processes in question 
regarded as black boxes 

 
[Miln 99] shows how the weak equivalence relation (≈) 

could be used to prove that a particular system structure 
implements correctly a particular system definition. More 
specifically he showed the application of Weak Bisimulation 
as follows:  System ≈ Specification. 

 
Weak bisimulation is the chosen process equivalence 

relation for the fact that a system specification does not have 
as yet an internal structure and as a consequence, minimal 
internal reactions. Thus, this reasoning rules out both 
Structural Congruence (≡) and Strong Bisimulation (~). Given 
that Weak Equivalence (≈) is insensitive to both internal 
reactions and structure [Miln 99], it fits well the need of 
proving the correctness of the implementation of a system 
against its specification. 

 
Applied to the domain of Enterprise Integration, or more 

specifically to the chosen Business Process Integration type of 
integration, this observation equivalence relation is being 
proposed to be applied as follows: -  

 
Business Process Model ≈ EI Architecture 

 
The Business Process Model defines the required 

business process flows to be automated by the underlying 
system, whilst the EI Architecture is the design of the EI 
system implementing the business flows. By mapping these 
models into value passing CCS processes, the equivalence 
between the Business Process Model and the EI architecture, 
could be formally verified by finding a Weak Bisimulation 
relation between these two processes. 

 

3. EI systems characteristics 
 

From the initial research underpinning this paper, the 
following architectural characteristics of EI systems stood out: 
-  

 Concurrent Systems [Cumns 02] [Linth 03] 

 Business Process Modelling [GB and Ruh 04] 
[McGov01] 

 Mobility [Smit and Fin 03] 

 Security [Ruh 00] 
 
The next four sub-sections introduce these characteristics 

and show how value passing CSS fairs, in modeling these 
characteristics. 

 

3.1 Concurrent Systems 
In EI architectures, concurrency is exhibited by the 

several applications, services and middleware executing in 

parallel, whilst messaging is the communication link between 
them. In Enterprise Integration, messaging is carried out by 
several middleware technologies that link applications 
together. [Linth 03] categorizes the middleware technology 
available today as follows: -  

 Remote Procedure Calls � this type of middleware 
allows a software process to make synchronous calls 
to remote processes. E.g. Java Remote Method 
Invocation (RMI) [JavaRMI] 

 Message Oriented Middleware � this type of 
middleware is a queuing software that allows 
software processes to write and read messages to 
and from a queue. Communication between 
processes is asynchronous with guaranteed delivery.  
E.g.  MQSeries. [IBMMQ] 

 Distributed Object Transactions � this is a 
middleware infrastructure allowing the exposure of 
business logic making up applications, supported by 
a transactional platform. E.g. Component Object 
Model (COM) [Microsoft.com/com.] and Common 
Object Request Broker (CORBA) (CORBA] 

 Database Oriented Middleware � this kind of 
middleware provides software processes with access 
to database servers. E.g. Open Database 
Connectivity (ODBC) [IODBC] 

 Transaction Oriented Middleware � this type of 
middleware provides co-ordination of information 
movement and method sharing within the scope of a 
transaction. These are mainly to link legacy 
procedural applications to the transactional 
enterprise level. E.g. Tuxedo [Bea] 

 
As defined by [Miln 99], value passing CCS � a formal 

way of modeling concurrent communicating systems, where 
variables are allowed along communication channels - is able 
to model concurrency and messaging, in the following ways: - 

 
Concurrency 

Being an extension of the CCS (Calculus of 
Communicating Systems) [Miln 99] value passing CCS 
supports the modeling of concurrent processes with the 
construct P ::=  (P1 | P2), where processes P1 and P2 are 
parallel composed together. 

 
Messaging 

The following value passing CCS constructs support the 
modeling of messaging as represented in Business Process 
Models (Figure 2) and EI Architectures (Figure 3). Figure 4 
shows how these are represented in value passing CCS. 

 

Input channel - x(y).P, means input a name on channel x 
by substituting with place holder y, and use  the input in 
process P. In the EI  scenario, x can represent a listening port 
such as a web service. The name y represents the place holder 
for an incoming message. Continuing on the example of a web 
service implementation, this incoming message can be an 
input XML (eXtendible Markup Language) document to the 
web service (a tagged data document), whose schema is 
referenced in the web service WSDL (Web Service Definition 
Language), which defined the interface of the particular web 
service. 

                              _ 
Output Channel - x <y>.P means output the name y on 

the channel named x, and then do P. In previous the web 
service analogy, this represents the consumption of the web 



 4

service, where an XML document y is sent from the client 
application along channel x. In this case x is the TCP/IP based 
connection using the SOAP protocol. 

 
 

 
Figure 2 � Business Process Modeling Notation � Sending a 

message 

 

 
Figure 3 � Messaging in UML Activity Profile for EAI  

(Enterprise Application Integration) [OMG 04a] 

 

 
Figure 4 - Messaging in value passing CCS 

 

In EI, messaging can be either synchronous for example 
in the case of a web service call or a Remote Procedure Call 
(RPC), or asynchronous, as in the case of message queues. It 
is possible to model both these types of messaging using 
value-passing CCS as follows. 
 
Synchronous Messaging 

P = new x ( P1 | P2 ) 
        _ 

P1 = x<y>.x(z).P1� 
           _ 

P2 = x(a).ô. x<b>.P2  
 
Using the web service analogy in the above simplified 

process; an application process P1 consumes web service P2. 
P1 calls P2 along channel x and passes the XML document y 
as an input. When the call is made, P1 -> P1�� transition 
occurs, where P1�� = (z)x.P1�. In the P1�� state, the calling 
process is kept blocking waiting on the same channel for web 
service P2 to return. Once a message is returned back along 
channel x the calling process goes into state P� executing the 
rest of the process. 

 
From the server�s perspective P2 listens indefinitely on 

channel x. When an XML document arrives along channel x, 
the web service executes its internal logic, represented by the 
tau (ô) symbol, and returns an output document XML back on 

channel x to P1 on completion. The web service then resumes 
in state P2 listening indefinitely for the next call. 

 
Asynchronous Messaging 

P = new x y ( P1 | P2 | P3 ) 
         _ 
P1 = x<y>.P1  
                    _ 
P2 = x(w).ô.y<w>.P2  
  
P3 = y(z).ô.P3 
 
Process P2 handles continuous asynchronous 

communication between processes P1 and P3. Even though 
the communication between P2 and the other processes is 
synchronous in terms of readiness of processes to be able to 
communicate between each other, process P2 provides the 
mechanism for asynchronous messaging between P1 and P3. 
In the above-simplified example, P2 models a messaging 
queue-like structure, allowing application P1 to 
asynchronously call P3 without blocking, even in cases when 
P3 is not ready to communicate.  

 

3.2 Business Process Modeling 
Business Process Modeling involves the modeling and 

documentation of the business process flows within an 
enterprise and is a main element of Business Process 
Management [Burl 01] [BPMI] [Smit & Fin 03]. EI systems 
are expected to serve as an infrastructure to these modeled 
processes, possibly by means of a Business Process 
Management System. [McGov 01] 

 
CCS abstracts the notion of a process and is not specific 

to any particular software process living in a computer 
memory. Thus, it can be argued that CCS could also be 
suitable for modeling processes in the business sense. In the 
business context, we have business processes, embodying 
workflows, running in parallel communicating between each 
other inter-departmental and business to business (B2B) 
messages. In [Smt & Fin 03], Smith and Fingar elaborate in 
full detail of how Pi Calculus, an extension of CCS 
incorporating mobility, perfectly suites the modelling 
requirements of business processes. 

 
As a matter fact, Process Calculi are already being 

applied to BPM for other reasons. The Business Process 
Modelling Notation (BPMN) adopted by the Business Process 
Management Initiative (BPMI) [BPMI] is fully based on Pi 
Calculus foundations; as is the Business Process Execution 
Language For Web Services (BPEL4WS) by Microsoft 
Corporation (Microsoft.com) and IBM [IBM] and the BPML 
(Business Process Modelling Language) by the BPMI.  

 

3.3 Mobility 
From personal experience in enterprise integration 

projects, the communication links between the nodes of an EI 
architecture (applications, services and middleware) are not of 
fixed nature but rather of a dynamic mobile nature, where 
communication channels are created, moved and destroyed. 
For example we have the scenarios where communication 
channels between two processes are created as in the 
discovery of a web service by UDDI (Universal Discovery 
Description and Integration) protocol [UDDI]. There are also 
situations of channel proliferation where for example an 
application server or middleware becomes unavailable. There 



 5

are also situations of pure mobility where a communication 
channel is relocated in the process space as in the scenario 
where a client application is instructed to start communication 
with an alternate server for example, for performance reasons 
or during a seamless, no down time, new application roll out. 

 
Mobility in the context of business processes is reflected 

in the continuous change in business rules as a result of a 
Business Process Management Programme  [Smith and 
Fingar, 2003]. An example is where in a move to eliminate 
bureaucracy an electronic components manufacturing 
company consolidates approvals of component designs in one 
department. In this case a link between the engineering 
department and the first auditing department in line, moves to 
a link with the newly created consolidated department 

 
Pi Calculus supports the modeling of process mobility by 

definition; in fact Pi Calculus was invented by extending the 
CCS to support mobility. Mobility is modeled in Pi Calculus 
by allowing names representing communicating channels to 
be themselves passed as messages along channels. [Miln 99] 

 
Even though Pi Calculus would be required to model 

mobility, for the time being only value passing CCS is being 
considered in order to make the proposition of this 
verification tool clearer. Moreover, the researched Business 
Process Modeling Notation [BPMI] does not include the 
concept of mobility within the graphical notation; thus 
making value-passing CCS sufficient for formally 
representing business models built using this notation for the 
time being. 

 

3.4 Security 
Now that the applications have been �opened up� in order 

to communicate possibly with the whole world, the issues of 
security breaches increase [Ruh, et al, 2000]. An improper 
security infrastructure can invalidate an otherwise well built 
integrated architecture. In fact the role of secure messaging 
increases immensely in such architectures. The importance of 
security in EI projects has already been identified in the 
Secure Application Integration Methodology by [Ruh et al 
00]. 

  
The notion of restriction in CSS denoted by (new x) P 

means that x is for the exclusive use of P. A more specific 
example is P = new x (P1 | P2) which means that P1 and P2 
communicate via a private channel x even when placed in the 
context of other concurrent processes having a channel with 
the same name [Miln 99]. This construct enables us to model 
secure communication channels in integrated architectures. 

 
Having said that, this does not mean that by using the 

restriction construct, it means that model is definitely secure, 
it only specifies that the indicated channel of communication 
should be secured. A typical case where a secure channel does 
not imply complete overall security is shown in the following 
system: -  

System = new x (P1 | P2) | P3 
       _  
PI = x<outval> 
                     _ 
P2 = x(inval).y<inval> 
 
P3 = y(inval) 

Where even if P1 and P2 communicate via a secure 
channel, over which P3 can never interfere, it is still up to the 
implementation of P1 and P2 to ensure that that any sensitive 
data is not passed on to P3. In the above example, P2 is 
sending the data received over the secure channel x to P3.  

Still, having the individual processes formally defined, 
these can be individually formally verified in terms of system 
security. 

 

4. Enterprise Architecture Verification 
 

It is being proposed that CCS based verification occurs 
within an EI framework as follows. 

 
Once the Business Process Model diagram (the system 

specification), and the EI architecture (system design) are 
produced, these are converted to CCS processes. This way the 
model passes from a semi-formal representation of the system 
to a formal one. If a Weak Bisimulation relation were found 
between the two processes, the EI architecture would be 
considered equivalent in behavior to the Business Process 
Model, and thus validated. 

 
This verification step is carried out during the framework 

stage where the EI Architecture is completed and the lower 
level steps of design and implementation are about to start 
(Figure 5). Having the architecture validated at such an early 
stage maximises the success of the EI system by alleviating 
the challenge of EI testing as discussed in [Khan 05] and 
[Lubl & Far 02] 
 

5. Practical applicability 
 

In order for the proposed EI Architecture formal 
verification tool to be practical and usable in real world 
applications, the verification process must be automated, and 
the algorithm automating the process should do this in an 
efficient manner. 

 
[Baier & Herm 99] explain that Weak Bisimulation can 

be decided in a time complexity of O(n2.3), where n is the 
number of states, using a technique called the 
partitioning/splitter technique. Thus, using this algorithm, it is 
possible to efficiently decide a Weak Bisimulation between 
two processes given that: - 

1. We keep the number of states finite 
2. Possibly minimizing the number of states 

 
The first condition can only be adhered to by not using 

variables from infinite domains (the algorithm does not work 
on symbolic labeled transition systems). This might sound too 
restrictive at first, but if it is kept in mind that at this stage the 
system is simply being described rather than specified in 
terms computations, it can be viewed from a different aspect. 
For example, consider a task that receives an integer, and 
decides on two alternative flow branches based on the value 
of the integer received. In the system specification and design 
models, one simply needs to pass a boolean value based on 
the size of the integer. In this case, instead of using a variable 
from an infinite domain, one can use a variable from a finite 
one. The latter can be achieved by assuming synchronous 
parallelism as described in [Baier & Herm 99], and thus 



 6

avoiding a state size explosion when a system is made up of 
several parallel composed processes. 
 

An alternate approach would be that of using a Weak 
Bisimulation algorithm that functions on symbolic transition 
systems, allowing the use of variables from an infinite 
domain. [Dovier et al.] present an efficient Bisimulation 
algorithm stating that is possible to port to the symbolic case. 
 

Architecture Verfication

Business 

Strategy

Business Process 

Design

Development and 

Implementation

Optimization

Company Strategic Direction

New Business Process Model

Integrated Enterprise System

Operational Business and System logsSystem Improvement Iteration

 Business Improvement 

Iteration

Strategic Iteration

Architect

New Business Process Model
Enterprise ArchitectureCorrect

 

Figure 5 � Architecture Verification as part of an EI 

framework 

 

6. Conclusions 
 

This paper attempts to show that the application of value 
passing CCS and Weak Bisimulation as a means of validating 
an EI Architecture against the Business Process Model is 
possible by the treatment of the mapping of Business Process 
Models and EI Architectures to value passing CCS processes. 
CCS is able to model the main features of EI systems; these 
being Concurrency, Business Process Modeling, and Security. 
On the other hand the Weak Bisimulation relation is an 
equivalence relation that is insensitive to internal structure 
and reaction. This enables the checking for an equivalence 
relation between the Business Process Model and the EI 
Architecture. Whilst Pi Calculus would be required to model 
the remaining EI characteristic, mobility, this is not 
considered for the time being since mainly since no Business 

Process Modeling Notation researched so far addresses 
mobility, and also for reasons of better focusing on the usage 
of the proposed formal verification system in real life. 

 
The formal verification of the EI Architecture is 

proposed to give value to an EI-specific project framework, 
allowing the challenge of complex testing typically faced by 
EI projects, to be overcome by allowing the formal 
verification of the architecture, before development and 
testing starts. 

 
Finally the paper also proposed a sound foundation for a 

way forward for a practical application of the proposition, by 
mechanically automating the verification process. 
 

7. References 
 

[Baier & Herm 99] Baier, C. and Hermanns, G. (1999) Weak 
Bisimulation for Fully Probabilistic Processes 
[Bea] BEA Tuxedo. 
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/co
ntent/products/tux  http://www.bea.com 
[BPMI] BPMI.ORG The Business Process Management 
Initiative Homepage http://www.bpmi.org  
[Braun 05] Braunstein, J. (2005). Integration Audit 
Methodology: A Primer on Assessing Integration. In EAI 
Journal Feb� 2005. 
[BIJ] Business Integration Journal Online. 
http://www.bijonline.com 
[BPMI] Business Process Management Initiative. (2004). 
Business Process Modelling Notation v1.0. 
http://www.bpmn.org  
[Burl 01] Burlton, R. (2001). Business Process Management: 
Profiting From Process. SAMS  
[Corba] CORBA.ORG. The OMG�s CORBA Website. 
http://www.corba.org 
[Cumns 02] Cummins, F.A. (2002). Enterprise Integration: 
An Architecture for Enterprise Application and Systems 
Integration. Wiley  
[Dovier et al.] Dovier A., Piazza, C. Policriti A. An efficient 
algorithm for computing bisimulation equivalence. 
[Erk & Pen 98] Eriksson, H.E. and Penker, M. (1998). UML 
Toolkit, Wiley Computer Publishing.  
[Gar 01] Garimella, K. Ph.D. (2001). Integration Challenges 
in Mergers and Acquisitions. In EAI Journal Aug 01.  
[GB & Ruh 04] Gold-Bernstein, B. and Ruh, W. (2004). 
Enterprise Integration: The essential guide to integration 
solutions, Addison-Wesley.  
[Ghezz et al 02] Ghezzi, C. et al. (2002). Fundamentals of 
Software Engineering (2md edition). Prentice Hall. 
[Herr 04] Herrera, J. (2004). Avoiding Common EAI 
Implementation Missteps, LogicCurve. 
[IBM] IBM.COM  IBM Homepage http://www.ibm.com 
[IBMMQ]IBM WebSphere MQ. http://www.ibm.com 
[IODC] IODBC.ORG. Platform Independent ODBC. 
http://www.iodbc.org 
[IntCons.] Integration Consortium  
http://www.wwintegration.com 
[JavaRMI] java.sun.com/products/jdk/rmi. Java Remote 
Method Invocation (Java RMI) http://www.sun.com 
[Khan 05] Khanna, R. (2005). Top Challenges in Integration 
Projects. Wipro Technologies White Paper. 
[Krish 04] Krishnan, M. (2004). The EAI Paradigm Shift, 
WIPRO Technologies White Paper. 

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/co
http://www.bea.com
http://www.bpmi.org
http://www.bijonline.com
http://www.bpmn.org
http://www.corba.org
http://www.ibm.com
http://www.ibm.com
http://www.iodbc.org
http://www.wwintegration.com
http://www.sun.com


 7

[Linth 03] Linthicum, D. S. (2003). Next Generation 
Application Integration: From Simple Information to Web 
Services. Addison Wesley. 
[Lubl & Far 02] Lublinsky, B. and Farrel M. Jr. (2002). Top 
10 Reasons Why EAI Fails. In EAI Journal.Dec� 02  
[MSE] MSE http://www.magicsoftware.com Magic Software 
Enterprises 
[Mav 03] Maverick, G. (2003). EAI Project Management. In 
EAI Journal Nov� 03.  
[McGov 01] McGoveran, D. (2001). BPMS Concepts, 
Enterprise Integrity. In EAI Journal Jan  �01  
[McGov 03] McGoveran, F. (2003).  Managing Business 
Process for EAI, In Business Integration Journal Sep �03.  
[Microsoft] Micosoft.com  Microsoft Corporation Homepage 
http://www.microsoft.com 
[Micr COM ]Microsoft.com/com. Component Object Model 
Technologies http://www.microsoft.com 
[Miln 92] Milner, R. (1992)  Mathematical Structures in 
Computer Science, Vol. 2, pp. 119-141 
[Miln 99] Milner, R. (1999) Communicating and mobile 
systems: the Pi-calculus. Cambridge 
University Press.  
[OMG 04a] Object Management Group (2004). UML for 
Enterprise Application Integration,v1.0. OMG Formal 
Specification. http://www.omg.org 
[OMG 04b] Object Management Group (2004). UML 
Superstructure Specification,v2.0. OMG Formal 
Specification. http://www.omg.org 
 [OMG 04c] Object Management Group (2004). UML Flow 
Composition Model v1.0. OMG Formal Specification. 
http://www.omg.org 
[OMG 05a] Object Management Group (2005). UML Profile 
for Modeling Quality of Service and Fault Tolerance 
Characteristics and Mechanisms. OMG Formal Specification. 
http://www.omg.org 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[OMG 05b] Object Management Group (2005b). UML 
Profile for Schedulability, Performance, and Time, v1.1. 
OMG Formal Specification. http://www.omg.org 
[Press 96] Pressman, R.S. (1996). Software Engineering: A 
Practioner�s Approach. 4th Edition. McGraw-Hill.  
[Roch 04] Roch, E. (2004). A Software Development 
Methodology for EAI. In EAI Journal Sept �04. 
[Ruh et al 00] Ruh, A. W., et al; (2000). Enterprise 
Application Integration: A Wiley Tech Brief. Wiley  
[Sang 96] Sangiorgi, D. (1996). A theory of bisimulation for 
the ð-calculus. Acta Informatica, Volume 33 , Issue 1. 
[Schm 03] Schmidt, J. (2003). EAI Lifestyle Evaluation. The 
Software Ecologist Column, In EAI Journal Apr� 03.  
[Sif 01] Sifter, C.J. (2001). Integration Project Management 
101. In EAI Journal March� 01. 
[Smt & Fin 03] Smith, H. and Fingar P. (2003). Business 
Process Management: The Third Wave. Meghan-Kiffer Press.  
[Stribna 98] Stribrna, J.(1998) Decidability and complexity of 
equivalences for simple process algebras. 
[Somm 04] Sommerville, I. (2004) Software Engineering (7th 
Edition). Addison Wesley. 
[UDDI] UDDI.ORG   The Universal Description, Discovery 
and Integration (UDDI) protocol homepage  
http://www.uddi.org  
[V der Aalst 04] Van der Aalst, W. et al. (2004). Workflow 
Patterns 
http://tmitwww.tm.tue.nl/research/patterns/patterns.htm 
http://tmitwww.tm.tue.nl 
[Whit 05] White S.A. (2005). Process Modelling Notations 
and Workflow Patterns. IBM corp 

 
 

http://www.magicsoftware.com
http://www.microsoft.com
http://www.microsoft.com
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.uddi.org
http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl


An Ontology of Security Threats to Web Applications

Dr. Ernest Cachia, Mr. Mark Micallef

Software Engineering Process Improvement Research Group

Department of Computer Science and Artificial Intelligence

University of Malta

ernest.cachia@um.edu.mt, mmica01@um.edu.mt

Abstract

As the use of the internet for commercial purposes con-
tinues to grow, so do the number of security threats which
attempt to disrupt online systems[1][8][9]. A number of
these threats are in fact unintended[11]. For example, a
careless employee might drop a cup of coffee onto essen-
tial equipment. However, when compared to the brick and
mortar world, the internet offers would-be attackers a more
anonymous environment in which to operate. Also, the free
availability of hacking tools makes it possible even for the
curious teenager to carry out dangerous attacks[3]. Despite
this ever-present threat however, it is all too often the case
that security is dealt with (if at all) after a web application
has been developed[2]. This is mainly due to our software
development heritage whereby companies prefer to focus on
the functionality of new systems because that provides an
immediate return on investment.

As a precursor to proposing an framework for building secu-
rity into web applications, this paper presents an ontology
of threat to web applications. The thinking behind this is
that much the same as in the military world, one needs to
have as much intelligence about the enemy as possible, the
same can be argued in the case of online security threats.
Such an ontology would enable stake holder in online appli-
cations to take less of a reactive stance but instead be more
proactive by being aware what’s out there.

Keywords: Security, Software Quality Assurance, Web Ap-
plications, E-Commerce

1. Introduction

W. Edwards Deming stated several years ago that “the
quality of a product is directly related to the quality of the
process used to create it”[4]. Although Deming’s work in-
volved production work during World War II, his statement
holds true today when dealing with complex software sys-
tems. As part of a wider body of work dealing with the
rapid development of high-quality e-commerce systems[6],
the authors of this paper identified the five most important
quality attributes in e-commerce systems of which the most
important was deemed to be security[5].

Despite the importance of security, it is still often the case
that high-profile breaches surface in the news with many
more going unannounced[3][8][9]. It appears that develop-
ment companies focus mostly on functionality when devel-
oping a system since this is perceived to provide an imme-
diate return on investment. However, a study amongst 350
online shoppers, by the authors of this paper revealed that
86% of potential customers would not shop at a site if they
were not confident in its security capabilities[5]. Also, 36%
of online shoppers consider security considerations as the
primary reason for choosing a brick and mortar store over
an online equivalent[5]. This leads to the observation that
web application developers are not really delivering a prod-
uct of good quality when they concentrate on functionality,
but rather they deliver one of perceived quality. The lack
of focus on security throughout a web application’s devel-
opment life cycle often leads to a vulnerable first release of
that application[2]. Considering potential customers’ secu-
rity awareness, this may prove to be a costly mistake.

Through research in psychology, it has been established
that humans are able to handle large quantities of infor-
mation much more efficiently if they are able to classify it
into a manageable number of categories[15]. In light of this,
the authors of this paper argue that managing thousands
of security threats would be far easier if each threat could
be seen within the context of a category of similar threats.
Once a threat has been placed in this context, it is far easier
to manage it by applying the same treatment that would
be applied to similar threat albeit slightly tailored to any
particular characteristics of the individual threat.

In this paper, it is being argued that there is a need for



a security ontology of online security threats. The authors
also go on to propose such an ontology.

2. Overview of the proposed ontology

At its highest level, the ontology consists of 6 compo-
nents as shown in figure 1.

Figure 1. A high­level overview of the pro­
posed Ontology

Each of these components is discussed in the following sec-
tions.

2.1 Identification Information

Every security threat needs to be identified. The iden-
tification information component of the proposed ontology
provides for this. It is being proposed that threats be given
a unique identifier (for use in database storage of informa-
tion), a name, and a freetext description. This is depicted
in figure .

2.2 Active/Passive Threat

The second component of the proposed ontology seeks
to indicate whether a threat is active or passive. An ac-
tive threat is in essence an intentional threat by someone
with malicious intentions. This may include a hacker inten-
tionally trying to gain access to credit card information, a

Figure 2. The Identification Information Compo­
nent

virus trying to corrupt your operating environment, and so
on. On the other hand, a passive threat is unintentional.
That is to say it happened by accident. Instances of unin-
tentional threats may include dropping a coffee mug over
a server, maintenance personnel disabling power lines to
essential equipment, and so on.

2.3 Authorisation

The authorisation component seeks to identify what type
of user would carry out a particular attack. Three possi-
bilities exist and these are shown in figure ??. Firstly, a
user could be authorised. This means that a user has been
delegated rights in the environment, on a system, or on a
network and chooses to abuse of these rights in carrying
out an attack. The second possibility is that of an unau-
thorised users gaining access to the environment through
some weakness and thus causing havoc on the system. Fi-
nally, there is also the possibility of an impersonation. An
impersonator could be a user, hacker or even a computer
program which manages to gain access by taking on the
identity or rights of another authorised user.

Figure 3. The Authorisation Component

2.4 Vulnerability Classes

The term vulnerability class refers to one of five classes
which have been defined in this ontology as broadly cover-
ing all possible vulnerabilities which a security threat can
exploit. shown in the figure 4. As a minimum, a threat
will have a primary vulnerability class assigned to it. This
refers to the vulnerability which is most exploited by the
threat. Should a threat exploit more than one vulnerability,
there is the option to define additional secondary vulnera-
bility classes.



Figure 4. Types Security Threats

A web application may be compromised by threats which
exploit vulnerabilities relating to any one of the categories
shown in figure 4. All too often, one may be lulled into
a false sense of security by emphasising security against
threats on one of the above-mentioned levels. For exam-
ple, one could feel that using secure communications[12] is
enough to ensure a particular application’s security. How-
ever, secure communications only assure privacy at the net-
work level and a private web conversation with a hacker will
not deter him/her from exploiting vulnerabilities of a differ-
ent nature. The following is a brief discussion of the threat
categories (sometimes referred to as levels) shown in figure
4.

At the physical level , one must ensure that the locations
where hardware (be it for deployment or development pur-
poses) resides are physically secured[16]. Any physical in-
trusion into such a location may result in interruption of
service, stolen data, and so on. In such cases, intruders
may not necessarily be outsiders but could also be insiders
(e.g. disgruntled employees).

Another category of security threats involves exploiting vul-
nerabilities at the network level . Such threats attempt
to manipulate shortcomings in communication protocols to
disrupt service and/or gain access to private information.
Appropriate actions must be taken to prevent this from
happening[11].

The operating environment where a web application is
hosted is also vulnerable to attacks. Vulnerabilities may
be present in any components ranging from the operating
system [17] to any other web-enabled component such as
web server software, mail server software, and so on[18].
Again, one can easily imagine a scenario where an appli-
cation is highly secured by developers, only to be breached
by attacking its operating system instead of the application
itself.

The category of application level threats refers to threats
which exploit vulnerabilities within the web application it-
self. SQL injection attacks, cross-site scripting and authentication-
related attacks are typical examples of threats which can be
found at this level[14][19]. It is beyond the scope of this pa-

per to explore the technical merits of such attacks.

Finally, one should discuss vulnerabilities at the human

level of security. Such vulnerabilities involve trusted hu-
man beings knowingly or unknowingly enabling outsiders
to breach a web application and access restricted data[20].
Numerous incidents have been reported whereby a techni-
cally secure web application was breached because an in-
sider was tricked into revealing information such as their
username and password (a technique commonly known as
social engineering). An effective security policy must ensure
that trusted users are in a position to repel any attempts
made to use them as a weak point within the application’s
security structure.

2.5 Damage

The damage component of the proposed ontology seeks
to identify what sort of damage would be caused by the
threat should it succeed in materialising. The following
possibilities have been extracted from a US government re-
port on information security risks[7]. Should new types of
damage surface in future, these should be included in the
ontology. A security threat can cause damage in one or
more of the following categories:

• Disclosure of information

• Modification of information

• Destruction of information

• Degredation of service

• Denial of service

• Website defacement

2.6 Severity

The severity component gives an indication of the amount
of harm and/or fallout which would result from the threat
if it materialises. It is proposed that this information be
categorised as low, medium or high. A low severity level
indicates that the consequences of a materialisation of this
threat would have little repercussion on the web applica-
tions ability to keep functioning and on its reputation. An
example of this might involve a relatively harmless adware
program managing to install itself on a server. A threat
with medium severity is one that causes a degradation in
service without completely disabling the site or one that
causes damage or loss which can be recovered. Examples
might include minor website defacements, or loss of data
which is regularly backed up and can thus be retrieved. Fi-
nally, a high severity level indicates threats which severely
impinge on a web application’s stability and/or its users’
privacy and security. Examples include hackers gaining ac-
cess to clients’ personal information, viruses corrupting or
erasing data in such a way that it cannot be retrieved, an
so on.



2.7 Recommended Actions

Finally, one should discuss the recommended actions com-
ponent of the proposed ontology. This component has three
sub-components as shown in figure 5.

Figure 5. The Recommended Actions Component

The preventive sub-component refers to actions which can
be taken to prevent the treat from materialising. A list
of generic actions such as deploy firewall solution, validate
all application inputs, etc is defined but due to length re-
strictions cannot be included in this paper. Since preventive
measures may sometimes fail, the ontology also seeks to de-
fine a list of detective actions. These actions/mechanisms
will be put in place to detect the occurrence of a security
threat. Finally, the proposed ontology defines a number of
possible reactive actions which are to be taken in the case
of a materialisation of a particular security threat. Again,
a number of generic actions have been defined but cannot
be included here.

3. Conclusion and Future Work

It is believed that the ontology proposed here will prove
to be very useful once a sufficient number of threats have
been defined and place within it. Future work in this area
will start off with this very task. However, the final aim of
this line of work within the SEPI research group is to de-
velop a multi-tier, multi-role security framework which will
be developed. This framework will provide a process based
way of securing web applications against security threats
which are defined within the framework proposed in this
paper.

4. References

[1] Glisson W. B., Welland, R., “Web Development
Evolution: The Assimilation of Web Engineering
Security”, Proceedings of the 3rd Latin American
Web Congress, IEEE Press, 2005.

[2] Gaur N., “Assessing the Security of Your Web
Applications”, Linux Journal, April 2000

[3] Morrisdale P.A., “The Six Dumbest Ideas in
Computer Security”,
http://www.ranum.com/security/
computer security/editorials/dumb/

[4] Rakitin S. R., “Software Verification and Validation:
A practitioner’s Guide”, Boston: Artech House, 1997

[5] Cachia E., Micallef M., “Towards Effectively
Appraising Online Stores”, Proceeding of the
Software Engineering Knowledge Engineering
(SEKE) Conference, 2004

[6] Cachia E., Micallef M., “Towards a RAD Framework
for E-Commerce Systems”, International Conference
on Web Information Systems and Technologies, 2006

[7] United States General Accounting Office,
“Information Security Risk Assessment - Practices of
Leading Organisations”, United States Government,
1999

[8] Deloitte, “2005 Global Security Survay”, Deloitte
Touche Tohmatsu, 2005

[9] Gordon L. A., Loeb M. P., et al, “2005 CSI/FBI
Computer Crim Survey”, Computer Security
Institute, 2005

[10] Hersherb J., et al “Software quality and the
Capability Maturity Model”, Communications of the
ACM, June 1997

[11] Mackey D., “Web Security for Network and System
Administrators”, Thomson Course Technology, 2003

[12] Freier A. O., Karlton P., Kocher P. C., “The SSL
Protocol Version 3.0”, Netscape, 1996

[13] Schneider B., “Secrets & Lies: Digital Security in a
Networked World”, John Wiley & Sons Inc, 2000

[14] “The Open Web Application Security Project”,
http://www.owasp.org/

[15] Antherton J. S. Learning and Teaching: Assimilation
and Accommodation
http://www.learningandteaching.info/learning/assimacc.htm
,2005

[16] Diroff T.E., “The protection of computer facilities
and equipment: physical security”, ACM SIGMIS
Database, ACM, 1978

[17] Blakely R., “Hackers Uncover Biggest Microsoft
Vulnerability”, TimeOnline,
http://business.timesonline.co.uk/article/0,,9075-
1968021,00.html,
2006

[18] Nagel B., “Microsoft Releases Out-of-Cycle Patch for
VML Flaw”,
http://www.redmondmag.com/news/article.asp?EditorialsID=7825,
2006

[19] Jovanovic N., Christopher K., Engin K., “Precise
Alias Analysis for Static Detection of Web
Application Vulnerabilities”, Proceedings of the ACM
SIGPLAN Workshop on Programming Languages
and Analysis for Security, 2006



[20] Orgill G. et al, “The Urgency for Effective User Privacy-
education to Counter Social Engineering Attacks on Secure
Computer Systems”, Proceedings of the 5th conference on
Information technology education , ACM Press, 2004



��������	
��
���������

���������	��������	
	��	��
��������

��	
����
��	����
��������������

�
��������	
��������
�����������

���������������	��	��
���������������


�������	
������ !
��"!�
�#���
�

���������

�������	
��� 
�� �� 
���� 
����	��	� 	���� 
�� ���� �����	�� ��� ������

��	


	������
�����������
���	����	�����
�
��������������������	��

�
��� �
������� � ���	�
�� ����������� �����
����� 	����� ��
�
��� �����

��	����� ���������� ��� ������ ��	


	�� ���� ��� 
�	�
��
������

��	�
��
��	��� ��	� ���
�
	� ����	��� ����

����� ��
�� ������ 	����

�
��
���	� 	�������� ���� �������	�� � � ��� ��	��������
����� 	
��� ���
���

�	�	
�	
����	����
����������������
����������	����	���
�$%	��&��
'� ������(��� � ��)� ���� ��� ����� 	�� ����� �������	�� ��� �����

������������� �����
	
��� ����	
����
��� ������ 
�� 	�������������	��

�
	���	���

���	������	���������
�
	���������������	����
���������

����� ������� ��������	� ��� �����	��� ��	���	
��� �������� ��� 	���

����	

���� �
����� 
������� ��� ��	�� ���� �����	�	
����� � ��	������

��
�������	�� 
�������	������	��������	���
����������
�
���
�
	��

���������
������������	����
��
���������	�����	��	
����������	�����

	����
������ 	����� 
�� �	
��� �� ����	

�� ������� 
�� ���	����� ������	
���

	����� 	����
������ � � �� ���	��
�� �������	��
�  ���
����
� !"�� ����

��
�������	�������	��	����������	�����	����
���������������
���	�
��

�������	���������������������
���
���
������	������	���������	����

��
�	
��� ����
��	
����� � ���� ���	��� ���� 
��
��	��� ��� ��	�
����

	��	
��� ��� ��
���	� ��	���	�� ��	��  #$%�� !&'� � ���� ���������

��
�������� 	�� 	�������	�
���� 
��������	������
������	��
��� �����

(!'�  )������
� �	� ��� (*'� � ��
��� ��	�� �������
��� 	����
����� � ����

��	
�
�
������������	������������

��	���
�����
��������	�����
��	�
��
+�,�  !�"���#$#�%� �&�� ����#��#��'� -��������	�
��

#	�	
�	
����#	�	
�	
����#��	�������
���#��
���������
��

.�/�0�  �%!'�� "(� )#&("�*��#"&+� �%��'*�'� %��
�
���

#�����	�

$�&�,� �$,��'�#&-'�#
�
���
	��1��������

2�0�  !.%�#��$� ��#'&�'�� �&�� '&-#&''�#&-'�

1�	����	
�������#	�	
�	
���

-�
�
�����
���
�����
	�����1��������	��1���������	���

/����
���

�������	
����-���
��������������%�	���
��	��#��	�����%����
����

#��	������������3�����#�����4�����
����%�����5��	������

6�� #���$#�$��7�14�.8%#��89�

�894��#�$-+�

�������	
��� 
�� ��� 
����	��	� 	���� 
�� 	��� ��������� ���
�
��� 	��������

�������	
�����	����������������������������	���
�
��������������



�
�������	���� 	�����������������
	�
��
����
��� 	
��������������

���	����������
���������������
������	�
��	��	��	����������������

��
�������������	�����������������	���������������������
������	
��

	���� ���� ��� ����
������ ��� ��������	�	

�� ��� 	��� �������� ������

�	���������������	������������	�����:��	�	�����������
�	��	�����	����

����������	���������	���

�

1���� ���������� ���� ��������	� ��� ���������� ��
��� ����

��	���
��	�� 
����	�������� ����� 	������
��� 	������������
�������

�������	���������������	����
	��
���
�����������������������������

������� ��� ��������� �������� ��� 	��� ����
�	��
�
	�� 
������	� 
�� 	���

�������
��� ����������� 	��� �����	
�� 	����
����� ����
��� ���� 	���

	���������� �
�
������� � #	�	
�	
���� ��	����� ��
�� ����� �����
���


��
���� �������	
��� ��	����� ���� ��	�� �
����� ���� ���;�
�����

����������� #�
����� � �	�	
�	
���� 	����
����� ����	�� ������� ��
���

��������	� 	����������� 
������ 	��� 	
����	�����������	��������
�������

�
������	�������������
������	�����������
	���
���	
��������	���������

��	��������
����$*��+���)�

010� ����	�����	�
��
��	������	����
�

.���
������	�
������
������������������
�
	�����

������
���
��

	�������	
������������
��������������	
�������������������������

���
������	�����	���
�
�	
����	�����	��������������������
��
������

�����
���
������������	�	���������������	
�����

012� ��
����������	��������
��

�� ��	� ��� 	����
����� ��
�� ����� ��
������� ����� 	��� 	������ ���

�����
���� ���	���� $%	��&��'�������(������)���
�� 
��
��	���

��	��	
��� 
�����

����������� 	�������	����	��� � ����� 	���������
���

�

�



	����� 	����
����� 
�� 	��	� ��	������ �� ����	
�� �������� �
��
��� �
���

	
��� 
�� �� ������� ��
��� ������ ������
��� �
��
���	�� � 
	� 
�� �	
���

����
�	����� 
�� 	��� 
�
	
��� 	
����	����� � $	� 
������
���� 	�������
	� 	�
��

�
��������	
���	��������	����������������	����
�����	���������
���

	
��� �	����� � $	� ���� ����� ����� ������ 	��	� 	������� ����� ����������

�
��� �
��
�� ������� 	��� ������	� 	
��� �	��� 
�� ��������	� ��� 	���

������	��	�	����������	�����	�	�����
���	��������	���������$��������
��

�������� 	����� ���� ��� ��
����� ���

���� ����������� ������ 	���

��������������
����
���
��	������������������	���������	���
�	�
��

	
���� � ���� ���
�� ��� 	��� �������	� 
�� 
�� �
��
��� 	����� �
�
���� ��
���

�
���	
����������
���	�����	������	�����	�����
��
���
��������	��

����	����<���:��	
��=�
�	��	�����	���������	���������	�	
�����
�	��

013� �����	�*����4(
�������
�5����
�������	����	���	����
�������������������
�������	����	���������

������
	�� 	�������� 	������	������������� 	�����������$%	��&��'�
������(������)���$��	�����	�����	�����������	��������������	��
��

����� ��� �� ���
�� ����������
��� ����
�	��
�
	�� ���� ���� �������	
�����

��
�� ����
���� �� �
����� ������ ��� �����	�	
��� ���� �����	
���

������� � $	� ����� ����
���� 	�����	���
��	
������ �� ��	����������	����

��
��� ���
��� 	��� ������� ��� ����������	�� ������� 	�� ��������

���	� � �
���	
���� 	�� 	��� ������	� �	�	��� � �� ��	� ��� ����������	��

����	���
��	
���	��	���������	���
�	�
��	
���
��
���	
�
��������������

��������
��	������������������	�
�
�����������	��	�����	���������

���	��
���	
������
�����������������������
�
���
	��	����
�����
��

������	���
����
�
����
��	���������

�

016� !�����������'������
��

���� �������� ��� �
��
��� �
�
���� �
���	
���� 
�� 	��� ���	� 
�� �����

���	��� ��� 	������	
��� 	��� ������ ��	������ ��� ����������	�� 
�	��

������������
����	����������������
���	��	�����������
����	���
����

�	� ����� 	
��� �	���� � 8���� 	�
�� ���� ����� ����� 	��� ������� ����

�
���	
���� ��� 	��� �������� �
�
���� 	�� 	��� �����	� ��
�	� 
�� 	
��� 
��

�����������������	������
��
����������
��
���
�������
��
��������

�������

017� (�
��
��	�����	���������
���
�
����
�

�
��	����������
��������	���	
������	���������
��	���
����������	����	����������

���������	���������
���
�� ������������ 	
����
�	����� ��������	���

	�������������������
����
��������������	����	
�����������
����

��	���
�
��������	���� 	��� �
��
��������
�������� 
�������������� >�

�
�
����
��	����
��	�����	�����?�������	
��	�������	���������������

	����������	���������������	����
�����������������	��������
���	���

��	����������������	�����������	�����

0�� �894��#�$-+��337$���$8-�@#$-+�

�1�3#4�
��	������ ��
�������	�� 
�� �����	��� ���	���� ���� 	��� 
���������

�
�
���
�
	�����������
������������	����
��
���������	�����	��	
���

�������	�����	����
������	�����
���	
���	����
		������	�����������	
���

	����� 	����
����$.������ �	� ���� (('�  A���
��;������� !0'�� � ��

���	���������������������
������� ���
����
�!"'��
	��	����
�����

$�
	
��
B��

#��	���

%�	��#	���	�����

$�	�������

���	����

1������

3���
�	�

%
�����

7����4���

%
�����

3�����	���

+�����	���C�

�4
����	
���

+�����	��

3�����	����

1������

3���
�	
���

1������

9����	��

9�����
���

1������

����	�

3��		
���

1������

��	��

�������	
���

����%
�����

7����4���

�������	
���

1������

��	��������

#���

�������	
���

-�
���

9����	
���

1������

%�	��#�	�

#����	
���C�

7���
���

-�
���

9����	
���

%
�����

#��	���

#�		
����

%
������

3�����	���

+�����	
���

%
�����

9����	��

%
������

%
�����

&'8�

�#�$"-�

&'8�

�&�$%�#��

*"�,$'�

9����	�C�����	�

3�
�	
���

����	
����

A���������

����	
���

����	
���

-�
�������

#������

����	
���

������������

(���
�40�������
�
	�����
������*��
�*������)��	���+9��#
	�

����
��':	�

���*�������



�

��

,�

��

-�

#��

#��

#,�

#��

#-�

���

#
�
�
�

#
�
#
�

#
�
�
�

#
�
�
�

#
�
�
�

#
�
�
�

#
�
�
-

#
�
�
#

#
-
�
,

#
-
#
�

#
-
�
�

#
-
,
�

#
-
�
�

#
-
�
�

#
-
-
�

#
-
�
�

#
�
�
-

#
�
�
#

#
�
�
,

#
�
,
�

#
�
�
�

#
�
�
�

#
�
-
�

#
�
�
�

 ���

�
�


��
��
��
!
�
��
�
�
�

�


�
"
�
��

�
�
�	
!
	�
�


�������	
��� �� �����	� ��� 	����� 	����
����� 
�� �� ��;������� ��	� ���

��������� �
	�� �� �����
���� 
�	������� ���� �	���� ���	����� ������� 	��

	��� ������	� ���� 	��� ��	��	
��� ���	����� ��
�������� � ���� ���	�����

���� ��� ����� ��� �� �	������������������ ���

�
��� 	�����	�� ������	�

�
	��	���	���������
����	���������������	
�������
������������	�����

���������	�������
	�����
	
����������	
������������������	��	
���

�������
�	��	��������	������	�����>��������������
�����	?�
���	����

����
��	
���� ����� ��������������
������	���� 
�������� 	����������

	����������	
��������
�
	���

�

���� ���	����� ���������� � ����
�	�� ��� ��
����
� ����������� �����

	��� ������� 	����� ����
���� ���� �����	� �����;����� �������	
���

��
��� ������ ������ ������
��� >�1�3#4?�� � � $	� 
��������	��� 	���


��
���������	
������	
���������������������������������	���������


�	�� �� ��
���� �������	��
� 	��	� ������ ��� ��� 
�	����	��� ���	��� 	��

������	�	��������	
������������������	����������
�����������
����

���� 
�
	
��
B��� 	��� ��
�� ��	�� �	���	����� ����
���� ���� 	��� 
��
����

�����	
��������
����
���������
�	����	���
	��	���
��
������������

�������
���
������	
���

��������	���������	����
�����������
�	����

	�� ������� ��	�� �	���	������ � � � ���� �	���� �������� 
������� 	���

�����	
�����������
������	�����	����	�
�	����������	���������	
���


�	�� ������ ������� ������
��� ���� ��
�������� 
�� ������ �������

�������	
�������		
�������������	���	���

,�� �894��#�$-+�@#$-+��.4�#8��D�94�
��
�� ���	����� ���� 	��	���  ���
����
� !"'� ��� �� ������� ��� ������


������ ��	�� ��	�� ��������	
��� �

����� ���������� ����
���

����
����� ����

���� � ���� ��	�� ��	�� 
��
��� 
�� ����
�	��
�
	��� ����

����
���
�
	�����	������	��������

310� ,��
�����	��
��	��(�
����	���
���	�

��	���	��

������	����	��������	��	�
�	����	�����	���������
�����������	���	���

�����	���� ������	� ��	


	������������
��� �����
������0&!�������

�
�����;0���$	�
��������	��	�	�
����������������
�
	����6!;66������

�����������
���	�������
	��������	���
��
�����������
��
�����

����	�����������	����
���	������	������������������������
�����	�

������	���� �
������ ������	� ��	


	�� ��	�� ���� 	��� ���
���� 6(*!;

6(*E�����6((E;0!!/�������������	�����������������
	��	��������	��

�
�
������ 
�� 	��� ������	�� ����
����� 	��	�� �������  ����� (!'� ����

 )������
��	�����(*'�����

�

6 ����� (!'�� �������	�� �� ��	� ��� �������	�� ���� 6(*!�F� 6(*E���
���

	����
������	�	����
�����
�����
�������	��������
���>�9?����#�����

9��� ��� ���� +���� 1�1�� 6(*/� ���� #���� 4��
	
��� ����������

��	��������
���>#4��9?���������.������7
��)�#��6(*6����������

�����	�� ��� ���	���� �������	� ��
��� �� ����
���� 	����
���� >�9�����

#4��9?��������� �	� ���� � ���� ���	���� ��
���#4��9����+�������

��1�����������.��6(*6������������
�
������
��	��������	��	�������

��������	���� )������
��	�����(*'�������
��������	�����������	������

6((E;0!!/������������	
�
�
������������	���������

312� %��
�������	���������
�	���	
��
�
����	�
�������������������	���	�������
��	����	��
��������
����
�� �����

(!'� 
��
��� �������� 	���� ����� ����
��� ��	� �	� �
������	� ��
�	�� 
��

	
���� $������� ���� ������ �������� �����	�� ��
��� 	��� ����� ���
��

�����������	
�����.���
���	�
����������
����	�
������
����������	�

���������� � #���� ��	���

�� 	��	
��� ���� ������� 	��� ������ ��� 	�
��

�	����� � ���� 
��
��	
��� ��� 	��� ���	����� ���������� ��
��� 	�����

����
�������	����	��������	�����		���	� 	����	��� 	����������	����	�

	�� ����� 	��	� 	��� ���	����� 
�� ����	����� 	�� �
������	� ����
��� ����

���� ���
�
�� �����	�� ��
��� ���� �	� ����	� ����������� 	�� 	�����

��	�
������
����	����	����
���������������������������	���	��
�
���

��	�� 
�� 	��� ������� �	����  )������
� �	� ���� (*'� ����� 	��� ����� ���

	�������������	�����	�����
	��	������	������������������

313� "�	���;�	��
����!�
���	�
�����
��

<�����
=���	��
$�� ������ 	�� �
����	�� ����;�
��� ����
	
����� 	��� �������	�� ��
��� 	���

���	����������������
����	�
�������	�����������
����������	�
��	���

	��
�
��� ��	�� ���
��� 	��� ������	��� ��	
�
B�	
��� ����������

1����
��� �� ���	���� ��	� ��� �
����� ��	������ ����� 	�� ��	
�
B�� 	���

������	�����	�����
������	�	��	�	���������	���	����	�����������	���


�	��	�������	�������	
��G�

•� 	���	��
�
�����	������������	
�
B
���	���������	����

•� 	����
�������	������������	
�
B
���	���������	����

•� 	���<��	���=���	����������������
���	���������������	�����
����

�������	��

�

����
�
	
���	��
�
�����	�����	���6(*!;6(*E��������	�����6*&!;6(E/�

����	���������	�����������	
�
B�����
���6(E&;6(E(����	����
�����

��	�� ���
�������� 	��	� 	������������ 
������	
��������	����������	�

������ 6(*!;6(*E� ��
��� ������ �
��� 	��� <��	
�
B�	
��=� ������������

����
�
	
���	��
�
�����	�����	���6((E;0!!/��������	�����6*&!;6((6�

(���
��42�����
	�������
����*�
	������
���	���	���	���

�



�

��

,�

��

-�

#��

#��

#,�

#��

#-�

.
�	
�

#�
-�
#�
-#
#�
-�
#�
-�
#�
-,
#�
-�
#�
-�
#�
-�

 ���



�


�
"
�
��
�
�
�	
!
	�
�
��
�


��
��
��
!
�
��
�
�

	��!	�

�����	��

����	���������	�����������	
�
B�����
���6((0;6(("����	����
�����

��	�� � ���� �
���� �������	� ���� 6((E;0!!/� ��
��� 	��� ��	
���� ��� �����

��	
����������	���������6*&!;6(("�
��	���	��
�
�����	���

�

316� ����
���������
�����
����	�
�����
���� �������	� � ����6(*!;*E������ 	�����	
��������������	
����

������	���� ��	�
���� ��� 	��
�
��� ��� 	��� 6(E/;6(E(� �
����� ��	���

��
�� 	
��� 	���6*&!;6(E(���	����������� 
�� 	��� 	��
�
��� ��	�� �����

�������	� ��	� ���� ��������� 	�� 	��� 6(*!;6(*E� ��	�� ���� 	���

����
�	
��� ������ ���� �������	��� ��
��� 91#4� ���� 1#4�����

#
�
���
��� 	��� �
���� �������	� � ���� 6((E;0!!/� ����� 	��� ��	
���� ���

����� ��	
���� ������	���� ��	�
���� ��� 	��
�
��� ��� 	��� 6((0;6(("�

�
����� ��	�� � ���� 6*&!;6(("� ���� ����� 
�� 	��� 	��
�
��� ��	�� � ����

�������	� ��	� ���� ��������� 	�� 	��� 6((E;0!!/� ��	�� ���� 	���

����
�	
��������������������	�����
���91#4�����1#4��

317� �����
���
����
����	�������
���	���	���	��

�
�������
����������
�������	��������	�����	���
��
�����	��
�������������
	��

	����� ��	�
���� ��� 	��� ���	����� ����������  ���
����
� !"'�� � �����

����
�	
��������� 
����������� 
����	��91#4�����1#4���� 	��� 	���

��	����� � �	��
���������
	����91#4����1#4�� � $�������� 	������� 
	�

���
��� ���� ��������� 	�� 	����� �	��
��� ��	�� ��������� ���� 
������������

������;6����������	��������	�����	���6(*!;6(*E��������	��
�� �����

(!'��
	��	�������	�
������
���	������	������������������

������40�������
���
���	����
���	��
����	��
�����
��

��	�
��
�����
��>�����	����
��� ��
��?@��

#	���� �����
����

H�����

����

��	
�


B�	
���

1#4� 91#4�

#�����9������

���� +����

1�1��6(*/�

7
�����

��	��������
���

6E!!;

6(0!�
000�/� 6/�(�

����� .�� ����

7
�� )�#��

6(*6�

#���� 4��
	
���

����������

��	�9������

��

6E!!;

6(0!�
0&,�(� 6&�(�

������	����
�81A$-4%� >�9�

I�#4��9?�
� 0,E�(� 6&�/�

��
���	���� �1�3#4�
6*&!;

6(E/�
00E�0� 6&�6�

#4��9�6(*!�
6E!!;

6(E(�
*&�&� (�0�

������
���

���
�
��	
��� >�
	��

�
���������	
��?�

� &!�&� E�6�

+�������

��1�� ����

�����.��6(*6�

>�
	���	� �
���

������	
��?�
� &&�&� E�/�

�

.�����	����������������������������
	��	����	��
������������	���

��������	����	��
����6E!!;6(0!���	�
����	��������	�������������	�

�	��
�����
�����	�����	��6(E(���.���
�����������	��
����;,6��

����������������	����������	���	�
��	��	�����	������	��

�

�

�

(���
�43��(�
����	������
���	�&����
�����
�0?A@�>�0?AB�

���� ���	����� ����������  ���
����
� !"'� ���� ����
��� 	�� �������	�

	��� 6((E;0!!/� ���
��� 
�� ������ 	�� �������� �
	�� 	��� �����	��

��	�
���� 
�� 	���  )������
� �	� ���� (*'� � �	���� ��
��� 	��� ��	
�
�
���

������� ��	������ ��
�� 	
��� 	��� �������� ��� ��	
�
B�	
��� ��
�� �

��

������	��� ��	�� �
	�� ��	
���� ������������ ����� 	��
���� ��� 	���

<�
����=���	���D���������
��


�����������	�����	�����������	�	��
��

������������
��
�������

�

3�����
��� 	��	� 	��� ��	���� 
������ ���� ��	� ������ 	��� ��	���=��

����	
��� ���� 	�� �
������ 	��� �������	�� ��	�
����  ���
����
� !"'���

���� �����	� � ��� 	��� �
������� �������	�� >���� �����;0?� ���� 
�� ���	�

��		���	��������	����	���������	��
����
	��
��������91#4����(�!��

�

�����42������
���
���	��&��
���&�	��
C� /��C�

���	���1�?A��

�

�
����;/�6������

�������	��	�	�������

�������	�����	����������	�

��	


	�� 
�� 
���� �������� �������������� 	��� ���	����� ������������

���� �����	����� ��
�� 
����
��� �
��� 	��� ���

���� �	���� ����
����

����	�G�

•� 	����
����
�������������	�����	�����	
����������	�����	��

•� 	���
�����
�������������������	��

•� 	������	�	��	�����
�	
��
�
	��
����
����
������	�
�����	�����	���

�������

�

���������������������������������������� �������������������������

6�����	�������	�
������
���������������	�����
��	
���

#	���� �����
����

H�����

����� ����

�
		
���

1#4� 91#4�

)������
�

�	����6((*�

��	
�
�
���

-������

-�	�����

6*&!;

6((E�
,0,�,&� 6E�(*�

��
��#	���� �1�3#4�
6*&!;

6((E�
*6�&� (�!�



�

��

,�

��

-�

#��

#��

#,�

#�
��

#�
�-

#�
��

��
��

��
�#

��
��

��
��

��
�,

 ���



�


�
"
�
��
��
�
�	
!
	�
�
��
�


��
��
��
!
�
��
�
�

/��!	�

/���	+�

�

��

,�

��

-�

#��

#��

#,�

#��

#-�

���

#�
-�
#�
-�
#�
-�
#�
-�
#�
��
#�
��
#�
�-
��
�#
��
�,

 ���



�


�
"
�
��
�
�
�	
!
	�
�
��

�


��
��
��
!
�
��
�
�

	��!	�

0��"����"

�

(���
�46��(�
����	������
���	���	���	��0??B42@@6�

�

����91#4�����1#4��
��������	���

�����
��
��	
����������������

	����������	�����������
���	�������	��������	��	��	�
������������

���������

31D� (�
����	����
�����
���:	�
������
����)27�

���
�+�
���� ����� ������	���� ���� ��	�� ��	� ����� ���� 	��� 6(*!;6(*E�

�������	�������	���������	���������	������������������0&�������
����

�����6(*!�F�0!!/�����
���
���������1#4����,,"�������91#4����

6*�,�>��������������������
��6*�����	����
�	�����������	�
�����?���

���� ������ ������ 
�� �
����;&0� >��	�
���� ����� 	��� ���	�����

���������?� ������ �������� ���� �� ��
�� ������� ��� ��������� 
��

��
�	�
�����
����
������������	���������
���������0&�����������	�

������ ������ �
���������� ����� ������ 	�� ������ ��
��� ����� 	�� 	���

���
	����	�����	����
������

�

�

(���
�� 7� ��
���	� 
����
�� ��
����	� ��
� 0?A@42@@6� �����
���

��	����	����

�

���������������������������������������� �������������������������

0������	�������	�
������
���������������	�����
��	
���

61� �"&�$,�#"&��
���� �����	�� ��	�
���� ��������� ��
�������� �
	�� 	��� ���	� �����	��

��	�
���� 
�� 	��� �	��
��� ��
��� �	���� 	����
������ � � ��
��

������	��	��� 	��	� 	����� 	����
����� ���� 	��� ���	����� ��
�������

�������������
���	������	��������	���������	�������	
������
�����	��

�
	�� ��� �������
��� ��	���
�
�	
�� ��	���� ��	� ���
�
	
��� ����	
��

����

������8������	����������	��������	���������������������
���

��
���	�����������������������>00�
��	�
������?�����

71� ��/&"8$'�-*'&���
1�� 	������ ��� 	��3�����.������)��	B� ����1����������#����
����

���� 	��� �����
	���� ���� ����������� ����9���1��5��� ���� 7
�����

����	���#$%��	��������	���������	���	���

D1� �'('�'&�'��
 A���
��;

�������!0'�

A���
��;�������� 2����� ���� ���	������ %������

9���������� 3��	�� 
�� -���
����� �
���� #��
���

������
�G� ����� #��	������ �������� �	� 
����
������


�	������E�$�����(��0!!0�

 ���
����
�

!"'�

���
����
� 1�� �� 
�	������ ���������� 	���

������
����� �
���� ����
�� ������	���� ���������
�

����� ���
�� 
����� ����������  ����
�!� ��� "���

#������ ����� 
����
� ����$
�
%� �
�&� ���
�
%�

'��(��
��$��	�������)**+�

 .������ �	�

����(('�

.������ 9��� )��	B� .��� ���� #����
���� ���� 3���	
����

$�������	�	
��� ��� ����
����� 	
��� ���
�����	����G�

���� �$#4�-� ��������� �.�8#� (�� /6,;/,&��

�,������
���������"��������������
����
�����$
�
�

 �-
��"�./!�0��
��������1../� 1...!�

 )��	B� � C�

#����
�����

(E'�

)��	B�.������#����
��������J-���
������
���#��
���

������
�2%� 3��������� '��(��
��$� ���

%�

3��������%� 1..4!�

 )��	B�!6'� )��	B� .������� �
��� #��
��� ������
�� 
��

9�����	���	��� #	�	�� #������� 
�����
���
� ����

0$�����
%� 5��� 1%� "�&� 1�  )**1!%� /6� 111%� � ,�����


������	��������
�����3�����$%� )**1�

 )������
� �	�

����(E'�

)������
� %�9��� 3������ ��#�� ���� 3��
��� 2�����

%����
��3���
�	
����������
���#��
���%�	��F����

��	
�
�
��� -������ -�	����� ��������� �� -��&� �����&�

���&���$
&�*�6,/&>6((E?��

 )������
� �	�

����(*'�

)������
� %�� 9��� ��� #�� 3������� ���� 2�� ��� 3��
����

1����
�������3���
�	
���#�����	���	


	��F�#	�	��

#�����9�����	���	
���I���	
�
�
���-������-�	�����

1�	�����7����$
�#���&�)6%�864%1../�

 #$%��!&'� #$%���9D��A���
����D�����%�	�����	��� ���� 	���

#�����	� $������ 9����� 8����
�	���� ��� A���
����

6*&!;0!!&�

 �����(!'� ����� .������� -��;7
����� �
��� #��
��� F� ��

%����
���� #��	��� ���������� 9:	���� '��(��
��$�

���

%�9:	����';��$#A-�!;6(;*&0,!!;(�

�



Of Web Trust and Policies: A suggested framework to
enhance Internet Security

Steven Caruana
Department of Computer Science

Univeristy of Malta

scar009@um.edu.mt

Dr. Matthew Montebello
Department of Computer Science

Univeristy of Malta

mmont@cs.um.edu.mt

ABSTRACT
We tend to trust people, software or anything else around
us through experience or through a recommendation from a
trusted source. Web voyeurs have similarly envisaged the
notion of software entities roaming over the World-Wide
Web capable of trusting other similar entities. Ideally, Web
agents would be able to distinguish and differentiate be-
tween sites, services and resources over the Internet that
are reliable and worth the confidence accredited to them. In
this paper we present several trust and policy frameworks
built within the evolving agent mark-up languages in an at-
tempt to encapsulate the Web in a new dimension of trust.
Furthermore, we propose a novel mechanism that exploits
existent policies, that govern servers and provide them with
credentials responsible for their authentication, by extend-
ing the existent web site structure.

Keywords
Agents, Semantic Web, Trust, Security, Policies

1. INTRODUCTION
Trust is one word which is important to the greater part
of humanity for whatever the scope, reason or context one
applies it. Most often business, industry, academics and re-
searchers place information and the divulgation of informa-
tion as the centre point of all of their activities. This means
that people for whom the evolution of means of communi-
cation and dissemination of information plays a central role
for their operations and accomplishments, trust gains more
significance. With the onset of more complex and demand-
ing e-services in various fields, the concerns of security has
become a reason for which many a brow will furrow. In a
recent talk during a World-Wide Web Consortium [16] meet-
ing in London, Sir Tim Berners Lee pointed out that People
learn to trust through experience and through recommen-
dation, and argues that a Web of trust would be not only
safe for people to use and access but also for software which
needs reliability and dependability when servicing user re-

quests. The notion of having trustworthy web services such
as active networks, mobile agents, etc. which thrive upon
entire distributed networks of information and computation
resources, is becoming more challenging as requests are be-
coming more complex and less trivial. The rest of the paper
is organised as follows: In Section 2 we review how trust
over the Web is currently being achieved through the use
of a number of policy frameworks. In Section 3 we propose
a model for building trust over the Semantic Web through
the use of entities and adapting policies to govern those en-
tities. The model described in Section 3 aims to empower
users with creating their own policy frameworks, merging
them with distributed authenticated systems which are es-
sential components for achieving trust and ensuring security
over the web. The last section of the paper describes the fu-
ture implementation of the application and the extent of
research needed in the field of trust and security over the
World Wide Web.

2. TRUST OVER THE SEMANTIC WEB
The current web has no notion of entities or relationships
between entities. Users browse the Internet finding informa-
tion in the same document format, style and layout as they
are used to handling. On the other hand, software agents
whose role is to handle information and service requests by
the users, have no means of parsing information from the
traditional layout. For these agents to be able to crawl the
web and service user requests, there needs to be defined a
service-oriented architectural structure to represent data on
the internet and the relations that different clusters of infor-
mation display. The Semantic Web is a possible solution for
this problem because it deals with the representation and
aggregation of relationships between resources on the web.

One of the more important factors that tend to dissuade the
community from the adoption of Semantic Web Applications
is the notion of trust. At this present stage in the devel-
opment of the Semantic Web we have produced languages
(DAML + OIL, OWL[18] etc.) which are capable of rep-
resenting information on the internet. Despite the richness
of these languages we are still not able to describe relations
like “I want to trust only papers written by professors who
are still registered with a university and these papers must
have been published less than five years ago”, or “Do not
give information to users unless they can clear their identity
as members of the university I am registered with”.

2.1 Introducing Trust



Research projects use the term trust to signify different
meanings. The following is one such definition:

“Trust is a method of dealing with uncer-
tainty; when dealing with independent agents,
institutions or providers of resources (including
knowledge), one trusts them if one accepts their
characterisation of what they will do. Trust can
be a moral notion (X trusts Y to act in Xs inter-
ests), or not (X trusts Y to perform some task
T).” [12]

If one were to apply the above statement to the Semantic
Web it would mean that a user (human or agent) has the
capacity to trust other users, but that not every user can be
trusted. In this paper we are defining trust as being either of
two issues. The first is the issue of authenticating a person
as being whom they claim to be. Trust can also be defined as
being a measure of the degree of trust that a user attributes
to another user in the context of a particular domain.

Most of these problems are not new to the internet. Projects
such as the Microsoft .Net Passport[11] and OpenID[13]
have provided solutions for possible distributed authenti-
cation infrastructures. On the other hand projects such as
Foaf[6] have provided us with a means of adding our creden-
tials in a machine readable format across the web.

2.2 Trust and Policy Frameworks
When the Semantic Web was first introduced in [1] one of
the ideas which was put forward was that of having a web
of correlated information from which software agents could
acquire knowledge which they would eventually use to help
the user for every day life service requests. In turn research
projects have been making progress in trying to find solu-
tions for various issues that this vision put forward. As a
result of this, trust frameworks were developed by research
groups and are now being used by developers researching
the field of semantics in web applications.

The following section will give a brief description of few such
projects.

2.2.1 Ponder

Ponder[3] is a distributed policy management system that
was developed a few years back. This system was designed
to allow users across the web to specify information (poli-
cies) about resources which would otherwise be impossible
to define and enforce.

These specifications were recorded using what the authors
referred to as policies. Ponder supports a number of pol-
icy specifications, including Authorisation policies, Obliga-
tion policies, Refrain policies, Delegation policies, Compos-
ite policies and Meta-policies. Each of these policies can
have constraints applied to them. These policies are then
applied to specific domains for which Ponder provides the
authentication and trust reasoning engine.

2.2.2 P3P

P3P[17] is a project organised by the W3C[16] which is try-
ing to provide a specification for an extension to the current
web. This initiative aims at enabling web sites to store in-
formation about privacy policies which should be applied
to them. This information is meant to be analysed and
processed by agents that can use this information in the
background on the user’s behalf, while he/she is browsing
other web pages. Even though this information is meant
to be used by agent software, this standard also caters for
human users by presenting information in a reader-friendly
way. Having agents process privacy preferences on behalf of
the user will conveniently take the load off the user, reliev-
ing him/her of having to acknowledge every privacy policy
for each individual page.

Numerious implementations of this standard have already
been presented and can be found at the W3C web site[16].

2.2.3 KAoS

KAoS[2] is an open agent system that offers possible solu-
tions to some of the problems that adversely affect agent
architectures. In [15] the author writes about how KAoS
policies can now be defined in OWL and gives a good de-
scription of how KAoS proposes to use a policy ontology
termed the KAoS Policy Ontology (KPO). The KPO is then
used as a base ontology to define ontologies that can repre-
sent statements like:

It is forbidden for employees of a company X
or employees of a company Y to apply for this
package.

The system that employs this policy can then use it to deter-
mine who is eligible to apply for the package in question and
who is not. At runtime the system will then interact with
users and once each user registers with the services, the site
will be able to formulate who are employees of companies X
and Y and determine what they can apply for.

KAoS can be said to be more agent oriented than others
because it was designed with agents in mind rather than
web users. It aims to provide agents (KAoS agents) with
a roaming space intended for authenticating users when re-
quired and providing other services which the user might
benefit from.

2.2.4 Rei

Rei[7] is another attempt to create a policy language. It
provides an ontology which is used to define the policies in
its engine. In the Me-Centric project[7], the author pro-
poses a system whereby the use of policies defines a global
perspective which is made up of domains and sub domains
that can overlap each other. Similar to other projects, this
project aims at making this web accessible not only to users
but also to software agents.

The first problem that Rei tries to tackle is the fact that
users who are not very technical find it hard to understand
most policy languages. Therefore Rei is based on First-
Order Logic (FOL), which is not only easy for users to read
but is also simple to translate to RDF or DAML + OIL. This



means that FOL language can be translated into a semantic
language representation.

This system also provides a set of ontologies which are not
domain specific so that whoever is writing his/her own poli-
cies can use these ready made concepts to create varied op-
erations and functions such as setting of permissions, obli-
gations, speech acts etc. It might be the case that a single
domain might require more specific objects to be defined
(such as person, readFile, deleteUser etc.) and properties
associated with them (name, age, comany, email), which is
why Rei also supports the extension and definitions of its
policy ontologies by the user.

The Me-Centric policy server stores all the policies that de-
termine how entities are to be treated, while its domain
server contains the information pertaining to various do-
mains. The policy server can retrieve the policies of dif-
ferent domains and then use the domain server to map the
domain specific names to the policies. When a user requests
a speech act, the policy engine will determine the logic of
this speech act and then will add the information it gathers
to its knowledge base. These speech acts can be categorised
in four different policies, delegate, revoke, cancel and request.

2.2.5 Rein

Rein[8] is a project that tries to extend on Rei by adding
support for N3 logic reasoning. The target audience of Rein
is the internet in general and it proposes a few twists to the
structures seen so far. All the policy languages reviewed so
far have defined their own structures (policy languages) in
which policies should be defined (policy files, KAoS ontol-
ogy, Rei Onotlogy etc.).

This methodology proposes the use of Rei ontologies to de-
fine the policies, but unlike other projects, it does not place
strict rules to enforce which language is used to define these
policies. It promotes the use of different policy languages
and refers to policies written in these languages as Meta-
Policies. It also takes advantage of various features of the
Semantic Web, such as allowing an entity to be categorised
by another entity, according to its definition. In such an
eventuality the Rein engine will go to the desired URIs and
collect the necessary information to complete the definition
of the entity.

[9] gives the reader a good idea of how Rein can be used to
deploy a domain with varied implementations of Rein and
a variety of policies residing on each node. It also gives the
reader a good insight as to how Rein ontology is defined
and how the Rein engine works. [10] also discusses issues
related to the implementation of Rein and adds a few more
examples which provide a useful insight as to how a network
using Rein policies should be constructed.

3. FROM WEB OF TRUST TO A SEMAN-

TIC WEB OF TRUST
When one browses the web, he/she will encounter a number
of pages which encapsulate certain unique features. Some
sites propose mechanisms for the sharing and annotation of
information (e.g. Flickr[5], Riya[14] etc.) or even commu-
nity voting which can determine the trust level of a resource

or user (e.g. ebay[4] etc.). In this paper we are proposing
the construction of a mechanism which extends the current
website structure by providing a direct feed to the user’s ma-
chine providing a diagrammatic representation of the poli-
cies that govern the currently viewed website. It is also a
means of informing the client’s machine about how to pro-
vide its user’s credentials to the servers that are responsible
for authentication. We are also proposing the extension of
a typical web server allowing it to make use of a policy lan-
guage such as Rein to define policies that will govern the
specified domain and to provide a means of allowing the
server to use distributed authentication.

Below is a diagram of how such a network would be setup
and of how the user is expected to interact with the system.

Figure 1: Network Setup

In the diagram above one can see all the major entities that
partake in this system. At the back-end there is a server that
will await requests from the client. Once the server receives
a request it can make use of remote servers to authenticate
the client and send an adequate response in return.

Figure 2: Document transfer



In Figure 2 the browser will display only items for which
the user has credentials. Items for which no credentials are
given will be automatically blocked. It also shows how the
user can send his credentials to provide authentication for
the blocked items.

This setup is quite often adopted by those who develop dis-
tributed authentication systems. What distinguishes this
setup and makes it unique is the way the client and server
communication is handled. When the client first requests in-
formation from a page the server will return and display the
requested data. Along with this, the user will also receive a
‘feed’ that will inform the browser that the user was not au-
thorised to view certain components because he/she did not
fulfil the necessary policy requirements. The user will then
be prompted by the browser to allow the use of credentials
which would have already been inputted into the system in
order to fulfil these requirements. Once this structure is in
place, the system will know that this user can be trusted
and that his/her credentials can be reused at a later stage
if required.

The above proposition could offer a solution in terms of the
server which would otherwise have to decide whether the
user can be trusted or not. However this still does not solve
the problem of how the user could gain the trust of other
users viewing pages submitted by him/her. As a solution
to this problem, we are proposing that the servers store the
credentials within the policy feed attributed to this page,
and that agents on the client-side will be able to process
this information and make use of rules that the user would
have defined beforehand to determine whether a site could
be trustworthy or not.

Below is a typical example of how such a system could be
used:

A user might log into his/her account on the University of
Malta web server. His/her agent submits his credentials to
the web server and this in turn keeps track of them. The
user then decides to upload a paper about his main area of
research. This paper is then forwarded to a board who is
assigned to approve it. Once the document is approved, the
user’s agent returns to the site and updates the credentials
which are related to the paper and the policies governing it,
thus including the fact that the document was accepted and
published.

To extend this example let us consider the added circum-
stance during which, three other uses are roaming the net
looking for papers in this same research area. Once the page
is accessed by all three search agents, the privacy field em-
bedded in the page will interoperate with these agents. User
agent ‘A’ has a policy of not showing unpublished papers,
whilst ‘B’ and ‘C’ lack this policy. When ’A’ identifies that
this paper has not yet been published it refuses to view the
paper and informs the user that an unpublished paper was
refused. User agents ‘B’ and ‘C’ try to access the paper but
the paper requires that to view the paper, the users must
be on the auditing board. User agent ‘B’ had been informed
a priori that its owner would be reviewing this paper, and
sends over the necessary credentials. On the other hand
user agent ‘C’ lacks this credential and sends a message to

the user’s browser to ask the user to submit the necessary
credentials if s/he intends to view this page. User ‘C’ then
inputs an encrypted link to his board credentials and up-
dates his public profile which his agent can then use to re
submit the credentials required to view this site.

3.1 Of entities and policies
In this paper we are proposing that web pages and the In-
ternet should have a means of publishing or of enforcing a
set of policies. In the example provided in section 3 we can
notice that there are various entities and each have their
own policies.

The following is a table listing the policies applied in the
example found in Section 3

Table 1: Table of entity policies

Entity Policy
Web Page Allow all
Paper If user can be authenticated

as being on the submission board
(After paper approved) Allow all

User Agent A Do not download publications which
have not been approved

User Agent B Allow all
User Agent C Allow all

The following is a table listing the credentials found in the
example found in Section 3

Table 2: Table of entity credentials

Entity Credentials
Web Page Credentials that point to author
Paper Credentials that point to author
User Agent A No Credentials in this example
User Agent B Credentials to prove he/she is a

board member
User Agent C No Credentials

(After inputting credentials) Credentials
to prove he/she is a board member

3.2 Empowering users
An important factor which is to be considered is that it will
be hard for such a system to be adopted unless the users are
able to migrate their current security structures and perform
maintenance on them more efficiently. To assist users in
overcoming this problem we are proposing that a browser
extension for web authors be developed and that this be
used for both testing and updating of the policy files. This
extension should provide two different modes of use which
are browse mode and edit mode.

When the user is viewing the page in browse mode the
browser should be searching for policy feeds that web pages
might be broadcasting and offer the necessary credentials to
them accordingly, whilst still offering the user a chance to



replace these credentials with more specialised ones. If the
browser cannot find the necessary credentials in the user’s
profile, then a means of asking the user to input his authen-
tication details should be provided.

In edit mode the browser should visualise the policy feed
that the user is constructing, in a logical and intuitive struc-
ture. Making it easy to construct and view policy files is of
great importance because it will be only the minority of users
who are Semantic Web aware and capable of constructing
complex policy strucutres manually. A visual aid, such as a
graphical user interface, would help bridge this problem by
providing the less technical users with an adequate mecha-
nism enabling them avoid dealing with the back-end system
whilst still being able to declare their own policies.

Using the structure discussed we would be empowering the
less technical users (such as blog users or wiki eidtors) to
declare their own policies and help them to implement a
Semantic Web Policy Structure to limit access to the re-
sources they publish on the internet. As for the users who
are meant to access these web resources, they can use the
simple interface provided by their browser to fulfill the re-
quirements that the authors would have set and gain access
to the services being broadcasted.

3.3 Distributed Authentication
Distributed authentication research projects have been un-
dergoing development for a number of years. As a by-
product of these research groups, products like OpenID[13],
Microsoft .Net Passport[11] were developed.

Both of the projects mentioned above aim at offering the
user a single sign-on structure. The .Net Passport frame-
work provides a number of Microsoft-owned servers on which
each user has an account. Using this infrastructure Mi-
crosoft are pushing forward the idea that a user should have
the facility for logging into a website (e.g. logging into hot-
mail) and not needing to log into any other page including
ones in separate domains. OpenID tries to push forward a
similar concept by offering an infrastructure where the user
need only have an account on one domain and should use
this account to authenticate himself accross the web.

These systems aim at providing solutions to the problems
of authentication and trust. However not one of them pro-
vides a solution which could solve both of these problems.
The .Net Passport does not offer a real solution for trust
problems because even though each user should be assigned
a single user login on the internet, it promotes no means of
understanding the user’s profile. For example if a user has
a .Net Passport he/she can login using that passport and
roam about on the internet using this credential, but if the
user is publishing a paper to a website and this user has
already submitted a number of publications before, the .Net
Passport has no means of relating these publications.

OpenID on the other hand offers a structure that is not only
a single login system but provides an infrastructure that can
be used to identify a user as being a member of a certain do-
main for example, if one decides to submit a blog post on a
blog hosted at www.myBlog.com, but his/her current blog-
ging account is found at www.hisBlog.com, using OpenID

the user can be allowed to log into hisBlog.com account
and post a comment on someone else’s www.myBlog.com ac-
count. As the system logs the user and authenticates his cre-
dentials it is also giving access to the site’s security gateway.
OpenID does not let you carry forth information about your
account to use as credentials for trust algorithms. For ex-
ample to make a distinction between two classes in a domain
(e.g. a profressor of science and a student of science) using
OpenID, the only workaround to represent this differnce is
for the two classes to be assigned different domains to log
into (e.g. student login student@student.cs.um.edu.mt, pro-
fessor login professor@professor.cs.um.edu.mt)). Although
this work around does provide a rudimentary means of at-
tributing trust, it can become very hard to manage, and will
only allow the representation of very basic differences be-
tween the classes of users and more complex relations (such
as number of publications, issued or amount of time ded-
icated to students a week). If the user were to write the
policy files manually with no visual tool they would be next
to impossible to keep track of. Policies would need to be
amended every time a change in a user’s credentials occurs.

In this paper we are proposing a structure that can leverage
the power of distributed login mechanisms with an added
extension which integrates a trust framework into it. This
would allow a user not only to authenticate himself/herself
as being registered to a specific domain (like OpenID) but
also to carry forward his/her credentials which can give
him/her credibility over the web. Using Semantic Web tech-
nologies credentials can now be represented in a format that
can be reasoned upon (such as rdf) and this can then be
used as input for a trust engine (such as Rein) giving as a
result the trustworthiness of a website or user.

4. FUTURE WORK
The application being described in this paper is currently
still being developed. Further extensions to the mechanisms
and structures mentioned above are still being refined.

In this paper we have also emphasised the concept that a
ubiquitous security framework might not be the best way
around providing security mechanisms. However more re-
search is needed to devise a framework which could bridge
the transfer of user credentials across domains using a prede-
fined security standard, whilst still allowing the separate do-
mains to make use their own means of authentication mech-
anisms.

Finally an idea which will need to be looked into further, is
that of providing support for Semantic Web Services and Se-
mantic Web Applications. As the web continues to progress,
web services and web enabled applications are becoming ever
more vital for the web and its users. Extending such a frame-
work to support the use of policy feeds could provide these
applications with a subsystem that caters for trust and au-
thentication.

5. REFERENCES
[1] T. Berners-Lee, J. A. Hendler, and O. Lassila. The

semantic web. Scientific American, 284(5):34–43, May
2001.

[2] J. Bradshaw, S. Dutfield, P. Benoit, and J. Wooley.



Software Agents, chapter KAoS: Towards industrial
strength open agent architecture, pages 375–418. MIT
Press, 1997.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
Ponder: A Language for Specifying Security and
Management Policies for Distributed Systems.
Technical report, 2000.

[4] ebay. http://www.ebay.com.

[5] Flickr. http://www.flicker.com.

[6] FOAF. http://www.foaf-project.org/.

[7] L. Kagal. Rei: A policy language for the me-centric
project. Hp labs technical report, hpl-2002-270, HP
Labs, 2002.

[8] L. Kagal and T. Berners-Lee. Where policies meet
rules in the semantic web. Technical report, MIT,
2005.

[9] L. Kagal, T. Berners-Lee, D. Connolly, and
D. Weitzner. Self-describing delegation networks for
the web. IEEE Workshop on Policy for Distributed
Systems and Networks (IEEE Policy), June 5 - 7 2006.

[10] L. Kagal, T. Berners-Lee, D. Connolly, and
D. Weitzner. Using semantic web technologies for
policy management on the web. 21st National
Conference on Artificial Intelligence (AAAI), July 16
- 20 2006.

[11] Microsoft. http://www.passport.net.

[12] K. O’Hara, H. Alani, Y. Kalfoglou, , and N. Shadbolt.
Trust strategies for the semantic web. In Proceedings
of the Trust, Security and Reputation workshop at the
ISWC04, Hiroshima, Japan, Nov. 2004.

[13] OpenID. http://openid.net/.

[14] Riya. http://www.rija.com.

[15] A. Uszok, J. M. Bradshaw, M. Johnson, and
R. Jeffers. Kaos policy management for semantic web
services. IEEE INTELLIGENTSYSTEMS,
284(5):32–41, July-August 2004.

[16] W3C. http://www.w3.org/.

[17] W3C. http://www.w3.org/P3P.

[18] W3C. OWL Web Ontology Language 1.0 Reference.
http://www.w3.org/TR/2002/WD-owl-ref-20020729,
July 2002.



Functional HDLs: A Historical Overview

Joseph Cordina
Dept. of Computer Science and A.I.

New Computing Building
University of Malta, Malta

joseph.cordina@um.edu.mt

Gordon J. Pace
Dept. of Computer Science and A.I.

New Computing Building
University of Malta, Malta

gordon.pace@um.edu.mt

ABSTRACT
When designing hardware systems, a variety of models and
languages are available whose aim is to manage complexity
by allowing specification of such systems at different abstrac-
tion levels. Languages such as Verilog and VHDL where
designed with simulation in mind rather than synthesis and
lack features such as parametrised complex circuit defini-
tions, a must for the design of generic complex systems. A
more modern approach is the use of functional languages for
hardware description that take advantage of the inherent ab-
straction in this paradigm, resulting in a more concise and
manageable description of the system. This paper gives an
overview of different functional language implementations
for hardware description, highlighting their historical signif-
icance in terms of their capabilities and design approach.
We will compare and contrast different ways that certain
features, such as circuit sharing, have been implemented in
these.

Keywords
Hardware Description Languages, Language Embedding, Func-
tional Languages

1. INTRODUCTION
When an electrical engineer needs to specify a complex sys-
tem, he or she certainly does not specify the system by list-
ing every single gate and connecting them. The usual tech-
niques of modularity, re-use and abstraction are applied to
improve both development time and also the quality of the
final system. After specifying the system using some struc-
tural description, the engineer may want to perform actions
on the circuit described:

• Simulate the circuit. At the very least the designer
of the system would want to run a simulation of the
circuit to observe its behaviour. This is also useful
for testing the eventual circuit, where test cases are

simulated on the circuit description and on the circuit
proper.

• Verify the circuit’s behaviour. Ideally one should
be able to run some model checking techniques to ver-
ify that the described circuit obeys from specification.
Having this facility increases the confidence of the cir-
cuit and also helps in discovering certain obscure bugs
early on prior to the expensive hardware realization
process.

• Gather knowledge about the circuit. These are
metrics on the circuit such as number of components
or expected signal propagation delay. More complex
things which are desirable are behavioural description
of the circuit, and an analysis of non-functional as-
pects.

• Netlist generation. Eventually the circuit will need
to be placed in hardware, and thus it is crucial that
the original circuit description is translated to the gate
level together with an unambiguous description of how
the gates connect to each other (also known as the
netlist). The more abstract the specification language
and the more automatic the low level description gen-
eration, the easier it is for the systems designer. It is
also assumed that the original semantic behaviour of
the system is maintained when the netlist is generated.

• Circuit Transformation. It is also commonly de-
sirable for the designer to be able to make changes to
the original circuit specification or to the netlist. This
could include changes in functionality or tweaking the
circuit to decrease the number of required components.
Changes could be the result of bug-fixing or to tailor
the system for re-use. Automated circuit transforma-
tion would be highly desirable.

The first step to allow the above is to generate some lan-
guage that is able to describe the final target system. Very
popular languages are VHDL and Verilog [1]. These lan-
guages offer a variety of features such as allowing the user
to specify the circuit using a structural description of the
circuit, alternatively using a behavioural description of a
circuit, efficiently simulating the target system, synthesiz-
ing the high-level description to hardware and being general
enough to describe any hardware system. One thing that
is immediately obvious when looking at VHDL and Verilog
compilers it that a lot of work has been done on optimising



them for simulation. In turn this led to the situation that
synthesis becomes a very difficult process and it is not un-
common that one specifies a system that behaves differently
after synthesis [4]. One can still use the behavioural descrip-
tion for testing, yet it obviously is not an ideal scenario. In
addition, it soon became apparent that certain circuits are
very difficult to specify in either VHDL or Verilog. Earlier
versions of VHDL did not allow one to define complex cir-
cuits which vary according to the definition’s parameter (for
example a circuit which is made up of a number of compo-
nents, the number of which is defined as a input parame-
ter inside the circuit’s definition). More modern versions
allow a very limited subset of these1. In brief, while Ver-
ilog and VHDL are very successful tools, they do not lend
themselves easily to higher-order descriptions when giving
the structural description, thus limiting the amount of ab-
straction one can have. These higher-order descriptions are
usually known as connection patterns and are functions that
take other circuits as input parameters and whose outputs
are generic patterns of the input circuits, for example rows,
trees or arrays of circuits.

What we discuss in this document is an approach that has
proved to be very successful in describing circuits at multiple
levels of abstraction, while being able to maintain easy and
automatic synthesis and simulation. We concentrate mainly
on the structural description of circuits, even though we
mention briefly some recent research work in terms of auto-
matic synthesis of behavioural descriptions. Also we limit
ourselves to describing synchronous systems, due to the fact
that combinational circuits with feedback can only converge
to a specific fixed output when taking into account low level
propagation delay, something which one normally tries to
abstract away from.

2. FUNCTIONAL HDLS
We will now discuss how the functional language paradigm
has been been used to allow the specification of hardware
systems. This has been done using one of two approaches:
the development of new functional languages or the use of
existing languages and embedding these with hardware de-
scription capabilities.

2.1 Early Work
Following Backus’ Turing Award Paper in 1978, it was im-
mediately obvious that descriptions of programs in func-
tional languages tend to be concise and since abstraction is
implicit in the model, it is an ideal platform for describing
complex systems. In 1984, Sheeran [17] developed a variant
of FP, µFP, and used it to describe the tally circuit. What
is apparent is that the definition was much more under-
standable and concise than the same description in VHDL
or Verilog (languages that had still to be created). One of
the reasons is that the circuit was defined recursively, thus
lending itself perfectly to the functional style of program-
ming. In addition, such a concise description makes it easier
to debug and to modify.

In µFP, circuits are defined in terms of built in connection
patterns, i.e. functions that accept circuit descriptions as

1This is achieved through the generic keyword but is still
not generic enough!

input parameters and connect these descriptions together
depending on some other input parameters. The successor of
µFP was Ruby [18]. In Ruby, while maintaining the concept
of combinators, it looks at circuits as relations on streams.
In other words, inputs and outputs are seen as a stream of
data and circuits as the functions transforming them. This
gives the advantage that components such as a delay can be
easily specified.

2.2 Functional Embedded Languages
Early attempts to create functional hardware description
languages (HDLs) concentrated on the creation of new lan-
guages that make use of the functional paradigm. Yet this
entails the construction of compilers and interpreters for
each new language and also does present the problem of de-
ciding upon the syntax and semantics of each new in-built
feature.

An alternative approach, is to embed a hardware descrip-
tion language in a generic host language. This allows one
to make use of all the features of the host language, thus
taking advantage of all the packages available for the host
language, including compilers and debuggers. Another large
advantage is that the written circuit descriptions are them-
selves objects within the host language and can thus be ma-
nipulated, inspected and transformed. To embed the new
language, one usually creates new libraries to allow the de-
scription of hardware in the host language.

One the earliest attempts to create an embedded HDL was
HDRE [12]. This was implemented in Daisy, a non-strict
functional language. In HDRE, wires are treated as a stream
of values using lists. One can then easily simulate the cir-
cuit by defining circuits as transformation functions on these
lists. One can also synthesize the circuit’s definitions by hav-
ing alternate values within the list and defining the circuits
themselves as functions on lists of generic types. Depending
on the type of values within the lists passed to the func-
tions, one can evaluate (i.e. simulate) the circuit or one can
generate a circuit description(i.e. netlist). This approach is
called shallow embedding. A typical implementation within
a Haskell-like language would be as follows:

type Signal = [Bit]

inv::Signal -> Signal

inv = map bit_invert

bit_invert::Bit -> Bit

bit_invert True = False

bit_invert False = True

Having a lazy programming language, one can also talk
about infinite lists which allows any complex circuit to be
specified, such as delay circuits whose delay is an input pa-
rameter. The biggest disadvantage with shallow embedding
is that since circuits are programs within the language, they
cannot be inspected and thus something simple like gener-
ating the number of gates in the target netlist is impossible.



2.3 Data Types and Deep Embedding
Instead of using lists of values, one can alternatively define
circuit descriptions as values in a recursive data type. Then
one can write functions that take these values and manipu-
late them. Thus the description given above would look as
follows:

data Signal = Inv Signal | Low | High | ...

inv :: Signal -> Signal

inv = Inv

We can also create functions that are able to evaluate a given
circuit description, thus effectively simulate it. Additionally
one can write a function to generate the symbolic interpre-
tation of the circuit, thus resulting in the netlist (symbolic
evaluation).

This approach has been taken by the majority of functional
HDLs today. One the early implementations to make use
of this approach was Hydra [14], a functional HDL imple-
mented in Haskell and now used as a teaching language. In
Hydra one still has to annotate the circuit descriptions when
needing to generate the netlists. A follow up to this language
is Lava [4], a language with a large suite of features includ-
ing automatic synthesis of circuits in VHDL, specification of
generic connection patterns, automatic verification of prop-
erties through the use of observers and an adequate model
checking tool. Another embedded HDL within Haskell is
Hawk [7]. Hawk’s main target is for modeling and simulat-
ing microprocessor architectures. Architectures can be de-
scribed at the behavioural level. As Claessen notes in [4], it
is very difficult to generate netlists from such a high level of
abstraction. In Hawk, high-level components are used as el-
ementary objects within the language and thus its very diffi-
cult to simplify these automatically to their gate-level coun-
terparts. Another deeply-embedded HDL, this time within
ACL2 is DE2 [9]. This language is mainly targeted towards
rigorous hierarchical description and hierarchical verification
of finite-state machines. Another variant is the modeling of
streams within Daisy [10], a descendant of LISP, which can
be used to model communication between self-timed com-
municating processes.

2.4 Haskell and Embedding
As one can see, Haskell is being used extensively for the use
of embedding hardware description languages. One of the
main reason for this is purely historical, in that the people
working on embedded HDLs have been working closely with
the Haskell development team. Yet arguably Haskell has got
a very strong type system and is well renown for its elegance
and clarity of syntax and semantics.

Other languages have also been used to embed within them
HDLs, some with more success than others. There are
several groups working on different languages yet one that
seems very promising is the construction of an HDL within
reFLect, a functional language based on ML [11]. Interest-
ingly within such a language one can make use of shallow
embedding and then use the reflection capabilities2 to ma-
2reFLectis able to reason and manipulate about the programs
written within it, using quote and unquote operators

nipulate the circuit functions, thus arbitrarily changing from
shallow to deep embedding as required.

Deciding to embed within a host language does have its dis-
advantages, primarily that one has to live with limitations
of a generic language that was not designed primarily as an
HDL. Within Haskell, one cannot define types that can also
be given the allowed size of the type. These are known as
sized types. Certain circuits makes certain assumptions on
their input and output types and thus it would be desirable
to be able to talk about type sizes within Haskell. Addi-
tionally as noted in [4], it would be helpful if Haskell was
able to distinguish easily3 between parameters to circuit de-
scriptions, at the very least between the inputs and outputs
signals.

3. OUTPUT SHARING AND FEEDBACK
It is obvious that one inherits a lot of advantages when mak-
ing use of a functional language for hardware description.
One major feature is referential transparency whereby any
expression will always yield the same result for the same ar-
guments, a property which is assumed in hardware and sub-
sequently components are seen as functional elements. In
functional languages, referential transparency is a result of
lambda beta reduction, whereby evaluation becomes a sim-
ple exercise of argument replacement. Unfortunately this
hides away context and does not allow us to refer to inter-
nal components form other parts of the program.

Consider Figure 1 that depicts two typical circuits made
up of several components. When describing the first in a
Haskell-like Language, one would use:

circuit_i::Signal -> Signal -> Signal

circuit_i in1 in2 =

let interm = f in1 in2

in g interm interm

While this definition might look strange, we know it will be-
have correctly precisely because of referential transparency
whereby the evaluation of g is applied to two separate eval-
uations of interm. Yet this evaluation strategy leads us to
the realization that circuit (ii) cannot possibly be described
since f would have to be evaluated twice. Implementing
the second circuit as follows, clearly highlights the resulting
similarity between the first and second circuits.

circuit_ii::Signal->Signal->(Signal,Signal)

circuit_ii in1 in2 =

let interm = f in1 in2

in (g1 interm, g2 interm)

While this has no effect on its behavioural semantics (thus
its simulation), it does have a huge effect when this circuit
is realised in hardware. Since the above naive description
of this circuit will result in two separate and identical im-
plementations of f, this will result in a larger number of
components than is strictly required.

3Note that this is possible in Haskell as shown in Wired, yet
the techniques used are not straightforward



(i)
 (ii)


in1


out


f


g


in2

f


in1


in2


f


g
1


g
2


out1


out2


Figure 1: Typical circuits. (i) makes use of two identical circuits while (ii) shares the output of one single
circuit.

inp

out


Figure 2: Circuit containing feedback. This circuit
will alternate from true to false with every clock
cycle, initiated by a true input.

The situation worsens when one has feedback loops, a com-
mon occurrence in real circuits. Consider Figure 2 where we
have a typical circuit that inverts its output per cycle4. It
is made up of an OR gate, a latch (a component that delays
its input by one clock cycle) and an inverter. At first glance,
one would implement such a circuit using the following code:

circuit::Signal

circuit inp =

let out = inv (latch (or (inp,out) ))

in out

Unfortunately when trying to generate the netlist of this cir-
cuit, a functional language compiler would try to expand the
out argument in the second line, whose evaluation depends
on the value of out again within the OR gate. This cyclic
dependency has no terminating condition, and thus would
be expanded until there is no more working stack space.

Such a terminating condition can only be found if the HDL
in its execution trace can recognise components that it has
already visited. Such a clause would also facilitate wire shar-
ing as demonstrated in the beginning of this section. Note
that through the use of shallow embedding and functional
laziness, one can solve very nicely these problems, yet as
noted before, shallow embedding does not allow us to anal-
yse the circuit description within the program.

3.1 Wire Forking
One solution we can envisage is the use of a circuit that
explicitly represents the forking of a particular output wire
(see Figure 1(ii)). The semantics of this fork circuit is that
an input wire is connected to this circuit that outputs two
or more wires containing a copy of the input wire. This
circuit can then be translated in the netlist generation to
the diagram shown in the figure. This approach has sev-
eral drawbacks, most importantly that the use will have to
explicitly make use of this fork circuit to assemble the cir-

4While such a circuit usually requires a synchronisation in-
put, this has been omitted to simplify the circuit.

cuits. In addition, we cannot envisage how this can solve
the problem of feedback loops.

3.2 Explicit Naming
A better solution is to give a component an explicit name.
This name will then be used when generating the descrip-
tion of the circuit. By storing the names of symbolically
evaluated components and not evaluating already seen com-
ponents, one can avoid having infinite recursion loops. A
naive implementation would simply keep a list of names of
evaluated components, and then traverse this list for every
component that has to be evaluated. When implemented
within a lazy functional language, making use of certain
techniques that delay evaluation to the last possible moment
can speed up evaluation considerably [8].

This approach was implemented in Hydra and proposed by
O’Donnell in [13]. The code for the inverter circuit would
now look as follows, where the inverter has been been given
an explicit name.

circuit::Signal

circuit inp =

let out = inv Name1 (latch (or (inp,out) ))

in out

This code would not generate an infinite description since
Name1 will only be evaluated once. Another advantage of
this approach is that the explicit name can be carried on all
the way to the netlist generation, thus having a reference to
the top-level design, aiding in debugging. Yet a major draw-
back is that it relies on the user to keep track of component
names. While this might be a trivial task, it does tend to
increase the possibility of error. One alternate approach is
to make use of the fork approach mentioned above and one
just explicitly names the fork components, thus reducing the
management overhead required.

3.3 Monadic State
In traditional imperative languages, one makes use of vari-
ables to store data that will be needed by subsequent com-
putations. In functional languages, one makes use of state
monads to store some data through some computation [20].
In the first version of Lava [16], monads were used to hide
away the details of components that have already been eval-
uated and need to be re-used. Using this method, a circuit
identifier can be created automatically. While this approach
does away with the user having to specify the names for
components, it does require the user to use special opera-
tors and ways of programming that tend to quickly make the



code unreadable. In addition, to express feedback loops one
needs to make use of some very nasty looking definitions.

3.4 Non­updateable references
Another approach proposed by Claessen and used in the
latest version of Lava [6] is the use of non-updateable refer-
ences resulting in observable sharing. Here the problem of
sharing of wires is solved through the use of references, very
similar to pointers in C. By allowing references to circuits
and then evaluating reference equality, sharing can be easily
implemented transparently from the user. In addition, both
circuits shown in Figure 1 can be easily specified. Thus from
the user’s point of view, the only significant change is the
types of the arguments to circuits.

The introduction of references in a functional language means
that referential transparency is not upheld and one could
also end up with side-effects. In Lava, the impact is limited
by enforcing the references to be read-only. Underneath the
hood, observable sharing is achieved without resorting to
changes in the compiler by taking advantage of compilers
that automatically evaluate an expression only once when
this is repeated5.

4. RECENT DEVELOPMENTS
One major drawback of functional embedded languages is
that due to their abstraction mechanism, they are unable to
describe non-functional aspects. In other words, while they
are able to describe the components of the circuits (that
contribute to the function of the circuits), an engineer might
want to describe the components’ eventual placement, how
they are connected in terms of distance of wiring, etc. As
importantly, before burning to hardware, the wires and the
area configuration needs to be analysed since it has a direct
impact on the cost of production. The reason why the de-
scription of non-functional aspects is difficult in functional
HDLs is that it would require descriptions that cannot be
evaluated, thus breaking the abstraction levels. Wired [2]
is an extension to Lava where the placement of wires in
the final circuit can be specified within the language. A
series of operators are provided, with which one can con-
nect different components together and specify their relative
placement. One can also analyse the eventual space require-
ments and also power consumption. This approach has also
been applied by Taha [19] where in their implementation,
two specifications for the generation of the circuit are given.
One specification talks about the circuit itself and the other
specifies domain-specific optimizations targeted at the cir-
cuit generated. This approach avoids the transformation of
circuits after they have been generated. Note that when us-
ing VHDL or Verilog, one specifies these aspects by using a
different specification language than is used to describe the
circuit. Yet this just adds another layer which the use has
to manually correlate. As of yet, the problem of the com-
plete specification of these aspects in a functional way has
not been solved.

In our discussion, we have been mainly concerned with func-
tional HDLs that can describe circuits by using a structural

5This implies that the solution is not entirely portable. A
naive compiler might not be able to implement observable
sharing correctly.

language, normally embedded within a functional language.
In 2002, Claessen and Pace [5], showed a technique that
allows the specification of a circuit using a behavioural de-
scription language. By embedding the behavioural language
syntax using data types (very much like HDLs are embed-
ded), one can specify the semantics of the language syn-
tax in terms of other circuits (thus defining its semantics).
Furthermore, by making use of the netlist generation mech-
anism within the HDL, one can easily also automatically
synthesize the behavioural description. By making use of
previously mentioned techniques, one can also verify prop-
erties about the behavioural program. In 2005, Claessen and
Pace [15], also showed how one can verify properties about
the compilation process itself. At time of writing, the au-
thors of this paper are currently working on implementing
an industry standard language, Esterel[3], into Lava allow-
ing complex behavioural programs to be specified while also
guaranteeing the semantics during compilation.

5. CONCLUSION
Hardware systems are ever increasing in complexity, and
are placing large demands on the hardware designer, both in
terms of development time and complexity management. To
solve these problems, the standard approach is to use differ-
ent levels of abstraction and then map each layer to the one
underneath. This was the approach taken with VHDL and
Verilog, even though the mapping between some levels was
not automatic and rarely dependable. Another approach is
the use of hardware description languages that make use of
functional programming paradigm, viewing circuits as maps
between the inputs to the outputs. The main advantage of
this paradigm is that abstraction is an implicit concept.

In this paper we have seen an overview of several functional
HDLs in terms of their historical development. According
to our opinion, the most advanced functional HDL to date
is Lava with all its supporting libraries, automatic synthesis
of circuits and automatic verification capabilities. We have
also investigated a small selection of hardware characteris-
tics that tend to be incompatible with the functional way
of programming, namely circuits containing feedback and
non-functional specification of circuits. We saw how these
two characteristics have been recently tackled. We envisage
several other approaches will arise in the near future since
a lot of ongoing work is being done to solve these problems.

6. REFERENCES
[1] P. J. Ashenden. The Designer’s Guide to VHDL.

Morgan Kaufmann Publishers, 1996.

[2] C. Axelsson and Sheeran. Wired: Wire-aware circuit
design. In Charme 2005, LNCS 3725. Springer, 2005.

[3] G. Berry. The Foundations of Esterel. In Proof,
Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 1998.

[4] K. Claessen. Embedded languages for describing and
verifying hardware, April 2001. Dept. of Computer
Science and Engineering, Chalmers University of
Technology. Ph.D. thesis.

[5] K. Claessen and G. J. Pace. An embedded language
framework for hardware compilation. In Designing
Correct Circuits ’02, Grenoble, France, 2002.



[6] K. Claessen and D. Sands. Observable sharing for
functional circuit description. In Proc. of Asian
Computer Science Conference (ASIAN), Lecture
Notes in Computer Science. Springer Verlag, 1999.

[7] B. Cook, J. Launchbury, and J. Matthews. Specifying
superscalar microprocessors in HAWK. In Formal
Techniques for Hardware and Hardware-Like Systems.
Marstrand, Sweden, 1998.

[8] HaWiki. Typing the knot, cyclic data structures.
Available at
http://www.haskell.org/hawiki/TyingTheKnot.

[9] W. A. Hunt, Jr. and E. Reeber. Formalization of the
DE2 Language. In The Proceedings of the 13th
Conference on Correct Hardware Design and
Verification Methods (CHARME 2005), No. 3725,
pages 20–34. Springer-Verlag, 2005.

[10] S. D. Johnson and E. Jeschke. Modeling with streams
in daisy/the schemengine project. In M. Sheeran and
T. Melham, editors, Designing Correct Circuits
(DCC’02). ETAPS 2002, 2002. Proceedings of the
Workshop on Designing Correct Circuits, held on 6–7
April 2002 in Grenoble, France.

[11] T. Melham and J. O’Leary. A functional HDL in
ReFLect. In Designing Correct Circuits, Mar. 2006.

[12] J. O’Donnell. Hardware description with recursive
equations. In IFIP 8th Internation Symposium on
computer Hardware Description Languages and their
Applications, pages 363–382. North-Holland, 1987.

[13] J. O’Donnell. Generating netlists from executable
circuit specifications in a pure functional language. In
Functional Programming Glasgow, pages 178–194.
Springer-Verlag Workshops in Computing, 1993.

[14] J. O’Donnell. From transistors to computer
architecture: Teaching functional circuit specification
in hydra. In Functional Programming Languages in
Education, Volume 1125 of Lectures Notes in
Computer Science. Springer Verlag, 1996.

[15] G. J. Pace and K. Claessen. Verifying hardware
compilers. In Computer Science Annual Workshop
2005 (CSAW’05). University of Malta, Sept. 2005.

[16] M. S. Per Bjesse, Koen Claessen and S. Singh. Lava -
hardware design in haskell. In International
Conference on Functional Programming. ACM
SigPlan, September 1998.

[17] M. Sheeran. µfp, An Algebraic VLSI Design
Language. In LISP and Functional Programming,
pages 104–112. ACM, 1984.

[18] M. Sheeran. Describing Hardware Algorithms in Ruby.
In Functional Programming, Glasgow 1989. Springer
Workshops in Computing, 1990.

[19] W. Taha. Two-level languages and circuit design and
synthesis. In Designing Correct Circuits, Mar. 2006.

[20] S. Thompson. Haskell, The Craft of Functional
Programming. Pearson Assison-Wesley, 2nd edition,
1999.



System for Spatio-Temporal Analysis of  
Online News and Blogs 

 

Angelo Dalli 

University of Malta 
 

angelo.dalli@um.edu.mt

 

ABSTRACT 
Previous work on spatio-temporal analysis of news items and 
other documents has largely focused on broad categorization of 
small text collections by region or country. A system for large-
scale spatio-temporal analysis of online news media and blogs 
is presented, together with an analysis of global news media 
coverage over a nine year period. We demonstrate the benefits 
of using a hierarchical geospatial database to disambiguate 
between geographical named entities, and provide results for an 
extremely fine-grained analysis of news items. Aggregate maps 
of media attention for particular places around the world are 
compared with geographical and socio-economic data. Our 
analysis suggests that GDP per capita is the best indicator for 
media attention. 

Categories and Subject Descriptors 
H.5.4 [Information Interfaces and Presentation]: 
Hypertext/Hypermedia; H.3.3 [Information Storage and 

Retrieval]: Information Search and Retrieval; J.4 [Social and 

Behavioral Sciences]: Economics and Sociology;  

General Terms 
Algorithms, Theory, Performance, Design, Economics 

Keywords 
Geolocation, disambiguation of geographical named entities, 
media attention, news, blogs, social behavior, spatio-temporal 

1. INTRODUCTION 
Online news and, more recently, blogs, are increasingly 
becoming one of the most popular destinations for Internet 
users, slowly increasing their influence to levels approaching 
those of traditional media [1]. Media attention and popular 
attention shifts continuously as new events happen in the world. 
Generally, media attention influences popular attention, 
although the reverse also occurs to a lesser degree. Attention in 
this context can be conveniently defined as the number of 
documents on a given subject, which is the same definition used 
by Zuckerman in his seminal paper on Media Attention profiles 
[5]. 

Existing news and blogs classification systems such as Google 
News and Blog Pulse usually focus on topic classification or 
keyword frequency tracking over time [6,7]. Previous work on 
georeferencing texts with a geospatial aware NER system has 
addressed the issues of spatial grounding of geographical 
entities and geographical name disambiguation [9,10,11,12,13] 
utilizing input from text analysis or Internet IP and DNS data 
[14]. However, almost none of these systems have 
comprehensively accounted for the temporal aspect associated 
with geographical named entities. This work (partly supported 
by EPSRC grant EP/C536762/1 and a small grant from 

Linguamine) presents a system, cpGeo, which analyses 
mentions of different geographical locations over time in news 
texts and blogs, creating real-time maps of shifting attention 
profiles that are convenient for highlighting current hot spots 
and determining what places capture the most attention in the 
world over time. Our interest is to find a set of indicators that 
are indicative of the level of attention enjoyed by different 
places in the world, and hence, the people living at those places. 

2. ANALYSIS SYSTEM 
The spatio-temporal analysis system, called cpGeo, is made up 
of five components (a high-performance web crawler, 
distributed storage, knowledge extraction, geospatial processor 
and data mining system) that allow download and analyze 
millions of items in a highly scaleable manner and generate 
summary reports. 

cpGeo currently downloads between 18,000 to 21,000 news 
items every day from around 6,000 sources. Our level of 
coverage is rapidly approaching 100% of all online news 
published on the Internet everyday. In order to have adequate 
coverage of news from earlier years, we supplemented the news 
through the LDC English Gigaword corpus [14]. Blog entries 
are also being downloaded at a rate of around 156,000 blog 
items a day from around 90,000 authors. The cpGeo knowledge 
extraction subsystem performs various tasks related to basic 
text document processing and knowledge extraction. 
Documents are indexed and processed through a custom-built 
multiple document summarisation system that automatically 
detects document duplicates and merges highly similar 
documents together. Named entities and related events are 
identified and extracted to a temporal database. The geospatial 
processor identifies and disambiguates references to 
geographical locations around the world, and can produce 
graphical GIS-like presentations of its output results. The 
clustering and data mining system, utilizes a multivariate 
cluster analysis technique with an integrated rule learning 
model [18,19,20] and a small database of world knowledge that 
is used to interpret results correctly. 

3. GEOSPATIAL PROCESSING 
The cpGeo geospatial processor has three main components 
namely, the Multilingual Geospatial Database, a Multilingual 
Geographical Named Entity Recognizer (GNER) and a 
Disambiguation Module. The database has entries in 139 
different languages and 3 main hierarchical levels covering 251 
countries, 4,815 administrative regions and 7,574,966 
individual place names and features. The database allows us to 
take into account the element of time and the fact that place 
names sometimes change over time. 

Figure 1 shows the spatial database coverage, with shaded 
regions representing recognized geographical locations in the 
world. Some regions have lower coverage density (this is for 



example apparent for India, which has high population density 
but lower coverage in the spatial database). 

 
Figure 1. Spatial Database Coverage. 

 
The geospatial database also contains additional information 
such as the latitude and longitude using the WGS84 geodetic 
reference system, feature type (populated place, street, etc.), 
relative importance, and aliases. The GNER uses the feature 
type information to determine the reliability of entries in the 
geospatial database, making it possible to identify, for example 
that “Lascaux”, “Lascaux Cave”, “Cave of Lascaux”, and “La 
Grotte de Lascaux” refer to the same location. The GNER also 
has a geographic anaphora resolver, enabling it to know, for 
example, that “Bay Area” is referring to “San Francisco Bay 
Area”. 

Surprisingly, there are many duplicated place names in the 
world (around 10% to 25% of all place names have some 
duplicate elsewhere, depending upon the region or country). 
The GNER uses a mixture of heuristics and statistics to 
successfully disambiguate between duplicates. Geographical 
proximity and relative importance of other place names 
mentioned in the same context are considered in the 
disambiguation process. 

The GNER also uses the knowledge extraction system to 
determine whether ambiguous names should be classified as 
person names or place names (e.g. to determine whether 
“Washington” is referring to the city, state or surname), 
enabling it to successfully resolve ambiguities in over 98% of 
cases. cpGeo achieved an F-measure of 0.9965 compared to 
0.904 for the Perseus system [13]. 

4. EVALUATION AND RESULTS  
We have evaluated the cpGeo system on our main news items 
database spanning from 1994 to 2005 (a total of 4,197 days). 
On average, every day had mentions of around 500 unique 
location names with 16,500 mentions of geographical named 
entities. Figure 2 shows the output of the system for 1 January 
2000. Generally, when viewed on a global scale, the map 
changes slowly, although spikes and changes occur rapidly on 
local scales. The cpGeo system also keeps aggregate statistics 
of all place names mentioned together with their frequency, 
thus building up a map that indicates the regions in the world 
that are receiving the most media attention (as shown in Figure 
3). In the United States it is apparent that North-East states 
receive more attention than other states, with the exception of 
California. In Europe, the UK and Belgium also receive more 
attention, while in Asia, Japan gets mentioned most frequently 
(with China catching up). 

The aggregate maps can be useful in predicting the background 
level of attention that a particular region usually receives, 
providing better means of identifying spikes and anomalies 
instead of using simple threshold or rate increase methods. 
Aggregate maps represent a probability density function for the 

amount of news coverage likely to occur at any particular 
location in the world. 

 
Figure 2. System Output for 1 January 2000. 

 
Our results show that the top 80 mentioned place names 
consistently dominate the daily global news, generating more 
than 50% of all mentions on average. The top 3 daily place 
names generate around 11% of all mentions in the news. 

 

Figure 3. World Average News Media Attention. 

We have also evaluated the cpGeo system on a small 
geographical scale using a four year collection of news about 
the smallest EU member state of Malta. Based on this 
evaluation we have determined that the cpGeo system can 
produce accurate results at a global resolution of around 3m x 
3m. 

Various statistical indicators were examined in an attempt to 
find correlations between statistical indicators and the cpGeo 
media attention ratings, with Number of Unresolved 
International Disputes, GDP Per Capita, and Number of 
Internet Users being the top three indicators that correlate with 
media coverage with GDP per capita being the most significant 
indicator of media attention. 

The clustering system also produced 26 distinct clusters of 
countries based on these indicators, showing that for poorer 
countries, the secondary determining indicator for media 
attention is their number of disputes, while for richer countries 
the secondary determining factor is the number of Internet 
users. Thus, poorer countries are often in the news whenever 
they are involved in some armed conflict or dispute, and are 
most likely to be portrayed in a negative fashion. 

The cpGeo system results also show that certain countries are 
abnormally represented in the media and blogs. The top 5 most 
over-represented countries in the world (with respect to their 
population levels) are the Holy See (Vatican), Monaco, 
Liechtenstein, Iceland and Luxembourg while the bottom 5 
most under-represented countries are India, China, Brazil, 
Indonesia and Pakistan. There is a huge disparity between the 
top and bottom countries, for example, each Liechtenstein 
citizen gets the same average media coverage equivalent to 
4,800 Pakistanis. 



The Application of Support Vector Machine for Speech 
Classification 

O. Gauci, C.J. Debono, E.Gatt, P. Micallef 

Department of Communications and Computer Engineering 

University of Malta 

Msida 

{olgauc, cjdebo, ejgatt, pjmica}@eng.um.edu.mt 

 

ABSTRACT 
For the classical statistical classification algorithms the 
probability distribution models are known. However, in many real 
life applications, such as speech recognition, there is not enough 
information about the probability distribution function. This is a 
very common scenario and poses a very serious restriction in 
classification. Support Vector Machines (SVMs) can help in such 
situations because they are distribution free algorithms that 
originated from statistical learning theory and Structural Risk 
Minimization (SRM). In the most basic approach SVMs use 
linearly separating Hyperplanes to create classification with 
maximal margins.  
 
However in application, the classification problem requires a 
constrained nonlinear approach to be taken during the learning 
stages, and a quadratic problem has to be solved. For the case 
where the classes cannot be linearly separable due to overlap, the 
SVM algorithm will transform the original input space into a 
higher dimensional feature space, where the new features are 
potentially linearly separable. In this paper we present a study on 
the performance of these classifiers when applied to speech 
classification and provide computational results on phonemes 
from the TIMIT database.  

Categories and Subject Descriptors 
I.5.1 [Pattern Recognition]: Models – Statistical.  

General Terms 
Algorithms, Performance, Theory. 

Keywords 
Speech recognition, Statistical Learning Theory, Support Vector 
Machine (SVM). 

1. INTRODUCTION 
In many practical learning algorithms we find many difficulties 
which manifest themselves in misclassifications during the 
learning phases[1]. Some of these complications are:  
(i) The inefficiency of the learning algorithm itself, for example, 
the convergence to a local minima in gradient-descent based 
algorithms.  
(ii) The size of the hypothesis that can become very large, thus 
requiring a large computational time making the solution 
impractical.  

(iii) The available training set can be small. In this case the 
hypothesis class will become too rich, which leads to overfitting 
and hence poor generalization performance.  
(iv) For a multidimensional search space, the learning algorithm 
requires a large number of parameters to be tuned, making the 
system difficult to use. 

Support Vector Machines are learning systems that utilize a 
hypothesis space of linear functions in the implicitly defined 
feature space, trained using an algorithm from optimization theory 
that calculates a learning bias resulting from the statistical 
learning theory. The use of a kernel function ensures that the high 
dimensional feature space is used efficiently. The overfitting 
problem in the high dimensional feature space requires a learning 
bias which can be derived from the statistical learning theory. 
Optimization theory provides a clear characterization of the 
properties of the solution which leads to the implementation of 
efficient learning algorithms and makes sure that the hypothesis is 
represented in compact form. The convex learning bias will also 
ensure that local minima are not present so a solution can always 
be found efficiently even for training sets with thousands of 
examples[1].   

The structure of this paper is as follows: In section 2 we present 
the theory behind the linear Support Vector Machine. This is 
followed by the concepts of the nonlinear Support Vector 
Machine in section 3. Finally sections 4 and 5 present some 
experimental results and a conclusion respectively. 

2. LINEAR SVM 
The reason behind using Support Vector Machines for 
classification is to find an efficient way of learning by separating 
Hyperplanes in the high dimensional feature space. The 
Hyperplanes must optimize the generalization bounds and the 
learning algorithm must be capable of dealing with thousands of 
training examples. The generalization theory gives a clear set of 
instructions on how to prevent overfitting by controlling the 
Hyperplane margin measures. Optimization theory can then be 
applied to give the necessary mathematical analysis to find the 
Hyperplanes which optimize these measures.  

The Maximal Margin Classifier is the simplest Support Vector 
Machine[1]. It is based on the linear separability of the data in the 
high dimensional feature space and thus cannot be used in many 
real life applications. The Maximal Margin Classifier forms the 
basic building block of Support Vector Machines, i.e. to find the 
most separating Hyperplane in a proper kernel-induced feature 
space. This method is implemented by using a convex 



1

1

: 1

: 1

H w x b

H w x b−

⋅ − = +
⋅ − = −

0,

0

L

w

L

b

∂
=

∂
∂

=
∂

1 for 1,

1 for 1.

i

i

w x b y

w x b y

⋅ − ≥ + = +
⋅ − ≤ − = −

optimization problem, minimizing a quadratic problem under 
linear inequality constraints.  

Suppose that we have N training data points given by 

1 1 2 2( , ),( , ),...,( , )N Nx y x y x y  where the input d
ix R∈  and the 

output { 1}iy ∈ ± . The input is assigned a positive class if f(x) ≥ 0, 

and a negative class otherwise. Considering the case where f(x) is 
a linear function of x, f(x) can be written as, 

( )f x w x b= ⋅ +                                         (1) 

where ( , ) nw b R R∈ × are the parameters that control the decision 

function, and the decision rule is given by sgn(f(x)). As shown in 
Figure 1, a geometric interpretation of this hypothesis is that the 
input space is split into two parts by the Hyperplane, 

0w x b⋅ − =                                       (2)  

The vector w defines a direction perpendicular to the Hyperplane 
while changing the value of b moves the Hyperplane parallel to 
itself. The parameters w and b are referred to as the weight and 
the bias terms respectively.  

 

Figure 1. A Hyperplane (w, b) separating two classes 

 

Further, we want this Hyperplane to have the maximum 
separating margin with respect to the two classes. 
Mathematically, we want to find the Hyperplane, 

                                       : 0H w x b⋅ − =                                    (3) 

and another two Hyperplanes, 

                           (4)
               (5)    

parallel to it, with the restriction that there are no points between 
H1 and H-1, and that the distance between H1 and H-1 is a 
maximum. Figure 2 shows an example for such a scenario where 
some positive examples are on Hyperplane H1 while some 
negative examples are on Hyperplane H-1. These examples are 
called Support Vectors because they define the separating 
Hyperplane. 

The distance of a point on H1 to H is given by:  

                               (6) 

 

Therefore in order to maximize the distance separating the two  

 

Figure 2. Maximal Margin Classifier 

 

classes, we need to minimize Tw w w=  with the condition that 

no example is between the two Hyperplanes H1 and H-1. 

Therefore, 

                        (7) 

                        (8) 

Combining these two conditions we get, 

                (9) 

Now our problem can be written as, 

               
1

min  subject to ( ) 1
2

T
i iw w y w x b⋅ − ≥                        (10) 

However this is a convex, quadratic programming problem in a 
convex set. We can transform this optimization problem into its 
corresponding dual form by first considering the primal 
Lagrangian[1], 

         
1 1

1
( , , ) ( )

2

N N
T

i i i i
i i

L w b w w y w x bα α α
= =

= − ⋅ − +∑ ∑                (11) 

where 0iα ≥  are the Lagrange multipliers. Instead of solving this 

equation, we can solve the Wolfe dual form by maximizing the 
function ( , , )L w b α  subject to the constraint that the gradients of 

( , , )L w b α with respect to the primal variables w and b vanish, that 

is: 

                          (12)
                       

                                     (13) 

 

and the Lagrange multipliers 0α ≥ . Solving equations (12) and 

(13), we get, 

                                 
1

N

i i i
i

w y xα
=

=∑                                            (14) 

and                             
1

0.
N

i i
i

yα
=

=∑                                             (15) 

1w x b

w w

⋅ −
=

( ) 1i iy w x b⋅ − ≥



Substituting equations (14) and (15) into the function ( , , )L w b α  

we find: 

                      
1 ,

1

2

N

i i j i j i j
i i j

L y y x xα α α
=

= − ⋅∑ ∑                            (16) 

In this form the primal variables w and b have been eliminated 
and we end up with only one variable α. When the Lagrange 
multipliers are solved, we can go back to (14) to determine w, and 
we can classify an example x with: 

                         
1

( ) sgn( ( ) )
N

i i i
i

f x y x x bα
=

= ⋅ +∑                          (17) 

3. NONLINEAR SVM 
In cases where the surface which separates the two classes is not 
linear, we have to implicitly transform the data examples into 
another high dimensional space such that the data points will be 
linearly separable in that space. Let the transformation into the 
high dimension feature space be ( )Φ ⋅ . The dual problem now 

becomes[1]: 

                   
1 ,

1
( ) ( )

2

N

i i j i j i j
i i j

L y y x xα α α
=

= − Φ ⋅Φ∑ ∑                   (18) 

The dot product in the high dimensional space is equivalent to a 
kernel function of the input space, 

         (19) 

Therefore, we do not need be explicit about the 
transformation ( )Φ ⋅ . There are many kernel functions that can be 

used to solve this such as the radial basis function: 

                                   

2

22( , )
i jx x

i jK x x e σ
− −

=                             (20) 

SVMs can also be extended to allow for noise or imperfect 
separation, hence the name soft margin Support Vector Machines. 
We do not strictly require the total absence of points between the 
Hyperplanes H1 and H-1, but we penalize the examples that cross 
the boundaries with the finite penalty factor C. We have also 
introduced a positive slack variable 0iξ ≥ in an attempt to include 

points which lie outside the Hyperplane separating their family. 
Figure 3 illustrates graphically the concept of slack variables 
introduced for an imperfect separation. Therefore, the separating 
Hyperplanes become: 

                   (21) 

                  (22) 

     (23) 

We add the penalizing term to the objective function, so that it 
becomes: 

           
1

min  subject to ( ) 1 0
2

T T
i i i i

i

w w C y w x bξ ξ+ − + − ≥∑           (24) 

With this change the corresponding Lagrangian becomes[1]: 

1

1 1

1
( , , , , )

2

                          [ ( ) 1 ]

N
T

i
i

N N

i i i i i i
i i

L w b r w w C

y x w b r

ξ α ξ

α ξ ξ

=

= =

= +

− ⋅ + − + −

∑

∑ ∑
         (25) 

The Wolfe dual problem can now be stated as: 

                  
,

1
max

2
i i j i j i j

i i j

L y y x xα αα= − ⋅∑ ∑                         (26) 

subject to, 

                                   (27)  

                                (28) 

 

The Lagrange multipliers are now bounded by C instead of 
infinity. The solution is again given by: 

                                          
1

N

i i i
i

w y xα
=

=∑                                   (29) 

 

 

Figure 3. Slack Variable classification 

 

4. EXPERIMENTAL RESULTS 
Phonemes from the TIMIT database were segmented into frames 
of length 20 ms with a frame shift of 10 ms and filtered using a 
Hamming window. A Daubechies 10 filter was used to create a 
four level wavelet packet. The energies of the wavelet packets 
were calculated, thus obtaining a 16 dimensional feature vector. 

The complete vowel dataset consisting of 20 phonemes from the 
TIMIT database were used for our experiments. The 20 class 
problem thus consisted of: /iy/, /ih/, /eh/, /ey/, /ae/, /aa/, /aw/, /ay/, 
/ah/, /ao/, /oy/, /ow/, /uh/, /uw/, /ux/, /er/, /ax/, /ix/, /axr/, and /ax-
h/. 10, 000 samples were used to train the SVMs while 2,000 
samples were used for testing. 

During our experimentation the penalization factor C of the SVM 
was set to 60 while the value of σ for the radial basis kernel was 
set to 4. Table 1 presents some of the results showing the 
performance of the Support Vector Machine when vowels from 
the TIMIT Database were combined as many binary problems.   

These results show that SVMs provide a good solution towards 
classification of binary phonemes. SVMs were also tested for 
multiclass applications, where the whole 20 phoneme set was 
used, but the results obtained were far from ideal. Further 
investigation in optimizing these tools is still necessary to apply 
satisfactorily these algorithms for speech recognition. 

  

( , ) ( ) ( )i j i jk x x x x= Φ ⋅Φ

1  for 1i i iw x b yξ⋅ − ≥ + − = +

1  for 1,i i iw x b yξ⋅ − ≥ − + = −

0,i iξ ≥ ∀

0 ,

0

i

i i i
i

C

y x

α

α

≤ ≤

=∑



Table 1. Phonemes from TIMIT Database trained as Binary 

problems 

Binary Problem Precision(%) 

‘iy’ − ‘ih’ 68.7 − 70.65 

‘ey’ − ‘aw’ 86.1 − 93.5 

‘ih’ − ‘aa’ 97.1 − 95.2 

‘iy’ − ‘ow’ 96.5 − 95.2 

‘uw’ − ‘ax’ 76.1 − 75.1 

‘ae’ − ‘aa’ 94.0 − 84.1 

‘ao’ − ‘aa’ 78.1 − 78.6 

‘ax’ − ‘ix’ 89.1 − 87.5 

 

5. CONCUSION 
In this paper we evaluate the performance of a Support Vector 
Machine for phoneme recognition. The results obtained clearly 
show the classification power of Support Vector Machines in this 
application.  Although good results have been achieved in the 
case of binary problems, future research work is required to 
extend these Learning systems for multiclass classification. 

6. ACKNOWLEDGMENTS 
This project is funded by a University of Malta’s Research Grant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. REFERENCES 
[1] N. Cristianini and J. S. Taylor, An Introduction to Support 
Vector Machines and Other Kernel-Based Learning methods, 
Cambridge University press 2000. 

[2] A. Ganapathiraju, J.E. Hamaker, and J. Picone, “Applications 
of Support Vector Machines to Speech Recognition”, IEEE Trans. 
Signal Processing, Vol. 52, No. 8, August 2004. 

[3] C. Ma, M. A. Randolph and J. Dirsh, “A Support Vector 
Machine- Based Rejection Technique for Speech Recognition”, 
Proc. IEEE Int. Conf on Acoustics, Speech, Signal Processing 
2001. 

[4] A. E. Cherif, M. Kohili, A.Benyetteou and M. Benyettou, 
“Lagrangian Support Vector Machines for Phoneme 
Classification”, Proc 9th International Conf. on Neural 
Information Processing, ICONIP 02’, Vol. 5.  

[5] P. Clarkson, and P. J. Moreno, “On the use of support vector 
machines for phonetic classification”, Proc ICASSP March 99’, 
Vol. 5 pp 585-588, 1999. 

[6] J. C. Platt, “Sequential Minimal Optimization: A Fast 
Algorithm for Training Support Vector Machines”, Microsoft 
Research, Tech. report MSR-TR-98-14. April 1998. 

 [7] V. N. Vapnik, The Nature of Statistical Learning Theory, 
Springer – Verlang, New York 2000.  

 [8] R. Herbrich, Learning Kernal Classifiers, Theory and 
Algorithms, MIT Press 2002. 

[9] B. Scholkopf and A. J. Smola, Learning with Kernels, Support 
Vector Machines, Regularization, Optimization and Beyond, MIT 
Press 2002. 

 

 



Evolving Viable Pitch Contours

Kristian Guillaumier

kguil@cs.um.edu.mt
Dept. of Computer Science and AI

University of Malta

ABSTRACT

At a very basic level, a piece of music can be defined as an
organised arrangement of sounds1 occurring both sequen-
tially (as in melody) and concurrently (as in harmony). As
music evolved into a science and an established form of art,
people started studying the characteristics of these sounds
and drew sets of guidelines and rules, that if followed would
produce pieces of music that are aesthetically more pleasing
than others. Early examples can be seen in Pythagoras’ ob-
servations and experiments with blacksmiths’ hammers [1].
Allegedly some 2500 years ago, he was walking by a black-
smith’s shop when he heard the ringing tones of hammers
hitting an anvil. Upon further observation, he realised that
a hammer weighing half as much as a previous one sounded
twice as high in pitch (an octave – ratio 2:1). A pair of
hammers whose weights had a ratio of 3:2 sounded a fifth
apart. Eventually he came to the conclusion that simple
ratios sounded good.

In this paper, we are concerned with the generation of
musical phrases constrained by the rules that governed mu-
sic developed during the so called Common Practice Period
(CPP). This period refers to an era in musical history span-
ning from the 17th to the early 20th centuries [2] and in-
cluded the Baroque and Romantic styles amongst others.
Colloquially, music in the style of the CPP is sometimes
better (but incorrectly) known as ‘Classical’ music.

General Terms

Aleatoric composition, music theory, common practice pe-
riod, genetic algorithms.

1. INTRODUCTION
Computers have been used as an aid in composing mu-

sic since the mid-1950s and the techniques generally em-
ployed fall into the categories of aleatoric composition and

1In this context we refer to sounds of a musical nature –
notes.

.

processes that return permutations of predefined musical
elements such as pre-composed measures of music [6]. In
the former technique, stochastic methods are used to gen-
erate sounds – possibly utilising some musical observations
to guide random processes. In the latter, a number of pre-
defined measures of music are selected and attached to each
other to yield a piece of music. This technique has been prac-
ticed since the 18th century using an algorithm known as the
Musikalisches Würfelspiel (musical dice game) [7]. Mozart
has been known to compose a number of Minuets based on
this algorithm. An interactive example of this method can
be found at [8].

In this paper, we present a Genetic Algorithm (GA) de-
signed to generate pitch contours2 that conform to the rules
used in the CPP. Clearly, the rules we will be considering
form the basis of the fitness function of the GA. Here we as-
sume that the reader is familiar with basic–to–intermediate
theory of music. We refer beginners to any introductory
textbook on the matter such as [3], [4] and [5].

1.1 Rules for Developing Melodies/Pitch Con-
tours

1. Notes in the melody should be diatonic.

2. Most of the melody must progress in stepwise motion.

3. The melody should contain a number of leaps. The
number of leaps depends on the length of the melody
and a leap must always occur in the context of contrary
motion. Also, leaps must be a consonant interval.

4. Melodies should cover the whole range of notes as-
signed to it.

5. The highest note (climax) in a melody should occur
only once, usually in the latter half. This climax note
should be melodically consonant with the tonic.

6. Certain note intervals such as augmented intervals are
unacceptable.

(a) Augmented intervals are not allowed.

2A pitch contour is a sequence of notes that sound melodical
but without possessing any rhythm (essentially, a melody
composed with notes of a single duration only such as
crotchets). Melodies are rhythmically more complex than
pitch contours, but in this text the terms pitch contour and
melody are synonymous.



(b) A diminished interval is not allowed unless the
note following the interval falls between that in-
terval by a perfect or imperfect interval.

7. The note on the seventh degree of the scale must rise
stepwise to the tonic.

8. Melodies in a major scale should start and end with the
tonic or dominant. Melodies in a minor scale should
start and end with the tonic or mediant.

9. Only notes in a single soprano, alto, tenor or bass voice
should be used. Arbitrarily, the soprano range is con-
sidered here (from middle C to G two octaves up).

10. Notes should be repeated rarely.

2. THE GENETIC ALGORITHM
Creating a melody conforming to a set of rules can be

construed as a constraint satisfaction problem. Consider
an 8-note melody to be composed using any of 7 notes (an
octave-worth of diatonic notes). These parameters would
yield 5,764,801 (78) different melodies – the search space.
Longer, more varied melodies would clearly increase the
search space immensely making the problem non-trivial. In
this section we describe a GA used to search the space for
melodies that conform to the rules outlined earlier on. It is
assumed that the reader is familiar with the mechanics of a
GA and its theory. Readers are referred to [9] for a thorough
exposition.

2.1 Chromosome Structure
The scheme used to represent a candidate pitch contour as

a chromosome in our algorithm is straightforward. The chro-
mosome is an array of integers, where each integer represents
a note value in the contour. The integer values representing
each note are borrowed from the Musical Instrument Digital
Interface (MIDI) standard, where, for example, middle-C is
represented by the value 60, C# by the value 61, D by the
value 62, etc... This idea is illustrated in Figure 1.

71 72 71 73 74 73 74 75

Pitch Contour

Chromosome

Figure 1: Chromosome representation of a pitch
contour.

The simplicity of this representation scheme allows for
uncomplicated designs for crossover and mutation operators.
Additionally, the fact that the note values map to the MIDI
standard allows us to export the contour as a MIDI file for
quick auditioning or editing purposes.

2.1.1 Pitch Sets

The possible note values for each locus in the chromosome
(i.e. each possible note in the contour) are selected from a
set of permissable notes called the pitch set. Essentially the
pitch set defines which notes the melody can be composed

of. Restricting the melody to use only notes from a pitch
set has a number of advantages:

1. Ensuring that the notes in the pitch set are diatonic,
implies that any candidate pitch contour will be di-
atonic as well. This implicitly enforces the first rule
mentioned previously.

2. Similarly, by ensuring that the notes in the pitch set
are within the range of a single voice (e.g. the soprano
voice), rule 9 above is implicitly observed.

3. The search space is reduced to the various permuta-
tions of the notes in the pitch set rather than all the
notes in the range of a particular instrument.

2.1.2 Fixed Notes

During setup of the algorithm, certain loci in the chro-
mosome can be fixed to certain notes. For example, the al-
gorithm can be instructed that the first note in the melody
should always be middle-C and no operator, such as a muta-
tion, would be allowed to change it. The allows us to ensure
that the pitch contour would, for example, always start with
the tonic and end with the dominant. By specifying fixed
notes in ‘the middle’ of the melody we can give it a par-
ticular texture or shape. Additionaly, since most notes are
required to progress in stepwise motion, the fixed note effec-
tively becomes an attractor for other notes thereby serving
as a climax note.

2.1.3 Initialisation

In the initial population, chromosomes are initialised to
pitch contours with notes randomly selected from the pitch
set. Fixed notes in the pitch contour are observed – the
fixed notes in any pitch contour are immutable.

2.2 The Fitness Function
The fitness function developed is penalty-based. A fault-

less melody has a fitness value of zero whilst the fitness of a
flawed melody is negative. Essentially, for each rule that is
violated, a penalty value is deducted from the fitness. The
penalties for each rule are interpreted as follows:

1. Rule: Notes in the melody should be diatonic.
Interpretation: This rule can never be violated be-
cause a chromosome can only be composed of notes
selected from a pitch set whose notes are already guar-
anteed to be diatonic. This rule is implicitly observed.

2. Rule: Approximately n% of the melody must progress
in stepwise motion.
Interpretation: Determine the number of expected
stepwise intervals in the melody from n. By observing
the actual intervals in the candidate melody, determine
the number of actual stepwise intervals. If the actual
number of stepwise intervals is less than expected, ap-
ply a penalty (e.g. -5) to the fitness for each expected
interval that is not present.

3. Rule: The melody should contain a number of leaps.
The number of leaps depends on the length of the
melody and a leap must always occur in the context
of contrary motion. Also, leaps must be a consonant
interval.
Interpretation: Determine the number of leaps in



the melody. If the actual number of leaps differs from
some required amount, penalise in proportion to this
difference. If the leap is not consonant, apply a penalty.
For contrary motion, if the leap is preceded by a note
that is not within its interval, apply a penalty. Finally,
if the leap is followed by a note that is not within its
interval, apply a penalty too.

4. Rule: Melodies should cover the whole range of notes
assigned to it.
Interpretation: For each note in the pitch set to
be used that does not occur in the melody, apply a
penalty.

5. Rule: The highest note (climax) in a melody should
occur only once, usually in the latter half. This climax
note should be melodically consonant with the tonic.
Interpretation: Let c be the the number of times
the highest note in the melody occurs. Apply a penalty
to the fitness (c-1) times. The requirement of the cli-
max note occurring in the latter half of the melody
and being consonant to the tonic can be implicity ob-
served by setting the climax note as a fixed note in the
chromosome.

6. (a) Rule: Augmented intervals are not allowed.
Interpretation: Apply a penalty for each aug-
mented interval in the melody.

(b) Rule: A diminished interval is not allowed unless
the note following the interval falls between that
interval by a perfect or imperfect interval.
Interpretation: For each diminished interval in
the melody, if the next note does not lie between
that interval and is a perfect or imperfect interval,
apply a penalty. Also, a penalty is applied if the
melody ends in a diminished interval (there would
not be a note following the interval).

7. Rule: The note on the seventh degree of the scale
must rise stepwise to the tonic.
Interpretation: For each note on the seventh degree
of the scale that does not rise to the tonic, apply a
penalty.

8. Rule: Melodies in a major scale should start and end
with the tonic or dominant. Melodies in a minor scale
should start and end with the tonic or mediant.
Interpretation: This rule is implicitly observed by
setting the starting and end notes as fixed notes in the
chromosome.

9. Rule: Only notes in a single soprano, alto, tenor or
bass voice should be used. The soprano range is con-
sidered here (from middle C to G two octaves up).
Interpretation: This rule is implicitly observed by
setting the notes in the allowed pitch set to those in a
desired voice range.

10. Rule: Notes should be repeated rarely.
Interpretation: Count the number of repeated notes
in the melody. If this amount varies from some ex-
pected value, apply a penalty proportional to this dif-
ference.

2.3 Genetic Operators and Other Parameters

2.3.1 Crossover

In our algorithm, the crossover operator is a basic imple-
mentation of single-point crossover. A illustrated in Figure
2, a common locus in two parent melodies is randomly se-
lected, and notes between the two parents are swapped along
that interval. Parent melodies are selected to participate in
crossover using a roulette-wheel selection scheme.

A crossover rate value governs how many parents are se-
lected for crossover purposes. A crossover rate of 80% means
that after selection, 80% of the new population will be made
up of offspring that were generated by mating the parents.
The remaining 20% of the new population is populated with
new, randomly-created chromosomes.

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 2: Single-Point Crossover between two pitch
contours.

2.3.2 Random Mutations

In the algorithm a random mutation is implemented as:

1. The replacement of a random note in the melody with
any random one in the pitch set of allowed notes.

2. The swapping of two, random notes in the melody.

A random mutation rate is used to determine the proba-
bility that a child chromosome created after crossover will be
randomly mutated. The mutation operator is partial to the
fixed note configuration of the chromosomes. A mutation is
aborted if it would effect a fixed note.

2.3.3 Guided Mutations

This operator, works by altering a note in an attempt to
rectify a deficiency in the melody. For example, if it is de-
termined that a melody contains too little stepwise motion,
a note in a non-stepwise interval is changed to make that in-
terval stepwise. Similarly, if an augmented interval is found
in a melody, a note in that interval is replaced to change the
improper interval.



A guided mutation rate is used to determine the probabil-
ity that a random child chromosome created after crossover
will be mutated ’intelligently’ as described above.

2.3.4 Elitism

The roulette–wheel selection mechanism used ensures that
the fittest parents are paired to yield the new offspring pitch
contours. Nonetheless, there is always the risk that the pitch
contours generated after crossover and possible mutations
have a fitness less then that of the original parent contours
that spawned them. This implies that there is a possibility
that, over time, the overall fitness of the population could
degrade. To avoid this risk, an elitism rate parameter is
used. This parameter represents a percentage of the best
contours in the current population that will replace random
contours in the next one.

3. EXPERIMENTAL RESULTS
In this section, we present a number of experimental runs

of the algorithm and their respective results.

3.1 General Notes

1. Pitch contours have been generated in C Major, G Ma-
jor, A Minor (harmonic3) and E Minor (harmonic). In
this section, we only present the results of the algo-
rithm when instructed to compose contours in A mi-
nor. This choice is arbitrary since setting a different
scale for the algorithm to work in will not effect its
performance in any way.

2. Various settings for population size, crossover and mu-
tation rates have been used to determine how the GA
converges under these conditions.

3. All pitch contours generated have been set to be 16
and 32 notes long.

4. The algorithm converges to multiple optimal solutions
in all cases. The only cases observed when an optimal
solution could not found were when they either did
not exist or the parameters of the GA conflicted. For
example when the pitch set is so limited that it would
be impossible to satisfy the rate of stepwise motion
desired – if the only notes in the pitch set are C5 and
G5, it is clearly impossible to move in stepwise motion.

Adornment

Figure 3: An optimal pitch contour (with an added
adornment) generated by the algorithm.

3Natural minor with a raised seventh.

3.2 Experiment 1

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.

• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 15=G#5, Pos 16=A5}.

• Population Size: 100.

• Maximum Number of Generations: 50.

• Crossover Rate: 90%.

• Random Mutation Rate: 5%.

• Guided Mutation Rate: 5%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-

tours: 25.

• Average Number of Optimal Contours Yielded

in Final Generation: 3.

• Example result: A4, B4, A4, F5, E5, C5, B4, C5,
D5, C5, D5, E5, D5, A5, G#5, A5.

3.3 Experiment 2

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.

• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 15=G#5, Pos 16=A5}.

• Population Size: 100.

• Maximum Number of Generations: 50.

• Crossover Rate: 50%.

• Random Mutation Rate: 20%.

• Guided Mutation Rate: 20%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-

tours: ¿ 50.

• Average Number of Optimal Contours Yielded

in Final Generation: 0.2.

• Example result: A4, E5, D5, C5, D5, E5, D5, E5,
F5, C5, D5, E5, F5, E5, G#5, A5.



3.4 Experiment 3

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.

• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 15=G#5, Pos 16=A5}.

• Population Size: 100.

• Maximum Number of Generations: 50.

• Crossover Rate: 100%.

• Random Mutation Rate: 5%.

• Guided Mutation Rate: 5%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-

tours: 20.

• Average Number of Optimal Contours Yielded

in Final Generation: 3.

• Example result: A4, E5, D5, C5, D5, C5, E5, F5,
E5, F5, E5, F5, E5, A5, G#5, A5.

3.5 Experiment 4

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.

• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 25=E5, Pos 32=A5}.

• Population Size: 200.

• Maximum Number of Generations: 200.

• Crossover Rate: 90%.

• Random Mutation Rate: 5%.

• Guided Mutation Rate: 5%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-

tours: 70.

• Average Number of Optimal Contours Yielded

in Final Generation: 15.

• Example result: A4, B4, C5, D5, E5, A4, B4, A4,
E5, D5, A5, G#5, A5, C5, D5, C5, D5, C5, B4, C5,
E5, D5, E5, D5, E5, F5, E5, D5, E5, F5, E5, A5.

3.6 Experiment 5

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.

• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 25=E5, Pos 32=A5}.

• Population Size: 200.

• Maximum Number of Generations: 200.

• Crossover Rate: 50%.

• Random Mutation Rate: 20%.

• Guided Mutation Rate: 20%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-

tours: ¿ 200.

• Average Number of Optimal Contours Yielded

in Final Generation: 0.1.

• Example result: A4, B4, C5, D5, E5, A4, B4, A4,
E5, D5, A5, G#5, A5, C5, D5, C5, D5, C5, B4, C5,
E5, D5, E5, D5, E5, F5, E5, D5, E5, F5, E5, A5.

3.7 Experiment 6

• Key: A Minor (harmonic).

• Contour Length: 16 notes.

• Pitch Set: {A4, B4, C5, D5, E5, F5, G#5, A5}.

• Note Usage: 80%.

• Fixed Notes: {Pos 1=A4, Pos 15=G#5, Pos 16=A5}.

• Population Size: 200.

• Maximum Number of Generations: 200.

• Crossover Rate: 100%.

• Random Mutation Rate: 5%.

• Guided Mutation Rate: 5%.

• Stepwise motion rate: 80%.

• Leap Rate: 15%.

• Average Generations to Yield Optimal Con-

tours: 50.

• Average Number of Optimal Contours Yielded

in Final Generation: 25.

• Example result: A4, B4, C5, D5, F5, E5, D5, C5,
B4, A4, C5, B4, D5, A4, C5, B4, E5, D5, E5, F5, C5,
D5, C5, F5, E5, F5, E5, D5, E5, D5, C5, A5.



3.8 Some Observations

1. As expected, searches for longer contours require a
larger population and in some cases more generations
to produce a result. This can be easily correlated to
the immensely larger search space.

2. Low crossover rate values (albeit higher mutation rates)
hinder a successful search for optimal solutions. As the
crossover rate decreases, the GA effectively degener-
ates into a random search with is inadequate for such
large search spaces.

3. Very long optimal pitch contours can be discovered.
Optimal 64, 96 and 128–note pitch contours could be
found using the exact same parameters used in exper-
iment 4 above with the exception that for 128–note
melodies, more generations and a slightly larger popu-
lation size was required for the algorithm to converge
to one or more optimal solutions.

4. CONCLUSION
In the title of this paper we labeled the pitch contours we

sought to generate as viable. We associate the term viable
with whether a contour observes the rules imposed or not.
By observing these rules we could safely say that all viable
contours do sound melodic and flow smoothly. This obser-
vation can be intuitively demonstrated by listening to the
results of the algorithm. The issue of whether the contours
actually sound beautiful, or whether they express some kind
of emotion is another issue altogether. Whilst it is true that
certain compositional techniques can give melodies some
emotional character4, in this paper we have not considered
them and left the issue as a potential next topic of research.
We conclude this work by suggesting some techniques and
future projects than can augment the simple pitch contours
we generated here and use them as the basis of fully fledged
musical compositions:

• Apply note grouping techniques and rhythmic unit
presets to the pitch contour for it to become a complete
rhythmic melody line.

• Using species counterpoint techniques to enrich the
melody harmonically. Chord progression rules may be
derived by studying common progressions used in the
CPP.

• Observing cadences when harmonising the melody.

• Observing orchestration guidelines when determining
the relationships between voices.

• Using instrumentation principles when choosing in-
struments to play a given voice. For example certain
instruments possess timbres that lend themselves to a
more dramatic score.

4For example, it is a known ‘fact’ that composing in a major
key usually results in ‘happy sounding’ scores. Composing
in minor keys is usually associated with music of the more
’sad’ kind.

5. REFERENCES
[1] Anthony Ashton. Harmonograph: A visual guide to the

mathematics of music. Wooden Books.

[2] Benjamin Piekut. From No Common Practice: The
New Common Practice and its Historical Antecedents.
American Music Center.
http://www.newmusicbox.org/page.nmbx?id=58tp01

[3] The Associated Boards of the Royal Schools of Music.
Rudiments and Theory of Music.

[4] Michael Miller. The Complete Idiot’s Guide to Music
Theory. Alpha Publishing.

[5] William Lovelock. First Year Harmony. Hammond
Textbooks.

[6] Charles Dodge, Thomas A. Jerse. Computer Music:
Synthesis, Composition and Performance. Second
Edition. Schrimer.

[7] David Cope. Virtual Music: Computer Synthesis of
Musical Style. The MIT Press.

[8] John Chuang. Mozart’s Musikalisches Würfelspiel.
http://sunsite.univie.ac.at/Mozart/dice/.

[9] David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley
Professional.



��������	
��
�����������������
� �����������

	

�
��
�����������
������������
��
�
����
�������������
�������� !�" #�

������$���
%��%���%��

�
�

�

���������
��� ����� �	�
��� ��
� �
�
���� ��� ���
� �
���� ����
����� ��
�������
	�
�

	��� ��
� ��
�	��� �	��
��� �
���� ��� �	�����
��� ��� ���
� ��

���

�	������
��
���
�
�	�����	�
����
�����
��
�
�	����� 
�
�����
��

����
�
����	�!
�
����"���������#!"$��	�%	�
��	��
��!"!&'&���

 ����
�������(
������
��
���))����
�����

��
����*+'!,�����	�!"�

�������
��
�����
�������

��	
��
�
����������
�	��
��
��	�
��
��-��� .�
	�������� ��	
����
��
/0� 1���
��	�
�
�� 2� ������ ��	�
����

�����

������
���	����

�
�

����

���
"�����������1
	�
�
�
����

�
���
���
�	��	�
�
��������
�������))���(
������
��
��

 !� �"��#�$���#"�
3�
�� ��

��� �	����� �
�
�	�����  
�
� �
��
�� 
����� 	� ������
	�
�

�
��� .-/� 	��� ��
���
�	��� �
���� .4/��1
��
��
��� .5/� ��� 
������	��

�
������ ��� 
�� ��	�� 	� ����� *+'!� �	�� ���� �
�
��	����� ���
�

��������	����� �
��
�� !"� �
�����	��
�� 1
��
��
��� 
�� 	�� .6/�

�
�
����
�� ��	�� ��
�
� ��� ��	������	�� 
���
��
� ��	�� �
��	��� *+'!��

�	��������
�������
��!"��
����	��
���	��
�*	7�.8/���� 
����	��

���!"�� 	�� ��� ���
�� ��
����� ��� ��� ��
�
�	��
� ��� 
�
� ��
� �
��� *+'!�

	�	��	��
� 
��
��	����  �
�� �����	������� ��
� !"� ���
�	������ 9����

����������������
��*+'!,�� 
�
��
��
��	������� �0�8$�	�������
	�
�

�
��� 	������
�
��
��:�-$�	�8-1��	�	����
� 	���
�
�	�
������
�
���

*+'!� ���� �
������ ���1	��	���	,����
�	��� �����	���"��� *+'!,��

 
�
��

�
�������
�����
�����
����
��
�
����	�
���
�
��
����������

�	�
�����
��
�
�	������
��
�� 
�
0���
�*+'!��
����
�� ����!';�

!����))�4�<�5�=��������)),�����
	�������

���	���
�
�	����#>�!$��

����
��
�,�� *+'!� ����
�
��	����� #	�� >�!$� ��� .?/�� @�
��,��

>
��	�� >�!� .-/� #�����  	�� ����
�
��
�� ��� �))$� 	��� A	��
��

�
�	
B,���))��������� ��
�1
��
��
�� ���
�� � .</����
� �	��
�� 	��


B�
��
������
���
��
���*+'!����������
��
��
���

�

!
���
�1	��	���	,����%&�����
��
������	������	���
���������������

����

���
���0�������	����	�������C�
��	������*
��
�	�������+	�%��

��� 48B48� 	��� 4-B4-� �	����
��� +	�%�� ��� 6BD� �	����
��� 1��%
��

�
���� ��� -E�����9������1��%
���
����C*�C��CF�C�	����'"��

��
�����
�8,�����	����
	��������
�����
�����
�8,�������
���������
���

*	�%���� >���� 1����
�� ����	��
�� 4�� ���
�
��� ��


7
��

C�
��	�������
����+
���	�����	����1��
� ������	�����	��
�� ��
�

�
��
��	���
���
���	������0==��	����
�
�
=G�
�=��
�	��������

����
����
��
����1	��	���	,��9���� �����	��� 	��
�
��	������ 	��

���
��	�� 
��
��
�	���
����
�����	������
��
����
�
�	�
��
�����

!"!&'&,�� �	����� �
��
�� �
��� �
��
� # ����� �	��
�� ��
� ��
��

*+'!,�� 
��
�� �
��$�� "��� �
����  
�
� �
�� ��� 	�� "����� 3H�55�

����
���������
�
���
������H*����
��
����
��
�	����������
��	���

�
���
��
��>��
B�	������
��*���B�����
�C�,���

'!� �&�(�)$��%��%�$*���
�

&	��� �����
� ��
�

���� ������
	�
� �
���  	�� �
�
	�
�� 8EEEEE�

���
��	�����
��
	��������	�

� 	���	��
�	�
�����
��	��
�����
��
��

�	�

��  	�� �
������
�� ����� 	� ��B
�� �
��
�� ��� �	��
�� #8E8$� ���


�
	�� ��7
�� "� �	��
� �
��
�� ��� �	����� �
��
���  
�
� �
�
�	�
��


�������
�*+'!��
�����
��
���
	����
��
���	�������
� 

��E�	���

8�#����
���
$��8EEEEEE��
��
��� 
�
��
�
�	�
��	�����
��
��
�����

�	�

���	������ ���
	��� ���
��	�� 
�
���
��
���"����
����
��	���	�
�

���
�
	����7
�� ��� ���
B�
��
����	��	����B��	�
�����
��	�
��
��
��

��� �	�

�� ���
��� �	��� ��� 
	��� ���
��	�� #	��
��� IIEE$�� ��
� ����

��
	�
� ��	������� ��� 
�	�
	�
�� �	�
�� ��� ��
� 
B�
��
�� 	��� 	��
	��

��
���� ���� 
	��� ���
��	��� 	�� 	�
�	�
� ������
	�
� �	�

� �	�
�� ���

8EEEEE� �
�
�������� ��� 
�	�
	�
�� 	��� ����	�
��  ���� ��
� ������	��

�	�

� ���� 	� ������
	�
� �	����� �	��	��
�  ���� 8EE� �
��

�� ���

��

����	���	�����	����������E�I5��

������
	�
��
���8�#!';��))��
�
�	���$�

���	�������	�

�#"�
�	�
����
��8EEEEE����	��$JIE�8DE-�

�
��

�
��

������
	�
��
���-�#1
��
��
��
�
�	���$��

���	�������	�

�#"�
�	�
����
��8EEEEE����	��$J8EE�E84�

�
��

�
��

������
	�
��
���4�#����
����
���
�
�	���$�

���	�������	�

�#"�
�	�
����
��8EEEEE����	��$J�8�5I<D?
)E6�

�	��
��

�	�����������
	�
��
���<�#@�
����
�
�	���$��

���	�������	�

�#"�
�	�
����
��8EEEEE����	��$J84?6D�5�

�	��
��

�

�

�

�

�

�



9�
���
�����	�>��
B��	����
�#*
���
��<$����
��
�
���� 
�
0�

�

�	�����������
	�
��
���8�#!';��))��
�
�	���$�

���	�������	�

�#"�
�	�
����
��8EEEEE����	��$JII�-E55�

�
��

�
��

�	�����������
	�
��
���-�#1
��
��
��
�
�	���$�

���	�������	�

�#"�
�	�
����
��8EEEEE����	��$J8EE�-64�

�
��

�
��

������
	�
��
���4�#����
����
���
�
�	���$�

���	�������	�

�#"�
�	�
����
��8EEEEE����	��$J�8�5I<D?
)E6�

�	��
��

�	�����������
	�
��
���<�#@�
����
�
�	���$�

���	�������	�

�#"�
�	�
����
��8EEEEE����	��$J84I<8�I�

�	��
��

+!� ��%&�����%�$*���
�

��
������ �����	��
���� ����
����	�

������
�
�������
���
�	���

�
��
� ��� �
���� ��� ��
� !��� �))� �
�
�	���� #�
�
������ ���� ���
� ���

��������$��

�	��
�8��!����))���
�	����
���+
�
����*	���8�

��
	,������������ ���!����-�+ .+ �

�4D<I-I� �66E-5?�

�?8D48-� ���!����-�+'.+'�

�48I<D5� �6E-6<-�

�I<564I� ���!����-�/.0�

�5?I6E8� �I-?-I8� �?4IE4?� �6488E4�

�<DI8EE� �D?EI5?� �---E-D� �<?5I-I�

�D<4I<6� �8I4-84� �EI44?E� �I<?56<�

�<IDE5-� �E?466<� �86-E-5�

�46E<-D� �I6?-8E� �44DE<D�

!''1/20�

���%���

!3 1441����%��� �58<DIE� �<I6I5?� �

#5%�63� �6D-54I� �8I-?46� �

�8?8-DE� �<56D4-� �<55?8E� �

�4-4?68� �E<6E8<� �<?D4-8� �

� �5DIEI<� �8E54DI� �

� �6E-844� �<<555<� �

�

�

�

�

�	��
�-��!����))���
�	����
���+
�
����*	���-�

��	�	

��� #5�#� #)�#� �"�� �"�� ��� +���5&�

�6I6I4� �E-D-� �EEEE� 8�EEEE� �??<I-E� IE-6E�

�4D<D4� �E4?-� �EEEE� ��EEEE� �568D<E� ?-DD-�

�?68?-� �EEE5� �E-<6� 8�EEEE� �5?I5<<� E468I�

�-DDD-� �8?65� �86I4� ��EEEE� �<-6D54� ?D4<5�

�DE<-E� �EE84� �684E� ��EEED� �<D6?44� 6I<D<�

�?E665� �E?58� �EE8D� ��EDI6� �66I?I-� -<E?6�

�?E5D5� �8<EE� �8I?8� ��-ED4� �8E<5?5� 6I4-E�

�I-8D4� �E868� �EEEE� 8�EEEE� �5E<?5D� D<<-6�

�-4IID� �E4-E� �EEEE� 8�EEEE� �5D8D44� DI-E?�

�?6-<<� �8D?<� �EEEE� 8�EEEE� �8566<6� 8ID84�

�--ED8� �EEEE� �E<<E� 8�EEEE� �D6D456� 8E<?-�

�655D4� �E8<E� �-E6?� ��EEEE� �55<55D� ?E5?I�

�<8?4<� �844-� �?55E� ��EEE-� �DD566-� 4D58?�

�<<6?-� �E8??� �55ED� ��E--I� �?-5?I<� <4?-D�

�<I5E4� �EE4<� �E88E� ��-4D4� �E6-I?-� E5EDI�

�?ID44� �?EE?� �EEEE� ��8-EE� �I6I5?E� ?<E<-�

�8858I� �E58?� �EEEE� 8�EEEE� �IIE?45� 6-588�

�-5<?<� �EEE5� �EEEE� ��EEEE� �5<?4?E� I6?E?�

�IE448� �E86<� �E86-� 8�EEEE� �I68DD<� 644<8�

�5-?6<� �E-8D� �EE-<� ��EEEE� �I4<?65� 554??�

� �EE88� �I?5I� ��E8<D� �DE5EID� !3+ 31+�

�"�� �� �846-� �886-� ��-D4-� �EI<D4<� @��&���

�4-8E5<� �E<?D� �EEEE� ��EEE8� �4<5456� �

�<648??� � �EEEE� 8�EEEE� �-I?<D-� #�$6�

� � �EEEE� 8�EEEE� �68I<48� �85?45I�

��5���� � �EEEE� ��EEEE� � �D<E6DD�

�-E556-� � �EE-6� 8�EEEE� � �8<?<?E�

�8DE55D� � �EEE8� ��EEEE� � �DI8II5�

�5IE-ID� � � ��E4?8� � �-I<84?�

�5IE-ID� � �)%%7%� ��EEDE� � �6E4I6E�

�8EDD88� � �48?E?E� ��E-EE� � �<?8I44�

�-<66I<� � � � � �E46??5�

�-I8D65� � �$"�� ���5��8�"�� �5?46EI�

�I4<E?5� � �E?I56E� �?65D48� �55-?D?�

�5EEEEE� � �I6<EDI� ���5���&�#8��

�846564� � �<DD655� �8E<?<E�

!1931'2�

���%���

�E6I48D� � � �!932111�

���%���

6�"�

������
� � � �

� �I65DE?� � � � �

�

�



��
��
B���	��
���� ����
����	�

������
�
�������
���
�	����
��
�

��� �
���� ��� ��
� 1
��
��
� �
�
�	���� #�
�
������ ���� ���
� ���

��
��
�����$���

�	��
�4��1
��
��
���
�	����
���+
�
����*	���8�

��	�	

��� #5�#� #)�#� �"�� �"�� ��� +���5&�

�?6-<<� �I4-8� �?645� �5584� �IE6I48� �45DDI�

�ID<IE� �<D<<� �588?� �5I64� �8E4EIE� �-84D8�

�I4<6E� �E6-?� �?<-8� �<EID� �-6D6E-� �6-<?I�

�D-6EE� �I<?4� �686D� �5DD4� �666D<<� �E8IE6�

�D<?D5� �44E4� �I45<� �D46D� �D<I488� �6DE5?�

�<8?4<� �<8<I� �4-ED� �5I64� �E-8E6D� �D5DI-�

�56EI?� �86-6� �II4E� �-8EI� �D58I4-� �?88?D�

�5D<DE� �ED<4� �6?88� �8D?E� �-E4?-D� �D4E46�

�EED6-� �D688� �D?<5� �6<6D� �I<86DD� �ED?8E�

�88?E-� �I6-E� �D4E-� �68EE� �<I??66� �-?84<�

�5545I� �5IDI� �-64D� �684<� �5??8I5� �E68-I�

�-64E6� �D?65� �8<-6� �66I5� �-???-4� �?<<8-�

�4E5D8� �??I?� �-D<8� �?5<?� �II-8?D� �EEDD-�

�<8EE6� �6E6I� �DI68� �?-6E� �D<554E� �ID4?I�

�5?4D<� �<E-I� �6584� �I??D� �<66<-5� �455<D�

�-I-D-� �46?4� �888E� �-I6<� �8<?86D� �DD4I4�

�-I-D-� �EI66� �8<44� �D6EI� �<D-D<5� �4E<I?�

�D?65I� �I4II� �D-85� �IID8� �-55E4-� �-66<-�

�-<8<4� �I5<4� �5<6D� �I5EE� �?E56E<� �64-<I�

�E?-EE� �<D4E� �<464� �<-5I� �-I<4-D� �I56E6�

� �846-� �IE44� �DDDD� �<I658<� !'2 2 2�

�"�� �� �DIEE� �546E� �D448� �858-ED� ���%���

�66D4-D� �D-I8� �-6-?� �4-<5� �?-I4?D� �

�E<<8DD� � �E<4?� �4-84� �I684?8� #�$6�

� � �46E5� �64E-� �ID8?4E� �5-445-�

��5���� � �I-E8� �645?� � �I55D-8�

�?544E6� � �ED4?� �<I-6� � �EEEI<6�

�55<<?I� � �??DI� �-IE4� � �684DE?�

�?ED845� � � �-?E<� � �888<II�

�-<66I<� � �)%%7%� �E4?8� � �56<<EI�

�8I-D8-� � �5ED5-?� �?DED� � �I-I65D�

�I8<645� � � � � �4-6-66�

�EEEI58� � �$"�� ���5��8�"�� �<-?D<8�

�6-54??� � �6?584D� �D5<55-� �<<-?E?�

�5464D-� � �6?D65I� ���5���&�#8��

�E85I4-� 6�"� �8-IEDI� ��E<E??<�

!+0/1  �

���%���

����� �<-IID?� � � �!/+9'04�

���%���
�546E8I� � � � �

�	��
�<��1
��
��
���
�	����
���+
�
����*	���-�

��
	,������������ ���!����-�+ .+ �

�8-648?��� �<4-885�

��I5<44E��� ���!����-�+'.+'�

��-D455I��� �I56DI8�

��?<4I8-��� ���!����-�/.0�

��554-8?� �-5E6-8����� ��<8?D-I�� �EI?5<D������

��5D8??6��� �ED48D5����� ��54I-<6����� �45<48-�����

��5D58<5��� �4-D5<6����� ��46I4<D���� ��E545?<�

��45?5-E��� �6II-<8����� ��856DI-����

��5EDDED� �?6?584� ��I8II56��

!'+2190�

���%���

! 2/3 '����%��� �DD?8D6� ��<?I5?I����� �

#5%�63� �-4E--<����� ��4?5-?4����� �

�8<D4?5� �5<88D<����� ��?8DD48����� �

�-?8--4� �E4<65?����� ��DD858-� �

� �--?6I<��� ��I85-?5��� �

� ��65<IE6����� ��<885<<����� �



��
��
B���	��
���� ����
����	�

������
�
�������
���
�	����
��
�

��� �
���� ��� ��
� ����
����
�� �
�
�	���� #�
�
������ ���� ���
� ���

��
��
�����$��

�	��
�5������
����
����
�	����
���+
�
����*	���8�

��	�	

��� #5�#� #)�#� �"�� �"�� ��� +���5&�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��55<D� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� ��EEEE� 8�EEEEEE� �EEEEE�

8�EEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �EEEEE�

� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE�  !111111�

�"�� �� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� ���%���

8�EEEEEE� 8�EEEEE� 8�EEEEE� 8�EEEE� 8�EEEEEE� �

8�EEEEEE� � 8�EEEEE� 8�EEEE� 8�EEEEEE� #�$6�

� � 8�EEEEE� ��EEEE� 8�EEEEEE� 8�EEEEEE�

��5���� � 8�EEEEE� ��EEEE� � 8�EEEEEE�

�EEEEEE� � 8�EEEEE� ��EEEE� � 8�EEEEEE�

�EEEEEE� � 8�EEEEE� 8�EEEE� � 8�EEEEEE�

�EEEEEE� � � 8�EEEE� � 8�EEEEEE�

�EEEEEE� � �)%%7%�8�EEEE� � 8�EEEEEE�

�EEEEEE� � +�&� 8�EEEE� � 8�EEEEEE�

�EEEEEE� � � � � 8�EEEEEE�

�EEEEEE� � �$"�� ���5��8�"�� 8�EEEEEE�

�EEEEEE� � �<D8I?<� +�&� 8�EEEEEE�

�EEEEEE� � �D86564� ���5���&�#8��

�EEEEEE� 6�"� �5I5?84� +�&�

 !111111�

���%���

����� �58E-8<� � � � !111111�

���%���
8�EEEEEE�� � � �

+�&� �
	��� ��
� �
��� ����
�
�� 	� +
����
� &����� 	��� �	�� ��� �
�

�%���
���

�	��
�6������
����
����
�	����
���+
�
����*	���-�

��
	,������������ ���!����-�+ .+ �

8�EEEEEE� 8�EEEEEE�

8�EEEEEE� ���!����-�+'.+'�

8�EEEEEE� 8�EEEEEE�

8�EEEEEE� ���!����-�/.0�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

 !111111�

���%���

 !11111����%��� 8�EEEEEE� 8�EEEEEE� �

#5%�63� 8�EEEEEE� 8�EEEEEE� �

�6?6I5?� 8�EEEEEE� 8�EEEEEE� �

�E-<-85� 8�EEEEEE� 8�EEEEEE� �

� 8�EEEEEE� 8�EEEEEE� �

� 8�EEEEEE� 8�EEEEEE� �

�

�



��
��
B���	��
���� ����
����	�

������
�
�������
���
�	����
��
�

����
���������
�@�
�����
�
�	����#�
�
�������������
�����%�
�����$���

�	��
�?��@�
�����
�	����
���+
�
����*	���8�

��	�	

��� #5�#� #)�#� �"�� �"�� ��� +���5&�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?<55�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?5-D�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

8�EEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �I?4<<�

� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE�  !111111�

�"�� �� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� @��&���

8�EEEEEE� 8�EEEE� 8�EEEE� 8�EEEE� 8�EEEEEE� �

8�EEEEEE� � 8�EEEE� 8�EEEE� 8�EEEEEE� #�$6�

� � 8�EEEE� 8�EEEE� 8�EEEEEE� �?5II4<�

��5���� � 8�EEEE� 8�EEEE� � �IDEI55�

�EEEEEE� � 8�EEEE� 8�EEEE� � �I?D?55�

�EEEEEE� � 8�EEEE� 8�EEEE� � �I6-5-E�

�EEEEEE� � � 8�EEEE� � �I<648?�

�EEEEEE� � �)%%7%�8�EEEE� � �I<E5-<�

�EEEEEE� � 8�EEEEEE� 8�EEEE� � �ID84E6�

�EEEEEE� � � � � �I8I6DI�

�EEEEEE� � �$"�� ���5��8�"�� �I58E5?�

�EEEEEE� � 8�EEEEEE� �-I5I58� �I656?8�

�EEEEEE� � 8�EEEEEE� ���5���&�#8��

�EEEEEE� 6�"� 8�EEEEEE� �KKKKKKKK�

 !111111�

���%���

����� 8�EEEEEE� � � � !111111�

���%���
8�EEEEEE�� � � �

�

�	��
�D��@�
������
�	����
���+
�
����*	���-�

��
	,������������ ���!����-�+ .+ �

8�EEEEEE� 8�EEEEEE�

8�EEEEEE� ���!����-�+'.+'�

8�EEEEEE� 8�EEEEEE�

8�EEEEEE� ���!����-�/.0�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

8�EEEEEE� 8�EEEEEE� 8�EEEEEE�

 !111111�

���%���

 !111111����%��� 8�EEEEEE� 8�EEEEEE� �

#5%�63� 8�EEEEEE� 8�EEEEEE� �

8�EEEEEE� 8�EEEEEE� 8�EEEEEE� �

8�EEEEEE� 8�EEEEEE� 8�EEEEEE� �

� 8�EEEEEE� 8�EEEEEE� �

� 8�EEEEEE� 8�EEEEEE� �

�

4!� ��%&�����"�*:����
�

"����
�������
�������
���
�	����������
���	����

'C�&0�1���������
��
���������&L"+���
�
���	����	�

��

���
����
�
����������.E�8$������
����
�����
�����	���

���
�
��
����	�����������������
����	�

��	�
����	���

�J3#H$�� �
�
�3������
�	��
�
���������
����������
���

�	������	��	��
�H������
������	����
����	��	��
�
��3�

	��	����������	����B��	���������� �������
����� �����

�����
��	�������
����
����
��������
��
�����
�� �����

���	����	�����	�

���
	��E����8���
���	���EE8-�����I�

9�
��	��������
	���
	����3"�>����!����
� �����
���,��

8������B�������
���	�
�������	����
	������������	��	�

��	�������	�������������%���	��	���M��E-5�����N��I?5�

��	����
�+'!��	��O�	��
����
��
���	����
��E5��
�
�O��

�,���	��
��	�������
��
���
�����	����&L"+������
�
���

 ���������+'!,�������%

������������	��O����	��
��O��

�

3��� ��
� �))� *+'!�� ��
� ��	��
��� ���	�

� 	�� E� 	��� ��
� �	��
���

 	�� 8�EEE�� ����� *+'!� �	��
�� ����� ��
�	��� �
����  ���� ���
�

�	��
�
�����C*�C��CF�C�	����	������'"��
�����

�



��
� 1
��
��
� � ���
�� *+'!� �	��
�� 	��� ��
� ��
�	��� �
����

�
��
���
�������
���	��
������	�

� 	���EEEI58�	�����
��	��
�����

�	�

�  	�� �II4E�� ��
� ����� 	�
	��  ���� ���	�

�� ��
�� �I?5�  
�
�

C*�C��CF�C���'"��4�����
�
��	�����
�����
�8,��������
������

���
���"�
	�� ���� ���	�

�� 
��
�� E�E-5� 
�
�C�;1����*"+@�

	���4�����
�
���

��
�	��� �	�
� 	� �
����
� 
�����  �
�� �
������ ��
� ��


7
� 	���

��	��� �
���� ��� ��
� ����
����
�� *+'!�� ��
� ����� �
����  ����� ���

�	��
�� 
�
�C*&+15�	���+;'���*��	�

���	��
�������E����8��

��
� @�
��� ���
	�� �����

���	�� �
�
�	���� �	��
�� ��
� 4�� ���
�
��

�
��� #
B�
��� ���� ��
�@��&���#@������������������ � �
��$�	���
��	��� 9���� #���� ��	��� ���� �� ��
�	��� �
��
��
�� (
��� ,KKKKK,�

����
	�����	����	�

��������������
	�� �
��
�������������
���
���� �

���
��
���� $���

�

3!� �#"�*$��#"�
�

��
�1
��
��
�� ���
��*+'!���
	����
�
��
��	����
��
���*+'!�

�������
���
���
��
��	�����
���
��������%
�������
��
��	��
�����
�
�

�
�������
�������	������	���	�������	�
����	�!"��3�����
�����	��!"�

�
��	��
�� �����	���	�������� 
�
����
���	��	����))�*+'!��	���
�


�
��� 3
���
�� �
�
	���� �	�� ���
� 	� ���
� ��
	�� ����
�
� ��� ��
�


��
�������	��	��*+'!�#��
���	���	������
��
���$� �����
�	���������
�

�
�����������
�!"�#�	���������������	���	����$���������
��	����
�	��

�����
��	��� �
��
��������
�
����������
�	�������7
��

"�����������
��	��������	������
���
�
�	�
�����
���
�	���������
��

	��� ���
�� ��
��
��  ���� �
� �	�
� 	�	��	��
� ��� ��
� !"!&'&��

 
����
�	������0==   ��	�
�
�������

�

/!� �%;%�%"�%��
�

.8/� �	��
�*	7��&��C��+	�����'
��
���	�����
�

*
�����	��
����!
�
����"�����������

.-/� @�
������&������������������������������
����

"�������9
��
���8II?��

.4/� 1	��	���	��!�����	����9	��9	�����
�������
�������	���

�
��������	�����
�������������������
	�

	�����������?#4$��

-EE4��

.</� 1	��
������1���'�����
�	����1
��
��
�� ���
�0�"�

6-4����
�����	����
�
��������
�
��
�������

��

���	������
��
���
�
�	�������������	�����

�����
�����������������
�����
���� �#8$��4�4E��

.5/� 1
��
��
����1�1����
�&��
������*�

���+	�����

'
��
��!
�
�	����F
	����������
�*
�����	��
����	�

�����
�!
�
����"�������������������

��
���

;���
�����������	����8II?��D-��

.6/� 1
��
��
����1�1���3���
���A	�
���+	�����
���	���

!"�*
�����	��
��+
�����
���������
���
��	��������

�����

�����!"����
����#���������
�����������
���

#�	��3�	���������	�������	��8III$��1���	��@	
���	��

*
�����
����<-5�<4-��

.?/� ����
����
�����������$$���������
���%��������

���

���!�
�
����"�������9
��
���-EE5��

�

�

�

�

�

�

�

�

�

�

�

�



Improving Polygonal Hybrid Systems Reachability
Analysis through the use of the Phase Portrait

Gordon J. Pace
Department of Computer Science and AI

University of Malta, Malta

gordon.pace@um.edu.mt

Gerardo Schneider
Department of Informatics
University of Oslo, Norway

gerardo@ifi.uio.no

ABSTRACT

Polygonal hybrid systems (SPDI) are a subclass of planar
hybrid automata which can be represented by piecewise con-
stant dierential inclusions. The computation of certain ob-
jects of the phase portrait of an SPDI, namely the viability,
controllability, invariance kernels and semi-separatrix curves
have been shown to be eciently decidable. On the other
hand, although the reachability problem for SPDIs is known
to be decidable, its complexity makes it unfeasible on large
systems. We summarise our recent results on the use of the
SPDI phase portraits for improving reachability analysis by
(i) state-space reduction and (ii) decomposition techniques
of the state space, enabling compositional parallelisation of
the analysis. Both techniques contribute to increasing the
feasability of reachability analysis on large SPDI systems.

1. INTRODUCTION
Hybrid systems combining discrete and continuous dy-

namics arise as mathematical models of various artificial and
natural systems, and as approximations to complex contin-
uous systems. They have been used in various domains,
including avionics, robotics and bioinformatics. Reachabil-
ity analysis has been the principal research question in the
verification of hybrid systems, even if it is a well-known re-
sult that for most subclasses of hybrid systems most verifica-
tion questions are undecidable. Various decidable subclasses
have, subsequently, been identified, including timed [1] and
rectangular automata [10], hybrid automata with linear vec-
tor fields [11], piecewise constant derivative systems (PCDs)
[12] and polygonal hybrid systems (SPDIs) [4].

Compared to reachability verification, qualitative analysis
of hybrid systems is a relatively neglected area [8, 9, 13, 19,
22]. Typical qualitative questions include: ‘Are there ‘sink’
regions where a trajectory can never leave once it enters
the region?’ and ‘Are there regions in which every point in
the region is reachable from every other?’. The collection of
objects in a system satisfying these and similar properties is
called the phase portrait of the system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X­XXXXX­XX­X/XX/XX ...$5.00.

Defining and constructing phase portraits of hybrid sys-
tems has been directly addressed for PCDs in [13], and for
SPDIs in [5]. Given a cycle on a SPDI, the viability kernel is
the largest set of points in the cycle which may loop forever
within the cycle. The controllability kernel is the largest
set of strongly connected points in the cycle (such that any
point in the set may be reached from any other). An in-
variant set is a set of points such that each point must keep
rotating within the set forever, and the invariance kernel is
the largest such set. Algorithms for computing these kernels
have been presented in [5, 21] and implemented in the tool
set SPeeDI+ [14].

Given the non-compositional nature of hybrid systems,
decomposing SPDIs to reduce the state space and to dis-
tribute the reachability algorithms is a challenging task. A
qualitative analysis of hybrid systems does, however, provide
useful information for partitioning the state-space in inde-
pendent subspaces, thus helping in achieving compositional
analysis.

In this paper we summarise and combine some recent re-
sults [17, 16] we have obtained, showing how kernels can be
used to improve the reachability analysis of SPDIs. We use
kernel information to (i) reduce the number of states of the
SPDI graph, based on topological properties of the plane
(and in particular, those of SPDIs); and (ii) partition the
reachability questions in a compositional manner, dividing
the problem into independent smaller ones and combining
the partial results to answer the original question, hence
enabling parallelization with minimal communication costs.

2. THEORETICAL BACKGROUND
We summarize here the main definitions and results about

SPDIs; for a more detailed description refer to [20]. A (pos-
itive) affine function f : R → R is such that f(x) = ax + b
with a > 0. An affine multivalued function F : R → 2R,
denoted F = 〈fl, fu〉, is defined by F (x) = 〈fl(x), fu(x)〉
where fl and fu are affine and 〈·, ·〉 denotes an interval. For
notational convenience, we do not make explicit whether
intervals are open, closed, left-open or right-open, unless re-
quired for comprehension. For an interval I = 〈l, u〉 we have
that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverse of F is defined
by F−1(x) = {y | x ∈ F (y)}. The universal inverse of F is

defined by F̃−1(I) = I ′ where I ′ is the greatest non-empty
interval satisfying ∀x ∈ I ′ · F (x) ⊆ I .

Clearly, F−1 = 〈f−1
u , f−1

l 〉 and F̃−1 = 〈f−1

l , f−1
u 〉, pro-

vided that 〈f−1

l , f−1
u 〉 6= ∅.

A truncated affine multivalued function (TAMF) F : R →
2R is defined by an affine multivalued function F and in-



R1

R2

R3

R6

R5

R4

e1

e4

e0
I

e2e6

I’
e5 e3

I’

I

Figure 1: (a) An SPDI and its trajectory segment;
(b) Reachability analysis

tervals S ⊆ R
+ and J ⊆ R

+ as follows: F(x) = F (x) ∩ J
if x ∈ S, otherwise F(x) = ∅. For convenience we write
F(x) = F ({x}∩S)∩J . For an interval I , F(I) = F (I∩S)∩J
and F−1(I) = F−1(I ∩ J) ∩ S. The universal inverse of F

is defined by F̃−1(I) = I ′ if and only if I ′ is the great-
est non-empty interval such that for all x ∈ I ′, F (x) ⊆ I
and F (x) = F(x). We say that F is normalized if S =
Dom(F) = {x | F (x) ∩ J 6= ∅} (thus, S ⊆ F−1(J)) and
J = Im(F) = F(S).

It can be proved [4], that TAMFs are closed under com-
position.

Theorem 1 The composition of TAMFs F1(I) = F1(I ∩
S1) ∩ J1 and F2(I) = F2(I ∩ S2) ∩ J2, is the TAMF (F2 ◦
F1)(I) = F(I) = F (I ∩ S) ∩ J, where F = F2 ◦ F1, S =
S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2).

2.1 SPDIs
An angle ∠

b

a on the plane, defined by two non-zero vectors
a,b, is the set of all positive linear combinations x = α a +
β b, with α, β ≥ 0, and α + β > 0. We will assume that b
is situated in the counter-clockwise direction from a.

A polygonal hybrid system1 (SPDI) is a finite partition P

of the plane into convex polygonal sets, such that for each

1In the literature the names polygonal differential inclusion
and simple planar differential inclusion have been used to
describe the same systems.

P ∈ P we have two vectors aP and bP . Let φ(P ) = ∠
bP
aP

.
The SPDI is determined by ẋ ∈ φ(P ) for x ∈ P .

Let E(P ) be the set of edges of P . We say that e is an
entry of P if for all x ∈ e and for all c ∈ φ(P ), x + cǫ ∈ P
for some ǫ > 0. We say that e is an exit of P if the same
condition holds for some ǫ < 0. We denote by in(P ) ⊆ E(P )
the set of all entries of P and by out(P ) ⊆ E(P ) the set of
all exits of P .

Assumption 1 All the edges in E(P ) are either entries or
exits, that is, E(P ) = in(P ) ∪ out(P ).

Reachability for SPDIs is decidable provided the above
assumption holds [4]; without such assumption it is not know
whether reachability is decidable.
A trajectory segment of an SPDI is a continuous function
ξ : [0, T ] → R

2 which is smooth everywhere except in a
discrete set of points, and such that for all t ∈ [0, T ], if

ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P ). The signature,
denoted Sig(ξ), is the ordered sequence of edges traversed by
the trajectory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei

and ti < ti+1. If T = ∞, a trajectory segment is called a
trajectory.

Example 1 Consider the SPDI illustrated in Fig. 1-(a).
For sake of simplicity we will only show the dynamics as-
sociated to regions R1 to R6 in the picture. For each re-
gion Ri, 1 ≤ i ≤ 6, there is a pair of vectors (ai,bi),
where: a1 = (45, 100), b1 = (1, 4), a2 = b2 = (1, 10), a3 =
b3 = (−2, 3), a4 = b4 = (−2,−3), a5 = b5 = (1,−15),
a6 = (1,−2), b6 = (1,−1). A trajectory segment starting on
interval I ⊂ e0 and finishing in interval I ′ ⊆ e4 is depicted.

We say that a signature σ is feasible if and only if there ex-
ists a trajectory segment ξ with signature σ, i.e., Sig(ξ) = σ.
From this definition, it immediately follows that extending
an unfeasible signature can never make it feasible:

Proposition 1 If a signature σ is not feasible, then neither
is any extension of the signature — for any signatures σ′ and
σ′′, the signature σ′σσ′′ is not feasible.

Given an SPDI S , let E be the set of edges of S , then
we can define a graph GS where nodes correspond to edges
of S and such that there exists an arc from one node to
another if there exists a trajectory segment from the first
edge to the second one without traversing any other edge.
More formally: Given an SPDI S , the underlying graph of
S (or simply the graph of S), is a graph GS = (NG , AG),
with NG = E and AG = {(e, e′) | ∃ξ, t . ξ(0) ∈ e ∧ ξ(t) ∈
e′∧Sig(ξ) = ee′}. We say that a sequence e0e1 . . . ek of nodes
in GS is a path whenever (ei, ei+1) ∈ AG for 0 ≤ i ≤ k − 1.

The following lemma shows the relation between edge sig-
natures in an SPDI and paths in its corresponding graph.

Lemma 1 If ξ is a trajectory segment of S with edge sig-
nature Sig(ξ) = σ = e0 . . . ep, it follows that σ is a path in
GS.

Note that the converse of the above lemma is not true in
general. It is possible to find a counter-example where there
exists a path from node e to e′, but no trajectory from edge
e to edge e′ in the SPDI.



2.2 Successors and Predecessors
Given an SPDI, we fix a one-dimensional coordinate sys-

tem on each edge to represent points laying on edges [4]. For
notational convenience, we indistinctly use letter e to denote
the edge or its one-dimensional representation. Accordingly,
we write x ∈ e or x ∈ e, to mean “point x in edge e with
coordinate x in the one-dimensional coordinate system of
e”. The same convention is applied to sets of points of e
represented as intervals (e.g., x ∈ I or x ∈ I , where I ⊆ e)
and to trajectories (e.g., “ξ starting in x” or “ξ starting in
x”).

Now, let P ∈ P, e ∈ in(P ) and e′ ∈ out(P ). For I ⊆ e,
Succe,e′(I) is the set of all points in e′ reachable from some
point in I by a trajectory segment ξ : [0, t] → R

2 in P (i.e.,
ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Succe,e′ is a TAMF [4].

Example 2 Let e1, . . . , e6 be as in Fig. 1-(a), where all the
edges have local coordinates over [0, 10], and I = [l, u]. We
assume a one-dimensional coordinate system. We show only
the first and last edge-to-edge TAMF of the cycle:

Fe1e2
(I) =

�
l
4
, 9

20
u
�
, S1 = [0, 10] , J1 =

�
0, 9

2

�
Fe6e1

(I) = [l, 2u] , S6 = [0, 10] , J6 = [0, 10]

with Succeiei+1
(I) = Feiei+1

(I ∩ Si) ∩ Ji, for 1 ≤ i ≤ 6 ;
Si and Ji are computed as shown in Theorem 1.

Given a sequence w = e1, e2, . . . , en, since TAMFs are closed
under composition, the successor of I along w, defined as
Succw(I) = Succen−1,en

◦ · · · ◦ Succe1,e2
(I), is a TAMF.

Example 3 Let σ = e1 · · · e6e1. We have that Succσ(I) =
F (I ∩ Sσ) ∩ Jσ, where: F (I) = [ l

4
+ 1

3
, 9

10
u + 2

3
], with Sσ =

[0, 10] and Jσ = [ 1
3
, 29

3
].

For I ⊆ e′, Pree,e′ (I) is the set of points in e that can reach
a point in I by a trajectory segment in P . The ∀-predecessorfPre(I) is defined in a similar way to Pre(I) using the univer-

sal inverse instead of just the inverse: For I ⊆ e′, fPreee′(I) is
the set of points in e such that any successor of such points
are in I by a trajectory segment in P . Both definitions can
be extended straightforwardly to signatures σ = e1 · · · en:

Preσ(I) and fPreσ(I). The successor operator thus has two
“inverse” operators.

2.3 Qualitative Analysis of Simple Edge­Cycles
Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei 6= ej

for all 1 ≤ i 6= j ≤ k. Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ

with F = 〈fl, fu〉 (we suppose that this representation is
normalized). We denote by Dσ the one-dimensional discrete-
time dynamical system defined by Succσ, that is xn+1 ∈
Succσ(xn).

Assumption 2 None of the two functions fl, fu is the iden-
tity.

Without the above assumption the results are still valid but
need a special treatment making the presentation more com-
plicated.
Let l∗ and u∗ be the fixpoints2 of fl and fu, respectively, and
Sσ ∩ Jσ = 〈L, U〉. A simple cycle is of one of the following

2The fixpoint x∗ is the solution of f(x∗) = x∗, where f(·) is
positive affine.

types [4]: STAY, the cycle is not abandoned neither by the
leftmost nor the rightmost trajectory, that is, L ≤ l∗ ≤ u∗ ≤
U ; DIE, the rightmost trajectory exits the cycle through the
left (consequently the leftmost one also exits) or the leftmost
trajectory exits the cycle through the right (consequently
the rightmost one also exits), that is, u∗ < L∨l∗ > U ; EXIT-
BOTH, the leftmost trajectory exits the cycle through the
left and the rightmost one through the right, that is, l∗ < L∧
u∗ > U ; EXIT-LEFT, the leftmost trajectory exits the cycle
(through the left) but the rightmost one stays inside, that is,
l∗ < L ≤ u∗ ≤ U ; EXIT-RIGHT, the rightmost trajectory
exits the cycle (through the right) but the leftmost one stays
inside, that is, L ≤ l∗ ≤ U < u∗.

Example 4 Let σ = e1 · · · e6e1. Then, Sσ ∩ Jσ = 〈L, U〉 =
[ 1
3
, 29

3
]. The fixpoints from Example 3 are 1

3
< l∗ = 11

25
<

u∗ = 20

3
< 29

3
. Thus, σ is a STAY.

Any trajectory that enters a cycle of type DIE will eventu-
ally quit it after a finite number of turns. If the cycle is of
type STAY, all trajectories that happen to enter it will keep
turning inside it forever. In all other cases, some trajectories
will turn for a while and then exit, and others will continue
turning forever. This information is crucial for proving de-
cidability of the reachability problem.

Example 5 Consider the SPDI of Fig. 1-(a). Fig. 1-(b)
shows part of the reach set of the interval [8, 10] ⊂ e0, an-
swering positively to the reachability question: Is [1, 2] ⊂ e4

reachable from [8, 10] ⊂ e0? Fig. 1-(b) has been automati-
cally generated by the SPeeDI toolbox we have developed for
reachability analysis of SPDIs [2, 14].

2.4 Reachability Analysis
It has been shown that reachability is decidable for SPDIs.

Proof of the decidability result is constructive, giving an al-
gorithmic procedure Reach(S , e, e′) based on a depth-first
search algorithm. An alternative breadth-first search algo-
rithm which can deal with multiple edges has been presented
in [15].

Theorem 2 ([4]) The reachability problem for SPDIs is de-
cidable.

An edgelist is a set of intervals of edges. Given edgelists I

and I ′, we denote the reachability of (some part of) I ′ from

(some part of) I as I
S

−→ I ′. Clearly, using the decidability
result on edge intervals, reachability between edgelists is de-
cidable. Although decidability may be point-to-point, edge-
to-edge, edgelist-to-edgelist and region-to-region, in the rest
of this paper, we will only talk about edgelist reachability.

Example 6 Consider the SPDI of Fig. 1-(a). Fig. 1-(b)
shows part of the reach set of the interval [8, 10] ⊂ e0, an-
swering positively to the reachability question: Is [1, 2] ⊂ e4

reachable from [8, 10] ⊂ e0? Fig. 1-(b) has been automati-
cally generated by the SPeeDI toolbox [14] we have developed
for reachability analysis of SPDIs based on the results of [4].

2.5 Kernels
We present now how to compute the invariance, control-

lability and viability kernels of an SPDI. Proofs are omitted



but for further details, refer to [5] and [21]. In the follow-
ing, for σ a cyclic signature, we define Kσ ⊆ R

2 as follows:
Kσ =

Sk

i=1
(int(Pi)∪ei) where Pi is such that ei−1 ∈ in(Pi),

ei ∈ out(Pi) and int(Pi) is Pi’s interior.

2.5.1 Viability Kernel
We now recall the definition of viability kernel [6]. A tra-

jectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a
viability domain if for every x ∈ K, there exists at least one
trajectory ξ, with ξ(0) = x, which is viable in K. The via-
bility kernel of K, denoted Viab(K), is the largest viability
domain contained in K.

For I ⊆ e1 we define Preσ(I) to be the set of all x ∈ R
2

for which there exists a trajectory segment ξ starting in x,
that reaches some point in I , such that Sig(ξ) is a suffix of
e2 . . . eke1. It is easy to see that Preσ(I) is a polygonal subset
of the plane which can be calculated using the following
procedure. We start by defining Pree(I) = {x | ∃ξ : [0, t] →
R

2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e} and apply this

operation k times: Preσ(I) =
Sk

i=1
Preei

(Ii) with I1 = I ,
Ik = Preek,e1

(I1) and Ii = Preei,ei+1
(Ii+1), for 2 ≤ i ≤ k−1.

The following result provides a non-iterative algorithmic
procedure for computing the viability kernel of Kσ on an
SPDI:

Theorem 3 If σ is a DIE cycle, then Viab(Kσ) = ∅, oth-
erwise Viab(Kσ) = Preσ(Sσ).

Example 7 Fig. 2-(a) shows all the viability kernels of the
SPDI given in Example 1. There are 4 cycles with viability
kernels — in the picture two of the kernels are overlapping.

2.5.2 Controllability Kernel
We say K is controllable if for any two points x and y in K

there exists a trajectory segment ξ starting in x that reaches
an arbitrarily small neighborhood of y without leaving K.
More formally: A set K is controllable if ∀x,y ∈ K, ∀δ >

0, ∃ξ : [0, t] → R
2, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈

[0, t] . ξ(t′) ∈ K). The controllability kernel of K, denoted
Cntr(K), is the largest controllable subset of K.

For a given cyclic signature σ, we define CD(σ) as follows:

CD(σ) =

8>>><>>>: 〈L, U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE

(1)

For I ⊆ e1 let us define Succσ(I) as the set of all points
y ∈ R

2 for which there exists a trajectory segment ξ start-
ing in some point x ∈ I , that reaches y, such that Sig(ξ)
is a prefix of e1 . . . ek. The successor Succσ(I) is a polygo-
nal subset of the plane which can be computed similarly to
Preσ(I). Define C(σ) = (Succσ ∩Preσ)(CD(σ)). We compute
the controllability kernel of Kσ as follows:

Theorem 4 Cntr(Kσ) = C(σ).

Example 8 Fig. 2-(b) shows all the controllability kernels
of the SPDI given in Example 1. There are 4 cycles with
controllability kernels — in the picture two of the kernels
are overlapping.

Figure 2: (a) Viability kernels; (b) Controllability
kernels

The following result which relates controllability and vi-
ability kernels, states that the viability kernel of a given
cycle is the local basin of attraction of the corresponding
controllability kernel.

Proposition 2 Any viable trajectory in Kσ converges to
Cntr(Kσ).

Let Cntrl(Kσ) be the closed curve obtained by taking the
leftmost trajectory and Cntru(Kσ) be the closed curve ob-
tained by taking the rightmost trajectory which can remain
inside the controllability kernel. In other words, Cntrl(Kσ)
and Cntru(Kσ) are the two polygons defining the controlla-
bility kernel.

A non-empty controllability kernel Cntr(Kσ) of a given
cyclic signature σ partitions the plane into three disjoint
subsets: (1) the controllability kernel itself, (2) the set of
points limited by Cntrl(Kσ) (and not including Cntrl(Kσ))
and (3) the set of points limited by Cntru(Kσ) (and not
including Cntru(Kσ)). We define the inner of Cntr(Kσ) (de-
noted by Cntrin(Kσ)) to be the subset defined by (2) above
if the cycle is counter-clockwise or to be the subset defined
by (3) if it is clockwise. The outer of Cntr(Kσ) (denoted
by Cntrout(Kσ)) is defined to be the subset which is not the
inner nor the controllability itself. Note that an edge in the
SPDI may intersect a controllability kernel. In such cases,
we can generate a different SPDI, with the same dynamics
but with the edge split into parts, such that each part is
completely inside, on or outside the kernel. Although the
signatures will obviously change, it is easy to prove that the
behaviour of the SPDI remains identical to the original. In
the rest of the paper, we will assume that all edges are either



completely inside, on or completely outside the kernels. We
note that in practice splitting is not necessary since we can
just consider parts of edges.

Proposition 3 Given two edges e and e′, one lying com-
pletely inside a controllability kernel, and the other outside
or on the same controllability kernel, such that ee′ is fea-
sible, then there exists a point on the controllability kernel,
which is reachable from e and from which e′ is reachable.

2.5.3 Invariance Kernel
In general, an invariant set is a set of points such that

for any point in the set, every trajectory starting in such
point remains in the set forever and the invariance kernel
is the largest of such sets. In particular, for an SPDI, given
a cyclic signature, an invariant set is a set of points which
keep rotating in the cycle forever and the invariance kernel
is the largest of such sets. More formally: A set K is said
to be invariant if for any x ∈ K there exists at least one
trajectory starting in it and every trajectory starting in x

is viable in K. Given a set K, its largest invariant subset is
called the invariance kernel of K and is denoted by Inv(K).
We need some preliminary definitions before showing how
to compute the kernel. The extended ∀-predecessor of an
output edge e of a region R is the set of points in R such
that every trajectory segment starting in such point reaches
e without traversing any other edge. More formally, let R
be a region and e be an edge in out(R), then the e-extended

∀-predecessor of I , fPree(I) is defined as: fPree(I) = {x |
∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.

It is easy to see that fPreσ(I) is a polygonal subset of the
plane which can be calculated using a similar procedure as
for Preσ(I). We compute the invariance kernel of Kσ as
follows:

Theorem 5 If σ is STAY then Inv(Kσ) = fPreσ(fPreσ(Jσ)),
otherwise it is ∅.

Example 9 Fig. 3-(a) shows the unique invariance kernel
of the SPDI given in Example 1.

An interesting property of invariance kernels is that the
limits are included in the invariance kernel, i.e. [l∗, u∗] ⊆
Inv(Kσ). In other words:

Proposition 4 The set delimited by the polygons defined by
the interval [l∗, u∗] is an invariance set of STAY cycles.

The following result relates controllability and invariance
kernels.

Proposition 5 If σ is STAY then Cntr(Kσ) ⊆ Inv(Kσ).

Example 10 Fig. 3-(b) shows the viability, controllabil-
ity and invariance kernels of the SPDI given in Example
1. For any point in the viability kernel of a cycle there ex-
ists a trajectory which will converge to its controllability ker-
nel (proposition 2). It is possible to see in the picture that
Cntr(·) ⊂ Inv(.) (proposition 5). All the above pictures has
been obtained with the toolbox SPeeDI+ [14].

In a similar way as for the controllability kernel, we define
Invl(Kσ) and Invu(Kσ).

Figure 3: (a) Invariance kernel; (b) All the kernels

2.5.4 Kernel Properties
Controllability and viability kernels can be related to-

gether in the following manner.

Definition 1 Given a controllability kernel C (of a loop σ

— C = Cntr(Kσ)), then let C+ be the related viability kernel
(C+ = Viab(Kσ)), Cin be the inside of the kernel, and Cout

be the outside.

Proposition 3 in [18] gives conditions for feasible trajec-
tories traversing controllability kernels. The following is a
generalization of such result:

Proposition 6 Given two edges e and e′, one lying com-
pletely inside a kernel, and the other outside or on the same
kernel, such that ee′ is feasible, then there exists a point on
the kernel, which is reachable from e and from which e′ is
reachable.

The following corollary follows from [18, Proposition 2],
asserting that the controllability kernel is the local basin of
attraction of the viability kernel:

Corollary 1 Given an controllability kernel C, and related
viability kernel C+, then for any e ⊆ C+, e′ ⊆ C, there
exists a feasible path eσe′.

2.6 Semi­Separatrix Curves
In this section we define the notion of separatrix curves,

which are curves dissecting the plane into two mutually non-
reachable subsets, and semi-separatrix curves which can only
be crossed in one direction. All the proofs of this and forth-
coming sections may be found in [17]. We start by defining
these notions independently of SPDIs.



Definition 2 Let K ⊆ R
2. A separatrix in K is a closed

curve γ partitioning K into three sets KA, KB and γ itself,
such that KA, KB and γ are pairwise disjoint, K = KA ∪
KB ∪γ and the following conditions hold: (1) For any point
x0 ∈ KA and trajectory ξ, with ξ(0) = x0, there is no t
such that ξ(t) ∈ KB; and (2) For any point x0 ∈ KB and
trajectory ξ, with ξ(0) = x0, there is no t such that ξ(t) ∈
KA. If only one of the above conditions holds then we say
that the curve is a semi-separatrix. If only condition 1 holds,
then we say that KA is the inner of γ (written γin) and KB

is the outer of γ (written γout). If only condition 2 holds,
KB is the inner and KA is the outer of γ.

Notice that, as in the case of the controllability kernel, an
edge of the SPDI may be split into two by a semi-separatrix
— part inside, and part outside. As before, we can split the
edge into parts, such that each part is completely inside, or
completely outside the semi-separatrix.

The above notions are extended to SPDIs straightfor-
wardly. The set of all the separatrices of an SPDI S is
denoted by Sep(S), or simply Sep.

Now, let σ = e1 . . . ene1 be a simple cycle, ∠
bi
ai

(1 ≤ i ≤
n) be the dynamics of the regions for which ei is an entry
edge and I = [l, u] an interval on edge e1. Remember that
Succe1e2

(I) = F (I ∩S1)∩J1, where F (x) = [a1x+ b1, a2x+
b2]. Let l be the vector corresponding to the point on e1 with
local coordinates l and l′ be the vector corresponding to the
point on e2 with local coordinates F (l) (similarly, we define

u and u′ for F (u)). We define first Succ
b1

e1
(I) = {l+α(l′−l) |

0 < α < 1} and Succ
a1

e1
(I) = {u + α(u′ − u) | 0 < α < 1}.

We extend these definitions in a straight way to any (cyclic)

signature σ = e1 . . . ene1, denoting them by Succ
b

σ(I) and

Succ
a

σ(I), respectively; we can compute them similarly as
for Pre. Whenever applied to the fixpoint I∗ = [l∗, u∗], we

denote Succ
b

σ(I∗) and Succ
a

σ(I∗) by ξl
σ and ξu

σ respectively.
Intuitively, ξl

σ (ξu
σ) denotes the piece-wise affine closed curve

defined by the leftmost (rightmost) fixpoint l∗ (u∗).
We show now how to identify semi-separatrices for simple

cycles.

Theorem 6 Given an SPDI, let σ be a simple cycle, then
the following hold:

1. If σ is EXIT-RIGHT then ξl
σ is a semi-separatrix curve

(filtering trajectories from “left” to “right”);

2. If σ is EXIT-LEFT then ξu
σ is a semi-separatrix curve

(filtering trajectories from “right” to “left”);

3. If σ is STAY, then the two polygons defining the in-
variance kernel (Invl(Kσ) and Invu(Kσ)), are semi-
separatrices.

In the case of STAY cycles, ξl
σ and ξu

σ are both also semi-
separatrices. Notice that in the above result, computing
a semi-separatrix depends only on one simple cycle, and
the corresponding algorithm is then reduced to find sim-
ple cycles in the SPDI and checking whether it is STAY,
EXIT-RIGHT or EXIT-LEFT. DIE cycles induce an infi-
nite number of semi-separatrices and are not treated in this
setting.

Example 11 Fig. 4 shows all the semi-separatrices of the
SPDI given in Example 1, obtained as shown in Theorem

Figure 4: Semi-separatrices

6. The small arrows traversing the semi-separatrices show
the inner and outer of each semi-separatrix: a trajectory
may traverse the semi-separatrix following the direction of
the arrow, but not vice-versa.

The following two results relate feasible signatures and
semi-separatrices.

Proposition 7 If, for some semi-separatrix γ, e ∈ γin and
e′ ∈ γout, then the signature ee′ is not feasible.

Proposition 8 If, for some semi-separatrix γ, and signa-
ture σ (of at least length 2), then, if head(σ) ∈ γin and
last(σ) ∈ γout, σ is not feasible.

3. STATE­SPACE REDUCTION

3.1 Reduction using Semi­Separatrices
Semi-separatrices partition the state space into two parts3

– once one crosses such a border, all states outside the re-
gion can be ignored. We present a technique, which, given
an SPDI and a reachability question, enables us to discard
portions of the state space based on this information. The
approach is based on identifying inert states (edges in the
SPDI) not playing a role in the reachability analysis.

Definition 3 Given an SPDI S, a semi-separatrix γ ∈ Sep,
a source edge e0 and a destination edge e1, an edge e is said
to be inert if it lies outside the semi-separatrix while e0 lies
inside, or it lies inside, while e1 lies outside:

inertγe0→e1 =
{e : E | e0 ∈ γin ∧ e ∈ γout} ∪ {e : E | e1 ∈ γout ∧ e ∈ γin}.

We can prove that these inert edges can never appear in
a feasible signature:

Lemma 2 Given an SPDI S, a semi-separatrix γ, a source
edge e0 and a destination edge e1, and a feasible signature
e0σe1 in S. No inert edge from inertγe0→e1 may appear in
e0σe1.

3Here, we do not consider the semi-separatrix itself.



I’
I

I’

I

Figure 5: Reduction using semi-separatrices

Given an SPDI, we can reduce the state space by discard-
ing inert edges.

Definition 4 Given an SPDI S, a semi-separatrix γ, and
two edges, a source edge e0 and a destination edge e1, we
define the reduced SPDI Sγ

e0→e1 to be the same as S but
without the inert edges.

Clearly, the resulting SPDI is not bigger than the original
one. Finally, we prove that checking reachability on the
reduced SPDI is equivalent to checking reachability on the
original SPDI:

Theorem 7 Given an SPDI S, a semi-separatrix γ, and
edges e0 and e1, then, e1 is reachable from e0 in S if and
only if e1 is reachable from e0 in Sγ

e0→e1.

We have shown, that once semi-separatrices are identified,
given a reachability question, we can reduce the size of the
SPDI to be verified by removing inert edges of all the known
semi-separatrices.

Example 12 The shaded areas of Fig. 5 (a) and (b) are
examples of subsets of the SPDI edges of the reachability
graph, eliminated by the reduction presented in this section
applied to all semi-separatrices, when answering reachability
questions (in this case to the question: Is I ′ reachable from
I?).

This result enables us to verify SPDIs much more effi-
ciently. It is important to note that model-checking an SPDI
requires identification of simple loops, which means that the
calculation of the semi-separatrices is not more expensive

than the initial pass of the model-checking algorithm. Fur-
thermore, we can perform this analysis only once for an
SPDI and store the information to be used in any reacha-
bility analysis on that SPDI. Reduction, however, can only
be applied once we know the source and destination states.

3.2 State­space Reduction using Kernels
We have already shown that any invariant set is essentially

a pair of semi-separatices, and since the invariance kernel is
an invariant set, we can use the results from section 2.6 to
abstract an SPDI using invariance kernels. We now turn
our attention to state space reduction using controllability
kernels:

Definition 5 Given an SPDI S, a loop σ, a source edge e0
and a destination edge e1, an edge e is said to be redundant
if it lies on the opposite side of a controllability kernel as
both e0 and e1:

redundantσ
e0→e1

{e : E | {e0, e1} ⊆ Cntrin(σ) ∪ Cntr(σ) ∧ e ∈ Cntrout(σ)}∪
{e : E | {e0, e1} ⊆ Cntrout(σ) ∪ Cntr(σ) ∧ e ∈ Cntrin(σ)}

We can prove that we can do without these edges to check
feasibility:

Lemma 3 Given an SPDI S, a loop σ, a source edge e0,
a destination edge e1, and a feasible signature e0σe1 then
there exists a feasible signature e0σ′e1 such that σ′ contains
no redundant edge from redundantσe0→e1.

Given an SPDI, we can reduce the state space by discard-
ing redundant edges.

Definition 6 Given an SPDI S, a loop σ, a source edge
e0 and a destination edge e1, we define the reduced SPDI
Sσ

e0→e1 to be the same as S but without redundant edges.

Clearly, the resulting SPDI is smaller than the original
one. Finally, based on proposition 3, we prove that reacha-
bility on the reduced SPDI is equivalent to reachability on
the original one:

Theorem 8 Given an SPDI S, a loop σ, a source edge e0
and a destination edge e1, then, e1 is reachable from e0 in
S if and only if e1 is reachable from e0 in Sσ

e0→e1.

Given a loop which has a controllability kernel, we can
thus reduce the state space to explore. In practice, we ap-
ply this state space reduction for each controllability kernel
in the SPDI. Once a loop in the SPDI is identified, it is
straightforward to apply the reduction algorithm.

3.3 Immediate Answers
By definition of the controllability kernel, any two points

inside it are mutually reachable. This can be used to answer
reachability questions in which both the source and destina-
tion edge lie (possibly partially) within the same controlla-
bility kernel. Using proposition 2, we know that any point
in the viability kernel of a loop can eventually reach the con-
trollability kernel of the same loop, which allows us to relax
the condition about the source edge to just check whether it
(partially) lies within the viability kernel. Finally, we note
that the union of non-disjoint controllability sets is itself a
controllability set which allows us to extend the result to



I

I’

I’

I

Figure 6: Answering reachability using kernels

work for a collection of loops whose controllability kernels
form a strongly connected set.

Definition 7 We extend viability and controllability kernels
for a set of loops Σ by taking the union of the kernels of
the individual loops, with Viab(KΣ) being the union of all
viability kernels of loops in Σ, and similarly Cntr(KΣ).

Definition 8 Two loops σ and σ′ are said to be compatible
(σ ! σ′) if their controllability kernels overlap: Cntr(Kσ)∩
Cntr(Kσ′) 6= ∅.

We extend the notion of compatibility to a set of loops Σ
to mean that all loops in the set are transitively compatible:
∀σ, σ′ ∈ Σ · σ !

∗ σ′.

Based on proposition 2, we can prove the following:

Theorem 9 Given a source edge esrc and a destination
edge edst, if for some compatible set of loops Σ, we know
that esrc ∩Viab(KΣ) 6= ∅ and edst ∩Cntr(KΣ) 6= ∅, then edst

is reachable from esrc.

Example 13 Fig. 6-(a) shows a viability and a controlla-
bility kernel of a cycle and two intervals I and I ′. Whether
I ′ is reachable from I cannot be answered immediately in
this case, but Fig. 6-(b) shows the overlapping of the via-
bility and controllability kernels depicted in Fig. 6-(a) with
the kernels of an inner cycle. I ′ thus lies in a compatible
controllability kernel, and we can immediately conclude (by
theorem 9) that I ′ is reachable from I.

In practice, we propose to use these theorems to enable
answering certain reachability questions without having to

explore the complete state space. It can also be used to re-
duce reachability questions to (possibly) simpler ones by try-
ing to reach a viability kernel rather than a particular edge.
As in the case of semi-separatrices, a preliminary analysis
of an SPDI’s kernels be used in all subsequent reachability
queries. SPeeDI [14] starts by calculating and caching all
loops in the given SPDI, and can thus easily identify max-
imal compatible sets of loops. Combining this technique
with the semi-separatrix reduction technique we envisage
substantial gains.

4. COMPOSITIONAL ANALYSIS

4.1 SPDI Decomposition
In this section, we propose a number of theorems which,

given an SPDI and a reachability question, for each control-
lability kernel, allow us to either (i) answer the reachability
question without any further analysis; or (ii) reduce the state
space necessary for reachability analysis; or (iii) decompose
the reachability question into two smaller, and independent
reachability questions.

The following theorem enables us to answer certain reach-
ability questions without any analysis, other than the iden-
tification of controllability and viability kernels. This result
is based on two properties, that within the controllability
kernel of a loop, any two points are mutually reachable, and
that any point on the viability kernel of the same loop can
eventually reach the controllability kernel. Therefore if the
source edgelist lies (possibly partially) within the viability
kernel of a loop, and the destination edgelist lies (possibly
partially) within the controllability kernel of the same loop,
then, there must exist a trajectory from the source to the
destination edgelist. The full proof of this result can be
found in [18].

Theorem 10 Given an SPDI S, two edgelists I and I ′ and
a controllability kernel C, then if I ⊆ C+ and I ′ ⊆ C, then

I
S

−→ I ′.

The following theorem allows us to reduce the state space
based on controllability kernels. If both the source and des-
tination edgelists lie on the same side of a controllability
kernel, then we can disregard all edges on the other side of
the kernel. The full proof of this result can be found in [18].

Theorem 11 Given an SPDI S, two edgelists I and I ′ and
a controllability kernel C, then if I ⊆ Cin and I ′ ⊆ Cin, then

I
S

−→ I ′ if and only if I
S\Cout

−→ I ′. Similarly, if I ⊆ Cout

and I ′ ⊆ Cout, then I
S

−→ I ′ if and only if I
S\Cin−→ I ′.

Finally, the following new result allows us to decompose
a reachability question into two smaller questions indepen-
dent of each other. The theorem states that if the source and
destination edgelists lie on opposite sides of a controllabil-
ity kernel, then we can try (i) to reach the related viability
kernel from the source edgelist, and (ii) to reach the desti-
nation from the controllability kernel. The original reacha-
bility question can be answered affirmatively if and only if
both these questions are answered affirmatively.

Theorem 12 Given an SPDI S, two edgelists I and I ′ and
a controllability kernel C, then if I ⊆ Cin and I ′ ⊆ Cout,



then I
S

−→ I ′ if and only if I
S\Cout

−→ C+ ∧ C
S\Cin−→ I ′.

Similarly, if I ⊆ Cout and I ′ ⊆ Cin, then I
S

−→ I ′ if and

only if I
S\Cin−→ C+ ∧ C

S\Cout

−→ I ′.

4.2 Unavoidable Kernels
Unavoidable kernels are defined geometrically to be ker-

nels which a straight line from the source interval to the
destination interval ‘intersects’ an odd number of times. We
call the kernel unavoidable since it can be proved that any
path from the source to the destination will have to pass
through the kernel.

Definition 9 Given an SPDI S and two edgelists I and I ′,
we say that a controllability kernel Cntr(Kσ) is unavoidable
if any segment of line with extremes on points lying on I and
I ′ intersects with both the edges of Cntrl(Kσ) and those of
Cntru(Kσ) an odd number of times (disregarding tangential
intersections with vertices).

The following theorem enables us to discover separating
controllability kernels using a simple geometric test.

Theorem 13 Given an SPDI S, two edgelists I and I ′, and
a controllability kernel C = Cntr(Kσ), then C is an unavoid-
able kernel if and only if one of the following conditions holds
(i) I ⊆ Cin and I ′ ⊆ Cout; or (ii) I ⊆ Cout and I ′ ⊆ Cin.

Corollary 2 Given an SPDI S, two edgelists I and I ′, and
an unavoidable controllability kernel C = Cntr(Kσ), then

I
S

−→ I ′ if and only if I
S

−→ C and C
S

−→ I ′.

The following result relates unavoidable kernels:

Proposition 9 Given two disjoint controllability kernels C
and C′, both unavoidable from I to I ′, then either C′ is
unavoidable from I to C or C′ is unavoidable from C to I ′,
but not both.

4.3 Parallel Reachability Algorithm
In Fig. 8 we give an algorithm for parallel reachability

analysis of SPDIs using parallel recursive calls corresponding
to independent reachability questions.

The function ReachParKernels is called with the SPDI
to consider, a list of kernels still to be used for reduction,
and the source and destination edgelists. With no kernels to
consider, the algorithm simply calls the standard sequential
algorithm (Reach). Otherwise, one of the kernels is ana-
lyzed, with three possible cases:

1. If the source lies (possibly partially) on the extended
kernel, and the destination lies (possibly partially) on
the kernel, then we can give an immediate answer (us-
ing theorem 10).

2. If both the edgelists lie on the same side of the kernel,
then we simply eliminate redundant parts of the SPDI
— anything on the other side of the kernel (theorem
11).

3. Otherwise, if the kernels both lie on opposite sides of
the kernel, we can split the problem into two indepen-
dent questions (reaching the kernel from the source,

I’

I

I’’

C1

C2

C3

I’

I

I’’

I’’’

C1

C2

C3

Figure 7: Unavoidable kernels and independent
reachability questions

and the destination from the kernel) which can be run
in parallel (theorem 12). An affirmative answer from
both these subquestions is equivalent to an affirmative
answer to the original question.

Note that the function ReachParKernels is compositional
in the sense that each recursive call launch a process which
operates in (most cases in) disjoint state spaces which are
smaller than the original one (S). The final answer is the
composition of the partial reachability questions.

Given two edgelists I and I ′, we define the following pred-

icate I
S

−→‖ I ′ ≡ ReachPar(S , I, I ′). The following theorem
states that the (compositional) parallel algorithm exactly
answers the reachability question, also giving a soundness
and completeness proof of the algorithm:

Theorem 14 Given an SPDI S and two intervals I ⊆ e

and I ′ ⊆ e′, I
S

−→ I ′ if and only if I
S

−→‖ I ′.

5. CONCLUDING REMARKS
We have given an overview of our recent results on the

optimisation of SPDI reachability analysis. Using semi-
separatrices and kernels, we presented techniques to improve
reachability analysis on SPDIs. In all cases, the techniques
require the identification and analysis of loops in the SPDI.
We note that most of this information is still required in
reachability analysis, and thus no extra work is required to
perform the optimization presented in this paper. We have
also shown how answering reachability on an SPDI can be
reduced to a number of smaller reachability questions. These
two techniques can be combined together applying the re-
duction tecniques globally (on the whole SPDI) or locally
on the decomposed SPDIs).



function ReachPar(S, I, I′) =
ReachParKernels (S, ControllabilityKernels(S), I, I′)

function ReachParKernels(S, [], I, I
′) =

Reach(S, I, I′);

function ReachParKernels(S, k:ks, I, I
′) =

if (ImmedieteAnswer(S, I, I′)) then
True;

elsif (SameSideOfKernel(S, k, I, I
′)) then

S_I := S \ EdgesOnOtherSideOf(S, k, I
′);

ReachParKernels(S_I, ks, I, I′);
else

S_I := S \ EdgesOnOtherSideOf(S, k, I);
S_I’ := S \ EdgesOnOtherSideOf(S k, I

′);
parbegin

r1 := ReachParKernels(S_I, ks, I, viability(k));
r2 := ReachParKernels(S_I’, ks, k, I

′);
parend;
return (r1 and r2);

Figure 8: Parallel algorithm for reachability of
SPDIs.

Our work is obviously restricted to planar systems, which
enables us to compute these kernels exactly. In higher di-
mensions and hybrid systems with higher complexity, calcu-
lation of kernels is not computable. Other work is thus based
on calculations of approximations of these kernels (e.g., [8,
7, 19]). We are not aware of any work using kernels and
semi-separatrices to reduce the state-space of the reachabil-
ity graph as presented in this paper.

We are currently exploring the implementation of the op-
timizations presented in this paper to improve the efficiency
of SPeeDI+ [14]. We are also investigating other applica-
tions of these kernels in the model-checking of SPDIs.

One current research direction is to apply our results to
semi-decide the reachability question for SPDIs defined on 2-
dimensional manifolds, for which the decidability of reacha-
bility remains unresolved [3]. Maybe the most prominent ap-
plication of SPDIs is for approximating complex non-linear
differential equations on the plane, for which an exact solu-
tion is not known. The decidability of SPDIs reachability
and of its phase portrait construction would be of invalu-
able help for the qualitative analysis of such equations. The
challenge would be to find an “intelligent” partition of the
plane in order to get an optimal approximation of the equa-
tions. Since such partition might produce a high number
of regions, our parallel algorithm might be extremely useful
here.

6. REFERENCES
[1] R. Alur and D. Dill. A theory of timed automata.

Theoretical Computer Science, 126:183–235, 1994.

[2] E. Asarin, G. Pace, G. Schneider, and S. Yovine.
SPeeDI: a verification tool for polygonal hybrid
systems. In CAV’2002, volume 2404 of LNCS, 2002.

[3] E. Asarin and G. Schneider. Widening the boundary
between decidable and undecidable hybrid systems. In
CONCUR’2002, volume 2421 of LNCS, 2002.

[4] E. Asarin, G. Schneider, and S. Yovine. On the
decidability of the reachability problem for planar
differential inclusions. In HSCC’2001, number 2034 in
LNCS, pages 89–104, 2001.

[5] E. Asarin, G. Schneider, and S. Yovine. Towards
computing phase portraits of polygonal differential
inclusions. In HSCC’02, volume LNCS 2289, 2002.

[6] J.-P. Aubin. The substratum of impulse and hybrid
control systems. In HSCC’01, volume 2034 of LNCS,
pages 105–118. Springer, 2001.

[7] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry,
and N. Seube. Towards a viability theory for hybrid
systems. In European Control Conference, 2001.

[8] J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry,
and N. Seube. Viability and invariance kernels of
impulse differential inclusions. In Conference on
Decision and Control, volume 40 of IEEE, pages
340–345, December 2001.

[9] A. Deshpande and P. Varaiya. Viable control of hybrid
systems. In Hybrid Systems II, number 999 in LNCS,
pages 128–147, 1995.

[10] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata? In
STOC’95, pages 373–382. ACM Press, 1995.

[11] G. Lafferriere, G. Pappas, and S. Yovine. Symbolic
reachability computation of families of linear vector
fields. Journal of Symbolic Computation,
32(3):231–253, Sept. 2001.

[12] O. Maler and A. Pnueli. Reachability analysis of
planar multi-linear systems. In CAV’93, pages
194–209. LNCS 697, Springer Verlag, July 1993.

[13] A. Matveev and A. Savkin. Qualitative theory of
hybrid dynamical systems. Birkhäuser Boston, 2000.

[14] G. Pace and G. Schneider. SPeeDI+.
http:\\www.cs.um.edu.mt\speedi.

[15] G. Pace and G. Schneider. Model checking polygonal
differential inclusions using invariance kernels. In
VMCAI’04, number 2937 in LNCS, pages 110–121.
Springer Verlag, December 2003.

[16] G. Pace and G. Schneider. Compositional algorithm
for parallel model checking of polygonal hybrid
systems. In 3rd International Colloquium on
Theoretical Aspects of Computing (ICTAC’06),
volume 4281 of LNCS. Springer-Verlag, 2006.

[17] G. Pace and G. Schneider. Static analysis for
state-space reduction of polygonal hybrid systems. In
Formal Modelling and Analysis of Timed Systems
(FORMATS’06), volume 4202 of LNCS.
Springer-Verlag, 2006.

[18] G. Pace and G. Schneider. Static analysis of SPDIs for
state-space reduction. Technical Report 336,
Department of Informatics, University of Oslo, PO
Box 1080 Blindern, N-0316 Oslo, Norway, April 2006.

[19] P. Saint-Pierre. Hybrid kernels and capture basins for
impulse constrained systems. In HSCC’02, volume
2289 of LNCS. Springer-Verlag, 2002.

[20] G. Schneider. Algorithmic Analysis of Polygonal
Hybrid Systems. PhD thesis, VERIMAG – UJF,
Grenoble, France, July 2002.

[21] G. Schneider. Computing invariance kernels of
polygonal hybrid systems. Nordic Journal of
Computing, 11(2):194–210, 2004.

[22] S. Simić, K. Johansson, S. Sastry, and J. Lygeros.
Towards a geometric theory of hybrid systems. In
HSCC’00, number 1790 in LNCS, 2000.



����������	
��
����������
�����������	�����������
�

�

��������	�
�
���

���	�������
�	���
���������
��
�

�
��
�
�����
��	�
����������

�

�

�

�

�
���
�
��
�	�������������	 �����!��
�	���
���������
��
�

�
��
�


���
�
������������

��	!
	����

��

���

���	����������
�	���
���������
��
�

�
��
�
�����
��	�
����������

�

����
��"
���

������������	 ��!��	!�#��
$�	 %������� ���
���
���	#��$�


 
���!���
��	�
!����

� �

���������
�
����� ����	� 
��	����� 
��� ������ �����
������ ��
� ��		��
�
����������
�� �������� ����
���� ��������� �����	��� ��	��	��� ��

��� ��	���!"��	����
� 
��
� ���� ����� 	������� ��	� ���
� ��
�	� ����
 ��	#��������	����������� 
����	����
�����������
�
�� � 
��� 
�
���� ���

����	�������������������������	����	������������	���
��
�����
��
�
�	�� ���������� ��	��
��	� ����������� 
���
��	���
���� �	�����	$� ��	�

���	�������
�����
���������
���
�����
������#���������	���������
�	���	�� ����
���
��������
���		��
���������
�
�������
�����	����
��	��	���
�����%�����
���������
�
���$�
#�&�������������
����
��
��������	�
���������� ��	#�

��	
��
��
'�
�	��� ��������� (	�������������������	�����
����� (�	������ ��
�
)���
�	�)����
�����*	�
�)����
�����'�
��	$�����)������	�
����
� �
���#�

����������������

������	$�
���	���
���������������	
�
���
�	�
�����!"����
��
����
�
�����
�	�
� 
�	����� 
��� ���
�� )������� ��	� �������� ��
�
��������� #�&���	����
��
�
�
���"���������	
��	����
����	����
��
��	�
�������� ������	������
�	������	���*���	����
����	���#�

��� �������������
�

���� 
�	�� +��������� 	����	���,� 	���	�� 
�� �� ��
� ��� ������� �	�
��������� 
�
�� ��
� 
���	��
����� ����������� 	��
����� ��	�#� ��� �
�	��	���	
�
����$� �������	�����
�	���������	������	�
���������
��
���������
�	�������������	���������� �
������
�
������������������
���
	����	���
��
� ���
������$�����
�������
�
�������������
��������
�
������ ���������	���
�
� ��
��
	���� ����� ��� ���
��	�� ������-�
�����

	�����
�����������������
�#��

�

����� ����	� 
��	����� 
��� ������ �����
������ ��
� ��		��
�
����������
�� �������� ����
���� ��������� �����	��� ��	��	��� ��

��� ��	���!"��	����
� 
��
� ���� ����� 	������� ��	� ���
� ��
�	� ����
 ��	#��������	�����������
����	����
�����������
�
�� �
������������

����	�������������������������	����	������������	���
��
�����
��
�
�	�� ���������� ��	��
��	� ����������� 
���
��	���
���� �	�����	$� ��	�

���	�������
�����
���������
���
�����
������#�"
����	�����������


��������
�������
����	���������������	���	��	����
������
����
���%�
���
���	���
���������	��
#�����.//0���!������122.�#�

"�� 
��� �	����
� ��� �	�� ��
�	��
�
� ��� ��
�� �������� ���������
	����	��������������������	���	������
�	��
� ���
����
��
����	����
����������������	�
�%
��	���
���	���	
��������
���	
������������
������ �	�� 
�	���
� ������ �� �������
���� ��� ��
���
�
� 
����� ��
�
�%��	
�$�����
��#�3%������������
����	��	����	$�
������	���	
��
�����������	��
��	�����	��
����������������
���
�
���#��

�

&�� �����
�� ��� ��	
�����	� ������
� ����� �����
�	 � 	����	���� ��
	
��
����
���� ����	
�� �� 
��
� ���� �� �
	��
�	�
� ������
���� ���
����	��
���� ����
� ��	
�� 
��
� ���� ��� ���
� � � �� ������ ��	���� ���
+��������� ������
,� ���	� �������
���� �����
���� ������ ��
� �
 ���
����$�	�#������������
��������������	����	���
����
���%
�������
��
�	��
���� ��
�� �������
��� ��
� ��� ����� ��
�	�
� ��	� 
���� ��� 
���

���������
���� �
��#�

�

���
���� 1� ��� 
��� ����	� 
��������� 
��� �
	��
�	�� ��� 
��� ���
����
'�
������ )�	���#� ���
���� 4� 
���	����� 
��� ��	����� �
��
���

������� ������� 
��
� ���� ����� 
�������
� ��	����
���#� ���
���� 5�
�����	�
������6!�������
������������	�
���
���	��
���������%�����
����	��
���� �����
� ���
���� 7� ������
	�
��� ��� ��������
�
����
������#� ���
���� 8� 
��������� ��
�	�� ��	$#�&�� ����� ������
�� ��
��
��������	�
���������� ��	#�

��� �������

���� ��� ������ !�"������#$��
�

&���	�����
����	�������������
���������
����'�
������)�	���#�����
������ ��������� � �����
� 
���� 	����	��� ��� ������	� 
�� 
��� 9	�
����
'�
������ )�	���� �9')��� � �
�� 9	�
���� ����
�	��	
� �����:�
��� ��
�
9�	��	
�;.<�#����	���	������	������	��
�	��
����
��
��������
���$��
���������	����
������������������
�#������������
��

���	����
�
�������#�9 �	��	����
�
������������
��
�
������
��
�=�
�� ������
���� ��� �	�

��� ��
� ���$��� ��������� 	����	����� �����
�
����� ���	��
�	��
���� ��
� �	���	
���� 
��
� 	�����
� 
��� ��������� ��� ��
�����#�&���%���
� 
����������
���� 
�����
���	��� ��� 
�	���������	��
��
� ������
� ��

�	� ������
����� ��	� �%������� ��������	� 
�%
��



���
����� 
��������� 
������
�� ��� 
����	��
� �	����� �
���
������
��
�	������ ����� �
�#�� ��
� ��� �� ��	
���� ��-�>� 
��� 9')� ����	�����
����
� .22�����������	
�� ��
� 
��	�� ��� ��� 	������ 
�� �������� 
��
��
������ �
�?��
�� 	����	����� 
��� �')� ����� ��
� ��� ������ ������
������	#��

:����������
 #�:������
� ����	
��
�
���
�	�
������ 
��
� 
�����	����
�����
� ��� ����� � ����������#� "
� ����� ��
���
� �� ���� 
��
� 
���
�	���	 � ������� ���������� ����� ��� 
��� "�
�	��
�� ��
� 
��
� ���	��
����������������	�����������������
�
��
�����	�	����	������
�
����#�
!����	��
���
���	����������	����
�
����
�	�
���	����
�����	�����
���
�	���������
����������������	��������	��	�����
�	�������
�
�	�����
�
�������	�� ��� ��	���� ��
�	����#� :�� ��
�%���� ������� ��� ��� 
���
�	���������������
�����
#�

:���
�
���� �����	
#� )�	���� ��
�	����� �	�� ��$�� � 
�� �		���� �	���
���
	���
�	�� ��� �� � ��	��� ��
� ��� ����� 
�� ������� ��� ����
���
�
�����������������������
����
����
�������������
�������	�#�
@�	� �%������� 
�%
� 	����	���� 	������
� 
�� 
�
�� ����� ����� ���(!@��
&�	
��(�����
�:�)""#�&��
����
�������%���
�����
	���
��������
����	#� :
� 
��� ����� 
����� ��� ���
� 
��� ���������
 � 
�� ����
�
��
��
���
����
������
���	���
�����
������
����
��
����	��
�$��
�����
����	��
������
���	
��	��	���������
�
���	���
�������	
���	������
����
�
���#�"��������������
�������
�
�����
�������������������#�"��
�
��	�� =� ��	
� ��� ������� 
������� ������ 
�� ���
� �� �
� ����� ���
��
���
�
#�"���	
�	���	�����
�
����
���������������
������
������
��
���
������	��
����	
�����������
��
�	
�����
���	�
������	���������
����� �
��
�
� 
����	��
� ������� ��� 	��	����
�
����� ��� ������ ���
@���	��.#�����
������
��
�
��������	�
������������	��	����
�
�����
���
��	��	�����
�
��������������
���
�
��������
����	��������#�

���� ���#$����" �" ��
�

:
� 
��� ��
��
� ��� 
��� �	����
�� 
��� ��	���� ������
�
� ��� ����
� .��
��	
����������
�%
��������
�
�����������	
����
����������	���	�� �
�	������
���� ��������� ��������	�#� ���� 
�%
�� 	��	����
� �� �	��
�
����
	������
���
 ��������	
����������
����
�������
��#��

�������������	�� ��		��
� �������
�� ����
���������� �
�� ��	��	#�
����� ��� �� 
����	�	 � ����
���� ���
���� 
��� 
���������
� ��� ��
����
�����
�������	�����
��
�����������������
����
������
����
�
�	����������
�����
�%����
��
����������������������

���� ��		��
� 
�	��
�	 � �
	��
�	�� ��� ����� � 	�
����
�	 �� �������

���
�
� ��
�� 
��� ���������� ����� ��
���	����� ����� ��� ������ �	��
���
���
�
� ��
� �
��	�� ������ �� � ������� ���
���
�
� ��� 
���
��	�����	���#�

•� �%�
�&!%'����
�������
�������	� �����	�#�
•� ���('���������
•� �)� '����
����	
 �
�%
�����
���
�	��
�������	�
�����
�	��
#�
•� �&�!�'��
•� ��*��"&�" #�*���		����
�
������
�����������
�������
�

�������
����#�&�����	����� ����
���
����
��
����	��
�
����	����
��������#�3A�
������
���������������
�
���	�������
��	�#�

•� ��
#��������
���
������
�������
�����������
���
�����
�#��
•� �! ��� $��'���
�	�	 ���	$���������$��
�#�!������	����� �

���
���
����
�����
	 ���	�������
�
	���#�
•� �����#�'�������	�
�%
��	���
��� ���
����$� ���������	�#�

����
�	��
�	 ������		��
� ����
���
�
�� ���������	�
�'�--����B�"�������
B�C����D�

B��������

•� ���!(!�"#�������������
����������
�%
��
•� �#��%)>��������
�
�����		��
� ����
 ��
•� �!�%����"��$��
�
������ .� �����	����� 
��� ��		��
� ���
��
��� ��
� ����
���� �����

������
��
��
����������������

�
����)!��
��������	#�

�

� �&� ��&��+�� �� ���

�
� �!,��-��.�

(	���� � 1227� .�

*���	����
� � 1228� .14�

���� � 1227� 17�

��������� � 1228� .8�

�6�:�� � � .87�

������.#�)�		��
�������2�)��
��
��

�

�

@���	��.>��������������	����
�
����

�

��/� ���#$����#����" � !�"���*����

��*��� 0�� :
� 
��� ��

��� ��� 
��� ������ ��� 
�� ����$�� ��� 
������
��
	����	����	������
����
����
��
�	��
�	 ��	���
����	�����
�	����������
�
�������2������
�����	���		�
�
����� 
������	��������#�:
� ������2��
��	 � ���� ������
����� ����
� 
��� ��
�	�� ��� 
��� 	����	��� �	��
��������� �%���
� ������ ����	��
���� �����	����� ��
��	�� 
�
���� 
�
��
�
�#�

��*��� �#� ���� 
�%
� ������ ��� 
��� ��	�
� ������ �
� ������ ��� �	�� ��� ��
����
����
��
���������
��
�	
#�����
�����	�����
��
�
����	��	����
����
�������� ����
� �
��
�	
� ��	� �� � $��
� ��� �����?���
� ��
���
�
�
�	��������#� &����
� 
��� �������� ��
����� ������ 2� ��
� ������ "� ���
��
�	
�$����������
����������� �
���� �����
���������������	������
���� ��� 6)�� �
���� ��� ���� ��	� ������
�� � ��
���
�
� ���������
�	��� ������ "� ����	
�#� ���� ���
� ����	
��
� �����
� ��� 
��� 
�%
�
����
���� =� ��	� ��� �
� ���A�@0#�)���	�
�� �� ������ .� ��� ����
�
� ���
A�@0� ��
� �����
��� �� ����
�����
��3"��
 ��� ���#��3"�)����	
����
1221�� ���
�	� �
��
�� ���� ��
� ��	
���� $� � ���
�	��� ��� 
��� ���	���

�%
������
����
�
������
��	��
�
�#�

���
&6�!�

(!@�

A����
��A�@.8�

:�)""�
A�@0�

�

��%
�

��$����

(6��

�����

��%
�
�
	��
�	��

�

� �
��
���
)���$��

��������

�

�	��

��������

�����

���������

�����

���
	�
���

����������

�������

��%
��
	��
�	��E�
��$����

�	����



��*������� ��������	����
���� ��	�
� �����������
��������
�
�������	��

�%
� �
	��
�	�� �����
���%�����
#� "�� ���
	��
� 
�� ������.����� ��	�����
����	��� 
����	��
� ����
�
���� �������� ���	�
���� �
� ������ ""�� ������

��	����������
���
������
����
�����
�
�
���������
�%
��
	��
�	�#�

�������� ������������
��
�
���	��	����
�
���������	
�������	��
�	��
��
��
��
���
�A�@0���
�������������
��
�	
�-�
� ��#��+���
�F��	��
�����
�
��F���
�����	�������
�
�����������������
�������
��������
�	�������
� 
������������
����������
������
��
������������ 
�$���
�����	�� ��� ����	�
�� ������ ��
�� ����$� ������ ��
���
���� ��	��	����
�	��$#�6
��	�$��
�����
�%
��
	��
�	������
�������������
�
�
��
�
����
��������#�#��

•� 
�$���-�
���� ��
�� 
 ��� ����	��
���� ��#�#� ��
�� 
��
���
����
��
�������	
������
��
����������	��

•� ���
�������
���	��	��������
�	����

•� �����	�������
�%
��
	��
�	�#�@�	��%����������
�����5����	����
�
����������� �
#� ��� 1228��� �� +������ G��,� ��	��
� ���� �����

�����
������������
����������
����
�������	��
�����	����
����
��� D���� 
������
� 
��
� ��� ��$�� � 
�� ��� ������� ��	� 
���
��	������ ��� ��
���
��� ���
��
� �%
	��
���>� ���
� �
 �����
���
���������
�����
������#�

���	���	����� ������������ ���������������������
�
�������	�
�%
�
�
	��
�	�� ����
� ��� �		���
� �
#� 6��� ����
� �����
�� 
���� ����

���
��	�� �	� ���� ����
� ������� 
�� �
��
�� � 
��� ���
����� ��
�
��	��	��������
�	������������������
�
���� �������� 
�$���-�
����
������ ���
��	� �������� ������ � ���������� 
��� 
��� 
���
��	� ��� ��

��	
�������#��)	��
�����
�9�
��	����1225��
���	��������
����	��
�
����
�
�������������������	���	
�
��������
���������

�������
��
�
��
�����
���������
����
���
����� �
��������������������
�
�����
��	�
	�����	�������������
�
�������������
�����
��	#��

��*��������D�	���������
�������
�
���������
	�
���
�����	
�	�
�
��
�� �����$��
	��
�	������#�:��� �.//.���	�
	���#��

@����� �������	���������������
�
��������������������
���
����	��
�����������������
���
�
������	���	��������
������������
�
������"H���
��� ���#��������	����
���������	�
�����$��������	�
 #�

/�� ���#)��	" �% !%��""� � !�"�
�

��������
����
���	�������
����
��
��
������������������ �
�������
�
��	� ���
���#� ���� 
����
� ��� �� �� �	������ 	���� ��� ������ """� ��	����
����
�
���� �
��� ��	�
� ������ ��� ����
�
���� 
�� �����
�� ��	����
� �
��
��� ����	��
����#� "
��������� �����	������ 	���� ��� 
��� ��%������
���	�� 
��� ��	����� �
��
��� �	���	
���� ��� ��	
�� �	�� ��
���� �
�
�	�
#�&�� ��	�
� 
���	���� 
��� 
����
� �
����#� ����� ��� �������
� � � ��

�������������
�������
�
�����	������

/��� ��(�� �
�

����
����
���	����
�����������%
������������	���	���	$�������
	���

�	��
� � ��� 
��� 3:*�3�� 	�������
�
����� ������� ��
�&�������
.//8�#� ������ 
��� �	������� ��
���	 � ��
� �	�����
� � � 3:*�3��
�	���
� 
�� ��� �������
� ����
�
� 
�� ����	� 
��� ����� 	����� ���
��	���� �
��
�������������������
�������#�*�

��
���#�1224���
����

������ ���� �%
��
�
#� :��	
� �	��� 
��� ����	� �	����
�����

��
���	������
���	���� �
��
��� ���
�	���� 
������	�����
��
��������
����� ��� �������� ��	
������ ��������� 
�� 
��� ���
���� ��������� �����
���������������
�
#�

���� 
����
� ��� �
	��
�	�
� ����� 
��
� ���	 � ��	���� �
��
��� 
��� ���
	��	����
�
���������	��)�@������	�������������	���
���	 ����
�������
�� ��
� ��� ����
����� ����� ��� ������ ��� 	��	����
�
� ��� ��� �

	���
��
������ ���	#� ������ 1� ���
�� 
��� ����	� ��
���	����� �����
� ������ 4�
������
�����������
�	����
#��

�

��1���%� �(��!���

�����

��	��

��
����	�

�	������


�
�	����	�

�
����
����

����
����

��	�� �����
�
��	$�	�

�������
����

�%��
��
����

��
�	���
����

����
��
����

	���
����

�

��2��������1���%� �(��!���!"� )����� ���� �(�� �

�

3�� $����� �

������ .�
@��
�	���

������ 1�
@��
�	���


 ��� 
���������

��	���� 
��	���

�����	� �����
�

���
�	� 
�����

�

������
� ���
�

����
���� �����

�

��2���/����1���%� �(��!����"
�4�� $����

!"� )����� ���� �(�� �

�

:�� ������ ��� 
����� 4�� ���
�	��� �	�� 
���
�
� ��
�� 
��� ������#� �����

�������� ���� �	���	�� � ����
� �
� ����

���� 
��� 
��$� ��� ����
�
����
��
�� 
��� �
����>� ������ .� ���
�	��� ��	�� ����
�
�
� 
�	���� �� ��	�
�
����B� ������ 1� ���
�	���� ������ 
��
� 
�� ��� ��	�� ����
�
� ��� 
���	�

��
	���
�������	������
�
�
�
�	����
��������
�����#��

&�
���� �� � ����	� ��
���	 �� 
��� ���
� ����	
��
� ���
�	�� ��� ������
������ ������� 
��
�������� ��
����� 
����	��
� ����������� ��� 
���



��
���	 #�������������
�������
���	 ��

������������
 ���	
��
��
�	���
�������	����������
���������
��
��������
 �������
������#�

��� �����
	�
��� 
�����5�
����� �� 
�������� 
 ���������	�����
�������
��#�#�
�������������
���������

	���
����	�
�������
���	����#��

�

�

��1����� �(��	� �	#���

����� .#��������
1#��	���	�

��	�� 1#������
4#���%����	 �
5#�������	�
7#���	
�������
8#���
���

�

��2���5��6��$����4� 	#��4��� )��&�!"�%� �(��!����

�4�������"
������

�

�����������	��� ���
���	 ��������
�
����$��
��
���
�����
��
��%�	
�
��� ������������� 
�����	���� �
��
����
	��
�	���������	�����	�
��	�

���������
���
��
���
����#�@�	��%�������
�����	�������	����������
���
�����������������	�����
������%��������
����� ��
�������.�B����
������������
����	�����������	$�
����������	���	��#��

�

�.�� 
�$�� ������������� � I����

���4������������4�����(	��4���������	�
��	�.���*���

� J
��
�������������������������������������������������������� ��	�
��	K�

�

)���	� �� ��
� ���� ���
�	��� �	�� 
�����
� ��	� ���� ��
���	���#� ������
����	�� ��	
����� ��� � 
�� ������
�� ��� 
��� ��	���� ��
���	 �� ������
	���� ��� ��� � ����
�
�
� ��� 
��� �����>� 
��
� ��� ������ �%�����
� �
��	$�
���	� 
�������
�������������� ����
�
�
���������
�������������

��� )���
	��
� �
�
��� �%��������
� ��� �1�� ��� ��
� 
��� �
����
���� �����
����������
���������������������
������	$�	���������������4�#�

�

�1�� ��	
� � �����
������������ ��� �

J��� K������K�

�

�4�� (��
	��L������ ������ ���������������M����#�
(�
�	��������(4��� �	����
���
�� N����

J(�
�	������
�N���K�

�

6������
����
���
��������
������ ��
����
��
��
�������������
��
������
������ ���
�	��� ��	
���� 
�� �� ��	
�����	� ��
���	 � 
 ��#� ����� ���
����	
��
�� ��� 
��
� 
��� �������
���� ��� ���
�	��� ����� ��� ������ ��
�
����	�� ��� ��
� ���� �� �
	����
��	��	
� ���#� @��	��� .//8� ��	�

����������#������� �
�����������	���
� 
��
��������	��� ������
����
�	����� � ������
�
� ��	� �����
�� 	�
��	� 
���� 
����#������%���
���� ���

��� ��%����	 � ������ ������ ����
����� ��� �� 
����� ��	$�	��

��
�������������
������������
��
������#�:���	
��	���
���	 ��
��
�

��� ��	�� �����
���	$�	��� 
���	���� �����������
���#������ ��
���	 �
���� ��
	�
���
� 
�� ������
�
�� ��	
������ ������ ����
���� ��� 
��
��	
��	���	$�
�������
��
	��
�	�������
������������	����	���������	�
��
� ������ 
��� ����	��
���� �������
� � � 
��� ������
������
��	������ � ��� 
��� ��	�� �
����#� ���� ��
���	 � ����
� ��
� ���
����	��	�
�
���
����	��������������������
������
�	���
��
����� �
��

���
����	��
���	��
 ������������
��
������#�#�
�� ��	����
�������
�
�
��	� ���
�	� �	� �����	�#� ��	����	�� 
��� ����	�� �

	���
�� 
���� ��
�
���� � 
�� 
����� ������
��� �������� �
� ��� ����	��	�
�
� ��� 
��� �����
�

	���
�#� 3%������� ��� 
��� 
��� 
 ���� ��� �����
� ��	$�	���
��
�����������
���
���	������	������������5����
��7�#�

�

�5��$����� � ?�
�� ���$���

������������
� �	��� ��
��	���

������J���������
���K�

�

�7��$���� � ��� ���$���

�����������
� ��
� ��
��	���

�����J�����������
�
����
K�

�

:��
��	���
���	 ��
��
�����
������������	��	�
�����
���
��	�����
�
�
���
����#� ������ �	�� 
��
��������
� � � 
��� ����� �

	���
�#� ����
	��������	�
�������
��
�
��	���������	��������������
����	����
����
��
��� �
���
����� ��
�����
��	����� ����
���� ��� 
������
���� ��������#�
!��
����������� 
����� ������ 
����	��
� ��
���	���� ����
� ����� 
��
���
�	������
��
���� ������������	�����
���� ��	� ��
�	�����	����� 
���
��	���#� 6�� 
��� �
��	� ���
�	���� ���� ��� 
��� ���
� ����	
��
� ���
����	�����#� ����� ���� ����	�
�
� �	��� 
��� �	������� 3:*�3��
	�������
�
��������
�
��
������������
�������	���� �
��
����� �
��
����
��
�������
�����
����
���#�

�

/��� ��*��������""� � !�"�
�

��	����� �
��
��� ����
�
���� ��� 
��� ��	���� ��� ����� � �����	�
��
�������� ��
�  �
� ��� �� �	�	�?����
�� ��� �����
� �� � �����
���
���� ���������	������
�	����#�)���	� �������
���
�������
�������
��

�� ��� 
�����
� ������ ��� ���	��	��
�� ��	
� ��� ������� 
����	#���� �

�����������	������	�����������#��&���	����		��
� �������
��������
9���
� �����	� 
�������
� � � 9	���� �.//8��� 
�� ��
���
����� �
����
�
�����	������� ���	��������������
�����	���#�

���� ��	$� ��� ������ ��		��
� ��
� ��� 
�	��� �
����#� !�	���� 
��� ��	�
�
�
����� �� 	��
��� ������� ��� ��#� 4222� ��	
�� ���� 
�$��� �	��� 
���
��������	� ��	���#� ����� ���� ������� � ����
�
�
� ��
�� ������ .�
���
�	���
�	��������	�
�����#�@�������������
�
�������
�����
��
����

��� ��	�
� ������ ������ 1� ���
�	��� ��	�� �

�
#� !�	���� 
���� ���
����
������� 
��� 
����
� ���� �%���
�
� 
�� ������
�
�� 
��
���
����� 
��
�
��	��
����
�������������������
���	��	�?���� #�@�	����
������
���
��
���	 �����������������������
	�
���
��
�
�����
���������������
���
�	��
���� �
��
�
� ��	� H�	����� 1� ��� 
��� )�:&�� 
����
� ��	� 
���
9	�
���� '�
������ )�	������ 
�� ��	$� �%��
��
���� ����� ���

�����
	�
�����	���������������������8�#�

�8��������� ���I�
�� 	�O���

� 
���4��P3%� ������������

� J��	����������K�



@��������� 
���� ���
���� ������� �� ���� �������� ��� �� ��	
��	� 4222�
��	
������������
�
����
�����
�
�
�������� #�

6�	�
��������
������
���9	����
����	�������
���
�
�� �
������
�
��
�
�
�����
�������	�����
�������
���	���
	�������
�
�����	�����������
�������������� ��
�
�
���	���		��
����#�������
���
�������
�
����
��� �	����
���� ��� 
	����
��
�	�
	���� � ����#� ������ �������� �	��
����
�
�
�������
���
����	���
�������� ���		��
�
#������?���
� ��

��� ���� � ����
�
�
� �������� �	�� �

�
� 
�� 
��� 
	������� 
�
�� ��
�

���
����	����	�
	����
#�

@�
�	����	$� ��� ����
�
���� ��� �����	����
���� ��� 
���
�	��
����#�
���� ��	�
�� ��
� ���
� �	���
�� ��� 
��� ������
���� ��� 
��� ��
���
���
����
�
������	�����	���
�%
�������#�����������
��$��������
���	�����

����	�����������
	�������
�
����	�
���
����	#��

�����
� ������	�������
���
����
���	���
����������
�����
���
����
�
��
� 
��� ���
��
�� ��
� �	������
���� ��� ��
	���� ��� 
��� ��%����#� @�	�

����
��������������������
�
���������	 �����	��
��������
�>�

•� ������
�	����
�	��	����
�
�������
�������	��
���B�

•� 
��� 	���
�������� ��
����� ����	��
���� ��		��
� � � 
���� ��
�
����	��
������		��
�� ���%�������
	���B�

•� 
�����
�	����
�	��	����
�
���������%���������	��
���B�

•� 
������	�����������	��
������
�������%�������
	���#�

@�	� 
��� ��	����� ��� �����	���� 
����� ?���
����� ��� ����� ���

���������� �� �	��
����� � �
��� ��� �	�� 
���������� �� ��������
��	����� 
���	��
���� ��������� �����
� 6!�� �6����
� !���	��
����
�������������	���%���������	��
���#���������������	���
������� �
��	�
����������
�
�������� ����
�����
�
�
����������������%�������
	 �

�$���� ������
� ��� ��
�	���� 
����
������� ��
� ����
	���
�� ��
�����

�
������
�����

:� $� � ��������
� ��� 
���� �����
���
���� �����	��� 
���������� ��
�������
���	��
�������������
�����
�������	�
�����������
�	�����
�
���������
����
�����%����#�������������
����
���$��
��������	�
�����
����
���������
��	���
�
��	��	������������������������
�������>�
6!���6����
�!���	��
�������������#���������
�������
����
�����%
�
���
���#�

�

5�� ��7�������������������������

-���.�

5��� ��8!%����"4��&� !�"�
�

6!�� ��� �� ��	 � ������� �����
��	���
�
� 
���	��
���� ��������� ��	�
��%���������	��
���#�"
��������
��������
������������������������	 �
������	� 
�� 
��
� ���
� ��� �����
� �	���
�
� �	��	������� ����������
��������N�����	�)Q#�

���� ����� ������
���� ��
�	� ���� 
��� ��������� ��� 
��
� ��%�����
����	��
������#�#�
�������	��
�����������
�
���
����%�������
	��������
�%�	����
����
�����	����������������
�
��
��������������������
�������
�

	���
�P������ ���	�#� ����� ���	����� ���� �� ����� 
	�
�
�����
��
�	� ���� 
�������
	���
�����
��������
�����	����	����	����� 
��
��������� �	��������� 
 �����
� � �� �#�#� (:��1� �������	� ./05���
@A*��C� �./07����
���� ��
��	���*(�*��D(�*���@���
��#�

:�� ����	
��
� ��
� ������� �����
� ��� ������ ����� 
�� �	��
�� ��������
��#�#� ��	
� ��� ������� ��������� ��� 
��
� ��� �	���
���� ����� ��
�� ��
����	���
�����
���
�����

	���
�����
������������������
���	�
��������
��� ������
���
���
����� � 
��������	
����
�	���� 
��� ��%��������
�

�����
� � ����
� ���
� ��� � 
����� ������� ������ �	�� ����������� 
��
��	
�����

	���
��#��

�������������
���������
���
�	��������������� ��������������	�
���
��	��������
�����	
�������	��
��
��������
���
�
������ �����������>�

•� )���������	�

����������	������

•� :

	���
�����	�

�����
�����
��������	�������

�	��

•� H������������	�������	���
���	��

3%������� ��� �������� ����
� ��� ������ ������	������


�����	������ ���
�� ����������	���
�� �
�#� � ������
�

	���
��� ��	� 
����� �������� ����
� ��� 
��������� ��������
��������
����� ��
� 
 ���������������� 
��� 	�����
�����

	���
���
����
����������� �������!�����#�&�
��
������ ���������
����
�������	��
	�	 ���
������

	���
�����
�������#�

:����
������	
���$����� ��
�������	��%�����������
����������%�����
��
	 �
��
�����	�����
���������������
�����

	���
�����
�������>�

"#
������������$��

�#�������� ��$�#����������!$�%�

)���	� �� ��� � ����� ������
����� ��� �

	���
��� ��
� ������� ��$��
������� �������
����� � ����$���#� @�	� �%������� 
��� ���������� ���
�������
������������

"#
��������&���$��

�#
�������$�#' ���� ������!$�%�

���� �
��� �����
� ��� 6!�� 
���	��
���� ��� ���� 
�� �	������ �
���	��
�	���� 
��� ��
� �������� ��	��
� �������� ��
� ���� 
�� ��	��� ��� ��
��	���������� ��	� 
�����������
��������
������� 
�����
�	��� �
������
�������	��
��������#�

)�		��
� �����	���%��	����
������
�� 
������������
 ���� ���

������
��
�����������
������
��
	��������������
�	�
�������������	���	
������
������
������ 
�
������ 
����#� ���� 	����
� ��� 
��
� 
��� 
�
������ 
�
��
�
	��
�	�������
����
���6!����
�������������
���
��
�	�
��	��	�
��

�������
�������
�����
������%����#��

:��6!��
���	��
�������
�����
���������������	
������	
�	>��
�
.#� 3����	�
����!����	�
�����
1#� )�����!����	�
�����
4#� �������6�
�������
5#� ����������
�!����	�
������6�
�������
7#� ���	��!�����
������6�
�������
�
������%
����
�����
���������������
��������
�	��
�

5��� �"$&��� !�"���%���� !�"��
�
�����������	�
��
�����
�����������
����������	����������

	���
�>�
�
�
�����
���� "������&�������(��)������%�

�������)��� "!�������)��)������ �����*%�

������������� "� �������+��)+��,�-%�

�����
����� "��������.�����-�R�

�

�
���� ������ S� ��� �� �������� ���
��	
� � ����� ������ ������� ���



�

	���
���������	
����
�����%�����
��	������+����������
,#�!�	����
�����?���
� �	���������� 
���� ����������
� ������ ��� ������
��
� ��
��

����� ����
�����	��������������
��������	�
���#�
�
����������������S������������	�
������������
��
�����	����������
�
�������	����
���	�������=��	��
�����������������
��
��

	���
�#�
�

5�/� ��������%���� !�"��
�
������
������
����

	���
�����
��������
��
���$���������������#�#��
�
!+���������
"�
��
���� � /�����0�
����)�� � /�!������1�)��)��0�
��������� � /�-0�
%�

�
��������	
��������
�����������
�

����
����	���	
����
	
�����
�	���������������	��
��
������
���	�	�����
�

���������
��
�����	
���
	�������
��������⊆�����

���������������⊆�����������������	
���
���	�	�����
�

5�5� �������")��! �"%��
�

:����������
��	���
�
��	��	������������������
���������� �
���
�����	
������	�
����#��@�	����
����>�
�
!+�����������2������
"�
�
����/�-0�
%�
�

�
�
���
��
�
������������������%
��
��
��������������� ��

����
�� 
���� �

	���
�� 
�� 
��� ��
� ��� �

	���
��� ��	��
 � ���������� 
��
'6A'#�
�
���	�� ��� ��� ���	��� ��
��
���� ��	� �������
� ��� ����� �� � �
��#� @�	�
���
������ ��
������ 
��
�� ��� �� �����?������ ��� ����	�
�������
(�6'6A'� ����� ����� � )�
� T� ������ ��� ����
� ����� 
�� �	�
�>�
��
!+�����������2������
"�
�
����/�)�������
�
����/�-0�
%�

�
�
��	� ������ 
��� ������ ��� 
��� 
��� �

	���
�� �������
�� ��
�� 
��
�
����	�
�
� �	��� ����#� ���� ����
���� 
�� ���� ����� �������
�� ��� 
��
��
������� �	���
����� 	����� ������ ������ ����	��
���� 
�� ���
���	�	�

��� ��� �� � �
���
����� #� "�� 
���� �������� 	�?��	�� 
��
� ���
��	�� ��������� ����	�
���� ������ ���������� 
�� ���	�	�
��
����	��
�����������
�� �
�����	������	�������	�
�
�������������#�
�
����
����������������
�
��
������������������������	�
���

	���
���
��
���������	�����	��
����������������#�"��
��������������	�
��
�

+����
3���2�
3���4��
3���5�6�
3�����

�

6���� ������� 
��� �������
� ���� ��� 	������
� �	���
�
� 
��
� ��� ����
��
���������������������	���
�����	���
�������
�����
����������#�
�
������	�����������
������������������������
�������
��%
������� �
��
����:"PC�����
������	����
�
�����������
���������12� ��	��
���#� "�� 
��� �������� ����� ��� ���������� ����	��� �	
������ ���
����	�
����� ��
� 
��� ��%����� �����	�
� ��� �� �������� ������ ���
)����
�
�������������
�����*�-
�	�U�!���������.//1�#�
�
&���	���
�����%��	����
������
��������	��	��
������
������
����
���
��	�
����
�������	������
���������
����%������������������
#���#�
�.//1��� ��������������	�
�������
������
��
����
����( 
����1#4#�
����������		��
� �
���	���
����
���( 
���������
���
�
���#� 
���#�	�#�
�

5�9� �$����
�
:������$��������
�����
����
�������
��
����	�����
�
�����	����
���
�
���
�	#� ����� ���
� �������� 
��
� �� � �������	��
� ������ ������� ��
������� �

	���
�� �?���� 
�� )+��� �����
� ��
� ����� �� � �������
�

	���
�#�6!�� �����
��� 	�������� 
��� ����������$��
� 
���
�
�������
����	��
���>�
�
 7�#�������//��+���+$�"�8�������%�

�
�����$��
��������	��
����������
�
������
����
����������	��
�����
���
�����
������������
����� �>��
�
•� 
�� �	����
� ������
� ����	��
���� �	��� ��
�	���� 
��� � �
��� ���


��� ��	�
� ������ ��#�� 
��� ��%����� �
�
�	� �����
� 
�������� �� �
�

���
��
���	���
������������	����
�	����
��������	�����?����

�����	�������
�

•� 
������	��
��
��� ��������
�	 ����	�
����
��
��������� �
�� �

���� �
�����#�#�����������	�
����������	��	�
�������������
��
�
�������
����
��
���	����#�

�
������ 
����� �	�� 
��� ��� � �� �� �������� ���� ����� ����
�� ��� ����

���� ���	��
��� 
��
� ����	��
���� 	��	����
�
� � � �������� ���
������
�� �������
��
���
��
����������
K�����������
���#�
�
)�		��
� �� 
����� 	����� �	�� ����� �
� �
� ���	� ��
�	����� �����#� "�� � ��
��������
�������
���	������
���
��
��
��������?���
������
���
����� �
����	
�
#�
�
&��	�� �� �����?���
� ���� 
��� ��	�� V:

	���
��� ��� ��� 
��� �%������
������� ��� ������� 
��� 
��
��������
� � ����� +W,� ��� ������ ��� 
��
�
�

	���
�#� ����� �������� ���
� ��$�� �� � �
��	� ����
��
�� ��� 
��
� ���
�

	���
�� ������� �
� ��� ������ ����� ��� � �������� ��
�� ���
��	�
�

	���
�� ������� 
��� ����� �����#� "�� �
��	� ��	
��� 
��	�� ��� ���
��������
 � ��� ���������� �� �����%��
��
� �

	���
�� ��
�� ���� 
��
�
�%��
�#�
�
@����� ������$���
��	��

	���
������� 	�?��	�� 
��
� 
������������+W,�
��� ���������� 
�� 
��� ���	#� ����� ����� ��� 
�$��� ��
�� ������
� � � 
���

����� �����	�
�����������	���
����������
������
#�
�

5�:� ��#��%�&�" �
�%���� !�"����
��
�

������	������	�����
��
����� �����

	���
��������������



���	
���
��������#���������
	�
���
���	�����
�
7����
����������)+�!�������9 �:��0��
�

��
���
���
��
�'������������� ��	�

�������#������
��
����	 ��
�

�

5�;� ��(���4!"! !�"��
�

����
����
�
���	���
�������
����4�������
����	������������������$�
�

��
��������
�� �
��#����������������
�� �
�������������
���������

���
�����
����#��

:���%�����������
���
�����
��������
���>�

�
�����7���������������
"�
��������/�����0�
����)������/�
�����0�
�����������/�� ���+��0�
�����������/����!�+ ��0�%�

�

:�
�������
�����
��������	
�����	����������
�
������������ ������
��
�

	���
��� ������ �	�� ���������� ��� 
��
� �����#� ���	���	��� �� 
���

�����
���	� 
���!

�������������
����������
�
����"�� ���������
�
�������	��#���	����	��
����

	���
������
���
���
�����
����
���!

��
������ ���
� �%��
� ��� 
��� !

�� ������ �
����#� @����� �� 
��� �������
��������
� ���
� ��� ��	���� ������� ���
� ���
��	
�� ��
� ���

������
�����#��
�

9�� �&#��&�" � !�"�
�

�����	����
������������
�	��
��
���
�
�������������
�
���#�

:�
�
��������	��	��	���
���
������
	����
�	������	�
���� �
������
�
����
	�����
�����
��
�
�$���������	���	������
����
�����	��	#��

���	���	����		��
� �
��������
�
������>�������	����
�������	��	��
���
���	���
����
������
����1����
�������	��������	�
�����%��������
�
���� ��	� � ����� ����� �	��
�
� ��	�� �	��
�
� ��	� 
���� ��	����#� ����
��	����
�
���������
�� ����	��
��������
���	����
������
�#� �����
����������
�����
�����	
���
���
���	������������
��
�����
��
���
��

��� �%
�	���� ��	�
�� ��
� 
��� �
��	� ������ ��	���� ��� 
��� ��
����
��%������
�	��������������
�	���������� ������
����
���
�	���� #��

9��� ���#$���� �2����
�

"�� �	
�	� 
�� �����	
� ���
����� ������� ��� ����
�
����� ��	� ��	���� ���
�	����-�
�������
���
���������#�:
�
���
����������������
����������
������ "� 	���
�%
� �����#�@���� ����	��
�������������		��
� ������
���
��
��	�� ��
���	 � ��� 
�%
� ��
� �
��	� �

	���
��� �	������
����
� ��� ��

�
������ 
����� =� ��� 
����
�
� � � 
��� 
����� �
	��
�	�� ��� ����	�� 1�
����
���� 
�� ��
���
���� ��
����
� ������ ������� ���
�
� ����
�#� "��
��	������ 
�� 
����� ���	 � 	��� ����� ��� �������
�
� ��
�� ��� �	��
	�	 �
�����	� ��� ������ ""� ������ 	��	����
���� 
����	��
� ������� ���
����
�
���#�������
����	��
���	���������
��������������	��
����
�
�
������
����	��
�$��
������
	�������
������������	�#�

�

�

����	��1#�)�	����!�
������

�

#�

9��� ��8!%�"��� �2����
�

���� ��%����� �
����� ��� ��������
�
������
�
�����������
	����������
�	���
�� ����	��
���� ����
� ��	
�#� "�� �	
�	� ��
� 
�� �	���
��� 
���
$��
� ��� ����	��
���� 
��
� ����
� ��� 	��	����
�
�� ��� ������� 
��
��
������
���� ��
�����
���
�
�$���
�����	������

	���
�����������	�#�&��
����� ��������� ��� ���
����4����� 
������	$�� ��	���	���� �
��
���
����	��
�������
������?���
� ����������
���%
��
�
������	�����
��

������
��
��������
�����
���������������	���	
���������	
�#�

���� ��		��
� ��������
�
���� ��� �
	��
�	�
� �	���
� �� ����	���
��	�����
�
������
��������
�����������	��
����
�����	
��
�������
��
�
��� �	� 	��
�� ��
� �������
�
� ��	���� �
�%#� ���� ��

�	� �	���	
 �
���� ��������
�
� ��� �� ����� ��
���	� ��
� ����
�� ������ 
���� ���
�%
	���� � ��������
� ��	� 
��� ��	����� ��� ����� ?��	���� �	�� ��
�#�
A����� �� ��
� ����
� 
�� 	��	����
� ���� 
��� ��������� ��	
�� ��� �������
�������� 
��� ���������� ������
���� ������	>� 
��� 
�
��� �����	� ���
��	
�� ��� ������� ����������
� ��
� �%���
� 84#� @�	� ������� ��	
�� ���
�������� 
���� ��� ��	�� 
���� ������#� D�����	�� ��	� ��	�� ����	���
�

	���
���������
	��
�	�����
�����������	� ����
�?��
�#�

)���	� �� �� 
�
������ ����
� ��� ���	�	������� ���
�	�� �
	��
�	���
�	���
��� ��	� �� ��	�� �������� ��
� ������
� 
�
�� 	��	����
�
���#�
D�����	����
���
���
������������� �
�������
��
��
�
��������
����
�	�
���� ��� 
��
� 
�� � �	�� ��
� ����� 
�� ��������
� � ����� ��
�� ��	���
�����
�����
�
�#��

:� ���������� ��� 
��	���	�� ������ 
�� ��� ���� 
�� 	��������� 
���
��������� � ��� 
��� 	���
������ 
�
������ ���	�������
�� ���%�����
 � ���
���
�	���
	��
�	��#�

���������������	� ������ ��������
�� �	���
������
�
��������
������
�
��

�
� ��
�����
����
��	���
����������������
���
����	�	�������
�
	��
�	�� 
�� 
��� 
�
�� ��
���� ������ 
�� � �	�� �	���
�
� 
���	
��
����	�����	���������
����#��

:� ������������������������� 
�� 	�����
� �������
�����
���	����� 
���
����
�
� ������
 � ��
� ��������
� ��
� �
	���� ��������
�
������
�� 
���
��	�� ����	���� ��	�� ������
� ��
� ����� ��������
� 	��	����
�
����
����	�
�� ����
�	���
	��
�	��#��

:� ������� ���
� ��� 	���	
�� � ���� ��� �� 
�
������ ���� 
�� ����� �%
��
�
�	���
��	����������J
 �����K��
	��
�	��
�	�����
����������?��	���#�
�����������	��%�����������
����������	��	�?��	�
�������	��������	
��



������������
�����
����
��������
��	������
�������	� ���������
#�����

	�����$���
��
�������	��������
��
�?��	�������
���������
�
����
	����
���#��

�

�

9�/� ��8!%�"��
! ���
�

����� �
�����		��
� ������
�������%�����3
�
�	����
�������������
����
���� ��� 
�� ������� �� �������
� 
�� �	��
�� ��
� ����
���� ��%�����
��
	���#���
������6!�����
����� �#��

:
��
�	
����� 
��� ��%������
�
�	���	���� 
���6!����������
�����������

���������� 	������
����	��
�����
����#������� �
���
������ �
����	
�
��
	 � ��
�	����� 
�� 	�����
� 
��� �������� ����
� ��� 
��� 6!�� ������

���
��	���
���
���

	���
�����
���������������������
�$�#��

������ 
��� 
�
������ ���$���
� 	�������� 
�
�� ������ ��� ��	��
 � ���
	���
������ 
�
������ ��	��
�� 
��� ��%����� �
�
�	� 
�$��� ��� 
���
����	
��
� 	��������	��������� 
���6!��
�����
����������� 
�����	��
������
� ��� ���� ��	
��� 
���� 
	�����	����� 
���� ��		��
� � ��
��

�
������	���	
�#�

:��	
� �	��� ��������� �

�
����� ��
� 
���
������ 
��� ��%����� �
�
�	�
�������
�	����	�
����
�
���������
	���������������
�������
	��
�������
?��	������������?��	 ��
�
�	#�"
����
�������
�
��
�
���6!�������	��
�
��� 
����
�
�	��
� �
�	
���� �����	����
���
�����$�
� 
������ 
��
� �
�����
��
� ��� ��
����
�� ��� ����� ��
�����
����� ���� ����	������ 
���
��%����#� 6��� ���
	��� 6!�� ������ 	���
���� ��� 
��� ��	��	� ���
����
����
�� ��
� �� � 	���
�� ��%����� �
�
�	� �
�	
���� ��� �����	���
�
��6!���������	�������
��
�����������
����
����
�����	��	#�"��
���
��	��	� �	� 
��� ��

�	� 
����	�� 
��� 6!�� ����� ��� 
��� ��	��	� ���
��
���
����� �
������
�
���� 
��������
����	��
���
����
� 
���
�	
�
���
�����%������
�
�	#�

�

9�5� ���
�!� ��� �2����
�

������	
���
� 
�
������������� �����
���� � ��� ����� 
�� �� ��������
����
� ��$�� 
�� �����
� ��	
��� ���
�� 
��� ��%����� ��� �� ���
	����
�
�����	�� 
��� ��%������
�����
	�
�	��
���
������������	
�������
�
��������
������������
����	����
�
�

9�9� ��2�! ���"
���2����*!%���
���� � �
��� 	���
��� �
� �

�>PP��	�#��#��#�
�#�
� ���� �����
��
��		��
� � �	���
��� ����� ������ ������� ����	��
���� ����
� 
���
�	����
���������
���
����	��������	������
�������	�����
�	�������
�

������
������
�
�
��	����
�
������
�##��

������ 
��� � �
�������� ��� 
��� ��
�	�� ��� �����
��� � ���
� � � �
��	�
�������
������	��	����
����������� ��	��� ���
�����	�

�����	�
���
������	�����	$����������
���� �
������?���
��������	�

��������
��	������ ����� ����� ���
� ���	���	� ��������� 
�� ��
��
�� 
�
������
������#� )�		��
� � ���� ��	������ �	�� ����� � �	���
�
� 
�� �����	
�
��%���������
	��
�������
�������
�����	��
�	�
�
����������
����4����

��������	#�

���� �
�	
��������
� ��	� ��%����� ����
	��
���� ��� ����	
���
�� ��
����

��	���	�� �	���
�� �� ���� ��	������ 
�� �����	
� �� ���� ��
�	����� ��	�
�%
	��
���� ��� ��	
�� �	��� 
������
��� ��
� ����
������� ���
��	
���
�#� ���� ����
������
 � ��� 
��� ��	����� ��� ��������
�
� ���
�������>�

.#� A��	������
��
�%
���������	������A���#�

1#� ������ 	����	���� �	�� ������
� ��
� 
��� ��	
�� �%
	��
�
� �	���

������
�
����� �
#�

4#� A��	��
�
��
���	����
�������
������%
	��
�
���	
��������� �

5#� A��	������
����������	�������	�����	��	�
������
��
�����	
���
�

�
�����#��

������	
���
�����������������
��������	���
��������������
�	�����
��	� �����

���� 
������
�� 
�� 
��� )�	���� !�
���������
����
� ���
���
����7#.�

:�� 3�����������

:��� ��2���� ���
����������	��
��������������
������	����	�����������������	 ������
�	��	�
 ���� 
�����������	��������� 
�����	����
#�������		��
������
��

������
� �
��

����
������	
������
��������������
��	�
�
����
�����

����� ��
� 	����	���#� ��	����	�� 
��� ���
��
�� �	�� ��� � ��	
���� �
�����������
�������	�����
���������#�

6�	�����
��
�����������
��	���
 �
�������	
�������� �
����������
����� ������� ����������� ��	������ ���� ������
� 
�� 	��� �
���������
����� ������ ����������� ��� �	���	 � ���
��
�� ��
� �	������� ���
�	���	 � ���
��
� ���������#� @�	� �������
��� 	�������� �������� ���
�	���	 � ���
��
� ����� ��� 	��
	��
�
� 
�� 	����
�	�
� ���	�#� :� ������
�	�����	$� ��
���� ������ 
������� 
��� ��� 	���
� ��� �����

�
�
��
�	����������		��
� �����	���	�
���#�

"�� 
��� ��
���� 
�	��� 
��� ���� ��	������ ���������� ����� 
����
�
��	��� � ����� 
��� ����������
 � ��� 
��� �������
�
� �������
��� 
����#�
��������
��������#�#�(6��
���������	��	���
���� ��
	����
��	��	
�
��
��������
� � 6
��	�� ��#�� ���������� ��	����������� ���� ����� 	�����
��	
��	�?���
�������
������
�$�������	#�

:��� ��8!%�"�� �$% $����"
����#)���(!%���

�"��	�!��
���� �	����
� ��%����� ��� ����� ��	�#� ����� ������ 
��
� ����� 
������
��	
�������������� �����$����
��
� ������$����	�������� �	���
�
��

�� � ����� ��
�	�� � ����	�
�� ��%����� ��
	���#� )���	� �� 
��	�� ���
�����
�	�������������	�
������	���������%���������	��
������
�����
�������
	���#�&�����
� 
���	�
�� 
��� ��%����� ����	��
���� ���
�������
�������
�� �
���
�� 
������
�����	�����
	 �����
���������
����������	�
��	
���	�������� �
���	��
�$�
�������
��		�������	�
�������	��
����

���������	�
�
�� ���	��
�����	�������������	���
��	���	���
�#��

�

����� ���� 
��� �������
����#� 6��� �����	��� ��%����� �
	��
�	�� ��
�
����	�
����#� "�� 
��� ����	��
�����������
�
���
�� ��%�������
	�����	��
��������� ��� ���
� 
�� �����	�
�� ��
� ��� � ��� 
��� ����	�
�����
����������� �
� ��	$�� ��
� ����� ��� ��	����� ��
���	���� ��� ��%�����
��
	 #� &����� �	�� 
��� ���
� ����	��� ��	��X� :	�� 
��	�� ��������
�������������������
���	����������
	��
�����������
��

����
�
�����
��
������	
�����	��%��������
	���������
���	��
�X�&���	�����$����
��	�������	��	��
����%������
	��
�	���
��
���������������������������
�
�������
�
� ����	�
����� ����������� 
��
� ��
� 
��� �������� ����� ���
���
���#�

�

���������
������������	���
��������
 �
��	������-��
���	���
��������
��
����� 
�����	
���	��� 
�	�������	��������������� ���#������ ���
��	
�����	� � ����	
��
� ��	� �� ��	����������� � 	���� ��������� ��$��
���
���� ���	�� �� ��	
� ���� ����� 
���� ��
� ������� � ���
	�
�� ���

����	��
� ��	��#� A���	
���
�� �� �� 	
��
����
������ ���	�� ���




���	��
����������
������	������ � �����
���������������
��������#�
������	�������	 ���	$� ���� ����� ��		��
� ��
� ������ �� ����
�� �
�
��
���	�����������	�1224����
��������	$�	�������
�����
���#�
�

:�/� ��&�" !%��"4��&� !�"'����
"� �
���� ����	��	�
���� ��� �����
��� ����	��
���� ��
�� ��%����� ��
	���� ���
��
� ��� � ����	
��
� ��� ��
� ��� � �� �
��
�	
� ���
�	�� ��� 
��
����	����
��
� 
���� ��� �
�� ���� 	���
�� ��
� �����
���� ��	� ��	
���� �������� ���
�������
���� �	��	��#� 3%������� �����
�� ��
���
��� ?��	 �
�%�������� �� ��� ��� 	�?��	�
��� 
������
� ����������
���� ��	�� 
���
����� �	�?���� � ��	
�� �������
�
� ��
�� 
������ G� �	� Y��� ��
� ���
���	�����������
	�����
���#�

@�	
���
�� �� ?��
�� �� ��
� ��� 
��� ��	$� ���� ��	��
 � ����� 
���� ��	�
�
��	� ���������� ��� 
���� �	��� � � 
��� &�	
'�
� �������
 �
�@��������.//0����������������
�
�����	��
��������%����� �����
�
���	�	�� � ��� ������
�� �����
� �������� ��	� 3������� 
���
��	� ��
��
��	�������
�	��������	�����������
�������	��
�����&����
��
����
���
��	�
� ���
����� 
�� �����
�� 	���	������ 
�� 
���3�	�&�	
'�
� ������
�
���	�	�� ��H������.//0����
����	�������%�������
	���#�

:�5� �!"($!� !%���	���"�! !*��������
���������	� 
�	��������� 
����	���
��	$���������		��
���
� ���
����
�	����
����
����	��
������������
�
������
�����
��
���$���������
���
����	��
���� ���������� ��� 
��� ��%����#� ��� � ����� 
����� �	��
��������
#�

:� 
�$�����	� ��� ��	��
 � ���������#� :� ��	
����������� 
����	� �����
������� ���������� ����	�� 
��� �	����
� ��� �������
�� ��
� 
���� �����
����������
��
�����	���?���
�
�������
�%
#�

"�� 
��� ����
��
�� ��
�	��� ��� ����� 
�� 
������� �� ����$�	� ��	�
	������-�����������
���	���	���������������
������	��	���������
��
�	��	
�#� ������ ����� ��
� ��� ������	�� ��	� ��	�� �����	�
�
�

������
��	���������
����������
����
�������	��%���	���������
���
���
��
#�

"�� 
��� ��
���� 
�	�� ��� ���� �	����	� ��
� �
 ��� ����$���� ��� ���
����������� ������ ��
� 
����� 
����
� ����� 
��� �����	�
���� ��� ���
���	��	��
�� �	����	� ��
��� ��	� ���
���#� ����� ��	$� ����������
�%��
� � 
��� $��
� ��� �	����
���������	 � ����	
� 
��
� 
��� �	����
� ���
��
��
�
�
���	���
�#�

;�� �����������
���������	�	��	����
������������	$��
���	�������
�����	�
� ��	������

��� ��	��	����
#���� ����
�����������
��
��
������������
��
����
�
����� ��� 	������
�����	�� 
��� ��
���� 
����	����
#�6
��	����� ���	����
	������ ����� 
�	�� 	����	��� ������� ��
� ��� ����� 
�� ��� ����� 
��
��	
�����
�� ��� 
���	� ����������
� �� ��
� 
��� ��������� ��� 
���
�	����
#�

<�� ��3��������
;.<� *� �:�
�����
�����9�	��	
#�����9')�D��
���$��

3%���	����
���9	�
����'�
������)�	�����3
����	���A����	��
 �
(	�����.//0#�

;1<� 3	���9	�����:�)�	����9���
�:��	�����
��������������	������
(�!���������A����	��
 ����(���� ��������.//4#�

;4<� '�
������)�	������
���:�:#�3
����	���A����	��
 �(	�����
.//0#�

;5<� !���)	��
�����
�)	��
����9�
��	��#�1225#�D��	�	�������G���
	��	����
�
������	������� �����
�
�
���	��	�#�"��#�
	��������

�������$%��&��'�(
����
��
��)*��+�����$�	����

,��
�������
��
������������(�	
����#�

;7<� !������:#��122.��"�
�	���	�����3%
���������������
���
!�
��������(	��#�"�)��&�	$���������������
���!�
��������
A����	��
 ����(���� �������

;8<� @���������)���.//0��&�	
��
�����3���
	�������%�����
!�
�������)���	�
��>��"��(	���#�

;Z<� *�-
�	�*#��!���������&#��.//1����
����)����
�
������
�������
��������
�.0#1���
�.0#4����������"���������"���	�
�����
"���
�""�

;0<� (����������������!���)	��
����!�����3������:��%�C��������
��
��	������
-�	��C�	����������)	��
����H�	
��#�������������
����
������	��
�
��������������	�(� ���	���-
������

���������#���������	����#�
	��������
������&��.�

;/<� ������*'��&������:�.//8�%,/�%��$�	
��������
����
��
����*
���
�����	��	�,��
����
��
���
��
��#�3:*�3��
*��
�������3:*���)&*���:)P�#�@�������	��������4#.//8#�
3:*�3���"�
�
�
��
���������
����)����
�-��������(���#�

;.2<�*�

��:#��H������:#����
�)�	������N#��1224�#�:���
�
����

�%
������
��������
�
��������
���#�����������'�
��"�6P�)�
4ZP�)�5��"�
�	��
�������
��
�	
��6	������
�������������
�����	������������
#�

;..<�@��	����#��.//8�#�C���	���-���
�
���*	����
�$�
���
���
��������#���������>�'���� �	#�

;.1<��C� ����	
����./07�#�F(�	������������
�������������
����
�	����	#F�"��!��
��������
����#������0��
�
�
�� �!���
��#�
!��
 �����	��C�	

��������
�:	���
��#�[���$ ��17.�1Z0#�
)���	�
���A����	��
 �(	����

;.4<��3"�)����	
�����1221���*��
���������	�3���
	�������%
�
3���
������
�"�
�	�������3"�(5���A����	��
 ����H�	������
(	����

;.5<������	��#��1224���@���
���
�
����
��������������
���
(���������������
�����(	����
��������)�:&24��A����	��
 �
������
�#�

;.7<��#������	��N#�)�	��������
��#�@��	�#��.//0�����
���%>�:�
�����
�
��������%�������	����
���#�"���#������	���
�
�	��
)����
�
������:��	�������
������
������������>�
(	����
��������
���&�	$��������
��
�)6�"'*�
:)�/0��A����	��
\�
�����
	\����)���
���������/Z=
.27��.//0#�

;.8<����������*#��)�		�����N#��9�������:��#&�	���$�:	��
	��������
�.//1���:�(	��
�����:��	�����
�����
�����!�����
�"���	�
�����
��	�A������
����9���
���%�������)����
�
�������������
�����
���#�.0#4����4..�44Z#���

;.Z<�������	���
��	
��#��./05�#�F����
����������������
�	�
�����������	��������
�������	��
���#F�"��(	����
��������./05��
"�
�	��
������)����
�
�������������
����)����	������
�
����	
�����481�488�

;.0<�H�������(��"�
	�
��
����
��3�	�&�	
'�
������"
��'#��
*	����
����!#����
�H�������(����
������������"��������
3�	�&�	
'�
��)����
�	����
�
���D�����
���������41�����1�
4����Z4�0



How Did I Find That? Automatically Constructing Queries
from Bookmarked Web Pages and Categories

Chris Staff
University of Malta,

Department of Computer Science and AI,
Malta

cstaff@cs.um.edu.mt

ABSTRACT
We present ‘How Did I Find That?’ (HDIFT), an algorithm
to find web pages related to categories of bookmarks (book-
mark folders) or individual bookmarks stored in a user’s
bookmark (or favorites) file. HDIFT automatically gener-
ates a query from the selected bookmarks and categories,
submits the query to a third-party search engine, and presents
the results to the user. HDIFT’s approach is innovative in
that we select keywords to generate the query from a book-
marked web page’s parents (other web-based documents that
contain a link to the bookmarked web page), rather than
from the bookmarked web page itself. Our initial limited
evaluation results are promising. Volunteers who partici-
pated in the evaluation considered 20% of all query results
to be relevant and interesting enough to bookmark. Addi-
tionally, 56.9% of the queries generated yielded results sets
(of at most 10 results) containing at least one interesting
and bookmarkable web page.

1. INTRODUCTION
Users who browse the Web store references to pages that
they would like to revisit in their Web browser’s Bookmark
(of Favorites) file [1][2]. Sometimes, some users organise
their bookmark file to collect related bookmarked Web pages
into the same category, [1][2]. Frequently, bookmark files be-
come disorganised over time, with categories containing ref-
erences to pages about unrelated topics, and stale references
(e.g., to pages that no longer exist) [9]. Some research has
been conducted into why users bookmark Web pages and
how they use those bookmark files [1][9][2]. There seems to
be little research into how a user’s bookmarks can be used
to automatically find related content on the Web [6].

Manually finding Web pages that are interesting, relevant,
and useful enough to bookmark usually takes considerable
effort. Users must think of a query that might satisfy a
requirement. Search results must be looked at to see if the

query has really been satsified. The query may undergo
a number of reformulations until a satisfactory Web page is
found by a search engine. Once the user has visited the page,
the user may bookmark it, to support a re-visit some time in
the future. Sometimes a user may decide to search for more
information related to a bookmark or a collection of related
bookmarks. But all the effort that was put into deriving
queries in the first place has been thrown away. Can the
user remember what query was used to find each bookmark
in the category? [14][5][10][5] store queries submitted during
a user session that eventually results in a bookmarked page.

Rather than relying on user generated queries, ‘How Did I
Find That?’ uses a Web page’s ‘context’ to automatically
generate a query. The query is submitted to a third-party
search engine1, and a page of up to 10 results is shown to
the user. Eventually, ‘How Did I Find That?’ will be in-
corporated into a Web browser, and will automatically and
periodically search for relevant web pages. For the time
being, users can select individual bookmarks or whole cate-
gories of bookmarks as the basis of their search. A query is
composed from the top ranking terms that occur in the con-
text of the selected bookmarked web pages, and at most ten
results are shown to the user. In our evaluation (see section
5), 56.9% of the results sets for 58 automatically generated
queries contained at least one relevant result that was also
bookmarkable (on average there were 1.72 bookmarkable re-
sults per results set).

This paper is organised as follows: Section 2 discusses sim-
ilar work. We describe our approach to automatically gen-
erating queries from Web browser bookmark files in section
3. The evaluation approach and results are described in sec-
tions 4 and 5 respectively. Finally, we discuss the results
and our future work in section 6.

2. BACKGROUND AND SIMILAR SYSTEMS
There is little research about automatically generating queries
from a collection of bookmarks maintained by a user. Web
browsers, such as Microsoft Internet Explorer, Mozilla, Mozilla
Firefox, and Safari, contain tools for managing interesting
pages that a user intends to revisit as bookmarks, but the
tools are mostly deficient, unhelpful at reminding users how
and in what context the pages had been bookmarked [9].
The bookmark files themselves are not without problems.

1For this study, we used Google at http://www.google.com.



Although users may organise bookmarks into a hierarchy of
folders (or categories, as we call them here), effort is required
to maintain them, and they can quickly become out of date
or disorganised [1][2]. However, from an adaptivity point of
view, bookmarks are useful because they contain documents
that a user has found relevant and useful enough at some
point to actually keep a record of them [7].

Queries to automatically search the Web are generated for
a number of reasons, including helping users find relevant
information while browsing [4][3][9][15], acting as a search
intermediary [13][14][10][5], or creating and sharing paths
through related material [6].

Queries may be automatically generated by identifying terms
that describe a user’s interest. Systems that help users to
find relevant information while browsing typically use terms
extracted from the pages that the user has visited recently.
HyperContext identifies a “context path” as a collection of
pages visited during a “context session” [15]. Nakajima,
et. al., defines context as the collection of pages that have
been visited between a search page and a bookmarked page
[10]. El-Beltagy, et. al., define context as the description ex-
tracted from the centroid of a document cluster [7]. Bugeja
also automatically extracts terms from web pages that are
bookmarked in the same category and uses them to con-
struct a query to find relevant web pages [5]. [14] incorporate
an explicit query submitted by the user which is modified
following relevance feedback .

The most common approach to identifying significant terms
is based on a modified TFIDF [7][10][14][15][5], though oth-
ers use, for example, a Simple Bayesian Classifier [3] or Asso-
ciation Rules [4]. In TFIDF, terms occurring in documents
are ranked according to a weight that takes into account
the frequency of term occurrence within a document (Term
Frequency) as well as the number of documents in which
the term occurs (Document Frequency) [12]. In information
retrieval, a term that has a high frequency of occurrence
within a particular (relevant) document and that occurs in
few documents in the collection is considered to be a good
discriminator between relevant and non-relevant documents,
so the Inverse Document Frequency (IDF) is used to calcu-
late a term weight. On the other hand, we are more in-
terested in identifying those terms that occur in documents
seen recently by a user (or which occur in some cluster or
co-occur in some bookmark category) and that are likely to
enable us to find more relevant documents. In this case,
terms which occur frequently in individual documents and
in a large number of documents seen by the user are likely
to be good descriptors of a user’s interest. Like Nakajima,
et. al. [10], HyperContext extracts terms from documents
visited during a “context session”, but unlike Nakajima, et.
al., it does not require that a ‘context’ begins with a search
page (so it can operate with no user input), and it does not
count all the terms that occur in the documents. Rather, it
identifies segments called “context blocks” around the links
that are followed by users. Terms that are used in the auto-
matically generated query occur frequently in context blocks
as well as in a large number of documents visited during the
context session [15].

3. APPROACH

Let’s say that we have a Web browser bookmark category
containing a number of bookmarks that have been manually
bookmarked and organised by a user. If we can find out what
it is about these Web pages that makes them related, then
we should be able to generate a query that would return
other related documents in a query results set.

We could have identified frequently occurring terms that
occur in most of the documents contained in a bookmark
category (or, simply, the highest occurring terms if a single
bookmarked document is selected by the user), or created
a cluster centroid from the category members, but instead
we have chosen to apply a modified HyperContext [15] ap-
proach. In HyperContext, an accessed document is inter-
preted in the context of the link, or parent, that was followed
to access it. An interpretation is a collection of keywords
describing the document that are relevant in that context
[15]. To generate a query from a bookmark category, we
can create a category centroid based on the bookmarks’ in-
terpretations. HyperContext does not generate queries from
bookmark files, and in ‘How Did We Find That?’ we do not
have access to a user’s path of traversal that eventually re-
sulted in a document being bookmarked.

We have modified the HyperContext approach for ‘How Did
I Find That?’ to look at a number of Web pages that contain
a link to the bookmarked document (parents), because we do
not know which link was followed by the user before the page
that was bookmarked was accessed. We extract the region in
each parent for each parent of each bookmark that contains
the source of the link and create a centroid representation.
We rank the centroid’s (stemmed) terms (after stop-words
have been removed). In this way, the query is automatically
created from a bookmarked page’s parents, rather than from
the bookmarked page itself.

3.1 Processing Steps
HDIFT is a Python 2.3.4 program that interfaces with the
Extended Boolean document indexing and retrieval system
SWISH-E2 and the Google Web API3.

As shown in Fig. 1, there are six processing steps involved.
We first enable a user to select a bookmark or category
about which she would like to find similar documents. We
then find twenty of each of the selected documents’ parents,
and process them to find the ‘context blocks’: the regions
that contain links to the selected bookmarked web page. We
merge the context blocks to create a centroid, and construct
a query from the 10 top-ranking terms in the centroid. The
query is submitted to Google through the API, and the re-
sults are displayed to the user.

The first step assumes that a user has chosen a bookmark or
category for which she would like to find relevant Web pages.
HDIFT then interfaces with Google through the Google Web
API to identify the parents of a Web page (using the ‘link:’
operator in the Google query). As the processing overhead
to identify a context block in a parent can be quite high, we
limit the number of parents per bookmarked page to 20. As

2http://www.swish-e.org
3The Google API is available from http://www.google.
com/apis. There is a limit of 1000 queries and 1000 results
per query per day using the API.



Select 

bookmarks 

& categories

Find 

parents

Extract 

context 

blocks

Create 

centroid

Extract top-

ranking terms

User SWISH-E Google

Find relevant 

documents

Google

Figure 1: ‘How Did I Find That?’ processing steps.

these are ranked according to Google’s PageRank algorithm
[11], we have identified the 20 pages most likely to be used
to access the bookmarked page.

The parents must be English-language documents. We de-
fine a document to be an English-language document if at
least 5% of the terms in the document (ignoring HTML
tags) are English language stopwords. If less than 5% of
the terms in the document are English language stopwords,
then we reject the document4. The next task is to identify
the context blocks, the regions in each parent that contain
a link to the bookmarked web page. We search through the
text to identify the location of the link anchor, and once we
find it, we scan the document to identify the context block.
The context block is an HTML chunk between delimiters.
Examples of delimiters are the heading tags (<H1>, <H2>,
etc.), horizontal rule (<HR>), and table elements (<TR>,
<TD>). In addition, we limit the context block to 100
words or less.

Once a context block is identified it is written to a text file
for subsequent indexing. If a user selects a category of book-
marked pages, then rather than just one bookmarked page,
each context block from each parent of each bookmark in
the category is written to a separate text file for indexing.
Once all the context blocks have been identified, SWISH-E
is used to generate a central index. Stopwords are removed
during the indexing process, and the terms are stemmed
using SWISH-E’s stemming option. Eventually, when the
top-ranking terms are used in a Google query, the original
terms, rather than their stems, must be submitted. There-
fore, we also keep a map of the stems to their originals.

Once the central index has been created, we can process it
to create a centroid representation of the cluster of context
blocks to extract n terms with the highest rank to construct
the Google query. SWISH-E provides a mechanism whereby
all term information can be accessed. The frequency infor-
mation is in the form of a set of document IDs and an indica-
tion of where in the document the term has occurred (e.g.,
in a title or heading, etc.) for each occurrence of a term.
We convert the frequency information into a term weight,
which takes into account each term’s Document Frequency
(expressed as a percentage of contexts of bookmarked web
pages in the collection in which the term occurs), and derive
an average weight for the term. We then extract the top 10
term stems with the highest average weights (after removing
terms shorter than 2 characters in length), look up the orig-
inal terms for each stem (ORing the terms if the stem has
been mapped to more than one original), and concatenate
the terms into a query string. A completed query string

4Note that we do not perform a language test on book-
marked Web pages themselves.

might look like ‘firefox extension OR extensions download
OR downloading OR downloads OR downloader tab OR
tabbed OR tabs opera mozilla web windows OR window
page OR pages links OR link google’.

Finally, we submit the query to the Google Web API using
PyGoogle5, and display the top 10 results to the user.

4. DATA COLLECTION
We evaluated ‘How Did I Find That?’ during September-
October 2006 by asking volunteers to anonymously upload
their Bookmark (or Favorites) files to the HDIFT Web server6and
then to select one or more bookmarks or categories of book-
marks to run HDIFT against. Volunteers were recruited by
e-mail from undergraduate and postgraduate students in the
Department of Computer Science and AI at the University
of Malta, the WebIR mailing list7, and lecturers and stu-
dents in all disciplines at the University of Malta. A total of
20 unique bookmark files were uploaded. Once a bookmark
file was uploaded, each volunteer was given a unique HDIFT
ID to enable them to return to view their own results and
give feedback.

Once a selection was made, a server-side script extracted the
URLs associated with the bookmark or category and pre-
pared a file for input to the HDIFT algorithm. The HDIFT
algorithm generated a query and submitted it to Google,
using the method described in section 3.1, and stored the
results of the query on the server. As HDIFT generates
queries based on frequently occurring terms that appear in
the context blocks of the bookmarked web pages’ parents,
if a page does not have parents (a request to Google with
the ‘link:’ operator finds no documents) then it may not
be possible to generate a query. In addition, a generated
query may have no results returned by Google. Each query
has a maximum of 10 results, equivalent to the first page
of results that Google returns. It is possible that there are
more than 10 results, but given Jansen’s et. al. findings [8]
we assume that for the majority of users, there should be
relevant information in the first 10 results. There are five
feedback levels: ‘I would bookmark this’, if the page was
relevant and the user would bookmark it; ‘Relevant, but I
wouldn’t bookmark it’; ‘Not given yet’, a default value to
indicate that the user has not evaluated the result; ‘Error
opening page’, because it is possible for a page to be off-line
or removed; and ‘Not relevant’. Evaluators were asked to try
to evaluate as many results as they could. Once feedback
had been submitted, it was not possible to modify it.

5PyGoogle is a Google Web API wrapper for Python avail-
able from http://pygoogle.sourceforge.net/
6http://poseidon.cs.um.edu.mt/~csta1/hdift/
uploadbk.php.
7http://groups.yahoo.com/group/webir/



Volunteers could select as many categories and bookmarks
as they liked. In addition, volunteers could return on up
to five separate occasions to make additional selections. Fi-
nally, there was no way to limit file uploads (unless we ran
out of HDIFT IDs), so it is possible for the same volunteer
to upload the same bookmarks file several times and make
more selections. We could tell if the bookmark files were bit
identical that they were probably submitted by the same
person, but this happened only once, and selections were
only made off one of the duplicate bookmark files anyway.

In all we collected 20 bookmark files, at least one selection
was made off 16 of them, 267 valid queries were generated
in all (a valid query has at least one Google result) and
feedback was given on 58 of the valid queries (21.7%). In
the next section, we evaluate the results of the valid queries.

5. RESULTS
Although only limited feedback was obtained (only 20 book-
marks files submitted, and feedback on results given on only
58 out of 267 valid queries), the results are promising. A de-
tailed breakdown is given later in this section, but overall,
Google returned 502 results in all for the 58 queries. Of
these, 19.9% were considered good enough to bookmark,
23.9% were relevant but the user did not think they were
worth bookmarking, and 38.5% were not relevant. Feedback
was not given at all on 16.5% of the results, and there were
HTTP problems with the remaining 1.2% (Google would
have returned the page in the results set, but the page may
have been non-responsive when the user tried to access it).
Furthermore, the results sets for 56.9% of the queries on
which feedback was given contained at least one result that
the user considered worthy of bookmarking.

5.1 Analysis of the Bookmark Files and Over­
all Selections

In all, 20 bookmark files were uploaded, with users mak-
ing selections of categories and individual bookmarks from
16, and giving feedback on the results of queries generated
from selections made from 7 bookmark files. In all, 145 cate-
gories, containing an average of 16 bookmarks each, and 331
individual bookmarks were selected from 16 bookmark files,
yielding a total of 476 attempts to generate a query. There
were 267 valid queries generated (queries which when sub-
mitted to Google returned at least one result), meaning that
there were 209 failed attempts. The failed attempts can be
differentiated between failure to generate a query, and failure
to obtain results following a query. We generated a query
but failed to obtain results 11 times for category selections
and 18 times for individual bookmark selection. We failed
to generate a query 13 times for selected categories, and 167
times for selected individual bookmarks. We explain the
high failure rate for individual bookmarks in subsection 5.2.

There were 121 valid queries (i.e., queries with results) from
selected bookmark categories, and 146 valid queries from
selected individual bookmarks. Feedback was given on the
results of 58 queries in all, 31 queries generated from cate-
gories and 27 generated from individual bookmarks. In all,
502 results were provided for the 58 queries, and feedback
was given on 413 of them.

As shown in Table 1, more results overall are considered
bookmarkable when the query is generated from a category,
rather than from an individual bookmark. The number of
non-relevant results increases when the query is generated
from individual bookmarks. On average, 1.72 results per
query were considered bookmarkable, with 0 the lowest and
6 the greatest number of bookmarkable results per query.
We also measured the degree of satisfaction with the results
by the rank in which Google returned results (Fig. 2).

We can see that the number of non-relevant results (Fig.
2c) seems to be unaffected by rank. The number of book-
markable results (Fig. 2a) is highest at P1 independently
of whether the query is generated from a category or an
individual bookmark.

5.2 Discussion of Results
Apart from the low number of responses to the request for
volunteers to assist with the evaluation of HDIFT, and the
large number of user selections from bookmark files made
without feedback being given on the results, the most sig-
nificant figure is the failure to generate a query for a high
number of selections made from bookmark files. In all, out of
476 bookmark selections made, 209 (43.9%) failed to result
in a generated query. This was a far greater problem for in-
dividual bookmarks than for categories of bookmarks, with
only 13 failed queries out of 145 (9%) selected categories,
but 167 failed queries out of 331 (50.5%) selected individual
bookmarks. We analysed the reasons for the high percent-
age of failed queries for individual bookmarks and discovered
that 47 (28.1%) HTTP requests for the Web page resulted
in an error code; the servers hosting 6 (3.6%) pages were
unresponsive at the time of the request, and for the remain-
ing 114 (68.3%), a ‘link:’ request to Google for documents
linking to the page yielded no results.

Feedback was given on the results of 58 queries. In all there
were 413 Google results generated on which users gave feed-
back for the 58 queries (83 additional results were not given
feedback on, and six results gave the user an HTTP error
code on access). Of these 413 results, only 7 web pages in
the results already existed in the users bookmark file (in the
same category or individual bookmark that was used as a
basis to generate the query). The feedback given on these
results have not been separated out from the global results
given above. Interestingly, and even though the users had
already bookmarked these web pages for the selected cate-
gory or individual bookmark, only two of the results were
considered interesting and bookmarkable. Another two re-
sults were considered relevant but not bookmarkable, and
another two were considered not relevant! User feedback
was not given on the final, already bookmarked, result. In
future, we will remove Google results that already exist in
the same user selection.

6. FUTURE WORK AND CONCLUSIONS
We have described ‘How Did I Find That?’ (HDIFT), an
algorithm to find Web-based material that is related to Web
pages that a user has bookmarked in the past. A user can
select a category of bookmarked web pages, or individual
bookmarked web pages from their personal bookmark file
and HDIFT will automatically generate a query based on
the selection, submit the query to Google, and present the



Table 1: Overall Feedback Levels
‘I would ‘Relevant, but I ‘Not

bookmark this’ wouldn’t bookmark it’ relevant’

Total = 413 100 120 193
Total % 24.2 29.1 46.7
Queries from
Categories only % 27.4 31.5 41.1
Queries from Individual
Bookmarks only % 21.3 26.9 51.9

Figure 2: Feedback levels according to results rank.

results to the user. Rather than generating the query di-
rectly from the bookmarked web pages, we download up to
20 of the document’s parents (found using Google’s ‘link:’
modifier) and create a centroid representation of the context.
We use the centroid representation to construct a query. Al-
though the number of participants in the evaluation was low,
results are promising and indicate that HDIFT is able to find
relevant bookmarkable web pages. The results appear to be
equally good for queries generated from categories of book-
marks and from individual bookmarks, although an issue
still to be resolved is the inability to generate a query for an
individual bookmark if Google cannot find any parents for
it.

We intend to conduct studies with a smaller group of people
to compare HDIFT with the results of extracting terms from
the centroid of documents in category, and manually gener-
ated queries (by the participants) from the same category.
In the same study, we will identify synonyms in the bag-
of-words representation of the centroid and the generated
query so they can be ORed in the query. We intend to anal-
yse the bookmark files for information about the frequency
with which bookmarks are added; the order in which they
are added; average gaps between returning to a category to
add new bookmarks; the number of stale links in bookmark
files, etc. Finally, we intend to utilise the HDIFT algorithm
to perform automatic bookmark classification to help users
keep bookmark files automatically organised.

7. REFERENCES
[1] D. Abrams and R. Baecker. How people use WWW

bookmarks. In CHI ’97: CHI ’97 extended abstracts
on Human factors in computing systems, pages
341–342, New York, NY, USA, 1997. ACM Press.

[2] D. Abrams, R. Baecker, and M. Chignell. Information

archiving with bookmarks: personal web space
construction and organization. In CHI ’98:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 41–48, New York,
NY, USA, 1998. ACM Press/Addison-Wesley
Publishing Co.

[3] D. Billsus and M. Pazzani. Learning probabilistic user
models. In Proceedings of the Workshop on Machine
Learning for User Models, International Conference
on User Modeling. Springer-Verlag, 1997.

[4] D. Boley, M. Gini, R. Gross, E.-H. Han, K. Hastings,
G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
Document categorization and query generation on the
World Wide Web using WebACE. AI Review,
13(5-6):365–391, 1999.

[5] I. Bugeja. Managing WWW browser’s bookmarks and
history (a Firefox extension). Final year project
report, Department of Computer Science & AI,
University of Malta, 2006.

[6] P. Dave, I. Paul Logasa Bogen, U. P. Karadkar,
L. Francisco-Revilla, R. Furuta, and F. Shipman.
Dynamically growing hypertext collections. In
HYPERTEXT ’04: Proceedings of the fifteenth ACM
conference on Hypertext and hypermedia, pages
171–180, New York, NY, USA, 2004. ACM Press.

[7] S. R. El-Beltagy, W. Hall, D. D. Roure, and L. Carr.
Linking in context. In HYPERTEXT ’01: Proceedings
of the twelfth ACM conference on Hypertext and
Hypermedia, pages 151–160, New York, NY, USA,
2001. ACM Press.



[8] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic.
Real life information retrieval: a study of user queries
on the web. SIGIR Forum, 32(1):5–17, 1998.

[9] W. Jones, H. Bruce, and S. Dumais. Keeping and
re-finding information on the web: What do people do
and what do they need? In ASIST 2004 Annual
Meeting, Managing and Enhancing Information:
Cultures and Conflicts, November 2004.

[10] S. Nakajima, S. Kinoshita, and K. Tanaka.
Context-dependent information exploration. In
Proceeding of the the 11th World Wide Web
Conference (WWW2002), New York, NY, USA, 2002.
ACM Press.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[12] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[13] A. Sieg, B. Mobasher, S. Lytinen, and R. Burke.
Concept based query enhancement in the ARCH
search agent, 2003.

[14] G. Somlo and A. E. Howe. Querytracker: An agent for
tracking persistent information needs. In AAMAS ’04:
Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 488–495, Washington, DC, USA, 2004.
IEEE Computer Society.

[15] C. Staff. HyperContext: A Framework for Adaptive
and Adaptable Hypertext. PhD thesis, University of
Sussex, 2001.



Automatic Classification of Web Pages into Bookmark
Categories∗.

Chris Staff
University of Malta,

Department of Computer Science and AI,
Malta

cstaff@cs.um.edu.mt

ABSTRACT
We describe a technique to automatically classify a web page
into an existing bookmark category whenever a user decides
to bookmark a page. HyperBK compares a bag-of-words
representation of the page to descriptions of categories in
the user’s bookmark file. Unlike default web browser di-
alogs in which the user may be presented with the category
into which he or she saved the last bookmarked file, Hy-
perBK also offers the category most similar to the page be-
ing bookmarked. The user can opt to save the page to the
last category used; create a new category; or save the page
elsewhere. In an evaluation, the user’s preferred category
was offered on average 67% of the time

1. INTRODUCTION
Bookmark management systems that can help classify book-
marked web pages, track web pages that have moved since
they were bookmarked, help a user to find web pages simi-
lar to pages that were bookmarked, and that generally assist
with their own organisation are becoming increasingly im-
portant. Recent surveys indicate that a user’s bookmark
file contains on average 184 entries [4], and that approx-
imately 73.7% of pages visited are page revisits [8], with
interaction through either a bookmark file, or the history
list of recently visited sites, or the browser’s back button
being the most common ways of revisiting a page. Modern
Web browsing software, such as Mozilla, Microsoft Internet
Explorer, and Safari, provide only limited support for au-
tomatic management of bookmarked web pages (see section
2). Even less support is provided for navigating through the
list of recently visited web pages to enable a user to return
to a recently visited page. Bugeja’s HyperBK [3] addresses
some of the issues. A moved bookmarked Web page can be

∗This paper is based on the work of Ian Bugeja, a BSc IT
(Hons) student at the University of Malta, who built the
system described in this paper for a Final Year Project under
my supervision.

tracked via a third-party search engine. A user can be re-
minded of the query that had been used to find a web page
before it was bookmarked, or HyperBK can suggest a query
to use to find web pages similar to a category of bookmarked
web pages. HyperBK provides a variety of perspectives or
views to potentially make it easier for a user to find an entry
in the list of recently visited web pages. Finally, HyperBK
automatically suggests a bookmark category into which to
store a web page whenever the user requests to bookmark a
web page. This last feature is the subject of this paper.

In section 2 we discuss general bookmark management is-
sues. We describe HyperBK in section 3. The web page
classification algorithm is described in section 4, and results
of the evaluation are presented in section 5. Similar sys-
tems are reported in section 6. We give our future work and
conclusion in section 7.

2. BOOKMARK MANAGEMENT ISSUES
Bookmark files tend to be partially organised, with some
web pages carefully clustered into a single category or a hi-
erarchy of categories [2]. Many other web pages are not as-
signed to any category in particular, and are either lumped
together in the top-most category or into a generically named
category (e.g., ‘My Favourite Pages’). The complete or par-
tial URL of frequently used bookmarks may be accurately
remembered so that as it is being keyed into the browser’s
address bar, the browser will assist with a simple URL com-
pletion task. Infrequently visited, but bookmarked, web
pages may be easy to find, if they have been stored in the
category the user is looking through, but frequently, the
page will not have been placed into its most relevant cat-
egory, and may prove difficult to find again. If pages are
(almost) always saved to the most relevant bookmark cate-
gory, then they may be easier to find again in the future. As
bookmark files tend to be poorly organised, the user could
probably do with some assistance. Safari, Mozilla FireFox,
and now Microsoft Internet Explorer show the last category
saved to, instead of the root category, so the user must either
knowingly save a bookmark to the wrong category, or must
otherwise locate or create a more appropriate category.

Every once in a while, a user may wish to update a category
by looking for more related information. Here, a frequently
or infrequently visited category or page may be selected, and
the user will try to remember the strategy that was used to
find this page in the first place. If the user had foresight,



he or she may have also bookmarked the results page of
the search engine query that had been used, so that rather
than trying to remember the query, the URL containing
the query can simply be re-requested. This makes a num-
ber of assumptions: that the user remembered to bookmark
the query; that the page bookmarked was actually related
to the query; and that the user wants to find pages that
are relevant to a single page (many search engines allow a
straightforward search for pages similar to a given URL).
Sometimes, however, a user may wish to find pages that are
similar to a category or cluster of related bookmarks.

Other bookmark management related issues are concerned
with the freshness or currency of the bookmarked URLs.
Web servers do go down or are renamed. Pages may exist
for a short period of time. The page contents may change,
even though the URL continues to exist. Hard disk space is
becoming incredibly cheap. Given the relatively small num-
ber of bookmarks on average, and the small average size of
bookmarked files, it should not be too expensive to allocate
a permanent local cache for web pages that have been book-
marked. If the address of the original of the bookmarked
page is later changed, then rather than having only a vague
memory of what important thing the page contained, the
page can be reloaded from the local cache. In addition, as-
sistance can be given to automatically relocate the page on
the Web (if it still exists).

Web browsers and hypertext systems in general have always
had problems finding a suitable interface to help users nav-
igate their way around recently visited nodes. Historically,
this was identified as one of the issues leading to the ‘Lost
in Hyperspace’ syndrome [5], in particular because it is dif-
ficult to build a representation of the user’s recent browsing
activity that accurately matches his or her mental model of
the recent past. Web browsers have tended to adopt a flat,
linear representation of what may be a complex user ses-
sion including cycles, backtracking, and branching. Current
Web browsers have increased the complexity of the prob-
lem by retaining the flat, linear path representation, even
though users can now have multiple tabbed windows and
multiple windows, potentially containing concurrent tasks
that may or may not be related to each other. The problem
of searching for information in history is likely to increase
in the future, as systems such as MyLifeBits [7] contemplate
digitally storing everything seen by a user throughout his or
her lifetime.

3. BACKGROUND TO HYPERBK
HyperBK was developed as a Mozilla Firefox extension1 to
provide simple mechanisms to address some of the issues
referred to in section 2, but the primary motivation was to
automatically classify a web page that a user in the process
of bookmarking, according to the bookmark classifications
or categories that the user has already created. We describe
the automatic classification task more fully in section 4, but
here we give a brief overview of the other tasks.

3.1 Views of the History List

1HyperBK is available at
https://addons.mozilla.org/firefox/2539/

Bugeja provides multiple representations of the history list.
On visiting a page, the page is classified to find a suitable
category in the bookmark file, just in case it will be book-
marked. Apart from the ability to see the recently visited
pages in the order of most recently visited, the history list
resembles the bookmark file, with visited pages allocated to
bookmark categories (see Fig. 1). This enables users to
locate visited pages according to their topic. This does re-
quire a high degree of correctness in the classification of web
pages, otherwise pages will be stored in the wrong category
and users will have difficultly using the topic-related view
to locate previously visited web pages. Other filters avail-
able to find visited pages are by frequency count, to quickly
identify frequently visited pages; by keyword, a representa-
tion of the contents of the page are kept so keyword search
is possible on the content of visited pages, rather than just
their title; and, finally, by co-incidence. In this last case, we
assume that the user cannot remember any distinguishing
characteristics of the visited web page, but remembers an-
other page visited in roughly the same period. This other
page can be located using the tools described above, and
then a time filter can be used to pull out the other pages
visited just before or after the remembered page. One pos-
sible weakness of Bugeja’s approach, which is inherited from
the way Web browsers, and Mozilla in particular, implement
their history lists, is that only the last visit to a web page
is recorded. If the user is looking for web page, P1, which
has been visited at time T1 and again at the later time T2,
and the user remembers visiting another page, P2 close to
time T1, and T2 - T1 is larger than the time filter, P1’s only
recorded visit will be at time T2, so looking up P2 will not
help the user to find page P1. However, if P2 is a very fre-
quently revisited page, then remembering it is also of little
use, because the user will have far too many instances to
choose from. The best page to remember is an infrequently
visited page (preferably just once), so that remembering it
will lead to the page P1 that the user seeks.

3.2 Web Page Tracker
A Web page is bookmarked because the user intends to re-
visit the page [1] and so saves the page’s address in a book-
mark or favorites file. However, Web pages may be moved
to a new address by the maintainers of the web page, in
which case the stored address is out of date, and the user
may be given a server response that the page cannot be
found when the user next tries to revisit it. HyperBK stores
bookmarked web pages in a local cache, to enable the user
to see the contents of the page even if the page is no longer
available online, and also to assist with the automatic re-
discovery of the page on the internet (if it still exists and
is indexed in its new location by the search engine). We
do not distinguish yet between a dynamic page and a static
page. It may be useful to do so, because if a dynamic page
changes frequently, then it may be likely that the page has
been bookmarked for reasons other than the content, and
attempting to rediscover a dynamic page according to its
content is likely to fail.

3.3 Search for Related Pages
Each time a web page is bookmarked two things happen.
First, we track back through the pages that the user has
visited that act as ‘Search Engine (SE) Referrers’ (that is,
a visited page that contains a link to the next visited page)



 

Figure 1: History viewer (from [3]).

until we have a chain of visited pages with either a search
engine results page as the root or else the first page visited in
the chain. It is possible to correctly identify the SE Referrer,
even if a session is split across multiple tabs and windows,
and even if a session is started in one tab or window and con-
tinues in another tab or window, as long as a link is actually
followed (rather than, for instance, copying a URL and past-
ing it into an address bar). If a search engine results page
is the root of the chain, then the keywords that were used
to generate the results page are extracted and stored. The
second thing that happens is that keywords from the book-
marked page are extracted and stored. These keywords are
used to perform a keyword search on the history list (while
the page is still in the history); to rediscover the address of
a bookmarked web page if the web page has changed ad-
dress; to generate a query to search for similar pages on the
web; and to contribute to the description of the category to
which the bookmark belongs (if any) to i) generate a query
to search for web pages that could belong to the category
on the web, and ii) to decide if a web page in the process of
being bookmarked could belong to this category.

A user can invoke the contextual menu from a category
name in the bookmark file and select the “See Also” op-
tion to search the Web for web pages similar to the book-
marks in that category (see Fig. 2). HyperBK can use
either the query that the user had originally used to find
web pages that were eventually bookmarked into the cat-
egory (the Search Engine Referers described earlier in this
section), or else HyperBK can construct a query from the
keyword representations of web pages in that category. In a
limited evaluation involving 7 users, users claimed that they
were “Very Satisfied” or “Satisfied” with 82% of overall re-
sults of the queries generated automatically from categories
in their bookmark files (the use of previous user created
queries has not yet been evaluated, as it requires reasonably
long term use of HyperBK).

HyperBK currently submits the automatically generated query
to Google’s Web Directory, rather than to the Google Search
Engine per se, because in initial personal trials Bugeja ob-
tained better results from the Web Directory ([3], pg. 71).
The algorithm is being improved to take context into ac-
count, and to obtain useful results even when the query is
submitted to the Google Search Engine [13].

 

Figure 2: HyperBK Bookmark menu (from [3]).

4. CLASSIFYING WEB PAGES TO BE BOOK­
MARKED

Each web page that is accessed is parsed using the Docu-
ment Object Model (DOM) to extract the text components.
Stop words, HTML and JavaScript tags are removed, and
the remaining words are stemmed using Porter’s Stemming
Algorithm [11]. According to Bugeja, the five stems with
the highest frequency are selected to be representative of the
page, but only if they have a frequency of at least two, other-
wise only three stems are selected. This helps to keep down
computational costs. If a web page author has used META
keywords in his or her document, then the five META key-
words that most frequently occur in the document are used
as the document representation instead.

In a future experiment, the keyword selection process will be
modified. First, we will segment a document into its compo-
nent topics, and extract keywords from the topic most likely
to be relevant to the user. Although the results obtained by
evaluation are good (see section 5), we think we can improve
on them. Picking the top five ranking terms will not nec-
essarily accurately capture the user’s interest in the page.
A web page is likely to consist of more than one topic, and
it is unlikely that a page has been bookmarked because the
user is interested in each topic. If only high ranking terms
are selected, then potentially, the terms individually repre-
sent different topics that occur on the page, so some of the
selected terms may, in fact, be irrelevant to the user. We
will build upon HyperBK’s ideas related to the SE Referrer
to find out which keywords were used on a search engine
query page which ultimately led to the current page. We
can then use these keywords to represent the user’s interest



in the page. Alternatively, we can examine the parent that
was used to access the current page, extract the region sur-
rounding the link and assume that terms occurring in that
region accurately describe the potential interest in the to-
be-bookmarked page. Finally, we can segment an accessed
page into its component topics, merge similar topics, and
generate a representation for each topic.

Ultimately, we want to recommend that the user saves the
bookmark entry into a particular category. Fig. 3 shows the
‘Add Bookmark’ dialog box. The algorithm described below
is used to select a candidate category in which to store the
bookmark. A thumbnail of the page is shown in the top-left
hand corner of the dialog box, and the candidate category is
highlighted in the ‘Bookmark Location’. If the user presses
the ‘OK’ button, the bookmark will be stored in this loca-
tion. Alternatively, the user can either search for a more
appropriate location to store the bookmark; create a new
category; or, save the bookmark to the last used location by
pressing the ‘Bookmark in...’ button (in this case, the last
location was ‘University of Malta’).

The algorithm used to select the candidate category is based
primarily on simple keyword matches. As was described
above, each time a web page is accessed, representative key-
words are extracted and stored. If the page is bookmarked
into a category, these terms are added to the set of terms
that represent the category. The recommended category
is the category that has the greatest number of keyword
matches for the incoming web page. If no category scores
highly enough (matches a high number of page terms), then
the recommended category will be the category that con-
tains another page from the same domain, as long as the
category and incoming page share at least one keyword in
common. Finally, if even this fails, then the title of page is
compared to the category descriptions. The category with
the highest number of matches is recommended.

The HyperBK approach does not automatically create cat-
egories and pick reasonable category names, meaning the
user must be involved in creating categories and keeping
the bookmark file organised by allocating pages to the cor-
rect bookmark category until there are a sufficient number
of categories and bookmarked pages to make the recommen-
dations accurate. A future experiment is planned to identify
the smallest number of categories and category members to
make recommendation feasible.

HyperBK includes a wizard to assist with the importation of
bookmark files from other web browsers, and to assist with
the automatic segmentation of categories if they become too
large. Bugeja recommends that a category is split into sub-
categories once it reaches a membership of 20 pages, but he
doesn’t give reasons why 20 is a good number to split on.
This setting is user changeable.

5. EVALUATION
We decided that the most appropriate way to evaluate the
classification algorithm, apart from a longitudinal study in
which HyperBK users would evaluate the system in situ over
a period of time, would be to collect real user’s bookmark
files to see if HyperBK could assign bookmarked pages to
categories in the same way that the users did. This means

that we require bookmark files to be organised (and to con-
tain some categories), and we assume that the user has as-
signed each bookmarked page to the correct category. Of
course, this is a weak assumption, but we had insufficient
time to conduct a longitudinal study. Bookmark file submis-
sion was conducted anonymously through a specially created
portal.

Students following the BSc IT (Hons) degree programme
at the University of Malta were invited by e-mail to submit
their bookmark files (regardless of which Web Browsing soft-
ware they used). Of approximately 200 students contacted,
30 submitted their bookmark files (a return of about 15%).
Of these, 22 files were considered inappropriate for use be-
cause they did not contain more than one or two categories
(the files were too loosely structured) and we felt that in-
cluding them in the evaluation could unfairly bias the results
in HyperBK’s favour.

We randomly removed 10 URLs from categories of 5 of the
remaining 8 bookmark files. We removed less than 10 URLs
from the other three: in two cases because there were too
few categories overall and in the third case (79231 in Table
5) because although there were many more categories, most
of them contained bookmarks that appeared to be mostly
unrelated. The challenge was to place the randomly se-
lected bookmarks into the same categories that the users
had placed them. The results are given in Table 5.

Figure 5 plots the precision against categories. We would
hope for a generally high precision, perhaps dropping slightly
as the number of categories grows, especially if categories
become less distinguishable from each other (because only
5 terms are selected to describe a page). For two book-
mark files containing 38 and 45 categories, precision drops
to below 0.7, which is probably unacceptably low. However,
one of the two bookmark files contains many similar cate-
gories, and the other had many categories each containing
unrelated bookmarks.

6. SIMILAR SYSTEMS
Bugeja [3] has given a recent, short survey on bookmark
management systems. Bugeja notes that bookmark man-
agement systems are usually offered as stand-alone systems
- unlike HyperBK, none is integrated into a browser, and
as discussed in [3], web browsers offer minimal bookmark
management facilities. Most of the systems Bugeja looks at
do not offer automatic web page classification features, al-
though Abrams, Baecker, and Chignell [2] list some require-
ments for bookmark management systems. Among their
requirements are improving the organisation of bookmarks
on behalf of the user, possibly by automatically “filing” new
bookmark entries, and integrating the bookmark manage-
ment system with a web browser. Feng and Brner [6] use
“semantic treemaps” to categorise bookmark entries. Naka-
jima et. al. use keywords that appear in a document’s “con-
text” to to automatically construct queries, rather than to
classify a document, where a context is composed of the
pages visited between a search engine’s query page and a
page that is bookmarked [10]. Li and Yamanishi [9] use a
“finite mixture model” to classify documents, but as Bugeja
points out, this requires the prior existence and standard de-
scription of categories in which to place documents. On the



 

Figure 3: ‘Add bookmark’ dialog (from [3]).

Table 1: Classification Evaluation Results (from [3]) (Legend: ‘BKs’ = Total Bookmarks; ‘Cat.’ = Total
Categories; ‘Hits’ = bookmarks allocated into correct category; ‘Misses’ = bookmarks allocated wrongly;
‘Near Hits’ = bookmark allocated to a parent category (excluding the Bookmarks Root); ‘Approx Precision’
= Near Hits+Hits/total; ‘Precision’ = Hits/total.)

Root Root Near Approx.
ID BKs Cat. BKs Cat. Hits Misses Hits Precision Precision

23740 425 105 49 33 7 2 1 0.80 0.70
24166 330 64 2 26 8 0 2 1.00 0.80
88014 240 53 21 12 7 2 1 0.80 0.70
23248 197 45 6 9 5 3 2 0.70 0.50
79231 158 38 18 18 4 3 0 0.57 0.57
58917 139 29 21 11 8 2 0 0.80 0.80
76243 38 11 3 11 5 0 0 1.00 1.00
80999 22 7 1 5 4 0 0 1.00 1.00

Totals 48 12 6 6.67 6.07
Averages 4.8 1.2 0.6 0.67 0.61

Figure 4: Categories v. Precision (from [3]).



other hand, Shen, et. al. [12] use a page summary on which
to base a classification. Google also offers bookmark host-
ing2, but whether they plan to offer automatic bookmark
management remains to be seen.

7. CONCLUSION AND FUTURE WORK
Automatic bookmark file classification could be a useful ex-
tension to web browsers. Instead of just offering the last
category used to store a bookmark, or dumping the newly
created bookmark into a default location, HyperBK presents
the user with a candidate category based on a simple Boolean
matching algorithm, which has been extended to also con-
sider the domain names of previously bookmarked pages and
keyword extraction from titles. This simple algorithm gives
reasonable accuracy. In an experiment, 67% of bookmarks
were classified correctly. There is room for improvement.
We intend to perform topic segmentation on web pages to
extract keywords from the topic most likely to be of inter-
est to the user, and we intend to carry out a more exten-
sive evaluation. Instead of classifying a random selection of
URLs from a user’s bookmark file, we will attempt to allo-
cate all the bookmarked pages to the user selected category
in the order that they were really allocated. This will help us
determine the average minimum category membership size
required to consistently place a page in the correct category.

8. ACKNOWLEDGEMENTS
This paper is based on ‘Managing WWW Browser’s Book-
marks and History: A Firefox Extension’, Ian Bugeja’s Final
Year project report [3]. Ian was a BSc IT (Hons) student
under my supervision in 2005-06.

9. REFERENCES
[1] D. Abrams and R. Baecker. How people use WWW

bookmarks. In CHI ’97: CHI ’97 extended abstracts
on Human factors in computing systems, pages
341–342, New York, NY, USA, 1997. ACM Press.

[2] D. Abrams, R. Baecker, and M. Chignell. Information
archiving with bookmarks: personal Web space
construction and organization. In CHI ’98:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 41–48, New York,
NY, USA, 1998. ACM Press/Addison-Wesley
Publishing Co.

[3] I. Bugeja. Managing WWW broswer’s bookmarks and
history (a Firefox extension). Final year project
report, Department of Computer Science & AI,
University of Malta, 2006.

[4] A. Cockburn and B. McKenzie. What do web users
do? an empirical analysis of web use. Int. J.
Hum.-Comput. Stud., 54(6):903–922, 2001.

[5] J. Conklin. A survey of hypertext. Technical Report 2,
Austin, Texas, 3 1987.

[6] Y. Feng and K. Brner. Using semantic treemaps to
categorize and visualize bookmark files. In Proceedings
of SPIE - Visualization and Data Analysis, volume
4665, pages 218–227, January 2002.

2http://www.google.com/bookmarks

[7] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and
C. Wong. MyLifeBits: fulfilling the Memex vision. In
MULTIMEDIA ’02: Proceedings of the tenth ACM
international conference on Multimedia, pages
235–238, New York, NY, USA, 2002. ACM Press.

[8] E. Herder. Forward, Back, and Home Again -
Analysing User Behavior on the Web. PhD thesis,
University of Twente, 2005.

[9] H. Li and K. Yamanishi. Document classification using
a finite mixture model. In Proceedings of the 35th
annual meeting on Association for Computational
Linguistics, pages 39–47, Morristown, NJ, USA, 1997.
Association for Computational Linguistics.

[10] S. Nakajima, S. Kinoshita, and K. Tanaka.
Context-dependent information exploration. In
Proceedings of the the 11th World Wide Web
Conference (WWW2002), New York, NY, USA, 2002.
ACM Press.

[11] M. F. Porter. An algorithm for suffix stripping. pages
313–316, 1997.

[12] D. Shen, Z. Chen, Q. Yang, H.-J. Zeng, B. Zhang,
Y. Lu, and W.-Y. Ma. Web-page classification through
summarization. In SIGIR ’04: Proceedings of the 27th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 242–249, New York, NY, USA, 2004. ACM
Press.

[13] C. Staff. How did I find that? Automatically
constructing queries from bookmarked web pages and
categories. In CSAW’06: Proceedings of the third
Computer Science Annual Workshop., to appear.



A Brief Comparison of Real-Time Software Design 
Methods 

Tony Spiteri Staines 
Dept. of Computer Information 

Systems 
University of Malta  

staines@cis.um.edu.mt  

 

 

 

 

 

 

 

 

ABSTRACT 
This paper briefly attempts to compare several mainstream 

methods/methodologies that are used for the analysis and design 

of real time systems. These are i) CORE, ii) YSM, iii) MASCOT, 

iv) CODARTS, v) HOOD, vi) ROOM, vii) UML, viii) UML-RT. 

Methods i-iii are use a data driven approach, whilst methods iv-vii 

use an object-oriented approach. All these methods have their 

advantages and disadvantages. Thus it is difficult to decide which 

method is best suited to a particular real-time design situation. 

Some methods like YSM, MASCOT and CODARTS are more 

oriented towards designing event driven systems and reactive 

behavior.  Object oriented methods like the UML have many 

diagrams obtained from other methods. In the first part of the 

paper each method is briefly presented and its main features are 

explained. In the second part a score based ranking is used to try 

to identify which method has the best overall characteristics for 

real time development. The final results are presented in a tabular 

form and using a bar chart. In addition to this it is explained how 

each method fits in the SDLC. Both the score of each method and 

how it fits in the SDLC must be considered when selecting 

methods. To conclude some other issues are explained, because 

the selection of one method does not automatically imply that 

there will not be any problems. 

  

Categories and Subject Descriptors 

D.2.1 [Software Engineering]:  Requirements/ Specifications – 

Elicitation methods, Languages, Methodologies, Tools. 

General Terms 

Design, Measurement 

Keywords 

Real Time, software design methods, methodologies, systems 

modeling, comparison of methods, data driven approach, object-

oriented approach, software development lifecycle, RT – real time 

1. INTRODUCTION 
Real Time systems are more complex than traditional systems. 

Some real time systems demonstrate reactive behavior.  They 

have timing, communication and reliability requirements that are 

not easily accounted for [10]. RT development involves not only 

software engineering but also hardware engineering, control 

engineering and communication engineering. Minor changes to 

specifications could be very costly. Software programs embedded 

directly into hardware controller and devices might require entire 

rewriting. There are hardware configuration problems when 

software engineers do not understand why specific processors, 

devices and operating systems are needed. Specific 

methodologies have been developed for helping the analysis and 

design of RT systems. These were different from normal methods 

because they had to focus on behavior and not just static system 

properties.   Methodologies do not guarantee solving all software 

development problems although they attempt to structure the 

analysis & development of RT systems applying design 

techniques and rules. RT methodologies make use of the basic 

concepts from structured analysis and design [3,4]. First 

methodologies like MASCOT, JSD, DARTS were data-driven 

based on principles from traditional structured analysis and design 

[4,7]. Later work was to use object oriented notations. These offer 

several advantages over the former methodologies like reuse and 

a neater approach [2,9]. The OMG boosted the use of object 

oriented methods for analysis and design through the UML and 

UML-RT. Early versions of object oriented modeling lacked the 

dynamic aspects of behavior and focused mainly on static and 

structural aspects which were insufficient for real time. Later 

models tried to combine object oriented notations with state 

charts, activity diagrams, interaction diagrams or message 

sequence charts now known as sequence diagrams in the UML. 

Some authors compare software design methods with software 

modeling notations. This is incorrect because a proper design 

method should encompass the entire software development 

lifecycle process. This is not the case with the UML where the 

focus is on modeling a system rather than on managing the entire 

software development. The OMG created USDP (Unified 

Software Development Process) based on the UML notations. The 

USDP is a proper methodology. Even the COMET (Concurrent 

Object Modeling architectural design method) in [8] combines the 

UML notations within a special lifecycle model. On the other 

hand software notations are more generic and focus on particular 

aspects of the design process. In system specifications there could 

be the use of models or system views. These could be singular or 

multiple, formal, semi-formal or informal, graphical or language 

based [1]. Good specifications using UML constructs could be 

used to derive specifications in the HDL (hardware description 



language or ESDL (embedded systems description language) as in 

[6]. 

2. OVERVIEW OF SOME METHODS 

2.1    Controlled Requirements Expression 
  The CORE (controlled requirements expression) method [4,5,12] 

is based on block diagrams, viewpoint diagrams and written 

statements of requirements. It was designed in the UK for the 

requirements analysis phase and was widely used in avionics. It is 

suitable for the informal process of gathering the systems 

requirements that are expressed using informal notations like 

block diagrams, viewpoint diagrams etc. It is very simple to use 

and understand not involving any complex notations etc. This 

approach is mainly data driven at a very high level but still could 

be used in conjunction with object oriented analysis. There is  

top-down decomposition into smaller parts. The CORE makes use 

of viewpoint diagrams, thread/ dataflow diagrams and block 

diagram notations. Control loops are available for use in the final 

diagram. The idea of view points could prove to be important to 

other methods and also for situations where requirements 

specification proves to be difficult. The CORE method tries to 

take a practical approach to problem identification at the earliest 

possible stage. The diagrams used are quite simple and some form 

of support could be obtained using modern case tools. The results 

that are produced using this method can be used as the input for 

another method. Some limitations are that: i) There is no 

reference to timing, concurrency, synchronization, ii) Unsuitable 

for Architectural design iii) No simulation model is produced. 

2.2    Yourdon Structured Method 
The YSM (Yourdon structured method) in [4] is based on the 

classic DFDs and structured methods used for traditional data 

design. It has been adapted and combined with many diagrams for 

RT design. It has been developed and refined over the years and 

many modern CASE tools can be used to support the notation. 

YSM starts off from a high-level and decomposes the system into 

lower levels ending up with complete program specifications. 

Two embedded design Methodologies have been derived from 

YSM. These are Ward-Mellor, Hatley-Pirbhai. This method can 

being used in conjunction with diagrams like PEM( Processor 

Environment Model) which is a hardware based design to help 

decide on the hardware configuration. There is also the SEM 

(Software-Environment Model). There are many different data 

driven methods that make use of the principles in YSM and add 

other diagrams. The PEM model and SEM are important because 

as pointed out RT systems are highly dependant on the available 

hardware which is normally ignored. YSM also uses DFDs, 

STDs, E-R diagrams, textual specifications, structure charts etc 

for design purposes. DFDs can be combined with STDs to 

represent both continuous and discrete actions. The behavioral 

model consists of DFDs, STDs & ERDs together with textual 

support  describing the requirements but having no 

implementation details. The PEM covers the physical processors 

deciding which processor should do which work and HCI details. 

The COM involves translating the SEM units into structure charts 

and refining them so that this can be translated into program code. 

One advantage is that YSM is a highly structured data analysis 

method. Some limitations are i) it is unsuitable for prototyping. ii) 

it must be followed in logical sequence or sequential ordering for 

successful implementation iii) It is possible to take a long time to 

implement the complete system iv) user must have familiarity 

with certain constructs. v) there is specific reference to timing 

issues, concurrency etc although the diagrams can be altered to 

support time. 

2.3    Modular Approach to Software 

Construction Operation and Test 
MASCOT ( Modular approach to software construction operation 

and test ) was first issued in 1970s  by the Royal Signals and 

Radar Establishment UK and successive versions MASCOT 3 

exist [11]. It is mainly used for avionics and in the military field. 

It is a highly modular rigorous approach based on hierarchical 

decomposition to lower levels. MASCOT is based on processes or 

activities in a system and aims at designing complex interactive 

RT applications in a highly structured approach. Mascot focuses 

on communication between different components and enforces 

that a specification must be complete at every level. Interfacing 

between modules is extremely well represented, thus even 

concurrency and synchronization can be dealt with. The main 

steps are i) Describe the overall internal functions of the system, 

together with its external connections. This is known as the 

Network Diagram. ii) The network is decomposed into lower-

level components iii) Define the structure of single thread 

processes (transform). iv) Design and code simple components in 

terms of algorithms and data structures. There are the  following 

rules i) processes cannot send data directly to other processes ii) 

communication between different components can only take place 

through channels or windows. iii) Intercommunication Data Areas 

(IDAs) must be used for data exchange, information storage and 

communication. Some limitations of Mascot are i) it does not 

directly support requirements analysis and goes directly into 

building a model ii) it is not widely supported via many case tools 

iii) it is not suitable for prototyping or RAD iv) it is expensive to 

apply.  

2.4    Concurrent  Design Approach for RT 

Systems 
CODARTS (Concurrent  design approach for RT systems) is a 

modified form of DARTS (Design approach for RT systems) [7]. 

CODARTS implements concepts from DARTS for an object-

oriented perspective. ADARTS was mainly aimed for use with the 

ADA language. CODARTS uses notations from RTSAD (Real-

Time structured analysis and design). The diagrams used in 

CODARTS are similar to control flow diagrams that use special 

symbols for different types of message passing e.g. loosely-

coupled message communication, tightly-coupled message. 

Possible diagrams are task architecture diagrams, software 

architecture diagrams and STDs. CODARTS classifies message 

passing into several types not normally found in other methods. 

These are supposed to be easily implemented in ADA. Some 

limitations of CODARTS are i) Designed mainly for the  ADA 

language. ii) Notations used are not well understood iii) Message 

communication even though well identified still does not account 

for concurrency, synchronization, mutual exclusion. iii) uses a 

limited number of views. 

2.5    Hierarchical Object Oriented Design 
HOOD (Hierarchical Object Oriented Design) method covers 

some parts of the software development lifecycle. It is mainly 

aimed at the ADA language taking an object oriented approach. It 

can be useful for prototyping. The idea behind HOOD is to 



identify objects in a parent to child relationship and their 

operations. Finally a graphical system description is to be 

produced in a control/ dataflow diagram that shows the flow of 

information between a set of objects. The diagrams can be 

decomposed to the required levels. The Top-Level Object is an 

active object because it uses the lower-level ones but not vice-

versa. Rules distinguish passive Objects from active Objects. 

Certain flows are not permitted like cyclic flows. Limitations of 

HOOD are : i) does not distinguish Data Flows between Objects 

from Event Signals ii) Not so simple and straightforward to use 

iii) Has just one main diagrammatic type thus just one model 

structure is given. 

2.6    Real time Object Oriented Modeling 
ROOM (Real time object oriented modeling) is similar to HOOD 

in principle but is more oriented to RT design and focuses on 

proper communication between objects. ROOM introduces the 

concept of Actors in ‘ROOMcharts’ which are a variation of 

StateCharts ( ROOMcharts define the state of an actor, signals 

that initiate transitions between states, and actions performed at 

transitions. There is a strong focus on this actor behavior. The 

actor is anything that initiates a sequence of events. There is the 

use of ‘ports’ for information exchange and threads that can have 

a priority. Some  limitations of ROOM are : i) Closely Tied with 

one particular CASE tool called ‘ObjecTime’ which can generate 

C++ code ii) It has a limited number of diagrams that show only 

certain views of the system i.e. actor view. iii) Its diagrams need 

to be supported with temporal analysis for complex systems. 

2.7   The Unified Modeling Language 
The UML can be considered to be a repository of notations 

existing in methods like ROOM, HOOD, YSM, MASCOT, etc. 

The name ‘unified’ implies a unification of modeling constructs. 

E.g. UML state diagrams are simplified STDs, communication 

diagrams are found elsewhere as interaction diagrams, sequence 

diagrams are derived from MSC (Message sequence charts). It 

contains notations that are lacking in other methodologies and 

tries to standardize them and it is set to improve upon previous 

notations. It is well supported by a variety of CASE tools when 

compared to other methods and can be used by anyone without 

formal knowledge. The main system views can be categorized 

into i) static ii) behavioral. The UML is not a proper software 

development method and can be combined with almost any 

development method. Diagrams and notations used are Informal. 

It is possible to use the OCL (Object Constraint Language) to 

formalize the diagrams used. When a class uses operations by a 

second class a control flow is set up. The UML does not 

distinguish between the spatial distribution of objects and the 

logical object distribution. Code generation can be done from 

some UML diagrams like a class diagram.  There are projects like 

the ECLIPSE open source tool that supports many UML 

constructs. There is a lack of standardization amongst the UML 

CASE tools and UML versions giving rise to confusion about 

which notations should be used. Some CASE tools providers have 

created their own notations that differ from those in the UML.  

Some limitations of the UML are : i) studies show that 

maintaining UML diagrams can become a complex process ii) 

UML lacks formal verification iii) the same thing can be modeled 

in several different ways, all could be correct. So there is a lack of 

consistency. 

2.8   The UML-RT 
UML-RT is based on extensions to the UML specifically aimed at 

RT. The most important ‘new’ notations are mainly capsules, 

ports, connectors and protocols. UML-RT implements some ideas 

from HOOD, ROOM and MASCOT adding them to the normal 

UML notations. E.g. the idea of capsule diagrams embedding 

child objects is similar to HOOD Parent-Child object 

relationships. The idea of active and passive ports already exists 

in ROOM. The idea of using capsules to model complex objects 

that are usually spatially distributed is similar to that of MASCOT 

where components / devices are connected using windows, ports 

and IDAs. Some limitations of UML-RT are i) not widely used 

and supported. UML-RT includes all the modeling capabilities of 

ROOM. 

3. PRACTICAL ASSESSMENT OF THE 

METHODS 
These methods were measured on the attributes in table 1.and 2. 

The final classification results are in table 3. i) Consistency 

between notations refers to the consistency between the diagrams 

used. The more notations there are the more difficult it becomes 

to keep consistency. ii) Support for communication constructs 

includes support for concurrency, synchronization, mutual 

exclusion, signaling, communication control, the use of ports and 

abstraction. iii) Support for resource control refers to the handling 

of different system components with processing loops and activity 

management, possibly used for performance management. iv) 

Support for temporal requirements indicates the need to show the 

different states the system or components can be in. Other issues 

like CASE tool support, abstraction and also ease of use were also 

considered. 

 

Table 1.  Method Comparison 1 

 
METHOD CONSISTENCY  

BETWEEN NOTATIONS 

SUPPORT FOR 

COMUNICATION 

CONSTRUCTS 

SUPPORT 

FOR 

RESOURCE 

CONTROL 

DIFFERENT 

SYSTEM 

VIEWS 

CORE Very Good Poor Poor Average 

YSM Very Good Poor Poor Average 

MASCOT Very Good Excellent Very Good Poor 

CODARTS Very Good Good Good Average 

HOOD Very Good Average Good Poor 

ROOM Very Good Good Very Good Poor 

UML Poor Average Average Very Good 

UML-RT Good  Good Good Good 

score method (poor = 1, average = 2 , good = 3, very good =4, excellent = 5  

 

 

Table 2. Method Comparison 2 

 
METHOD CASE TOOL SUPPORT ABSTRACTION / 

INFO. HIDING & 

COMPOSITION 

SUPPORT 

TEMPORAL 

REQUIREMENTS 

EASE OF 

USE 

CORE Very Good Average Poor Good 

YSM Very Good Average Poor Good 

MASCOT Poor Very Good Average Poor 

CODARTS Good Average Average Average 

HOOD Good Average Average Average 

ROOM Good Good Very Good Average 

UML Excellent Good Average Very Good 

UML-RT Average Good Good Good 

score method (poor = 1, average = 2 , good = 3, very good =4, excellent = 5)   

 

 



 

 

Table 3. Final Method Score 

 

 

 

 

 

 

 

 

Fig. 1 below depicts the final results for the 

methods/methodologies commonly used for real time software 

development. The results are obtained from the data in table 3. 

 

0 5 10 15 20 25 30

ROOM

UML

UML-RT

MASCOT

CODARTS

HOOD

CORE

YSM

Score

 

Figure 1.  Real Time Method Ranking Bar Chart 

 

Fig. 2 depicts how each method would actually fit in the SDLC ( 

systems development lifecycle) process. The main steps included 

are requirements analysis, requirements specification, logical 

design, physical design, coding and testing. Obviously coding 

would imply integrating the components through interfaces etc. 

This is based on my own observations with reference to 

[3,4,7,8,9,12] and also practical use of some of these methods.   

 

                

 

Figure 2. Methods vs SDLC phases 

4. DISCUSSION  
The results of this comparison in fig. 1 show that ROOM, UML 

and UML-RT rank as the three best methods for the development 

of RT systems. UML has the advantage of gaining widespread use 

and a lot of work is being done to improve UML continuously.  

ROOM and UML-RT whilst being suitable for describing 

complex RT systems, unfortunately lack widespread support of 

many CASE tools and require time to master. Another advantage 

of UML is that some UML diagrams are applied in a MDA 

approach and used to create PIM [6]. It is not justifiable that only 

one particular method is used. E.g. other methods like MASCOT 

embody principles that are still valid today and have been 

implemented in part in ROOM. UML does not have proper 

control flow diagrams similar to those found in YSM and 

CODARTS. These are important for designing command and 

control and embedded system tasks. UML instead uses activity 

diagrams or communication diagrams. Activity diagrams are more 

adequate for business analysis, communication diagrams lack 

some detail and need modification on the other hand control flow 

diagrams are oriented to task management, reactive behavior and 

control. This could indicate that UML is more oriented towards 

building soft- real time systems like those used in e-commerce , 

agent architectures, workflow systems, etc. On the other hand 

CODARTS and YSM would be more suitable for things like 

avionics, a cruise control description etc.  Another problem with 

the UML is that there are so many notations that it is often 

difficult to select what is really needed. E.g. Sequence diagrams 

and communication diagrams are semantically equivalent. When 

should one use one rather than the other? Also there are several 

ways in UML how to represent the same thing. Thus it is possible 

Method Ranking Score 

ROOM 24 

UML 23 

UML-RT 23 

MASCOT 22 

CODARTS 21 

HOOD 19 

CORE 18 

YSM 17 
 



to have different diagrams of the same type representing the same 

scenario. In methods like the UML, ROOM, HOOD the 

messaging topology between objects is often ‘loosely defined’ 

with the possibility of having confusion. 

It is obvious that what is lacking in one method might exist in 

another method. Object oriented methods are not a complete 

guarantee that there will be reusable components that will be 

available at a cheaper price especially if the interface needs to be 

rewritten. RT systems depend heavily on available hardware and 

might be operating system specific. This would imply that the 

design pattern is already biased from the onset of the project. 

All the methods mentioned do not use proper formal verification 

techniques. Formal verification could be very important for 

checking that a design is free from deadlock. A lot of work is 

being done to try to formalize the UML like in [13]. There are 

also issues of performance analysis and task scheduling that need 

to be accounted for. CODARTS notations have already been used 

for performance analysis and task scheduling. The UML lacks 

performance analysis and does not take time into account. 

Actually the timing problem for many methods can be partially 

solved by translating dynamic UML diagrams into timed Petri 

Nets or using timed automata. The UML has been criticized by 

various authors. Note that even though ROOM is bound to a 

particular case tool its diagrams can easily be supported with 

other conventional case tools thus it has good case tool support. 

The diagram in fig. 2 simply describes how each method fits in 

the systems development lifecycle process. These issues need to 

be considered when using these methods. If the focus is more on 

requirements engineering CORE could prove to be better than the 

others. CORE is the most adequate for requirements analysis and 

specification. HOOD, CODARTS and YSM cover part of the 

requirements analysis up to coding. MASCOT is more oriented 

towards the design, implementation phase and testing. The UML 

can be used for requirements analysis and can cover a wide aspect 

of the systems development lifecycle but it needs to be used in 

COMET or the USDP process. It could also be possible to 

combine CORE with UML. ROOM can cover up to testing 

depending on how it is used but it is not focused on the initial 

requirements analysis. What is evident is that no method covers 

all the required steps. This illustrates  that for RT development 

one never  be restricted to using a single method. 

5. CONCLUSION 
This paper has compared several methods for the analysis and 

design of real time systems. Although ROOM , UML, UML-RT 

stand out clearly as being the best on a number of attributes, in 

real life it is better not to be restricted to a single method. E.g. 

when students are using a method like the UML for their APT s it 

is always suggested that other notations from another method can 

be used. This is especially the case if there is a problem that 

requires some explanation. If using another notation or diagram 

would help then why not use it. A synonymous approach could be 

considered for industrial use. There are also other  specific factors 

that need to be considered when selecting a method, like i) the 

type of industry involved, ii) user specialization, iii) if formal 

verification is required iv) reliability and safeness. It must be kept 

in mind that the results established in this paper are based on the 

set of attributes in table 1 & 2 might not be fully agreed upon by 

everybody.  

6. REFERENCES 
[1] Bennet, D. Designing Hard Software. Manning, 1996. 

[2] Booch, G. Object-Oriented Design with Applications, 2d ed. 

Reading, Mass.: Addison-Wesley, 1991. 

[3] Burns, A., Wellings, A.. Real-Time Systems and 

Programming Languages.Addison-Wesley, 2001. 

[4] Cooling, J. Software Design for Real-Time Systems. 

Chapman & Hall, U.K.,1995. 

[5] CORE, Controlled Requirements Expression (1986). System 

Designers plc, Fleet Hampshire, GU13 8 PD, UK document 

no.1986/0786/500/PR/0518. 

[6] Coyle, F.P., Thornton, M.A.  From UML to HDL: a Model 

Driven Architectural Approach to Hardware-Software Co-

Design, Information Systems: New Generations Conference 

(ISNG), Apr  2005, pp. 88-93. 

[7] Gomaa, H. Software Design Methods for Concurrent and 

Real-Time Systems.Addison-Wesley, USA, 1996. 

[8] Gomaa, H.  Designing Concurrent, Distributed and Real-

Time Applications with UML. Addison-Wesley, USA, 2004 

[9] Graham, I. Object Oriented Methods. Addison-Wesley, USA 

2000.  

[10] Liu, J.W.S. Real-Time Systems, Pretence Hall, 2000. 

[11] MASCOT, The Official Handbook of MASCOT. Joint 

IECCA and MUF Committee, 1987. 

[12]  Mullery, G.P., CORE - a method for controlled requirement 

specification. ,ACM 
International Conference on Software 

Engineering Proceedings of the 4th international conference 

on Software engineering,  Munich Germany 1979 , pp.126 – 

135.   

[13] Saldhana, J.A., Shatz, S.M., Hu, Z.Formalization of Object 

Behavior and Interaction From UML Models. International 

Journal of Software & Knowledge  Engineering, 11(6), 2001, 

pp. 643-673. 

 
 



Automatic Interface Generation for Enumerative Model
Checking

Computer Science Annual Workshop 2006

Sandro Spina
Dept. of Computer Science and A.I.

New Computing Building
University of Malta, Malta

sandro.spina@um.edu.mt

Gordon Pace
Dept. of Computer Science and A.I.

New Computing Building
University of Malta, Malta

gordon.pace@um.edu.mt

ABSTRACT
Explicit state model checking techniques suffer from the
state explosion problem [7]. Interfaces [6, 2] can provide a
partial solution to this problem by means of compositional
state space reduction and can thus be applied when veri-
fying interestingly large examples. Interface generation has
till now been largely a manual process, were experts in the
system or protocol to be verified describe the interface. This
can lead to errors appearing in the verification process un-
less overheads to check the correctness of the interface are
carried out. We address this issue by looking at automatic
generation of interfaces, which by the very nature of their
construction can be guaranteed to be correct. This report
outlines preliminary experiments carried out on automatic
techniques for interface generation together with their proofs
of correctness.

1. INTRODUCTION
Computer systems (both software and hardware) have over
the past few decades been introduced into almost every
piece of machinery. Real-time systems such as controllers
for avionics, cars and medical equipment have become ubiq-
uitous. Model checking techniques are used to algorithmi-
cally verify these finite state systems formally. It is becom-
ing increasingly popular by many hardware/software man-
ufacturers to verify that their systems actually implement
the required specifications. This is achieved by verifying if
the model of the system satisfies some logical specification.
Suppose we want to verify, for example, that every request
for service is eventually acknowledged, or that there are no
deadlock states in our systems. This sort of verification can
be carried out using model checking techniques.

CSAW ’06 CSAI Department, University of Malta

Processes can be described using some formal process calculi
such as CCS [8], CSP [3] or LOTOS [4]. Properties are then
expressed as temporal logic formulas. Computational Tree
Logic (CTL) [1] is one such temporal logic used to express
properties of a system in the context of formal verification.
It uses atomic propositions as its building blocks to make
statements about the states of a system. CTL then combines
these propositions into formulas using logical and temporal
operators. Referring to the previous example, one would for
example want to verify that every computation path after
a service request is met, will eventually encounter a service
acknowledgment state.

The state space explosion problem occurs with systems com-
posed of a large number of interacting components using
data structures which can potentially store many different
values. The problem is clearly that of traversing the en-
tire search space which would typically grow exponentially
with the addition of new system components. One possi-
ble solution is that of decreasing the number of states in
the computational graph while still maintaining an equiva-
lent graph. In order to do so one would need to combine
equivalent states (thus decreasing states) in the computa-
tional graph. We adopt the technique used by Krimm and
Mounier in [6], namely interfaces.

We start this report with some preliminary definitions. We
then focus on the theory behind our method of interface
generation. Two interface generators are then explained in
some detail. We conclude this report by describing how
these implementations work in the verification of a reliable
multicast protocol.

2. PRELIMINARY DEFINITIONS
The behaviour of a sequential process can be modeled by a
labeled transition system, consisting of a set of states and a
labeled transition relation between states. Each transition
describes the execution of the process from a current state
given a particular instruction (label).

In what follows A is the global set of labels, τ a particular
label representing a hidden or unobservable instruction (τ /∈



A). Given a set of labels A (A ⊆ A) we will write Aτ to
denote A∪{τ} and A∗ to represent the set of finite sequences
over A.

Definition 1 A Labeled Transition System (LTS, for short)
is a quadruplet M = (Q, A, T, q0) where Q is a finite set of
states, A ⊆ A is a finite set of actions, T ⊆ Q × Aτ × Q is
a transition relation between states in Q and q0 ∈ Q is the
initial state.

We write q
a
→ q′ to denote a transition between states q and

q′ using a ∈ A, i.e. (q, a, q′) ∈ T . We shall also use q
s
⇒ qn

(where s is a string in A∗
τ ) to indicate that there exist states

q1 . . . qn following string s.

We now define the set of possible actions from a state q ∈ Q.

Definition 2 Given an LTS M = (Q, A, T, q0) and q ∈ Q,
the actions possible from state q is defined as actions(q) =

{a : A | ∃q′ · q
a
→ q′}.

We now define the language generated by a LTS from a
particular state p ∈ Q.

Definition 3 Given an LTS M = (Q, A, T, q0) and q ∈ Q,
the (observable) language starting from q in M is defined as
follows:

LM(q) =

{σ | σ = a1a2 . . . an ∧ ∃q1, . . . , qn · q
τ∗a1⇒ q1 . . .

τ∗anτ∗

⇒ qn}

The (observable) language generated by LTS M is defined
as the language starting from the initial state of M : LM (q0).

3. REFINEMENTS OF LTSS
In this section we introduce the binary operator ⊑, that
compares two LTSes.

Definition 4 We say that M2 is refined by M1 (M2 ⊑ M1)
if for some total function eq ∈ Q1 → Q2 the following holds:

i) A1 = A2

ii) Q2 ⊆ Q1

iii) q
a
→1 q′, implies that, eq(q)

a
→2 eq(q′)

iv) q0 = eq(q0)

Lemma 1 Given two LTS Mi = (Qi, Ai, Ti, q0i), where i ∈

{1, 2}, related with a function eq, then q
s
⇒1 q′ implies that

eq(q)
s
⇒2 eq(q′)

Proof: We prove this lemma by string induction over s.

The base case, taking s to be the empty string is trivially
true.

For the inductive case, we start by assuming that: ∀q, q′ ·

q
t
⇒1 q′ implies that eq(q)

t
⇒2 eq(q′).

We now need to prove that:

∀q, q′ · q
at
⇒1 q′ implies that eq(q)

at
⇒2 eq(q′)

But, if q
at
⇒1 q′ then ∃q′′ · q

a
→1 q′′ ∧ q′′

t
⇒1 q′.

By the inductive hypothesis, it follows that ∃q′′ · q
a
→1

q′′ ∧ eq(q′′)
t
⇒2 eq(q′).

Since we know that every transition in M1 is mirrored in
M2 on equivalent states, then we know that ∃q′′ · eq(q)

a
→2

eq(q′′) ∧ eq(q′′)
t
⇒2 eq(q′).

Hence, we conclude that:

eq(q)
at
⇒2 eq(q′)

The result follows by string induction.

Theorem 1 Given two LTSs Mi = (Qi, Ai, Ti, q0i), with
i ∈ {1, 2}, if M2 is refined by M1 (M2 ⊑M1), then the lan-
guage generated by M1, L(M1), is a subset of the language
generated by M2, L(M2).

Proof: To require to show that if s ∈ L(M1) then s ∈
L(M2).

If s ∈ L(M1), then, by definition of L(M):

∃q1 : Q1 · q01
s
⇒1 q1

By applying lemma 1, we can conclude that eq(q01)
s
⇒2

eq(q1). But since, we know that q02 = eq(q01), it follows
that s ∈ L(M2).

4. INTERFACES
Interfaces [6] exploit the use of a compositional approach for
state space generation. Essentially an interface represents
the envorinment of a sub-expression E′ in E. This interface,
usually a LTS, represents the set of authorised execution
sequences that can be performed by E′ within the context of
E. Using a projector operator one can generate a restricted
LTS of E′ such that useless execution sequences are cut off
according to the corresponding interface.

In [6] a new projection operator is defined. This is the semi-
composition operator which ensures that :

1. it restricts the behaviour of E′ according to its envi-
ronment



2. it preserves the behaviour of the initial expression when
a sub-expression E′ is replaced by its corresponing re-
duced expression.

3. it can be computed on-the-fly, i.e. can be obtained
without generating the LTS of E′ first.

The definition of the semi-composition operator is given in
[6]. M1 ⌉|G M2 denotes the LTS resulting from the semi-
composition of M1 by M2. M2 is the interface with which
M1 is semi-composed. One should note that if M2 is man-
ually generated by an expert of the system or protocol be-
ing verified then semi-composition is probably going to be
much more effective in reducing the states of S1. Our work
explores the possibility of automatically creating effective
interfaces. We can then guarantee their correctness by con-
struction.

If M1 is composed with M2 (not necessarily locally) and M ′
2

is an LTS such that L(M2) ⊆ L(M ′
2), then we can reduce

M1 to M1 ⌉|G M ′
2 without altering the overall behaviour of

the overall system. We would clearly be altering the behav-
iour of M1 but this is exactly what we want in terms of state
reduction. Since the complexity of the semi-composition op-
erator increases as the the number of states of the interface
increases, sometimes being impossible to calculate due to
the size of the interface, our aim is to balance these require-
ments — taking an LTS M we want to produce a smaller
LTS M ′ satisfying L(M) ⊆ L(M ′). Clearly, many solutions
exist satisfying this loose requirement. In this paper we
present two initial experiments in this direction.

5. AUTOMATIC GENERATION OF INTER­
FACES

We have so far implemented two interface generators. This
section describes these algorithms. In what follows we refer
to the original LTS as M1 and its reduced LTS, the interface,
as M2

5.1 Chaos State Partition
The first interface implementation is the chaos state parti-
tion interface. The main idea is that we keep a number of
states from M1, collapsing the rest into a chaos state. So
for example if we have M1 with 20 states and we want to
generate an interface taking in consideration only the first
10 states (traversing the LTS in breadth-first order, start-
ing from the inital state), its reduced version M2 would have
10+1 states. The extra state is the chaos state (we call χ) in
which all the other states are grouped. Figure 1 illustrates
this reduction.

Let Q̄ be a subset of states of M1 which will be kept in M2.
M2 is the LTS resulting from the reduction of M1. Q̄ =
{0,1,2,3,4,5,6,7,8,9} in the example given here.

Definition 5 Given an LTS M = (Q, A, T, q0) and Q̄ ⊆ Q,
we define the reduction of M to states Q̄ to be M ✄ Q̄ =
(Q′, A′, T ′, q′0) such that Q′ = Q̄ ∪ {chaos}, A′ = A, q′0 =

chaosQ̄
χ (q0) and T ′ = {(chaosQ̄

χ (q), a, chaosQ̄
χ (q′)) | (q, a, q′) ∈

T1} ∪ {(χ, a, χ) | a ∈ A}, where chaos is defined as follows:

chaosQ
χ (q) =

�
q if q ∈ Q
χ otherwise

This construction yields an LTS M ′ which is refined by the
original LTS M .

Proposition 1 M ✄ Q̄ ⊑M

This can be shown by taking eq(q) to be chaosQ̄
χ (q).

By theorem 1 we are guaranteed that M ✄ Q̄ accepts a su-
perset of the language accepted by M , and hence can be
used as a replacement interface.

The Chaos Partition algorithm has been implemented using
the CADP toolkit [5] traversing the LTS in breadth-first
order, starting from the inital state.

Algorithm 1 Calculate M2 = M1 ⊲ Q̄

Require: m ≤ n
n ← number of states in M1

m ← depth in breath first order of last state in M1 to
keep before chaos
for i = 0 to n do

if i < m then
copy state Qi from M1 to M2

copy outgoing tranisitions of state Qi from M1 to M2

else
join state Qi to the chaos state in M2

copy outgoing transitions of Qi in M1 to M2

end if
end for

5.2 Node Behaviour State Partition
Our second implementation abandons the idea of creating a
chaos state and instead moves in the direction of creating a
set partition which groups together states in M1 which can
perform exactly the same set of strings of length n. With,
for example, the length being 1, and there two states in M1

which can only perform actions a and b then these two states
are grouped together in one state in M2. We currently cater
only for length 1 but will deal with the general case in future
work. Figure 2 illustrates the same LTS shown earlier on but
this time reduced with the Node Behaviour state partition.

The state partitions created with this reduction are the fol-
lowing:



0


1
 2


3


8


6


5


7


11


10


14


4


9


15

12


16


13

18


19


17


a


a

b


b


c


b


b


b
 a


b
a
 b


a
 a
 a


c


a


a
 b


a


c


b


a

a


a


b


b


a


a


b
 c


a


0


1
 2


3


8


6


5


7


Chaos


4


9


a


a


b


b


c


b

b


b

a


b
a
 b


a
 a
 a


a


a

a


a,b,
c


Figure 1: State reduction of a 20 state LTS using the chaos state partition

State Actions State Partition
a,b {0,1,10,18}
a {2,8,9,13,15,16,19}
b {3,4,5,12,17}

b,c {6}
a,c {7}

a,b,c {11}
c {14}

The partitions created will form the new states in M2.

Definition 6 Given an LTS M = (Q, A, T, q0), the reduc-

tion of M looking at trails of length 1 is defined to be M [1] =
(Q′, A′, T ′, q′0) where Q′ = 2A, A′ = A, q′0 = actions(q0) and
T ′ = {actions(q), a, actions(q′)) | (q, a, q′) ∈ T}.

This construction yields an LTS M ′ which is refined by the
original LTS M .

Proposition 2 M [1] ⊑ M

With depth = 1 the possible states of M2 is equal to the
powerset of A. Hence function eq is defined as follows:

eq(q) = actions(q)

Interface generation using the Node Behaviour partition al-
gorithm has also been implemented within the CADP toolkit
[5]. As explained in algorithm 2 we first go through all the
states in M1 and group them in state partitions accord-
ing to their outgoing transitions. These state partitions be-
come the new states in M2. We then create the transitions
between the new state partitions to reflect the transitions
present in M1. The number of states and number of tran-
sitions in M2 is clearly always smaller or equal to that in
M1.

6. CASE STUDIES OF COMPOSITIONAL
VERIFICATION

In this section we describe some experiments carried out
with the automatically generated interfaces. In order to
come up with a good comparison of how these interfaces
work we make use of an example listed as demo of the CADP
toolkit which uses the projector operator discussed earlier.

We first give a very brief introduction to the CADP toolkit,
then describe the rel/REL multicast protocol. We illustrate
the results achieved when the sub-expressions of the protocol
are restricted with our automatically generated interfaces.

6.1 Construction and Analysis of Distributed
Processes (CADP)



0


1
 2


3


8


6


5


7


11


10


14


4


9


15

12


16


13

18


19


17


a


a


b


b


c


b


b


b
 a


b
a
 b


a
 a
 a

c


a


a
 b


a


c


b


a

a


a


b


b


a


a


b
 c


a


a,b


a

b


c


a,
c


b,
c


a,b,
c


a,
b


a


a


a,b


b


b


a


a


a


a

a


b


b


b,
c


a


a


c


c


c


b


Figure 2: State reduction of a 20 state LTS when n=1

Algorithm 2 Calculate M2 = M
[1]
1

n ← number of states in M1

for i = 0 to n do
if state partition already exists which maps the behav-
iour of Qi then

add Qi from M1 to this state partition
else

create new state partition
add Qi from M1 to the newly created state partition

end if
end for
X,Y ← set of state partitions in M2

for all partitions Xj in X do
for all partitions Yk in Y do

if there are states in Xj and Yk such that these states
were connected in M1 then

connect with the same transition as in M1 parti-
tions Xj and Yk

end if
end for

end for

The CADP toolkit [5] consists of a set of verification tools
developed by the VASY research group1. The toolkit is
especially useful in the design of communication protocols
and distributed systems. Processes are specified in LOTOS
[4] which is essentially a language for specifying CCS and
CSP like processes. CADP contains amongst other tools,
compilers for translating LOTOS descriptions into C code
and LTSs which is then used for simulation, verification and
testing purposes. The implementation of our interfaces was
carried out using the CADP tools for explicit state manipu-
lation, namely the BCG. Binary Coded Graphs (BCG) is a
package which uses highly optimised representation of LTSs
together with various other tools for the manipulation of
these LTSs. Further information on CADP can be obtained
by visiting the VASY website.

The projector operator within CADP implements the semi-
composition operator defined in [6]. This operator is used to
constrain processes within their environment. We make use
this semi-composition operator to contrain processes with
our automatically generated interfaces before actually ap-
plying the parallel composition on them.

6.2 The rel/REL Multicast Protocol
The rel/REL protocol [9] provides a reliable atomic multi-
cast service between stations connected by a network. The

1http://www.inrialpes.fr/vasy/cadp/



LOTOS specification of the multicast protocol can be found
in [6]. The rel/REL multicast service should ensure that a
message sent by a transmitter is appropriately broadcasted
to all receivers taking in consideration the fact that these
stations may suffer from failures (i.e., they can crash).

In this paper we do not give details of how the rel/REL
protocol works. We are only interested in the service pro-
vided by the protocol which need to be verified. The first
property is atomicity, meaning that either all receivers get
the message, or none of them will. This property is verified
using temporal logic. The second property is that of causal-
ity meaning that the order of messages is preserved. This
property is verified using comparison modulo safety equiva-
lences. By using our automatically generated interfaces we
would like to observe a decrease in the number of states in
the intermediate LTSs composing the whole protocol.

The example considered here is composed of one transmit-
ting station (Trans) and three receiver stations (Rec). Their
parallel composition denoted by expression E (without using
interfaces) is as follows:

((Rec2||ARec3)||BRec1)||CTrans

where A = {R23, R32}
B = {R12, R13, R21, R31}
C = {RT1, RT2, RT3}

In [6] manually generated interfaces I are used to restrict
the receiver nodes. The transmitter LTS is then used to
further restrict the composed receiver stations. Figure 6.2
shows how the projector operator is used when generating
the LTS of the whole system. Note that the symbol −|| in
figure 6.2 refers to the projector opertor.

In order to calculate the decrease in number of states im-
posed by our interfaces we need to split up expression E in
various sub-expressions. [6] splits expression E listed above
in the following intermediate LTSs each of which correspond-
ing to a generation step. Here we add S0 as a further inter-
mediate step to analyse.

S1i = sem(Reci)⌉|Ii

S0 = S12‖{R23,R32}S13

S2 = S0⌉|{RT2,RT3}sem(Tx)
S3 = (S11‖{R12,R21,R13,R31}S2) ⌉|{RTn} sem(Tx)
sem(E) = S3‖{RTn}sem(Tx)

The following table illustrates the various reductions ob-
tained when using our interfaces. Each row indicates the
number of states of the subexpression together with the
number of states remaining when the subexpression is re-
duced up to strong bisimulation [8].

The first column shows the reductions when manually gener-
ated interfaces are used. The reductions obtained with this

||


-||


Rec1
 IRec1


-||


Trans
||


-||
-||


Rec2
 Rec3
IRec2
 IRec3


||


-||
 Trans


Trans


Figure 3: Computational tree of the rel/REL pro-
tocol using interfaces

method are clearly the best possible. The second column
shows the sizes of the intermediate LTSs when no interfaces
are used. We could only generated S0 in this case since the
composition of S2 with S1i could not be generated due to
the exponential growth of the composed LTSs. The third
and fourth column illustrate the reductions obtained when
BFReduction (Chaos State Partition implementation) and
TEReduction (Node Behaviour n=1) were used.

The first row is indicative of the reductions obtained by the
interfaces. When using a manually generated interface (user
written) the receiver node is reduced to 1086 states. The
original size of the receive node LTS is 2882 as indicated in
the second column. Both BFReduction and TEReduction
exploit the Transmitter LTS which is eventually composed
with the Receiver nodes. An interface is generated out of
this LTS and immediately applied to the Receiver node.

Both interfaces obtain a reduction in state space of the re-
ceiver node. When the receiver LTS is projected with the
interface created by the BFReduction algorithm the receiver
node is reduced to 2106 states. With the TEReduction al-
gorithm we only manage to reduce the receiver LTS to 2700.
It is interesting to note however that when both LTSs are
reduced up to strong bisimulation both interface reduced
receiver nodes get much smaller. Further work needs to be
carried out in order to understand why this is the case.

The composition of two receiver nodes yields an LTS of
3,789,678 states when no interfaces are used. When using
our interfaces we manage to get a reduction to 1,621,640
states with the BFReduction interface and a reduction to



Expression Manual Interfaces No Interfaces BFReduction TEReduction

S12 1086/369 2882/127 2106/149 2700/127
S0 229767/31020 3789768/15139 1621640/20939 3313694/15139
S2 149366/30171 na 1621640/20939 3313694/15139

3,313,694 states with the TEReduction interface. The com-
position if the receiver nodes on which the manual inter-
face was used goes up only to 229,676 states. This clearly
shows the difference a manually generated interface has on
the composition of these LTS.

With these interfaces we can only generate up to S2. With-
out interfaces not even S2 could be generated. We are cur-
rently investigating some of the results obtained with these
interfaces, whilst trying to improve on their implementa-
tions. The two implementations which we curently have
serve only as proof of concept for our work. We clearly need
to come up with more ‘intelligent’ interface generators.

7. FUTURE RESEARCH
This paper discusses only our initial attempts at interface
generation. Through these interface we want to reduce the
intermediate state space needed for the verification of sys-
tems. So far we have implemented two interface generators
which only give us some indications on the way forward.
The current interfaces have some pitfalls which we shall be
addressing shortly. For example, TEReduction with a depth
of 1, groups together in one state all those states which are
able to perform only the internal action τ . This can be par-
tially avoided simply by increasing the depth to some other
value greater than 1.

Further experiments also need to be carried out in order to
better asses the behaviour of the current interfaces. We shall
be working on the verification of various other protocols us-
ing interfaces. Ultimately we would like to obtain a general
purpose interface generator which is able to effectively re-
duce the number of intermediate states necessary.

8. REFERENCES
[1] E.M.Clarke, O.Grumberg, and D.A.Peled. Model

Checking. The MIT Press, Cambridge, Massachusettes,
1999.

[2] Frederic Lang. Refined interfaces for compositional
verification. In E. Brinksma, editor, International
Conference on Formal Techniques for Networked and
Distributed Systems FORTE’2006, pages 239–258,
Enschede, The Netherlands, 2006. Springer Verlag,
LNCS 1217.

[3] C. A. R. Hoare. Communicating sequential processes.
Commun. ACM, 21(8):666–677, August 1978.

[4] ISO/IEC. LOTOS. A formal description technique
based on the temporal ordering of observational
behaviour. international standard 8807, international
organisation for standardization - information

processing systems. Open Systems Interconnection,
1989.

[5] J. -C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier,
R. Mateescu, and M. Sighireanu. CADP: a protocol
validation and verification toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the
Eighth International Conference on Computer Aided
Verification CAV, volume 1102, pages 437–440, New
Brunswick, NJ, USA, / 1996. Springer Verlag.

[6] J.P. Krimm and L. Mounier. Compositional state space
generation from Lotos programs. In E. Brinksma,
editor, Tools and Algorithms for the Construction and
Analysis of Systems, pages 239–258, Enschede, The
Netherlands, 1997. Springer Verlag, LNCS 1217.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and
L.J. Hwang. Symbolic Model Checking: 1020 States and
Beyond. In Proceedings of the Fifth Annual IEEE
Symposium on Logic in Computer Science, pages 1–33,
Washington, D.C., 1990. IEEE Computer Society Press.

[8] R. Milner. A Calculus of Communicating Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1982.

[9] P D Ezhilchelvan and S K Shrivastava. rel/rel: a family
of reliable multicast protocols for distributed systems.
Distributed Systems Engineering, 1(5):323–331, 1994.



����������
��������	
���
��������������������������������

�
������������

���������������������������

�

����������


�����

�����������������

�

��������� �����
��

�!����������

�

�

��"����#
������

���������������������������

�

��"�����$��"����

������������������%��������������������

�

��
��		��!���������

������������������%��������������������

��

����
����
�

���������������������������

�

&
�'���(��'���

���) ���������

�

�����������������

���) ���������

���������

��� ������	�
���
� ����
���
������������	���������
����
�
���
����� ��
� 
��
����
�� 
�� ��������� ��
� ������ ����� �
��
��	��
�
�
�������������
 �
������	��
�����
��
���
��	�
	���	����
��
�����
�	��
�	�� ����� �����	���
�� ��� ��
� �
���
��	�
	�� �
��
�!������
�
�������� ���	�� 
�
������ �
���
�
�"� ������ �	�� �
�
�	�
��
��������	�����
�	�����
�
�����
��
������
�
���	���
����
�����	��
��
�	�
����
�������#���
���
����
��
���
��������	��	��
����
�
���
�	����
	$����
�	�������"������	����
�
�
�������"�����!�������
��������	����
�
���
���
� ��	���	�
��� 	��
��� �
� �
��������	��� ��
�	�
� �	������
��
���������
��
�
��	����
�	�
	!�%�
����
�
	��&
������
���

�������
�
�������� 	�� 	� �����	�� �
��
�
��� ��� ����
����� �
��	�
�	��
��
	��
��� ��
� ���
�
	�� �
�
	���� '�
	!� ��� ��� ��	��
�� 	� $
"�
�
���
�
�"� ��� ��
� ���
�
	�� ���
��	��
�� (
��
�"� )*+*� �����	���
��
��
�
�	�������
��	 ���,
�
�
�
������
����	����
��	���������
���
����� �	$���� ��
� ��� -��
� �
��� �
��
�����
�� $�
��
��
��	�
��

�
�
�"������
��
�����"���
�"
	��)*+*.�/)01!�'����
��
�
���
��
��
������
���������	�����	��
������	��	����	���	�����
����
�
�
�����
�
�	�
�!� %���� ��� �
��
�
�� �"� 	�� 	��
���� 
�� ���������2��

��
����
��	���	�������
���	���	���������
��
���	��	2���	������	��
��
�������������	���
�!�3��	��"���
��
����
����
������
�
������������	��	�
	�����
��
���
��	�
	�!�

��	
��
��
4	�	��
��	���&����
��&
��������������&
���������5
��
�$�����
&
��	�
�	���
�("��
����
�����	��������
���
�(��
��
��6��	��
3	��
����(�	��	����	��
�!�

��� �������������
���������� /01� ��� 	�� �����	���
� ����
�� ���
���� ��
� ���
�
	��
&
������
�2�� 7��� 3�	�
�
�$� ��
��	��
� ������ 	���� �
� ������
��
� ������ ����� �
��
��	��
� �
�������� ����� 
 �
������ 	��
��� ��
�
�
���
��	�
	�� �
��
�!� ���������� ��� ����
���"� ��� ���� ���
��
��	�
�� 	�������� 
�
���	��"� �
��� �	��� 
�� ������ ��
� ���
�
	�� 
�
(��
��
������/71!��

����������$��$
�� 
��� ��� )**7������ 	��

����� ����	��	� /)81�
	��� �
� �	�
� �	�� �
���
�� ��� �������� �
� 
�
�	�
� ������ �
�
��
��

)**9!� %�
� ��
�
��� ��� �

����	�
�� �"� �535� :��	��	�� 5	��
�	��
��������
��
��5���
	��4�"����;��	�����
���
�
����	���
����
���
����
�
����
����"�
���	��	�	�
��

•� ��5�%�:��

$��
�
	����	���%
���
�
�"�5
��
�$;���

•� &��5�:%�
����
�
	��<��	���	��
���
��5���
	���
�
	���;���

•� �'5%��:�
���
�"�
��'��	��
��5
��
�$�%
���
�
�"��
�
���
�
���=;���

•� &
��
�������'���:��	��	��'�	�
����	����
�
	����
5
��
�$;���

•� &>5�%�:&"������
�
	����	���'�	�
����5
��
�$;���

•� ���!�(�:�����	��4�����	�����
�	��	���(�	��;���

•� &���(%�:&
���
��
��
��
���
������2���
��	��
��
(��
�����?�
�
��%
����?�
��'��
��	;���

•� &5�(%�:&
���
�5	��
�	��4
����	��
��
���
�(��
�����?�
�
��
%
����?�
���
�
��
;���

•� ��5�:��"���	������
�����
��5
��
�$;���

•� 6�'(%�:6���
����������
�
��'����
��(��
��
��	���
%
���
�
�"��("��	;���

•� �(�%�&�:�������"�
��(��
��������
�
	�����%
���
�
�"�	���
&
��
�
��"��
�
�
��
����%�����	;���

•� %�@�%'=�:(��
�������	���%
���
�
���	���
�
	����&
�������
%��$
";!�

'�����
�	��"��	�����
��
�� �������	���
����
����

�
����	�"�����	
��
:��&&;�� A
��	�� :A�5�%;�� 4	�
����
� :4'��);�� %�����	�� 	���
%��$
"�	�
��	������	����!�

��� ���������������
����� �
�������� ��� 	�� 
�
������ �
���
�
�"��������	���
�
�	�
��
��������	��� ��
�	�� 	��
���
�!� %���� ��� �
�	��
� ������ �	�
� ��
�
�
�
���	�� �
� ���
�� ��� 	� �
�� 
�	� ��� �
�������#� ��
� 	�
� 
��
�
��������	�����
�	�
��
�
���
��
���
�	�����
�
��	�������	���
�
	� ������"��
�
�� ����� 	�� ��
� 
�
�������"� ����!� 3�
�� 	� �
�
	���
�2��
��
��
����� ����� �
�������� 
�	��
�� �
�
�
� ���
�	����
� 	��
��� �
�



��
��	���
�� 	��� 
 ������
� ���
������� 
?����
���� �	��
� ��	�
�
�
���������	������
��	����
�
���
��
��
��
 �
���
��	���	�	��	���
���
	�� �
��	�
�	��
�� ����� �

��	����	��"� ����
��
�� �
�
	���� ��
���!�
%���� �	�� �
�
����
���
� ��
� �	"� �
�
	���� ��� �
�����
�� 	���

��
�
���
�
	���
�������
�
�
�	�
	������������
���	������
�!�

%�
� ���
�
	�� &
������
�� �

�� ����� �
�������� 	�� 	� �����	��
�
��
�
��� ��� ����
����� �
��	�
�	��
�� 	��
��� ��
� ���
�
	��
�
�
	���� '�
	!� ��� ��� ��	��
�� 	� $
"� �
���
�
�"� ��� ��
� ���
�
	��
���
��	��
�� (
��
�"� )*+*� �����	���
�� ��
�
� 	��� ��� �
� �	 ���,
�

�
�
������
���� 	��� �
��	�� �������
��� ������	$���� ��
����-��
�
�
����
��
�����
��$�
��
��
��	�
��
�
�
�"������
��
�����"���
�
"
	��)*+*.�/)01!�

���� ���
��������������
%�
� �
��
��� 
�� ��
������ ��� ����
�� �"� ��
� �

�� �
�� -�

����	�
��
�
�
���
� ��	����� 	��� ��
��
�� �
������ ��� �"�	����� ������
���������
�	�� �����	�� 
��	���	��
��.� /+71!� %���� ������
�� ���
���
	��
��� �
� �
����
���� �
���	�
�� �	�	� 	��� 
��
�� �
�
���
�!� &�
	��
�
����	�����
����	���
�
���
���	"��
���	�
��	�����
��	��������
�
��
��	�
��
���
���"��"�	���������	��
��	���	��
����
�������
���"�
�������
���������	���
�����������
��!��

����� �
���
�
��
�� �
���
�
��� 
 ������� ���������
�� �
���
�
��
���
�	��
�� ��	�� �
��	����� ��
��� �"� 
 �
������ ��
� ����������
�� 	��
���

��	���	��
�	���
���	��
�!�(���
����
�
�
�	�����"����$
"��
���	������
%�
� ����� 	�����
����
� ����� �
� 
�
�� ��	��	�����	�
��� �
�������
��
�
�
��� ���
���� ������ �����	�� 
��	���	��
�� �
��
��� 	���
�
�
���
����
 ���"�	����"�	���	��"��
�
��	�
���	�	�
�	���������
�
��	������
�	��
������!�%�
�
���
�
�
����
�
������
�	���
���
��

��
�
��
�
���� �	��
�� ��	�� ��
��� ����
�
��	��
��� �
��
� 
 �������
��������
������������������
����	"��
���
�
��
�!�

%�
��
����
�	����	���
������
���	���
������
�
�	��
����	���	�����
��

�� ��	��	��� �
����
�� 	�
� �
���
�� �
� ��
���
� �
����	��
��� �	�	��
�
�
���
� ����
�
�"� 	��� 
��
�� ������
�	���"� ��	�� �����	��

��	���	��
���
��
����	"���
���
�	���������
������
�	����	������
	�	"� ��
� ���
��	�� �
�
�
�
�
��"� ������� ��
������ �
�
���
�!� ��� ���
�
�����
�������	���
���
����
��	�
��
����������
���
�����������
�
�
����
 ���
�
�	��
�����������
�
��	��
��!�

3��	��"�� ��
��	������ ���
��	�
�� ����� �
� ������ 
�� �
�� 
�� �����
�
����
�� �
� 
�	��
� �
�
�
�
��� �
� ��
	�
� 	�����	��
��� �
�� �����
�"�	����
����
��
��!�

%�
������	�����
����
�	����
����
�� ��� /+71��
��	���� ��
� �
��
�����
�	"
�����
��������	���#�

•� %�
� !"����#!	���
 �
�
����
��
�	���
�
���
��������������
�
��	�
��	��
�����
�����!�����
�
�	����
�
��
�������	�
��	���
���

�� 
 ������� �
�
���
��� ����� 	�� 	��	��
� �
�
��	��
��� �����
���
��
��
�
��
�$������
��	������	"
�����
��
���
�
 �
�����
�
�
�
���
�2� 
 ������� :�
�����"� �����
�;� ������
�	���"!���?���"�
:�
� 
��	������ ����
��� ��	�
�� �	�	������
�� 	��� ��������
;� 	���
�	�	�
�
����
��	������	�
��
?���
��	����
��
�"��
	��!�%�
�
�"�
�� 
�� �
�
���
�� 
 �
�
���"� ��
� �	����� �	"
���	"� ������
�
�
����	��
�	�� �
�
���
��� ��
�	�
� �
�
���
��� �
��
�$�
�
�
���
��	����	�	�	�
�!�

•� %�
� ��$$����%��	� #!	��� ��
���
�� �
������	��
�� 	���
	���
����	��
�� ��
�
�
��� �
� 
�	��
� ��
� �
���
��
�� ��	����� 
��
�
�
���
�������
��	����� �	"
�!�(�	��	������
��
����
�
�
����
��
�
��
�$���� 	��� �
�����"� 	�
� �
�
�	��"� ��
�!� '���
����	��
��
�
�� �����	�� 
��	���	��
��� ��
���� 
�	��
� �����
� �����
���
�
�
�	��
�� 
�� �
������
��� :��
� 	�����"� 
�� 	� ��
��	�� �
�

�
��
��� 	���
��� 
�� 	� ��
�2�� �
�	��;�� ��
���	�
�� ������
:�
����
����
�
�� �
�
���
�� ��
���������
� �
�	��
�������
���
�����
�� 	��������	�
�� ���
��
���
��� ��
���
�� ��	�
�
�
������
��� �
�� ��
� ��������	�� �
�
���
�� 	�
� �
�;�� 	���
���
��	��
�������
 ��������
�	���
�����"��
��	�����!�

•� %�
� ��������� #!	��� ������� 
�� ��
� �
��
������"� �	"
�� �
�
��
���
� ��	����� 
�� ��������	�� �
�
���
�!� %���� �	"
�� �
���
��
��
�
�
��� 	��� ��
��	������ ���
��	�
�� �
�� �
�
��	��
���
�����	��
����
���
�������
���
��	���	��
��������
����
���	�����

��	��
�
���
!�%�
��
�
���
��	"
��	��
�������
����
��
�	���	�����
�	"
�� �
� ��
���
� ��	�
�� 	��
��� �
� �
�	�� �
�
���
�!��
�
���
�
�	"
�� ��
�
�
��� �	"� �
� ��	�����
�� ���
� ���
��	��
�� 	���
�	�	�
�
��� ��
�
�
��!� %�
� ��
��
�� 
�� �"����
���	��
��
�
��

���������
��
�
���
������
����
���
��
��
������	"
�!�

•� %�
� ��&&����%�� #!	��� �
	��� ����� ��
� �

����	��
�� 
��
�������
� �
�
���
�� �"� ��
������� ��
�
�
���� �
����
�� 	���
��
��	������ ���
��	�
�� �
�� ���
��
��
��� �
�
���
� 	��
�	��
���
���
�������	�����
$
������ ��
���
�����	�����	��
��������	�	�
�
����	��
��� �
�$�
	�� �	�	�
�
��� 	��� �
��	�
�	��
���
�
���	�
� ����
�
�"� 	��� 	��
�������� 	�
����� 
��
��!� (
�
�
�
��
����
� �	"
�� �
����
�� �	"� �
� ��
������ �
� 	� �	������	��
�����	��
��	���	��
�!�4
�����
��
�
����	�
����	�$
"�����
���������
�	"
�!�

•� %�
� �''&��!���$� #!	��� �
������� 
�� ��
� 	�����	��
��� ��	��

 
���
� ������� 	� �����	�� 
��	���	��
��� 	��� �	$
� ��
� 
��
�
����
��	��	�"����
��"�����	"
���������	�
�
 �
�
�����
����
�
����
���
����
�
�
��!��

���� ���
��''&��!���$��
B���
� ��
� �
��� ���
�"� ��������
�� 	�����	��
��� �
�� ������ �
� �	�
�
	�
� ��� ����� 
�
��"� ��"����� :6�4;� 	��� ��
���
��	������ 	�"�
	�����	��
�� �
?������� �����	���	�� �
����	��
�	�� �
�
��� ��
�	�
�
�
�
���
��� 	��C
�� �

�
�	��
�� �
��

�� ��
��� 	��
���
�

��	����	��"�����
��
���
�	��
������	��	�����	����	�
!�

���������
���
���
�������
����
��	��
�
���
��
��	�����	��
�����������

����
����
�
	��
�(��
��
������:�����	�����������/71;����
��
�
��
���
�
�	��
��	��
��
����������������� ��
�
�	�������
�!�%�
�
	�����	��
����
���
�
���
�
�	�
���
	�
����������
���
�	������/91!�

•� (�)�� *$��)	� ��	����� �	�� 	�� �����	�� ���
�� 	�
	� �
�� �����
	�����	��
��!� <�
� 
�� ��
� �	��� �	�$�� 
�� ���
�
	�� �
�
	����
������������
��
��	���
���
���
�
������
���	���	�
�����
���	�	�
��	�� ����� �
� �
�
�	�
�� �"� ��
� D	��
� 6	��
�� &
����
��

 �
���
���� :'%D'(�� &�(�� 'D�&��� D6&�;� 	�� &��5!�
<��
��6�4�
 �
���
����� ����� 	��@	@	���&�3���E��6+�	���
F��(�	�
�����
���"��	$������
�
����
����������	��������
!�

•� ���+�
��!&� �''&��!���$��� %�
� ��
�
���	�� �
������"� �	��
	��
� ���
��
�� ��� �����	�� ����� ���
��� ��
�� ��
� 
���
�!� '�� �����
��	�
�� �
�
�	�� 	�����	��
��� 	�
� �������� 
�� ��
� �����
����	��������
!� '�
����� ��
�
� 	�
� �4(G� 	��� B�(�<�!�
�4(G����	���
���
��	������
��	����
���������
�
����
?�
��
�
�����	���"� �
	���
��� ���
�� 	��� ����	���
�� �
�
���
��� �������
�
	�����
���� �
�
��	�"� ��������
� ��
�����
�� 	��� ����	�"�
��������
� 	�	�"���!� %�
� B�(�<�� ����� ����
�
�"�
	�����	��
�� 	���� �
� ��

�� ��� ��
� ��
�
��� 
�� �������� �
��
������	�	������	�	��	��6H5+�	���
��
�����
	�
�!��

•� �����'�	������''&��!���$���%�
����
�
	��(�	�
�'�
��"����
��������������� 
�����	��������
� �
� �����	�
� ��
� �
����
�����
4�	��$� �	�
����
� �����
�� 	��� �
��� ��
� �	�	� ���
���
��� �����



��
��������������
���
������
�2���	���	�
��
?���
�
���!�%�
�
�����
�����	��������
����	��
���
�
�������	�	���
���'��&��
	�� ��	����� 	��
���
���� �
�
��
�
� �
�	�
�� 
�� ��
� &	�	�"�
���	������	�������
���
��	���
��	�����
���"������
�
	���!�

•� *!���� ����$��� !$
����'�	����� �''&��!���$��� %�
������ ���
�
���� ��
�� �
� 	�	�"�
� 
,
�
� ��
���
�� ��
�� ��
� �<���
�	�
����
� 	��� 
��� ������ �	�	� ��
�� ��
� ��(C('�� �	�
����
��
�	�����	����� �	�	� ��	����� ������� ��
� 
	���� 
��
��	��
��
�
������"!� �	���?�	$
� �����	��
��� ������ I�� �

�
���	��
�
�
����	����
��
�	��
������	��
����
���
	�	�
���������
�����
	� �
	��	�� 	?���
�� 
�� ��
��
���
��	�
	�� �	���� 	�
� 	��
� �
����
�	���
�� 
��!� ��� 	�����
��� 	� ��

�� �
�
�	������ 	�����	��
�� �	��
�

�� �
��
�� �
�� ����� 
 
����
�!� 3��	��"�� �

&����
��� 	�
�
��������
�
�������
����
��������
���������������	��	�����	��
��
��������
����
��������
�����
���
����
!�

•� ��+'��!���$!&����+����	��'�����
��
��	�����	��
����	�
�
�

�� �
��
"
�� ���
�� ��
� �
����	��
�	�� ��
�����"� �����	��

��	���	��
�!� %�
� ���(� 	��� ���4
�"� 	�����	��
��� 	�
�
�������� 
�� ����� �
� �����	�
� ��
� �
	���
�� �"�	����� 
��
�
���
 � ��
���	�� �"��
��!� �B'J�4� �
����
�� ��
���	��
�
	����
� ?�	����� ��
�	������
�!� &<D<�@�(� �
��
���� ���
������� �
�
���	�� 
�
���
���� ��������
� �	����	��
���� ����
�
�'��((� �	����	�
�� (&3� �	�
� ������
��� �
�� �
�
���	��
?�	�������
�����"!�

•� <��
�� 	�
	�� ����� 	��  �$!$��!&� !$
� *��$�+��� ����!�����
��)��!&�#�"�!������ ����$�����!���!�

,�� �(*�*��*���������-*���

,��� *���'�!$�!$
���
�����!$�!$����$!�����
�
�
��� �
�
�
��
���� ������
�
	���
�
	���� ����	��������
�� �	�
�
�
���
���
���
	��
��
��	��	������������

���
�
	�����
��
�$������
����� 	��������	���
� 	��� 
�
�	��
�	�� ����
��!� %���� �
��
�$� �	��
�	�
�� ��
� �	"� �
�� ��
� �
�
�
��
��� 
�� 	�� 
�
��"���� ���
�
	��
����� ����	��������
� ��� 
��
�� �
� 
�	��
� ��
� ��	����� 
�� ���������
��
�
�������� �
�
�� 	��� ��
�	�
� 	��
��� �

��	����	�� 	���
	��������	���
��
�	���!�%����
�����	��������
���
���
��	���	��
���
�
���
���
��
���
����
�	���
��	�
�	���
��
�
	���#�
����
��
!�%�
�
�
	����� �����	���
�� ��� ���
�
	�� 
�����	��������
�� 	�
� ��
��K'5%�
C�K'5%)�/+81/+01�	�������C��������/71���
�
���!�

%�
�
�����	��������
�����
�����
���
	�
�������
��
 ���
��"
	����	��
	� �
����� 
�� 	� ����
�� 
�� �����	���
�� �	$
�� ��� ����� 	�
	� �
��

��
���
�
� 	��� �
�
�
����� �
�����
�� 	��� 	�
���� ��
� �
���!�
����
�
������	������
�	��
������	��������
��
�����
�
�����	�
����
�
�
�	��
��
��
��
���
��	�
�	��
���
��

���
�
	���
�����
�����
�
�
	���
��
���
�����
��	����
��
�������
��
�	���������������
������	��
�����
� 	�
��� 	�
	�� ����� ����
�
��� �
�
��� 
�� �
���
�
���	��
�
�
�
��
��!�

%�
������&<55�&%���
�
���/81��	������

�
�����
��	���������
	� �
���
��	�
	�� �
�
	���� �
��
�$� :�

� 3����
� +;!� '�� ����� �
�"�
�
�
���� �
�
�	�� �
������
���
��	�
	�� �
�����
�� 	�
� �	$���� ��
�
������ ��
��� �
�	���� 	�
������ ����� �
�������� 	��� 	� ����
�� 
��
�

�
�	���
� �
�
	���� ��
�
���� 
 ���� ��	�$�� �
� ��
� �
��	�
�	��
��
�
��

�� ���
������� ��
�� ��
� �
���
��	�
	�� 	��� ���
�
!� %�
�
�
��
�
���� �
���� ���
���"� �
�
���� ��
�� ��
� 	�	��	�����"� 
�� 	� ��	��
�
�
��
�	�������
�	��
������	��������
!�

�

 �)�����������*��*�����*���$��
��./�!�"!����0���

*��*������

,��� �����"1����%����0�*��*������
%�
� 
��
����
� 
�� ��
� ���������� ��
�
��� ��� �
� ������ ��
� �
���

 �
��
��
�� 	��� �
��� �
�
���
�� �
�����
�� 
�� ��
� �
���
��	�
	��
�
��
�� �
� ��
� �
�
��
�����
�
	���
�
�
��
��������� �
�	���� �
�
�
����	��������
�� /)71!� B���� ��
� �
���
��	�
	�� �
��
�$����
����	��������
� �
	������ ��	�����"� ���
���� ��
� �����&<55�&%�
��
�
���� ��
� �
���� 
�� ��
� ���������� ����� �
� 
�� �����
����	��������
�	����
�	�
��
����
��
�	�����	��
��!�%�
�
��
����
��
��
����������	�
��
���
��
����
��	���	�
	�#�

•� ��
	����� 	� ���	�� �
��
�$� ��� 
����
��
�� 	��
������ ���� �

���
	��� ��	���
������ ����� 
 �
����
� �
� ��
� �
������
���
�
�������
�L�	���

•� �������� ��
� �
���
�
���	�� �
�
�
��
���� ��	������� 
�	��
� ��
�
�
��
��
�
���
�������
�
�	��
��������
��
��
�!�

'� ��
	�� �	��
� 
�� 	�������
�� ����� �
���� 
�� ����
���	��
�� 	���

���
	���� �	����
�� �
�$��
��� 	��� ��
�
� �
��	�
�	��
�� �����
�
�	�
����
�
���������	�������&<55�&%���K'5%�������	���
(�������� /)91!�3����
��
�
�� 	����
������� ����	��������
������ �
�
��
	�
��� ��������������� �����
�� �
��
"�
��� 	��� ��
��
�
�
��
���
	��� 
��
��
�
��� 
�� 
�
�	��
�	�� 	��� 
��	���	��
�	�� ���
�
�!�
3��	��"�� 	� �	��
� 
�� �
��
�	�� 
����
��
� 	�����	��
��� ����� �
�
���
����	�
���������	����	�
�	�����	��
����
��
"
��
����
��
��
�	��
����	��������
!�

%���� 	���
	��� ����� �
��� �����
� ��
� �����	�� �����
� �
��

��
�
���
��	�
	�� �
�����
�� 	��� ��
� ��� 	��� ����� �	�����	�
� ��
�
�	������	��
�� 
�� ��
�
� �
�����
�� ��� ���
�
	�� 	��� �
������
� 
�
����	��������
�� 	��� 
����
��
� 	�������
��� ����� 
 �	������ 	���
����
��������
����
�
	���
�
	����'�
	�:��';!�

���������� ����� �	�
� ��
� �	"� �
�	���� ��
� ��
����
�� 
�� 	�
��	���	�
��� 	��� ���?���
��� �
��
�� �	�$
�� 
�� �
��������
�
�
���
�� �
� ��
� �	��
��� �
�
	���� �
�������
�� ��� ��
� �
��
�!�
���
��	��
�� 
�� ���������� ���
� ��
� ���
�� ���
�
	�� 
�
����	��������
��������
���
���
��
�
	����	���
���	��
���
������"�

�� ��
� �
��
�� ����� 	��
��� �
� 	������ �	��
�� �

�� 
�� ��
�	�
� 	���
�
���������
�
���
����	������
���"�	�	��	��
!�

���������� ����� ������
� ��
� �
��
�$�� ������ ���
���� ��
�
�����&<55�&%� 	��� �K'5%� ��
�
����� 	�� �
��� 	�� ���
����
���
�����	��
����������
��������
�
���	�����
�
 �
��
��
�
��
��
��
�
��
�	�������	���
�������	��(�������!�

B
� �
�� ��
���
� 	� �
�	��
�� ����� 
�� ��
������ 
��
����
�� �
��
���������� 	�� ��
����
�� ��� ��
� ��
�
��� ��
�
�	�2�� �
�����	��



	��
 !�%�
� ������ �
�� 
�� 
��
����
�� �
����
�� �
��� 	���
��������� ��
�

�
�	���	���
����
	�����	����	���
��
�$� ��� ��
�	�
	�
���������
�
���
��
�	���
�����	��������
�������
��
���
��	�
	���	�����
�
�����
�
��
�	��	������
��	��
�	���

�
�	��
�#�

<+�� (�����	�
� ��
� �
��	��
�� 
�� �	��
�	�� ����� ����	��������
��
:5���;� �����
��
���
��	�
	���
�����
���������
������������
�
��
���
	��
��
��	�-�����	��������	�
���
�
	������	�
.!��

<)�� 4�
�
�
� 	�	�
�
��� ��� ��
� �
��
�� �
�	������ �����
�
�
�
��
���� ���
���� ��
� 
��	��,	��
�� 
�� 	� ����
�� 
��
����
���	��
��	���
���
	���
�
������������������
�
�
� ��
�
��
�
��� �
������ �
� ��
� ����	�
� 	��� ������� �
��
��� �����	�
�"�
�
	��������
��
�
�	��������!�

<I�� ���	������ 	� ��	�
��
� �
�	������ �
���"� �
�
�
��
���� �
��
�
�
	����	���
���	��
���
��
�$����	�����
���
��������
���
�
	�
��	� 
�� �	��
�	�� �������� �
��
�� 	��� ��� �
�����
�
�
�
���
���!�

%�
� �
�
��� �
�� 
�� 
��
����
�� �
���� ��
� �
�����	�� 	��
���� 	��� 	�
�
���
��
�� �
� ����
���� 
�� ��
� �	���� 
�� 	�� ����

�� 	�	�"���� 
�� �
�	��
�
?���
�
����� ��
� ����
�
��	��
�� 
�� 	� ���
�� ����� ����	��������
�
	��
��� ��
� �
���
��	�
	�� 	��� ��
� �
��
"�
��� 
�� 	� �
�� 
�� �
���
	�����	��
���
����#�

<M�� &	����
� �
�	�� 
����
��
� ��
�� �
?���
�
���� ��� �
���� 
��
�
�
���
���

�
���������
����
���	���	�����	��
���
���	�
!�

<H�� 4�
���
� ����
���
�� 	��� �
�����	�� �

$�

$�� �
� ����
�
�
��
�	�� ���
��	��
�� ��� ��
� ���
��
���
��	�
	��
����	��������
��

<7�� (���
��� ��
� 
��	������
���
�����
������� �
�
���
��
���
�� 	��

	��� �
����"� ��� ��
� �
��
��� 	��� 	�	��� 	��� ����
�
���

�
�	��
�	�� 	��� 
��	���	��
�	�� �	�	�
�
��� ��
�
���
���
��������� ��
� �
��
�� ��� �
� ��

�� ����� ��
�����
���
�
��

�
�	��
��!�4��
��������
�
���
��
���
��	�
����
��
���
��
���
�
�	�
�� �
����
� 
�� ����� ��
�
���� �
�
����� ��
� �

��� 
��
�	��
�	�����������	��������
�������
��
���
��	�
	���
�����
�!�

<9�� @�������
��	���
 ��
��� ��
��
��
�$�����	��������
���
���
��
�"� �K'5%� 	��� �����&<55�&%� ��� ��
� �
��
�!� %�
�
	�	��	�	��
�� 
�� �	��
�	�� ����� �����	���
�� ���
� 	�
�
���
��	�
	�� ����	��������
� ����� �	$
� 	��	��	�
� 
�� ��
�

 ������� ���	�� �
��
�$� ��
	�
�� ������� ��
�
�����&<55�&%���
�
��!�������
����	�
����	����������	��
�
��
�$� ����� �����
�� ��
� ��
	��
�� 
�� 	� ��"���	�� �	�$�
�
�
�
��
������ ���
���"� 	��� ���������� 	��
���� �
��	 ���,
�
��
�
��
����
�
���
����
����
�����������	��������
!�

<8�� '�� 	� ��

�� 
�� ��������
�� ����
��� ��
� �
��
"�
��� 
�� �����
	�����	��
��� :����� 
�
��"� ��"������ ��
�
�;� 	��� 
��
�������
	�����	��
��� 
�� �
��
�	�� ���
�
��� 
�� ��
� ���
�� ����	��������
��
����� ��
� ���
��
�
��� 
�� �
�	�� ��
�� �
������"!� 5
�� ��
��
�
�������
�� ����� �
� 	����
�"� 
��
��	�
�� �
� �
��� ��
�
���������� �
������"� 	��� �
��
"� ��
��� 
���
	�����	��
���
����
����
������	��������
!�

,�,� *2'����
��+'!����0�*��*������
%���� �
���
�� 
�����
�� ��
� 
 �
��
�� ���	�
���� ���	��� 
�� ��
�
������������
�
�����
�������
����	��	����	����
���"!�

�	�	
� ������
���
<�
� 
�� ��
� $
"� 
��
����
�� 
�� ���������� ��� �
� 
�	��
� ��
�
����
�
��	��
��
��	����
����������
�
�
�	��
���������
�����
�
	��

:����;�	����
������
�������������
��������	���

������
��	��
��

�� ��
� ����	��������
�� �
�
� �����
�	�
� 	��� �
����
� �
�
��!� %����
����� ��� ����� 
�	��
� �
�
���
� 	��� �
����
� 	��
��� 	��� ��	�����
�
��

�� ��
� �
���
��	�
	�� �
��
�� 	��� �
��� 
�� ���
�
� 	��� ��
�
�
����� 	��
����� ��
� �
�	�� ��
�� �
�������
�� �
� 	��
��� �
�
���
��
	����
��	�
�	�
�������	���
���	��
������
�
�	�����
��
���!�

���������
��
 ���	�����
�
���	������"������������������������
�
	����
���
�
�� ��
������
�	�
��
�
�
�
���"������� �����	���	��
��
	��� �
������	��
��� 	��� �

��	�$� �
�	������ ���� ������
�	���"� 	���
�
��
��	��
�� �	�
�� 
�� ���� ��
!� ��� ����� �	"�� ���������������
	����
�"� �	������	�
� ��� �
?���
�
���� �	����
� 	��� �

��	�$�
�� ��
�
�����
�	�
�� ��	��	���� 	��� ��
�
�
���� ���� 	��
�������	�	�
�
���
�

��!� J�	� ����� �

��	�$� ���
���� ������ ���������� �����
�����
���"��
�������
��
����
��	��
�	����	��	�����
��
�������	����
�
<�
�������3
����:<�3;�/)H1!�

�	�	�� �������
%�
� @	��
�
�	� ���
��
���
��	�
	�� &
��
�
��
� 
�� )9�)8�
5
�
��
��+00H�/+M1����
��
����	������
����
����
��
�
�
��
���
��
��
� �
���
��	�
	�� ���
������� 	��� �
���
�
���	�� �
������"��
�
�
��
�� ����� ��
� ����	����� 	��� �
�
����	��
�� 
�� �
�	��
�
�
�
������	��
��� ����	��������
�� 	�
� ��
� ���
�	�� 
�
�
���� �
��
��
�����
���
����
����
��
���
��	�
	���	���
�����!�

%�
��&��	������
�	���
�
�������	���
���
����
��
�
�
��
���
����
�
���
������
��	�
	�� ���
��	��
�� (
��
�"� :������(;�
��
�����	��"� �
����
�� �
� �
���
� ��
� �
��
�2�� ���
��	��
�	�� 	���
�
���
�
���	���	��	���
��	�
���
���
��
����
�������
�����
�!�%�
�
4�
��	��
� ��� 	��
� �
���
�
��	�"� �
� 	� �
��
�	�� �
�
�
��
�
���	�
�"� ��	�
�
�$� ��
�
���� 5
�� '���
	��
�� �
� %
�
�
��
4
���"�� �	����
�� 	�
���� ��
� �	�
� ���
!� ��� �
����� "
	��� ��� ���
�
�
�

�� ��	�� 	��� ����
��� ���	���	�� 	�����	��
� �������
��������� �
�
���
��	�
�� ���
� ��
� ��	�
�
�$� 
�� ��
� �
�� ���
�
	��
5
����
���

��4
���"!�

%�
� ���
�
	�� 5
����
���

�� 4
���"� :�54;� /+H1� ��� 	�� 
�
�	���
�
���"�	�������
���	�
���
��
�
�����
����
���2��
��	��
�
��������
�
����
������ �
�����
�� ��� ���
����
����� ��	�����"�� �
�����"� 	���
�
��	�
�� ���
��
�� �
���
�
��� ��
�
�
��
��
�
���
��������������
��
�
��

����
�
��	��
�����	��������
����
���!�'�
�������
��542��
$
"�����
��	�
���
����
��	��
��
������	��������
���	������
�������	���
������	���

�
�	��
�!�

%�
�������������
�
���������
�������
��
��
���"��
�
�
��
����
��	�	�����
��
������	�������
�#�

•� ���	��
��
��	�
�	��
���
��

�����
��������
�������
����
���
���������
��
��
��	����������
��
���
�����
�
�	�����
��
�����
����� �	����� ��
��	"� �
�� 
���	��
�	��� ���
������� 	��� ������	��

 ��	��
��������	���
��	�����
�
����	��
����
��
��!�

•� (�����	�
� ��
� ��	����� 
�� ��
� $�
���
�� ��� �
���� 
�� �����
�
�����������������
��
��
��	����
��

����
��
��
��	�����
�
�
���
�����
�
�	�����
��
���!�

•� (�����	�
� ��
� ��
� 
�� ��
� �
��
�	�� �
��
�$���� ����	��������
�
:�K'5%�������&<55�&%;�	��������
����
��
��
���
��
��
��
��
���
��	�
	���	��
�	���
�
	����	���
���	��
���
��
�$��
����� 
	��� 
��
�� ��� 
��
�� �
� ��
	�
� 	� �
�
����� �
��
�	��
�	�$�
�
!�

•� @
�
�
� 	� �	�	�"��� �
�� ��
� �
�
�
��
��� 
�� 	� �
��
��
�
�������� 	��� ��
�	�
� ����	��������
�� ����� �	����� ��
� �	"�
�
��	������
���
��
�	��
�����	��������
!�



•� 3	�����	�
� �
�
	���� 	�������
�� 
�
�� 	� ����
�� 
�� ���
�������
�
��
�����"���
�������	��
��� �
� ��
��	��
���
�����	��������
��
�
�	����
���
������
��	�����	��
��!�

•� ���
��	�
� ��
� ���
�	���
�� 
�� �
�
	���� �
�������
�� 	���
�
�
���
��	�� �
��
�� ��� ��
� �
��
������� ��
� 	��� 
�� �	������
�
����
�������
����
��
�����	��������
��	���
����
��
!�

•� 3
��
����	�
��
�
���
��
���
����
��	�
����
�
���
�����"�
�
	��� 
�� 	� �	��
�
�� �
������	��
�� ���	�
�"�� ���������� ��
�

��	��,	��
��
��	��
���	�
��4
���"��
�$��
�!�

•� %	$
� 	��	��	�
� 
�� ��
� 
 �
��
��
� 
�� ��
� 
�����	��������
�
�
��
���
�� ��
��� /M1�� ���
��
� ��� ��� 	��
��� ��
��
�
���
��	�
	�� 	��� ��
�
�
� ���� �
�
�� 	�� 	� �
��
�	�� �
�
�!�
����������	�����
������
����
�
�	���
����"����
��������
�
�
�����
�� 
�� ��
� �
��
�� ��� �	�
��� �
�
�
��
���� 	��� 
�
����	��������
� ��	����
�� ��� �
��
�$����� �
�������� 	��� 
�
���
��
!�
����
�
�	�����
�	��
�
�	�
���
��
�
�
��
���
����
�
���
��	��
�� �
��
�"� ������
�
� 	��� 
����
� ���� 	�	��	�����"� �
�
	��� ����,
��!� ��� ����� �
��
 ��� ��
� ���	��� 
�� ��
� ��
�
��� �����
�
�
����"� �
� �
"
��� ��
� ���
��	�
� ���
������� �
������"��
����������
�	����	��	�����������
�$�
��
��
��
��
�"!�

%�
� ��
�
��� ��� 
 �
��
�� �
� ����
�
� ��
� �
��
����� $�
��
��
�
�	�
���
��
�"������	�
���	�
������

�������������
�#�

+!� 4�
������� ��
	�
��� �	��
��� �
���
� 	��� ���
��	�
� 	��
��� �
�
�
�
���
�L�

)!� ���
����������

��
�	����$����L�

I!� � ��
������ ��
��
��
�$� ����	��������
����
���
���"��K'5%�
	��������&<55�&%!�

%�
�
�	�
��

��	�����
���"����$
���
�
�
�
�����
�
�
��
���
����
�
�
��
�!�

�

 �)��������������!��)����+'!����0�*��*�������$�����

��
�����!$�!$���)��$�

3����
� )� �
������ ��
� ���	�
���� ���	��� 
�� ���������� 
�� ��
�
�
���
��	�
	�� �
��
�!� '� ���������
�� ��� �	�
� �
��

�� ���
�
	��
������
�����
�� 	��� ��
� �
����
�
���
���
���
��	�
	�� �
�����
�#�
��
�������
�����
��	��
	�"�
�
�	�
�������	�	�
�
�����������
��
����� 	�� �
��
�	�� <�
�	��
��� &
���
�� :�<&�;� 	��� &
�
�
����	��������
�&
���
��:&�&�;��������������
����	�����	���
�
�	�
�
��
�������
�
���
�&
���
�� :�&�;� ��� ��
��
���
��	�
	���
�����
��
�������
	�����	������
�����������	��������
�	��
�����
��
��
�!�

,�3� *��*����������%������
%�
�
� 	�
� �
��� ����
��� 	�������
�� ������� ����������� �
	�����
����� �
?���
�
���� �	����
� 	��� 	�	�"���� :�
�$� �	�$	�
� );�� �����
�����
�	�
�	���
��	������
���	���
�
�	��
���
����
��
��
�	�����
��
����� ����	��������
� :�
�$� �	�$	�
� I;�� ����
������ 	�����	��
���
�
��
"�
��� :�
�$� �	�$	�
� M;�� 	��� 
���
	��� 	��� ����
���	��
��
:�
�$� �	�$	�
� H;!� 4�
�
��� 	��������	��
�� 	��� �
�����	��
�	�	�
�
��� ��� 
��	����	�
�� 	� �
�	�	�
� �
�$� �	�$	�
!�B
� �����
��
���
� 	� ���
�� 
�
���
�� 
�� ��
� 	�������
�� ������� 
	��� �
�$�
�	�$	�
��	��
�����
�������
���
�
�����
�
�	��/)71!�

�	�	
� �����
������������
���������������������
%�����
�$� �	�$	�
�� ���
�� ��
��	�	�
�
��� 
�� ��
�����
����"� 
��
�	��	������
��
�����
��
����
��	��
�����	���	�	�"����
���	������	���
���
��	��
�� ���
���� �	��
��� �
���
��� 	��� ��
� �
����	��
�� 
�� 	�
���	�
�"�	����
���
�
���	���
	��	���
����
�����
�
��	��
��
����
�
���������������	���
��
����
��	����
�������	�	�"���!�

'�?�
���
��	��
��	���
����
���
�
��	��������
���	�������
	���
����
�
�	������	��� �
�����
�� 	�� �
�	���� ����� �
���
�
�"� 	�	�
�
����
����
�����
�
���
��������
��������	������
�������
���	��������
������
	�����	��
�� �
?���
�
����� 	��� 
 ������� �	���	�
� ����	��������
�
:�
���������
�
��� ��
�	�
��	�	���"�� �
��
������";!�'� �"��
�� �
��
��
� 
����
� ��������
�� 
�� ?�
���
��	��
� �
��
��
���	�� �
�
�
�
��
	��� �
��
"
�� /+)1!� ��� �
�	��� ���
�"��� � ?�
���
��	��
� �
��
��
��
�
�
� �	��
�
�� ��
�� �
�
	���
��� 	��� ���������
��� ��� 
�
�
��
�	������	��� �
�����
�� 	��� 	�	�"�
��� ��
�����
�	�
� ������ 	��
������
�
��
��
�� 	�� ����� ��	�
!� 3����
��
�
�� ��
� ����
��� ��	�
� 
�� ��	"� ���
��
� �%� 	��� �
�
�
������	��
��� 	�
	�� ���������� �
�
	���� 	���
	�	�
���� �
��
�$� �����	���
�� ��� 
	���
�� ��
��	������	��� �
�����
��
�	�� 
��	�����
�� ���
���� �	��
��� �
���
�!� %�
� ���
��	��
��
�
��
��
�� �	�� 	�	�"�
�� 	��� 	� �
�	��
�� �
�
��� 
�� ��
� ���������
��
�
��
�� ��� 	� ��
�
��� �
���
�	��
� �
���
��� /+*1�� ������ �	��
��
���
�� ���������� ����� 	� ��
	�� ��
�� 
�� ��
� ��	�
� 
�� ��
�
����
��� �
���
��	�
	�� ����� �
��������� �%� 	���
�
�
�
������	��
����	����	�
!�

%�
��
�
���	������"�
��������
�$��	�$	�
���

����	�
���"�&��5��
������
�� 	�� ���� �������	�� ������ ��
� 	�
�
��
���
�
�� �
������ �
�
�
����	�
�	����	�
�"�	���	��
�����	���
	��	���
�����������!�
'� �
�
�� �
�� ��
� ��
����	��
�� 
�� ����� �
���
�
��
�� �
� ��
�
�
���
��	�
	�� �
��
���	�� 
��	�����
�� �
� ����
� ��
� �
��	��
�� 
��
����	��	��
� 5	��
�	�� ����� �����	���
�� 	��� ��
� �
�
�
��
��� 
��
�
��
�	�� ����	��������
� �
�� ���
��	��
�� ����
�
�!� %
�����	��
�
����
����
�
���
�
�
����	$�������
��
����
�	��
����
������
�	�
�
	����	���	�
�����	��������
��
?���
�
���!�'�����
�	��"��	��
��
�	��
�
��
"�
��� ���	�
�"� ��	������ ��
�� ���
� ����	��	��
�� �
� 
�
�	��
���
�	�� �
�
�
�
��� ������� ��
� �
����
�	��
�� �
� ��
� �
��
�	��
�
���
����
�����
����
�����	���	����
�����	��� �
�����	����	�	�
��	���
	������
���	�
��
��
���!�%�
�
 �
��
��
��	��
�����
��
�����
�
	��
��
�
���� �
�� ��
� ��
�
��
�� 
�� �
��
�	�� ����� �����	���
��� ����� 	��
(��������� �	�� 	� ����	�"� �������� �
��
� ��� ����� 	������"!� %�
�
���	�
�"�	����
�����	���
	��	���	��	��
��
���
��
�����	���
�
���
�
���
�	��
� /++1�� 	����
��
��	��	�����
� �
�� ��
� ����	��������
�	���

�
�	��
���	�������
������
�$��	�$	�
�I!�

%���� �
�$� �	�$	�
� �	�� �
��	��"� �
���
�
�� ��� ����
�� )**7��
��
���� ��
� ?�
���
��	��
� ��� ������ 
�
�� �
�� �����
�� �
��
��
�� ��
��
���
�
��
���
�
	���
���	������������
��!�

�	�	�� ���
���
����
���������
�������������
%	$����	����������
��
��
�	���
?���
�
����	����
�����	���
	��	��
��
���
���"��
�$��	�$	�
�)�� ������
�$��	�$	�
���

����	�
���"�



��5�%�� ��� ����
���"� ����
������ ��
� ����
������ �
��
"�
��� 	���

�
�	��
�� 
�� ��
� �
��
�	�� ���
������� ����	��������
!�%���� ���
��
��
��
��
�
���
��	���	�	��	��
��
�������
�	�
��
����
�����
���
���"�
��
� �
	������������
�
���������� ��
��	�� �
����
�� ��
� �	�
��������
�����
�	�
��	�
��
���
���
����
�!�

%�
� 	��� ������� ��
� ������ "
	�� 
�� ��
� ��
�
��� ��� �
� 
����
� ��
�

��	������
��� 
�� 
�
� ��	��
� ���
�� �����
�� ��� 
	��� �
�
����	�"�
�
����"��	����
�	���
�
����
�
�
�	�����"�
����
����
������	��������
!�
%���� �	�$� ��� 	��
	�"� ��� 	�� 	��	��
�� ��	�
� 
�� �
���
��
��� �����
�����
��� �
�������	���
����������������	��
����
���
��	�
	��
�
�����
�� ���������� �	��	!� '� �	����	��� &
������	��
�� '���
���"�
:&';� �
�� ��
� �
��
��� �
� ����
� ��
�� 	��� �	����
� �
������	�
�� �
�

�����
�������
��
�����
���������
��
���	�
�	��
��	�����
��&'���	��
�

�� 
��	�����
�!� ��� ��
� �
	����
�� �
�	�
�� &'� 	��� �
�����	��
��
'���
���"�����
���
��	�
��
����
��	�����
�!�@"���
�
���
����
�������
��
�
���"
	���	�����
��	������	����
�����
����
�����	�
��	��
���
�
�
�	����
��
 �
��
��
����������������
�	�
�	��������
��!�

'����
��
��
�	���
	����	���
 �
��
��
�������
��������
��	���
��
���
�
� �
�
����
� ��
� 
�
�	��
�	�� �
?���
�
���� �
�� ��
� ���
��
����	��������
!� (
����
��� �
�� ��
� 
�
�	��
��� �
���
�� ����� �
�
��
�
�
��� ����� ��
� ��
��	�� 
���	���� 
�� ��
� �
�	��
������ �����
�������
�����
���
�
��
�
�	��
���	���
�
�	��
�	����������
�������
	�� 
 ������� �
��
�	�� <�
�	��
��� &
���
�� :�<&�;� 	��� &
�
�
����	��������
� &
���
�� :&�&�;!� ��5�%� ����� �
	�� ����� 
��
����
�
�
���������
������
 �
��
��
������������	����������
��
�
�	��
���
�
���
������
������	���(����������
�
���!�

(
����
��� ����� 	��
� �
� ��
�
�
�� �
�� �
���
�$�� 	��� �
���
����!�
'���
���� ��
� ��
�
��� �

�� �
�� ���
��� �
� �
���
�� ��
�����
���
�
��
����� �
����
�� :����� ����� �	�	�
	�����"�� �
�����
���� �
����
��
� �
�
�	����
����	�	�����"��)MC9���
�����
��
�
�	��
����
��!;��	���	�	��	��
�

��
���������
����
��
���
�	�
���	���	�"���	����
��	���
�����
���
��
����!� %�
� �
�
��� "
	�� 
�� ��
� ��
�
�������� �
���� 
�� ����� 	��
���
	��� ��� ��� 
����	�
�� ��	�� 	�� ��
� 
��� 
�� ��
� ��
�
����
��� �
�����
��
����� �	��� 
�
���� 
 �
����
� 	��� 
 �
��
��
� �
� �
� 	��
� �
� ����
���
�������
��
����
�����
�������
�
�	��
��!�

%���� �
�$� �	�$	�
� 	���� �
� ���
��	�
� ��
� 
 ������� 	��� �	��
���
5	��
�	�� ����� �����	���
�� ���
���� 
�	������ 	�� ���
�
�
�	��
�
����	��������
!� �
�

�
��� �"� ��
�
����� ��
� �
��
"�
��� 
��
��	��	����
����
�������������	��������
������	����
��
����
�
�
�	��
�
��������
�� ���
�
	�� 	����
������
������ �
����
�!� 3��	��"�� �����
�
�$� �	�$	�
� ��� �
��
�����
� �
�� ��
������� �
��
�$� ����
��� 	���
�
�
����	����� ����� 	������"� ����� �
��
��
������ �
��
�$� ��
�
����
�����	�������&<55�&%�	����K'5%!�

�	�	��  ������������������������������������������
%��

� 	�����	��
�� ��	��
�� ����� �
� �
����
�
�� �
�� �
��
"�
��� 
��
��
����������� ����	��������
����
�� ������
�$��	�$	�
�������
����

����	�
���"��535#�

•� �� 
�&&4���!"&����
� ���� �0� ���
� !''&��!���$�/� ����� !�� ����

*�**� !''&��!���$��� ������ ����� �
� ��
�� �
� �
���"� ��
�

��
����
�
���
����
����
������	��������
!�%�
�	�����	��
��	�
	��
:	���	��
��	�
����
���
�������
�;�����������	���	�
#�

�� D6&� :D	��
�6	��
��&
����
�;� 
 �
���
���� ��� ��
� ��
���

��6������
��"�4�"����!�� �
���
����	��D6&������
���"�
���
�� �
�
�
��
��� 	�� &��5�� ����� ��	��� �	$���� �	�	� ���
)**9�	�����
����
���
���
��	�
	�����
�������	�
�	����
�"�
�	������	����������
�
�
 �
���
���!�%�
��	�	��
��
��
���"�

	���
 �
���
���������
�
����
�
��
��
��+**���"�
���
��
�
�
��� 	��� ����� �
� ���
�"� 	�	��	��
� �
� 	��� ��
�

�
��	�
�	�
��� ��� ���
�
� 	��� �
������
�� ��
���
�� ��	��
�

�� �
��
������"� 	��� 	� �
��	����
� ����� ����	��������
�
���	�	��	��
!�

�� @�
�
�����
� 	�����	��
���� 	�� ����� ��� ��
� �
�
��� ���
��
���
������� ��
��� ��� ����!� ���������� ��� ����
���"�
�
������������
�
���
���
���
�B�(�<���	�	�&�	��
��
�
/M1���������������������������
���
�
�"��
�	������ ��������
�
����!�

�� �	���� ���
��
�� 	�����	��
���������� 	�
� 
�
������ 	�� ��
�
�������
�
�� ���
������� ��
��� ��� ����!� '� �"���	��
	�����	��
�� ��	�� �
���� �
� �
��
"
�� ��� (4�&3��I���
���
���	�� �����	��
�� 
�� 
	���?�	$
�� ��� �
���
 � ���

�
���
���
�	���

�
���	���
�
��!�

•� �� ���� �0� !''&��!���$�� ��� "�� �����$� "��
��$� ����

��
�����!$�!$� '!��$���� �0� ���� '��1���� !�� ��)��$!&� '�&���

!''&��!���$�!� %�
� �
�
��
�� 	�����	��
�������� �
� 	� �	���
�
��
��
�
��
����
�	����������
����
����
�������	�����
�
������
�	��
�?�	�����
��
���	�	!�%�
���D�'��
����
��������
���
���
�
�	���	�
�	������
��	�
��	����	�
�	�����	��
��!�

•� �''&��!���$�� �$��$
�
� ��� !���!��� $�
� ��++�$�����!� '�
��
�����	�"� �
��
��	��
�� 
�� ��
� ��
�� �	�
�� 
��	��
�� ���
�
��	�
�	��
������� ��
��
���
��	�
	�� �	���
��������� ��
����"�
�����	���
��
��	���	�����
��
����������
�	��
���	�������
�������
�
����
��	$
�����
��
���
��
��	�����
��
���
�
���	����
���	���
�	�����	�
� ��
��� �	������	��
�� ��� ��
� ����������
�
������"!� %�
� ���
���
�� ��� �
� ����
��� �
� ��
� �
�������
��
�
��	��
�� 	�� �	��� 
�� ��
� ����
���	��
�� �"� �������	����� ��
�
�
�
����� 
�� ����� �
�������� 	��� ��
������� ��
�� ����� 	��

��
������"� �
� ��
� ��
������ ����	��������
� �
�� ��
��� �
�
	����
	�������
�!�

'�� 	�����	��
��� ?�
���
��	��
� ��� ����
���"� �
���� �
��
�� 	�� ��
�
����
����"� 
�� �	��	� /+I1�� 	��� �
�
���	�� ����� ��
��� ��� ��
�
�
���
��	�
	���
��
��	�
�
��
��	�
���
����������
����
��
��
�����

��
���
������	�
���
��������	�����	��
���
?���
�
���!�

�	�	�� !��������������������
���"����#��
����
���	��
��	���
���
	���	�������
��	�
�	������	���
��
�
���
��
���������2�� ���	�
�"� �
� ����
���
� ��	�
� 
�� ��
� 	��� �����
�
���
�
��
�� �
� ��
��� ��
�� 	� ��
	�� �	��
� 
�� ���������
�� ��� ��
�
�
���
��	�
	�� �
��
�!� %�
� 	���� 
�� ����� �
�$� �	�$	�
��
�

����	�
���"��'����	�
��
#�

•� ����
���	�
� $�
��
��
� �
� �
�������
�� ��
� �	�
� 	��
	�"�

 ��
��
�� 	�� ���
�
��� ��� ������ ���
���� ��
� �
?���
�
����
	�	�"����?�
���
��	��
�
��
��
���
	��!�

•� ����
���	�
� ���
��	��
�� 	�
��� ��
� �
�
����� 
�� �����
�
���
�
�"� �
� 	� ���
�� 	���
��
�� ��� 
��
�� �
� 	���	��� �
��
�
�������
�������� �	�
� �
�� "
�� 
�	��	�
�� ����� �
���
�
�"!�
%���� ������
�� �
�� ����� �
�
	���
���� ���� �	���
�� ��
� �
����
�
�
���	��"�����
��������
���
�
�
��
�������������
���������	��
�
�
���
��������������
��
��	�������	�
��������"!�

•� ��
	�
�	����	���
��
�$������
��
���
��	�
	���
����
	���
���
�����	�	�
�
���	���$�
���
��	�
����
�
	���
��!�

%�
� �

��� 	�� ���������2�� ����
�	�� �
� 	���
�
� ��
�
� 	����
������
� ��
� ��
�
��� �
�� ���
�� ��
��� �
�
	�
�� �
� �
�
�	�� 	���
��
��	������
��	�� ����
������ 	��� 
�
���� 
��	���
�� �
�� �
�
�	�� 	���
��
��	����� 	���
��
�!� '� ����
�� 
�� 
�
���� �	�
� 	��
	�"� �

��

��	���
��� ����� 	�� ��
� 3
���	�"� )**7� $��$�
��� �

����� 	���



���
��	��
�� 
�
��� ��� �	��	�� ��
� (
��
��
�� )**7� �
��
�
��
� ���
�
�
� 	��� �	��
��� ����� �
�������� ���
��	��� 	��
��� ��
�
�
���
��	�
	�!�<�
����
��	����
���
����������������	���

��
��
� �
���� 
�� 	� ����
�� 
�� �
��	� �
�
���� ��� ��
� �
��
�!�
'�����
�	��"�� ���
���� ����� �
�$� �	�$	�
�� ���������� ���
��	�����������	�����
��
��
��
����
�
���������	�������	���(���
����� 	��� 
�������� ��	�� ���
��	��
�� 
�� ���������� ���
����
���	�
��	���
�	�
��
�
���!�

%�	������
�
����	�
��
�����
��
��	��	���
	�"��	�
� ���	�����
��
��
�	������	��� �
�����
��� ���������� ��

�
�� %��$
"� 	��� �
�
��
!�
%�	�������
���
���
����
� ��	����
������
���	��� ��
���	�	��
��������

�� ��
�
��
�
������� �
����
�� 	��� ��	�� ��
"��	�
� 
�
���� �
�����	��
$�
��
��
� �
� ��
�
��"� ��
� ��
� ����	��������
!� @
���
�� ��
� �	����
�������
����	���������
�
��
���
���
�
��	�"���	�������
����
�������
�
� 
��
�
��� �
�
����� ��
� �

��� 
�� 	��	��
�� ��
��� ��
� �
?���
�
�

�
���
�����	��$�
��
��
��	����
���	�����	�
���
�$

����
���
���
���
��
��	�
����
���
����
��	���������
�	����
�!�

(�
��	���
�� ��	������ ��� 	��
� ��
���
�� �
� �
��
��� ���
��
�� ��� ��
�
�
�����	��	��
����
����
���
�
��!�%�
�
�������
��
�
�
�
���������	��

��	���	��
�� �	�	�
���� �
�
���
� �
���
� 	��������	�
���� �
�
���
�
�
���
��
�����"��	�	�
���	���
��
������
����
��
��
�!�%�
��535�
��D�'� ����� �
�������� ����	��������
� �
�� ����
���	��
�� 	���
��	������/+91�������
�	��
�	��
��	���	�$
"��

���
����
���	�������
��

�� 	��	��
�� $�
��
��
� 	��� ����� 	��
�� �
�� ��
��� �
� �	��� ������
�	����
����
��
��
 �
��
��
�
��	��
	�����������	��������
������������
�"���	���
����
��	���	�����	��
��!�

3�� ��������������������#���
�	��	�� ���
���� ��
�����
����"2��&
��������(
����
��&
���
�� �	��
�

�� ���
��
�� ��� 
�����	��������
� �����	���
�� �����
�����&<55�&%� 	��� �K'5%� � �
�� �
�
�	�� "
	���� ����� ��
�
	��
��	�
���
�
����
�������	���	��"�����
�
�����
��	��
�	�����
��
��
�
��
������"��
��	�	�
�����	����
�
	���
��!�

%�
��

���
��	��
���
��	�
	���������
�
����	���������
��	�
�����
�����&<55�&%� �	������	���� ��� �	�
� )**M�� 	��� 	�� 
���
��	��
�
	��� �
��������� 
���
��
��� ��
�� ��	�"����

�
� 	����	��	��	��
	��
���
�� �
� �
�� 	� ��
�
�	�� �
�� ��� �������!� %�
� ���� �	��
����
�������	��������������
��
��
�����A	��	�"�)**7������
�535�� ��	�"� �
	����� ��
� ��
�
��� 	��� �	��	2�� �	������	��
��
�

����	�
�� �"� ��
� ����
����"2�� &
�������� (
����
�� &
���
� ���
�
��	�
�	��
�� ����� ��
� �
�	���
��� 
�� &
����
�� (��
��
� 	���
'�������	�����
����
��
!�

%�
� ��
�
��� $��$�
��� �

����� �	�� �
��
�� �"� �	��	� ��� 3
���	�"�
)**7� /)81!�'�������� ���
��	��
���
���
��
��������
���������	��

��	���
���	����������
��	��
�
�������
���
������	��
�����
�6
�!�
D
���� �	�
	�� 	���
��
�� ��
� 	���
��
!� '� ����
�� 
�� ���
���
���
����� ��
� ���
���
�� 
�� �����
�� �	������ 	�	�
�
��� 	�
��� �����
�
���������
�
�	��
��
���	��
�
��
�
����
����	��
����������)**7!�

�	��	�� 	�� 
�
�	��� �

����	�
�� 
�� ��
� �
?���
�
���� �	��
����� 	���
	�	�"�����
�$��	�$	�
������� �	�� ���
������
�
����
�����
�
� �
�
�
�
��� �	�� �
��
�����
� �
�� �
������� 	� ������ �
?���
�
����
?�
���
��	��
�� �
��
"���� 	�� 
����
� �"��
�� �
�� ��
� ��������
�� 
��
�
��
��
���	�����	�������������
��
���
��	�
	���	���
����
�
����
�
��	�� ��
� �	��� �
�� ?�
���
��	��
� �
��
��
�� �
	��
�� ��
� ���
��
��
�	��
��	���
��
������
��
��
�!�@"�'�����)**7�����
�"��� ��
��
��
��
�
�
� �
�
��
�� ��
�� 
�
�
�� �
�����
�!� <�� ��
� �	���� 
�� ��
�
�
�
��
��
���	��������
�����
��	��
���	��
�
����
����
��	���
���	���

��
�� �
���
�� �
�	������ ��
� �%� 	��� �
�
�
������	��
���
����	��������
� ��� ��
� �
���
��	�
	�� �
�����
��� 	� �
?���
�
����

	�	�"���� �
���
��� �
�� ���������� �	�� ��
���
�� 	�� ��
�
����
����"�
���	��	� 	��� �������
�� �
� ��
����
�
	��&
������
��
��� A��"� )**7� /+*1!� %���� �
���
��� �
��
�� 	�� 	�� ������ �
� ��
�
�
�����	�� �
	��	�� ��
�	�
�� �"� &��5� ������� ��
� �	�
� �
�$�
�	�$	�
�/++1!�

4�
��
��� �	�� �

�� 	��
��	�
� 
�� ��
� �
��
"�
��� 
�� ��
��	��
�
�
����� 
�����	��������
!� %�
��
�	���
��� 
��&
����
��(��
��
� 	���
'�������	�����
����
��
2���
����
������
����
��
�������
�&
��������
@��������� �	�� �

�� 	� �	��� 
�� ��
� ���������� 
�����	��������
�
����
� ����
�� )**7�� 	��� �
��� 	�
� �
���� ����
������"� �������
��
��
��
��
���
�����
�!�

%�
� ����
��� 
��
��� ��� �
���
�� 
�� ��
����"���� �	��
�
� �����
�
�������� ��
��� 	��� 	�����	��
��!� �	��
�
� �
�
	���
��� 	���
	�	�
����� 	�
� �
���� �
�����
�� �
� ��
���
� ���������� �����
���
��	��
�� 
�� ��
��� �
�����
� 	�����	��
��� �
�� ����� �
���
�
�"!�
B
�	�
��

$�����
����������	���
���
	�����
#�

•� �
�����
�
������
��	��
��������
�
 ������������	�����	��
���
:6���� ��
��"� 4�"������ @�
�
��� �	���� (��
��
�;�� 
�� 
��
��

 ������� ����� 	�����	��
��� ��	�� �
���� �
� �	�
� 	�	��	��
� 
��
���������L�

•� ����
���"���
��	�	��
��	�����	��
�����������
�������
���:������
�4��/)I1��4J��/+1��
��!;�	����
������$
��
�N������"2���
���
��
�	���"�����
�
��
 
����
����

��	����	�	���"��
���	��
���	�	�
�
��L�

•� �
?���
� �	��
� 	�
����� 
�� �
����
� 	��� ��
�	�
� �
�
���
�� �
�
�
��
� 	� �
�
	���� ��
��
��� ���� �
� �
�� �	�
� 
 �
��
��
������
�	�	��
��
��������
�������!�

'��������	���	��
���
���	��	��"���
�
���
����
�����������������
��
�
�������
��	�
�	�����
��
���
�	����
����	$������
�
����
��
��"�
��
	�
�� 
�����	��������
� �
� �
��
� �
�
	���� ��
��
��� 
�� 	� ���
��
�	���!�%����������
�
����"��
	���
���
�������
����
��
����
��
�
��	��
	� ��	��	��� �
�������� �
����
� �
� 	�	�
���� 	��� �
�
	����
���������
�������	��	������
��
�����"
	��!�

'��
	��
��������������� �
�������	�
� ��
� �
��	��
��
�� �
�	��"�
����
��5	��
�	������������	���
�!������
��	��
�
��
��
 �����������	�
�
��� �
���	������"��������
��
��
�������
���	����� ��
��	��
�
�
�������� �
�
	���
���	����
���"��	$
���	�
��� ��
����������
�
��"�
��	������
����
�
���
������	�������
����
�
	���
��
 �!�

5�� ����#������
%�����	�
���	����
���
�� ���� �
	�
�������	����
��
�
���
��
�������
�
�������� 	��� 
�� ��
� ���������� ��
�
��!� %�
� 
��
����
�� 
��
���������� �
�
� �������
��� 	�
��� ����� 	�� 	�	�"���� 
�� ��
�
��
�
��2�����	�
�������	����	�����
��������	��	���
�����	��	�
��
����
�	���
�� 
��� ������� ���������!� 3����
��
�
�� 	�� 
�
���
�� 
��
�	��	2�����
��
�
����������������	���
���	����
���
�!�

%�
� ���������� �����	���
� �
�
�� �
� �����
��
� ��
�
�
���
��	�
	���
��
����
����
��
��	��	���
���	����
��
���
�
���	��
�
���
����
!� B���
� ��
� ����� �
��
"�
��� ��
�
��� ��� 	� �
�
��	�"�
�
��
�
��� 
�� ��
� ���������� 	���
	���� ���� �	��
� �
���� �
�
�
�
�
�"� �����
�� ����
��� 	� �
��
��
������ 
��
��� �
� ������	�
� ��
�
��
	��
�� 	��� ���
����
����� 
�� ���	�� �
��
�$�� ��� 
����
��
�� 	�
��������� ��
�� �
������"� 
�� �
�
	���
��� ��	������ ��
�
�
���
��	�
	��� 	��� ���

��� ��
� 
����
� �
���!� %�
� �	��
��� 
�
����	��������
�������
�"�	��
�	��
���
�����������
�!�

��������������� �
��	��"� ��
�
� 	�� ��
� 
��� 
�� )**9!�B���� ��
�
��
�
���	�������
���
���
����	�$����������
��	���
��2����
���
���
��

$�



�����
�� �������� �
�� ��
� �
�����	��
�� 
�� ��
� ��
�
���� ����
�
�
�
�
�������	����
�
����
������
����
�������	��	�����"!�

6�� �* *�*��*��
/+1� �
�����'!��@
��
�����'!���
��	��	��A!��A�	����B!���	���
$��

�!��(���
�	���J!���
������$�
�����%��"���&������
�'�(�����
��������
������
����)�
*�����
��������������(	���%�4�
����
+00M!��

/)1� A
�
���@!�+"��,-,,��
�.���&������"�������/�
/��)!�+��������
&
��
�
��
��&
�$����
�	����'�����)**M!�

/I1� B
�����!����������
����
�"����)�
*��(���
��"��
%�����

������
�(����0��"��,1%,!2344,2+���������/�!�
%���5'�5
��
�$����&
��
�
��
�)**M����
�
�����

�
��
A��
�)**M!�

/M1� 
�����	��������
��
��
���
����
����'�����	��&�	���	�����!�
�"��������
!�A��
�)**7!�

/H1� �����4�
����
�
	�
!�,-,,���������%���
���)��"�-
���
���!3%	�'������)**H!�

/71� ��������4�
�
���B
��4	�
!��
"���&55)))	��6�(��	�
(�

/91� �������
��	���'�����	��
��4
��	��:5'M;!�
"���&55�(�����	���	�����	�
��

/81� �����&<55�&%�4�
�
���B
��4	�
!�
"���&55)))	������������	����

/01� ����������4�
�
���B
��4	�
!�
"���&55)))	�����(
��	�
(�

/+*1������������
���
�	��
!�1��
������6���
���
����
��

����
������������
��������������!�A��"�)**7!�

/++1������������
���
�	��
!��
����������"������
������	�
(
��
��
��)**7!�

/+)1�����������B4)�O�
���
��	��
�B
��4	�
!�
"����&55����
�	��	���	��5�����(
��5�����������
�5)���

/+I1�����������B4M�O�
���
��	��
�B
��4	�
!�
"����&55����
�	��	���	��5�����(
��5�����������
�5)���

/+M1����
�
	��&
������
�!�,�
���������"��%�����

�����&�
��)�
����������
���
���
�"���0�����/�
/��)�����"��7�
�������

�
����������88�!��	����)**I!�

/+H1����
�
	��&
������
�!�,�
������4��("���
"����������&�
��
���(������
	��	"�)**M!�

/+71�@
��	���3!��3
 ���!��6
"��%!�-
�����������(&���*��(��"��
(���������
���
����
����
������!�B��
"�4������
����)**I!�

/+91�'���
���
���!�
��	�!�-�9! &��"��(
����4:4�/�
�����
����
���
����
�������������������/�����!�%����5%&<��
)**H��+������
��	��
�	��&
��
�
��
�
��%
���
���	����
�
	����
����	��������
���
����
��
�
�
��
���
��5
��
�$��	���
&
�������
���3
���	�"�)**H!�

/+81��K'5%�4�
�
���B
��4	�
!��
"���&55)))	(����	����

/+01��K'5%�)�4�
�
���B
��4	�
!��
"���&55)))	(�����	����

/)*1���D�'�%
���
��B
��4	�
!��
"���&55(����	��	����	���

/)+1�3
��
����!��=
��
��	���=!��%�
�$
��(!�+"��������������"��
-
��&��������(����������/�
������
(����������!����/+71!�

/))1�(	���
,�4	�	�����
���A!'!��,,6-��!&��;������(��"���6
���
���
����
���������������������"6,����,�
���!�+��������
&
��
�
��
��&
�$����
�	����'�����)**M!�

/)I1��
��	�
�4	���������
��	�
�3
���!�%��6�&��;�������������"��
%����(��������(�����
����	�5
�
��
��)**I!�

/)M1�'���
�
���<!�+"��,-,,6����
�.���&��/�
/��)�����
!��A��
�
)**7!�

/)H1�<�
�������3
����B
��	�
�:��
��
���"���
���
�	�������
3
���;!�"���&55)))	�(�	�
(�

/)71�'���
���
���!��@	��
�	���!��=	�	"	������3!��4���	���<!��
�����
����3!��%	��
��
��3!��J
��	��=!�+"��,1%,!-��!�
�
�.�����
������5���"����������;!��
�
��
��)**H!�

/)91�(��������	���(��������)�4�
�
���B
��4	�
!��
"���&55)))	���6(
��	���

/)81�����
����"�
���	��	!��6�������������"��,1�0�1��/�
��������
%�����"�������
���,1%,!-��!��
�.����������(!�4�
���
�
�
	�
��A	��	�"�)**7!�

/)01��
������J!����6��6���6������������(���)�
���
�����0�
,�
���������"��*���
�������-
������"����(�	����
�
	�������
%
���
�
�"��	"�N@��������	����
�
	���
�
	����'�
	��
��
������	���	�&
��
�����
��	�$
��4�	�
��
��������
����
�2��
@����
�����	"�)**H!�

�

�

�

�



Runtime Validation Using Interval Temporal Logic

Karlston D’Emanuele

kema001@um.edu.mt
Dept. of Computer Science and AI

University of Malta

Gordon Pace

gordon.pace@um.edu.mt
Dept. of Computer Science and AI

University of Malta

ABSTRACT
Formal specifications are one of the design choices in reactive
and/or real-time systems as a number of notations exist to
formally define parts of the system. However, defining the
system formally is not enough to guarantee correctness thus
the specifications are used as execution monitors over the
system. A number of projects are around that provides a
framework to define execution monitors in Interval Temporal
Logic (ITL), such as Temporal-Rover [3], EAGLE Flier [1],
and D3CA [2] framework.

This paper briefly describes the D3CA framework, consist-
ing in the adaptation of Quantified Discrete-Time Duration
Calculus [7] to monitoring assertions. The D3CA framework
uses the synchronous data-flow programming language Lus-
tre as a generic platform for defining the notation. Addi-
tionally, Lustre endows the framework with the ability to
predetermine the space and time requirements of the mon-
itoring system. After defining the notation framework the
second part of the paper presents two case studies - a mine
pump and an answering machine. The case studies illustrate
the power endowed by using ITL observers in a reactive or
event-driven system.

Categories and Subject Descriptors
[Formal Methods]: Validation

General Terms
Formal validation, duration calculus, QDDC, D3CA , inter-
val temporal logic.

1. INTRODUCTION
The question “Does this program do what it is supposed

to do?” and “Will the program work under any environment
changes?” are frequently asked when developing a software.
A number of techniques have been proposed and adopted
during the years, one of which is formal validation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The major validation tools around concentrate on tem-
poral logics as they provide a means for time measurement.
The temporal logic branch of Interval Temporal Logic (ITL)
provide means to measure correctness in intervals, which fa-
cilitates the scoping of tests and reduce the total impact of
the monitors on the system.

We illustrate this by building a basic framework in which
the user can, alongside the program, specify properties us-
ing interval temporal logic which are automatically woven
as monitors into the source code, thus producing the single
monitored application. The monitored application at cer-
tain intervals checks whether the application state is valid
according to the mathematical model, enabling runtime val-
idation of ITL properties.

In this paper we concentrate on showing how the frame-
work can be used in a normal application using two simu-
lated environments.

The rest of the paper is organised as follows: the next
section briefly describes some of the validation tools around.
Section 3 outlines the syntax and semantics of the interval
temporal logic notation used in the paper. In section 4 we
describe a framework for the Interval Temporal Logic (ITL)
monitors generation and weaving. Finally we conclude by
presenting two scenarios where the framework was applied.

2. VALIDATION
The size and complexity of software developed today re-

sult in debugging and testing not being sufficiently effective.
Formal methods go some way towards tackling this prob-
lem. Using model-checking, one test all execution paths of a
system to be checked for correctness. Nevertheless, model-
checking is expensive to run and does not scale up, even
when systems are reduced via abstraction. Validation is a
light-weighed formal method, which checks the system cor-
rectness for a single path of execution. The path verification
is performed by checking at runtime that the formal specifi-
cations weaved into the system source code constantly hold.
A number of projects have been undertaken in order to find
a suitable validation technique for different logics and sce-
narios. Some projects are Temporal Rover [3], Java-MaC [6],
Eagle [1] and RTMAssertions [8].

Temporal Rover. is a proprietary validation tool by Time-
Rover. It integrates properties specified in Linear Temporal
Logic (LTL) and Metric Temporal Logic (MTL) into an an-
notated source code [3]. The integration is performed by
a pre-compiler. The formal properties are checked for con-
sistency on every cycle, determined by a call to a method



“assign”. On a false evaluation of a property an exception
is raised, which the system handles in order to return to a
safe state. One of the aims of Temporal Rover is to validate
embedded system, which are limited in resources. Hence,
the system provides another tool, DBRover, which allows
properties to be checked remotely on a host PC.

Java-MaC. is a prototype implementation of a more generic
architecture named Modelling and Checking (MaC). The
MaC architecture consists of three modules, a filter, event
recogniser and run-time checker. The properties used by the
filter and event recogniser are written in Primitive Event
Definition Language (PEDL), which provides a means of
defining the formal specifications in relation to the imple-
mentation level. When an event (state transition) is iden-
tified by the event recogniser, the new state information is
sent to the run-time checker, whose properties are written
in Meta Event Definition Language (MEDL). The run-time
checker in MaC is executed remotely and the information is
transmitted using TCP sockets, leading to less strain on the
monitored system resources.

Eagle. framework distinguishes from the other validation
projects mentioned in this report. Eagle performs vali-
dation over an execution trace and on a state-by-state ba-
sis that frees the monitoring system from using additional
memory for storing the trace. The framework provides its
own logic, named Eagle, which is enough powerful to allow
other logic notation to be specified in the Eagle logic. A
disadvantage in Eagle is that the type of properties, that
is whether it is a liveness or safety property, has to be ex-
plicitly specified.

RTMAssertions. uses Aspect-Oriented Programming (AOP)
to separate between LTL properties and the program imple-
mentation. The LTL properties are first converted into an
Abstract Syntax Tree (AST) which together with the RTM
framework is weaved into the code by the aspect weaver.
The LTL properties are evaluated by subdividing the LTL
formula into a number of atomics, the tree leaves, which are
evaluated first. Then by following the nodes path to the
root, the actual formula result, is calculated recursively.

This section overviewed some of the projects in the vali-
dation field. Next is the logic notation used in the paper

3. DISCRETE AND DETERMINISTIC DU-
RATION CALCULUS

Discrete and deterministic Duration Calculus is a de-
scendant of Quantified Discrete-Time Duration Calculus
by Pandya [7]. The logic assumes that the future is deter-
mined by the past events thus it can be easily implemented
using any programming language.

3.1 Syntax and Semantics
The most basic expression in discrete and deterministic

Duration Calculus are propositions, referred to as state vari-
ables. Let P be a state variable than its syntax is

P ::= false | true | p | P op P | ¬P

where p is a propositional variable and
op ∈ {∧, ∨, ⇒, ⇔, ⊗ (xor)}.

On the assumption that system states have finite variabil-
ity. Let σ be a non-empty sequence of state variables

σ =df (state variable 7→ B)+

where, the length of the sequence is given by #(σ).
Discrete and deterministic Duration Calculus is an Inter-

val Temporal Logic, in other words the expressions defined
using this notation require an interval. Defining first the
concept of time as

T =df N

Then an interval is defined as

Intv =df {(b, e) | b, e ∈ T}

Let σI |= D mean that the finite sequence σ satisfies the
duration formula D within the interval, I ∈ Intv.1.

σi |= P iff i ∈ T ∧ P (i) = true

σi |= P1 <̃ P2 iff i ∈ T ∧ σi−1 |= P1 ∧ σi |= P2

σI |= begin(P ) iff σIb
|= P

σI |= end(P ) iff σIe
|= P

σI |= ⌈⌈P ⌉ iff ∀i ∈ I · i < Ie ∧ σi |= P
σI |= ⌈⌈P ⌉⌉ iff ∀i ∈ I · σi |= P
σI |= η 6 c iff (#(σ) = Ie − Ib) 6 n

σI |= Σ(P ) 6 c =df

P

Ie−1
Ib

P (i)

σI |= age(P ) 6 c =df The state variable P is true for
the last part of the interval and
it is not constantly true for
more than c time units.

σI |= D1 then D2 iff ∃m ∈ I · Ib 6 m 6 Ie∧
σ[Ib,m−1] |= D1∧
σ[Ib,m] |= ¬D1∧
σ[m,Ie] |= D2

σI |= D1
δ
←֓ D2 iff The duration formula D2 must

be true for the first δ time units
that formula D1 is true.

σI |= D∗ =df ∃n ∈ N ·D1 then D2 . . . then Dn

The next section describes the design of a system that
translates formulae written using the notation introduced
into run-time monitors for .NET systems.

4. THE TOOL: D3CA
D3CA is a prototype implementation of a validation en-

gine for properties defined in deterministic QDDC. The pro-
gramming language used for implementation is C#.

D3CA consists of two modules: the validation engine and
the weaving of validation with the system. The validation
engine grabs a collection of properties and using a simu-
lated Lustre environment checks the each property with the
current state. The weaving process can be performed using
Aspect Oriented programming (AOP) tools. Nevertheless,
for better understanding of the communication process be-
tween the validation engine and the monitored system, a
weaver is discussed.

Figure 1 illustrates the architecture of a D3CA monitored
system.

1Due to lack of space, some operators are defined informally.
For full formal definitions, refer to [2].



Figure 1: D3CA Architecture Overview.

4.1 Lustre
Lustre is a dataflow synchronous language [4], that is it

applies the synchrony hypothesis over execution of code.
The hypothesis states that all computations are performed
atomically and take no time to execute. Lustre implements a
restricted subset of dataflow primitives and structures, that
makes it applicable to reactive and real-time systems.

Lustre provides three data types: integer, real and boolean.
The variables used inside Lustre must be explicitly declared
and initialised to the appropriate data type. The expression
variables have the form “X = E” where X is associated
with the expression E. Therefore, E is taken to be the only
possible value for X.

The Lustre operators set consists in the basic data type
operators, conditional branching and two special operators,
pre and “followed by” (→). The pre operator enables the
access to a variable history. While the “followed by” oper-
ator is used to concatenate two streams together, where at
time zero the second stream is equal to the first value of the
first stream.

In D3CA the Lustre environment is simulated, that is,
rather than using a Lustre compiler the data types are im-
plemented as classes. Using boolean variables with deter-
ministic QDDC leads the value of false to be ambiguous.
The Lustre environment is extended with 3-valued logic data
type, which extends the boolean data type with the addi-
tional value of indeterminate for expressions whose truth
value has yet to be determined.

The use of a Lustre environment in D3CA allows the space
and memory requirements of the specified properties to be
predetermined. Hence, providing a place for optimisation
and a knowledge on the side-effects of the validation engine
on the monitored system.

4.2 Weaver
The weaver module consists in transforming annotated

control instructions to the actual validation code. The an-

notated control instructions can be of five types:

1. {validation engine: bind variable name variable value}

2. {validation engine: unbind variable name}

3. {validation engine: start assertion name}

4. {validation engine: stop assertion name}

5. {validation engine: synchronise B}

In validation the state variables are mapped to the system
variables. In software, variables are typically placed in their
local scope, hence, they cannot be accessed from outside
code. This raises a problem with interval temporal logic as-
sertions that have crosscutting semantics. To surmount the
problem the two variable un/binding annotations are pro-
vided. A variable can be bound to either a system variable
while the variable is in scope or to a numeric value. The un-
bind annotation instructs the weaver that the value of the
variable must be kept constant.

An important characteristic of the D3CA is that it uses
interval temporal logic. That is, the properties are expected
to hold for intervals. To control the interval of an assertion
the start and stop annotations are provided. When checking
a stopped assertion, the indeterminate value is considered
to be false as the property has not been full satisfied during
the interval.

The last and most important annotation is “synchronise”.
This annotation instructs the weaver that the properties has
to be checked for consistency. Nevertheless, before perform-
ing the runtime checking the variables are updated. The
update also includes the reassignment of constant variables
as to reflect their values according to the current state, Fig-
ure 2.

✒✑
✓✏♥0
c ∈ N

const = c

pre0(const) = 0

✒✑
✓✏

1

c ∈ N

const = c

pre0(const) = c

pre1(pre0(const)) = 0

✒✑
✓✏♥2
c ∈ N

const = c

pre0(const) = c

pre1(pre0(const)) = c...
pren(. . . (pre0(const))) = 0

Figure 2: Lustre constant to system state relation

The “synchronise” annotation takes a boolean value. This
value instructs the synchronisation method whether to aban-
don execution on trapping an error. However, independently
of the value passed the runtime checker still reports the er-
rors that has been encountered.

4.3 Monitoring
The monitoring process consists in two interdependent

tasks. The core task is the evaluation of the properties,
which is performed using the Lustre environment. The di-
rect use of the evaluation process is cumbersome. Hence, the
validation task is used to abstract the evaluation process and
perform the repetitive task of evaluating each property.

4.3.1 Initialisation
The initialisation process consists in converting the moni-

toring properties from the mathematical notation to a collec-
tion Abstract Syntax Trees (ASTs). The conversion process



is performed using a parser as the mathematical notation
provides a suitable grammar representation.

The AST data structure is adopted since it provides a
suitable visualisation of how complex properties are decom-
posed into smaller properties. Evaluating the smaller prop-
erties is assumed to be simpler, hence, by evaluating the
lower nodes in the tree facilitates the process of obtaining
the satisfiability value.

4.3.2 Evaluation
The evaluation process is a bottom-up traversal of the

AST structure. The simplest nodes to evaluate are the leaf
nodes that are either propositions or numeric variables. Af-
ter mapping the system state value to the leaf nodes, the
nodes at a higher level can be evaluated. The evaluation
of the non-leaf nodes consists in calling the function related
to the operator2. The property satisfiability value is then
determined by the value obtained by evaluating the root
node.

Evaluate(Symbolic Automaton)

1 for each node starting from the leaf nodes
2 do expression variable ← evaluation node expression
3 Symbolic automaton validity result ← root node value

4.3.3 Validation
The evaluation process described above is encapsulated

in the validation process. The property ASTs are evaluated
bottom-up, hence, the state variables has to be updated
before the starting the evaluation. In algorithm Validate

line 1 suspends the system execution to perform the valida-
tion process. Therefore, ensuring that the system state is
not corrupted during the validation process. When the sys-
tem is stopped, line 2 updates the state variables to reflect
the system variables. That is, performs a transition from
the current state to the new state.

The actual validation process consists in performing the
evaluation process on the collection of ASTs, lines 3–6. Each
AST is checked for validity and one of the 3 logic states is
returned. When a property is violated the system reports
the error together with a the property trace. Note that, the
monitoring system uses symbolic automata to represent the
system, hence, it is not possible to depict the entire state
according to the execution path, without keeping a history.

Validate

1 Stop system execution. // Required for variable integrity
2 Update non-expression variables
3 for each symbolic automaton
4 do Valid ← Evaluate(Symbolic automaton)
5 if Valid == false

6 then Error(Symbolic automaton)
7 Resume system execution. // On the assumption that

the system was not
aborted due to errors.

2Refer to [2] for the actual deterministic QDDC execution
semantics.

4.4 Design review
D3CA implements a solution for monitoring systems using

interval temporal logic. The validation process is performed
on a Lustre environment, which allows memory and space
requirements to be predetermined.

Properties are cleaner if written in mathematical nota-
tion. The validation mechanism provided by D3CA includes
a parser that on initialisation of a property the mathemati-
cal notation is converted into symbolic automata. The sym-
bolic automata are then stored in an Abstract Syntax Tree
data structure as it provides a suitable representation for
the evaluation process.

The architecture of the monitored program during run-
time is illustrated in Figure 3.

Figure 3: System composition diagram

5. CASE STUDIES
The framework is applied to two simulators, a mine pump

and an answering machine.

5.1 Mine Pump
The first case study consists in the adaptation of a com-

monly used example in Duration Calculus literature [7, 5].
The case study consists in simulating the behaviour of a wa-
ter extraction pump employed in a mine to lower the level
of the water collected in a sump.

A mine has a water (H2O) and methane (CH4) leakage.
The water leaked is collected in a sump which is monitored
by two sensors signalling when the water level is high or
dangerous. When the water level is high a pump is started to
pump water out. Nevertheless, the pump cannot be started
is the methane level is high. Using the notation introduced
earlier the property for starting the pump can be defined as,

(⌈⌈LowH2O⌉⌉ then

(age(HighH2O∧¬HighCH4) <= δ then

⌈⌈PumpOn⌉⌉))∗

where, δ is the time required for the pump to start operating.
When the pump is operating it takes ǫ time to lower the

water level to acceptable level. This property is defined as

(⌈⌈PumpOn⌉⌉ ∧ η 6 ǫ then begin(LowLowH2O))∗

The last property related to the pump operation is to
check that when the water level is low or the methane level



Figure 4: Mine Pump Environment

has rose to the level where it is dangerous to operate ma-
chines.

(age(LowH2O ∨ HighCH4) 6 δ then ⌈⌈PumpOff⌉⌉)∗

The discrete and deterministic Duration Calculus nota-
tion allows environment assumptions to be defined. The
water level sensors are expected to report the water level in
ascending or descending order. That is the water cannot go
to dangerous level before it reaches the high level. The first
sensor assumption is that the water is at high-level for some
time before it reaches the dangerous level.

⌈⌈HighH2O⌉
ω
←֓ ⌈⌈¬DangerousH2O⌉

We can also say that the water is in dangerous levels if it is
also at the high level.

⌈⌈DangerousH2O ⇒ HighH2O⌉⌉

The other environment assumptions are related to the
methane release. For the mine operations not to be inter-
rupted on frequent intervals, the methane release occurs only
at least ζ time after the last methane release. More formally,

(age(¬HighCH4) 6 ζ then true) <̃ HighCH4

When deploying the mine pump an assumption is made
that methane releases are of short burst thus allowing the
pump to be operated.

age(HighCH4) 6 κ

where κ is the maximum time a methane release can take
for the pump to be operatable.

Finally we equip the mine pump with an alarm system to
notify the workers that there is possibility of danger. The
alarm will go off when either the water reaches the dangerous
level or there is a high level of methane in the mine.

(age(DangerousH2O) 6 δ then ⌈⌈AlarmOn⌉⌉)∗

(age(HighCH4) 6 δ then ⌈⌈AlarmOn⌉⌉)∗

(age(¬DangerousH2O∧¬HighCH4) 6 δ then ⌈⌈AlarmOff⌉⌉)∗

5.2 Mine Pump Scenario
The scenario presented here consists in simulating a long

methane release, which violates the methane release assump-
tion.

The constant variables are initialised as follows: δ = 2,
ǫ = 7, κ = 2, ω = 17, ζ = 25.

Figure 5: Mine Pump Screen Shot

The simulator has two controls, one for the water level and
another for the methane level, which allow the simulation of
environment changes. The simulation interface also provide
three buttons one to signal a clock tick, another to simulate
5 clock ticks using the same system state and the last button
to simulate 10 clock ticks.

To simulate the scenario where a methane release breaks
the assumption

age(HighCH4) 6 κ

the methane controller is set on the high mark. Then since
κ = 2 the 5 clock ticks button is pressed. On the third
clock tick the assumption breaks and an assumption violated
error is reported back to the user. In order to track back
the origin of the error the user is presented back with the
assertion that failed and the system state values. In our
case the system state is (age(HighCH4) = 3, η = 3, κ = 3,
age(HighCH4) 6 κ = false). When analysing the system
state it is immediately clear that that the methane release
was longer than what is expected.

5.3 Answering Machine
This section describes a simulated answering machine on

which the D3CA is applied. Figure 6 illustrates the answer-
ing machine states and the possible transition between the
states.

The answering machine depicted above has four different
interval measurements. The time spent in the “idle” and
“receiver up” states cannot be determined. Therefore, when
specifying the system in Duration Calculus the intervals can
be considered as open. While the “ringing” and “recording”
intervals that are fixed in length. The ringing interval is
set to 10 rings, therefore, the answering machine must start
playing the recorded message only if in the meantime the
receiver has not been pulled up. The message “recording”
interval allows the callee to leave a message for about 3
minutes and then the line is dropped. The last interval
measure is determined by the length of the message recorded



Figure 6: Answering Machine State Diagram

by the answering machine owner. This interval measurement
is applied to the “playing” state. Therefore, the specification
of the system is
`

(⌈⌈idle⌉⌉ then

age(ringing) 6 10 then

⌈⌈playing⌉⌉ then age(recording) 6 3)∗ ∨

end(receiver up)
´∗

It can be noted that although the intervals are measured
using different units, the specifications consider the length
of interval independently of the measuring units. In the
case of D3CA and of this particular case study the different
measuring units are handled by the placing of “synchronise”
annotation in the system implementations.

The “idle” state reflects that the answering machine is
doing no other operation. Hence, when the receiver is lifted
up the answering machine is expected to be idle. The “re-
ceiver up” state in Figure 6 is included to show that the idle
state of the answering machine and the idle state when the
receiver is up are different.

The “idle” state property can be specified in terms of the
answering machine states as

idle = ¬ringing ∧ ¬playing ∧ ¬recording.

The simplest assumption properties to verify are related
to the transition from one state to the next, where the next
state has only one entrance path.

idle <̃ ringing

age(ringing) 6 9 <̃ playing

playing <̃ recording

The answering machine under design assumes that when
the receiver is up then no other calls can come in. That is,
there is no multiplexing between different lines. When the
receiver is up, the answering machine should be idle.

end(receiver up) =⇒ end(idle)

The answering machine is then simulated in relation to
the above operation properties and assumption properties.
The properties specified above were able to trigger all the
errors inserted in the simulation. Hence, they forced the
behaviour of the system to the specifications.

5.4 Answering Machine Scenario
The mine pump scenario showed how the framework can

trigger violations to state properties. In this scenario we
show that the framework is also capable of detecting vio-
lations to state transitions. This is illustrated by a small
simulation that violates the transition from ringing to play-
ing the recorded message.

Figure 7: Answering Machine Screen Shot

The answering machine simulator has a number of con-
trol buttons, one for every state except for “idle”. The
state “idle” is represented by unmarking all the other con-
trols. When the system starts the state is immediately set to
“idle”. A number of steps are performed to leaving the state
as “idle”. Then the phone starts ringing, so the “ringing”
control is marked and a number of clock ticks are simu-
lated. However, after the 5 ringing tone the “playing” state
is marked. This violates the transition assumption

age(ringing) 6 9 <̃ playing

as only 5 ringing tones has been performed. The simulator
immediately reports the error, figure 8. The error shows the
property violated together with the values of each subex-
pression.

Figure 8: Answering Machine Error Report

From the two simple scenarios presented in this section it
was shown that the framework has the potential to define



different properties of the system. The framework hides all
the complexities related to notation interpretation in pro-
gramming language and in defining the monitoring system.

The benefit of using Interval Temporal Logic monitors is
the increase in reliability of the system without the need to
overwhelm the system with point-logic assertions.

6. CONCLUSION
The use of validation for testing software correctness is a

well applied concept, and different scenarios lead to the use
of different validation approaches. In this paper we showed
how Interval Temporal Logic validation can be integrated
with normal applications and in real-life scenarios. The in-
tegration is obtained through the use of a framework that
allows to predetermine the space and time requirements for
computing state satisfiability. The framework presented in
this paper simplifies the migration from one scenario to an-
other by freeing the validation part from environment and
platform dependencies.

7. REFERENCES
[1] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.

Eagle monitors by collecting facts and generating
obligations. Technical Report Pre-Print CSPP-26,
University of Manchester, Department of Computer
Science, University of Manchester, October 2003.

[2] K. D’Emanuele. Runtime monitoring of duration
calculus assertions for real-time applications. Master’s
thesis, Computer Science and A.I. Department,
University of Malta, 2006. To be submitted.

[3] D. Drusinsky. The temporal rover and the ATG rover.
In SPIN, pages 323–330, 2000.

[4] N. Halbwachs. Synchronous programming of reactive
systems. In Computer Aided Verification, pages 1–16,
1998.

[5] M. Joseph, editor. Real-time systems specification,
verification and analysis. Tata Research Development
and Design Centre, Jume 2001.

[6] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and
M. Viswanathan. Java-MaC: a run-time assurance tool
for Java prgrams. In 1st Workshop on Runtime
Verification (RV’01), volume 55 of ENTCS, 2001.

[7] P. Pandya. Specifying and deciding quantified
discrete-time duration calculus formulae using
DCVALID. Technical Report TCS00-PKP-1, Tata
Institute of Fundamental Research, 2000.

[8] S. Thaker. Runtime monitoring temporal property
specification through code assertions. Department of
Computer Science, University of Texas at Austin, 2005.



��������	
���
�

�

��������	�
����

��������
	��

����
����������

���

���
�����������

���
��
�����
���

��
��
����
��
�
�

�

���������

���	�����
�����

�������
������	���

��
��������� ���

�

�������
��

���	������������

������������
�

���
�
���!��!�

�"���������#�
���
��

$��
�������

����������
��

�������!�

�������%�� �
�

�

����������
��#
�������

#�
���������$
����

������������

�������&����
'�

�������&��(����

�
�������
������	�)�

(������

�
��

(
�*����%��*���

�
���
����'��

������
���$���
��
�

��	�����
����
�
�
�

���&&���	
���
�	�
�

�����������

�

�����
�����������+
���

����������
��
��

+���
��
��$���
����

,������#� ���

,��������
'�

�

�


	TOC
	Charlie Abela, Matthew Montebello
	John Abela
	Joel Azzopardi
	Jimmy Borg, Matthew Montebello
	Ernest Cachia, Mark Vella
	ErnestCachia, Mark Micallef
	Michel Camilleri
	Steven Caruana, Matthew Montebello
	Joe Cordina
	Angelo Dalli
	Oliver Gauci
	Kristian Guillaumier
	Clyde Meli
	Gordon Pace
	Mike Rosner
	Chris Staff 1
	Chris Staff 2
	Anthony Staines
	Sandro Spina, Gordon Pace
	Kevin Vella
	Karlston DEmanuele
	AUTHOR INDEX

