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EVALUATIONAL RESEARCH ON A VIDEO-BASED IN-SERVICE 
MATHEMATICS TEACHER TRAINING PROJECT - 

REPORTED INSTRUCTIONAL PRACTICE AND JUDGEMENTS 
ON INSTRUCTIONAL QUALITY

1
 

Sebastian Kuntze, Kristina Reiss 

University of Munich, Germany 

 

In this study, we concentrated on aspects of evaluational research on a video-based 
in-service teacher training program with more than 30 participating upper secondary 
mathematics teachers. As the program aimed at encouraging the teachers in improv-
ing cognitive activation in their classrooms, the evaluation focused both on compo-
nents of the teachers’ professional knowledge and on indicators for implementation 
in instructional practice. The results indicate that teachers modified their perception 
of instructional situations and reported to have introduced more student-centered 
work on activating tasks in their classrooms. 

THEORETICAL BACKGROUND  

Research on impacts of in-service teacher training projects often concentrates on four 
levels of observation (cf. Lipowsky, 2004; Kirkpatrick, 1979): The first level of ob-
servation includes feedback by participating teachers e.g. with respect to the useful-
ness of the training project or self-reported changes in their classrooms. On a second 
level of observation, the development of professional knowledge can be analysed. 
The third level includes ratings of the teachers’ actions in the classroom by external 
observers. Finally, there are studies treating possible impacts of teacher training pro-
grams on student achievement and other data linked to the learners, which can be 
identified as a forth level of observation. These four levels of observation are linked 
to the question to what extent teachers enrolled in an in-service teacher training pro-
ject implement its contents in their professional and instructional practice. For im-
plementation, professional knowledge and instruction-related beliefs seem to play a 
mediating role: Professional knowledge is likely to be a prerequisite for experiment-
ing with contents of the in-service teacher training project in their classroom practice. 
If a teacher, for instance, perceives a contradiction between her or his instruction-
related beliefs and contents of the teacher training, she or he might react differently to 
the teacher training project than teachers who see their beliefs in line with the aims of 
the training. This is why teacher training projects often focus on the implementation 
of improved instructional practice and the development of professional knowledge.  

A practice-relevant domain of professional knowledge concerns judgements on in-
structional quality (Clausen, Reusser & Klieme, 2003) in classroom situations. Im-
proving the teachers’ ability to judge on instructional quality might have an impact 
on instructional practice,  as the decision-making by teachers involves general,  situa- 
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tion-specific, and content-specific cognitions and beliefs (Malara, 2003; Escudero & 
Sanchez, 1999). In particular, this seems to be the case for decisions teachers make in 
instructional classroom situations. The theoretical background for components of pro-
fessional knowledge investigated in this research project (e.g. Shulman, 1987; 
Leinhardt & Greeno, 1986) has been described in more detail in Kuntze & Reiss 
(2005). In the following, we concentrate on contents and aims of a teacher training 
project addressing professional knowledge and classroom practice. 

The in-service teacher training project 

The findings of the TIMSS Video Study (Baumert et al., 1997) were a starting point 
for the in-service teacher training project, which was subject to the evaluational re-
search of this study. These findings revealed a teaching script typical for German 
classrooms that can be described as a teacher-centered interaction marked by ques-
tions and tasks of a rather low level of complexity. Challenging and cognitively acti-
vating tasks were often lacking, and the students had little time to develop answers 
containing several steps of a solution. For the special case of lessons on geometrical 
proof, we could replicate these results in an own study (Kuntze & Reiss, 2004). Un-
der the condition of the teaching script, meta-knowledge on the subject was not em-
phasised and the students were likely to encounter difficulties in building up mathe-
matical concepts, in the particular case the concept of mathematical proof (cf. Reiss, 
Klieme & Heinze, 2001). Based on these findings, three measures were identified 
that might improve cognitive activation as an important dimension of instructional 
quality (Clausen, Reusser & Klieme, 2003): 

• Fostering argumentation processes among the students in the classroom inter-
action can enable them to develop multi-step problem solutions in challenging 
situations (cf. Reiss, Klieme & Heinze, 2001). 

• Using mistakes in the classroom for working on conceptual understanding and 
as opportunities for argumentational exchange can be used to provide cogni-
tively activating and authentic learning opportunities (cf. Heinze, 2005). 

• Together with the measures above, more challenging tasks like those suggested 
in standards should be addressed. Additional learning environments focusing 
on conceptual understanding and requiring multi-step individual or cooperative 
student work could help to contribute to improve cognitive activation. 

As these possible measures are well in line with the goals of recently introduced 
German standards for mathematics education, the aim of the in-service teacher train-
ing project was to encourage teachers to introduce changes in their classrooms in ac-
cordance with these goals. The teacher training project had two components: The first 
component consisted of video-based discussions of instructional situations. These 
discussions should help the teachers to improve their observation of instructional 
quality and to consider alternative teacher actions. Additionally, the participants were 
encouraged to make experiments in their own classrooms, trying to provide more 
cognitively activating instructional situations. The second component of the teacher 
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training focused on the development and implementation of a student-centered, coop-
erative learning environment on the in-depth understanding of a mathematical con-
cept. Written argumentation of the students was part of this learning environment.  

We expected that, before the training project, the teachers’ instructional practice as 
well as their instruction-related beliefs were consistent with the teaching script re-
vealed in the TIMS Video Study. Furthermore, we tried to find out whether changes 
of such “traditional” beliefs and practices towards more appreciation of fostering 
cognitive activation, argumentation and discourse took place during the project. 

RESEARCH QUESTIONS 

The study aims at providing evidence for the following research questions: 

(i) How do the teachers describe their instructional practice? Is there evidence in 
the teachers’ self-reported instructional practice, whether they implemented contents 
of the teacher training project, in particular of the video-based work? 

(ii) Is there a development of the teachers’ situation-specific professional knowl-
edge about instructional quality in classroom situations? Are such changes consistent 
with the results concerning the teachers’ reported implementation in the classroom?  

METHODS AND SAMPLE 

The evaluation of the teacher training project concentrated on two levels of observa-
tion: In the first place, judgements of the participating teachers and their perceptions 
of their own instructional practice were included. We used an instrument developed 
in the group of Eckhard Klieme (DIPF, Frankfurt a. M., Germany). Secondly, the 
evaluation focused on the development of situation-specific and more general com-
ponents of professional knowledge (cf. Kuntze & Reiss, 2005).  
 

 

 

 

 

 

 

 

Figure 1: Structure of the in-service teacher training project and evaluational design  

In this study, we concentrated on data of 32 German participants who answered pa-
per-and-pencil questionnaires both before and after the training project (cf. fig. 1).   
The video-based instrument on situation-specific professional knowledge concerned 
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feedback 

experiences in phase 
of implementation, 
cooperation 

beliefs about learning environment 

prof. knowledge (gen. comp.),  
reported instructional practice 

prof. knowledge  
(sit.-specific comp.) 

instr. quality 
(video-based) 

feedback 
feedback 

second teacher  
training weekend 

third teacher  
training weekend 

first phase of  
implementation 

second phase of  
implementation 

instr. quality 
(video-based) 

prof. knowledge (gen. comp.),  
reported instructional practice 

experiences in phase 
of implementation, 
cooperation 

beliefs about learning environment 

first teacher  
training weekend 



Kuntze & Reiss 

 

4 - 4 PME30 — 2006 

 

 

asked to give judgements on two classroom situations: Video A showed patterns of 
interaction marked by argumentational exchange and cognitively activating discourse 
between the students and the teacher, whereas video B could be characterized as a 
teacher-centered interaction comparable to the dominant teaching script in Germany. 
According to our research questions, we will report results from questionnaires con-
cerning reported instructional practice and experiences in the phases of implementa-
tion. For situation-specific professional knowledge, we will analyse additional data 
gained with the video-based instrument for judgements on instructional quality.  

RESULTS 

The scales of the questionnaire on instructional practice shown in table 1 were con-
firmed by a factor analysis. Table 1 also contains sample items for the scales. 

Scale Sample item 
 
“In my maths lessons…” 

Number 
of items 

Cronbach’s α 
before / after the 
training project 

teacher-centered inter-
action (German script) 

“... I am talking, asking questions 
and some students give answers.” 

2 .50 / .74 

presentation by teacher “... I am presenting, while the  
students are listening.” 

2 .76 / .63 

Student-centered work 
on activating tasks 

“... I have the students finding out 
on their own about solutions to  
challenging problems.” 

4 .69 / .71 

Open organisation of 
classroom work 

“... the students are working on  
different projects.” 

3 .43 / .72 

Students presenting 
their learning results 

“... I have the students presenting 
things they have worked out be-
fore in groups or individually.” 

2 .63 / .83 

Table 1: Scales on self-reported instructional practice. 

Scale Sample item 
 

Number 
of items 

Cronbach’s α
Phase 1 / 2 

focused observation “I have observed the cognitive activa-
tion  
of my maths instruction with more  
attention than before.” 

3 .89 / .84 

experimenting /  
cognitive activation 

“I have remarked changes in my  
mathematics instruction, that I attrib-
ute to my experimenting in the class-
room.” 

5 .83 / .88 

using opportunities for  
learning from mistakes  
and fostering argu- 
mentational exchange 

“I have observed that the intensity of 
argumentation in the classroom  
interaction was increased by the  
measures I took.” 

4 .73 / .78 

Table 2: Scales concerning experiences in the phases of implementation. 
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For the questionnaire on experiences in the phases of implementation, reliability data 
and sample items for the scales related to the implementation of the video-based 
teacher training are given in table 2. 

The means for the scales concerning instructional practice reported by the teachers 
are shown in figure 2. The values before the training project indicate that the German 
teaching script revealed in the TIMS-Study seems to be dominant in the reported 
instructional practice as well. In comparison with the data collected after the training 
project, there is a significant change for the scale “student-centered work on acti-
vating tasks” (T=-3.25; df=31; p<0.01; d=0.45). As an example for changes on the 
item level, the participants reported to use group work of their students more often 
than before the training project (T=-2.88; df=31; p<0.01; d=0.49).  

 

 

 

 

 

 

 

Figure 2: Reported instructional practice  

The indicators for implementation linked to the video-based work of the teacher 
training presented in table 2 can provide further evidence (cf. fig. 3). The 
participating teachers were asked to what extent they observed their own practice and 
whether their focused experiments in the classroom improved the instructional 
quality in their classrooms. For two of the three scales, there was a highly significant 
change indicating improved implementation activities of the participating teachers in 
the second phase of implementation. However, the means reflect rather moderate 
judgements in general.  

 

 

 

 

 

 

 

Figure 3: Reported implementational activities concerning classroom interaction 
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As the scale “student-centered work on activating tasks” (cf. table 1 and fig. 2) 
seemed very relevant for the aims of the teacher training project, we focused on 
developments in that domain. We verified whether the indicators for implementation 
linked to the video-based work presented in figure 3 were linked to the findings in 
figure 2: There were significant correlations between the pre-/post-difference of 
“student-centered work on activating tasks” and “fostering argumentation/ learning 
from mistakes” (both questionnaires; .40* resp. .36*) as well as “experimenting/ 
cognitive activation” (second questionnaire; .38*). This means that teachers, who 
said to have implemented the contents of the video-based work in their classrooms 
more intensively, also tended to perceive a higher increase in student-centered work 
on activating tasks in their classrooms.  

For the development of situation-specific professional knowledge concerning 
instructional quality, we had observed rather diverging judgements on instructional 
quality of the videotaped classroom situations before the beginning of the in-service 
teacher training (cf. Kuntze & Reiss, 2005). As we liked to observe especially the 
development of professional knowledge of teachers holding more “traditional” 
beliefs with respect to the dominant German teaching script, we distinguished 
between “traditionally oriented” teachers and “teachers favouring discourse” using a 
cluster analysis (fig. 4). On the base of judgements on instructional quality before and 
after the project, a certain convergence of the judgements of the two clusters can be 
stated. Additionally, especially the cluster of the rather “traditionally oriented” 
teachers rated video A more positively after the project. According to our approach, 
this videotaped classroom situation was marked by a relatively strong 
argumentational exchange. Consequently, the participants’ perceptions and opinions 
related to video A were very important for us as indicators for the impacts of the 
video-based discussions in the teacher training project. For instance, when asked to 
compare the videotaped classroom situations to their own instructional practice, the 
two clusters show the developments represented in figure 5.  

 

 

 

 

 

 

 

 

 
Figure 4: Situation-specific components of professional knowledge: Judgements on 

instructional quality of videotaped classroom situations 
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Figure 5: Reported similarity of own instruction compared to the videotaped  

classroom situations 
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ceived similarity of the own instructional practice to the content and task structure of 
video A (.40*). Moreover, three of the six variables in figure 3 show significant cor-
relations to the perceived similarity of the own instructional practice to video A (cor-
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work in the project. Also, the higher perceived similarity of the participants’ own in-
teractional patterns to the situation in video A might be interpreted as further evi-
dence for changes in the participating teachers’ classrooms.  

However, the results should be interpreted carefully. The data do not allow causal 
implications like: “Developments in professional knowledge have caused changes in 
the reported instructional practice“. The correlations found in the study might just 
reflect simultaneous developments of the enrolled teachers in the different domains.  
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ics instruction and acting in the classroom. Hence, two of the impacts of the teacher 
training project might have been enriched patterns of perception for instructional 
situations and diversified possibilities of acting in the classroom.  
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CONSTRUCTING A SINUSOIDAL PERIODIC COVARIATION 

Chronis Kynigos, Kostas Gavrilis 

Educational Technology Lab, University of Athens, Sch. of Philosophy. 

 

We investigated meanings generated by 32 14-15 year olds on the concept of 
sinusoidal periodical change. They experimented with a microworld which we 
designed combining figural, coordinate and symbolic representations of covariation 
and a corresponding sequence of activities. Their experimentations led to the forming 
of situated abstractions on periodicity properties involving the nature of periodic 
curve, periodic cycle and periodic behaviour of the values of x in the respective 
function.  

FRAMEWORK 

A  central  element  in the  growth of the concept of covariation is the  construction of 
a coordination  between  the  changes of  two  quantities. According to Thompson 
(1994) the understanding of covariation is a developmental process that includes (1) 
the construction of a mental image of the change of one quantity (2) the coordination 
of the mental images of the changes of two quantities and (3) the construction of a 
mental image of simultaneous covariational changes of two quantities. Little research 
has been done on students’ understanding of periodical change. It has been showing 
that the difficulties in learning are related to a) the lack of a deeper comprehension of 
the mathematical notion of periodicity, (Dreyfus & Eisenberg, 1980, Bagni, 1997, 
Shama, 1998), b) the lack of connection to natural phenomena (Buendia &  Cordero, 
2005), or c) the lack of experiences related to the concept of covariation (Mariotti et 
al., 2003). Lobo da Costa, & Magina, (1998) propose the combination of 
experimental worlds with computer environments as the optimal frame of learning 
trigonometrical change and hence periodical change.  

In this paper we report research aiming to explore how 32 15 year-old students 
constructed meanings around the concept of sinusoidal periodic covariation with a 
microworld we designed with ‘Turtleworlds’, a piece of geometrical construction 
software which combines symbolic notation through a programming language with 
dynamic manipulation of variable procedure values (Kynigos C., 2002). Our 
perspective on learning combines the idea of constructionist learning (Kafai and 
Resnick, 1996) together with the use of computational media perceived as one of the 
representational registers for mediating mathematical thinking along with language 
and pencil and paper (Mariotti, 2000).  The students worked in 14 small collaborative 
groups during a computer-based project established in their school. They were 
engaged in this project in order to explore the microworld’s figural model constructed 
by two variables, by manipulating the values of these variables and by constructing a 
relationship between these. Their ultimate goal was to fix the behaviour of the 
microworld which was designed to be buggy. We studied the mathematical meanings 
mediated and developed by the students as they interacted with the microworld in 
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order to investigate the existence and the nature of a relationship between the two 
variables and to convert the symbolic notation to reflect their conjectures about it and 
to fix the bug. We were particularly interested in the ways the students expressed 
their ideas through these interactions (Noss, 1997). 

RESEARCH SETTING AND TASKS 

Our research was based on students work with the ‘Turtleworlds’ microworld and a 
set of activities which we designed. ‘TurtleWorlds’ is based on Logo-driven Turtle 
graphics combined with tools to dynamically manipulate variable values and observe 
a D.G.S.–like change in the figures as these values change. It can be thus used to 
encourage the development of the processes of  coordination between two variables 
in multiple ways, as it combines the changes of the geometrical model which are 
caused from the dynamic manipulation of the value of its variables with the 
numerical negotiation of these and the mathematical symbolism.  We designed a 
sequence of activities which encouraged the negotiation of changes and the 
coordination of these with the aim to explore the ways in which the students utilize 
the computational tools and their experiences to develop and express meanings for 
periodical coordination (Psycharis & Kynigos, 2004). 

The microworld of the ‘clown’:  A specially designed procedure with two variables 
was given to the students. Variable :x corresponds to the angle between the equal 
sides of an isosceles triangle, variable :y corresponds to the length of the opposite 
side. The equal sides are a constant 100 turtle steps and the equal angles are 
expressed in relation to angle :x (the students had recently worked with angle 
relationships in isosceles triangles). The relationship between :x and :y 
(:y=200sin(:x/2)) was not revealed to the students. The microworld was designed so 
that the relationship under investigation would not be obviously sinusoidal to the 
students. The procedure also had a final command ‘face’ which constructed the 
features of the clown in relation to the two variables. The code of the ‘face’ 
procedure was available to the students but was not an object of this study since the 
students took it as a ‘black box’ primitive. A triangle is thus formed only when the 
values of  :x and :y are appropriate, in all other cases it looks as if the triangle is not 
closed (fig. 1). The students could execute the procedure with two values and then 
drag any of the two sliders of ‘Turtleworlds’ variation tool (fig. 1). They could 
subsequently click on an axis for each variable and use the 2D variation tool to drag 
the mouse freely on the coordinate plane thus varying :x and :y simultaneously. They 
could also click on a point on the plane to observe the figure with :x and :y values 
corresponding to the coordinates of the point. The figure below shows a few points 
that have been placed on the 2d variation tool so that the ‘clown’ triangle is well 
shaped and one where the triangle is not well shaped. The students could click on a 
point and then drag it to a place where the ‘clown’ was well shaped. They could then 
choose another point and repeat the process and could record the coordinates of the 
points they chose on a table of values.  
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Task: The students were asked (1) to find out and describe all the possible forms 
which the clown could take and (2) to correct the procedure so that the ‘clown’ was 
always well shaped. So, the students had to investigate whether there was a pattern of 
appropriate points and conjecture what kind of relationship between :x and :y 
reflected the pattern. The students initially worked with the “2D tool” and the 
“variation tool”. Then they processed the values of the two variables with which a 
good shape of the "clown" is taken, and finally, they worked with the code of the 
program in order to correct it. 

Fig. 1. The ill-formed ‘clown’ corresponds to the one point on the 2d variation tool outside 
the sinusoid pattern of points. The ‘clown’ is well formed when the coordinates correspond 
to any of the points on the pattern. Dragging the outlying point on the pattern has the effect 
of the clown progressively being ‘fixed’.  

METHOD 

Design research was adopted where the researcher undertook the role of an observing 
teacher (Cobb et al, 2003). The students worked in small groups (14 totally). Each 
group participated in 6-7 sessions – per week – for 1.30 hour roughly, while three 
discussion sessions with all participants took place as well. The work of the students 
was video-recorded and cassette-recorded. The data were studied in two phases. In 
the first phase episodes of meaning generation were identified (cases where the 
students expressed meanings relating to the periodical change) for each group. In the 
second phase each episode was analyzed in depth. The episodes were grouped in the 
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areas of meaning which appear as section headings below. In this paper we report 
episodes from different student groups which were characteristic of the respective 
areas of meaning. 

FINDINGS  

Local covariations:  The first meanings related to the covariation of the two variable 
quantities which were formulated during the dragging and spatial arrangement of the 
respective points on the 2d variation tool and in particular during the coordination of 
the changes of the two varying quantities of the shape. In the 
following episode, the students of group M11 were 
discussing how to move the outlying point (fig. 2) in order to 
shape the ‘clown’ well:   

M11_1 (2): We should move it horizontally so that the awry 
segments connect and the ‘clown’ gets shaped.  

R: How far can you move it?   

M11_1 (2) & M11 (3): Until they (the three sides of the 
triangle) are linked  

R: Can you predict its place without moving the point?  

M11_1 (2): We will move it until it reaches the straight line. 

The students predicted the place of point correctly, because 
they managed to make covariation reasoning (Carlson, et al., 
2002), coordinating the way of change of the changing 
quantities of the geometrical model. This coordination was 
considerably facilitated from the perception which was created for the form of the 
curve where the suitable points belong, a situated abstraction according to Noss and 
Hoyles, 1996, which resulted from the experiments of spatial arrangement of the 
points.   

From the straight line to curvature: The students decided they were not happy with 
the extent of the movement of the clown with the range of values they had at hand, 
extended the range and were surprised when placing new points on the extension of 
the line which they had thought to be the right point pattern resulted in a ‘buggy’ 
clown. They dragged a point along the linear pattern and realised that while at the 
beginning their clown was ok, it gradually developed a bug. Then they were 
encouraged by their teacher (researcher) to insert more points and make new 
conjectures. They used the ‘2d tool’ to experiment with a larger range for the two 
variables. This had as a result to extend the range of changes of the angle beyond 
360o and to negative values as well.  

R: Are there any other movements that the ‘clown’can perform?  

M1_1 (3): Can we put in the x minus something? Minus 360?  

M1_1 (2): No. Are there any negative values for the angles?  

Fig. 2. The students 
work with the “2D tool” 
in which the width and 
the altitude is defined by 
the values of :x and :y.  
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M2_1 (3): ....  

R: See the ‘clown’. It is being shaped by the turtle. What will happen if you make the 
turtle turn right -30?  

M1_1 (1): It will turn left. But I have not tried it.  

Extending the range thus led to the students’ altering of their initial perceptions for 
the curve and to the formulation of the opinion that the points belong to a parabola. In 
the episode that follows, the students of team M11 were involved in a game of 
prediction of the place of a new point. While up to that point in time their predictions 
concerned places in the extension of the supposed straight line, suddenly student 3 
selected a new point in a faraway place and not on the extension:  

M11_2 (3): I will take a point here.  

R: Why did you choose this place? What do you have in your mind?  

M11_2(3): I will show with my mouse how the curve is. Here it goes this way, 
afterwards it goes here to the top point and afterwards it goes this way 
curved (she shows with the indicator of her mouse a parabola)   

The unexpected choice showed that in her mind she formed a non-linear curve of 
suitable points. This is possibly due to the fact that the divergence of the news points 
in relation to the initial perception of the straight line helped her to formulate the 
existence of a curve, which she called parabola, because she had been taught it in the 
previous school year. The students realised that the new points are extended to both 
directions of the range of the angle and created two inverse parabolas every 360 
degrees. Subsequently they expressed the opinion that these two parabolas constitute 
one single curve. 

Covariation “many for one”: The investigations that followed for the finding of 
suitable points with the value of variable y given, helped the students to develop the 
notion of covariation of the two values between the different periods (many x for one 
y). In the episode that follows the students of team M10 inquire the place the points 
with y = 80, while they have extended the domain of change of angle x in [-2000, 
2000]. One of the students places the slider of variation tool of variable y in the value 
80, and moves only the slider of variation tool of variable x and he counts the points 
defined by the horizontal straight line in the curve of the points:  

M 10 _ 8(2): one, two, three… six.   

R: And what about the other side?  

M 10 _ 8(2): Six  

R: And if we extend the domain of x even more? If we go up to 20000?  

M 10 _ 8(2): To 20000? Many. 
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The finding of many x for every y, and the negotiation 
that followed for the value and place of variable x, gave 
the students the chance to discover rules of covariation 
that concerned the whole of the range of curve: (1) The 
rule of 720 (‘if in the x we add or subtract 720 and 
maintain the same y we will find a new point in the 
curve’). (2) The rule of 360 (‘if in the x we add or 
subtract 360 and select the opposite y we will find a new 
point in the curve’). (3) The rule of symmetrical points 
(‘if we select the opposite of x and the opposite of y we 
will find a new point in the curve’).  

M1_1(3):  The new point has the same height (with the 
given point) when the turtle moves  two 
more cycles.    

These rules were confirmed by the students with the 
variation tool, defining as a step of change of variable x 
the 720 or the 360 and observing the form of the ‘clown’ in each change. The finding 
of rules of covariation changed once more the perception of the students about the 
forming of the curve as they managed to describe its extension with the help of them 
using the points that correspond to the points of a period.  

Formal expression of the relationship: Discussion on a possible relationship 
between x and y brought the students to look for one by going back to the figure and 
making sketches in their writing books. They had been taught about basic properties 
of isosceles, Pythagoras theorem and the trigonometric ratios in a right triangle, so 
their conjectures were about which properties would be useful here.  

M3_6(1): For the clown to work we need to find the relationship between x and y (they 
refer to a pencil and paper sketch of a triangle which they had figured out 
was isosceles and had discussed the height being also the dichotomy and 
the median).  

M3_6(2): Let’s find it via the Pythagoras theorem. 

M3_6(1): No, with the sin. Sin x/2 is equal to the opposite perpendicular divided by the 
hypotenuse. (She wrote in her writing book sin(x/2)=y/2/100 or 
y=200sin(x/2). 

M3_6(2): Is this relationship good for us? 

M3_6(1): Let’s substitute it in the code.  

(After they place it in the code and run the program with one variable). There (as they 
move the slider) it never spoils.  

M3_6(2): Now it will not get on our nerves. So, sin(x/2)=y/200. 

This characteristic dialog shows how the students had dissociated from the figural 
and coordinate representations of the screen looking for a generalized rule. They used 
the microworld to express the relationship formally and appreciated the new behavior 

The students found out that 
the intersection points follow 
the three rules. 
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of the clown figure while dragging the slider. In this process, experimentation with 
covariation and periodicity led to the conjecture of some properties of the sinusoidal 
function and subsequently to a search for a generalized relationship. This relationship 
was then expressed formally in order to fix the ‘bug’ in the clown tool. This involved 
the expression of one of the variables of the procedure in relation to the other, the 
relation being a sinusoidal function. In this sense, formal expression of mathematical 
ideas was just part of a representational repertoire which the students put to use in 
their experiments.  

CONCLUSION 

The episodes reported above showed that in the environment of the ‘clown’, the 
students used the computational tools in order to develop new practices of 
experimentation and to generate meanings for periodical covariation (Lobo daCosta 
& Magina, 1998). They were involved in a developmental process of constructing 
meanings for the periodical change which were expressed in the environment as 
situated abstractions (e.g. the form of the curves) or as tools of control of the 
environment (variation tool with step 720 or 360). One other abstraction of this kind 
was that the students initially perceived of the shaped curve as a simple welding of 
individual parabolas. These were situated in the sense of Noss and Hoyles (1996), 
since they emerged directly from the experience at hand and were dependent and 
bound to that experience. From the moment however when their first abstractions 
were refuted, as in the case of the linear relationship, the students seemed prepared 
for further refutations and their attachment to the tools and the experiment at hand 
seemed weaker. They seemed more ready to dissociate for the concrete tools and 
think about the relationships in the abstract. A first example was meanings involving 
the division of the range of the one variable in equal intervals (period) and the notion 
of continuous extension of the range in both directions with the application of rules of 
covariation having the form “many in one”. Finally, the experimentations with the 
figural and the dynamic coordinate variation representations led the students to 
conjecture on a generalised relationship between the two variables and by expressing 
it formally to change the code to fix the procedure of the animated clown. The 
research suggests that this kind of constructionist experimental activity with the use 
of carefully designed representational registers for covariation may provide students 
with the means to mediate (in the sense of Mariotti, 2000) mathematical ideas leading 
to the deeper understanding of periodicity which they seem to lack (Dreyfus and 
Eisenberg, 1980). Their experiences related to covariation and periodicity were 
crucial in that process. The study therefore agrees with Lobo daCosta and Magina’s 
proposal for experimentation with periodical change.  
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THE SALIENCE OF VERTICAL PARTITIONING 
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Dedication: In grateful memory of my sister Georgia Kyriakidou. 

A four-month constructivist teaching experiment with a class of 22 fifth graders was 
carried out in order to explore and study how children could use rectangular area 
models to represent fractions. The teacher’s narratives along with students’ written 
work and transcripts of audio-taped class discussions constitute the primary data 
source for analysis. This study provides strong evidence that vertical partitioning 
occupies a salient position in children’s perception of proper fractions. It also 
describes children’s attempts to articulate their inner experience as they move from 
conception to formal concept. 

INTRODUCTION 

Gusev and Safuanov (2003) challenge pedagogical psychologists’ traditional premise 
that child’s thinking develops sequentially from initial visual experiences to 
conceptual forms. Their main argument against pedagogical psychology is that 
thinking in images has an independent role in the intellectual development of pupils 
and is not replaced but be transformed into the superior forms of conceptual thinking. 

The latter opposition is not surprising. ‘Psychology is plagued by seeking 
morphisms between the material world and the inner world of experience’ (Mason, 
1987a, p. 213). This generates a series of questions about the existence of mental 
images or the reliability of mathematics representations whereas little attention is 
given to how students can be helped to appreciate the power and role of 
mathematics images (Mason, 1987a). The important implication here is to draw our 
attention not so much “on the images” (either mental or concrete) but “through the 
images”. Paraphrasing Mason (1987b), I argue that mathematics images ‘are not 
mere marks on paper but indicate or speak to entities that are almost palpable, 
almost substantial’ (p. 74). 

In a topic such as fractions where ‘there is no scarcity of documentation of the 
complexity of fraction ideas and the difficulties children have in building a 
meaningful understanding of them’ (Maher, Martino, & Davis, 1994, p. 209), 
training   students to discern the characteristics of their own images of fractions and 
encouraging them to speak directly from them sounds more promising than 
dragging them directly into formal rules or, even worse, into our own way of 
interpretation. The current paper describes how a class of fifth graders use the area 
model as a tool for representing proper fractions. Particular attention is drawn to 
students’ inclination towards vertical or horizontal partitioning. 
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THEORETICAL BACKGROUND 

Mental models such as the area model, the number line or the circle are important 
tools for mathematical problem solving and insight (Keijzer & Terwel, 2003). Such 
models can accompany a symbolic development, since, by virtue of their 
concreteness, they can function as essential components ‘for creating the feeling of 
self-evidence and immediacy’ (Fischbein, 1987, p. 101). However,  Perkins and 
Unger (1999) point out that the possession of a model is not sufficient. The model 
needs to “come to mind in the moment” when it is appropriate. Against this 
background and given research reports documenting a considerable gap between 
practical experiences and formal calculations with fractions (Ma, 1999; Thompson & 
Saldanha, 2003), the question arises as to which models are most suitable for the 
representation of fractions?  

The value of the rectangular area model as a tool for scaffolding the meaning of 
fractions lies in the multidimensional role area plays in human life. The concept of 
area ‘is not only a mathematical one, which is taught in schools but one which carries 
different cultural dimensions’ (Kordaki & Potari, 1998, p. 314). Area has been used 
since ancient Babylonian times; it is part of our culture both in science and 
technology but also in everyday life (Hirstein, Lamb, & Osborn, 1978). By the 
dialectic relation it establishes between space and numbers, area plays a key role in 
the comprehension of these two worlds (Skemp, 1986; Douady & Perrin, 1986). 
Among other spatial measures such as length and volume, the measure of area plays 
‘a privileged role in the building of multiplicative structures. This from two points of 
view: numbers operate on areas and areas appear as products of lengths’ (Douady & 
Perrin, 1986, p. 253). Due to its close link with the number concept, area is also ‘used 
as an embodiment to introduce other mathematical concepts’ (Kordaki & Potari, 
1998, p. 303).  

The potential learning outcomes from using area models in teaching mathematics are 
readily apparent, especially for a topic like fractions, which ‘are often considered the 
most complex numbers in elementary school mathematics’ (Ma, 1999, p. 55). I 
therefore adopt the suggestion of Kordaki and Potari (1998) that ‘there is a need to 
concentrate on the concept of area to make mathematics alive and relevant’ (p. 313). 

METHOD 

To investigate how primary school children could use the area model when asked to 
represent a proper fraction I followed an approach that extends the ‘constructivist 
teaching experiment’ (Cobb & Steffe, 1983) to the complexity of a public school 
classroom. In this methodology, which is similar to the one described by Cobb, Wood 
and Yackel (1990), teachers also act as researchers by trying to interpret children’s 
actions while constructing mathematical knowledge. An important parameter of the 
constructivist view is that teachers ‘should continually make a conscious attempt to 
‘see’ both their own and the children’s actions from the children’s points of view’ 
(Cobb & Steffe, 1983, p. 85). Children’s mathematical knowledge, on the other hand, 
is personal and depends on the ways that children interpret their experiences, 
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however influenced by the social environment. Through communication with their 
teachers and classmates children articulate their reasoning, exchange views and 
develop mathematical meanings. 

The constructivist teaching experiment is perfectly compatible with my research 
objective because in line with Cobb and Steffe (1983), I believe that the activity of 
exploring children’s construction of mathematical knowledge must involve teaching. 
As Cobb and Steffe (1983) explain, researchers who do not engage in intensive and 
extensive teaching of children run the risk that their theoretical interpretations of 
children’s constructive activities will be distorted to reflect their own mathematical 
knowledge. 

To this end, a classroom teaching experiment was implemented in a primary school 
in Cyprus. The duration of the experiment spanned September to December of 2005. 
The participants were a group of 22 fifth graders (10 boys and 12 girls) taught by the 
author. Because I had to address all the objectives of fifth grade mathematics set by 
the Cyprus national curriculum, I decided to focus only once a week on activities that 
would employ the use of area models in the teaching of fractions. Throughout the 
four months of the experiment, I was in close contact with and supported by 
colleagues in the UK in planning the weekly tasks, reflecting on the students’ 
constructive activities, and discussing further instructional steps. Every week I 
reported my experience in a journal.  The teacher’s narratives along with students’ 
written work and transcripts of audio-taped class discussions constitute the data for 
analysis. 

RESULTS 

As initially stated this paper focuses on how 11-year-olds partition an area model 
when asked to represent a fraction. Teaching episodes quoted here are drawn from 
the teacher’s journal in order to shed light on a hidden tendency towards a specific 
type of partitioning. 

Teaching Episode 1: The first evidence for some sort of preference [13-10-2005]                  

In the short discussion we had this morning I noticed that my students appeared more 
fluent in finding a fractional part of a whole when the rectangle they drew could be 
divided in parts vertically rather than horizontally. For instance, when I drew on the 
board an area model of 20 (5 columns x 4 rows) and asked them to find 3/5 I’ve noticed 
many kids raising their hands spontaneously. When, however, I drew the same rectangle 
but reversed 90 degrees clockwise (4 columns x 5 rows) and asked them the same 
question, the majority of my students seemed stuck. I repeated the same story a couple of 
times and I noticed the same sort of reactions from my audience. 

Teaching Episode 2: Natural inclination versus social conflict [18-10-2005]  

The teacher that day provided a worksheet using area models for numbers 21 (7 
columns x 3 rows), 48 (8 columns x 6 rows), 12 (3 columns x 4 rows), 20 (5 columns 
x 4 rows), 28 (4 columns x 7 rows) and 18 (6 columns x 3 rows). Children were 
asked to represent 1/3 of 21, 2/6 of 48, 1/3 of 12, 2/4 of 20, ¾ of 28 and 5/6 of 18 by 
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shading the appropriate part of the respective area. The area models of numbers 21, 
48 and 20 required horizontal partitioning whereas the rest, required vertical 
partitioning.   

…A quick walk around my students’ tables was enough to stress me out; the majority of 
my 11-year-old pupils as soon as they got their papers started dividing the given 
rectangles vertically even though the tasks did not all imply so. Instead of saying directly 
to them that what many of them did was wrong I asked for their attention and invited 
them to tell me what ¼ of a whole means. Some kids raised their hands and they all 
seemed to agree that one fourth means one out of four equal parts. Then I drew a 
rectangle with an area of 36 [4 columns x 9 rows], and asked them to show me one fourth 
of it. Unsurprisingly, the majority of my audience seemed to agree that one fourth of the 
given rectangle could be represented with the first column shaded. Soon after, I drew the 
same rectangle but reversed 90 degrees clockwise and asked them again to indicate one 
fourth of it. The hands raised up were much less than the previous time so I preferred to 
shade myself the first column and invite them to tell whether what I shaded was ¼ of the 
rectangle. After this reflection, an interesting discussion was initiated among my 
students. Some of them said “yes” and some of them “no”, so I encouraged them to try to 
persuade each other about the correctness of their answer. The “no” group seemed to me 
much more confident than the “yes” group and this is probably why they decided to 
speak first. After a few representatives of the “no” group explained that what I illustrated 
on the board was not a division of the rectangle into 4 equal parts but a division, instead, 
into 9 equal parts, the other group of students started whispering between themselves. 
Some comments I heard were: “Oh, you are right, I was counting the boxes instead of the 
columns” or “I saw number 4 and I thought…”. 

After the brief intervention 11 of the 22 fifth graders at least once altered their way of 
partitioning the area model. All the children who erased their initial drawing, shifted 
successfully from vertical to horizontal partitioning. Ina, for instance, an 11-year-old 
girl, when embarked upon the area model of 21 (7 columns x 3 rows), she 
immediately shaded the first column to represent 1/3. After the class discussion, she 
erased it and shaded, instead, the top row (see Figure 1). She wrote on her worksheet: 
“I first shaded 1 vertical line but after we discussed it I understood it and I shaded 
one row because it is 1/3 whereas the vertical one I did earlier was 1/7”. 

 

 

      Figure 1: Ina’s representation of 1/3 of 21 

Teaching Episode 3: Natural inclination versus social conflict [31-10-2005] 

This morning I decided to give my fifth graders a couple of more story problems and 
invite them to come on the board and draw the appropriate area model. The very first 
scenario I posed was the following: “Georgia has 16 roses. She gave 4/8 of them to her 
mother. How many does she have?” One of my fifth graders (Larkos: all names are 
pseudonyms) volunteered to come on the board and draw an area model representation of 
it. Soon after he finished his drawing (see Figure 2), many kids started raising their hands 
expressing an apparent disagreement. Larkos seemed somehow bewildered; he pointed to 
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the shaded part and said: “this is 4 out of 8”. His comment, however, did not sound very 
convincing to his classmates who continued to raise their hands even more energetically. 
Larkos, then, drew a second area model (see Figure 3). Meanwhile, neither did I say 
anything nor did I allow to the class to interrupt his thinking. 

                    8              8   

       
  
  
          

                          2       
          2
              

 Figure 2: Larkos’ initial representation  Figure 3: Larkos’ second representation 

As soon as he finished his second drawing, Syria shouted aloud from her chair: “What 
are you doing there? You should have divided it into 2 rows, not 4 and then take 4 out of 
the 8 columns”. Syria’s comment came up so spontaneously that Larkos seemed really 
puzzled. I decided to let this chat evolve without interrupting any of the two kids. Larkos 
then said: “Oh, you are right” and turned to me, saying: “It’s because I’m writing on the 
board… that’s why I was confused”. 

Teaching Episodes 4 & 5: Consistent preference to vertical partitioning                   

[16 & 23 – 11- 2005] 

On the 16th of November the teacher provided a worksheet using  three identical area 
models for 100 (10 columns x 10 rows) and asked students to represent ½, 3/5 and 
4/10, respectively. A week later - on the 23rd of November - the teacher wrote in his 
journal: 

I was curious to see if there is any difference when I ask my students to shade a part of a 
given area model and when I ask them to draw the area to represent a part of it for 
themselves. Therefore, I changed the order of the tasks I submitted last week (16th of 
Nov.) and I omitted the rectangular regions - wholes, which they had to shade. 

Table 1 summarizes how the examined 11-year-olds represented ½, 3/5 and 4/10 of 
100 in the presence (16th of Nov.) and in the absence (23rd of Nov.) of an area model. 

Number of fifth graders  Representing ½ Representing 3/5 Representing 4/10 

consistent in vertical 
partitioning 

11 

 

12 13 

consistent in horizontal 
partitioning 

7 4 6 

inconsistent in vertical or 
horizontal partitioning 

4 6 3 

Table 1: Children’s consistency in vertical and horizontal partitioning 
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CONCLUSIONS 

This study has demonstrated the complexity of construing a fraction as part of a 
whole. ‘Construing, or making sense, or getting-a-sense-of some idea takes place in 
the midst of manipulating and expressing’ (Mason, 1987a, p. 210). By manipulating, 
Mason (1987a) means physically moving objects, or drawing diagrams, or 
metaphorically manipulating symbols. Expressing, on the other hand, refers to the 
attempt to articulate ‘some inner experience that is quite possibly fuzzy, vague, or ill 
defined’ (p. 210). In the current study children not only manipulated rectangular area 
models but also tried hard to put into words their internal struggles to represent the 
meaning of the fraction concept. Larkos’ attempts in Teaching Episode 3 to develop 
an area model that would satisfy both himself and his audience (classmates and 
teacher) mirror perfectly Mason’s and Pimm’s (1984) acknowledgment that there are 
big gaps between “seeing” something, being able to “say” something, and being able 
to “record” that saying on paper. 

In order to be of maximal assistance, teachers and researchers need to understand 
how children use representations to make sense of mathematical ideas. This study 
provides strong evidence that vertical partitioning occupies a salient position in 
children’s perception of rectangular area models for proper fractions. Despite the 
teacher’s intentional and, thus, sometimes hard efforts to maintain a neutral stance 
towards all types of partitioning, and the textbook’s equal emphasis on both vertical 
and horizontal partitioning, the majority of the examined 11-year-olds exhibited a 
consistent preference (see Table 1) towards vertical division of rectangular area 
models. This finding, though rarely documented in the literature appears to be in line 
with research findings of the 80s concerning vertical symmetry. Bornstein, 
Ferdinandsen, and Gross (1981), for instance, found that 4-month-old infants 
processed vertically symmetrical patterns faster and more sufficiently than otherwise 
equivalent horizontally symmetrical or asymmetrical patterns. In an analogous study, 
Fisher, Ferdinandsen and Bornstein (1981) examined infants’ discrimination among 
vertically symmetrical, horizontally symmetrical, and asymmetrical patterns. They 
found that infants, as young as four months, could differentiate vertical symmetry 
from asymmetry and vertical symmetry from horizontal symmetry but that infants 
failed to distinguish horizontal symmetry from asymmetry. The latter studies both 
suggest infants’ perceptual advantage for vertical symmetry. 

To the knowledgeable other (the teacher or the researcher) vertical and horizontal 
partitioning of area models presented by different children may appear similar and 
may seem helpful to learners. Children, however, view and use them in different 
ways; they may even find alternative types of partitioning confusing. In Teaching 
Episode 2, for instance, though the two initially opposed groups of children seem to 
agree eventually on a mutually accepted representation, it is not clear whether this is 
an outcome of convincing argumentation or a matter of compromise to an implicit 
social contract. As Lampert (2001) notes, ‘the classroom is the microcosm of the 
larger social world’ (p. 447) where ‘in extreme cases, a teacher’s attempts to initiate 
reflective shifts in discourse can degenerate into a social guessing game in which 
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students try to infer what the teacher wants them to say’ (Lampert & Cobb, 2003,      
p. 241). 

Kaput (1987) argued that by looking at ‘what the characteristics are of particular 
representations’ mathematics educators could determine why those representations 
are ‘effective in some cases and ineffective in others’ (p. 101), and this study 
suggests an example. But the most important outcome of this experience is that 
focusing on children’s inner learning struggles enabled me to notice new aspects of 
my classroom and subsequently begin to modify my own behaviour. 
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DYNAMIC VISUALIZATION AND THE CASE OF 'STARS IN 

CAGES' 

Ilana Lavy 

The Max Stern Academic College of Emek Yezreel, Israel 

 

The present study presents an example of a situation in which university students had 
to solve geometrical problems which were presented to them in a dynamic version. In 
the process of solving the problem, the students used ten different solution strategies 
which were classified into three main categories: distracting, reducing and 
confusing. One student group had to solve the same problem in its non-dynamic 
version. The results received from both groups were compared and analyzed. 
Analysis of the solution strategies and the process of the categorization revealed that 
the percentage of success in both groups was similar and in the case of the given 
problem, the dynamic visual mode of the problem distracted the students' attention 
away from proper handling of the solution of the problem.  

INTRODUCTION  

A great deal of research discusses the advantages of visualization with regard to 
problem solving (Presmeg, 1986a; Presmeg, 1986b; Kent, 2000; Mariotti, 2000; 
Slovin, 2000). Visualization enables a range of ways of thinking, different from 
traditional approaches where formalism and symbolism dominate teaching. Visual 
thought can offer an alternative and powerful resource in learning mathematics. 
Problem representation has been viewed as an important stage of the problem solving 
process (Mayer, 1992), especially in its initial stages (Lowrie & Hill, 1996).  
Research also discusses difficulties which involved imagery with regard to visual 
thinking (Presmeg, 1986a; Presmeg, 1986b): (1) the one-case concreteness of an 
image or diagram may tie thought to irrelevant details, or may even lead to false data. 
(2) An image of a standard figure may induce inflexible thinking which prevents the 
recognition of a concept in a non standard diagram. (3) An uncontrollable image may 
persist, thereby preventing the opening up of more fruitful avenues of thought, a 
difficulty which is particularly severe if the image is vivid. (4) Imagery which is 
vague needs to be coupled with rigorous analytical thought processes if it is to be 
helpful. Distinction should be drawn between difficulties that are intrinsic to 
visualization such as the difficulties described in the previous paragraph and 
difficulties that are extrinsic to visualization such as described in the given task. 
Intrinsic difficulties mean difficulties that emerge as a consequence of visual 
thinking. Extrinsic difficulties mean difficulties that emerge as a consequence of the 
use of certain modes of visual representations of a problem. In case of the given 
problem, questions might be raised as to whether intrinsic and extrinsic difficulties 
have a reciprocal influence on each other. 
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CONTEXTUAL FRAMEWORK AND BACKGROUND 

The present study examines the effect of dynamic representation of a geometrical 
problem given in the interactive environment of the “Microworlds Project Builder” 
on the process of solving the said problem. Hence, a brief survey which includes 
references to the role of visualization regarding problem solving and to the 
environment of the “MicroWorlds Project Builder”(MWPB) is presented. 

Visualization and problem solving. Visualization has an important role in the 
development of thinking and mathematical understanding and in the transition from 
concrete to abstract thinking with regard to problem solving. 

 “Computing technology is making it much more rewarding for mathematics to use 
graphics, and in turn mathematics is showing an increased interest in visual approaches 
to both teaching and research”.  (Zimmermann and Cunningham, 1991 p. 75)  

Presmeg (1986a, 1986b, 1989, and 1992) classified the different types of 
visualization appearing in mathematical activities in general and in problem solving 
in particular: concrete pictorial imagery, pattern imagery, memory images of 
formulae, kinesthetic imagery and dynamic imagery. Visualization is a process of 
construction or use in geometrical or graphical presentations of concepts, or ideas 
built by means of paper and pencil, a computer software or imagination. 
Visualization is important for building a concept image, and helps in understanding 
of concepts (Hershkovitz, 1990). In addition, it is considered in supporting intuition 
and in the learning of mathematical concepts (Dreyfus, 1991). There is a distinction 
between external presentation (signifier) and an internal presentation (signified) of 
concepts (Kaput, 1989; Janvier et al., 1993). The external representations of concepts 
include diagrams, graphs and models and are essential for communication while the 
internal representations of concepts include mental or cognitive models with which a 
person examines and interprets new knowledge. Zimmermann and Cunningham 
(1991) refer to visualization which is computer based. The graphics and the dynamics 
provided by computers enabled visual representation of mathematical ideas and 
concepts. The problem given to the participants in this study was computer-based and 
presented in a visual mode.  

Although researchers pointed out various advantages regarding the use of 
visualization in the process of problem solving, some of them refer to the difficulties 
that might be raised (Arcavi, 2003; Presmeg, 1986a). Dreyfus (1991) denoted that it 
is important to be aware of difficulties that might arise due to improper use in 
visualization, difficulties in reading graphs properly, lack of distinction between the 
geometrical image and its visual presentation. Arcavi (2003) classified the difficulties 
surrounding visualization into three main categories: cultural, cognitive and 
sociological. The cultural category refers to the beliefs and values regarding what is 
mathematically legitimate or acceptable and what is not. The cognitive difficulties 
refer to the discussion regarding the issue of whether visual thinking is easier or more 
difficult. In addition, reasoning with concepts in visual settings may imply that there 
are not always procedurally “safe” routines to rely on and as a consequence this mode 
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of cognition is rejected by students. The sociological difficulties refer to issues of 
teaching. Some teachers find analytic representations, which are sequential in nature, 
to be more appropriate and efficient than visual representations (Presmeg, 1991). 

The “Microworlds Project Builder” environment. Mathematical microworlds that 
were developed in recent years presented a solution to a need for a learning 
environment in which learners can create a common language and be engaged in 
mathematical processes such as generalization, abstraction, problem solving and 
gradual transition from intuitive to formal description of mathematical concepts. The 
present research was carried out in an interactive computerized environment called 
‘MicroWorlds Project Builder”1 which is a Logo-based construction environment. The 
MWPB is an interactive Logo based programming environment consisting of objects 
(i.e. turtle, textbox, button, color and slider) and a set of operations such as changing 
the turtle shape, making it move in different directions with varying speeds and so 
forth. The general aim of the course in which this research was carried out is to expose 
the students to innovative learning/teaching approaches. In this course the students 
interact with activities including major computer science concepts such as objects, 
variables, procedures, functions and recursion through the engagement with 
programming in the Logo language which is taking place in an interactive multimedia 
environment. 

One of the MWPB's objects are the colors. The operation of a programmed color can 
be done in two different ways: (a) by clicking with the mouse on the programmed 
color; (b) by a turtle touching the programmed color. When either of the two options is 
performed, certain commands that were previously programmed for that specific color 
will be executed. For example, one can program the blue color to change the shape of 
the turtle when the turtle touches it, or one can program the pink color to change the 
shape of the current2 turtle when she/he clicks with the mouse on the pink color. In the 
problem presented to the students I used the programmed attributes of the colors. In the 
present study although a new microworld was not developed, I used a simple 
environment which can be viewed as a kind of microworld since it consists of two 
colors (of the shape and of the background), a turtle and simple Logo commands.    

THE STUDY 

The participants. 92 undergraduate university students participated in this research. 
78 of the participants had to solve the problems which were presented in a dynamic 
visualized version while 14 of the students were given the same problems without 
their dynamic visualized version. Most of them were a second or third semester 
students. The research was carried out during 5 consecutive semesters and between 
15 to 20 students participated in each semester. They were all students of the 
computers teaching education department.  

                                           
1 MicroWorlds Project Builder is a product of Logo Computer Systems Inc. (LCSI). For more 
details see the company’s Web site: http://www.microworlds.com 
2 The turtle, which made the last movement or operation on the computer screen, is considered to be 
the current turtle. 
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The tasks – The dynamic visualized version.  

78 students had to solve the following problem: A 
painted circle is drawn on a white background and 
a turtle is posed inside the circle (figure 1). The 
turtle is programmed to move forward one step at a 
time repeatedly, and the color of the background 
(white) is programmed as follows: each time a 
turtle reaches the edge of the circle and touches the 
background, the turtle will make a turn of a certain 
angle (say, for example: right turn (RT) of 1350).  

At the first stage, I addressed the whole class with the following questions: What they 
think will happen when we click on the turtle (make it step forward one step at a time 
repeatedly)?  The students were asked to write down their assumptions first and after 
they had finished, I “activated” the turtle and the students could view the path of the 
turtle. At the second stage, the students copied the problem to their computers and 
had to relate to the following questions: (a) What should the turtle’s initial conditions 
be (regarding his head direction) for never leaving the circle? (b) What should the 
turtle’s initial conditions be (regarding his head direction) for leaving the circle? (c) 
Does the turtle move in a certain path in the circle? Could you describe the path? 

The name ‘stars in cages’ was formed for the symbolization of the turtle’s movement 
(a star shape path) – that for certain initial conditions never leaves the ‘cage’ (circle). 

The non-dynamic version of the problem. The same   
questions as above were given but without the dynamic 
visualization. The questions were written on paper and figure 2 
was added . 

The process of the data analysis. The data included the 
following components: the written assumptions of the students 
before they could view the turtle’s path inside the circle. 

These notes were classified according to the raised assumptions, and the names of the 
students were documented for comparison with their responses to the above questions (a, 
b and c). At the second stage, for both versions of the problem, the students were asked 
to solve the given tasks (a, b and c) and provide a formal proof for their solutions. In 
case they did not succeed in providing a formal proof, they could present informal proof 
and reflect about the difficulties they had during the solution process. With regard to the 
dynamic visualized version of the problem, the analysis of the data consisted of four 
main phases: in the first phase the students’ assumptions were classified according to 
their content and were compared with the answers they provided to the questions they 
were asked. In the second phase the students' solutions (to questions a, b and c) were 
classified according to the solution strategies they used. In the third phase of the data 
analysis, the students' strategies were classified into three main categories according to 
the character of the resulting solution strategies. The fourth phase includes the analysis 
and discussion of the reported difficulties received from the students during the solution 

Figure 1: Visual representation 

Figure 2 
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process and a discussion which refers to the synthesis of the third and the fourth phase 
will be presented. Finally, a comparison between the results received from both versions 
of the problem is presented and analyzed. 

RESULTS AND DISCUSSION 

With regard to the dynamic visualized version, analysis of the students' solutions 
revealed that the majority of them (75 out of 78) did not succeed in providing a 
complete solution including formal proof for the given problem. In their attempts to 
solve the problem, the students used a variety of strategies.  

The students’ assumptions regarding the movement of the turtle – dynamic 

visualized version. As was previously mentioned, the students were asked to raise 
conjectures regarding the turtle’s path inside the circle before they could view the 
turtle’s actual movement on the computer screen. The most common conjecture (70 
out of 78) was that the turtle will make one turn of 1350 and then leave the circle. 8 
students conjectured that the turtle will never escape the circle since each time it 
touches the background, it makes a turn of 1350. At this stage of the discussion, I 
demonstrated to the class the turtle’s motion in the circle: (1) when it moves in a radial 
direction; (2) cases in which it escapes the circle; (3) cases in which its movement is 
parallel to the radial direction. Then I asked the students to try to solve the given 
problem individually; they could use programming and/or geometrical considerations.  

The distribution of the solution strategies used by the students – dynamic visualized 

version. The students’ solutions were then classified into 10 solution categories 
according to the nature of the presented solution (table 1.)  

# strategy No' of students %

1. Descriptive Solution – no proof 21 27% 

2. Referring only to certain moves (private cases) 15 19.2%

3. Using internal instead of external angles 14 18% 

4. Random situation – no regularity in the turtle's movement 10 12.8%

5. Geometrical considerations such as areas and lengths 4 5.2 % 

6. Focusing in the programming rather on the problem 3 3.8% 

7. Solution and a proof 3 3.8% 

8. Focusing on the turtle's location inside the shape 2 2.6% 

9. Referring only to the turning angle of the programmed 
background  

1 1.2% 

10. others 5 6.4% 

 total 78 100%

 Table 1: The distribution of the solution strategies used by the students 
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About the categorization – dynamic visualized version. The above solution strategies 
(except no. 7 and 10) were classified into three main categories according to their 
characteristics. The categories are: distracting, reducing and confusing. Observation 
of the solution strategies 4, 6 and 8 reveals that these strategies originated in a 
situation of distraction. The visual representation of the problem includes additional 
factors that could distract the students’ attention in the process of the problem 
solving. Strategies 6, 8 and 4 demonstrate a situation of distraction. The students 
could not focus on the relevant data for solving the problem; rather they focused on 
peripheral details that distracted their attention and prevented them from arriving at 
the correct solution. The second category which includes strategies 1, 2 and 9 was 
termed 'reducing' since in each of these strategies the students reduced either the 
problem’s question (1 and 2) or the data of the problem (9). Namely, in strategy 2 the 
students referred in their solution only to partial cases of the problem, ignoring the 
rest. In strategy 1 they reduced their solution only to a description of the solution 
process and did not show any attempts of trying to prove their solution. In strategy 9 
the students reduced the data components that should be taken under consideration in 
the process of solving the problem. The third category which includes strategies 3 
and 5 was termed as 'confusing' since in both strategies the students confused 
between geometrical relations and used them in the turtle geometry environment in 
which these relations are different. Namely, in geometry, we refer to internal angles 
when drawing a triangle, while in the turtle geometry environment we refer to the 
external angles when we draw a triangle. In both strategies the students referred to 
internal instead of external angles, their justifications were in fact incorrect.  

Comparison between solution strategies of both versions. With regard to the non-
dynamic version of the problem 64% (9 out of 14 students) handed in an almost 
complete solution. All the 9 students refer to the case in which the object moves in a 
radial direction, and in what conditions the object will escape the circle. Their 
solutions also included a correct graphing description of the object’s path. As to the 
rest of the students (5 out of 14), they handed in incorrect solutions. I was expecting 
that the percentage of success of correct solutions of the dynamic visualized version 
would be higher than that of the non-dynamic version. Actually, if we refer to 
strategies 1,2, and 7 (in table 1: 27%+19.2%+3.8% = 50%) as equivalent to the 
students’ solutions of the non–dynamic version, we can see that the percentage of 
success in the dynamic version is lower than in the non –dynamic one. These results 
raise the question, with regard to this specific problem situation, whether the dynamic 
version has advantages over the non-dynamic one.  

External-visualization and problem solving. From the above results it could be 
concluded that different aspects of visualization of the given problem hampered the 
students during the process of the problem’s solution. Few of the study participants 
referred to the difficulties they had tackled during their solution attempts.  

"The movement of the turtle inside the circle distracted my mind and it was difficult for 
me to transfer its movement to a geometrical problem". 
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"I could not see the connection between the turtle's movement and the related 
geometrical problem and I could not transfer it to the mathematical world – I was 
fascinated by the turtle running inside the circle" 

Here the students refer to the aspect of motion. Most of the geometrical problems the 
students deal with during their studies are static. They usually get a defined list of 
data and a question that has to be answered. In this case, they had to face a problem 
which was presented to them in its dynamic version which they had to transfer to a 
static geometrical problem; to decide what are the relevant data for each case of the 
problem; what are the sub problems included in it, and then to solve each one of 
them. 

"I find it difficult to solve the problem when I don't have a stating point from which the 
turtle stats its path". 

In the above quote the student raises a problem which is connected to the aspect of 
motion, mentioned earlier, and refers to the fact that since the turtle is in a constant 
state of motion, it is hard to decide what the starting point of its movement should be 
when we transfer this dynamic situation to a static problem. In this case the student 
has to decide where and how (the turtle’s head direction) to locate the turtle inside the 
circle before it starts its motion, and part of the students had difficulties regarding this 
decision. 

CONCLUDING REMARKS 

This study demonstrates a situation in which undergraduate university students of 
computer science teaching education were asked to solve a geometrical problem 
represented in two versions: a dynamic computerized version and a non-dynamic 
(pen and paper) version. With regard to the dynamic version, the students used 
various solution strategies during their attempts to solve the problem. These solution 
strategies were categorized into three main categories according to the characteristics 
of strategies used. These categories point at some difficulties affected by the dynamic 
visual representation. Comparison between the solutions received from both versions 
of the problem reveals that the percentage of success in both versions was similar, 
which might lead to the conclusion that the dynamic visualized representation of the 
given problem did not facilitate the process of the problem solving. Some of the 
students had difficulties in filtering the relevant data and as a result failed in solving 
the problem. The data ‘flood’ gave the impression that the problem is constituted 
intrinsically from many sub-problems and as a result some of the solution strategies 
used by some students included reduction of the data components. Although the act 
of reduction can often be used as a constructive strategy in the process of problem 
solving, in this case, it caused situations in which the students failed in solving the 
problem. 
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MATHEMATICS, GENDER, AND LARGE SCALE DATA: NEW 
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It is now frequently argued that intervention programs aimed at improving schooling 
for females have been so successful that males, as a group, should be perceived as 
disadvantaged: in terms of educational participation, adjustment to schooling, and 
achievement in most subjects - including mathematics. In this paper we examine two 
large data bases for possible gender differences: the Australian Mathematics 
Competition [AMC] – for which participation is voluntary - and the mathematics 
course in the Victorian Certificate of Education [VCE] most frequently used as a 
prerequisite for entry into many tertiary courses. Greater male participation was 
found for both tests. Gender differences at the high performance levels also favoured 
males, but were more marked for the AMC.  

INTRODUCTION 

Historically, mathematics has been viewed as the preserve of white, middle-class, 
males. Over the past three decades in particular, stringent efforts have been made in 
many different countries to re-dress this perception (Leder, 2001). Intervention 
programs aimed at improving female participation rates and attaining equity in levels 
of achievement have flourished, with variable results (Forgasz & Becker, 2005; 
Leder, Forgasz, & Solar, 1996). For example, in a recent publication, Gallagher and 
Kaufman (2005) wrote that “the one consistent finding has been the performance gap 
in standardized tests of mathematics favoring males … even when comparing scores 
for students … who have taken the same math courses” (p. ix). At the same time they 
noted that “research examining gender differences in classroom grades … has 
generally reported no differences, or differences favoring females, even in high-level 
mathematics courses” (p. ix).  

In recent years evidence of gender differences in performance has become more 
equivocal, with females at times reported, and perceived, as outperforming males 
(Forgasz & Leder, 2000). Indeed, in some quarters it is now argued that intervention 
programs aimed at improving mathematics learning for females have been so 
successful that males, as a group, should now be perceived as disadvantaged: in terms 
of educational participation, adjustment to schooling, and achievement in most 
subjects - including mathematics e.g., Department of Education, Science and 
Training (2003), Freeman (2004), and Lingard and Douglas (1999).  

DATA SELECTION 

In a recent review of research on mathematics teacher education, Adler et al. (2005) 
observed that small-scale qualitative research now predominates, pointed to “a 
notable absence of large scale studies” (p. 370), and argued that findings from the 
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latter are needed for testing hypotheses. These comments are equally pertinent for 
research in mathematics education more generally.  

Through a careful interrogation of large scale data sets – administered to American 
students and collected primarily in the 1970s and 1980s – Chipman (2005) effectively 
illustrated the complex and contradictory nature of gender differences in mathematics 
participation and performance, and cited, among a range of other factors, differences 
in performance patterns on compulsory and optional tests. Some years earlier, 
Lingard and Douglas, (1999, p. 98) already pointed to the continuing need for 
“nuanced and careful readings … (of relevant data) to understand the complexity of 
the picture of male/female differences (and similarities) in educational performance”. 

In this paper we draw on the approach used by Chipman (2005) and advocated by 
Lingard and Douglas (1999). We examine current gender differences in participation 
and performance in mathematics by focusing on data from two large scale 
mathematics tests for students in grade 12 - one voluntary, the other part of the 
formal grade 12 examination.  

THE STUDY 

Records from two large data sources, the Australian Mathematics Competition 
[AMC] and the Victorian Certificate of Education [VCE] (Victoria is the second 
most populous state in Australia), in the years 2002-2004 were used to examine the 
following questions: 

(1) Are there gender differences in participation in mathematics by senior high school 
students, i.e., students in grade 12?  

(2) Are there gender differences in patterns of performance? 

(3) If gender differences are found, are they consistent for both tests? 

The sample 

The sample comprised students in grade 12 participating in the relevant (Senior) 
Australian Mathematics Competition [AMC] paper and students enrolled in a grade 
12 mathematics subject, for the years 2002-2004. Space constraints do not allow 
comparisons for all three grade 12 mathematics subjects available. We focus on 
students enrolled in the VCE Mathematical Methods paper because of its importance 
for entry into many tertiary courses, similarities in the proportions of males and 
females entering the AMC (see Table 1), and similarities in the format and content of 
the two tests (Australian Mathematics Trust, 2005; VCAA, 2005). To allow 
appropriate comparisons to be made, the numbers of students in grade 12 across 
Australia and in Victoria for the years examined are also provided (See Table 1). 

The mathematics tests 

As described above, the AMC and the VCE served as our main data sources. Both 
attract large numbers of students each year. Participation in any level of the AMC is 
voluntary and the results obtained on the paper have no direct effect on future 
educational or career pathways. In contrast, the VCE is a high stake examination, 



Leder, Forgasz & Taylor 

 

PME30 — 2006 4 - 35 

compulsory for students enrolled in grade 12 (the final year of high school for 
students across Australia) who wish to proceed to university as VCE results are 
converted into a score used for tertiary entrance. More detailed information about the 
AMC and about the Victorian VCE mathematics subject of interest to this study is 
presented in the next sections. 

The Australian Mathematics Competition [AMC] 

The first AMC was conducted in 1978, with 60,000 students from some 700 schools 
entering the competition. By 2004 over 340,000 students from more than 2,450 
schools throughout Australia participated in the competition, i.e., about one-quarter 
of Australia’s secondary school students. The consistently high student participation 
rates are clear testimony of the value assigned by schools to the AMC. 

There are now five separate papers in the AMC. Collectively these cover the school 
years from grade 3 to grade 12. Each paper comprises 30 multiple choice questions. 
All items, devised by a committee drawn from experienced teachers and university 
academics from within and beyond Australia, are moderated for syllabus suitability. 
For the purposes of this article, only the data from the grade 12 entrants (those who 
sat for the Senior AMC paper) are of interest. These students invariably include 
mathematics among the subjects studied that year. 

The AMC’s organisers aim to reward outstanding performance as well as giving 
“average” students a sense of achievement. Thus a range of awards are distributed: 
Prizes (to the top approximately 0.3 % of students within their geographic region and 
grade level), High Distinctions (to students in the top 2% of their grade level and 
geographic region and who have not received another award), Distinctions (students 
in the top 15% of their grade level and geographic region and who have not received 
a higher award), Credits (students in the top 50% of their grade level and geographic 
region and who have not received a higher award), and a Participation Certificate 
(students who have participated in the AMC but have not received a higher award). 

Until the 2002 paper, all incorrect responses to items attracted a penalty. That year a 
new scoring system was introduced so that students who attempted the last 10 (and 
most difficult) questions on the paper were not penalized if a response was incorrect.  

The Victorian Certificate of Education [VCE] 

For the years 2002-2004 three mathematics subjects were offered at the grade 12 
level in the VCE: Specialist Mathematics, Mathematical Methods, and Further 
Mathematics. Of these, Specialist Mathematics is the most difficult, Mathematical 
Methods is studied by the largest number of students and is considered the 
necessary pre-requisite for most higher education programs requiring mathematics 
as a background (including most science and engineering courses), and Further 
Mathematics is the least demanding. For each of these subjects, a final grade is 
determined by combining the results of three assessment tasks: a school-assessed 
task and two examinations – the first comprised of multiple-choice and short answer 
items; the second of problems requiring extended written solutions. The 
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achievement levels for each task are reported separately (e.g., Victorian Curriculum 
and Assessment Authority, 2004), The highest grade level attainable is A+, 
followed in decreasing order by: A, B+, B, C+, C, D+, D, E+, E and UG 
(ungraded). 

RESULTS 

In the first instance, the findings are reported separately for each research question. 

(1) Are there gender differences in participation in mathematics by senior high 

school students, i.e., students in grade 12?  

Participation data across Australia for grade 12 and for the Senior (grade 12) AMC 
paper, and for all grade 12 students and VCE Mathematical Methods enrolments for 
the years 2002-2004 are shown in Table 1. 

 2002 2003 

N(students) M F Total M:F M F Total M:F
Aust Gr.12 91959 101713 193672 .90 92396 101220 193616 .91 
Senior AMC 13158 11398 24556 1.15 12528 10347 22875 1.21
% in Senior AMC 14.3% 11.2% 12.7% 1.28 13.6% 10.2% 11.8% 1.33
Vic Gr 12 22977 26554 49531 0.87 23468 26409 49877 0.89
Vic Maths Meths 9586 8318 17904 1.15 9797 8349 18146 1.17

 2004     

N(students) M F Total M:F     

Aust Gr.12 92108 101167 193275 .91     

Senior AMC 11149 8941 20090 1.25     

% in Senior AMC 12.1% 8.8% 10.4% 1.37     

Vic Gr 12 23543 26432 49975 0.89     

Vic Maths Meths 9769 8216 17985 1.19     

Table 1: Australia: Grade 12 and Senior AMC enrolments overall and by gender, and 
Victoria: Grade 12 and Mathematical Methods enrolments overall and by gender 

From Table 1 it can be seen that in each year, 2002-2004, more females than males 
were enrolled in grade 12 Australia-wide and in Victoria, but more males than 
females entered the Senior (grade 12) AMC paper and studied the VCE subject, 
Mathematical Methods. The ratio of male to female participation (M:F) in the Senior 
(grade 12) AMC paper increased steadily over that period, from 1.28 to 1.33 to 1.37. 
A small increase was also noted for male participation in the VCE Mathematical 
Methods enrolments with M:F ratios increasing from 1.15 to 1.17 to 1.19. Although 
females remained in the majority overall, there was also a small increase in male 
participation in the VCE, with the M:F ratio increasing from 0.87 to 0.89. 
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(2) Are there gender differences in patterns of performance? 

Achievement data for the Senior (grade 12) AMC paper are shown in Table 2.  

2002 N within merit category % within gender 

 M F All N - M:F %M %F %All % - 
M:F 

Prize 75 20 95 3.75 0.57 0.18 0.39 3.25 
HD 329 95 424 3.46 2.50 0.83 1.73 3.00 
D 2325 1133 3458 2.05 17.67 9.94 14.08 1.78 
C 4985 3829 8814 1.30 37.89 33.59 35.89 1.13 
Participation 5444 6321 11765 .86 41.37 55.46 47.91 0.75 
Totals 13158 11398 24556 1.15 100

% 
100
% 

100%  

2003 N within merit category % within gender 

 M F All N - M:F %M %F All% % - 
M:F 

Prize 77 24 101 3.21 0.61 0.23 0.44 2.65 
HD 307 111 418 2.77 2.45 1.07 1.83 2.28 
D 2089 1141 3230 1.83 16.67 11.03 14.12 1.51 
C 4576 3399 7975 1.35 36.53 32.85 34.86 1.11 
Participation 5479 5672 1115

1 
.97 43.73 54.82 48.75 0.80 

Totals 12528 10347 2287
5 

1.21 100
% 

100
% 

100%  

2004 N within merit category % within gender 

 M F All N - M:F M% F% All% % - 
M:F 

Prize 57 7 64 8.14 0.51 0.08 0.32 6.53 
HD 268 87 355 3.08 2.40 0.97 1.77 2.47 
D 1906 884 2790 2.16 17.10 9.89 13.89 1.73 
C 4068 2951 7019 1.38 36.49 33.01 34.94 1.11 
Participation 4850 5012 9862 .97 43.50 56.06 49.09 0.78 
Totals 11149 8941 20090 1.25 100

% 
100
% 

100%  

Table 2: 2002-2004: AMC (Senior) paper – achievement by merit category, gender, 
and M:F within merit category (N - M:F), and within gender cohorts (% - M:F)   

The data in Table 2 reveal that in each of the years 2002-2004 more males than 
females gained the three highest awards (Prize, High Distinction, and Distinction) 
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both absolutely and proportionately. For example, in 2002, 329 males and 95 females 
(M:F = 3.46) were awarded a High Distinction. In terms of within gender cohort 
proportions, 329 represented 2.5% of all males, and 95 represented 0.83% of all 
females (M:F = 3.0) 

Achievement data from the 1st (largely multiple-choice format) Mathematical 
Methods examination for 2002-2004 are shown in Table 3. These data were selected 
for analysis because the paper’s multiple choice format was comparable to that of the 
AMC. Only results for the first four achievement levels (A+ to B) are shown. These 
collectively represent some 50% of examinees and are thus most relevant for 
comparison with the AMC data.  

2002 2003 

Grade M %1 F %1 All % M:F M % F % All % M:F

A+ 1159 12 838 10 1997 11 1.2 1162 12 883 11 2045 12 1.09
A 1101 12 1046 13 2147 12 0.9 1297 14 1096 13 2393 14 1.08

B+ 1316 14 1170 14 2486 14 1 1406 15 1268 16 2674 15 0.94
B 1526 16 1428 17 2954 17 0.9 1488 16 1368 17 2856 16 0.94

2004 

Grade M % F % All % M:F

A+ 1102 12 793 10 1895 11 1.2 

A 1306 14 1030 13 2336 13 1.1 

B+ 1512 16 1394 17 2906 17 0.9 

B 1407 15 1194 15 2601 15 1 
1 Within male/female cohort percentages. For total cohort numbers, see Table 1. 

Table 3: VCE Mathematical Methods achievement data (multiple-choice item 
examination) by gender (adapted from data downloadable from VCAA website: 
www.vcaa.vic.gov.au) 

The data in Table 3 indicate that in each of the years 2002-2004, more males than 
females were awarded each of the four achievement levels, (e.g., in 2003, 1406 
males and 1268 females were awarded B+). However, with respect to their gender 
cohort representations within the subject, it was only at the A+ level in 2002-2004, 
and at the A level in 2003 and 2004 that a higher proportion of males than females 
was awarded the particular achievement grade. At the other achievement levels, the 
proportions were either the same (M:F = 1) or a higher proportion of females 
achieved the particular grade (M:F < 1). (It may be of interest for readers to know 
that greater numbers and higher proportions of males than females also achieved the 
A+ level in the two other assessment tasks for Mathematical Methods in 2002-2004. 
Presentation and analyses of these data are, however, beyond the scope of this 
paper.) 
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(3) If gender differences are found, are they consistent for both tests? 

As is apparent from the discussion above, on balance the answer to this question is 
“No”. For the period 2002-2004, there were more males than females – both 
numerically and in relation to their within gender cohort proportions – who achieved 
at the highest levels in both the AMC and the VCE Mathematical Methods multiple-
choice examination. On multiple-choice format tests males continue to surpass 
females, at least at the very highest levels of achievement at the grade 12 level.  

The evidence presented, however, reveals that males appeared to be much more 
successful at the highest levels of achievement than females on the Senior AMC 
paper than on the multiple-choice examination of VCE Mathematical Methods.  

Several explanations can be postulated to explain these differences in the patterns of 
achievement. First, the AMC still has sections (the first 20 questions on the paper) 
that include penalty scoring. Males have been found to be greater risk-takers than 
females and to be less likely to leave blanks in multiple-choice situations (e.g., Leder 
& Forgasz, 1991). A second explanation may be that females may not take the AMC 
as seriously as males, putting more effort into their studies in their final year of 
schooling. These, or alternate explanations, can be tested effectively through 
interviews. These data were not part of this study. 

FINAL WORDS 

The data reported here indicate that retention rates in the final year of secondary 
schooling are higher for females than for males Australia-wide. Yet more grade 12 
males than females engaged in formal (VCE) and informal (AMC) mathematical 
endeavours. At the highest levels of achievement, males outperformed females in 
both of the tests monitored, whether comparisons were made with or without 
adjustment for the differences in cohort sizes. Male dominance was more marked and 
more consistent for the voluntary AMC than for Mathematical Methods, the 
important VCE gate keeping subject. From an equity perspective, persistent 
differences in performance remain of concern. Careful monitoring of large scale data 
continues to be important for precise descriptions of gender differences in 
mathematics participation and performance but more fine grained explorations are 
needed to understand why these differences persist. 

Acknowledgement We wish to thank Toni Paine for her help in extracting the AMC data. 
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EVALUATION AND RECONSTRUCTION OF MATHEMATICS 

TEXTBOOKS BY PROSPECTIVE TEACHERS 

Kyung Hwa Lee 

Korea National University of Education 

 

This paper provides an analysis of prospective teachers’ evaluation and 
reconstruction of mathematics textbooks. Thirty-four prospective teachers 
participated in the three-hour lecture and discussion for 15 weeks. Data consisted of 
final reports written by the prospective teachers, interviews and lecture observations. 
The purpose of this study is to grasp the process in which prospective teachers, based 
on the study of Kulm et al. (2000) and of Shield (2005) on the evaluation of textbooks 
and the researches related to analysis by Kang & Kilpatrick (1992), Dowling (2001), 
and Herbst (1997), establish their own evaluation and analysis method of textbooks. 
In addition, this research intends to identify the process in which they reconstruct 
textbooks based on the results of their analysis. 

INTRODUCTION 

Ball (2003) insists that we need better insight into the ways that materials and 
institutional contexts can either assist or impede teachers’ efforts to use mathematical 
knowledge as they teach. She also suggests to consider questions such as how 
teachers’ guides can be crafted to provide opportunities for teachers to learn 
mathematics, how they can be designed such that teachers understand the 
mathematical purposes pertinent to an instructional goal, how those guides can be 
designed to help teachers use their mathematical knowledge as they prepare lessons, 
make sense of students’ mistakes, and assess students’ contributions in a class, etc. 
Kulm et al. (2000) presented a method to evaluate mathematics textbooks based on 
the detailed standards of the statement of objectives, suggestion and development of 
contents elements and the evaluation processes, etc., and the data earned from the 
comparison and evaluation of various textbooks. Shield (2005), starting from the 
achievement of Kulm et al. (2000), offered the process of pertinently transforming 
specific contents elements in a curriculum into the knowledge in a textbook and, 
based on which, the way to evaluate textbooks. In a situation where various kinds of 
mathematics textbooks are being published, it is a part of the specialty of a 
mathematics teacher to decide on which standards he would apply in choosing and 
using a textbook.  

Kang & Kilpatrick (1992) analysed didactic transposition of mathematics textbooks 
and identified potential extremes in the didactic phenomena. Kang(1990) elaborated 
the process of the construction of school mathematics as the body of knowledge 
declared by mathematics educators. Dowling (2001) analysed mathematics textbooks 
in a sociological perspective and presented an interpretative framework that exist 
between teachers and students, and between students. Herbst (1997), through the 
analysis of number-line metaphor found in mathematics textbooks, showed the 
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mathematical discourse of a textbook as an environment where one can find 
mathematical discourse that is subject to a regime, possibly different from official the 
discourse of mathematicians. The ability to analyse a textbook in diverse perspectives 
is another part of the specialty of a mathematics teacher.    

The purpose of this research is to grasp the process in which prospective teachers, 
based on the study of Kulm et al. (2000) and of Shield (2005) on the evaluation of 
textbooks and the researches related to analysis by Kang & Kilpatrick (1992), 
Dowling (2001), and Herbst (1997), establish their own evaluation and analysis 
method of textbooks. In addition, this research intends to identify the process in 
which they reconstruct textbooks based on the results of their analysis. 

PROCEDURES  

Thirty-four prospective teachers participated in the three-hour lecture and discussion 
for 15 weeks in the fall of 2005. In the first 10 weeks, they confirmed the contents of 
the studies of Kulm et al. (2000), Shield (2005), Kang & Kilpatrick (1992), Dowling 
(2001), and Herbst (1997) through lecture and discussion of illustrated materials. And 
for five weeks thereafter, they tried the evaluation and analysis of Korean textbook 
A, Korean textbook B and teacher’s guides for the 8th grade students. A total of 10 
teams, which consisted of 3 or 4 people, evaluated, analysed and announced the 
results thereof, and then were asked to criticize the attempts of each team and draw 
significant conclusions. Discussion among team members during the preparation of 
the announcement was recommended; in most cases, they prepared the arranged 
version of the contents discussed, sent it to the e-mail account of the researcher to 
receive his criticism three or four times. In a website, the announced materials, 
related theses, contents of discussion of each team were uploaded to be shared, and 
free discussion on the website was also made possible. After 15 weeks, they finally 
prepared the report on the results of their evaluation and analysis and the plan for 
their own reconstructed version, and submitted them. Three prospective teachers of 
P1, P2 and P3 participated in the interview, which was held based on their final 
reports. The announcements, discussions of prospective teachers during the 5 weeks 
and the interviews with the three prospective teachers were recorded and analysed. 
The researcher looked at a group of prospective teachers interacting, connecting 
ideas, and building their understanding together as Droujkova et al. (2005) properly 
addressed.     

In this research, the evaluation of mathematics textbooks was made, applying the 
seven categories suggested by Kulm et al. (2000), which are ‘Identifying Sense of 
Purpose,’ ‘Building on Student Ideas about Mathematics,’ ‘Engaging Students in 
Mathematics,’ ‘Developing Mathematical Ideas,’ ‘Promoting Student Thinking about 
Mathematics,’ ‘Assessing Student Progress in Mathematics’ and ‘Enhancing the 
Mathematics Learning Environment.’ Utilizing all the 24 evaluation standards under 
the 7 categories, High, Medium and Low were given the scores of 3, 2, and 1, 
respectively, and the average was produced. Analysis of textbooks was made by team 
applying the selected method after consulting the contents of the researches 
conducted by Shield (2005), Kang & Kilpatrick (1992), Dowling (2001) and Herbst 
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(1997). All the prospective teachers were asked to try reconstructing the textbooks 
based on the results of evaluation and analysis and submit it.  

RESULTS AND DISCUSSION  

The average scores of evaluation results by category of the two textbooks on which 
prospective teachers submitted the report are as follows:  

Category A B 
Identifying a Sense of Purpose 1.6 1.7 

Building on Student Ideas about Mathematics 1.0 1.1 
Engaging Students in Mathematics 1.1 1.3 

Developing Mathematical Ideas 2.4 2.3 
Promoting Student Thinking about Mathematics 2.0 1.8 

Assessing Student Progress in Mathematics 2.3 2.2 
Enhancing the Mathematics Learning Environment’ 1.6 1.4 

Table 1: Evaluation of mathematics textbooks by the prospective teachers 

As shown in Table 1, the prospective teachers gave similar ratings to the two 
textbooks and they particularly gave low ratings on the categories of ‘Building on 
Student Ideas about Mathematics,’ ‘Engaging Students in Mathematics’ and 
‘Enhancing the Mathematics Learning Environment’ (see shaded parts in Table 1). 
As to ‘Developing Mathematical Ideas’ and ‘Assessing Student Progress in 
Mathematics,’ both the two textbooks were given relatively high ratings.     

Building on Student Ideas about Mathematics 

According to Kulm et al. (2000), this category consists of the evaluation standards of 
‘Specifying Prerequisite Knowledge,’ ‘Alerting Teacher to Student Ideas,’ ‘Assisting 
Teacher in Identifying Ideas’ and ‘Addressing Misconceptions.’ The reports of 
prospective teachers showed that the two textbooks explicitly deal with what 
prerequisite knowledge of students is required. However, the textbooks, according to 
the report of the prospective teachers, made almost no attempt to identify the 
misconceptions students might have, or a certain mathematical knowledge or 
functions they are presumed to have developed based on common knowledge. 
Particularly, to the question of ‘Does the material include suggestions for teachers to 
find out what their students think about familiar situations related to a benchmark 
before the mathematical ideas are introduced?”, both the two textbooks were judged 
not to provide good materials to teachers.  

The prospective teachers’ interpretation of this was, since traditional approach has 
been aiming at an “efficient and correct method,” a diverse, intuitive or experimental 
approach has rarely been adopted. This seems to be a problem common to most of 
Asian textbooks where compact-style textbooks are generally pursued. On the other 
hand, the prospective teachers agonized over to what extent a textbook should reflect 
the ideas and functions students in general might have. Also, the argument over 
whether those ideas are as numerous as the number of the students was continued. 
Eventually, the argument was settled after one of the ten teams conducted a research 
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on misconceptions, with the students attending the middle school attached to the 
college of the prospective teachers as subjects, classified the types of misconceptions 
and announced them. And they reached the conclusion that since the misconceptions 
students might have had already been studied, if a research was conducted with some 
students using a modified examination paper, results that can be classified into types 
to an extent can be obtained, and this need to be reflected in textbooks whenever 
necessary. 

Engaging Students in Mathematics 

The reports of prospective teachers showed that the two textbooks explicitly deal 
with what prerequisite knowledge of students is required. However, the textbooks, 
according to the report of the prospective teachers, made almost no attempt to 
identify the misconceptions students might have, or a certain mathematical 
knowledge or functions they are presumed to have developed based on common 
knowledge. Particularly, to the question of ‘Does the material include suggestions for 
teachers to find out what their students think about familiar situations related to a 
benchmark before the mathematical ideas are introduced?”, both the two textbooks 
were judged not to provide good materials to teachers.  

As sub-standards of this category, Kulm et al. (2000) suggested “Providing Variety of 
Contexts” and “Providing Firsthand Experiences.” The prospective teachers judged 
the domestic textbooks fail to offer diverse problematic situations. For example, in 
the unit of probability, most of the situations in problems were composed of coins, 
dice, card, etc.; and those cases where students were given the opportunity to collect 
materials through experiments were judged to be rare. Also, teaching an outer center 
or inner center of triangle unduly relied on deductive explanation; and seemed to be 
lacking the attempts to make students feel that mathematics is related to the realities 
of life.    

The prospective teachers displayed the highest interest in providing diverse 
problematic conditions, particularly firsthand experiences; and from this high 
interest, the major viewpoint in reconstructing textbooks was drawn. For example, 
they thought coins or dices are not appropriate as an introduction to experimental 
probability and tried reconstruction using a game of Yut, a local folk game, as the 
problematic situation. A yut is formed with a round face and a flat face, and unlike a 
coin, the two faces are not symmetrical, which means they do not have the same 
possibility. Therefore, their theory goes since students can compare the numerical 
difference in possibility of the two faces only after going through sufficient number 
of experiments, using Yut enables them to start with the meaning of experimental 
probability. In the case of the inner center and outer center of a triangle, they 
suggested imposing the problematic situation of restoring cultural artefacts as a 
starting point. They argued that to restore the original form of an artefact that is 
broken, the effort to first find out the outer center by drawing a triangle has to be 
made, and accordingly, through the effort, the students can experience how 
mathematics can be applied practically. 
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Enhancing the Mathematics Learning Environment 

The prospective teachers insisted that a teacher’s guide has to offer a variety of 
information on the backgrounds of the contents to be taught, and judged the current 
teacher’s guides fall far short in this aspect. They thought though the guide contains 
knowledge about the history of mathematics and the knowledge of various fields 
other than mathematics, the level of knowledge offered was no better than 
superficial.        

According to them, a positive change has been detected in that they accommodate the 
diverse opinions of students and take them as subjects of discussion, not 
acknowledging only those that are suggested in textbooks as truths. However, they 
argued this need to be pursued more positively. Some of the prospective teachers 
pointed out that textbooks are being written in such a way that is more favourable to 
male students: in many cases, the problematic situations offered in the textbooks are 
the ones related to the fields of sports or science, which may make the problem more 
difficult for female students to understand. Also, some participants noted that the 
explanations given in textbooks are overly compressed and make learning more 
difficult for slower students. 

Case of P1 

P1, a prospective teacher, used a notion related to extreme teaching phenomenon 
that was presented in Kang & Kilpatrick (1992) as a major tool in analysing 
textbooks. She maintained that the series of contents in the textbooks that express a 
repeating decimal as a fraction after indicating a rational number as a decimal and 
classifying a decimal into a finite decimal, an infinite decimal and a repeating 
decimal, is treated in an unstable manner, which leads teachers to reach the 
phenomenon of extreme teaching. The following is a part of conversation between 
the researcher and P1:       

1   R: Do you think the textbook caused the phenomenon of extreme teaching?  
2   P1: Yes. If the process of converting a repeating decimal into fraction was 
3  clearly expressed in mathematical viewpoint, it does not matter. But the  
4  demonstration suggested in the textbooks applied the measuring system for  
5  the finite to the infinite without providing any justification. 
6   R: How is that related to the phenomenon of extreme teaching? 
7   P1: Because the teacher ends up without underlining the principle or the  
8  meaning of demonstration emphasizing the formula which alters it to a  
9 fraction. 

The prospective teacher P1 also explained why the current textbooks make such an 
approach: there is no alternative in order to introduce an irrational number to the 
middle school students who are not aware of the notion of utmost limits. In the case 
like this where the mathematical exactness is not satisfied, she argued, textbooks 
should give students opportunity to think and let them know they will later have 
another chance to learn it more clearly.  
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Case of P2 

P2, a prospective teacher, analysed the two textbooks in the light of the question 
Dowling asked in 2001, “What are the relationships between mathematics and non-
mathematical practices such as shopping?”  According to the report of P2, A and B, 
the two mathematics textbooks, used the market, bank, sports stadium, volunteer 
activity as contexts to show mathematics are used in ordinary life, and tried to reflect 
a mathematical system, a teaching objective,  in each of those contexts. However, he 
felt the effort of naturally linking mathematics and non-mathematical practices failed 
in most cases; on the contrary, they caused the students to feel that mathematics is far 
from their everyday life. In the interview with the researcher he told the researcher 
like the following:       

When we buy things in the market, we happen to face various discounting methods that 
even change at the will of the merchant at times. More importantly, we do not usually 
meet the situation where we have to go through a complex process of calculating the 
prices. In real life we confirm the prices of each article to buy one by one and then 
calculate the money to spend, rather than produce the price of an article by establishing 
simultaneous equations. Everything is done in a reverse order only in the mathematics 
textbooks. If the textbooks rely too often on the handling methods not used in everyday 
life, students will doubt all the situations depicted as every day life in their mathematics 
textbook. 

In his opinion, offering a new world that students can come across only during the 
mathematics class is more effective that offering the conditions of everyday life in 
making students feel the usefulness of mathematics. His opinion was very unique and 
often collided with those of other students. He said he would reconstruct the 
textbooks in such a manner that, while analysing them, he would not pay attention to 
other conditions except for mathematical ones about the problematic situations he 
regards as unnatural. 

Case of P3 

P3, a prospective teacher, suggested that the textbooks and the teacher’s guide should 
be analysed using the mixture of many analysing methods and then the category-
classifying method of Kulm et al. (2000) should be modified. He suggested the 
category 1 have two sub-standards of ‘1.1 Justifying the Sequences of Activities,’ and 
‘1.2 Conveying Purpose.’ In his opinion, there is no need to divide unit purpose and 
lesson purpose and make a separate evaluation on them because ‘Justifying the 
Sequences of Activities’ is so much important. He also suggested that in the case of 
the category 3, ‘Providing Firsthand Experience’ be deleted or replaced. His theory is 
that, if firsthand experiences are emphasized too much in middle school mathematics, 
it might become more difficult for students to give attention to reasoning. He argued 
that though there are conditions where intuition or induction is to be emphasized; 
there also exist the conditions where attention should be paid to the progress in 
justification and reasoning; therefore, it is important to replace ‘providing firsthand 
experience’ with ‘Justifying the characteristics of activities.’   
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The following is a part of conversation between the researcher and P3:       

1   R: What is the meaning of “Justifying characteristics of activities?” 
2.  P3: Activities contain a variety of characteristics. It is necessary to offer the  
3  kind of activities that fit the knowledge to be instructed. Rather than having  
4  the students engage themselves in activities unconditionally…  How should  
5  I put it……? Sometimes, deductive reasoning, neither experimental nor  

                       6 inductive reasoning, can serve as an important point. 

The participating prospective teachers confirmed that the contents provided in the 
textbooks reflect the results of considering many aspects, and in some cases, they 
found their users could be exposed to various dangers through the contents. More 
than anything, they agreed to the fact that prospective teachers themselves have to 
grow as active users of curricula and textbooks.      

In the first discussion, a considerable portion of them believed there would be no 
errors in mathematics textbooks and accordingly, there was no need to reconstruct the 
contents of textbooks. However, in their final reports, all of them reached the 
conclusion that mathematical textbooks have merits in some aspects and demerits in 
other aspects--- incomplete products that need to be complemented by teachers. Also, 
they came to think conversion in teaching by textbook is just imaginary and rather, a 
desirable conversion in teaching can be completed by the teacher. This change in 
viewpoint means they have come to regard developing selectivity of textbooks as an 
important element of their specialty.  

In most cases of reconstructing mathematics textbooks, the prospective teachers tried 
to utilize traditional costumes, folk games, etc.; and many attempts to apply 
technology were noted. P1, the prospective teacher, said “Even though mathematics 
has a long history, people in general are not aware of it, probably because it is not 
related to our native culture.” “The Study of Yut game,” developed by her seemed 
very suitable to be used in teaching the concept of probability, and actually the entire 
prospective teachers acknowledged its value most positively. She said she planned to 
study the reconstruction methods of textbooks all her life and maintained that a major 
part of class depends on teacher’s ability to reconstruct the textbook. On the other 
hand, it was found out that the prospective teachers were active in applying 
engineering to their reconstruction effort, which seemed to be because they are 
familiar with advanced cell phones and computers. 

CONCLUSION  

The participants of this research, who are prospective teachers, expressed the 
experience of participating in this research as “self-discovery as an expert,” “self-
awakening to the difficulties of teaching” and “delicacy of converting knowledge,” 
etc. This means they perceived this research as a stage of growth to become a teacher. 
Particularly, this research played an important role in leading them to make an 
approach to the mathematics curricula and mathematics textbooks not merely as a 
passive user but a developer, or a user who is also a positive improver.              
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With the experience of reconstructing mathematics textbooks, the prospective 
teachers seem to have come into contact with the opportunity to perceive the 
characteristics of school mathematics. For the reconstruction, they were asked to 
confirm the contents that they had analysed in the past; and some participants, who 
keep making superficial criticisms with the unproductive viewpoint of analysis, were 
induced to reform their viewpoint of analysis in the process of reconstruction. This 
suggests that in educating prospective teachers, the cycle of textbook analysis and 
reconstruction should be continued on a steady basis.      

The evaluation, analysis and reconstruction of mathematics textbooks require discreet 
and concrete approach. Attempts of this kind should also be made on a steady basis in 
educating incumbent teachers, which is believed to be one way of promoting 
conversation between researchers and teachers.     
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This paper explores the use of ICTs in the middle years of schooling where the tools 
have been used to support mathematics learning towards more equitable outcomes. 
Drawing on the productive pedagogies framework to analyze over 40 classrooms 
lessons, it was found that there were some aspects of pedagogy that were more 
evident than others. The results suggest that there may be some resistance to change 
pedagogy in mathematics classrooms in response to the potential of ICTs and to the 
call for improving achievement amongst traditionally failing students. The paper 
concludes by conjecturing as to why this may be the case. 

PRODUCTIVE PEDAGOGIES AND NEW BASICS 

Recognising that there are critical issues facing schools and education, many 
education authorities see it as vital that reforms are enacted that will keep students in 
schools longer and prepare them for the changing world and workplace.  

As part of its goal to reform schools so as to make them more relevant and engaging 
for young people, Education Queensland has sought to develop a reform that 
embraces new forms of learning, curriculum and assessment that meet the needs of 
Australian society. As part of the process to inform such reform, the Education 
Department of Queensland undertook a major review of Queensland schools. Known 
as the Queensland Schools Longitudinal Reform Study (QSLRS) (1999), the project 
was undertaken over a period of three years with over 1000 classrooms being 
observed. All curriculum areas were considered. The brief of the review had been 
informed by the quality learning project emanating from the United States and lead 
by Newmann and colleagues (1996). Using a framework developed by Newmann and 
expanded by a team at the University of Queensland, it was found that that whilst 
teachers are very good at providing nice, friendly classrooms the intellectual quality 
was very low (QSLRS, 1999). In this framing, what is outstanding from the study is 
that mathematics was consistently ranked as one of the poorest taught areas in the 
curriculum. As a consequence of these findings, the government instigated wide 
changes which were lead by Prof Allan Luke who was seconded to the Department of 
Education to oversee the introduction of these reforms in 2000. Known as the New 
Basics the reform was, at first, restricted to 20 trial schools across the state with more 
coming on line the following year. However, many schools are now implementing 
the approach as it is a novel and engaging reform that appeals to teachers. 
Furthermore, most states in Australia have now taken up the reform in some guise or 
another. Due to the autonomy of each state in Australia, they have modified the 
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reform to make it unique to that particular state but the general premises of the 
reform can be seen in each state’s protocols.  

The New Basics are built on tripartite model which is based on Bernstein’s 
theoretical framework of curriculum, pedagogy and assessment (Education 
Queensland, 2006). The New Basics has New Basics as its basis to curriculum, 
productive pedagogies as the basis to pedagogy and Rich Tasks as the assessment 
tools. While each of these areas are important and integrally connected to each other, 
a description is beyond the scope of this paper. Of interest in this paper is the 
productive pedagogies component. This aspect of the reform was designed to provide 
a framework upon which to consider aspects of quality teaching practice. A brief 
overview of the framework is provided in Table One.  

 Productive Pedagogy Key question 

Higher order thinking Are higher order thinking and critical analysis 
occurring? 

Deep knowledge Does the lesson cover operational fields in any 
depth detail or level of specificity? 

Deep understanding Do the work and response of the students provide 
evident of understanding concepts and ideas? 

Substantive 
conversation 

Does the classroom talk break out of the 
initiation/response/evaluation pattern and lead to 
sustained dialogue between students, and 
between students and teachers? 

Knowledge as 
problematic 

Are students critiquing and second guessing 
texts, ideas, and knowledge? 
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Metalanguage Are aspects of language, grammar and technical 
vocabulary being foregrounded? 

Knowledge integration Does the lesson range across diverse fields, 
disciplines and paradigms? 

Background knowledge Is there an attempt to connect with students’ 
background knowledge? 

Connectedness to the 
world 

Do lessons and assigned work have any 
resemblance or connection to real life contexts? 

 
R
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Problem based 
curriculum 

Is there a focus on identifying and solving 
intellectual and/or real world problems? 

Student control Do students have any say in the pace, direction or 
outcome of the lesson? 

Su
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e 
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Social support Is the classroom a socially supportive, positive 
environment? 
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Engagement Are students engaged and on-task 

Explicit Criteria Are criteria for student performance made 
explicit? 

Self regulation Is the direction of students’ behaviour implicit 
and self-regulatory? 

Cultural knowledges Are diverse knowledges brought into play? 

Inclusivity Are deliberate attempts made to increase 
participation of all students from different 
backgrounds? 

Narrative Is the teaching principally narrative or 
expository? 

Group Identity Does teaching build a sense of community and 
identity? 
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Citizenship Are attempts made to foster active citizenship? 

Table 1: Productive Pedagogy Dimensions, Items and Key Questions (from Gore, 
Griffiths & Ladwig, 2006) 

Gore et al (2006) argue that the productive pedagogies framework is most useful as a 
tool for reflecting on practice. In this project we were seeking to identify a method 
through which we could examine the teaching practices of teachers as they used ICTs 
to support numeracy learning. To this end, we have employed the productive 
pedagogies framework to analyse a series of lesson conducted by a range of teachers 
across various sites in Queensland. 

THE PROJECT - NUMERACY, EQUITY AND ICTS 

This is a three-year study in which the project explored the ways in which middle 
school teachers used ICTs to support mathematical learning. The overall study aimed 
to investigate: 

* How ICTs are used in maths classrooms to support numeracy learning 

* The out-of-school numeracy and ICT practices of students 

* Synergies/gaps between home and school numeracy and ICT practices 

* Elements of best practice that will help teachers to develop practices in schools 
when using ICTs that will support and enhance numeracy learning for students most 
at risk of failure in school numeracy and/or mathematics.Of interest to this paper is 
the first aim. The final aim was discussed by the authors elsewhere (Lerman & 
Zevenbergen, 2005). Drawing on the analysis conducted on the classrooms observed, 
we will link these outcomes with the final aim. 
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The Method 

Over the two years that data were collected in schools, a total of 8 schools 
participated in data collection. The schools were carefully selected using purposive 
sampling techniques. For the study, we were cognizant of representing the diversity 
in Australian schools. As such, the schools represented rural/remote and urban; a 
range of socio-economic background; indigenous and non-indigenous; high use of 
technology/reduced use of technology; and public and private schools. All schools 
were co-educational. 

Teachers working in the middle years of schooling, that is the upper primary/lower 
secondary, were invited to participate in the study. An initial full-day workshop was 
conducted at which participants were provided with an overview of the project and 
professional development to support their use of ICTs in mathematics lessons. At a 
follow-up workshop in the following year, schools were provided with resources to 
use in the classroom as well as sharing time in which participants shared their 
learning from the project and the activities they had been undertaking in their 
classrooms. 

Data were collected through the use of video cameras. Each school was provided 
with a camera, tripod and digital videos. In part this method was selected so as to 
enable considerable data to be collected and subjected to multiple analyses within the 
context that many of the schools were considerable distances from the University. In 
one case, the school was over 2000 kms from the University, the next most distant 
school was approximately 450 kms. As such, a method was needed that would enable 
some consistency in data collection. However, the method was not easy for teachers 
to implement. Consequently throughout the project, the research team would visit 
schools with the intention of supporting data collection. This was met with mixed 
success. In some cases, it was possible to video lessons, in other cases, despite the 
distance travelled by the research team the possibility to collect video data was 
hindered by the lack of lessons that used ICTs being undertaken in the schools. 

Analysis 

While a number of analyses are being conducted on these videos, the focus of this 
paper is on the use of the productive pedagogies framework. We adopted the method 
used by the research team conducting the wide-scale longitudinal QSLRS project. 
The method involves 2-3 reviewers observing the lesson, in this case a video of the 
lesson. Independently they rate the dimensions of the productive pedagogies for 
overall evidence in a particular lesson. In our case, this involved one of us working 
with the research team in the initial lessons, and then the research team (3 research 
assistants) taking responsibility. From time to time, one of the researchers would 
work with the team to ensure that there was validity within the framework. 

By focusing on the overall lesson the dimensions of the productive pedagogies 
become significant. For example, it may be the case that in the introduction to a 
lesson that the teacher uses a particular strategy (e.g. encouraging the students to 
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negotiate the task) but as the lesson gets under way it may be very teacher-directed. 
As such, the intent of the framework is to examine the overall emphasis of the lesson 
rather than elements of the lesson. 

At the completion of each lesson, the researchers independently rate the lesson on a 
5-point scale where 0 means there was no evidence of a particular dimension of the 
scale whereas 5 indicates it was evident throughout the lesson. Once these ratings are 
completed, the team then must agree to a common score. This may require 
negotiation of meaning around a particular dimension and the degree to which they 
interpret the presence of a dimension. At the end of each observation, there is a 
commonly agreed upon score for each dimension of the framework. 

RESULTS 

In presenting these data, we are only using the combined data set of all lessons from 
all schools. In doing this, our intention is to identify the presence of particular aspects 
of pedagogy in mathematics classrooms when teachers use ICTs to support student 
learning. 

Dimension of Productive Pedagogy Mean SD Comment 

Depth of knowledge 1.64 1.36  

Problem based curriculum 2.19 1.38 medium 

Meta language 1.69 1.07  

Background knowledge 1.76 1.16  

Knowledge integration 1.48 1.27  

Connectedness to the world 1.38 1.44  

Exposition 1.19 1.64  

Narrative 0.31 0.78 low 

Description 2.24 1.02 medium 

Deep understanding 1.43 1.47  

Knowledge as Problematic 1.14 1.47  

Substantive conversation 1.26 1.40  

Higher order thinking 1.31 1.55  

Academic engagement 2.23 1.38 medium 

Student control 0.79 0.92 low 

Self regulation 3.24 1.12 high 

Active citizenship 0.30 0.78 low 

Explicit criteria 2.83 1.17 high  
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Inclusivity 0.33 0.75 low 

Social support 2.51 0.25 high 

Table 2: Results of Productive Pedagogy Analysis 

The results in Table Two give some indication of the scoring of pedagogy when 
teachers used ICTs to support mathematical learning. While it was not possible to 
apply a reliable inferential statistical measure on these data, it is possible to note 
some trends. On a 5-point scale, scores below one included student direction, active 
citizenship, inclusivity and narrative. These aspects of productive pedagogies were 
consistently poorly attended to in the teaching of mathematics. This can also be seen 
in the low standard deviation measures suggesting that it was relatively common 
across all sites. In considering those aspects that scored above the midpoint (i.e. 
above 2.5) self regulation, explicit criteria and social support scored well. Just below 
the midpoint, also worthy of consideration, were problem-based curriculum; 
description; and academic engagement. Perhaps, for us, the most disconcerting aspect 
of these scores is the low scores for intellectual quality and relevance dimensions. 
Given the massive amount of work that has been undertaken in this reform as well as 
mathematics education more generally, these scores are alarming. However, they are 
not surprising since they are aligned with the scores obtained in the original QSLRS. 

DISCUSSIONThe key categorisation framework, but not the only one, that we wish 
to use here to discuss the results and their potential effect on students is that of 
Bernstein’s visible and invisible pedagogies. For Bernstein the dominant 
communicative principle in the classroom is the interactional which regulates ‘the 
selection, organisation, sequencing, criteria and pacing of communication (oral, 
written, visual) together with the position, posture and dress of communicants 
(Bernstein, 1990, p 34). The communicative principle offers recognition and 
realisation rules which need to be acquired by communicants in order to achieve 
‘competence’. 

The framing of the pedagogic interactions can range from strong to weak. In the latter 
case the pedagogy is what Bernstein calls invisible, that is, means of gaining the 
approved discourse and being able to demonstrate the acquisition of that knowledge 
are hidden from the students. Middle-class children, however, have generally 
acquired these rules from their home life and are therefore not disadvantaged by the 
weak framing, whereas working class children have not and therefore find themselves 
in a position where they cannot demonstrate their knowledge. Research (e.g. Cooper 
and Dunne, 2000) shows that mathematics questions set in everyday contexts is a 
form of invisible pedagogy in that pupils who have not acquired the appropriate way 
to read such questions may find themselves responding in everyday mode and not the 
‘esoteric’ school mathematics mode that is required. As teachers we tend to assume 
that pupils have picked up the correct reading in informal ways, and we are rarely 
explicit about those recognition and realisation rules. We know, however, that such 
classrooms fail most students for a range of reasons. In particular, if children cannot 
meet the requirements of reading, coping with the pacing of school discourse, and so 
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on, at the early stage of their entry into schooling they are likely to find themselves in 
an unending spiral of remedial situations, through which they are publicly identified 
and because of which they fall further and further behind (Bernstein, 2004, pp. 
204/5). 

Research shows that working within a progressive paradigm, that is, where the 
pedagogy is invisible, but mitigating the weak framing through strengthening some of 
the features of the pedagogy can make a substantial difference to the success of 
disadvantaged students (e.g. Morais, Fontinhas & Neves, 1992). 

Looking at the outcomes of the productive pedagogy research the higher scores 
indicate both invisible pedagogy (self regulation) and aspects of visible pedagogy 
(explicit criteria). Potentially that can indicate pedagogical interactions that respond 
to popular calls for a reform curriculum mitigated by a strengthening of the framing 
that can assist students from traditionally failing social groups to acquire the rules 
they need to succeed in mathematics (Lerman & Zevenbergen, 2004). The low score 
on narrative, which is contrasted against an expository style of teaching, also 
indicates a strengthening of framing towards, in fact, a more traditional (in 
Bernstein’s terms, performance) mode. The scores just below the middle of problem-
based curriculum seem to indicate the teachers’ compliance with the curriculum 
aspect of the New Basics in Queensland. 

The low score of student direction, however, appears to contradict the teachers’ use 
of explicit criteria. Teachers’ lack of awareness of the different needs of different 
social groups in terms of criteria may be reflected in the low score on inclusivity. 

We remind readers that all the lessons that were observed, video-taped and analysed 
using the productive pedagogies framework were ones in which the teachers were 
using ICTs. Of course there are many ways of using ICTs and not all of them 
enhance the learning of mathematics in the same way, or even at all (for further 
discussion of how teachers in the project were using ICTs see Zevenbergen & 
Lerman, 2005 and Zevenbergen, 2004). In conclusion we might observe that under 
the influence of New Basics in Queensland and mediated by teachers’ practices ICTs 
are being used and the framing of these classrooms may in fact offer the opportunity 
for successful learning by more students. We conjecture, however, that, without 
explicit awareness by teachers of the implications of different forms of pedagogy on 
different social groups the aims of the New Basics in terms of more equitable 
outcomes are not likely to be met. 
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SOLVING PROBLEMS IN DIFFERENT WAYS: TEACHERS' 

KNOWLEDGE SITUATED IN PRACTICE  
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This study is part of a larger longitudinal research concerned with teachers' 
knowledge development in the context of connecting tasks. We find this study 
important in the view of the existing gap between practice and theory of employing 
connecting tasks in school mathematics. In this paper we focus on the development of 
teachers' problem-solving performance as a result of systematic learning and their 
teaching practice associated with connecting tasks. This study is aimed to deepen our 
understanding of the role of both systematic (though learning) and craft (through 
teaching) teachers' knowledge development. We argue for the necessity of combining 
systematic and craft modes of development in teacher education. 

THEORETICAL BACKGROUND 

Connecting tasks: The gap between theory and practice 

In this study a task is called a “multiple-solution connecting task” (connecting task 
for short) when it can be solved in different ways using: (a) different definitions or 
representations of a mathematical concept; (b) hierarchy, which is expressed in 
seeing an idea as a special case of a more general idea; (c) different mathematics 
tools and theorems from a particular mathematical topic; and (d) different 
mathematics tools and theorems from different branches of mathematics (Leikin 
Levav-Waynberg, Gurevich & Mednikov, 2006). Figure 1 presents an example of a 
connecting task in our study. 

The rational for the implementation of connecting tasks in school mathematics is 
rooted in the view that connections form an essential part of mathematical 
understanding (e.g., Skemp, 1987; Hiebert & Carpenter, 1992). One of the well 
recognized ways for developing connectedness of one’s mathematical knowledge is 
solving problems in different ways (e.g., House & Coxford, 1995; NCTM, 2000). 
Stigler and Hiebert (1999), showed that multiple solutions to problems increased the 
quality of mathematical lessons. Consequently, we consider integrating connecting 
tasks in one’s teaching practice critical for fostering the connectedness of students’ 
mathematical knowledge both by teaching students multiple solutions to problems 
and recognizing that in a class of students there are multiple ways in which pupils do 
solve problems.  

Despite the importance of implementing connecting tasks as stressed in the research 
literature, teachers seldom solve problems in different ways either for themselves or 
in their classes. Stigler and Hiebert (1999) as well as Ma (1999) showed that in US 
classrooms teachers rarely introduce their students to multiple-solution tasks. Our 
study has shown that Israeli teachers as well rarely employ connecting tasks 
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systematically in their classes (Leikin et al., 2006). We conjecture that this gap 
between theory and practice turns connecting tasks into the powerful environment for 
the development of teachers' knowledge. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Example of the task in the study 

Teachers' knowledge 

In our study we address epistemological complexity of teacher's knowledge by 
integrating two well recognized theoretical perspectives on teachers’ knowledge (e.g., 
Shulman, 1986; Kennedy, 2002; for elaboration of the model see Leikin, 2006).  We 
briefly explain two dimensions of teachers' knowledge in the context of connecting 
tasks. 

Dimension 1 'KINDS OF TEACHERS' KNOWLEDGE' is based on Shulman's 
(1986) components of knowledge: Teachers’ subject-matter knowledge (SMK) 
comprises their own knowledge of mathematical connections of different types, their 
ability to solve problems in multiple ways and to hold a rich collection of examples 
of connecting tasks. Along with Ma's (1999) definition of profound understanding of 
mathematics we consider problem solving in different ways as an integral part of 
teachers' subject matter knowledge. Teachers’ pedagogical content knowledge (PCK) 
includes knowledge of how students cope with connecting tasks, as well as 
knowledge of appropriate learning setting. Teachers’ curricular content knowledge 
includes knowledge of different types of curricula, connections between different 
curricular topics and understanding different approaches to teaching connecting tasks.  

Dimension 2 'SOURCES OF TEACHERS' KNOWLEDGE' is based on Kennedy's 
(2002) classification of teachers' knowledge according to the sources of its 
development: Teachers' craft knowledge related to connecting tasks is largely 

Quadrilateral ABCD is inscribed in a circle. The diagonal AC is the diameter of the circle. The 
angle A is 60 degrees. We mark angle BAC asα . Which values of α  give the maximal area of 
quadrilateral ABCD? 
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hhRSSS ADCABCABCD +⋅+= =  SABCD is maximal when h1+h2 is maximal 

Solution 1: Calculus-based solution of the minima-maxima problem: 
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Solution 2: Properties of trigonometric functions 
cos )260( α−o =1 is the maximal value of the function o30=α⇒  

Solution 3:  Geometric solution (circle properties)  
Segment BD is constant (cord BD is 120o) for all values of α. 

Thus the two diagonals of the quadrilateral are constant. The area of such a quadrilateral is 
maximal when the diagonals are perpendicular: when the AC bisects angle BAD. Thus  o30=α  

Solution 4: Symmetry considerations  
Segment BD is constant. In a symmetric situation, BD is perpendicular to AC and the area of the 
quadrilateral equals 1/2BD·AC. If we break the symmetrical situation we decrease the sum of the 
heights (h1+h2) and therefore reduce the area of the quadrilateral. Thus  o30=α . 
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developed through classroom experiences with connecting tasks. Systematic 
knowledge is acquired mainly through systematic studies of mathematics and 
pedagogy in colleges and universities. Prescriptive knowledge is acquired through 
institutional policies, which are transparent in tests, accountability systems, and texts 
of diverse nature. Along with Kennedy's definitions – we incorporate in our study 
two modes of teacher knowledge development: the systematic (through learning) 
mode and the craft (through teaching) mode. At the same time we acknowledge the 
irreducibility of the prescriptive sources into the process of knowledge development 

THE STUDY 

Our longitudinal study is based on Teacher Development Experiment (TDE: Simon, 
2002) using interview and observation research methods. It is aimed at developing a 
model of Teachers' Knowledge Development (TKD) which describes and 
characterizes development of teachers' SMK and PCK in systematic and craft modes. 
For the analysis of the development of teacher systematic knowledge, during the first 
year of the study, we observed 12 secondary school mathematics teachers who 
volunteered to take part in a 56-hour professional development course focusing 
connecting tasks (Course A). Ten of them were interviewed before course (int-A) and 
all 12 teachers were interviewed at the end of the course (int-B). In order to analyze 
the development of teachers' craft knowledge the teachers were asked to teach 
connecting tasks in their classes during the second year of the intervention. Seven of 
the 12 teachers fulfilled this requirement and six of them further participated in the 
whole-group discussions focusing on teaching connecting tasks (Course B). Nine 
teachers were interviewed at the end of the second year of the research intervention 
(int-C). We report here data regarding five teachers who consistently took part in all 
the stages of the study. This sample is a representative of the whole group of teachers 
from the perspective of the teachers' educational background and teaching 
experience. 

This paper is focused on the question: How does teachers' problem-solving 
performance change (a) in systematic (through learning) mode and (b) in craft 
(through teaching) mode? We demonstrate that teachers' problem-solving 
performance is situated in their practice of different kinds (Lave, 1996).  

The mathematical problems in the interview: In order to answer research questions 
presented in this paper we asked teachers to solve problems in different ways. The 
problems in all three interviews were chosen based on the following considerations: 
(1) To explore teachers' subject matter knowledge problems should belong to 
different topics and include different types of connections. (2) To explore the sources 
of teachers' knowledge, some of the problems we used were solved in different ways 
in the textbooks (e.g., #1, Figure 2), others were not (##2, 3, 4, Figure 2). (3) To 
address the teachers’ curricular knowledge, some solutions to the problems belonged 
to the school curriculum and are often presented in the textbooks (e.g., prescribed 
solutions in Figure 2), whereas other solutions are rarely found in school textbooks 
(non-prescribed solutions in Figure 2). 
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# Problems Types of solutions: Connections  

Connecting task with Curricular-prescribed Multiple Solutions (CMS tasks) 
1 Solve the system of equations:  

⎩
⎨
⎧

=+
=+

62

62

yx

yx
 

Prescribed solutions: 
Substitution, linear 
combination, graphing. 

Non-prescribed solutions: 
Symmetry, matrices  

Different 
representations, 
techniques,  topics in 
algebra,  fields in 
mathematics  

Connecting tasks with no curricular-prescribed (Unconventional) Multiple Solutions (UMS 

tasks) 
2 Max-Min Problem  

(see Problem 1 – Figure 1) 
Prescribed solution:  

 Solution 1, Figure 1 
Non-prescribed solutions: 

 Solutions 2, 3, 4 – Figure 
1 

Different 
 fields in mathematics, 
different properties of 
mathematical objects. 

3 Word (motion) problem 
Dan and Moshe walk from the train 
station to the hotel. They start out at the 
same time. Dan walks half the time at 
speed v1and half the time at speed v2. 
Moshe walks half way at speed v1 and 
half way at speed v2. Who gets to the 
hotel first: Dan or Moshe? 

Prescribed solution:  
 Algebraic solution 

 Non-prescribed solutions: 
 Logical solution ,  
Pictorial solution (1D), 
Graphic solution (2D), 
 Area-based solution 

 

Different  
representations of the 
same concept 

4 Geometry problem 

In an isosceles trapezoid ABCD the 
diagonals are perpendicular. Prove that 
the height of the trapezoid equals its 
midline. 

Prescribed solution:  
Midline in a trapezoid 
theorem and right-angle 
isosceles triangle 

Non-prescribed solution: 
Four midlines in the 
quadrilateral theorem and 
diagonals in a square 

Different 
concepts,  theorems 
and definitions 

Figure 2: Examples of mathematical problems used in the interviews 

As mentioned earlier, to simplify the presentation of the results we show only the 
data related to 5 teachers who equally participated in all the stages of the 
intervention. Our report focuses on 4 types of tasks, which were included in all the 
three interviews (see Figure 2). 

RESULTS 

Knowledge situated in practice 

Table 1 summarizes teachers' problem-solving performance with different types of 
tasks in the three interviews. 

Curricular orientation of teachers' SMK 

Data from int-A show that teachers' reasoning was pretty much curricular-prescribed. 
We draw this conclusion from the analysis of the number and the nature of the 
solutions the teachers gave for the problems of different kinds in int-A. For the 
system of equations (CMS task, Figure 2) most of the teachers gave three different 
solutions all of which were curriculum-prescribed. In contrast, for UMS tasks in most 
of the cases the teachers suggested only one solution, which matched the place in the 
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textbook where the task appeared. Clearly the teachers had difficulties in suggesting 
multiple solutions for UMS tasks. For example, T2 expressed this difficulty in 
thinking about a different solution when solving a minima-maxima problem 
(presented in Figure 1).  

Interviewer: [After presentation of calculus-based solution] Can you, please, think of 
another solution? 

T2:  I don’t know, because of the word "maximal". I keep thinking about the 
derivative. I have never thought about this type of problems from a different 
perspective.  

Table 1: Teachers' problem-solving performance on Connecting tasks  
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CMS System of linear equations 3 2 3 3 3 2.8 5 

Min-Max problem 2* 1 2* 1 0 1.2 2 

Word (motion) problem 1 1 1 2* 0 1 2 UMS 
Geometry 2 1 1 0 0 0.8 2 

A 

Average no of solutions per problem 2 1.25 1.5 1.5 0.75 1.45  

CMS Simple quadratic inequality 6** 3 6** 3 3 4.2 7 

Min-Max problem 3** 3** 3** 2* 2** 2.6 4 

Word (motion) problem 3** 2 2 3** 4* 2.8 5 UMS 
Geometry 2 2 2 1 2 1.8 3 

B 

Average no of solutions per problem 3.5 2.5 3.25 2.25 2.75 2.85  

CMS Absolute value inequality 3 3 3 3 2 2.8 5 

Min-Max problem 3 5* 4** 2* 0 2.8 6 

Word (work) problem 1 3 2 3* 1 2 7 UMS 
Geometry  3 3 4 3 2 3 5 

C 

Average no of solutions per problem 2.5 3.5 3.25 2.75 1.25 2.65  

 * - non-prescribed solution 
the teacher taught tasks of this kind during the 2nd year of experiment according to the curriculum 
the tasks of this kind was incorporated in teaching as multiple-solution connecting tasks during the 
2nd year of experiment 

Another evidence for the curricular-prescribed nature of teachers' knowledge in the 
field of connecting tasks may be seen in T3's reply to the maxima-minima problem 
(see Figure 1). After suggesting calculus-based solution for this problem, when 
stimulated by the interviewer, this teacher intuitively suggested symmetry-based 
solution. However, she considered this solution mathematically insufficient. In her 
opinion it was a tool for the development of [students’] intuition rather than formal 
mathematical proof: 

T3:  If I increased α till it's 60 degrees then I lose the quadrilateral and get a triangle. 
One triangle of 30, 60, 90 … so the area of the reduced quadrilateral is 32R . It's 
the same situation if I decrease α to zero. But if I keep the "intermediate" situation I 
get two triangles with the area of 32R . Intuitively it's the best situation… 

 Many times you see something intuitively but you can't prove it, but then you are in 
a much better position than someone who can't see it intuitively… If you succeed in 
proving what you are seeing, you prove the problem. 



Levav-Waynberg & Leikin 

 

4 - 62 PME30 — 2006 

Two other teachers who suggested non-prescribed solutions (T1 and T4, Table 1: int-
A) clearly indicated systematic sources for these solutions: T1 suggested symmetry-
based solution for maxima-minima problem as learned in a teacher-development 
workshop while T4 suggested graphical solution for a word problem as studied in the 
teacher certificate program she had recently completed. Nonetheless, in general, the 
data from int-A demonstrates that teachers had hardly met different approaches to 
solving problems in systematic framework before their participation in our study. 

Knowledge situated in problem-solving practice 

Analysis of teachers' learning in systematic mode was performed by comparison 
between teachers' solutions in int-A and int-B as well as the analysis of teachers' 
problem-solving discourse during the course. We found that (rather naturally) the 
teachers significantly improved their performance on connecting tasks through their 
participation in course A: The number of solutions they gave to all the problems as 
well as the number of non-prescribed solutions they suggested increased. This is 
evident from the study of each teacher’s and the whole group’s performance (see 
Table 1). On the average there were twice as many solutions per problem per teacher 
provided in int-B as solutions provided in int-A (2.85 vs. 1.45). For the CMS task in 
int-B the teachers provided 7 different solutions, some of which non-prescribed (T1 
and T3). We observed changes in teachers' reaction to the request to find multiple 
solutions: the replies became more fluent and positive. This change is evident in T2's 
reply when solving max-min problem during int-B. In contrast to her response in int-
A (as shown earlier) after the course she enjoyed having several ideas for 
approaching a problem of this kind: 

T2:  It's not the only way [using derivative]… we may build a table and show the 
students that moving the X from 1 to 5 increases the area and then it starts to 
decrease.  
This is a quadratic function, so the principle of continuity should work here. We 
can also find the minimal point of a parabola without using the derivative… 
If x=0 then we get 100, and of x=10 then we also get 100. It gets the largest value 
in the two edges. It is not just the largest but equal. This is parabola. Then because 
of the symmetry axis it has to be in the middle: 5. Oh it's beautiful! 

We argue that through their participation in the course the teachers developed both 
their "feeling of different solutions" and positive position with respect to this kind of 
mathematical activities, they became more creative and confident. After participation 
in our course all the teachers provided multiple solutions for all the problems (except 
T4 for geometry problem) and each teacher suggested non-prescribed solutions for at 
least two problems in the interview. 

Knowledge situated in teaching 

The number of solutions suggested per problem by each teacher changed from 
average of 4.2 in int-B to 2.8 in int-C, and the number of non-curricular solutions also 
decreased. We found clear relationship between the teachers' problem-solving 
performance in int-C and the topics they taught during the period of time between 
interviews B and C in general and the incorporation of the connecting tasks in their 
lessons in particular. 
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 All the teachers taught CMS task (Table 1: int. C, absolute value inequality) between 
the int-B and int-C. We learned that when teachers taught this task they used 
curricular-prescribed solutions only. This practice was reflected in teachers’ solutions 
during the interviews: all the teachers suggested curricular prescribed multiple 
solutions for the CMS task. Analysis of teachers' problem solving performance on 
UMS tasks revealed several phenomena: First we saw that teachers improved their 
results from int-B to int-C on the tasks that were incorporated in teaching as multiple-
solution connecting tasks (e.g., Table 1: T2 and T3 on min-max problem; T1 on 
geometric problem). Moreover, non-prescribed solutions suggested by the teachers 
during int-C appeared for this kind of task in most cases.  Second, teachers at least 
maintained their previous success on UMS tasks, which they did teach without 
special attention to multiple solutions (e.g., Table 1: T1 on min-max problem, T2 and 
T3 for word problem). Teachers' problem solving performance on UMS tasks that 
belonged to the topics that teachers did not teach during the year in many cases 
wasn’t as good as it appeared in int-B (e.g., Table 1: T1 on word problem, T5 on 
min-max and word problem). A specific tendency was found for geometric problems. 
All the teachers, except T2, taught geometry problems during the year. For all the 
teachers the number of solutions they suggested for geometric problems increased. 
We connect this phenomena with the fact that the teachers (according to their 
multiple reports at the end of course A and in int. B) became more attentive to 
students' solutions, started collecting them and allowed students "always present all 
the solutions they found" without saying "this is good but we do not have enough 
time". We hypothesize that this combination of awareness and flexibility allowed 
teachers learn multiple solutions in geometry from their students. 

DISCUSSION AND CONCLUSIONS 

By analyzing teachers' knowledge at the beginning of the intervention we suggest 
some explanations for the gap between theory and practice in the field of connecting 
tasks: We find teachers' mathematical and pedagogical knowledge of connecting 
tasks curricular oriented and prescribed. Our data demonstrates that teachers 
associate responsibility for the success of their students with institutional policies, 
which are evident in the tests system that "proscribes" implementation of connecting 
tasks in school. On the positive side we show that implementation of connecting tasks 
in systematic mode meaningfully develops teachers' SMK and their problem-solving 
performance on multiple-solution connecting tasks with further improvement in craft 
mode whereas implementation in teaching is a necessary condition for the 
maintenance of this development. In this way our analysis highlights the situatedness 
of teachers' knowledge (Lave, 1996).  

Based on this study results we argue that combination of the systematic and craft 
mode are most effective for teachers’ knowledge development. The development of 
the related instructional materials by curricular designers and mathematics educators 
as well as curricular changes may foster changes in teachers' disposition towards 
multiple-solution connecting tasks.  
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PERSONA-BASED JOURNALING: ALLIGNING THE PRODUCT 

WITH THE PROCESS 

Peter Liljedahl 

Simon Fraser University, Canada 

 

Students' problem solving experiences are fraught with failed attempts, wrong 
turns, and progress that move in fits and jerks, oscillating between periods of 
inactivity, stalled progress, rapid advancement, and epiphanies. Students' problem 
solving journals do not always reflect this rather organic process, however.  
Without proper guidance some students tend to 'smooth' out their experiences and 
produce journals that are less reflective of the process and more representative of 
their product. In this article I present research on the effectiveness of a persona-
based framework for guiding students' journaling to more accurately reflect the 
erratic to-and-fro of the problem solving process. Results indicate that the 
framework is effective in producing more representative journals.  

For mathematicians, problem solving is a process that incorporates not only the 
logical processes of inductive and deductive reasoning, but also the extra-logical 
processes of creativity, intuition, imagination, insight, and illumination (Dewey, 
1938; Fischbein, 1987; Hadamard, 1945; Poincaré, 1952). However, as creative a 
process as problem solving may be, the results of these processes are "encoded in a 
linear textual format born out of the logical formalist practice that now dominates 
mathematics" (Borwein & Jörgenson, 2001). This discordance between the process 
of problem solving and the presentation of its products is nicely summarized in the 
comments of Dan J. Kleitman, a prominent research mathematician.  

In working on this problem and in general, mathematicians wander in a fog not 
knowing what approach or idea will work, or if indeed any idea will, until by good 
luck, perhaps some novel ideas, perhaps some old approaches, conquer the problem. 
Mathematicians, in short, typically somewhat lost and bewildered most of the time that 
they are working on a problem. Once they find solutions, they also have the task of 
checking that their ideas really work, and that of writing them up, but these are routine, 
unless (as often happens) they uncover minor errors and imperfections that produce 
more fog and require more work. What mathematicians write thus bears little 
resemblance to what they do: they are like people lost in mazes who only describe their 
escape routes never their travails inside. (Liljedahl, 2004, p. 157) 

The discordance between process and product, however, is not a dilemma that is 
restricted to the domain of professional mathematicians. Students of mathematics 
also have a difficult time breaking away from the formalist practices of conventions 
as delivered to them in the form of curriculum, textbooks, and classroom 
instruction. 
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JOURNALING 

Journal writing in mathematics education has a long and diverse history of use. 
Journaling helps students learn mathematical concepts (c.f. Chapman, 1996; Ciochine 
& Polivka, 1997; Dougherty, 1996). It has been shown to be an effective tool for 
facilitating reflection among students (c.f. Mewborn, 1999) as well as an effective 
communicative tool between students and teachers (c.f. Burns & Silbey, 2001). 
Journaling has also become an accepted method for qualitative researchers to gain 
insights into their participants' thinking (c.f. Mewborn, 1999; Miller, 1992). This is 
especially true of problem solving journals, which can allow the researcher to enter 
into the otherwise private world of problem solving. In order for this to be effective, 
however, the problem solving journals need to be representative of the problem 
solving process. This is not always the case. Students' problem solving experiences 
are fraught with failed attempts, wrong turns, and progress that move in fits and jerks, 
oscillating between periods of inactivity, stalled progress, rapid advancement, and 
epiphanies. Without proper guidance students may tend to 'smooth' out these 
experiences and, as a result, present stories in their journals that are less reflective of 
ttheir 'travails inside the maze' and more representative of their 'escape route'.  

A MODEL FOR A MORE STRUCTURED METHOD OF JOURNALING 

As mentioned above, literature that detail mathematician's problem solving efforts is 
unrepresentative of the true process of 'doing' mathematics. One rare exception to this 
is an account written by Douglas R. Hofstadter called Discovery and Dissection of a 
Geometric Gem (1996) that tells the story of a mathematical discovery with amazing 
sincerity. It is detailed and complete, from initiation to verification. It tells the story 
of being lost in a maze, searching for answers, and in a flash of insight, finding the 
path out. Perhaps the reason that the account is so different is that Hofstadter is not a 
professional mathematician. He is a college professor of cognitive science and 
computer science, and an adjunct professor of history and philosophy of science, 
philosophy, comparative literature, and psychology. As such, he has a unique 
appreciation for tracking his own problem solving processes.  

In analysing Hofstadter's account it becomes clear that one of the reasons that it is so 
sincere is because of the way in which he incorporates the use of three different 
personas, a trinity of voices, in telling his tale. I have come to name these personas 
the narrator, the mathematician, and the participant. These personas are not explicit 
in Hofstadter's writing in that he does not introduce them, annotate them, or even 
acknowledge them. Instead they are implicit, emerging from the active analysis of his 
writing more so than from the passive reading of his chapter. Each of these personas 
contributes to the anecdotal account in a different way. The narrator moves the story 
along. As such, he often uses language that is rich in temporal phrases: 'and then', or 
'I started'. He also fills in details of the non-mathematical variety seemingly for the 
purpose of providing context and engaging content. The mathematician is the persona 
that provides the reasoning and the rational underpinnings for why the mathematics 
behind the whole process is not only valid, but also worthy of discussion. Finally, the 
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participant speaks in the voice of real-time. This persona reveals the emotions and 
the thoughts that are occurring to Hofstadter as he is experiencing the phenomenon.  

To demonstrate these personas, I present a portion of the chapter that contains within 
it all three voices. Before I do, however, it would be useful to introduce the general 
context of his mathematical encounter. At the time of writing the chapter, Hofstadter 
has only recently come to be impassioned with Euclidean geometry and had never 
been introduced to the Euler line of a triangle. When he did learn about it, however, 
two things immediately struck him: the connectivity of seemingly different attributes, 
and the exclusion of the incentre. So, he began a journey of trying to find a 
connection between the Euler line and the incentre. At the point in the passage 
presented below Hofstadter has just discovered something about the incentre.  

One day I made a little discovery of my own, which can be stated in the following 
picturesque way: If you are standing at the vertex and you swing your gaze from the 
circumference to the orthocentre, then, when your head has rotated exactly halfway 
between them, you will be staring at the incentre. More formally, the bisector of the angle 
formed by two lines joining a given vertex with the circumcentre and with the 
orthocentre passes through the incentre. (A more technical way of characterizing this 
property is to say that O and H are "isogonic conjugates".) It wasn't too hard to prove 
this, luckily. This discovery, which I knew must be as old as the hills, was a relief to me, 
since it somehow put the incentre back in the same league as the points I felt it deserved 
to be playing with. Even so, it didn't seem to play nearly as "central" a role as I felt it 
merited, and I was still a bit disturbed by this imbalance, almost an injustice. 

(Hofstadter, 1996, p. 4) 

O

H

I

 

Figure 1: Triangle with Incentre, Orthocentre, and Circumcentre 

Even from this brief excerpt it can be seen how the three personas interact with each 
other, while at the same time presenting different aspects of the mathematical 
experience. It begins with "One day …", a clear indicator that the narrator will be 
speaking.  

One day I made a little discovery of my own, which can be stated in the following 
picturesque way: If you are standing at the vertex and you swing your gaze from the 
circumference to the orthocentre, then, when your head has rotated exactly halfway 
between them, you will be staring at the incentre. 



Liljedahl 

 

4 - 68 PME30 — 2006 

Hofstadter is telling us what he has found in an informal yet descriptive way. This is 
followed by his mathematician persona coming in and formalising this finding in a 
more precise and mathematical way.  

More formally, the bisector of the angle formed by two lines joining a given vertex with 
the circumcentre and with the orthocentre passes through the incentre. (A more technical 
way of characterizing this property is to say that O and H are "isogonic conjugates".) It 
wasn't too hard to prove this, luckily. 

Finally, the participant reveals how he feels about his finding and what thoughts this 
find is precipitating.  

This discovery, which I knew must be as old as the hills, was a relief to me, since it 
somehow put the incentre back in the same league as the points I felt it deserved to be 
playing with. Even so, it didn't seem to play nearly as "central" a role as I felt it merited, 
and I was still a bit disturbed by this imbalance, almost an injustice. 

The interplay present in this passage is typical of the first six pages of Hofstadter's 
chapter. At that point in the account Hofstadter makes a profound discovery, which is 
revealed in his last use of the participant's voice. After this point there is a brief 
interplay between the narrator and the mathematician and then the voice of the 
narrator also disappears. The last seven pages of the chapter are comprised of the 
mathematician articulating and proving his discovery.  

As mentioned above, the three personas that exist within Hofstadter's writing emerge 
through the descriptive analysis of his chapter1, rather from any prescriptive 
declaration of intent. This, however, does not prevent one from turning the 
description analysis of this piece of text into a prescriptive method for writing.  

METHODOLOGY  

Participants for this study are drawn from two different offerings of an elementary 
mathematics methods course (Designs for Learning Mathematics: Elementary) and 
two different offerings of a secondary mathematics methods course (Designs for 
Learning Mathematics: Secondary) taught by the author in two consecutive years. 
Each of the courses ran for 13 weeks, with weekly four hour classes. During all four 
offerings of the course the participants were immersed into a problem solving 
environment. That is, problems were used as a way to introduce concepts in 
mathematics, mathematics teaching, and mathematics learning. There were problems 
that were assigned to be worked on in class, as homework, and as a project. Each 
participant worked on these problems within the context of a group, but these groups 
were not rigid, and as the weeks passed the class became a very fluid and cohesive 
entity that tended to work on problems as a collective whole. Communication and 
interaction between participants was frequent and whole class discussions with the 
instructor were open and frank.  

                                           
1 Andrew Waywood (1992) found very similar voices in the journals of year 11 mathematics 
students. He identified them as the recount, summary, and dialogue.  
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Throughout the course the participants kept problem solving journal in which they 
recorded their problem solving processes. In one of the elementary methods courses 
(E1, n=34) and one of the secondary methods courses (S1, n=39) instructions 
regarding problem solving journals were built around an insistence that the journals 
should reflect the problem solving process. This was reiterated through a series of 
discussions on the non-linear, and collaborative, nature of problem solving.  

In the second elementary methods course (E2, n=39) and the second secondary 
methods course (S2, n=36) instructions regarding problem solving journals were 
specifically focused on using personas in their writing. This was done over a period 
of four lessons, having students work on three different problems. In the first lesson 
the first problem was to be solved and using as precise a mathematical language as 
possible, with a focus on logic, and ONLY the solution was to be written up (the 
voice of the mathematician). The second problem was to be solved, but only the story 
of how they arrived at the solution was arrived at was to be written up (the voice of 
the narrator). The third problem was to be attempted, but only the feelings they 
experienced in attempting the problem were to be documented and subsequently 
presented (the voice of the participant). During the fourth class these three journaling 
styles were discussed and the STUDENTS proposed that they should be allowed to 
use all three voices in their journaling. This proposal was then formalized with an 
introduction to the three personas; the mathematician, the narrator, and the 
participant. From that point forth it was explained that they were to write the 
remainder of their problem solving journals using the voices of all three personas. No 
specifications were made as to how these voices were to be integrated, or what 
proportions of voices were to be used.   

All the participants submitted their problem solving journals for marking in week 
nine or ten of the course. These journals were not returned until the end of the course. 

The Data 

Aside form the problem solving journals, all the participants in this study were also 
asked to keep a reflective journal in which they responded to assigned prompts. 
These prompts varied from invitations to think about assessment to instructions to 
comment on curriculum. One set of prompts, given in week 11 or 12 of the course, 
were used to have them reflect on some of their problem solving experiences. These 
prompts were:  

Reflect on your own problem solving process. (1) How do you go about solving 
problems? (2) Does it always work, if so how often? (3) For which problems in this 
course did this process work? (4) For which didn't it, and what was it about those 
problems that made it so it didn't work?  

The reflective journals were submitted in week 13 of the course.  

Analysis 

With both the problem solving journals and the reflective journals in hand an analysis 
was done for each participant in which reflections on their problem solving processes 
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(see prompt 3 and 4 above) were compared to their relevant problem solving journals. 
In particular, I was looking to see if their after-the-fact reflections of specific 
processes (as presented in their reflective journals) correlated with their in-the-
moments documentation of problem solving processes (as presented in their problem 
solving journals).  

RESULTS 

Given the significant difference in the nature of the participants enrolled in 
elementary version from the participants enrolled in the secondary version of the 
course, the results have been disaggregated accordingly. 

Comparison of E1 and E2 

In general, participants enrolled in the elementary methods courses are quite adept at, 
and equally receptive to, journaling. There are many possible reasons for this, 
foremost of which is that they have experience with undergraduate course in which 
writing in general, and journaling in particular, are more common. This includes their 
requisite enrolment in a Foundations of Mathematics for Elementary School Teachers 
course in which there is always a problem solving journal assignment.  

 E1 
(n=34) 

E2 
(n=39) 

Number of participants whose reflective 
journals correlated with their problem solving 
journals.  

24 

 

33 

 

Percentage of participants whose reflective 
journals correlated with their problem solving 
journals. 

70% 

 

85% 

 

Table 1: Correlation comparison between E1 and E2 

Notwithstanding this comfort with journaling, the aforementioned analysis still 
revealed a difference between the two groups. This difference is presented in Table 1. 
Although not remarkable, the results indicate greater correlation in the E2 group. At a 
more qualitative level, however, the difference between the two groups' problem 
solving journals is quite remarkable. The E2 group produced journals much richer in 
descriptions of the extra-logical (Dewey, 1938) processes of mathematics, such as 
instances of insight, intuition, and aesthetic sensitivities. These problem solving 
journals were also much more reflective of the social and collaborative nature of the 
problem solving process encouraged in class. 
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Comparison of S1 and S2 

Participants enrolled in the S1 and S2 course offerings, by the very nature of the 
course, tended to have more courses in undergraduate mathematics. As such, they had 
more exposure to a culture of presenting mathematical work logically, rather than 
chronologically. The result of this exposure has, in the past, been reflected in their 
problem solving journal writings. This was very much the case for the S1 group. 
Their problem solving journals were more reflective of an after-the-fact 
reorganization of what they have found into a mathematically sound explanation, 
rather than an in-the-moment description of their process.  Their only deviation from 
this was in response to my insistence that they "tell me the story of how they solved 
the problem". This, more often than not, resulted in an overlay of narration on top of 
their logically organized solution. 

 S1 
(n=39) 

S2 
(n=36) 

Number of participants whose reflective 
journals correlated with their problem solving 
journals.  

14 

 

26 

 

Percentage of participants whose reflective 
journals correlated with their problem solving 
journals. 

36% 

 

72% 

 

Table 2: Correlation comparison between S1 and S2 

However, this propensity to write logically, rather than chronologically, was 
overcome through the use of the more structured persona-based framework. The 
results, presented in Table 2 show the significant difference in correlation between 
the two groups. Like the E2 group (above) the descriptions of problem solving 
processes of the S2 group was also much richer, including both the extra-logical and 
the social aspects of problem solving.  

CONCLUSIONS 

The person-based framework for structuring the writing problem solving journals 
proved to be very effective in producing journals that correlated well with the 
participants' reflections on their problem solving processes. This effectiveness was 
most noticeable visible within preservice secondary mathematics teachers. For both 
elementary and secondary preservice teachers, however, the persona-based 
framework facilitated the production of richer descriptions of problem solving 
processes. As such, this method of journaling shows great potential as a qualitative 
instrument for capturing some of the less visible aspects of problem solving, such as: 
insight, intuition, and aesthetics.  

More research is needed in order to determine to what extent this form of journaling 
can be developed within students, to what extent it contributes to the meta-cognitive 
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processes of problem solving, and to what extent it is able to accurately represent the 
extra-logical aspects of problem solving.  
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The purpose of this study is to investigate the relationships between student 
achievement in mathematics, and student social economic status (SES) and goal 
orientation. The data used in this study is derived from 2005 TASA-MA pilot testing 
for the sixth-grade students. The result suggested that the better performance in 
mathematics tended to be associated with higher SES and more mastery-oriented 
goal orientation. SES factor accounts for 3.3% of the variance, and student goal 
orientation accounts for additional 11% of the variance. The major implication 
obtained from this study is that goal orientation is much more significant than SES in 
predicting student performance in mathematics. 

INTRODUCTION 

To ensure students’ readiness for meeting the future challenges, many education 
systems periodically evaluate student learning. The national depiction can be 
extended and enriched through comparative international analyses. In respond to 
the trend of international comparative analyses and the need of education 
statistics, Taiwan has been participating in several projects of comparative 
international analyses, and furthermore, the construction of the national database 
of education statistics in Taiwan is being implemented. For example, National 
Academic for Educational Research Preparatory Office recently devotes great 
amount of resources to collection of Taiwan educational statistics based on the 
new mathematics curriculum standards, and plan to establish the database of 
Taiwan Assessment of Student Achievement (i.e., TASA). Mathematics is one of 
the five subjects being assessed, also the focus of this paper, and the 
corresponding assessment is named TASA-MA.  

In addition to assessing cognitive performance, TASA-MA collects information 
about students’ beliefs to help depict student achievement in context. Students’ 
beliefs could be developed within the mathematics learning process in the school 
system, or influenced by motivation. Recently, most researchers tend to postulate 
motivational achievement goal theory for its providing more appropriate reasons 
for an individual to engage in a learning situation (Covinton, 2000; Pintrich & 
Schunk, 1996; Pintrich, 2000; Elliot, 1999). Various motivational goals that 
learners endorse may have different impacts on student achievement performance. 
Learners with mastery goals would tend to appreciate the learning task and work 
hard to master it, while those with performance goals would wish to outperform 
others (Ames, 1992; Covinton, 2000; Pintrich & Schunk, 1996).   
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The purpose of this study is to investigate the relationships between student 
achievement in mathematics, and student social economic status (SES) and goal 
orientation. SES was found to be highly correlated with students' mathematics 
achievement in several international comparative studies, but we hardly can do 
anything about SES to improve students’ achievement. However, the way 
students’ orient themselves to mathematics tasks is a strong indicator of their 
engagement and performance. The focus on the students’ beliefs and how these 
orientations related to their learning could be the first step to show our willingness 
to negotiate with our students and grant them autonomy. Accordingly, we would 
like to examine, with the effect of SES removed, the predictive power of goal 
orientation on student mathematics achievement. 

The Assessment of Competencies 

Assessment-Content Specifications for Pilot Test. Table 1 presents the 
framework of mathematics assessment used for the 2005 TASA-MA pilot test. The 
item pool for the assessment includes 114 multiple-choice items and 26 
constructed-response items. The percentage of items also indicates the percentage 
of instruction time suggested.  

Content 
Multiple 
choice 

Constructed 
response 

Total 
(column %) 

Number properties and 
operations 

57 6 45% 

Measurement 23 5 20% 

Geometry 23 5 20% 

Data analysis and probability 2 5 5% 

Algebra 9 5 10% 

Total number of items 114 26 100% 

Table 1: Content Specification for TASA-MA Pilot Test 

Time. In the 2005 TASA-MA pilot test, two types of instruments were used to 
collect data about students. Each examinee received an assessment booklet 
containing mathematics cognitive questions, and a background questionnaire. The 
cognitive test requires 60 minutes, and the background questionnaire requires 5 
minutes of testing time afterwards.  

Task Type. For the cognitive testing, all items in the pool were clustered into 13 
blocks. The 13 blocks of mathematics items were assembled into 26 booklets 
using balanced incomplete block (BIB) design. Each booklet consisted of 3 item 
blocks, and thereby 24 multiple-choice and 3 constructed-response items. 
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From the background questionnaire, we identified two demographic variables (i.e., 
fathers’ and mothers’ highest levels of education), and one learning experience 
variable (i.e., goal orientation) as predictor variables. Four education levels were 
defined in the questionnaires, and students were asked to check the appropriate 
boxes for their parents’ highest education levels. In addition, four types of goal 
orientation were specified according to the responses of the 6 goal-orientation 
items specific to this mathematics assessment in the questionnaires.  

Sample Questions. For illustration purpose, a multiple-choice and a constructed 
response items, and a goal-orientation items are presented in the following section. 

C1. Figure 1 is a poster. The poster is 40 cm in length and 30 cm in width. Allen 
wants to enlarge the poster to have a length of 60 cm (see Figure 2). If Allen wants 
to keep the proportion invariable, what will be the width after enlarging? 

 
Figure 1                    Figure 2 

(1) 30cm  (2) 35cm ＊(3) 45cm (4) 50cm 

C2. There are 1,200 kg of aluminum ingot, 50 liter of glue, and 200 meters of iron 
wire in the factory. Making a robot needs to use 70 kg of aluminum ingot, 3 liter of 
glue, and 15 meters of iron wire. Uses the materials on hand, the most, how many 
robots can be made in the factory? 

G1. If you had a chance to take a similar test two months later, would you study 
harder for that test? 

  (A) Yes, because I’d like to improve my mathematics ability. 

  (B) Yes, because I am afraid that my parents would preach me if I did not study  

harder. 

  (C) Yes, because I am afraid that I would have worse performance than others in 
the class if I did not study harder.  

  (D) No, because it is no use to study hard. 
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Sample for Pilot Test 

 The analyses in this study are based on the sample for 2005 TASA-MA 
Sixth-Grade Pilot Test in Taiwan. The sample comprised 2019 students, and most 
examinees (94.8%) are from the schools in the west region, while only 101 (5%) 
students are sampled from the east region (See Table 2 for details). 

Table 2 shows the distributions of student reported parental highest education 
level. Four education levels were defined in this study, which were levels of less 
than high school, graduated from high school, graduated from college, and 
graduated from graduate school, The patterns of the education-level distributions 
were similar for fathers and mothers. Most parents were high school graduates, 
45.3% (915 out of 2019) for fathers and 50.2% (1013 out of 2019) for mothers. 
Nevertheless, more fathers (25%) have bachelor degrees and above than mothers 
(19.8%). 

 North Middle South East Total 

 F M F M F M F M F M 

Less 
Than 
High 

School 

234 

(11.6) 

240 

(11.9) 

168 

(8.3) 

159 

(7.9) 

160 

(7.9) 

166 

(8.2) 

37 

(1.8) 

41 

(2.0) 

599 

(29.7)

606 

(30.0)

High 
School 

372 

(18.4) 

411 

(20.4) 

244 

(12.0) 

282 

(14.0)

247 

(12.2)

267 

(13.2)

52 

(2.6) 

53 

(2.6) 

915 

(45.3)

1013 

(50.2)

College 
185 

(9.2) 

175 

(8.7) 

97 

(4.8) 

76 

(3.8) 

98 

(4.9) 

87 

(4.3) 

9 

(0.4) 

4 

(0.2) 

389 

(19.3)

343 

(16.9)

Graduate 
School 

69 

(3.4) 

34 

(1.7) 

18 

(0.9) 

10 

(0.5) 

26 

(1.3) 

11 

(0.5) 

3 

(0.1) 

3 

(0.1) 

116 

(5.7) 

58 

(2.9) 

Total 
860 

(42.6) 

860 

(42.6) 

527 

(26.1) 

527 

(26.1)

531 

(26.3)

531 

(26.3)

101 

(5.0) 

101 

(5.0) 

2019 

(100) 

2019 

(100) 

Table 2: Numbers of Students by Geographic Region and Parental Highest Level of 
Education in Taiwan for 2005TASA-MA Sixth-Grade Pilot Test 

Note: The values in (  ) are percentages of cases. 
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Variables 

The dependent variable is student performance in mathematics or scale score. The 
scale score for TASA-MA is a linear transformation of an IRT composite score. 
The Independent or exploratory variables used in this study were parents’ 
education levels, and students’ goal orientation.  

Results 

Three Mathematics achievement levels or performance standards were derived in 
this study-- Basic, Proficient, and Advanced, and the corresponding cutoff scale 
scores are 201, 277, and 348, which classify examinees into four ordered 
performance categories labeled as below basic, basic, proficient, and advanced. 
The standard for minimal competency for the three levels was set at an expected 
correct-response probability of 0.7, and thus students are required to correctly 
answer 70% of the easy, average, and hard items to be regarded basic, proficient, 
and advanced, respectively. As a consequence, this study not only reports the 
descriptive statistics of the scale scores by the selected background measures, but 
also the corresponding percentages of examinees in the four ordered performance 
categories. 

Relationships between Student Achievement in Mathematics and, SES and 

Goal Orientation 

Social Economic Status. In this study, Social Economic Status (SES) for students 
is indicated by their parents’ highest level of education. The higher education 
levels represent higher SES, and vice versa. The result indicated that higher scale 
score in mathematics tends to be associated with higher SES with exceptions at the 
graduate-school levels. In terms of the percentages of students in the four 
performance categories for each parental education level the percentage of 
examinees in the below-basic-performance category appeared to be highest with 
the lowest SES or less-than-high-school groups, and lowest with the second 
highest SES or graduated-from-college groups. On the other hand, the percentage 
of examinees in the advanced-performance category appeared to be highest with 
the highest SES groups or graduated-from-graduate-school groups, and lowest 
with the lowest SES groups.  Taken as a whole, higher levels of SES were found 
to be related to higher levels of student performance with exceptions at the highest 
SES level. 

Goal orientation. Four types of goal orientation were specified in this study, which 
were mastery intrinsic orientation, mastery extrinsic orientation, performance 
approach orientation, and avoidance orientation. Accordingly, four ordered 
categories of goal orientation are identified with “Level 1”, the lowest level, 
representing avoidance orientation, “Level 2” performance approach orientation, 
“Level 3” mastery extrinsic orientation, and “Level 4”, the highest level, mastery 
intrinsic orientation. Table 3 displays the scale-score means for each orientation, 
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indicating that higher scale score in mathematics tends to be associated with 
higher level of goal orientation. That is, sixth-grade students with mastery intrinsic 
orientation have the greatest scale score on the average, those with avoidance 
orientation obtain the lowest average scale score, and the other types of orientation 
have average scale scores in between.  

Table 3 also provides the percentages of students for the four performance 
categories by goal orientation. In general, greater examinee percentages in the 
below-basic-performance category observed for lower learning-approach-level 
groups, and greater examinee percentages in the advanced-performance category 
observed for higher goal-orientation-level groups, which is line with the outcome 
of better scale score being associated with higher goal-orientation level. 

 N Mean SD 

Below 
Basic 

（%） 

Basic 

（%） 

Proficient 

（%） 

Advanced

（%） 

Avoidance 
Orientation 

87 216.48 50.66
36 

（41.4%）

31 

（35.6%）

19 

（21.8%） 

1 

（1.1%）

Performance 
Approach 

Orientation 
359 226.03 43.96

115 

（32.0%）

165 

（46.0%）

74 

（20.6%） 

5 

（1.4%）

Mastery 
Extrinsic 

Orientation 
600 241.79 48.55

137 

（22.8%）

258 

（43.0%）

184 

（30.7%） 

21 

（3.5%）

Mastery 
Intrinsic 

Orientation 
973 266.34 46.88

102 

（10.5%）

337 

（34.6%）

444 

（45.6%） 

90 

（9.2%）

Total 2019 249.72 50.09
390 

（19.3%）

791 

（39.2%）

721 

（35.7%） 

117 

（5.8%）

Table 3：Descriptive Statistics of Scale Scores and Passing Rates by Goal orientation 

The Variance of Student Achievement Explained by SES and Goal Orientation 

In this study, the first type of predictor variables of student achievement is Social 
Economic Status, indicated by fathers’ and mothers’ highest levels of education, and 
2.9% of the variance is explained by these two variables. The second type of 
predictor variable is student’s goal orientation, and accounts for additional 11% of the 
variance.  
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Table 4 summaries the regression analyses implemented for this study. In Table 6 the 
“Model” column identifies the various models. The “Explained Variance (%)” 
column provides the amount and percentage of Y variance explained by the 
corresponding predictive variables, and the percentage is obtained by dividing the 
explained Y variance by the original total Y variance (e.g., 67.64÷2301.36=2.9%). 

The “Additional % of Explained Variance” column displays the most important 
information in this study. Each percentage in this column represents the proportion of 
the Y variance explained by the additional predictive variable(s) after the effect of the 
predictive variables in the previous model are removed. For example, the unique 
contribution of goal orientation in predicting student achievement can be denoted by 
11%, and obtained by subtracting the percentage explained by SES from the total 
percentage explained by SES and goal orientation (i.e., 13.9%-2.9%=11%). 

Model Predictive 
Variable 

Unexplained 
Variance 

Explained 
Variance 

(%) 

Additional 
% of 

Explained 
Variance 

Y = β0 +E None 2301.36 0 NA 

Y = β0 + γ1*(FE) + γ2*(ME) 
+ E 

FE, ME 2233.72 67.64 

(2.9%) 

2.9% 

Y = β0 + γ1*(FE) + γ2*(ME) 
+ γ3*(GO)+ E 

FE, ME, 
GO 

1980.50 320.86 

(13.9%) 

11.0% 

Table 4：Summary Table for Regression Models and Effect Sizes 

CONCLUSION AND DISCUSSION 

The results of this study show that most sixth-grade students in Taiwan perform at the 
basic level performance in mathematics. The higher proficiency in mathematics tends 
to be associated not only with higher SES, but also with more mastery-oriented 
learning approach (i.e., mastery goal orientation). SES accounts for 2.9% of the 
variance, which is much lower than that uniquely accounted for by student’s goal 
orientation (11%). This major finding implies that goal orientation is much more 
significant than SES in predicting students’ achievement of mathematics. The present 
study also showed that more than 50% 6th graders were somewhat concerned about 
how they performed in mathematics relatively to others in Taiwan. The challenge 
teachers and educators face now concerns how to create conditions that facilitate 
students’ learning commitment by reducing the excessive focus on relative 
performance. 
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WHY STUDENT TEACHERS TEACH OR DO NOT TEACH THE 
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*Department of Mathematics, National Taiwan Normal University 
**General Education Centre, Lan Yang Institute of Technology 

 

This study investigates the relationship between student teachers’ awareness of, and 
their willingness to teach certain values. Findings from an interpretive case study 
indicate that the relationship between students’ awareness of the professed values 
and the values that they are willing to, and actually teach, in the classroom is much 
more complicated than expected.  Their willingness to actualize certain values is 
closely related to the substance of values, the extent to values awareness and the 
classroom situation for practice. Such relationship is modified in and from the 
teaching practice in which the taught and professed values are dialectically and 
pedagogically informed. 

INTRODUCTION 

Issues about values in mathematics education have been increasingly discussed, and 
recognised as an important domain of portraying teachers’ thinking and classroom 
practice, in recent PME conferences (e.g., Bishop, FitzSimons, Seah & Clarkson, 
2001; Chin, 2002; Seah, 2005). The Taiwanese VIMT (Values In Mathematics 
Teaching) projects and the Australian VAMP (Values And Mathematics Project) 
have reported details about the extent to which mathematics teachers are able to 
clarify their own value positions and understand their own intended and implemented 
values. Two aspects about teachers’ intrinsic motives of thinking and action (i.e. 
awareness and willingness) from which the above two projects are derived, play as 
two crucial affective requirements of learning-to-teach values for student teachers 
(Bishop, Seah & Chin, 2003). The former is concerned with the extent to which 
teachers are aware of teaching some values in the classroom; the latter is about their 
willingness to teach those values. But, what relationships connect these two 
constructs are still unclear. This paper describes part of the results from the first year 
of a 3-year follow-up project of VIMT, in which 6 student teachers of secondary 
mathematics are selected as cases for longitudinal study, hoping to provide some 
insights into the questions of ‘What are the relationships between values awareness 
and willingness to teach?’ and ‘What factors might influence such relationships?’ 

Many mathematics educators believe that the values which teachers of mathematics 
bring to various aspects of their work profoundly affect what and how they teach, and 
therefore what and how their students learn (Bishop et al., 2003, pp. 718). As a result, 
the more mathematics teachers understand about their own pedagogical value 
positions, the more flexible they will be in their thinking about, and practice of, 
classroom teaching of mathematics (Chin & Lin, 2001, pp. 114). Based on case study 
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of one expert secondary mathematics teacher’s value positions and value clarification 
process, a 5-stage cognitive-affective transition process was suggested, and the 
teacher’s values teaching was closely related to both his awareness of, and 
willingness to, teach such values in the classroom (Chin & Lin, 2001). Pollard (2002) 
indicated the importance of identifying our value-positions from three aspects. First, 
it helps teacher to assess whether we are consistent, both in what we believe and in 
reconciling differences which may exist in a school. Second, it helps teacher to 
evaluate and response external pressure. Finally, it can help teacher to assess whether 
what we believe is consistent with how we actually behave. Thus, the awareness or 
clarification of values that teachers posit can bring them more concentrated on the 
classroom teaching and learning activities that values are loaded (Chang, 2005).  

The question of ‘Are teachers aware of this (values) possibility?’ was raised and 
discussed in PME 25. Mathematics teachers may portray certain values in their 
teaching that are not intended (Bishop, 2001), but, if teachers are conscious or aware 
of their own values, then will they practice certainly? If values are hold by 
individuals to which they attach special priority or worth (Hill, 1991), teachers will 
certainly want to enact the values professed. And yet, the two initial states as ‘felt 
difficult to act however unwilling to act’ and ‘felt difficult to act and yet willing to 
act’ in student teachers’ learning-to-teach pedagogical values were also observed 
(Chin, 2002). This report reminds us to take both the individuals’ willingness and 
abilities more seriously in studying (student) teachers’ values and their classroom 
practices. The inconsistencies between individual beliefs and subsequent actions were 
also evident in several studies (e.g., Raymond, 1997). And different situation might 
lead to different choice of actions (Seah, 2005). As a result, the relationship between 
teacher-aware values and the values that they actually teach in the classroom may be 
pedagogically dialectical (Bishop et al., 2003), and we should therefore take this 
circumstance of practice into account. This paper examines the relationship between 
awareness of, willingness to teach, and classroom practice of the student teachers’ 
professed values.  

RESEARCH METHOD  

The case study method, including questionnaire survey, interviews and classroom 
observations, was used as the major approach to investigate the pedagogical values of 
a group of 6 student teachers. The systematic induction process and the constant 
comparisons method (Strauss & Corbin, 1998) based on the grounded theory were 
used to process data and confirm evidence characterized the method of our study. 
According to a questionnaire survey with statistical factor analysis (Statistics Package 
for Social Sciences, 2004), 6 student participants (Ning, Ji, Han, Tong, Yu and Ying) 
were selected as the cases for this 3-year longitudinal study from a class of 46 student 
teachers who participated in the ‘teaching methods for secondary mathematics’ 
course at the third year of the teacher preparation programme. We separated the study 
into two stages (pre-micro teaching and in/post-micro teaching) to collect the first 
year empirical data. In the pre-micro teaching, the main activity of the course was to 
observe and comment on the topic of mathematical induction videotaped from 5 
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secondary expert teachers’ values teaching, and then followed by asking the students 
to propose a teaching plan for micro teaching in groups. They were then separated in 
6 groups to practice the values that they formerly professed and intended to teach, 
through micro teaching for few selected topics in the secondary school curriculum. 
Following, we report Ying case in more detail followed by a briefing of the Yu case. 

RESULTS 

At the stage of pre-micro teaching, according to the responses from values priority 
questionnaire and interviews, Ying consistently identifies with the following 5 
professed values: (1) mathematical essence (2) mathematical forms (3) mathematical 
communication (4) mathematical reasoning (5) learning with pleasure. Ying regarded 
the first two values as the most important guidelines for her micro teaching. In the 
interviews, she said “if there are no mathematical forms in my teaching, then I don’t 
know how to teach the subject and my students would also do not know how to learn 
the content, thus, ‘forms’ should play an important role in my teaching”. She also 
identified with the values of ‘preparing knowledge for students’ and ‘describing 
mathematical concepts with the real life situations’ that one expert teacher addressed 
in his video, and was willing to enact them in micro teaching afterward. She also 
conceived the value of mathematical communication as her favourite. In the 
interviews, she said “I care about students’ response very much; it is not a good 
feeling if I am the only person talking in the classroom while students are not with 
me”. She also agreed with the idea of “building a vivid atmosphere in the classroom 
for students to ask and response freely and interactively” after observing the teaching 
videos. She anticipated “a class with teacher-student dialogue under harmonious 
atmosphere”. 

Besides, she expected her students to learn to explain mathematical ideas and study 
mathematics happily. The meaning of mathematical reasoning for her was connected 
to the abilities to clearly explain mathematical concepts, for “through explanations 
one shows what you have already understood” and learning with pleasure was “to 
keep students out of a long face at least”. She added to the former that “mathematics 
allows us to learn to analyse and reason, and students who learn this ability will 
become orderly people”, although “there is a gap between being orderly and 
reasoning mathematically, since it is not everybody that can achieve it, I will not 
require students to achieve this even though it is valuable for me”. 

Specifically, she indicated the value of learning with pleasure as the most favourite, 
and yet she saw ‘felt happiness and pleasure’ as the least important guideline for 
planning teaching activities. That is to say, though she loved certain values, but 
would rather lay it aside in teaching. When we asked the reasons of saying so, she 
referred to her out of class tutoring experiences, reflecting the feelings of “not to be 
so serious to students and do not let students reject mathematics at least”. However, 
she also re-addressed that “it is impossible for the students to be happy all the way 
through; though I conceive pleasure as being important for teaching and learning 
mathematics, creating happy atmosphere for learning mathematics perhaps is only 
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an ideal teaching goal”. In this case, her willingness to teach the value gets no 
stronger at the present stage. 

At the stage of in/post-micro teaching, the topic of Ying’s micro teaching was the 
completing square of a quadratic equation with one variable in the junior high school 
mathematics curriculum. She was the third of team to teach the lesson lasting about 
15 minutes. In this 15-minute micro teaching, we observed that she requested 
students many times to pay attention to the formula of completing squares. We asked 
whether she had intended to create a kind of mathematical forms in such activity, she 
firmly said “I will request students to solve problems according to my method in the 
classroom that is what I should do to be a teacher, if I present too many ways at the 
same time, students will be confused”. Thus for her, the mathematical forms have to 
be emphasised in teaching. When we asked her what aspect of the micro-teaching she 
was most unsatisfied with, she replied that “it would be the moment of interacting with 
students”. Moreover, she wouldn’t spend much time in teacher-student 
communication, but would try it when the crucial moment comes. When asking her 
how to train the students’ abilities to think mathematically, she said “it can be 
accomplished in class one to one, but it is impossible to proceed with the entire class 
together”. Though, she hopes that students can learn mathematics within a relaxed 
atmosphere, and might just enact it on the premise that  school tests and homework 
are few. As a result, though she emphasised learning motivation, feeling or students’ 
thinking, she would teach the class smoothly at present not too radically.  

At this stage, on the one hand, Ying attempted to perform some values that she 
identified at previous stage such as ‘mathematical essence and forms’ and 
‘mathematical communication’. On the other hand, she liked to talk more to the 
students and to improve the quality of classroom teacher-student communications. 
Besides, she also identified with the values of mathematical reasoning and learning 
with pleasure, although she still expressed a lower willingness to teach such values 
after micro-teaching. We summarize the 2-stage results for her as follows (see table 
1). 

Pre-micro teaching In/post-micro teaching 
Values 

awareness willingness Practice 

Mathematical essence V V V 

Mathematical forms V V V 

Mathematical 
communication V V V 

Mathematical reasoning V X X 

Learning with pleasure V X X 

Table 1: Categories of Ying’s values observed 

Unlike the high consistency of Ying, other cases presented inconsistent across these 
two stages. Yu as an example, at the pre-micro teaching stage, she consistently 
identifies with the following three professed values: (1) thinking individually (2) 
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mathematical communication (3) learning with pleasure. She said “mathematics 
teaching should promote thinking ability and teachers should let students feel that 
mathematics is interesting to improve their learning motive”. But she also declared 
that “teachers are not necessarily leading them to get the feeling that learning 
mathematics is a happy moment and I can’t force students to feel happy in such a 
process”. In this case, Yu shows a lower willingness to teach the value of learning 
with pleasure. 

At the micro teaching stage, Yu and Ying were in the same team and taught the same 
topic. Yu was the last one to teach the lesson for about 8 minutes. However, we did 
not observe the enactment of the above three professed values. She said “I am very 
nervous in teaching and I can’t know the reaction of classmates.” She confessed that 
she didn’t consider the values while designing the relevant teaching activities. Also, 
the teaching plans were written by the group, she just “did the best to follow it”. 
When we talked about her portion of micro teaching, she said “I hoped that I could 
highlight the importance of thinking individually by interacting with students if I have 
enough teaching experience”. And unexpectedly, she showed a higher willingness to 
teach such value after micro teaching. In her end of the term reflective journal, she 
referred to the experience of tutoring in which students’ bad moods could convey to 
her as well. Thus, she will try to design mathematical activities to let students feel 
happy in her teaching. As a result, of her limited experience, Yu neglected the 
previously professed values in practice, but she still expressed a higher willingness in 
trying to strengthen the roles of some values in her classroom teaching later. We 
summarize the 2-stage results for her as follows (see table 2). 

Pre-micro teaching In & post-micro teaching 
Values 

awareness willingness Practice 

Thinking individually V V X 

Mathematical communication V V X 

Learning with pleasure V X X 

Table 2: Categories of Yu’s values observed 
DISCUSSIONS 

The cases of Ying and Yu offer us a foreseeable relationship of awareness and 
willingness related to the enactment of values. They are all aware of certain values, 
but they may not have willingness to teach them. Even though they all show a higher 
willingness to enact certain values in the classroom, they do not or even refuse to 
practice such values. This seems to indicate that teachers may acknowledge some 
pedagogical values and regard them as important ones, but this doesn’t necessarily 
assure that they will actually teach them in the classroom. That is to say, the 
relationship between teacher’s awareness of the professed values and the values that 
they actually have willingness to implement in the classroom is much more 
complicated than the researchers initially assumed it might be pedagogically and 
dialectically related. There may be other factors influencing this relationship, or pre-
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conditions for enacting certain values. We will re-consider the relationship as follows 
by focussing on analysing the reasons for clear awareness but low willingness to 
teach the professed values. 

Willingness to teach and the substance of values 

It has long been recognised that the values are unable to exist alone; it exists on the 
basis of some concrete value-carriers. Since both teachers and students even 
mathematics are value-carriers (Bishop et al., 2003), this theory offers us a 
framework to re-think Ying’s case. If we conceive her values from the mathematical, 
interactive and learning aspects in relation to the different substance of each value, 
then apparently, the values of mathematical forms and essence can be classified as 
‘mathematical’ that Ying likes to implement in the classroom; the value of 
mathematical communication can be grouped as ‘interactive’ that she anticipates to 
teach with the students; and the values of mathematical reasoning and learning with 
pleasure can be relegated to ‘the learners’ that she considers as being too hard to be 
actualised in the classroom. In this case, we suspect that it is the learning domain that 
she finds difficult to handle, and then show a lower willingness to teach such values. 
And this tendency has been lasted over the two research stages consistently. On the 
other hand, some values with higher willingness to teach are concerned with the 
mathematics or classroom interaction. Other cases in the study also show similar 
phenomena, like Yu. Although they all hope to get students to enjoy in learning 
mathematics, and yet they still hesitate to include it in the teaching plans. Since this 
may involve students’ affect of learning mathematics, and they both conceive it as 
“very difficult to control”. Thus, we suggest that the willingness to teach is closely 
related to the substance of values. Since the student teachers have less experience in 
teaching until to the end of their teacher education program, they also do not acquire 
mastery of teaching. As a result, the teachers’ abilities and the extent of 
understanding toward students may affect their willingness to teach those values in 
the classroom. Thus, the more pedagogical values are related to learners, the less 
willingness they intend to teach the values. This observation echoes also to the theory 
of learning-to-teach that student teachers’ orientations toward teaching are grounded 
in a teacher-centred classroom (Wilson, Cooney & Stinson, 2005). It is difficult for 
them to control over or face to the relevant classroom situations except mathematics 
and themselves. 

Willingness to teach and the situation of practice  

Two forms of values teaching are salient in this study. First, the students who actually 
teach the values that they are willing to teach. For instance, Ying clearly 
acknowledges her intended pedagogical values and enacts it in the micro teaching. 
This confirms the idea of ‘values as beliefs in action’ (Clarkson & Bishop, 1999). 
Second, the students who do not teach the values that they are willing and suppose to 
teach. For example, Yu even neglects the values nominated before micro teaching 
when they design the teaching plans. One reason is about the shared nature of the 
teaching plan for the whole team, as the team members can only complete the 
planned curriculum and no one has the rightness to change it. Another reason is 
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concerned with the immediate nature of classroom teaching situation, as the moment 
goes by, they care only about the teaching contents, the notes made on board, and the 
performance on the platform. In the light of Fuller’s theory of concerns (Fuller & 
Bown, 1975), our cases are clearly still at the state of self-concerned, perhaps 
including lack of teaching experiences, the familiarity of the teaching topic, or some 
socially interactive experiences (Raymond, 1997).  

Willingness to teach and the extent of awareness 

Do teachers really acknowledge clearly their own values? Or, how clear teachers are 
of their values? Though we don’t have more specific evidence to answer these 
questions, we can still get some insights from the case of Yu. She firstly identifies 
with the value of learning with pleasure but unwilling to act at the micro teaching 
stage; and after that stage, she eventually shows a higher willingness to teach such a 
value. Perhaps this is because of the experiences in and reflections on her micro 
teaching section; and also during the process of interacting with students she becomes 
realized that the importance of values in her teaching, and this quasi-practical shock 
may then stimulate her to re-consider the possibility of teaching that value. Thus, it 
may be that ‘the deeper the extent of awareness they are, the higher the willingness 
that they will have’. She may be more aware of, or willing to, teach her formerly 
professed values. 

The increasing of awareness and willingness in and from practice 

We should re-consider student teachers’ professed values by taking practice into 
account, for some students although identify with certain values; however they may 
not necessarily be aware of the value actually being taught. If we re-consider the 
question of ‘how clear teachers are of their values’, then we are forced to consider 
how clear teachers are of their values ‘in and from practice’? As to our student 
teachers, micro teaching seems to make them fluster on the platform. They just go 
through the teaching section and have no attention or intention to think of other 
things, including the professed values. This might have been related to the limited 
experiences that student teachers have, thus even they are fully aware of their own 
values in the classroom, and they still may not necessarily be willing to implement 
them. Lastly, some of them choose not to implement certain values. But there are 
students who change the value tendency after classroom practice. For example Yu, 
she eventually shows a higher willingness to teach the value of learning with 
pleasure. Though a lot of classroom realities might hinder a teacher to teach certain 
values, perhaps more teaching practices may re-cycle them to have higher willingness 
to teach that values. 

In the final year of this 3-year project, the 6 student teachers have been attached to 
different secondary schools. There are social and pedagogical tensions for them to 
challenge their formerly intended and implemented values. Will they still be clear 
and aware of, as well as to implement their own values in the real classroom 
situations? The 1st in-school classroom supervision shows that Ying talks to different 
students 27 times in a 50-minute lesson, does this mean that her previous values are 
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eventually changing? Or, she just re-arrays the former values priority in consideration 
of the classroom reality? This is a newly follow-up question for us. 
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INVESTIGATING MATHEMATICS LEARNING WITH THE USE 

OF COMPUTER PROGRAMMES IN PRIMARY SCHOOLS 

Maria Dolores Lozano, Ivonne Twiggy Sandoval, Maria Trigueros 

ILCE, Enciclomedia, México 

 

The purpose of this paper is to report on the development of a methodology designed 
to investigate the way in which primary school students learn mathematics with the 
use of computer interactive programmes. Our work is part of a Mexican project 
devised to enrich teaching and learning in the classrooms with the use of multimedia 
resources. Our approach is guided by enactivism, a theory for learning about 
learning (Reid, 1996) in which multiple perspectives are used and where methods are 
continuously being refined in the process of doing research. Learning is investigated 
through the observation of classroom cultures and of students’ mathematical actions. 
Illustrative examples show how our way of working is helping us in looking at how 
the computer programmes are being used in the classrooms. 

INTRODUCTION 

Enciclomedia is a large-scale Mexican project that has been devised with the purpose 
of enriching primary school teaching and learning by working with computers in the 
classrooms.  An electronic version of the mandatory textbooks that are used in all 
primary schools in Mexico is being enhanced with links to computer tools designed 
to help teachers with the teaching of all subjects. As members of the Mathematics 
group in Enciclomedia, we create resources and strategies which can help teachers 
and students in their teaching and learning of mathematical concepts. An additional 
and extremely important part of our work is to investigate how students learn 
mathematics as they use the computer tools that Enciclomedia provides them with. 
The purpose of this paper is to report on the development of ways of working that can 
enable us to characterise the learning of mathematics with Enciclomedia. To begin 
with, we consider some theoretical ideas about the learning of mathematics; in 
particular, with the use of computer interactive programmes. We also give a brief 
description of the interactive programmes that are being used in mathematics lessons. 
Later, we discuss the way in which the learning of mathematics with these 
programmes can be investigated. We talk about the approach we have taken in 
Enciclomedia and the methods we are developing for our project. In addition, we 
give some examples of the results we have obtained with our investigation so far. 

SOME IDEAS ABOUT THE LEARNING OF MATHEMATICS 

What do we mean by ‘learning mathematics’? How can we investigate the way in 
which students learn of mathematics with the use of a computer? Our theoretical 
ideas about mathematics learning are based on enactivism, a theory of knowing 
which considers learning as effective or adequate action (Maturana and Varela, 
1992). Our minds are seen as ‘embodied’ and cognition as ‘embodied action’. These 
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ideas of ‘embodiment’ entail two fundamental senses: on the one hand cognition is 
seen as ‘dependent upon the kinds of experience that come from having a body with 
various sensorimotor capacities’ and on the other, individual sensorimotor capacities 
are considered to be ‘themselves embedded in a more encompassing biological and 
cultural context’ (Varela, 1999, p. 12). The first meaning of embodiment locates 
cognition in our bodies, and prevents us from thinking about it as an abstract notion 
that is detached from our everyday experience. The second situates our learning in a 
wider social and cultural context. 

In enactivism learning occurs when individuals interact with each other, changing 
their behaviour in a similar way. In a particular context or location, the participants 
create together the conditions that will allow actions to be adequate. Learning 
outcomes cannot be predetermined or predicted, but the criteria for the adequateness 
of actions are, specified by teachers and students. As members of a particular 
community interact with each other, patterns of behaviour are created, constituting 
what in this paper we call a classroom culture (see Maturana and Varela, 1992). 

With these ideas in mind is that we are interested in investigating the learning of 
mathematics with Enciclomedia by looking at the actions that take place in the 
classroom and that we consider to be effective.  

Learning mathematics with computer tools 

From an enactivist perspective, the use of computer tools is part of human living 
experience since ‘such technologies are entwined in the practices used by humans to 
represent and negotiate cultural experience’ (Davis et. al., 2000, p. 170). Tools, as 
material devices and/or symbolic systems, are considered to be mediators of human 
activity. They constitute an important part of learning, because their use shapes the 
processes of knowledge construction and of conceptualization (Rabardel, 1999). 
When tools are incorporated into students’ activities they become instruments. 
Instruments are mixed entities that include both tools and the ways these are used. 
For this reason, instruments are not merely auxiliary components or neutral elements 
in the teaching of mathematics; they shape students’ actions and therefore they are 
important components of the learning processes: 

Instruments constitute the means that shape and mediate knowledge and our registers of 
situations and because of that they exert an influence that can be considerable… they 
influence the construction of knowledge (ibid, 1999, p. 204)   

Every tool generates a space for action, and at the same time it poses on users certain 
restrictions. This makes possible the emergence of new kinds of actions. In that 
sense, the use of a tool can contribute in the opening of the space of possible actions 
for the learner (Rabardel, 1999). The influence that tools exercise on learning is not 
immediate. Actions are shaped gradually, in a complex process of interaction.  
Instruments are not given, they do not exist in themselves, and they do not imply a 
predetermined way of working. Rather, people incorporate tools into their activities 
and they shape them as they use them (ibid, 1999). Solving mathematical problems 
with the use of computer programmes is closely related to the tools available, and 
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students need, on the one hand, adequate actions related to the mathematics involved 
and, on the other, actions that are effective in relation to the use of the tools 
themselves. In the classrooms, students construct meanings through their actions 
which are contextualised in phenomenological experience, that is, in a process of 
social interaction and with the guide of the teacher (Mariotti, 2001). 

The purpose in, Enciclomedia, is to develop programmes which can broaden 
students’ experiences with mathematics. We have developed different kids of 
programmes; they vary, for example, in the kinds of interactivity they promote and in 
the types of problems they pose to the users. So far we have developed programmes 
related to different mathematical concepts or areas such as fractions, probability, 
area, perimeter and proportionality. The programmes are closely related to the 
activities in the students’ textbooks, but they are mostly thought of as spaces for 
mathematical exploration. They usually provide the users with something they would 
not get if they used the textbook alone. For example, programmes give the students 
immediate feedback on their actions on the computer, and they often simulate 
situations that are difficult to recreate or experience in the classroom, such as large 
number of occurrences of random events. Many also show different representations 
of the same concept, such as numeric and graphic, which are linked together in the 
programme. 

The investigation of the way students learn mathematics as they use these 
programmes in their classrooms is a crucial part of the process of development of the 
tools themselves and one we are addressing through this work. 

SOME IDEAS ABOUT METHODOLOGY 

The choice of methods used in our investigation of mathematics learning is also 
inspired by the enactivist approach. ‘Enactivism, as a methodology [is] a theory for 
learning about learning’ (Reid, 1996, p. 205). Research is considered to be a way of 
learning, and therefore researchers are seen as individuals developing their learning 
in a particular context. From an enactivist perspective, researchers interpret the world 
in a particular way, influenced by their previous experiences. In addition, in the 
process of doing research, researchers influence and shape the context in which they 
are immersed (ibid, p. 206). The interdependence of context and researchers makes 
the research process a flexible and dynamic one. Research does not occur in a linear 
fashion; rather, it is seen as a recursive process of asking questions. The work 
reported in this paper is only the first part of a complex process of interaction and 
development of ideas. Because of the nature of our work we consider it to be not only 
research but ‘action research’. We think of our educational initiatives as dynamic 
suggestions which are under constant modification. The development of the computer 
programmes in Enciclomedia is an ever-changing process and our work as 
researchers is also being continuously shaped and modified by our interactions with 
textbooks, teachers, students and with each other. The methods we have started using 
to investigate mathematics learning will change in the future according to what we 
observe in the classrooms and to the feedback we receive from colleagues.  



Lozano, Sandoval & Trigueros 

 

4 - 92 PME30 — 2006 

Research questions 

We were interested in investigating those activities that we found to be effective as 
students worked in mathematics problems using Enciclomedia. We wanted to 
investigate and analyse the way in which the use of the computer interactive 
programmes contributed in shaping students’ actions, and especially, we wanted to 
observe the development of actions that could be described as mathematical. In order 
to do this, we decided to get a sense of the culture of the classrooms and more 
specifically, to identify mathematical actions that could be observed during the 
lessons.  In what follows we describe in more detail the methods we used, and some 
preliminary descriptions of what we have observed so far.  

INVESTIGATING THE CLASSROOM CULTURE 

In order to research the learning of mathematics with Enciclomedia, we contacted a 
school in Mexico City where we worked with two Year 5 and two Year 6 groups of 
about 25 students each (aged 11-13). Two of us visited the classrooms at a time and 
our role was that of participant observers. We helped the teacher in giving general 
directions on how to use the computer programmes and we walked around the room, 
making comments or asking questions about students’ work. As we entered the 
classrooms we contributed in creating certain kinds of classroom cultures – that is, 
patterns of actions and interactions. When digital technologies are used, these change 
the way students and teachers interact with each other and therefore particular 
classroom cultures emerge. Furthermore, the roles of the teacher and of the students 
change as the culture of the classroom is modified by the use of the programmes. 

The classroom cultures we investigated were influenced by the pedagogical approach 
taken by the national curriculum, which is being followed by the textbooks and by 
Enciclomedia. In agreement with this, certain activities were explicitly fostered in the 
classroom while others were discouraged. For example, an attitude of tolerance and 
respect for others’ opinions was promoted; students were invited to work 
collaboratively, to ask questions and to participate in discussions. In addition, they 
were asked to justify their opinions and to work in an orderly fashion.  

In order to register the characteristics and the development of the classroom cultures, 
we carried out detailed observations of students’ actions. We used multiple methods 
for the collection of data. We used audio recording during the lessons. We recorded 
whole group discussions as well as interactions that occurred between two or three 
students and/or between students and teachers or researchers. We also used a video 
camera, with the purpose of recording, for each lesson the actions of a particular pair 
of students. So far we have videoed different students on every session. 

Additionally, for each lesson, we filled in an observation sheet in which the following 
aspects of students’ behaviour appear: Active/Passive, Attentive/Inattentive, Working 
with others/Working individually, Freedom/Constraint, Giving correct answers/ 
Formulating explanations, Understanding/Remembering. These aspects had emerged 
in a previous study in which they had been helpful in analysing students’ 
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mathematical actions related (Lozano, 2004). We thought we could start investigating 
our classroom cultures by looking at these categories, keeping in mind that some of 
them might turn out to be irrelevant, while we might need to add others. 

The following examples are taken from the notes written on the observation sheets on 
several dates. Key words, which are highlighted in the documents, appear in italics: 

Students are active when they work with the programmes. They constantly interact 
with the programmes and with their peers. They also ask questions and often want to 
explain or show things to the teacher and researchers.  

Many students are eager to participate in whole-group discussions. A few of them are 
quiet, but all of them are attentive. Students get distracted when, working with the 
interactive programme, they cannot solve a problem after many attempts. 

Individual work seems to be more frequent when students are working with activities 
from the textbook; when they start exploring the problem with the interactive 
programme; and when their solutions are giving them unexpected feedback (due to 
incorrect answers). Students appear to work in groups more frequently once they 
have an understanding of the problem.  

The programme (‘The Balance’) seems to give s students freedom to explore with 
different situations and to experiment with different strategies. The textbook and, at 
times, the teacher, restricted students’ actions.  

Most students are looking for correct answers. This seems to be reinforced by the 
teacher who stresses the importance of getting them. The computer programme 
‘Perimarea’ gives further emphasis to this approach. 

Sometimes students’ explanations include phrases such as ‘that is the way we were 
taught’ ‘that is how the formula goes’ which indicate memorisation. A few students, 
however, give sophisticated explanations with complex mathematical ideas involved. 
These explanations are not necessarily correct in a conventional sense. 

Students’ mathematical actions 

When entering the classrooms we were particularly interested in looking at those 
actions which students performed during the lessons and that could be considered 
mathematical. With the purpose of identifying these actions, the audio and video 
tapes we obtained from each lesson were analysed from a different perspective than 
the one taken when thinking of the classroom culture. In addition, when we observed 
the lessons, we wrote down, individually, those actions that we thought were 
mathematical. We used a second observation sheet with the following headings: 
Initial mathematical behaviour (which refers to students’ actions related to 
mathematics during the whole group introductory discussion at the beginning of the 
lesson), Mathematical actions (those observed during the rest of the lesson, which are 
related to the mathematical concept(s) in the textbooks’ chapter) and Other 
mathematical actions (they do not explicitly address concepts in that chapter). 
Particular incidents, where mathematical behaviour is observed, were written at 
length under each heading. In addition, we have kept records of students’ work with 
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paper and pencil. Acting mathematically does not necessarily mean, to us, solving a 
problem in a conventional ‘correct’ manner. We collectively decide on what is 
mathematical by having discussions in which we talk about our notes, our transcripts 
from the audio tapes, and about what we observe on the videos. To support our 
interpretations about mathematical actions, we also read the literature on the teaching 
and learning of the different areas or mathematical concepts which are being 
explicitly addressed in each lesson. We use the textbooks to identify these concepts, 
and to learn about the purpose of the chapters in them. We are working on the 
development of criteria for identifying mathematical actions, which are not fixed but 
ever-changing.  

For example, the following extract was taken from the notes that were written under 
Initial mathematical behaviour on the 15/10/2005, which were later contrasted and 
complemented with the transcripts from the audio tape from the same date: 

T- What does the word area mean? Use your own words. 
Students: ‘The centre of the shape’ (S1) ‘The opposite to the perimeter?’ (S2) ‘The part 
that is not on the edge’ (S3) 
T- Can you show me? What is the area of the board? (Student touches the central part) 
T- Anyone else? What is the area of this rectangle? (Student fills in its central part) 
T- Who can say something different? What does ‘area’ mean? 
S5- Everything except for the border. 

Afterwards, the group worked with the interactive program ‘Perimarea’, where they 
were supposed to calculate the area for different shapes by counting the squares on a 
grid that is shown on the screen (see Figure 1).  
 

       Figure 1. Perimarea 

We noticed, both during the lesson and on the 
video from that session, that students were 
giving the answers by trial and error. They 
got feedback from the programme; telling 
them whether they were missing or they had 
too many square units. By the end of the 
lesson, it was evident that they had not 
changed their ideas about the area being the 
central section of the surface of the shape.  

In other lessons, students worked with a programme called ‘The Balance’, comparing 
fractions and solving problems from the textbook where they had to fill in boxes that 
represent weights on a scale. The problem in the textbook’s chapter can be 
reproduced with the programme (Figure 2). Immediate feedback is given, as the 
programme shows whether the scales are in equilibrium or not. During these lessons, 
the following mathematical actions were registered (28/11/05): 
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• Students ask questions such as ‘Why is this 
heavier than this?’ 

• Students give explanations about how to 
equilibrate the balance: ‘fractions have to get 
smaller’. Other explanations are more 
sophisticated, for example, a student used 
graphic representations (of pizzas) on the board 
to show how a fraction with odd numerator can 
be divided in two.  

 
          Figure 2. The Balance 

•   Students compare rational numbers, identifying ‘more or less heavy’ weights.  

We noticed that when students first began using The Balance, many also answered 
with trial and error. However, they gradually refined their strategies and started 
producing more efficient and systematic methods for obtaining fractions that 
equilibrated the balance. Using ‘random’ numbers proved to be an inadequate manner 
of addressing the problem. Their effective behaviour, after a few sessions, was very 
different from the one we had observed when they used Perimarea. 

CONCLUSIONS: SOME REFLECTIONS ON METHODOLOGY AND 

DIRECTIONS FOR FUTURE RESEARCH 

Learning mathematics is a complex process. The introduction of digital technologies 
in the teaching of mathematics has been considered by some as an answer to the 
mechanical problems students present when they learn mathematics, allowing for the 
examination of conceptual understanding. This has proved not to be the case, as tools 
often introduce different problems and their use generates new sets of questions about 
student’s learning (Lagrange, et. al., 2001; Laborde, 2004). Investigating the learning 
of mathematics with the use of computer tools implies addressing the complexity that 
is intrinsic to learning and devising methods that allow researchers to explore the way 
in which these tools shape students’ actions. Using multiple perspectives is a feature 
of the enactivist methodology (Reid, 1996, p. 207) that we have found particularly 
useful in our investigation. This refers to the exchange of ideas with other researchers 
and also to the examination and re-examination of different kinds of data. Through 
the comparison of different events, in different ways, we are able to explain more. 
Our way of doing research, which is being gradually developed in the practice of 
creating resources and using them in the classrooms, has allowed us to find 
differences in the way students’ use different computer programmes. We believe that 
the careful collection of different types of data, and the discussions we have amongst 
each other have greatly enriched and strengthened our interpretations. We found that 
Perimarea, by restricting students’ activities and options for answers, reinforces the 
students’ tendency to try out responses without giving much reflection to them. The 
Balance, on the contrary, seemed to invite students to act mathematically, using 
concepts form the textbooks in a variety of ways. We noticed that students started 
looking for explanations which could help them interact with their peers and teachers 
as they talked about their work with the Balance. Patterns of behaviour were shaped; 
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that is, changes in the classroom cultures could be observed. This is a gradual 
process, we have been observing these students’ for three months and it is only by 
detailed observation that we could appreciate the changes in students’ actions.  

Our own learning has also been shaped by our work in these classrooms. Our 
methods have already started being modified. The instruments we are using for data 
collection are being refined. For example, on observation sheet 2, which we use for 
noting down mathematical actions, we now want to include a heading in which we 
specify mathematical actions observed when a student works with a particular 
computer programme. This with the idea of analysing, in more detail, the way in 
which students interact with the tools and how they become instruments in that 
process of interaction. Are students’ mathematical actions with the programmes 
different from the ones they carry out when they are not working with the computer? 
How do students interact with the programmes we have not yet investigated? How 
can we modify programmes like Perimarea so that they invite students to be more 
reflective? These are the questions guiding us after the first phase of our investigation 
of the learning of mathematics with the computer programmes we are developing.  
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IS SUBJECT MATTER KNOWLEDGE 

AFFECTED BY EXPERIENCE? 

THE CASE OF COMPOSITION OF FUNCTIONS 

Calin A. Lucus 

Simon Fraser University, Canada 

 

This study investigates inservice and preservice teachers’ subject matter knowledge 
as related to the topic of composition of functions.  The study compares the subject 
matter knowledge of inservice and preservice teachers, with the purpose of probing 
into the effect of teaching experience on this component of the content knowledge, as 
defined by Shulman.  The results of the study show that teaching experience did not 
affect teachers’ subject matter knowledge with regards to the composition of 
functions. 

RESEARCH ON SUBJECT MATTER KNOWLEDGE OF FUNCTION 

The research literature that focuses on subject matter knowledge and its importance 
in the process of teaching/learning is fairly extensive.  Shulman (1986), for example, 
focuses on the general importance of the subject matter knowledge.  He divides 
content knowledge into three categories: subject matter knowledge (SMK), 
pedagogical content knowledge (PCK), and curricular knowledge (CK).  

Teachers’ content knowledge in general is also the focus of Ma’s (1999) study. She 
introduces the notion of teaching with profound understanding of fundamental 
mathematics (PUFM).  She describes what PUFM would encompass: an 
understanding of the terrain of fundamental mathematics that is deep, broad, and 
thorough:   

"It is the awareness of the conceptual structure and basic attitudes of mathematics 
inherent in elementary mathematics and the ability to provide a foundation for that 
conceptual structure and instil those basic attitudes in students" (Ma, 1999, p. 124). 

In the addition to the research done on the importance of the general subject matter 
knowledge, there is an extensive literature written on teachers’ content knowledge of 
the topic of functions.  Different researchers use different terms to analyze teachers’ 
content knowledge, but most of these new terms overlap with the categories defined 
by Shulman (1986).  Norman (1992) uses the terms of practical knowledge, 
pedagogical knowledge and content knowledge to describe teachers' knowledge 
related to the topic of functions.  These categories are very similar to the categories 
defined by Shulman and they contain the same notions as the attributes that defined 
Ma’s PUFM.  The results of Norman’s study indicate that "a majority of the teachers 
exhibited gaps, sometimes disturbing ones, in their conceptualizations of functions" 
(Norman, 1992, p. 229).  
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Even (1993) investigates both subject matter knowledge and pedagogical content 
knowledge, and tries to determine the connection between them for a group of 
preservice mathematics teachers.  Even finds that many of the participants in the 
study lacked the necessary subject matter knowledge.  This fact had influenced their 
pedagogical thinking.  Even sees this situation as problematic for the quality of the 
teaching: "A situation in which the secondary teachers at the end of the 20th century 
have a limited concept image of function similar to the one from the 18th century is 
problematic" (Even, 1993, p, 114).  Her findings are in line with Shulman’s opinion 
that pedagogical knowledge needs to be tightly connected with the subject matter 
knowledge, in order for the teaching to be successful. 

Loyd and Wilson (1998), in their study of the understanding of the concept of 
function of a secondary mathematics teacher, and its impact on the teaching of 
functions, define categories of knowledge to describe the participant’s understanding 
of the function concept.  These categories are: definition and image of the function 
concept, repertoire of functions in the high school curriculum, the importance and use 
of functions in varying contexts, and multiple representations and connections among 
them.  These categories are similar to the themes described by Ma and Shulman.  The 
findings of the study suggest that "teachers' comprehensive and well-organized 
conceptions contribute to instruction characterized by emphases on conceptual 
connections, powerful representations and meaningful discussions" (Loyd and 
Wilson, 1998, p. 270). 

The connection between subject matter knowledge and the impact this knowledge has 
on the class instruction with regards to the concept of function is the topic of the 
study conducted by Stein, Baxter and Leinhardt (1990).  As a result of their study of 
Mr. Gene's (a classroom teacher) understanding of the concept of function, and his 
class instruction on the topic of functions, the researchers conclude: "limited subject 
matter knowledge led to the narrowing of instruction in three ways: (a) the lack of 
provision of groundwork for future learning in this area, (b) overemphasis of a 
limited truth, and (c) missed opportunities for fostering meaningful connections 
between key concepts and representations" (Stein, Baxter & Leinhardt, 1990, p. 659).  

Despite researchers' interest in the concept of functions, the specific topic of 
composition of functions is a subject that has a limited number of references in the 
literature.  My study attempts to fill this gap.  Vidakovic (1996) is among the few 
researchers that focused their attention on the topic of composition of functions and 
the inverse function of a function.  She investigates how university students enrolled 
in a calculus class are able to work with the concept of inverse function, and how a 
computer environment might enhance students' ability to understand the concepts of 
composition of functions and the inverse function of a function.  

Vidakovic derives a description of a construction process for the developing schema 
of the inverse function of a function, based on general theory, observations of 
students, and her own understanding of the inverse function of a function concept.  
As a result of the study, Vidakovic designs an instructional treatment that might help 
the students “to go through the steps of reflective abstractions which appear in a 
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genetic decomposition of the inverse function” (Vidakovic, 1992, p. 311).  The 
treatment consists of a series of activities that use the computer programming 
language ISETL, with the goal to instil in students a better understanding of the 
composition of functions and of the inverse function of a function concept. 

THEORETICAL FRAMEWORK 

To analyze the field data collected for this study, I use a theoretical framework 
derived from the framework proposed by Even (1990).  Even’s original framework 
contains seven facets: essential features, different representations, alternative ways of 
approaching the concept, the strength of the concept, basic repertoire, knowledge and 
understanding of the concept, and knowledge about mathematics.  This theoretical 
framework is suited to investigate the subject matter knowledge as well as the 
pedagogical subject knowledge of teachers.  

The modified framework that I use for analyzing the field data contains the following 
criteria:  

1. Essential features, the knowledge and understanding of the mathematical concept; 

2. Knowledge about mathematics  

3. Different representations and alternative ways of approaching the topic;  

4. Basic repertoire; 

5. Knowledge of the mathematics curriculum. 

The preliminary data analysis prompted me to modify the theoretical framework 
proposed by Even.  

I decided to condense two of the aspects described by Even, the essential features and 
the knowledge and understanding of mathematical concepts, in one criterion.  I based 
this decision on the fact that the mathematical topic of composition of functions has 
what can be considered a dual character.  This is in the sense that it can be understood 
as a mathematical operation, or it can be considered as a mathematical concept.  Both 
meanings are adaptable to the analysis of its features, as well as to the kind of 
understanding teachers should display.  At the same time, both criteria address 
teachers’ subject matter knowledge, which is the focus of this study. 

The aspects of the content knowledge that each criterion addresses determined the 
other modifications of Even’s framework.  Consequently, the criteria of different 
representations and alternative ways of approaching a topic were combined in one 
criterion since they both relate to teachers’ pedagogical content knowledge.  A new 
criterion was introduced, "the knowledge of the mathematics curriculum", as it is 
related to Shulman’s vertical curricular knowledge.  The last modification of the 
framework is the integration of the “strength of concept” criterion into the 
“knowledge about mathematics”, and “knowledge about the mathematics 
curriculum” criteria.  I decided on this modification of the initial framework because 
the preliminary data analysis made the task of distinguishing between the two last 
criteria and the strength of concept disputable.  It seemed to me that the elements 



Lucus 

 

4 - 100 PME30 — 2006 

given by Even as characterizing the strength of concept should be integrated with the 
elements of the other two criteria. 

The first and second criteria of the new framework address the SMK of the 
participants in the study.  The third and fourth criteria address the PCK of the 
participants, as well as the relation between the SMK and the PCK.  The fifth 
criterion addresses specifically the CK of the participants in this study. 

METHODOLOGY 

The Participants 

The participants in the study are a group of 10 preservice teachers, and a group of 8 
practicing teachers.  The preservice teachers were enrolled in the last university 
course before being eligible for certification.  The practicing teachers were enrolled 
in a Masters program in Mathematics Education, and were professionals with various 
amounts of experience in teaching high school mathematics.  In this paper I will use 
as illustrative examples the data collected from Sam, a preservice teacher, and Terry, 
an inservice teacher.  Terry has over ten years of experience in teaching high school 
mathematics courses, while Sam completed his teaching practicum by teaching high 
school mathematics. 

Purpose of the Study 

The general purpose of my research was to explore teachers' and preservice teachers' 
knowledge as related to the topic of composition of functions.  The specific purpose 
of my research was to attend to the question of the influence of teaching experience 
on the SMK.  With this question in mind, this study probes into the difference 
between the SMK of preservice teachers vs. inservice teachers.  

Data Collection 

The instrument used to collect the field data was the clinical interview.  The 
participants were asked to describe the prerequisites the students need to know before 
being taught the composition of functions, and then they were asked to describe the 
main ideas behind the topic of composition of functions.  As a clarifying task, the 
interviewees were asked to find the composite function of two problematic examples 
of functions, and to explain their result.  The task that the interviewees had to 
complete emphasized the role of the domains and ranges in the composition of 
functions. 

RESULTS AND ANALYSIS 

For the first question of the interview, the participants answered in similar ways.  
They considered that the prerequisites for a successful teaching/learning process of 
the topic of composition of functions encompass the following: the students need to 
be able to manipulate algebraic expressions, the students need to know the definition 
of a function and various representations of this concept, and finally, the students 
need to be able to use the Cartesian graphs.  Below I present an excerpt from the 
interview with Sam, the preservice teacher: 
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Interviewer: When you teach composition of functions, what would you consider 
necessary for your students to know, prior to your teaching? 

Sam:  You mean like prerequisites? 

Interviewer: Yes, prerequisites for composition of functions. 

Sam: Number one, they need to know what a function is, being able to define it, 
and to graph it. It is also necessary that they know what domain and range 
are, the vertical line test … And they need to be able to manipulate 
algebraic expressions, as well as they have to be able to substitute for 
variables. 

As seen from above, Sam considered that the first thing his students need to know is 
the definition of the function.  Also, he mentioned the notions of domain and range.  
Terry’s response to this question was very similar, with only a subtle difference.  She 
said that she would reteach some of the previously learned topics, especially the 
definition of the concept of function, and would emphasize the need for the students 
to know about domain and range.  For all individuals, the essential features that 
condition a successful learning/teaching experience of the composition of functions 
are the knowledge of the concept of function (including the notions of domain and 
range) and algebraic fluency.  These prerequisites omit the multiple representations 
of the concept of functions, which seems to be essential in the teaching of functions 
in general and composition of functions in particular.  

As a follow up question, the interviewees were asked to give a mathematical 
definition for the concept of function.  The definitions given by Sam and terry are 
presented below: 

Sam: Mathematically, a function is similar to a relation ... but the difference 
between a relation and a function is that for every domain, there's only 
one value that appears in the range. To be clearer, every x element from 
the domain has only one y element from the range that corresponds to it. 

Terry: A function is a relation in which each element of the domain has exactly 
one correspondent in the range. 

These definitions are acceptable definitions for high school mathematics.  The 
individuals did not enunciate a modern definition for the concept of function.  This, 
using the second criterion of the theoretical framework, denotes a relatively limited 
knowledge about mathematics. 

The answers of the participants to the question “What are the main ideas that you 
emphasize when teaching the composition of functions?” were similar again. All 
participants put emphasis on the computational/mechanic process of computing the 
composite function.  Following is an excerpt from Terry’s interview: 

Interviewer: What are your main goals when you teach the topic of composition of 
functions? 

Terry: Composition of functions … well I’m teaching them how to do it, how to 
substitute a function within another function 
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Interviewer: Okay … 

Terry: I also mention that sometimes, the order in which you compose functions 
counts. You don’t get the same result if you reverse the order. 

Sam answered along the same lines, mentioning though the notion of non-
commutative operation explicitly:  

Sam: I would tell the students that when you compose functions, the order 
matters. I would probably tell them that the composition of functions is 
non-commutative. 

Analysis of the answers to this question through the lenses of the theoretical 
framework, reveals that the participants displayed a limited knowledge regarding the 
essential features of the topic of composition of functions.  They did not mention the 
definition of the composite function or the roles of the domain and range.  

Since the interviewees mentioned as a prerequisite the notions of domain and range, 
and none of them mentioned these concepts when talking about composing functions, 
I tried to clarify their idea about the role of these two notions in composing function.  
With this purpose, I asked the interviewees to compose two problematic functions.  
The two functions that the participants had to compose had restricted domains and 
ranges.  They were asked to compose 24)( xxf −= , [ ] [ ]2,0,2,2 ∈−∈ yx  and 

9)( 2 −= xxg , ( ) ),0[,3,3 +∞∈−∉ yx .  In the case of composing g with f, there are no 
overlaps between the range of the function f and the domain of the function g.  For 
this reason, the two functions cannot be composed in this order.  

After correctly calculating the composite function, Sam obtained the result 
5))(( 2 −−= xxfg o .  He rightly observed that this function cannot be defined in 

terms of high school mathematics, since the argument of the square root is negative 
for any ℜ∈x  (complex numbers are not part of the high school curriculum in the 
public schools where Sam and Terry were teaching).  He failed to give any 
explanation for his finding.  The expected explanation is a direct consequence of the 
role played by the domains and ranges in the composition of functions.  For this 
particular case, as mentioned above, the explanation is provided by the 
incompatibility between the range of the function f and the domain of the function g.  

To the same task, Terry answered as follows: 

Interviewer: Well, I would like you to compose for me the following two functions: 
24)( xxf −=  and 9)( 2 −= xxg . 

Terry: Which way do you want them to be composed, f with g, or g with f? 

Interviewer: I think that I prefer ))(( xfg . 

Terry: Ok [she completed the computations correctly]. Hmmm. I get something 

that does not make sense, 52 −− x . I should slow down on my 
calculations ... 

Interviewer: I think that your algebra is fine ... 
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Terry: Then what is the problem? 

Interviewer: That is a question for you. The two starting functions were "Grade 11 
functions", we completed the procedure correctly, so, what is going on? 

Terry: Um, you are right, my work is correct ... the functions are right, what is 
wrong? Why do I get an impossible answer? You know, if I would work 
with complex numbers ... 

Interviewer: Yes, but we do not teach complex numbers, and beside that, the starting 
functions do not deal with complex numbers ... we can restrict their 
domain ... 

Terry: Hmmm. You know, I don't think I can answer this question right on the 
spot. I did not see something like this in the textbook or in the IRP's ... I 
probably have to go back and think about it more. [When referring to the 
“IRP’s” (Integrated Resource Packages), Terry was referring to the 
official documents from the Ministry of Education which contain the 
prescribed curriculum.] 

From the above transcript, the participants performed almost identical on the given 
task.  

CONCLUSION 

The essential features/main ideas presented by the participants in this study denote a 
computational/mechanical/procedural approach in treating the topic of composition 
of function, and a poor conceptual knowledge of the topic.  The inability to explain 
the results of their computations for the given task denotes a poor knowledge about 
mathematics.  Initially, as exemplified by Sam and Terry, the participants seemed to 
be aware of the role of the domain and range for the teaching of composition of 
functions.  However, when asked to clarify this role, they failed to prove that they 
actually knew what the role of domain and range is for the topic of the composition 
of functions.  The reference to the definition of function, and domain and range as 
prerequisites seemed to be a mechanical "reflex", as opposed to a conceptual 
knowledge of the mathematical topic.  Essential features and knowledge about 
mathematics are two of the framework’s criteria that characterize the SMK.  It is fair 
to conclude that the SMK displayed by the participants in this study is relatively 
weak. 

The inservice and preservice teachers gave similar answers to the questions of the 
interviews, and, similarly to Terry and Sam, the way they approached the 
"problematic example" of composing functions did not differ significantly.  This 
suggests that in the case of composition of functions, the SMK is not influenced by 
the teaching experience.  The findings of this study are counterintuitive, since one 
would expect that over the years of practice, the SMK of teachers would improve.  
The explanation could reside in the fact that the education system where the 
participants in the study practice, emphasizes the pedagogical aspects of teaching 
more so than the mathematical content of high school curriculum.  The focus is on 
how to teach, and not on what to teach.  What Shulman (1986) refers to as the 
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missing paradigm from the study of teaching, namely teachers’ and preservice 
teachers’ content knowledge, is considered to be self developing once one starts 
teaching.  This study brings arguments towards the fact that the SMK does not 
change with the teaching experience. 

References 

Even, R. (1990). Subject matter knowledge for teaching and the case of functions. 
Educational Studies in Mathematics, 21(6), 521-544. 

Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: 
prospective secondary teachers and the function concept. Journal for Research in 
Mathematics Education, 24(2), 94-116. 

Loyd, G.M., & Wilson M. (1998). Supporting innovation: The impact of a teacher's 
conception of function on his implementation of a reform curriculum. Journal for 
Research in Mathematics Education, 29(3), 248-274. 

Ma, L. (1999). Knowing and Teaching Elementary Mathematics. Mahwah, New Jersey: 
Lawrence Earlbaum Associates. 

Norman, A. (1992). Teacher's mathematical knowledge of the concept of function. In G. 
Harel & E. Dubinsky (Eds.). The Concept of Function, Aspects of Epistemology and 
Pedagogy. (p. 215-232) Washington, DC: Mathematical Association of America. 

Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4-14. 

Stein, M.K., Baxter J.A. & Leinhardt G. (1990). Subject matter knowledge and elementary 
instruction: A case from functions and graphing. American Educational Research 
Journal, 27, 639-663. 

Vidakovic, D. (1996). Learning the concept of inverse function. Journal for Computers in 
Mathematicsand and Science Teaching, 15(3), 295-318. 

 



 

2006. In Novotná, J., Moraová, H., Krátká, M. & Stehlíková, N. (Eds.). Proceedings 30th Conference of the 
International Group for the Psychology of Mathematics Education, Vol. 4, pp. 105-112. Prague: PME.  4 - 105 

CLASSROOM FACTORS SUPPORTING PROGRESS IN 

MATHEMATICS 

 Irene F. Mackay 

University of Hawai'i 

 
This research study investigated factors related to the classroom environment and 
their effects on pupil progress in mathematics during the transition from primary to 
secondary school. The focus of this report is on classroom elements and factors that 
contribute to a classroom environment that supports pupil progress in mathematics. 
The results indicated that certain elements within the mathematics classroom 
environment supported progress. The primary school classroom also had an 
important part to play.  

INTRODUCTION 

The results of international comparative surveys such as the Third International 
Mathematics and Science Survey (TIMSS) raised concerns in Scotland, as in other 
countries, about pupil progress in mathematics with an official report (SOEID, 1997) 
identifying a particular concern regarding pupil progress in the early secondary years. 
Changes at the transition to secondary school have been shown to be the cause of a 
number of negative effects on pupils, such as drop in performance and decrease in 
self-esteem (Croll, 1983; Hirsch and Rapkin, 1987). There are many areas where 
pupils must make adjustments at the transition and unfortunately not all pupils are 
capable of making the same level of adjustment (Nisbet & Entwistle, 1969) 

The classroom is where teaching and learning take place, and the classroom 
environment is considered by Haladnya, Shaughnessy & Shaughnessy (1983) to be 
among the most powerful indicators of student outcomes. If this is so then what 
happens within the classroom environment is vital to pupil success. Black and 
Wiliam (1998) considered that certain countries/state policies viewed the classroom 
as a ‘black box’ where the theory is that if inputs are fed into the ‘box’ from outside 
then specific outputs, such as pupil improvement will follow. When the desired 
outcome is not evident one of the reasons offered is that “teachers have to make the 
inside work better”. However, although certain events within the environment are 
within the teacher’s control, there may be others that are not.  

The focus of this report is on the elements of support that exist within the 
mathematics classroom environment and factors that affect pupil progress.  

LITERATURE  

The classroom environment comprises a number of elements and dimensions. Fraser 
(1994, p493) describes these as a subtle concept, not only including participants’ 
perceptions and experiences within that environment but also their relationships with 
each other. Studies of the classroom environment show pupils are affected in a 
number of ways, for example attainment and personal characteristics. In fact, the 
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classroom environment effects were considered by O’Reilly (1975) to be a stronger 
influence on attainment than on pupils’ personal and social characteristics.  As the 
transition to secondary school coincides with the transition to adolescence for many 
pupils, Eccles et al. (1993) considered that the secondary school classroom 
environment should contain elements that support adolescent growth, such as 
increased opportunities for pupils to show independence and use higher cognitive 
skills. The researchers found that in many classrooms that there was a mismatch of 
pupil needs and supportive classroom elements. Hunt’s (1975) person-environment 
fit theory has been used by a number of researchers, such as Fraser and Fisher (1983) 
to study the effects of the classroom environment on the pupil, and the results showed 
that pupils are supported by certain elements in the secondary school classroom 
environment. These were found to help pupils to become more socially and 
academically confident (Ryan & Patrick, 2001). Other studies have highlighted 
supportive elements related to the classroom (Dart et al., 2000; Fisher & Rickards, 
1996) such as a high level of teacher interaction with pupil and pupil perception of 
performance.  In contrast, some pupils identified negative elements associated with 
the classroom environment, including pupil dissatisfaction with the class and pupil 
perception of strictness of teachers (Anderman & Maehr, 1994).  

In identifying positive and negative aspects of a classroom environment there 
emerges the possibility of the existence of an ideal classroom environment, one 
where the elements support academic and psychosocial growth. The ideal classroom 
might be similar to the arena of comfort described by Simmons et al. (1987, p1231), 
that is an area where the pupil is comfortable, especially with role relationships, and 
challenged and to which s/he can withdraw to be invigorated. 

 Through consideration of the ‘person-environment fit’ theory and establishment of 
good practice within the classroom, it may be that the ideal environment can be 
created, although it may be that the ideal classroom environment for one pupil may 
not be perceived as such by another.  

This report is part of a larger study investigating factors at the transition affecting 
pupil progress in mathematics and shows that certain elements of the classroom 
environment relate to support for the pupil.  

AIM OF THE CURRENT STUDY 

The research reported here is part of a broader study (Mackay, 2005) investigating 
specific classroom environment factors that affect pupil progress in mathematics. 
There are many elements and dimensions that comprise the mathematical classroom 
environment and the focus of this report is the classroom profile that supports pupil 
progress in mathematics and the possibility of an ideal classroom.  

METHOD 

This study set out to measure, in quantitative terms, the progress of pupils in 
mathematics. A longitudinal programme was employed that pre-tested pupils at the 
end of primary school (P7) and post-tested the same pupils at the end of first year in 
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secondary school (S1). These quantitative results were set within an understanding of 
the classroom environment. This environment is complex and multifaceted and not 
readily quantified and therefore it was important to use a range of qualitative data 
collection techniques to capture its dynamics. A number of additional measures were 
therefore combined, including surveys of teachers and pupils’ perceptions of the 
classroom environment, from which a view of the classroom was constructed. The 
final two measures were a series of observations and interviews for although teacher 
and pupil perceptions set the structure for the description of the environment an 
additional dimension can be added through contributions from an observer, who can 
comment objectively on items such as teacher behaviour (Fraser, 1994).   

Classroom environments are usually measured through the use of questionnaires with 
each questionnaire consisting of a number of items for each dimension.  The pupil 
questionnaire, My Class Inventory (Fraser, Malone and Neale, 1989), contains six 
dimensions each with four items and was used as the basis for the pupil questionnaire 
in this study. The six dimensions used were pupil satisfaction (S), parental interest 
(PI); value of mathematics (V); classroom interaction (CI); perceived performance 
(PP) and teacher interest (TI). The flexibility of the use of the questionnaires makes 
the measurement of environments particularly suitable for ‘before and after’ events 
such as the primary-secondary transition. 

The teacher questionnaire also reported on specific dimensions related to those of the 
pupil questionnaire and was adapted from the teacher questionnaire, TCEM 
(Feldlaufer, Midgley and Eccles, 1988). The dimensions were: pupil enjoyment of the 
classroom (S), enjoyment of teaching mathematics (V and PP), the difference s/he 
makes (TI), classroom interaction (CI), and parental interest (PI).  Lastly, the 
observer schedule evolved after a series of observations in the pilot study, and 
contained objective and subjective items related to the classroom environment and 
the interaction within it.  

A pilot study of two years was designed to precede the research study. This enabled 
the initial data collection measures produced to be to validated and future problem 
areas for the main study identified. The main study was planned to have two planned 
cycles each of two years. The sample pupils for this study were selected from a group 
of primary schools associated with three secondary schools in North East Scotland 
and represented 25-30 per cent of the S1 group.  

RESULTS 

The results show the measure of pupil progress, the construction of a classroom 
profile combining data from the analyses and a factor analysis to highlight 
combinations of the classroom dimensions.   

Pupil progress 

The research results confirmed that most pupils (74.5%) made progress in 
mathematics in S1, with one small group, improvers, (23/267) making exceptional 
progress and another (17/267) where pupils regressed exceptionally, regressors. In 
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the correlation analysis of the classroom dimensions and pupil progress, results 
showed a significant relationship between pupil perceived performance and progress 
over S1.  

Classroom profile 

A classroom ‘profile’ was constructed for all primary and most (28/38) secondary 
school classes with the structure based on the scoring of results from pupil 
perceptions of classroom dimensions, teacher perceptions of their classroom 
environment, pupil comments and observer perceptions. A significant relationship 
between Secondary Perceived Performance (SPP) and primary score, SPP and 
secondary score, and SPP and progress, with correlation coefficients 0.330**, 
0.462**and 0.289** respectively (N=267, **p<0.01).  

The mean scores of the total S1 pupil perceptions of the six classroom dimensions 
were used as the basis for the initial classification of class sets into three categories. 
Mean scores for the 28 classes ranged from 7.4 to 10.9 out of a maximum of 12. The 
mean score for each teacher’s five dimensions was then calculated, the scores ranged 
from 15 to 20 out of a possible 24. The third element of the classroom profile was the 
set of pupil comments and these were graded on a 5-point scale, with a highest score 
of five awarded to where the total number of pupil comments in a class contained no 
more than one negative comment ranging to a score of one in classes where many 
pupils did not respond or most comments were negative. The final element 
contributing to the class profile was from the observer schedule. A 5-point scale was 
used for each class with five as the highest possible score.  The 5-point scale was 
related to the scoring recorded in the observer’s schedule. From a combination of 
these scores an ‘index’ figure was calculated, and classes then placed in rank order 
according to the index.  The calculation attempted to incorporate a balance of all 
numerical scores available and added pupil mean, half of teacher mean (to reduce the 
mark out of 24 to out of 12), the observer score and the pupil comment score.  

Class Class Mean 
Score 

Teacher Mean 
Score 

Pupil 
Comment

Observer 
Comment 

Index 
(rounded to 1d.p.) 

A 10.5 16.6 5 5 7.2 
B 8.6 15.0 3 4 5.8 
C 7.9 18.2 1 1 4.8 

Table 1.1 Elements of a Secondary Classroom Profile 

The mean of the scores was then calculated. The index could not be used for another 
study, as the reliability of the figure had not been tested. The final profile was then 
classified into one of three categories: highly positive (++), positive (+) and less 
positive  (+-). Table 1.1 displays scores from the elements of the secondary school 
classroom that contributed to the calculation of a class index.  

Pupils who were exceptional improvers and regressors were then identified in their 
class. Table 1.2 displays this information for primary pupils, distinguishing those 
who merely improved/regressed and those who improved/regressed exceptionally, 
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and Table 1.3 for those in secondary school classes.  Each classroom profile was then 
extended to include information such as the level and spread of attainment of the 
class, level of teacher/pupil interaction (high, medium or low), teacher’s comments 
on their class, class size and gender split, number of sample pupils and any other 
relevant data gathered during the observation visits.  

Category Number 
of classes 

Number 
of sample 
pupils  

Number of 
improvers  
n = 23 

Percentage 
of improvers 
 

Number of 
regressors 
n = 17 

Percentage 
of 
regressors  

Highly 
Positive 

 
7 

 
134 

 
13 

 
56.5 

 
5 

 
29.4 

Positive 7 85 9 39.1 4 23.5 
Less 
positive 

 
3 

 
48 

 
1 

 
4.3 

 
8 

 
47.1 

Total 17 267 23  17  

Table 1.2 Three Categories of Primary Classes showing improvers and regressors 

No. of 
classes 
In each 
category 

No. of 
pupils 
in 
class 

Sample 
size  
(% 
N=267) 

Improvers
  (n=23)  

Progressed 
 (% n=199) 

Regressed 
  (% 
n=68) 

Regressors 
    (n=17) 

Index 

8 ++ 214 82 
(30.7) 

13 71 
(35.7) 

11 
(6.2) 

3 6.5-7.4 

15 + 363 112 
(41.9) 

9 82 (41.2) 30 (44.1) 5 5.5-6.4 

5 +- 119 42 
(15.7) 

1 22 (11.1) 20 (29.4) 6 4.5-5.4 

Table 1.3 Three Categories of Primary Classes showing improvers and regressors 

This information helped to identify factors that might relate to support for pupil 
progress in the classroom environment. Class sets labelled as Upper, Middle (mixed) 
or Lower sets related to the secondary school ‘setting’ and all three categories in 
Table 1.3 were found to contain classes at each level.  

Teacher/pupil level of interaction in each class was measured by the observer and 
found to be ‘high’ in all highly positive classrooms.  

Classroom Factors  

The 12 items on primary and secondary classroom dimensions for all pupils were 
subjected to principal components analysis (PCA) using SPSS. Prior to performing 
PCA the suitability of data for factor analysis was assessed. Principal components 
analysis revealed the presence of five components with eigenvalues greater than one, 
explaining 19.8%, 14.0%, 11.2%, 9.8% and 9.4% of the variances respectively. To 
help the interpretation of these components Varimax rotation was performed showing 
the components on each factor. (Table 1.4). 
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Classroom 
Dimensions 

Component 1 
Mathematics 

Component 2 
Primary School 

Component 3
Secondary 
classroom 

Component 4 
Parental 
Interest 

Component 5
Classroom 
Interaction 

SPP 0.712     
SV 0.689  0.413   
PPP 0.644     
PV 0.576 0.546    
PTI  0.781    
PS  0.641    
SS   0.691   
STI   0.789   
PPI    0.834  
SPI    0.684  
PCI     0.792 
SCI     0.748 

Table 1.4 Varimax Rotation of Five Factor Solution for Classroom Dimensions 

The factors identified highlighted perceived performance in P7 (PPP) and S1 (SPP) 
and perceived primary teacher interest (PTI).  

CONCLUSION AND DISCUSSION 

In this study, a small number of secondary school classrooms with common elements 
were identified where participants held highly positive views of the classroom, had a 
high level of two-way teacher and pupil interaction and contributed to a positive 
climate of enjoyment and challenge for all pupils. Certain factors were evident in 
these classrooms that were significantly related to pupil progress: teacher/pupil 
relationship, primary teacher enthusiasm and interest, pupil perceived performance 
(one of the classroom dimensions), and most pupils returned positive comments 
about their experience in the mathematics classroom. This group of classrooms 
environments with a highly positive profile therefore supported most pupils but were 
they ideal? It appeared that for some pupils the classrooms supported them 
academically and provided stimulation and challenge, confirming that certain criteria 
for the ideal classroom had been met.  

If the ideal classroom exists, then there are a number of issues to resolve. The first 
main one relates to why and for whom the classroom is ideal. Classes considered 
ideal in this study were seen to contain mostly pupils who either improved or were 
improvers. It was evident that the majority of pupils in the class appreciated the 
positive aspects and for them the classroom environment was ideal. Small numbers of 
pupils did not progress in these classes so for them the classroom may not have been 
ideal. It is not possible to gauge if the pupil would have made more or less progress 
in another environment. The second issue is related to the possibility of the creation 
of the ideal classroom. It might be that it just ‘happens’ coincidentally. All essential 
components might be in place at one time, or perhaps an element of teacher 
manipulation contributes to such an environment. If the ideal classroom was the 
result of teacher manipulation, then it is likely that all teachers would attempt to 
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create this type of environment. Elements may exist that prevent the creation of such 
a classroom such as location and resources such as the composition of pupils in the 
class and the support available for adolescent growth to confirm their status in 
secondary school. A third issue relates to the composition of the class and the pupil 
relationships with the teacher and each other. It may be that their behaviour 
contributes to the negative classroom profile but in turn the negative profile does not 
support these pupils’ progress. An important factor for pupil success in secondary 
school was the primary school classroom environment.  

The results showed that a small number of primary school classroom environments 
had a highly positive profile and were significantly related to pupil progress. It was 
interesting to note that pupils who were improvers in secondary school had mostly 
come from primary schools with a highly positive or positive profile. The teacher 
was the key to the primary classroom profile. The teacher variable was dependent on 
his or her knowledge, confidence in teaching mathematics, enthusiasm about the 
subject and interest shown in the pupils and their progress.  

The classroom profile is important in that if a highly positive classroom can be 
created then pupils placed there are more likely to make progress than if they were 
placed in one with a less positive profile. The findings from this study support part 
way the existence of an ideal classroom environment, a ‘comfort zone’. However, this 
study did not investigate the effects on pupil adjustment to multiple change including 
the move to secondary school.  
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A REMEDIAL INTERVENTION IN ALGEBRA 

Laura Maffei – Maria Alessandra Mariotti  

Mathematics Department – University of Siena♣  

 

This report presents the first results of a pilot study involving three 9th grade classes 
The study was based on a teaching experiment, consisting of a remedial activity 
centred on the use of the Algebra microworld, Aplusix, and aimed at detecting and 
overcoming well known pupils difficulties in symbolic calculation. A specific 
research goal of this study concerns the evolution of students’ attitudes towards their 
errors, comparing their behaviour within and without the software environment. The 
analysis of the collected data shows the effectiveness of the intervention not only in 
terms of decrease of the number of errors, but mainly in terms of development of 
consciousness, self confidence, and self control. 

INTRODUCTION 

Difficulties encountered by pupils in getting competence in algebraic calculation are 
well-known, they have been addressed many times and from different point of views 
(Freudenthal, 1983, Tall & Thomas 1991, Kieran 1992). In this contribution we don't 
intend to deal with the issue of algebraic manipulation in general, but to present and 
discuss some results, coming from a pilot study conducted in three 9th grade classes, 
and showing how computer mediated activities affect the meta-cognitive level. The 
experimentation consists of a remedial activity devoted to students showing specific 
difficulties in symbolic calculation. More specifically, we aim to investigate the 
effectiveness of the use of a particular Algebra microworld, Aplusix, in this remedial 
activity. Even if we present a very limited contribution to a general didactical 
problem, we believe that it acquires its value beyond the limits of algebra domain. In 
fact, the obtained results seem to open new interesting perspectives concerning the 
use of a particular software both in respect to the specific objective in terms of 
calculus skills and in respect to the more general objective concerning the 
development of meta-cognitive attitudes, i.e. consciousness and control on one’s own 
activity. In other words, the specific interaction between the subject and the machine, 
set up in the Aplusix environment, seems to determine significant changes in pupils’ 
attitude towards errors and impasse. 

THE DIDACTICAL PROBLEM 

According to the Italian traditional school approach, at the 9th grade, a great part of 
the school time is devoted to symbolic calculation. After being introduced to the 
notion of literal expression and to the main rules for expanding and factorizing, 
students are requested to memorize the formulas of the main products (second, third 

                                           
♣ This research study is part of the TELMA-project (www.itd.cnr.it/telma). 
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power of a binomial, difference of squares…). Lots of students, for different reasons, 
meet great difficulties in getting this basic competence, which on the contrary 
assumes a great value, both for the students and the teachers. 

In our study we focused our educational objective on specific aspects of students’ 
difficulties in symbolic calculation in order to analyse and, possibly, give some 
suggestions to solve this didactical problem. We formulated two related hypothesis. 
On the one hand, the intrinsic complexity of memorizing (Norman, 1988) leads to the 
difficulty to memorize a specific formula, even if its origin and its meaning has been 
well understood; on the other hand, an aspect of the didactic contract (Brousseau, 
1997), related to algebraic calculation, leads students to interpret the task only in 
terms of memorization, hindering them to exploit alternative strategies, when the 
required formula is not available to memory. These hypotheses have been developed 
in the light of the new relationship between the machine and the student; in 
particular, the feedback offered by the machine seemed to present a great potential in 
both supporting memorization and overcoming the constraints coming from the 
didactic contract (Mariotti & Maffei, 2005). This contribution is centred on results 
concerning a specific aspect related to the internalization of the machine control. 

THE MICROWORLD APLUSIX 

Aplusix is a computer-system in which students work within the domain of arithmetic 
and algebra (Nicaud & al. 2004). In this environment pupils may develop the 
calculations that they are used to perform in paper and pencil. 

The peculiarity of the microworld consist of its twofold functionality (action 
/revision): on the one hand it offers the user (for instance a student) a well-structured 
space where to perform tasks, on the other hand it allows the user (a teacher, a 
researcher, or a student) to revise step by step the given solution. Moreover, in the 
‘action’ functionality, the microworld provides two main kinds of feedbacks, that we 
call with control and without control mode. In the with control mode Aplusix verifies 
the calculations by checking the equivalence between two consequent steps and 
points out the presence of errors (Fig. 1). Blue cross lines show that the expression 
you are writing is not well-formed (i.e. a plus sign need an argument), black lines 
show that the first expression is equivalent to the second, red cross lines show that the 
first expression is not equivalent to the second. 

 

Fig. 1. The three different signs provided by Aplusix in the with control mode. 



Maffei & Mariotti 

 

PME30 — 2006 4 - 115 

In the without control mode no feedback is provided (Fig. 2). 

 

Fig. 2. In the wihout control mode, a single black line links permanently two 
consequent steps. 

Thanks to a good editor, tasks can be organized creating suitable lists of exercises, so 
that the teacher may plan pupils’ activities according specific didactic goals. 
Afterwards, it is possible to revise the work done by means of the Trace function. 
This facility is very useful for the teacher who, passing through the sequence of his 
/her actions, can observe the difficulties encountered and the errors committed by a 
pupil; but it is also useful for the students who can revise their work and correct their 
own errors. This command present significant advantages compared with the revision 
of a work done with paper and pencil, where many of the traces of the solution 
process are lost, so that one can't reconstruct the precise order in which the 
calculations have been developed. 

Finally, Aplusix offers another interesting tool: the command detached step. This 
command opens a new independent working space, where new calculations can be 
carried out. In the following, we are going to focus on the functioning and the effect 
of this particular facility. 

THE OBJECTIVES OF THE STUDY 

The study had a twofold objective. On the one hand, a didactical goal consisting of 
the retrieval of specific skills in algebraic manipulation, i.e. to help students to 
memorize formulas without losing, rather on the contrary consolidating, their 
algebraic meaning. On the other hand, a research goal concerning the study of the 
role played by the specific microworld in reaching the didactical goal: if, and in 
affirmative case, how interacting with Aplusix may help to overcome the 
encountered difficulties. In particular, attention focused on investigating the 
functioning of Aplusix’s tools, both in the cognitive processes involved in formulas’ 
memorization, and in the meta-cognitive processes related to become aware of 
one’s own difficulties and to manage one’s own resources to improve calculation 
performances. In this latter direction, Aplusix’ potentialities seem to be very 
promising, especially thanks to its specific kind of control on pupils’ actions. The 
following section presents a brief analysis of this control function according to a 
specific theoretical framework. 
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THE THEORETICAL FRAMEWORK 

The hypotheses we started from became more refined through the choice of a 
theoretical frame providing the key elements both to plan the intervention and to 
analyze the obtained results. In the following we are going to briefly identify these 
key elements; they come from different theoretical frames, but find a coherent 
application in the description and interpretation of phenomena we are interested in. 

Memorization 

As far as memory is concerned, the management of resources seems to be centred on 
the use of particular artefacts, which constitute a support to memorize. As Norman 
points out, it is not easy to build an effective support to help the act of remembering. 

"There are two different aspect to a reminder: the signal and the message. […] the ideal 
reminder has to have both components, the signal that something has to be remembered, 
the message of what it is." (Norman, 1988) 

Moreover, the design of artefacts aiming to foster the memorization process, has to 
take into account that each support is efficient if, and only if, it promotes strategies of 
utilization. This general criteria inspired the organization of the didactical 
environment starting from the functionalities provided by the software Aplusix; thus, 
the default message of error was integrated with a message of help, suggesting the 
use of the detached step and orienting pupils’ actions to autonomously reconstruct the 
missing formula. In so doing we aimed not only to foster the memorization process, 
but also to overcome the constraints of an inadequate didactic contract. 

The attitude to errors 

The core of a remedial activity concerns the evolution of the relationship between the 
student and his/her own error, in particular the assumption that pupils have to 
personally assume the responsibility for overcoming their own errors. 

"Even if the teacher recognises the student’s error and intervenes, it is up to the student to 
modify his behaviour: but if the student is to significantly change his behaviour he first 
has to be convinced that the change has to be made, that the existing behaviour lead to 
failure." (Zan, 2002a) 

The teacher's intervention concerns the organization of a context where pupils are led 
to modify, in an autonomous way, those behaviours that bring them to fail. Zan 
identifies two essential processes that a teacher has to foster and to strengthen: the 
attainment of consciousness and the possibility to activate personal control processes 
(Zan, 2002b). Consistently with this hypothesis, we assume that the interaction with 
the machine contribute to make students aware that something is wrong, but at the 
same time stimulate them to engage themselves in detecting what is wrong and in 
correcting it. 

The role of the medium 

As far as memorization is concerned, and more generally the control and 
management of memory resources, the vygotskian frame offered us an additional 
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element to plan and analyse our intervention. According to Vygotsky, the use of 
particular supports to memorize may have not only a specific effect improving the 
performance in a specific situation, but also a general effect supporting the 
development of general abilities regarding the memorization function (Vygotsky, 
1974). Moreover, Vygotsky claimed more general effects regarding the development 
of consciousness and control on one’s own actions. 

"The use of auxiliary signs breaks up the fusion of the sensory field and the motor system 
and thus makes new kinds of behaviour possible." (Vygotsky, 1978) 

Assuming such general hypothesis, drawn from the Vygotsky’s theory, we assume 
the internalization of specific control means, rooted in the use of Aplusix tools. In 
particular the use of the detached step may originate a sophisticate way of control 
consisting in isolating difficulties and careful treating of complex calculations. 

THE EXPERIMENT 

The activity starts with an initial test in paper and pencil, the same test will be 
repeated at the end of the teaching intervention, with the aim evaluating the 
improvement in pupils’ performances. Then three different phases of intervention are 
planned, centred on the use of Aplusix. Each phase is characterized by: 

• a list of tasks to be accomplished in the “with control mode”; 
• a specific message of help accompanying the default message of error. 

The first phase aims to consolidate the basic understanding of symbolic manipulation 
as the successive application of the distributive law, and to make pupils conscious of 
the fact that memorization, although not indispensable, is useful and possible. 
Consistently with this goal, the help message appearing on the screen suggests to use 
a detached step, where to accomplish the complete calculation. This suggestion is 
meant to induce the students to repeat the same schema of calculation, again and 
again. As a consequence, we expect the need for shortcuts emerge, motivating the use 
of formulas in order to speed the time of calculations. The second phase, aims at 
fostering the memorization of the main formulas. The message of help invites the 
students to reflect in order to correct their mistakes and, as a last chance, offers to 
open a "help-window". This window shows a list of possible formulas from which 
the students are invited to select the formula they need. The list is temporally and 
penalty is counted. Finally, the last phase aims at helping pupils to overcome the 
specific difficulty related to apply formulas. Here again the main suggested support is 
given by the use of the detached step that we expected can play a crucial role. 

After each session students are requested to write a report on what they think they 
have learnt, both in terms of formulas and in terms of strategies of solution, and 
comment on their use of Aplusix. The specificity of any phase is not so much in the 
type of task proposed, rather in the interaction between the user and the machine 
mediated by the feedback of the software and in particular by the help message, 
suggesting to reflect, and employ alternative strategies. At the end of three phases, 
the post-test is passed in the “without control mode”, and finally, in the last session 
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Fig. 3a Fig. 3b 

Scrivere in una forma equivalente 
senza parentesi 

Scrivere in una forma equivalente 
senza parentesi 

students are asked to revise their work using Trace. In this revision the control will 
indicate the errors, and students are asked to correct them on their notebook. During 
all the phases, students will work individually; the teacher’s intervention is limited to 
answer technical questions. 

RESULTS AND DISCUSSION 

Besides the encouraging results concerning pupils’ performances (Maffei, 2004), the 
analysis of the data confirms our hypotheses concerning the crucial role played by 
Aplusix tools, in particular the detached step, in making students overcome their 
difficulties. It seems that students, after a first phase when just follow the suggestion 
of the help message, develop personal strategies adapted to their needs. By reason of 
brevity, we cannot give detailed examples of this evolution, but we can use the words 
of Alessio for a description of his experience. During an interview Alessio explains 
his use of the detached step. 

Interviewer: To what goals did you use the detached step? 

Alessio: It has been useful for the cube of a binomial given that at the beginning I 
didn't remember it well, as a consequence I have rewritten the formula in 
order to know it better. Most of the times I have used the step for these 
reasons, well, but sometimes also to accomplish some calculus. 

Interviewer: What kind of calculus? 

Alessio:  Well, because if I noticed that I had made an error to apply a formula, 
then I wouldn’t have erased all, I was used to use the help, I mean...in the 
detached step I made the whole exercise with the distributive.Then, after 
pasting the result above I saw what was wrong by comparing the wrong 
solution with the correct solution. 

Finally, consider the following example showing a typical behaviour after the 
remedial intervention. The task requires the expansion of main products and it is part 
of the test-session, thus it is carried out in the without control mode. 

 

 

 

Antonio (Fig. 3a) shows difficulties in applying the formulas, and in order to 
overcome these difficulties uses the detached step command, that is, opens a new 
environment where he writes the formula of the cube of a binomial. Antonio moves 
to the detached step to overcome the impasse. The instruction means "Write in an 
equivalent form without parenthesis" and the comment means "Cube of binomial". 
Back to the main working space, Antonio successfully applies the formula (Fig. 3b). 
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Even more significant is the Antonio’s behaviour during the revision session after the 
final test. The control activated in this phase makes Antonio realize of his error; 
according to the requirements of the task the student provides the correct version of 
the exercise in his notebook (Fig. 4a e 4b). 

The student shows to be able of identifying the type of error; actually, he writes 
“Maybe the signs?”. The hypothesis he makes suggests him a more global approach, 
thus he moves to a new line where he reconstruct the needed formula. In other terms, 
Antonio reproduces the way of acting as if he worked in the environment created by 
the detached step. According to our hypothesis such a behaviour can be interpreted as 
the effect of the student’s internalization of the support provided by the microworld, 
which reappears in a different context, the paper and pencil environment, still 
maintaining significant features of the original Aplusix tool, for instance the structure 
of the writing, respecting the equivalence between two following lines. According to 
the vygotskian theory, the microworld seems to have acted as a medium suitable to 
develop general schema for the retrieval of formulas. Moreover, according to the 
Zan's assumptions, the individual relationship student-error seems to be confirmed: 
Antonio, like many other students, seems to have achieved a good level of self-
consciousness and self-control as a consequence of his work within Aplusix. 
Generally speaking, the control offered by the microworld seems to lead students to 
change the way to relate to their own errors, as the following extract from an 
interview can witness: 

"Aplusix has some good features: everything seems easier than in paper and pencil. 
When I see the red lines, I understand that I have made an error (or more than one), I like 
it very much...on the contrary, when my teacher corrects my test I don't even look at the 
errors, the most important thing I pay attention to is the good or bad mark I got." (Ylenia) 

This comment shows a development in perceiving ones own errors. In particular, it is 
interesting to remark how the student compares the feedback provided by Aplusix 
(“when I see the red lines”) with the teacher feedback on errors. It is worth to remark 
that this change is consistent with what was suggested by Zan, who claims that the 
students have to clearly realize their errors, before they make any effort to overcome 
the encountered difficulties. 

 
Scrivere in una forma 

equivalente senza parentesi

Fig. 4b. What appears on the screen 
and Antonio’s self-correction The 
final comment means “So the correct 
exercise is (…) I had got the the last 
sign wrong. 
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CONCLUSIONS 

In spite of its limits, the pilot experiment provided good evidence confirming our 
hypotheses: not only all the students involved in the experiment improved their 
performances in algebraic calculation, but mainly improved their performances at the 
meta-cognitive level: in particular, the study showed clear evidence of the evolution 
of students’ awareness and self control. The study is still in progress, and new 
teaching experiments have been planned for the current academic year. A fine grain 
analysis of data is expected to confirm the first result, but mainly is expected to 
provide further insight on the meta-cognitive processes, in particular on the 
functioning of the software tools in the evolution consciousness and self control. 
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THE PROBLEM-SOLVING ELEMENT IN YOUNG STUDENTS' 

WORK RELATED TO THE CONCEPT OF AREA  
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There are extant many studies that examine primary and early secondary students' 
existing and developing understanding of the concept of area for plane figures.  In 
this paper, the focus is shifted to consider the problem-solving skills that may accrue 
from exposition to tasks related to the calculation of area.  In particular, the working 
of two 7th grade students on one specific task is examined vis-à-vis certain executive 
control issues about the selecting, handling and adaptation from a body of previously 
known methods concerning area determination.   

INTRODUCTION 

Empirical studies made by educators investigating students' understanding of 
mathematical concepts often utilise non-standard tasks in order to test and challenge 
fully the students' cognition about the notions under examination.  However, the 
introducing of non-standard tasks might bring in aspects of problem solving based on 
strategy making, which does not necessarily contribute any new insight about the 
concept image. (See, e.g., Tall & Vinner, 1981, for the idea of the concept image.)  
On the other hand, the stratagems made will tend to refer to the relevant conceptual 
backdrop implied in the task environment.  When the strategy facet dominates the 
students' attention, we shall say that the students are engaged on problem-solving 
activity ancillary to a concept; this is to be contrasted with concept enhancement 
evinced from exposition to non-standard tasks.  As the strategy facet is still relevant 
to the concept, though in a more operational or functional role, it can be regarded 
intermediate to teaching about problem solving and teaching via problem solving, a 
distinction often made in the literature (for example, Schroeder & Lester, 1989).  

In this paper, we shall present part of a study that, by careful design of the tasks given 
to the participating students, encouraged problem-solving activity ancillary to the 
concept of area. This study was motivated by an earlier research project involving 
primary students geared to examine and to extend understanding of area and its 
preservation under certain actions.  The results from this earlier undertaking, though 
revealing many new interesting angles through its novel, computer aided, teaching 
material, had similarities to those found in other papers treating the same topic at the 
same level (for example, Baturo & Nasons, 1996; Clements & Stephan, 1998).  
However, it came to our attention that the students had problems in setting up their 
methods in order to apply their conceptual knowledge (beyond appropriately evoking 
it). This problem-solving aspect deserves explicit examination, but this perspective 



Mamona-Downs & Papadopoulos 

 

4 - 122 PME30 — 2006 

has not been taken up explicitly in research as yet.  Hence the new study presented 
here. 

The students were 7th graders who had participated in the project in earlier years; the 
topic area still deals with area measurement.  Given the limitation of the length of the 
paper, we restrict ourselves to one case study involving one task and two students.  
This case is chosen because it displays much interesting executive control exercised 
in the handling, and even adaptation, of a body of methods in calculating or 
comparing areas known by the students.  (For a full exposition of executive control, 
see Schoenfeld, 1985.)  Clearly, focusing on these methods means that the control 
must relate to the conceptual background.  Given this, the following issues are of 
particular significance: 

• Did the students exploit the source of previously known methods and if so, 
how?  

• What was the quality of the rationale behind the changes of direction in 
approach that the students made?  

• What modes of verification did the students employ?     

The paper will describe the problem-solving activity ancillary to the area concept 
evident in the two students' working, especially with regard to the three issues listed 
above concerning executive control. 

STUDENTS’ BACKGROUND, DESCRIPTION OF THE TASK AND 

METHODOLOGY 

The two participants (Nikos and Katerina) were 7th graders attending secondary 
school in Greece. Through their regular classes in mathematics, they were taught 
some basic concepts of geometry, including certain shapes and their properties 
(mostly limited to triangles, quadrilaterals, and circles). They also knew the 
formulas for the calculation of the area of each kind of these shapes.  

However, in addition both students took part in earlier stages of our research project 
that took place in parallel with the normal teaching. Their attendance of this gave 
them experience in the usage of various tools enabling them to calculate area of 
more irregular plane figures.  The tools available to them included: the usage of 
grids in a geo-board, the subdivision of an area unit (usually a square) into sub-
units, length measuring tools that allowed calculating area especially for the 
separate parts of a decomposed region, and the cut and paste method.  For the 
limited problem-solving component at this stage of the project, both these students 
showed themselves particularly adept.  Our expectation, then, was that they would 
fare better than other students when the design of the tasks emphasized control 
skills; such design aspects were aimed for in the final stage of the project.  In this 
paper we select one of the tasks from the final stage and present the students' 
problem-solving behavior for it.     
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Figure 1: Presentation of the task 

 

Apply two cut and paste 
actions to obtain the 
rectangle from the triangle. 
Is the area of the rectangle 
bigger, smaller or the same 
as the area of the triangle? 

Our rationale in forming the above task is the following: 

The students were familiar with the cut and paste technique, and indeed had 
experience with tasks where several cut and paste actions were required.  However 
they were never confronted with the circumstance where multiple actions were 
required in such a way that the different actions were inter-dependent, as it is in the 
case of the task given here.  In terms of problem solving the special interest of the 
task is to see whether the students could coordinate the two actions; the making of the 
first action must anticipate the second.   Another interest is whether the students 
would attempt to answer using other methods despite the directions given in the task 
statement.   

This task is drawn from a session of about two hours where four other tasks were 
given.  The students worked individually and were asked to vocalise their thoughts 
while they were performing the task.  This was conducted on the lines of protocol 
analysis as set out by Simon & Ericsson (1984). Protocol analysis gathered in non-
interventive problem solving sessions is especially appropriate for documenting the 
presence or absence of executive decisions in problem solving, and demonstrating the 
consequences of those executive decisions (Schoenfeld, 1992).  Protocol analysis in 
character minimises the interference of the interviewers (the authors), but it was 
desirable to use more direct questioning concerning the motivation of the students' s 
working.  In order to do this, we interviewed the students a few days after the session.  
Both sets of data were tape-recorded, transcribed and translated from Greek into 
English for the purpose of this paper.   

RESULTS 

Katerina’s problem solving processes. 

After reading the task, Katerina started immediately on a putative solution procedure. 
She initially constructed the grid squares lying completely in either the given triangle 
or rectangle. An influence for this is that over the last two years, there was an 
accumulated experience where the task environment included such an array of dots, 
hence the construction of the grid squares was a familiar strategy for her. The next 
step (also according to past experience) was to divide the partial square units into 
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sub-units. When we asked her in the interview to explain her decision, she justified 
‘As I saw it, I immediately remembered the tasks we dealt with in primary school’. 
But a few seconds later she rejected her initial approach, making her first shift in her 
thinking process: 

K.4.5  What I have done is useless. 

We asked her why she had rejected her first thought. Her response was:  

“The instructions are talking about two movements. If I were to use grid I would have to 
move the square units one by one and consequently I would realise more than two 
movements in order to solve the problem.” 

She decided then to divide the triangle into three parts ‘a’, ‘b’ and ‘c’ (Figure 2):  

K.4.10 I do not have to move the ‘c’ part at all, because it is already in the 
interior of the rectangle. 

Katerina very quickly made clear that the c-part is the common area between the two 
shapes, a finding that would help her to proceed to the solution of the problem. But 
the way she approached the solution after this decision was purely arithmetical. She 
tried to estimate the area of each sub-shape based again on grounds of square units 
formed from the array of dots provided. The existence of partial square units within 
the shapes was an obstacle; as a response, she made a second change of direction. 
She noticed the right angle in the d-part of the rectangle outside the triangle.  
Accordingly, she decided to 'move' the a-part (a right-angled triangle) inside the 
'excess' part of the rectangle such that the right angles coincide.  

A question remained how she managed to 
draw the hypotenuse of the triangle in its 
new position. In the interview her 
response was:  

“I counted the dots. I knew that the right 
angle fits perfectly in the upper left corner so 
I counted the distance between the edges”. 

Then, she transferred the b-part as it is 
shown in Figure 2. Finally, Katerina 
appreciates the conservation of area in this 
context. In the question concerning which 
area was bigger, her response was: “Just 
the same. Since no piece is left over”. 

Niko’s Problem Solving Processes. 

Nikos initially spent an amount of time to be familiar with the task before deciding 
how to proceed.  His initial thought was that the ABX triangle was an isosceles one 
(Figure 3). He tried to prove it by measuring the length of the two supposedly 
‘equal’ sides. This was based on the dots of the array provided but his 
measurements were inaccurate because the array allows exact measurement only 

 
Figure 2. Katerina’s partition of the 
triangle and transfer of the resulting 
parts. 
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horizontally or vertically. He obtained approximations of the real length. This 
finally prompted him to declare that his effort was useless. At this point he made his 
first shift: 

N.4.17 Perhaps I have to cut this 
triangle….that is outside and put it in 
the interior of the other shape…. 

He drew then the BDW and EWX 
triangles. He had already made an 
appropriate dissection but as yet did 
not see how to transfer the resulting 
parts into the rectangle: 
N.4.46 I have to find a triangle that is 
exactly the same with the AEC one. 

Because of his inability to work in a 
geometrical context, he turned to an 
arithmetical one, for a second time 

during this session, by comparing lengths. At this point he stated that the point E is 
the middle of the line segment AX. 

N.4.71 The E point separates the AX segment line into 2 equal parts. So, the AE 
segment line fits exactly to the EX one. 

N.4.72 A region is left over… It’s a right angle 

N.4.76 It means that I have to put the triangle so as the EX side to be adjacent the 
EA side….. 

N.4.81 It seems logical that the two triangles EWX and BDW will have together 
the same area with the AEC triangle. 

N.4.82 I have to verify that this is true. I will find the area of the two former 
triangles and I will compare it with the area of the AEC one. 

Despite that his intuition informed him that the two triangles together had the same 
area with the third one, he felt that he had to be sure about that.  He again resorted to 
an arithmetical approach. He measured approximately bases and heights, he applied 
the known formula for the calculation of the area of a triangle but the two outcomes 
were different.  He accredited this to inaccurate measurements.  

N.4.89 It means that I probably made some errors during the process of the 
calculation of the area of one of the shapes. 

N.4.90 I have to look it again, to try again. 

His instinct, then, made him to insist to show that his initial intuition was correct, 
suggesting that this intuition was so strong to make him to assume that his failure for 
verification was due to erroneous calculations.  Indeed when we asked him later why 
he insisted, he said.  

“I was pretty sure that the area of EWX and DWB together was the same as the area of 
AEC so, when I could not confirm it arithmetically I was convinced that it was due to my 
erroneous calculations and consequently I had to try again with numbers”.  

 
Figure 3. Nikos’ partition of the triangle 
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Finally he came back to the geometrical approach.  
N.4.114 I will cut the DBW triangle and I will adjust it to the ACE angle. 

N.4.115 Then, I will cut the EXW triangle and I will put it so as the side EX to be 
adjacent to the AE side and the W vertex to look towards the C point. 

Nikos' explanation why he delayed to reach the solution is interesting: 
N.4.122 I think I delayed to reach the solution because I dealt from the very 

beginning with the formulas and I did not consider it as a single shape. 

N.4.123 I did not try to find the relationship between the shape I was asked to 
make through the transformation and the already existed one. 

DISCUSSION 

Below we interpret the results from the fieldwork: 

1) What techniques did the students employ? 

Katerina read the problem and immediately chose to apply one method from the 
stock of previously met methods dealing with area measurement.  There is evidence 
that this decision was influenced by the fact that an array of dots were provided in the 
presentation of the task, and this acted as a cue to argue in terms of completing and 
counting unit squares lying completely in the figure.  (In Mamona-Downs, 2002, it is 
claimed that some configurations (‘cues’) act as a mental trigger to access particular 
domains of knowledge.)  This was done despite of the direction to use the cut and 
paste method.  Nikos’s initial behaviour on encountering the task contrasts with that 
of Katerina.  First, he took some time in familiarising himself with the task 
environment and in making some preliminary exploration.  This could be related to 
Polya' s suggested first step 'getting Acquainted' in obtaining a solution in problem 
solving, (see Polya, 1973, p. 33).  Second, Nikos’s starting point involves a structural 
conjecture (a particular triangle is isosceles) and brings in his past experience in 
measuring lengths within the context of the array of dots as a validation device.  In 
fact both students employed this method to check on their geometric ideas in other 
places.  However, perhaps more significant was that in the end both students assigned 
the first transfer of region not exactly fitting in with the cut and paste protocol.  This 
is because the shape is put into the frame of the rectangle, but not such that one side 
is shared with the figure that it had been cut from. The heuristic in Polya about ‘can 
you use the result?’ seemed to influence them to widen old methodology into one that 
is more flexible and approaches the more general image of dissection, as described in 
Hartshorne, 2000, p. 213.  

2) The decision making 

Both students made various changes in approach in their solving activity.  Katerina 
rejects her original idea employing the grid because this method did not meet with the 
task specification of ‘two movements’.  However, this reason would seem a side 
consideration towards explaining her previous remark: ‘What I have done is useless’.  
Clearly, she found difficulties in her method, but instead of trying to articulate these 
she picks out a task specification that she had previously neglected.  However, this 
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proved to be in practice a useful act of control; if a method that one is using does not 
seem to be working, look back at the task formulation to make sure that there is not a 
clue there how to proceed in another direction.  This allowed Katerina to completely 
change her focus, and she creates a partition of the triangle into three parts.  She 
states a motive for doing this; one part is common to both the triangle and the 
rectangle and so would be invariant, leaving just the other two parts to be transferred.  
This could be regarded as an act of control, based on exploiting perceived structural 
similarities (Mamona-Downs & Downs, 2005). Nikos started his work by trying to 
show a triangle was isosceles, where there did not seem much purpose in doing this 
vis-à-vis the task requirement.  (Taking such blind directions and their effect have 
been reported in Schoenfeld, 1985.)  However, Nikos soon rejects this approach, but 
like Katerina, does this out of practical considerations: the soundness of the basic 
idea remains unchallenged.  Later, Nikos encounters a clash between some data 
obtained from measurement and his geometric intuition.  He makes a decision: to 
regard the measurement as unsound, and to direct his attention to strengthen his 
argument based on visualisation (such that the role of measurement would become 
redundant).  This he does quite convincingly in the end.  As a final note, one of 
Nikos' s closing remarks (N.4.123) suggests that he felt in retrospect his working 
should have been more directed towards what was required, again pointing to the 
heuristic 'Can you use the result'.   

3) Verification 

In previous exercises for which these students encountered the method of cut and 
paste, the ‘transferral of area’ was perceived by eye; the more sophisticated context 
of this task, though, made both students feel the need to verify that the two 
transferrals indeed achieved what was desired.  This in itself is an important act of 
control; the matching of the pieces was not so transparent that it could be left un-
argued. The two students finally did the verification differently; Katerina’s was based 
on measurement, Nikos on visualisation.  Notice that Katerina’s line of verification 
was far more utilitarian compared to Nikos’, so likely Nikos’ final apprehension of 
the solution was the more insightful.  

CONCLUSIONS 

Executive control is concerned with the solver’s evaluation of the status of his/her 
current working vis-à-vis the solver's aims.  In general, this requires mature 
deliberation in projecting the potential of the present line of thought, married with an 
anticipation how this might fit in with the system suggested from the task. Schoenfeld 
(1985) has indicted that many undergraduate mathematics students have very poor 
executive control skills.  On the other hand, some quite young students do seem to 
have some ability to make deliberate decisions that lead to effective changes in 
approach.  (Schoenfeld, 1992).  The paper contributes to the research question: What 
executive control skills can we expect from younger students? Our study, involving 
12 year olds, reveals in particular: 
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 (i) Students can have the ability to adapt and extend known methods in response 
to a novel problem-solving situation, via understanding that the situation affords a 
broader approach. 

(ii) Students can affect changes in approach, but the evidence from this study 
suggests that these changes are mostly motivated by not being able to advance rather 
than pin-pointing why the approach is not functioning as wished.  Students are able to 
take advantage of overt structural features appearing within the task environment to 
frame their strategies. 

(iii) When students understand in outline a likely way of solving the task, they can 
insist on forming verifications rather than just assuming that their ‘mental’ plan will 
work out. 
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The study we are going to present is part of a research project which aimed to 
identify and analyze undergraduate and graduate students’ difficulties and errors 
in solving Vector Space Theory problems. We report on some students’ errors 
related to very basic notions of that mathematical domain. More precisely we 
introduce the ck¢ model, and then we investigate, with the aid of such theoretical 
framework, the possibility to interpret some students’ emerged errors as 
instantiations of knowing. 

INTRODUCTION 

The importance of Linear Algebra in many fields of mathematics, science and 
engineering is widely acknowledged by both mathematicians and scientists, who 
consider Linear Algebra as an important mathematical prerequisite for undergraduate 
students in science and technology. Coherently Linear Algebra courses are basic for a 
wide variety of disciplines at the tertiary level such as mathematics, physics, 
computer science and engineering.  

Nevertheless Linear Algebra education is a quite recent research field. In 2000 Dorier 
edited an extensive overview on the state of research in Linear Algebra education at 
tertiary level, later revised by Dorier himself and Sierpinska (2001) on the occasion 
of an ICMI Study on math education at tertiary level. From those surveys it emerges 
that researchers seemingly share the view that difficulties in Linear Algebra (no 
matter what concepts are involved) are due to general features of the field or to the 
axiomatic approach usually followed in teaching Linear Algebra. As a matter of fact, 
in their review Dorier and Sierpinska do not mention any studies focusing on specific 
concepts of Linear Algebra; and indeed, as far as we know, the only exception is 
constituted by Nardi’s study on students’ concept-images of span and spanning set 
(Nardi, 1997).  

This apparent ‘characteristic’ of research in Linear Algebra education contrasts, for 
instance, with research in Calculus where many studies are devoted to the analysis of 
the cognitive difficulties related to specific concepts such as those of limit, 
continuity, function, derivative and so on. 

OUR STUDY 

In this paper we report on a part of our doctorate research project (Maracci, 2005). 
The general goal of that research was to identify undergraduate and postgraduate 
students’ errors and difficulties in solving Vector Space Theory (VST from now on) 
problems. 
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More in detail, our study focuses on students’ difficulties and errors related to basic 
notions of VST: linear combination, linear dependence/independence, spanning set, 
basis, and dimension. 

Methodology 

Our research is articulated in two different but interlaced phases: (a) the analysis of 
undergraduate textbooks, and (b) the observation and qualitative analysis of 
undergraduate and graduate students’ behaviours to solve VST problems. This report 
focuses only on the findings of this latter phase.  

The study involved 15 students in Mathematics: 8 first year undergraduates1, 4 last 
year undergraduates and 3 PhD students. The methodology of investigation was that 
of the clinical interview (Ginsburg, 1981; Swanson et al., 1981; Cohen & Manion, 
1994): each student was presented with two or  three different problems to be solved 
in individual sessions; no time constraints was imposed over the problem solving 
sessions, which were recorded. 

The use of the clinical interview is motivated by its flexibility which makes this 
methodology highly suitable for uncovering phenomena, providing rich descriptions 
and generating hypotheses (Swanson et al., 1981). 

The analysis of the transcripts of the interviews highlighted a number of students’ 
difficulties concerning basic notions of VST. Some preliminary results have been 
discussed in Maracci, 2003 and 2004. 

Here we present some of the observed difficulties and errors of which we propose an 
analysis in terms of the ck¢ model2 (Balacheff, 1995 and 2000; Gaudin, 2002). We 
are going to introduce such model in the next section. 

THE CK¢ MODEL 

The ck¢ model is an attempt to model the subject’s knowing of mathematics within 
the theory of situations (Brousseau, 1997). This model explicitly takes in charge the 
assumption – widely accepted in the community of mathematics educators – that:  

‘errors are not only the effect of ignorance, of uncertainty, of change, […] but the effect 
of a previous piece of knowledge which was interesting and successful, but which now is 
revealed false or simply unadapted.’ (Brousseau 1997, p. 82) 

and it attempts to acknowledge both the possible lacking of global coherence and the 
local efficiency of the subject’s knowing. 

The problem of elaborating such a model is faced by formally defining the notion of 
‘conception’3. According to the ck¢ model a conception is the particular instantiation 
                                           
1VST is a subject matter of the first year undergraduate courses in the Mathematics Faculties of the 

Italian Universities. 

2ck¢ is the acronym for  conception, knowing and concept. 

3Artigue (1991) remarks that the notion is widely used even if rarely defined in math education.  
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of a knowing which, as such, has proved to be efficient with respect to a certain 
domain. Within the model, a conception is defined as a quadruplet constituted by: 

• a set P of problems, on which the conception is  efficient – also said the sphere 
of practice of the conception; 

• a set R of operators, i.e. a set of both physical and mental actions which the 
individual can  perform to solve a problem; 

• a system L of signifiers, which allows to represent both problems and 
operators; 

• a control structure Σ, which is usually implicit and allows to choose operators, 
decide their relevance, evaluate their efficiency and decide whether a problem 
is solved or not. 

The first three components are those to which Vergnaud refers in order to define a 
concept (Vergnaud, 1991); to these components the control structure is added. Once 
conceptions are defined, one can also formally define knowings and concepts, 
anyway we won’t present here the complete modelization which can be found in 
Balacheff, 1995 and 2000. 

Let us remark that a given problem may not belong to the sphere of practice of any 
conception. On the other hand, we can attest a conception because it emerges as a 
means to solve a problem:  

‘c’est sa manifestation en tant que moyen de résolution dans le problème qui nous permet 
d’attester d’une conception’ (Gaudin 2002, p. 37). 

The need emerges to precise the relationship among problems (and their solutions) 
and conceptions. According to the ck¢ model, the solution of a given problem is a 
sequence of operators of possible different conceptions which transform the problem 
itself into one belonging to the sphere of practice of a conception. 

As consequences, the subject’s errors in solving problems might be interpreted in 
terms of conceptions, i.e. in terms of knowings efficient on certain sets of problems. 

OUR QUESTIONS 

We can now explicitly pose the questions we address in this report: 

Is it possible to interpret subjects’ difficulties in terms of operators and 

corresponding controls? 

More precisely, is it possible to recognize hypothetical operators and controls with a 
ck¢-conception like internal consistency? 

Let us note that we are not facing the problem of fully characterizing the conceptions 
to which operators and controls could be referred. To what extent a conception can be 
characterized on the basis of the analysis of students’ behaviours is an interesting 
point which we can not address here. Up to now just a few studies have been carried 
on within the ck¢ model, as a consequence many relevant methodological questions 
need to be deepened. 
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THE  PROBLEM 

The problem we will refer to during our discussion is the following: 

 Problem. Let V be a R-linear space and let u1, u2, u3, u4 and u5 be 5 linearly independent 
vectors in V. Consider the vector u=√2u1-1/3u2+u3+3u4 –π u5. 

• Do there exist two 3-dimensional subspaces of V, W1 and W2, such that 
W1∩W2=Span {u} ? 

• Do there exist two 2-dimensional subspaces of V, U1 and U2, which do not 
contain u and such that u belongs to U1+U2 ? 

The answer to both the questions is that such subspaces of V exist. In order to 
successfully approach the problem one might try to describe the conditions which the 
subspaces must fulfil in terms of their possible generators. For instance, Span{u, 
u1,u2} and Span{u,u3,u4} verify the conditions posed in the former question and 
Span{u1,u2} and Span{u3+3u4,u5} verify the conditions posed in the latter one. 

Although different other approaches to the problem are possible (and many other 
couples of subspaces could be found) all the interviewed students followed the one 
sketched above. 

DATA ANALYSIS  

In this section we will  show and analyze few excerpts from the transcripts of the 
interviews.  Before that, we are going to specify the methodology followed for the 
analysis4.  

Methodology of analysis 

We articulate our analysis in 3 steps: 

1. coherently with the ck¢ definition of solution of a problem, we  look for 
possible operators among what the subjects said and did to solve the given 
problem.  

2. Then we take as possible controls those results (definitions and propositions)  
of VST which are ‘coherent’ with the highlighted operators. 

3. We express operators and controls in the same semiotic system whenever it is 
possible and suitable. 

The choice made explicit in step 2 is motivated by the hypotheses that: 

1. one constructs operators and controls also attending lectures, studying 
textbooks, lecture notes,  that is by studying the mathematical theory itself; 

2. being knowing, operators and controls share potentialities coherent with the 
mathematical theory. 

                                           
4As previously remarked, also because of the low number of studies with the ckc model, we think 

that methodological aspects are particularly interesting and relevant. 
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Moreover as far as operators or controls are compatible with results of the 
mathematical theory, they also share at least part of  the domain of  validity of those 
results.   

An example 

In this paragraph we present and analyze a brief excerpt of Nic’s interview. Nic, a last 
year undergraduate student, has correctly answered the former question of the 
problem. When she approached the latter, she asserted since the very beginning that 
the answer is negative. 

83.  Nic: I think it is not possible... because... because in order to write u I need 5 
linearly independent vectors, in order to write it as [element of the] sum of 
two 2-dimensional vector spaces I can at most use 4 vectors, because they 
are linearly independent... 

Nic spent several minutes to investigate the second question of the problem, without 
questioning this assertion neither succeeding to elaborate more deeply on it. The 
argument exposed in this item represents the core of her solution to the problem. 

In the quoted item we can recognize the mobilisation of at least two different 
operators: 

r1:  in order to write u I need 5 linearly independent vectors 

r2: in order to write it as [element of the] sum of two 2-dimensional vector spaces I can 
at most use 4 vectors 

As for r2, it is perfectly coherent with many results (not stated by the subject) of 
VST, among the others let us quote: 

s2a: The dimension of the sum of two 2-dimensional vector spaces is less then or equal 
to 4. 

s2b: A subspace W of a given vector space V is itself a vector space.  

s2c: The dimension of a vector space is the number of vectors of its bases. 

s2d: Given a basis of a vector space, its vectors can be expressed as linear combination 
of the vectors of the basis. 

s2e: The dimension of a vector space is the highest possible number of linearly 
independent vectors. 

In fact consistently with the five above statements, one can conclude that the 
elements of a 4-dimensional vector space, such as U1+U2, can be expressed as linear 
combination of the elements of one of its bases, which contains 4 vectors. Moreover, 
a 4-dimensional vector space does not contain any linear combination of 5 linearly 
independent vectors because  it does not contain systems  of 5 linearly independent 
vectors at all. 

Though r2 is coherent with many results of VST, it does not appear adequate to solve 
the given problem. In our opinion such inadequacy may derive from the fact that s2b 
induces to consider a subspace (U1+U2) as a vector space neglecting the peculiarities 
of being a subspace: that is the existence of an ‘over’ vector space where  systems of 
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5 (or more) linearly independent vectors may exist as well as linear combination of 
more than 4 linearly independent vectors. 

Even if r2 is not adequate for the given problem, it is anyway adequate when referred 
to vector spaces. Finally, we want to stress the importance within VST of s2b, which 
has played a central role in our analysis: indeed s2b allows to ‘transfer’  notions and 
properties (i.e. notions of dimension, basis, spanning set) from vector spaces to 
subspaces and it makes the notion of subspace itself meaningful and relevant. 

Let us now discuss r1. 

r1:  in order to write u I need 5 linearly independent vectors 

Possible controls coherent with r1 may be: 

s1a: If v1,..., vk are linearly independent vectors of a given vector space V over a field K, 
and a1,...,ak, b1,...,bk are scalars in K such that a1v1+...+akvk=b1+...+bk 
then aj=bj for each j=1,...,k.  

s1b: Given a basis of a vector space, each vector of V may be expressed in a unique way 
as a linear combination of the elements of that basis. 

The two statements express similar results: the former one is more coherent to r1 
which does not explicitly mention bases, whereas the latter one shares with r1 the 
same semiotic system of representation. According to s1a and s1b a linear 
combination a1v1+...+anvn of n linearly independent vectors v1,...,vn cannot be written 
as linear combination of a subset of those vectors themselves (but some of the scalars 
a1,...,an are zero). That is, coherently with s1a and s1b, the number of vectors in a 
linear combination can not be decreased. 

Here again, r1, s1a and s1b constitute a coherent system which is coherent with VST 
too, even if inadequate to solve the given problem. 

Throughout this section we have spoken of adequacy or inadequacy of operators and 
controls to solve problems. When we say that operators and controls are adequate or 
inadequate to solve a problem, we express the point of view of a conception5 – the 
observer’s one – over another conception – the subject’s one: operators and controls 
mobilised by the subject cannot be inadequate from her own perspective.  

More excerpts 

For the sake of brevity we cannot discuss other examples so in detail, anyway we 
present some more excerpts from the collected data which, in spite of slight 
differences, reveal the mobilisation of operators and control consistent with the ones 
just discussed. 

Let us quote the cases of Fra and Lau, respectively first year and last year 
undergraduate students: they both correctly answered to the former question of the 

                                           
5 Within the model, formal definitions are given of some possible relations (i.e. falsity) between 

different conceptions. 
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problem and then they both failed to solve the latter one. The following items contain 
the main arguments on which Fra’s and Lau’s respective solutions are based.  

74  Fra: I think that it is not possible because u is linear combination of 5 linearly 
independent vectors… and if one can write it as… that is, it should be an 
element which can be written as the sum of an element of U1 and of an 
element of U2, and then it should be linear combination of at most 4 
linearly independent vectors [...] 

86 Fra: [...] anyway u is written as linear combination of 5 linearly independent 
vectors… then I cannot write u with only 4 linearly independent vectors 

286  Lau: u is linear combination of 5 linearly independent vectors, how can I find 
the fifth if I have at most 4 linearly independent vectors [in U1+U2]? 

295 Lau:  u is linear combination of 5 linearly independent vectors... yes, no, well, 5 
linearly independent vectors which I cannot find in the sum [of U1 and 
U2], because the sum is made by 4, at most 4 linearly independent vectors.  

The operators respectively mobilised by Fra and Lau evoke more possible controls in 
addition to the previously discussed ones; unfortunately we cannot analyze them in 
detail. Just to give some more hints of a possible further analysis, we specify an 
operator mobilised in the item 74 and we quote some of the corresponding controls. 

r3:  u can be written as the sum of an element of U1 and of an element of U2, and then it 
should be linear combination of at most 4 linearly independent vectors . 

Many of the above discussed controls are more or less directly related to r3, to them 
we can add at least the following: 

s3a: The elements of U1+U2  can be written ad the sum of an element of U1  and of an 
element of U2.  

s3b: The sum of 2 linear combinations of 2 vectors each, is a linear combination of 4 
vectors. 

s3c: Four two by two linearly independent vectors may be not linearly independent. 

SUMMARY 

In the previous section we reported a few excerpts which reveal similar errors and 
difficulties of different students. The highlighted errors and difficulties concern very 
basic notions of VST: linear combination, linear independence, basis, spanning set. 

As for the analysis of such errors and difficulties within the ck¢ model, we 
highlighted systems of operators and controls which present the internal consistency 
of a conception, in ck¢ terms, and we showed that some of the emerged difficulties 
may be interpreted in terms of such operators and controls. 

The hypothesized systems of operators and controls are at some extent coherent with 
definitions and propositions of VST: in fact problems exist to which such operators 
and controls give solutions consistent with and acceptable within VST. 

Therefore these systems of operators and controls express a knowing which shares 
potentialities consistent with the mathematical theory. Difficulties and errors are due 
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to the inadequacy – from the point of view of VST – of this knowing to solve the 
posed problem. 
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TOWARDS THE DEVELOPMENT OF  

A SELF-REGULATED MATHEMATICAL PROBLEM SOLVING 

MODEL 

Andri Marcou, Stephen Lerman 

London South Bank University 

 

Various models of Mathematical Problem Solving (MPS) have been suggested 
since 1957; however most of them did not take place within a structure of a 
theory. In this paper we focus on the theory of Self-Regulated Learning (SRL) in 
order to develop a satisfactorily comprehensive model of MPS, especially adjusted 
to the principles of the aforementioned theory. After examining the relevant 
literature on both theories of MPS and SRL, a first draft of the model was 
developed. Two research studies were conducted in order to check and validate 
the mapping of the model so as to become a useful tool for upper primary school 
students while they are working on process mathematical problems. The final 
version of the model is expected to constitute a powerful tool for independent and 
student-guided problem solving.  

THEORETICAL BACKGROUND  

The theory of Self-Regulated Learning (SRL) encourages debate about imperative 
changes in current teaching practices (Boekaerts, 1997), stressing the necessity for 
the transmission of responsibility of learning from teacher to student by providing 
tools for independent learning with which children can take charge of their own 
learning and seek after lifelong learning (Tanner & Jones, 2003). Mathematical 
Problem Solving (MPS), as one of the most valuable aspects of math lessons 
(Bruder, Komorek, & Schmitz, 2005) and as one of the most difficult tasks primary 
school students have to deal with (Verschaffel, De Corte, Lasure, Vaerenbergh, 
Bogaerts, & Ratinckx, 1999), appears to be a challenging area for MPS and SRL 
researchers. Since the 1980s their main concern has been to conduct studies aiming 
at improving students’ self-regulation skills in MPS; however, most of the 
experiments in MPS were not closely related to a specific theoretical perspective on 
self-regulation (De Corte, Verschaffel, & Op’t Eynde, 2000) but aimed at 
improving certain aspects of self-regulation, such as metacognition. There is a 
strong need to suggest an integral model of SRL adjusted to MPS procedures. 
Therefore, the aim of this paper is to gather and discuss the relevant literature in 
order to suggest an integral and comprehensive model of SRL adjusted to primary 
“process” MPS procedures and to report on research to validate the model. A 
“process” problem is the one that can be solved using more than one strategy or 
“process” (LeBlanc, 1982) and thus it is considered as even more difficult for young 
children. 
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Models of Self-Regulated Learning  

Various models of SRL were studied and compared in terms of their suitability to be 
applied to the MPS procedures. Some of these were the model of cyclical phases of 
self-regulation (Zimmerman, 2004), the six component model of SRL (Boekaerts, 
1997), the model of cognitive, metacognitive and resource management strategies 
(Pintrich, 1999), and the four-phased model of SRL suggested by Winne and Hadwin 
(1998; in Winne & Perry, 2000). The models were compared according to four 
parameters that were determined as crucial to the process of MPS. The first parameter 
was the visual aspect of the model which was explained in terms of hierarchy and 
cycling. Hierarchy is tantamount to the order the solver proceeds through while 
trying to solve a mathematical problem; for instance, first reading the text of the 
problem and then obtaining an answer. Cycling can be interpreted as going through 
the procedure from the beginning, by rereading the text, checking for understanding 
and so on. The second parameter has been the incorporation of the, crucial to MPS, 
strategy-use aspect (Posamentier & Krulik, 1998). By strategy-use is meant not only 
the MPS strategies (e.g. finding a pattern) but also the use of SRL strategies (e.g. 
distinguish relevant from irrelevant data). The third parameter that was set was 
whether the model was taking into account the theory of motivational beliefs, since it 
is suggested that it promotes the use of self-regulated learning strategies (Pintrich, 
1999; Marcou & Philippou, 2005). The fourth parameter was whether the model 
presents SRL as an aptitude or event (Winne & Perry, 2000). Aptitude SRL entails 
the ability to demonstrate SRL behaviour in various domains whereas event SRL 
develops only during one particular event (Winne & Perry, 2000). In the present 
quest, SRL will be studied as an event, since its application will be restricted in one 
domain, namely process mathematical problems and not learning in general.  

The models that appeared to satisfy most the parameters set for SRL models were the 
ones proposed by Zimmerman (2004) and Pintrich (1999). Zimmerman (2004) 
describes children’s development of academic self-regulation from a social-cognitive 
perspective proposing that students’ academic effectiveness depends on their use of 
key SRL strategies and their beliefs about the effectiveness of those processes. This 
procedure is happening in three cyclical phases: forethought, performance and self-
reflection. Zimmerman’s model includes hierarchical and cyclical structure, it 
incorporates motivational beliefs, views SRL as an event, and it includes strategic 
aspects. A key point of Pintrich’s (1999) theory is the use of SRL strategies, 
cognitive, metacognitive and resource management. Cognitive learning strategies are 
the rehearsal, elaboration, and organisational strategies (Weinstein & Mayer, 1986; 
in Pintrich, 1999). Some examples are the recitation of information (rehearsal), 
explaining of ideas to a fellow student (elaboration) and selecting, outlining and 
organizing the main ideas using a network (organisational). Self-regulation of 
cognition is considered in many studies (e.g. Panaoura & Philippou, 2003; Tanner & 
Jones, 2003) as a basic dimension of metacognition; thus Pintrich names these as 
metacognitive strategies and are used for planning, monitoring, and regulation of 
cognition. Examples of metacognitive strategies are skimming a text and generating 
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questions before the actual reading of it in order to activate any relevant prior 
knowledge (planning), self-questioning to check understanding and to inform 
whether or not a goal is being achieved (monitoring), going back and rereading a 
piece of complicated text, and reviewing aspects of one’s work (regulating) in order 
to “…bring the behaviour back in line with the goal” (Pintrich, 1999; p.461). Finally, 
the resource management strategies are the time and study environment control 
strategies, the effort regulation strategies, peer learning and help seeking. For 
example, peer learning implies the students’ willingness to collaborate with their 
peers to reach inside of what they cannot attain on their own and help seeking enables 
students to identify when they are not able to proceed further and so find the 
appropriate source of assistance (e.g. teachers, peers).  

Models of Mathematical Problem Solving 

A procedure of studying and comparing the models of MPS (see Table 1) was also 
followed. Some of the models were the well-known four-step model of Polya (1957), 
the three-stage problem solving strategy suggested by Schoenfeld (1985), the four-
stage-cognitive regulation strategy for MPS of Lester, Garofalo and Kroll (1989; 
cited in De Corte et al., 2000), and the five-step cognitive self-regulatory strategy of 
Verschaffel et al (1999). Given that the new model is to apply to primary age 
children, the parameters set for the comparison were the number of stages, the 
terminology of each stage of the problem, the social context and MPS content (e.g. 
types of problems) in which the model of MPS was implemented. After the 
comparison, it appeared that a combination of Shoenfeld’s (1985) and Polya’s (1957) 
model would fit better the proposed model.  

Polya (1957) Schoenfeld 
(1985) 

Lester et al  
(1989; in De Corte 

et al., 2000) 

Verschaffel et al (1999) 

1. Understanding 
2. Devising a 
plan 
3. Carrying out 
the plan 
4. Looking back 

1. Analysis  
2. Exploration 
3. Verification  

1. Orientation 
2. Organization 
3. Execution 
4. Verification 

1. Build a mental 
representation of the 
problem 
2. Decide how to solve 
the problem 
3. Execute the necessary 
calculations 
4. Interpret the outcome 
and formulate an answer 
5. Evaluate the solution 

Table 1: Models of Mathematical Problem Solving 

Towards the development of a self-regulated MPS model 

The proposed model emerged after comparing the models of both theories of SRL 
and MPS and selecting not their “best” aspects but the most suitable for the purposes 
of this study. Many of those aspects were combined in order to construct a model, as 
comprehensive as possible, for primary school students, and applicable to process 
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mathematical problems, typically most difficult for Cyprus primary teachers and 
students. The following figure summarizes what has been argued so far. 

 

Figure 1: MPS as a cyclical SRL event (based on Zimmerman, 2004) 

SRL strategies are the cognitive, metacognitive and resource management strategies 
suggested by Pintrich (1999), whereas MPS strategies are the strategies that can be 
applied on MPS per se, such as making a drawing, intelligent guessing and testing, 
finding a pattern, and working backwards (Posamentier & Krulik, 1998). The next 
step was to try to delve more deeply into each phase by describing the actual SRL 
strategies that can be used within each phase.  

THE FIRST STUDY 

The first study, carried out in the UK, was designed to check the mapping of our 
model and to allocate the SRL strategies in each of the three phases of the model. 
Five students, one of year 4, two of year 5 and two of year 6 were given in written 
form a set of three process problems. Children decided to work as a group and were 
asked to solve at least two of the three problems by writing down details of their 
work and thinking aloud. The researcher’s role was restricted to observing the 
students without interfering. The session lasted for 40 minutes and was audio-taped.  

After transcribing and analysing the audio-taped session, the results confirmed the 
cyclical and hierarchical structure of the model for both problems. The analysis 
contributed also to the allocation of each strategy in each phase. For example, 
highlighting or underlining key-words was observed in the Reading and analysing the 
text phase, whereas the reviewing aspects of their work was observed in the Looking 
back phase. The strategies that were not observed, such as time and study 
environment control, were excluded from the model. After the mapping of the model 
was revisited, there was a need to conduct a second study in order to evaluate the new 
structure of the model and to estimate its value as a tool, used by both teachers and 
students during classroom practices. 

Mathematical  
Problem Solving 

 

Forethought Phase: 
Analysing the text 

SRL Strategies 

Performance Phase: 
Carrying out the plans 

SRL Strategies and  
MPS strategies 

Self-Reflection Phase: 
Looking back 

SRL Strategies 
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THE SECOND STUDY 

A primary school in Cyprus was selected to participate in this study. Five teachers of 
year 4, 5 and 6 were taught about the SRL theory and the new model and asked to 
proceed to a teaching intervention in order to implement the theory and the model in 
real classroom settings. More specifically, the aims were to receive feedback from the 
teachers about the efficiency of the model as tool of teaching MPS, to investigate the 
impact of the model on students’ behaviour and to validate the structure of the model.  

The teaching intervention was implemented in at least three lessons within two 
months, according to which the regulation of the learning process is gradually passed 
from the teacher to the students. Two or three students from each class worked in 
mixed ability groups on process problems for about 30 minutes, before and after the 
teaching intervention. Since young children find it difficult to express their thoughts 
about their cognitive and metacognitive ability (Panaoura & Philippou, 2003), 
clinical interviews were conducted with students, so as to observe the use of SRL 
strategies as these appear naturally within the context of MPS. The interviews were 
video-taped so as to seek for and detect any possible changes in students’ behaviour. 
The researcher, as clinical interviewer, presented the problem, modified questions if 
the child seemed to misunderstand them and challenged answers to test the strength 
of the students’ conviction. These were achieved mostly by asking questions like 
“how did you do that”, “can you do it loud”, “how did you figure that out”, “can you 
show me how you did it”, and “how do you know”. 

Results 

Teachers stated that the model can indeed be a powerful tool for both teachers and 
students in MPS, since it “puts an order to students’ thinking and to teachers’ 
teaching”. However, they recommended that some of the strategies could be 
combined to one strategy (e.g. distinguish relevant from irrelevant data with finding 
key-words) and that the one-way arrows should be replaced by two-way arrows since 
children can oscillate between phases while working on problems. In order to check 
the impact of the model on students’ behaviour, the behaviour of each group of 
students was examined by producing time-line graphs, a procedure similar to the one 
used by Schoenfeld (1985).  

Figure 2: Time spent in each phase of the model before the teaching intervention  
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Figures 2 and 3 demonstrate the time that was spent in each phase of the model for 
one group of students of year 4 before and after the intervention, while working on 
isomorphic problems.  

 

Figure 3: Time spent in each phase of the model after the teaching intervention 

As can be observed from the above figures, students in the pre-teaching phase tend to 
spend more time in the Performance phase and no time to the Self-reflection phase, 
contrary to their behaviour during the post-teaching phase in which they spend more 
time in the Forethought and Self-reflection phases. In other words, students spend 
more time to read, analyze and understand the text of the problem and on verification 
processes in order to review and correct their work. Furthermore, as can be seen on 
Figure 2, students, after reading the text, decided to follow a certain approach and 
then stuck to it without trying to change it. However, after the teaching intervention, 
as shown on Figure 3, students were oscillating between analysing the text and 
performance, indicating their effort to find the most suitable approach to tackle the 
problem. Another interesting result was that students, after the teaching intervention, 
appeared to have developed a SRL language while talking to each other. Excerpts 
from their talking, such as “I am not sure if this is correct…I think we should leave 
out the irrelevant information” and “we need to check it…to go back” demonstrate 
that the model had an impact on students’ language. Taking into consideration the 
teachers’ suggestions and the analyses of the clinical interviews, the structure of the 
model was critically revisited and evaluated. For reasons of space the full model will 
be shown at the research presentation.  

DISCUSSION 

The impact and efficiency of the model can not be clearly decided after being 
implemented for the short period of three lessons within two months. Although there 
were some very positive indications of its suitability in the second study, there is a 
need to investigate the impact of the model when this is being implemented in 
teaching for a longer period of time, perhaps for a whole school year. In this case, it 
will be possible to examine its impact on students’ ability in MPS, as well as on 
students’ motivational beliefs. As mentioned before, primary students’ use of SRL 
strategies was found to be positively related to their motivational beliefs concerning 
MPS (Marcou & Philippou, 2005). This implies that teaching students how to 
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effectively use the SRL strategies while tackling mathematical problems can have an 
impact on their self-efficacy, task value and goal orientation beliefs (Pintrich, 1999). 
A new research study aiming to investigate the impact of the revised model, when it 
is implemented for a longer period of time by more experimental classes, is now 
being designed. The results will shed further light on whether teaching MPS 
according to the revised model can help primary school students become self-
regulated problem solvers. 
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The present study investigates some aspects of preschool teachers’ prior content 
knowledge and beliefs in the area of visual cognition, before they taught the Agam 
Program for Visual Cognition in their schools.   Results show that teachers do not 
possess well-developed visual cognition abilities in some areas (e.g. estimation, 
visual memorization, reproduction of visual stimuli etc.) and in some areas their 
performance is similar to that of third grade students, suggesting that visual 
cognition abilities do not necessarily develop spontaneously with age without 
directed practice. Teachers believe that visual abilities develop with practice, but 
some are sceptical about young children’s abilities to cope with complex visual tasks. 
The implications of these findings to the professional development of preschool 
teachers  in the area of visual cognition are discussed. 

INTRODUCTION 

In recent years there has been a growing recognition of the importance to include 
visual cognition as part of preschool education. Although the training of visual 
cognition has been traditionally neglected, research indicates that early and 
systematic training in this area is desirable. For example, research shows that the 
early development of visual cognition contributes to the development of basic 
skills in geometry and mathematical thinking (Clements and Sarama, 2000; 
Denton and West, 2002) and also to other fields, such as writing, mapping skills 
and school readiness (Clements and Sarama, 1999; Eylon and Rosenfeld, 1990).  

One of the most systematic programs that develop visual cognition in young 
children is the Agam Program for Visual Cognition. The central goal of the Agam 
Program is to help children develop their visual thinking, as a means to improve 
their over-all cognitive development.  The vehicle for achieving this goal is 
through a curriculum, created by the artist Yaacov Agam and refined, 
implemented and evaluated by staff of the Department of Science Teaching at the 
Weizmann Institute of Science.  The Agam Program is based upon 36 units each 
of which deals with a different visual concept or a combination of concepts. The 
program integrates the acquisition of each of these concepts with specific skills, 
i.e., identification, memorization, reproduction and reproduction from memory. In 
achieving its goals of teaching a visual language and educating the eye, the Agam 
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Program uses several distinguishing didactic means which include (1) a structured 
approach, (2) multiple models of representation (3) a cumulative presentation 
strategy and (4) minimal use of verbal language.  

Research conducted on the program (Eylon and Rosenfeld, 1990; Razel and Eylon, 
1990) showed that preschool children in the experimental group significantly 
outperformed similar children in the comparison group, on tests measuring visual 
concepts, spatial skills and transfer effects. Moreover, children in the experimental 
group demonstrated a statistically significant improvement on tests measuring 
general intelligence and math readiness.  In other words, the Agam Program 
enhanced children's learning in a wide variety of areas.  These positive effects 
were found equally for boys and girls, as well as for children from privileged and 
underprivileged backgrounds. The research on the Agam Program strongly 
suggests that when preschool children undergo a systematic program aimed at 
developing their visual cognition, they develop thinking tools and general abilities 
which improve their overall “cognitive competence” (Eylon and Rosenfeld, 1990). 
Spatial intelligence, identified by Gardner (1983) as one of the multiple 
intelligences, has components that are very similar to those incorporated in the 
Agam Program.  

This year the Israeli Ministry of Education and the Weizmann Institute of Science 
are conducting a study with 40 preschools in an attempt to identify the necessary 
conditions for up-scaling the implementation of this program. Preschool teachers 
are a central focus of this study.  In this paper we report on an investigation of 
preschool teachers' knowledge and beliefs regarding visual cognition and how it 
can be enhanced.  One would assume that in order to help children to develop 
competencies in this important area, teachers need to possess such knowledge 
themselves. Content knowledge (Shulman, 1986) has been proven to be a 
significant factor affecting students’ learning and achievements (e.g. Ball, 1988). 
Although studies show that elementary school teachers of mathematics lack 
specific content knowledge in different areas they teach, they are expected to have 
at least the content knowledge which they gained through training and experience 
as teachers.  Since the subject of visual cognition is not a part of teachers' training 
and is usually not practiced intentionally in school, it seems that teachers’ content 
knowledge in this area is the one developed by themselves as human beings. Thus 
it is important to investigate to what extent do preschool teachers possess the 
necessary prior knowledge to help their students in the area of visual cognition.  

Teachers’ beliefs play an important role in what teachers teach, on the ways that 
they teach and on the ways that their students learn (e.g., Leder, Pehkonen and 
Torner, 2002).  Thus, revealing teachers’ beliefs regarding visual cognition and its 
enhancement is important since it might have an impact not only on their abilities 
to teach this subject but also on their willingness to do so. 

In this study we focus on the following questions: 
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RESEARCH QUESTIONS 

1.  What is the prior knowledge of preschool teachers in selected areas of visual 
cognition? How well can they cope with visual tasks and what are their strategies in 
performing such tasks? 

2. What are the prior beliefs of these teachers regarding children’s visual cognition 
and ways for developing children’s abilities in this domain? 

METHODOLOGY 

Subjects 

Twenty five preschool teachers participated in this study. These teachers have been 
chosen to implement the Agam Program for Visual Cognition in Israeli preschools, 
but had no prior experience with this program.  All of them were experienced 
teachers with 6-33 years of experience (with an average of 19 years). Most of them 
with B.Ed or B.A (64%), some with M.Ed credential (12%), and the others with 
preschool senior teachers' credentials. The preschool teachers received their 
education in different colleges and universities in Israel. 

Test Items 

The subjects were given a test which included items aimed to investigate their 
knowledge in some areas of visual cognition and items aimed to investigate their 
beliefs. The test was administered during a three-day workshop, in which the teachers 
met for the first time with the Agam Program for Visual Cognition. The test included 
three parts; a) 4 “knowledge” tasks b) 4 “knowledge” tasks, each followed by 
“belief” questions c) 4 belief questions.  We describe here in detail only those items 
that we analyze in this paper. 

Visual cognition “knowledge” items 

1. Visual Estimation - three pictures with dots (see Figure 1) were shown, one at a 
time, for a very short period of time (about 2 seconds). The teachers were asked to 
write down the number of dots they saw and to explain how they reached that 
number.  

The dot pictures are part of the “Numerical Intuition” Unit (unit # 28) in the Agam 
Program.      

 

 

 

Figure 1 – Dot pictures 

2.  Free Recall - Teachers were presented with 4 flash cards (see Figure 2) one at a 
time. They were asked first to look at all four cards, and then to find them among 18 
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such cards which they had in front of them. The teachers were shown cards number: 
22, 20, 26 and 18. Card 26 was rotated by 90º before it was shown to the teachers. 

3.  Graphical Reproduction - Teachers were given a dotted paper equally distanced 
(11 dots x 16 dots) and were asked to draw as many squares as they can such that the 
squares differ in size. 

Tasks #2 and #3 are part of the “Square” Unit (unit # 2) in the Agam Program. 

The first two tasks are part of the "memorization" tasks of the Agam program.  They 
are different in nature.  While the first task requires reproduction of some aspects of 
the stimulus stored in memory, the second is a direct identification task.  The third 
task is a typical reproduction task dealing with visual stimuli. 

 

 

 

 

 

 

Figure 2 – Flash cards 

Visual cognition “belief” items  

Flash Cards 

Two questions were given following the second “knowledge” task.  

1.  In your opinion, what does such a task develop among preschool children? 

2.  In your opinion, how many such flash cards can be given in such a    

     way to the children that they will be able to recall? 

The tests included more “knowledge” items, investigating abilities in additional areas 
of visual cognition. Some of the items were followed by “belief” questions similar to 
the questions above. Other “belief” questions asked teachers about the importance of 
developing visual cognition abilities in general, and among preschool children in 
particular. Teachers were also asked to write down names of children whom they 
think will succeed with visual cognition tasks and children who will have difficulties 
and to explain the reasons for each child. 

RESULTS 

The analysis of the data is both quantitative and qualitative. For some of the items we 
looked at the numerical answers. For example in “knowledge” item #3 we counted 
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the number of different squares.  For the open-ended items, categories were 
established according to teacher responses.  

Visual cognition ”knowledge” items 

Visual estimation 

The relative percentage of errors for pictures a, b and c was 20%, 26% and 28.5%, 
with an average of 25%. The dots in picture b appear in a structured arrangement 
which suits a known figure (square). This is probably the reason why picture 2 was 
easier for the teachers to cope with. 

Five strategies were used by the teachers: 

• Counting strategy – Teachers counted as many dots as they could in the short 
period of time available and added some more 

• Grouping strategy – Teachers mentally divided the dots into small groups, 
usually of equal number, which they then multiplied by the total number of 
groups.  

• Comparison strategy – Teachers compared the number of dots to that in a 
previous picture.  

• Spatial strategy – Teachers estimated the number of dots according to the size 
of the dots, their arrangement and the space they hold.  

• Global perception strategy – It seems that teachers who used this strategy 
could not explain how they arrived at their answer. Some of them glanced at the 
picture and gave their estimate.  

Table 1 presents the strategies expressed by the teachers in the three visual estimation 
pictures. There were 73 strategies altogether (in two cases teachers did not explain 
the strategy) and the figures in Table 1 present the number of explanations per 
strategy for each picture. 

               Strategy Picture a Picture b Picture c Overall in percentages 

Counting 3 0 1 5.5% 

Grouping 6 23 10 53.4% 

Comparison 0 1 2 4.1% 

Spatial 7 1 2 13.7% 

Global perception 7 0 6 17.8% 

Something else 2 0 2 5.5% 

Table 1 – Strategies demonstrated on the Visual estimation tasks 

As can be seen from Table 1 the most popular strategy was the grouping strategy.  

The counting strategy was present mostly for the first picture where teachers had to 
cope with this kind of task for the first time and probably found counting to be 
familiar. The comparison strategy was used in very few cases and only in pictures b 
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and c, where there was something to compare with. In picture b almost all teachers 
used the grouping strategy, since picture b “invites” division of the dots into groups. 
Teachers were not consistent in the use of strategy. Only three of the teachers used 
the same strategy, the grouping strategy, for all 3 pictures. 

It is interesting to compare these results to results we obtained in a previous study in 
which third grade students were presented with the same dot pictures (Markovits and 
Hershkowitz, 1997). The average relative error of the third graders was 27%, which 
is very similar to that of the preschool teachers. As to the strategy used, the third 
graders used four strategies: counting (42%), grouping (31%), comparison (11%) and 
global perception (16%). The teachers used the counting strategy only in very few 
cases. They used much more the grouping strategy and also used the spatial strategy 
which was not used by the children at all. This comparison might suggest that visual 
estimation abilities of this kind do not necessarily improve with age, but with age 
there is a change on the kind of strategy being used for estimation. 

Free Recall 

84% of the teachers recognized flash card #18, 72% card #20, 56% card #22 and only 
40% card #26. Card # 18 had the most correct answers both because it is not too 
much similar to one of the other 18 cards on the flash card board, the squares are 
“regular” squares (not rotated) and it was the last card presented in the series of four, 
thus the best remembered (recency effect). Card #22 is very similar to card #23 
which is located just next to it on the flash card board, and indeed 44% of the 
teachers mentioned card #23 instead of #22. Card #26 was the most difficult, not only 
because of the relationship between the two given squares, in which one is not in the 
“regular” position, but also because the flash card was rotated with 90º, and the 
subjects had to do one more visual operation in their minds.  

Only three preschool teachers correctly recognized all 4 cards, 11 recognized 3 cards, 
7 teachers recognized 2 cards and 4 teachers recognized only 1 of the four cards. 
Since we had experience with kindergarten children (ages 5-6) who were able, after 
practice, to recognize 6 and even more flash cards, we expect that many of the 
preschool teachers will improve with practice. 

Graphical Reproduction 

Most of the teachers drew “regular” squares of different shapes. By “regular” we 
mean squares which are formed of two vertical and two horizontal lines in relation to 
the position of the given dotted paper. Only 4 teachers drew squares by connecting 
the dots with slope lines.  

Table 2 presents the sizes of “regular” squares drawn by the teachers. The largest 
possible square was of 10X10 “dot spaces”. 

1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

100% 96% 84% 88% 68% 92% 56% 76% 48% 76% 

Table 2 – Percentages of appearance of each square size 
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It can be seen that teachers drew squares of all sizes with an even number of “dot 
spaces” on each side. They did have difficulties in finding squares with dimensions of 
5x5, 7x7 and 9x9. This occurred since many of the teachers drew a series of squares 
one placed inside the other, starting with 10x10, and this kind of series includes 
squares with even number of “dot spaces”. Then they added outside this pattern some 
more squares, with odd number of “dot spaces”, but only the small once. 

Visual cognition ”belief” items 

Beliefs regarding the flash cards item 

Eighty percent of the subjects said that this task develops memory, 56% said that it 
develops concentration, 40% mentioned visual thinking or visual cognition, 24% said 
that it develops focus and the ability to pay attention to details and 16% mentioned 
retrieval from memory. It seems that the subjects realized what are the main abilities 
needed to carry out successfully this task and mentioned them as having the potential 
to develop. 

In the second question, where the preschool teachers were asked about the number of 
flash cards which can be shown to children, the following answers were given: 

a) I do not know until I try it with my children – 8%. 
b) Very few because for children at this age is very difficult to cope with such a 

task – 20%. 
c) We should start with 1 or 2 and then progress – 32%.  
d) We should start with 2 or 3 and then progress – 28%. 
e) More than 4 since children can learn and be better than us – 12%.  

•  
• It seems that about three quarters of the teachers conceive visual cognition 

expressed in this task as an ability that can develop with practice.  Some are 
more sceptical about children's initial performance saying they would start 
with 1 card or two, while others suggest that one should start with three 
cards even with small children. Three teachers (12%) even suggest that 
children will be able to cope with a large number of flash cards in this task, 
stating that visual abilities are not necessarily related to age. On the other 
hand, 4 teachers seem to be very sceptical, giving no much chance to the 
children on this task. 

It is interesting to mention that only 4 teachers related to individual differences and 
suggested that the number of cards, children are able to deal with, depends on the 
child’s visual abilities. Most teachers judged that all children in their preschool would 
perform at the same level. 

DISCUSSION 

Visual cognition develops with practice. Research shows that young children 
improve their visual abilities when they participate in a systematic program such as 
the Agam Program. Teachers are usually not exposed to programs that develop visual 
cognition in a directed manner neither during the pre-service training, nor during in-
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service programs.  They also do not usually experience the systematic treatment of 
visual cognition in their practice. Thus it is not surprising that their performance on 
visual estimation tasks was about the same as that of third graders, and on the free 
recall task, very few were able to remember four cards while kindergarten children, 
after practice, are able to remember six and even more cards. These results are 
probably typical of the condition of many adults who do not develop the various 
visual cognition abilities and remain at the level of younger children. Thus it seems 
necessary to provide teachers with opportunities to develop their visual cognition 
through the in-service training accompanying the implementation of the program.  
However, because of time limitations, the practice that teachers can have through this 
training is limited.  It is plausible to assume that in addition to this training, the 
teachers participating in this study will undergo “on the job training”, meaning that 
they will probably develop their visual cognition abilities as they implement the 
program with their preschool children.   It is interesting to investigate whether, and if 
so in what ways, being involved in the teaching of visual cognition will affect 
teachers’ visual cognition. The tests we plan to give teachers at the end of the year 
will help us answer this question. These tests will also enable us to compare prior 
teachers’ beliefs as revealed in this study to their beliefs at the end of the year, as they 
can observe the development of visual cognition of their students.  
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 AN UNEXPECTED WAY OF THINKING ABOUT LINEAR 

FUNCTION TABLES 

Mara Martinez & Barbara Brizuela 

Tufts University, Education Department 

 

This paper is inscribed within the research effort to produce evidence regarding 
primary school students’ learning of algebra.  Given the results obtained so far in the 
research community, we are convinced that students as young as third graders can 
successfully learn algebra. In our research, we introduce algebra from a functional 
perspective. A functional perspective moves away from the mere symbolic 
manipulation of equations and focuses on relationships between variables. In this 
paper, we present a case study where a third grader, Marisa, produces an 
unexpected strategy when trying to come up with the formula of a linear function 
while she was working with a function table.  

INTRODUCTION 

Past research has provided examples of third-grade students’ emerging understanding 
of functional relations (e.g., Schliemann, Carraher, & Brizuela, 2001), showing that 
third graders are able to begin to think functionally and to make use of functional 
notation.  In particular, function tables and graphs have been shown to encourage 
children to focus on functional relationships.  

Vergnaud (1994), in his theory of conceptual fields, proposes the concept of theorem-
in-action.  This turns out to be a very useful concept in the kind of approach and 
analysis mentioned above because it allows for the explicit differentiation and 
connecting between subject knowledge and target knowledge. Vergnaud (1994) 
provides the following definition for theorems-in-action: 

A theorem-in-action is a proposition that is held to be true by the individual subject for a 
certain range of the situation variables.  It follows from this definition that the scope of 
validity of a theorem-in-action can be different from the real theorem, as science would 
see it.  It also follows that a theorem-in-action can be false.  But at least it can be true or 
false, which is not the case for concepts-in-action.(p. 225) 

In his analysis of the multiplicative conceptual field, Vergnaud differentiates between 
two approaches: the scalar and the functional.  In this paper, we analyze Vergnaud’s 
theory of conceptual fields by interpreting Marisa’s theorem-in-action, which is 
neither scalar nor functional. Her theorem-in-action seems to be intermediate, 
between the scalar and functional approaches described by Vergnaud (1988, 1994).  
We will discuss the features that Marisa’s theorem-in-action shares with both 
approaches (scalar and functional), analyze its validity, and its relationship with the 
target knowledge of the lesson. 
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METHODOLOGY 

The data for this paper is drawn from a third grade mathematics classroom in an 
urban public school in the Boston, Massachusetts (USA) area.  The classroom was 
composed of 15 students that the EA Project worked with during the 2003-2004 
school year.  As members of the EA Project, we went into this third grade classroom 
twice a week for 50 minutes each session.  The EA classes these children participated 
in were in addition to their regular mathematics classes.  In addition to these lessons, 
two EA homework sessions were held by the regular classroom teacher each week, 
reviewing the problems assigned by the EA project team members.  The children in 
this study entered the EA project at the beginning of their third grade.  They had a 
total of twenty-one EA lessons in the Fall semester, and thirty in the Spring semester.  
All classes were videotaped by two members of the research team. An additional 
team member taught each one of the lessons. In addition to videotapes, we collected 
students’ written work for each one of the lessons. This paper focuses on three 
particular lessons that took place in the Spring 2004 semester of third grade, as well 
as on an individual interview that was carried out in June 2004 with one of the 
students in the class, Marisa. 

CHILDREN’S APPROACHES TO FUNCTIONS DURING THE ALBEGRA 

LESSONS 

Lessons 35 and 51
1
 

The problems presented to the children in these lessons dealt with a restaurant with 
different configurations for tables. In lesson 35, the square dinner tables could be put 
together, so the function describing the relationship between independent and 
dependent variables is not proportional, as it had been in the previous lesson. Lesson 
51 took place at the end of the Spring 2004 semester.  This lesson was a variation on 
lesson 35.  In lesson 51, numbers such as 100 and 200, as well as n, were included in 
the function table presented to the third grade children. 

Strategies Used by Students During Lessons 35 and 51 

Within the range of theorems-in-action used, we identified two that had previously 
been described in the literature (Vergnaud, 1988, 1994). 

The Scalar Theorem-In-Action. Vergnaud (1994) describes this theorem-in-action as 
being introduced through iterated addition; it therefore relies upon the additive 
isomorphism property from which the multiplicative isomorphism property is 
derived.  In the context of the problem used in lessons 35 and 51, this theorem-in-
action consists of adding by twos while going down the columns in the function 
table.  In order to get f(3), the child does f(2)+2.  In general terms, you can solve for 
f(n)=f(n-1)+2 by simply knowing f(1). 

                                           
1 Lessons were numbered beginning at 1 in the first lesson taught in the Fall, 2003 semester, in third 
grade. 
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This theorem-in-action is an easy and quick way of finding out the values of the 
dependent variable (e.g., the maximum number of people that can be seated at the 
dinner tables), because students just have to add two to the previous row in the 
function table.  Note that, in order to use this theorem-in-action, a “first” value for the 
dependent variable is required.  Using this theorem-in-action, children only have to 
apply the algorithm “adding two”.  What they are adding two to remains implicit and 
can be achieved by just using the values for the dependent variable and maintaining 
the independent variable implicit.  With this theorem-in-action the child does not 
need to keep track or use any information about the independent variable—in this 
case, the number of dinner tables. 

The Functional Theorem-In-Action. Vergnaud (1994) explains that this theorem-in-
action uses the constant coefficient property instead of the previous isomorphism 
property. The students who use this theorem-in-action multiply the number of dinner 
tables by 2 and then, add 2.  These children use a theorem-in-action that yields the 
maximum number of people that can be seated depending explicitly on a particular 
number of dinner tables. This theorem-in-action can be described as functional 
because children explicitly relate the numeric value of the independent variable (e.g., 
maximum number of people that can be seated) to the numeric value of the dependent 
variable (e.g., number of dinner tables). 

In the context of this dinner tables problem, a third type of theorem-in-action arose, 
reflecting another way of thinking about the problem.  This third theorem-in-action 
was unexpected because it is not described in the literature (see, for example, 
Vergnaud, 1988, 1994).   

MARISA’S UNEXPECTED THEOREM-IN-ACTION 

The unexpected theorem-in-action we will describe focuses on Marisa’s 
conceptualization of the relationships embedded in the dinner tables problem used in 
lessons 35 and 51.  Marisa was a quiet third grade student that worked hard and was 
not labeled as a brilliant student at school.  Marisa usually held strong convictions 
about the problems she was working on and she was always very careful to justify 
these convictions.  When presented with an alternative perspective or explanation for 
a problem, she would listen carefully but would not change her mind until she was 
absolutely sure she understood the change thoroughly and could explain it herself.  
This third (unexpected) way of conceptualizing the relationship between maximum 
number of people seated and number of dinner tables is neither scalar nor functional.  
At the same time, it is both scalar and functional.  As such, it can be thought of as an 
intermediate theorem-in-action. During Lesson 51, and while working with the 
function table shown below (see Figure 1), Marisa said that she saw “another 
pattern,” besides the scalar and functional relations that her peers were describing.  
The researcher who was teaching this particular lesson asked her to explain the 
pattern she saw: 
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Marisa: 1 to 4 is 3, 2 to 6 is 4, 3 to 8 is 5… 

Bárbara:  Actually that is a hint of what’s going on.  You do plus 3, you do plus 4, 
plus 5, you do plus 6, you do plus 7.  The number that you have to add is 
always one more.  It’s always one more. 

 

Number of Tables  Seating 

1 + 3 4 

2 +4 6 

3 +5 8 

4 +6 10 

5 +7 12 

6 +8 14 

50  102 

60  122 

100  202 

t  tx2+2 

Figure 1. Function table presented to students in Lesson 51.  The first column was 
filled and the second was empty. 

The “pattern” that Marisa described consists in adding a number to the value of the 
independent variable in order to get to the value for the dependent variable.  For 
example, to get from 1 (dinner table) to 4 (people), we have to add 3; from 2 (dinner 
tables) to 6 (people), we have to add 4; from 3 (dinner tables) to 8 (people), we have 
to add 5; and so on.  Marisa says that every time you go down from one row to the 
next, you add one more than you did in the previous row to get from one column to 
the next.  That is, the number you add to get from one column to the next increases 
by one each time you go down a row in the function table. At first, the research team 
wondered whether or not this theorem-in-action would be considered mathematically 
“appropriate,” or correct.  We wondered what made this theorem work, and whether 
it would work with any linear function.  Our questioning was grounded in the 
adoption of a conceptual field framework (Vergnaud, 1988, 1994).  Within this 
framework, an analysis and understanding of the contents of knowledge and a 
conceptual analysis of the domain are considered essential towards developing an 
understanding of children’s cognitive development. While we were expecting scalar 
and functional theorems-in-action among the children’s responses, we did not want to 
assume that Marisa’s approach was necessarily incorrect or mathematically 
inadequate.  The theory of conceptual fields allowed us to frame our analysis of 
Marisa’s responses. 
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This was not the only time that Marisa used this “unexpected” theorem-in-action, and 
she was not the only one in the class to use this theorem-in-action.  Marisa used this 
theorem-in-action during lesson 35, during the review lesson 51, and during an 
individual interview held in June 2004 with the first author of this paper.  During 
lesson 35, Hannah, another girl in Marisa’s class, used this same theorem-in-action. 

MATHEMATICAL ANALYSIS OF MARISA’S UNEXPECTED THEOREM-

IN-ACTION 

As outlined above, and as detailed by Vergnaud (1988, 1994), it is fundamental to 
analyse the relationship between knowledge produced by the learner in particular 
situations and contexts, and the knowledge from the perspective of the discipline we 
are trying to teach them about.  We need to evaluate the relationship between what 
they know and what we want them to learn, in order to design interventions that foster 
their learning beyond what they can spontaneously do. 

In terms of Marisa’s theorem-in-action, as interpreted through a mathematical lens, 
given any linear function, f (x) = mx + b defined in its natural domain, we can think of 
the information in each one of the rows of the function table given to Marisa as 
follows “What function can be added to x to obtain mx+b?” 

In order for us to examine the characteristics of the function g(x), and specifically to 
examine if it is a linear function, we are assuming that f(x) is any linear function, as 
in the case we are analyzing.  By analyzing these characteristics, we hope to better 
understand why Marisa’s theorem-in-action works.  We want to solve the equation (I) 

)()( xfxgx =+            (I) 

for g(x), where bmxxf +=)( with ℜ∈bm, , and, we are looking for a function g(x) 

that added to the identity function i(x)=x yields f(x). 

Replacing f(x) by mx+b in equation (I), we obtain equation (II):  

bmxxgx +=+ )(         (II) 

Manipulating equation (II) to obtain g(x),  

xbmxxg −+=)(  

bxmxg +−= )1()(  

In Lesson 51, Marisa points out the fact that first you add 3, then 4, then 5, and then 
6.  You add one more each time you go down one row in the function table.  In this 
way, she is relating the auxiliary number that she introduced in the first row (see 
Figure 1), to the auxiliary number in the row right below it.  So, in Marisa’s theorem-
in-action, she identifies a recursive function on the intermediate, auxiliary column 
added by her.  



Martinez & Brizuela 

 

4 - 158 PME30 — 2006 

It seems that Marisa observed in the numeric sequence of the auxiliary column that to 
get from one row to the row below it, it is enough to add 1 more2.  The auxiliary 
column can be generated by “adding one” from one row to the next to the value in the 
auxiliary column. 

Scalar and Non-Scalar Features of Marisa’s Theorem-in-Action 

Why is Marisa’s theorem-in-action not entirely scalar?  If Marisa had adopted a 
scalar theorem-in-action, she could have gone down the output column (see Figure 1) 
adding by twos.  But in her theorem-in-action, Marisa is not adding two from one 
row to the next in order to get the output.  She did not use repeated addition by twos 
in order to produce the sequence of outputs in the y column of the function table.  
Thus, we cannot consider her theorem-in-action as purely scalar.  In addition, the 
amount that she is adding to the input varies each time; it is not a constant amount as 
in the scalar approach, further justifying a characterization of her approach as non-
scalar.  However, if we focus on the auxiliary column highlighted in Figure 1, we can 
identify one potential constant being added, although the constant is not added 
directly to the output column (if it were, then we would identify Marisa’s theorem-in-
action as scalar); instead, the constant of 1 (“each time you go down a row in the 
table, you add one more,”) is added to the number in the auxiliary column to get the 
output.  

Marisa is applying some sort of scalar approach to the sequence of numbers that have 
to be added to the input in order to get the output.  There are two elements that we 
can identify as characteristic from a scalar approach.  The first is that she mainly uses 
addition in this theorem-in-action; she focuses on looking for the number to be added 
to the input in order to get the output.  The second element characteristic of a scalar 
approach is that Marisa searches for a scalar pattern in the function g(x). 

Functional and Non-Functional Features of Marisa’s Theorem-in-Action 

Why is Marisa’s theorem-in-action not entirely functional?  Her theorem-in-action 
does have the intention of relating input and output “directly” by seeking the function 
that might describe the relationship between variables.  Marisa takes into account 
input and output, and she comes up with a way of acting on the input in order to get 
the output (i.e., “each time we go down a row we have to add to the input one more 
than what we added to the previous input column to get the output”).  Her 
establishment of a relationship between both variables can be identified as an element 
of the functional approach.  

                                           
2 Marisa used a similar strategy when she solved a problem in the end of year assessment 
implemented by the EA research team.  In this problem, the input column of the linear function 
table she was presented with skip-counted by threes until a certain point in the table.  However, this 
was not the case for the rest of the values in the input column of the table.  In the case where the 
skip from one row to the next was not three,, Marisa gave a wrong answer based on the counting by 
three model she had generated for the intermediate column.  
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Marisa developed a theorem-in-action that allows her to produce outputs within a 
non-scalar model.  Her theorem-in-action relates inputs with outputs.  While we have 
said above that her theorem-in-action has features of a functional approach, we would 
not consider this as a strictly functional approach because Marisa is not using 
multiplication in order to get the output and because in order for her theorem-in-
action to work we have to know what was added to the input in the previous row.  
Therefore, a “first” step is needed in order to generate the recursive sequence of 
numbers to add to the input to get the corresponding output.  Marisa found the first 
number to be added by doing f(1)-1; she also calculated f(2)-2, f(3)-3 and so on.  As 
can be seen, this is something that can be done having some consecutive pairs (x, 
f(x)) of the function in order to infer how it behaves.  In some sense, this is a 
disadvantage because if we want to extend Marisa’s theorem-in-action, we need 
consecutive pairs of values and these are not always available. 

Limitations and Potential of Marisa’s Theorem-in-Action 

One central piece in the mathematical analysis of children’s strategies is the 
assessment of both what the theorem-in-action allows for and what it does not allow 
for.  That is, both what are the strengths of the theorem-in-action as well as what are 
its limitations.  Identifying the limitations or weaknesses of the theorem allows us to 
find a way of helping children reflect on their strategies  (see Martinez, Schliemann, 
& Carraher, 2005).  As we just pointed out, the disadvantage or limitation of this 
theorem is that in order for it to work, Marisa has to know both the inputs and the 
outputs.  By knowing both inputs and outputs, Marisa is producing a new 
intermediate sequence of numbers, that we called the numbers in the auxiliary 
column in Figure 1.  Each one of these numbers (4, 5, and 6) are added to the input to 
get the output.  We might also hypothesize that Marisa’s theorem-in-action was 
conceptualized and described a posteriori; that is, it was not a theorem-in-action that 
helped her solve the problem, but a theorem-in-action that helped her to describe a 
relationship between variables that she had already solved and established 
beforehand. 

In the individual interview we found that when Marisa encountered a gap in the 
sequence of numbers presented in the function table, her intermediate theorem-in-
action did not help her to find the corresponding number of people to be seated at the 
dinner tables.  As explained before, she could have still solved this by using multiples 
(finding out the difference between values in the gap in the function table), but this is 
not the approach adopted by Marisa. Using the function table in Figure 1, Marisa was 
adding one more to the numbers in the auxiliary column, from 1 through 6, adding 
from 3 to 8 respectively to each of these inputs.  When she got to the 50 in the input 
column, she stopped because she did not have the number in the auxiliary column 
corresponding to 49 that would have made her theorem-in-action work.  At this point, 
her theorem-in-action stopped working because there was a gap in the function table: 
from 6 to 50 in the input column.  We might hypothesize that by encountering these 
types of shortcomings and difficulties inherent to her theorem-in-action, she might 
modify her intermediate theorem-in-action into a functional approach, to be able to 
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adopt a general rule for all cases, regardless of gaps in a sequence of inputs in the 
function table or for the case of a variable amount such as n.  

CONCLUDING REMARKS 

It is our intention to look beyond the prescribed and expected ways of looking at 
children’s thinking and approaches.  We feel encouraged by this analysis of 
children’s responses, and their grounding from a mathematical perspective, which 
allows us to further our understanding of children’s approaches to functions, to 
connect these unexpected approaches to those that are expected, and to reconsider the 
conceptual field that they are connected to.  We hope that Marisa’s unexpected quasi-
scalar, quasi-functional theorem-in-action, as well as others we can describe and 
analyze, can form part of our repertoire of learners’ expected approaches to linear 
function tables.  Marisa’s necessary theorem-in-action will be different at any given 
time in her development.  Similarly, our repertoire of necessary descriptions of 
children’s approaches should be continually evolving. 

References 

Martinez, M., Schliemann, A. D., & Carraher, D. W.  (2005).  Issues of Generalization in K-
12 Algebra. Paper presented at the annual meeting of the American Educational 
Research Association, Montreal, Canada. 

Schliemann, A. D., Araujo, C., Cassundé, M. A., Macedo, S., &  Nicéas, L.  (1998).  
Multiplicative commutativity in school children and street sellers.  Journal for Research 
in Mathematics Education, 29(4), 422-435. 

Schliemann, A. D. & Carraher, D. W.  (1992).  Proportional reasoning in and out of school. 
In P. Light & G. Butterworth (Eds.)  Context and Cognition (pp. 47-73).  Hemel 
Hempstead: Harvester Wheatsheaf,  

Schliemann, A. D., Carraher, D. W., & Brizuela, B. M.  (2001). When tables become 
function tables. In Proceedings of the XXV Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 4, pp. 145-152).  Utrecht, The Netherlands. 

Schliemann, A.D., Carraher, D.W., & Brizuela, B. (in press). Bringing Out the Algebraic 
Character of Arithmetic: From Children’s Ideas to Classroom Practice. Studies in 
Mathematical Thinking and Learning Series. Mahwah, NJ: Lawrence Erlbaum 
Associates. 

Vergnaud, G.  (1988).  Multiplicative structures.  In J. Hiebert and M. Behr (Eds.), Number 
concepts and operations in the middle grades (pp. 141-161). Hillsdale, NJ: Lawrence 
Erlbaum Associates. 

Vergnaud, G.  (1994).  Multiplicative conceptual field: What and why?  In G. Harel and J. 
Confrey (Eds.), The development of multiplicative reasoning in the learning of 
mathematics (pp. 41-59).  Albany, NY: State University of New York Press. 



 

2006. In Novotná, J., Moraová, H., Krátká, M. & Stehlíková, N. (Eds.). Proceedings 30th Conference of the 
International Group for the Psychology of Mathematics Education, Vol. 4, pp. 161-168. Prague: PME.  4 - 161 
 

LEVELS OF UNDERSTANDING OF PATTERNS IN MULTIPLE 
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This study explores the influence of different forms of representations on pupils’ 
performance in complex and simple structured patterns at activities which involved 
continuing a pattern, predicting terms in further positions and formulating a 
generalization. Data were obtained from pupils in grades 5 and 6 on the basis of a 
test. Three levels of cognitive complexity (CC) of the understanding of mathematical 
relations in patterns were validated based on pupils’ performance: empirical 
abstraction of mathematical relations, implicit use of a general rule and explicit use 
of a general rule. Findings also revealed that the initial representational form 
affected pupils’ performance especially at complex patterns. Pupils dealt more 
efficiently with the pictorial form of representation relative to the verbal one.  

INTRODUCTION AND THEORETICAL FRAMEWORK 

Schoenfeld (1992) describes Mathematics as the science of patterns. Like patterns, 
which involve a series of components progressing in a clear and consistent way, 
mathematics involve a systematic attempt to discover the nature of the principles and 
laws that characterize in a rational and consistent manner different theoretical 
systems or real world models. This commonality indicates that pattern tasks, i.e. 
recognizing patterns, formulating generalizations, provide the opportunity for a 
genuine and substantial mathematical activity.  

During the past 20 years research has focused on a great number of possible methods 
that increase the meaning of the algebraic procedure and objects (Arcavi, 1994). The 
fact that many countries have introduced an algebra chapter in their new syllabuses 
from preschool years proves the increasing interest in the subject, as well as the 
importance and need for the development of algebraic thinking from a young age. In 
particular, Blanton and Kaput (2005) maintain that incorporating algebra in 
elementary school helps in the conceptual development of complex mathematics in 
children’s thinking. It offers pupils the chance to observe and articulate the 
generalizations and express them in a symbolic way. The use of tasks through which 
pupils of the elementary and high school are lead to generalizations through patterns 
is considered important for achieving the transition to typical algebra (Lannin, 2005; 
Zaskis & Liljedahl, 2002).  

Representations and the understanding of patterns 

Pupils come across a variety of representations in mathematics classes every day at 
school. These representations are necessary to present and communicate 
mathematical ideas such as patterns, and can take on one or more forms: verbal, 
symbolic, pictorial, etc (Gagatsis & Elia, 2004). Zaskis and Liljedahl (2002) 
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distinguish patterns into different categories on the basis of the form of representation 
or other criteria, i.e. number patterns, pictorial/geometric patterns, patterns in 
computational procedures, linear and quadratic patterns, repeating patterns, etc. 

Diverse representations activate different procedures and strategies (Orton, Orton & 
Roper, 1999). The significant role of different representations on mathematics 
learning by students of different grade levels was revealed by several researchers 
regarding the understanding of mathematical concepts and problem solving (Duval, 
2002; Gagatsis & Elia, 2004; Mousoulides & Gagatsis, 2004). Based on the findings 
of the aforementioned studies, understanding a concept presupposes the ability to 
recognise a concept in a variety of representations and the ability of a flexible 
handling of the concept within the specific representation systems. Thus it can be 
implied that recognising relations in patterns in different representations and 
coordinating different representational forms of a pattern may have an important role 
on pupils’ understanding of generalizations and developing of algebraic thinking.  

Lannin (2005) examined what reasons children produce for the generalizations they 
produce in patterns in a figurative or a verbal representation and how these 
justifications help them to understand the generalizations. The reasons that the 
children were found to produce for the patterns were classified with respect to five 
stages, as follow: Level 0: No justification, Level 1: Appeal to external authority, 
Level 2: Empirical evidence, Level 3: Generic example and Level 4: Deductive 
justification. 

Kyriakides & Gagatsis (2003) explored the development of first to sixth grade pupils’ 
competence in patterning activities by developing and validating a model comprised 
by six pattern-specific factors, as follow: a) repeating patterns in symbolic numerical 
form, b) repeating patterns with geometric shapes, c) developing patterns in symbolic 
numerical form, d) developing patterns with geometric shapes  (increasing one or 
both dimensions), e) patterns requiring simple numerical calculations, namely simple 
patterns, and f) patterns requiring more complex numerical calculations, namely 
complex patterns.  

This study attempts to synthesize some of the basic ideas of the two latter studies, i.e., 
pattern’s structure complexity (Kyriakides & Gagatsis, 2003) and levels of students’ 
understanding of patterns (Lannin, 2005), so as to investigate the role of different 
representations on the understanding of patterns in a more comprehensive and 
systematic manner. On the basis of Lannin’s stages we propose the following CC 
levels of the understanding of mathematical relations in patterns: Level 1, Empirical 
abstraction of mathematical relations. Pupils at this level are able to continue a 
pattern; Level 2, Implicit use of a general rule. Pupils at this level are in a position to 
predict terms in further positions of a pattern; and Level 3, Explicit use of a general 
rule. Pupils at this level are able to generalize the pattern giving a symbolic or a 
verbal rule. 

What’s new in this study is that it a) proposes three levels of CC of the understanding 
of mathematical relations in patterns; b) attempts to provide empirical evidence for 
the validation of the aforementioned levels; and c) explores the role of verbal, 
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pictorial and symbolic representations of the patterns on pupils’ abilities at all of the 
three levels. In the light of the above, the present study aimed to investigate the 
following research questions: (a) Can the proposed levels of CC of the understanding 
of mathematical relations be validated empirically on the basis of pupils’ 
performance at patterning tasks designed to correspond to these levels?  (b) How does 
the initial representation influence the successful completion of simple and complex 
patterns in different levels of CC?  

METHOD 

Participants 

The sample of the study consisted of 67 pupils in grade 5 and 72 pupils in grade 6, 
that is 139 pupils in total, from two urban elementary schools of Nicosia. 

Research instrument  

A test was developed and administered to all of the participants in November 2005. 
The test consisted of the following six patterns: (a) a verbal pattern of simple 
structure (in the sense given by Kyriakides and Gagatsis, 2003) with the 
generalization ν+1, (b) a simple symbolic one with the generalization ν+3, (c) a 
simple pictorial one with the generalization ν+2, (d) a complex (Kyriakides & 
Gagatsis, 2003) verbal pattern with the generalization (ν.ν)+1, (e) a complex 
symbolic one with the generalization (ν.ν)+2 and (f) a complex pictorial one with the 
generalization ν.(ν+2). 

For each of the aforementioned patterns pupils were first asked to continue the 
pattern by filling in a table for the three following terms (level 1). Then they had to 
predict terms in further positions, like the 20th and 100th terms (level 2). Finally, 
pupils were asked to write the general rule of the pattern with symbols or, if they 
preferred, in words (level 3). Examples of the tasks that correspond to the three levels 
of the complex symbolic pattern are shown in Figure 1.  

 

 

 

 

 

 

Figure 1: Tasks examples corresponding to the three levels of the complex symbolic 
pattern 

For coding pupils’ responses at each of the eighteen tasks we used the following 
symbols: S= simple patterns, C=complex patterns, v=verbal form, p=pictorial form, 
s=symbolic form, 1=level 1, 2=level 2, 3=level 3. For example, the variable “Ss1” 
stands for continuing the simple pattern in symbolic form by finding the three next 
terms.  

  3      6       11       18     ……    ……    …….    

1.   Find the three following terms of the above pattern.  
2. Fill in the table.  

Position 1st  2nd 3rd 4th 5th 6th 7th 20th 100th 
Number          

      3. Describe or write in symbols a rule which may help you to find a number in any 
position.  
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Data analysis 

Primarily, the success percentages were accounted for the tasks of the test for each 
age group. A similarity diagram and an implicative diagram were also constructed for 
the whole sample by using the statistical computer software CHIC (Bodin, Coutourier 
& Gras, 2000). The similarity diagram allows for the arrangement of pupils’ 
responses at the tasks of the test into groups according to their homogeneity. The 
implicative diagram, which is derived by the application of Gras’s statistical 
implicative method, contains relations that indicate whether success to a specific task 
implies success to another task related to the former one.  

RESULTS 

Great differences were observed in pupils’ performance between simple (55-100%) 
and complex patterns (7-78%). Simple patterns in symbolic form seemed to be the 
easiest (78-100%) for pupils of both age groups. Pupils responded at the tasks of the 
first level asking for a continuation of a simple pattern with great success (90-100%). 
Patterns whose initial representation form was the pictorial one in the higher level 
seemed to be the most difficult for pupils of grade 6 (67%), while pupils of grade 5 
encountered the same level of difficulty (55%) with patterns of verbal form at this 
level. As regards complex patterns, the lowest scores for both age groups were 
observed at the patterns in verbal form (7-69%), while higher performance appeared 
in pictorial patterns, especially for pupils of grade 5 (15-81%). As far as complex 
patterns are concerned, both age groups tackled first level tasks (69-78%) with much 
more ease in comparison to the other levels (7-46%).   

Like the success rates, there were not great differences between the two age groups at 
the similarity or the implicative diagram of their responses, thus the results that 
follow refer to the outcomes of the pupils of both groups. Two distinct clusters, 
namely Cluster A and B, are identified in the similarity diagram of the pupils’ 
responses at the tasks of the test in Figure 1. Most of the similarity relations in 
Cluster B indicate that the original representation influenced pupils at complex 
patterning activities of high CC levels. Within Cluster B it is evident that pupils dealt 
with complex patterns in the same representational form in a similar way (Cs2-Cs3, 
Cp2-Cp3, Cv2-Cv3) when asked to predict terms in further positions and write a 
general rule (levels 2 and 3).  

Moreover, a similarity group in Cluster B is comprised by pupils’ responses at two 
simple patterns (Ss2, Ss3) and a complex one (Cs1) of different levels, but with one 
commonality, that is the symbolic representational form. Thus, the formation of this 
cluster reveals the consistency by which pupils tackled these symbolic patterns. It 
also indicates the distinct way of dealing with these patterns in symbolic form relative 
to the corresponding patterns with respect to their structure and CC level in other 
representational forms, indicating the significant role of the form of representation of 
a pattern on pupils’ solution procedures.  
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Figure 1: Similarity diagram of pupils’ responses at 
the tasks 

 

Figure 2: Implicative diagram 
of pupils’ responses at the 
tasks 

It should be noted that the form of representation of the patterns is not the only factor 
that affects pupils’ ways of dealing with the various patterning activities, especially 
the simple ones. Cluster A which involves the variables Ss1, Sv1 and Sp1 indicates 
that pupils dealt similarly with the simple patterns asking for the following terms 
(level 1), irrespective of their forms of representation. Pupils’ distinct way of 
approaching these tasks relative to the other tasks may be a consequence of the 
simplicity of the patterns and the low-demanding character of the tasks (level 1). The 
common high success rates (90-100%) of both age groups at these tasks provide 
further evidence to this remark. Correspondingly, pupils responded similarly at the 
tasks involving simple patterns of the same level (Sv2-Sp2, Sv3-Sp3) asking them to 
predict terms in further positions or write a general rule despite their difference in the 
representational form (verbal and pictorial). Thereby further support is provided to 
the influence of the tasks’ CC along with the complexity of the structure of the 
patterns on how pupils dealt with pattern problems.  

A global view of the implicative diagram of pupils’ responses at the patterning tasks 
in Figure 2 indicates that pupils’ success at dealing with the complex patterns implies 
success at handling the simple patterns. A more analytic observation of the variables 
referring to complex patterns reveals that success in finding the general rule of 
complex patterns, which correspond to the highest CC level (level 3), implies success 
in predicting terms in further positions of these patterns (level 2), which in turn 
implies success in continuing the pattern by finding the next terms (level 1). These 

Cluster A Cluster B 
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relations indicate that level 3 tasks are more difficult for the pupils than level 2 tasks, 
which consecutively are more complicated than level 1 tasks. It is noteworthy that 
most implicative relations among pupils’ responses at the tasks of the three levels are 
formed within the same representational form of the patterns (e.g., Cs3, Cs2, Cs1; 
Cp3, Cp2, Cp1), indicating that the different CC levels of pupils’ understanding are 
“intra-representational”. 

Analogous implicative relations appear also between the variables concerning simple 
patterns, with the exception of the variables standing for success at the tasks of level 
1 in symbolic and pictorial form. Pupils’ responses at these tasks which asked the 
following terms of a simple pattern are not included in the diagram, indicating their 
autonomous character, since they were identified as the ones with the highest success 
rates.  

In the implicative diagram, the role of representations on pupils’ success is detected 
principally at the tasks which required predicting terms in further positions (level 2) 
of a complex pattern (Cv2, Cs2, Cp2).  Pupils’ success at the verbal pattern implies 
success at the symbolic one, which in turn implies success at the pictorial one. This 
finding is in line with pupils’ success rates at the corresponding tasks, indicating that 
pupils encountered greater difficulty at the verbal pattern and greater facility at the 
pictorial one. Pupils’ success in level 1 tasks is not influenced by the form of 
representation of the pattern probably because of their straightforward character, 
while pupils’ success in attaining a generalization (level 3) depends more on the 
cognitive complexity of the task rather than the representation of the pattern involved.   

The above findings which concur with pupils’ success percentages at the tasks, 
provide empirical support to the proposed classification of the patterning activities 
and thus to the CC levels of the understanding of mathematical relations in patterns, 
proposed in this study, in simple and complex patterns as well as in the different 
forms of representation. 

DISCUSSION 

Findings derived from the application of Gras’s implicative analysis on pupils’ 
performance provided evidence to the three CC levels of the understanding of 
mathematical relations in patterns, proposed in this study, and their hierarchical 
ordering. The first level refers to the empirical abstraction of mathematical relations, 
which in this study involves the continuation of a pattern. In the second level, which 
stands for the implicit use of a general rule, pupils are able to predict the terms of 
further positions. The third level, which incorporates the explicit use of a general 
rule, involves the formulation of a general rule. It was also revealed that pupils, who 
demonstrated deficits in the first level of understanding mathematical relations in 
patterns, would encounter difficulties in the second level, and fail to articulate a 
generalization in the third level.  

Almost all pupils have acquired the first level in simple patterns. Pupils continued 
accurately a pattern, since they were used to tasks of this form. The next stage, the 
one of predicting terms in further positions, was acquired by fewer pupils, especially 
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in complex patterns. Orton et al. (1999) have ascertained that an important obstacle 
for successful generalization is the numerical incapability and clinging to repetitive 
methods. These methods do not allow them to see the general structure of all the 
elements (Zazkis & Liljedahl, 2002).  Considering the third level of reasoning in 
patterns, only a small number of pupils were in position to formulate a rule. However, 
generalization was more easily attained in simple patterns rather than complex ones. 

A main concern of this study was also to investigate the role of different 
representations on activities involving simple and complex patterns in the three CC 
levels of mathematical relations in patterns. Despite the intra-representational 
character of the hierarchy of the three CC levels (as it holds for each form of 
representation of a pattern), the findings of this study and more specifically the 
differences between pupils’ scores at tasks of the same CC level and structure provide 
support to the influence of the different representational forms on pupils’ 
performance.  In complex patterns, the pictorial form of the representation makes it 
easier for the pupils to predict the terms of further positions or articulate a 
generalization compared to the verbal form of representation, especially in grade 5. 
The pictorial representation in these activities is easier, possibly because it helps 
pupils recognise some relations, which are not visible in the verbal representation. 
These results are in line with Lannin’s (2005) findings suggesting that such situations 
allowed pupils associate the rule with a visual representation. The complex patterns 
of verbal form seemed to be more difficult for all pupils at all the CC level tasks 
compared to the other representation forms, probably because they had to decode the 
data of the verbal pattern into symbols and then compare the terms to numbers. This 
difficulty is in line with previous studies’ findings that pupils tend to have difficulties 
in transferring information gained in one context to another (Gagatsis & Elia, 2004). 
In simple structured patterns, the role of representation was found to give way, 
probably because pupils were able to recognise the same pattern behind the different 
representations. However, simple patterns in symbolic form were found to be tackled 
with greater success relative to the corresponding patterns in other forms, probably 
due to the fact that pupils were familiar with this kind of patterns in the particular 
representation from school mathematics. 

The above findings have direct implications for future research as regards the 
understanding of patterns. It could be interesting for a study to propose and validate 
empirically a model that incorporates the functioning and the interrelations of the 
three dimensions of the understanding of patterns examined here, i.e., cognitive 
complexity levels, multiple representations, patterns’ structure, in order to analyze the 
understanding of mathematical relations in patterns and specify the factors that 
influence its development. 
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CAN THE SPONTANEOUS AND UNCRITICAL                  

APPLICATION OF THE LINEAR MODEL BE QUESTIONED?   

Modestina Modestou & Athanasios Gagatsis  

Department of Education, University of Cyprus  

 

In this research paper we attempt to put in question students’ spontaneous and 
uncritical application of the simple and neat mathematical formula of linearity. This 
is impelled with the help of a written test, where students are instructed to select only 
one problem among three word problems of geometrical nature, so that it matches 
with a given numerical answer.  The results show that students’ choices are 
systematic and are based on the solutions given to the tasks. Therefore, more than 
half of the students that solved the pseudo-proportionality problems linearly chose 
them as the most appropriate for each group of problems.  

Linear relations constitute the easiest way for getting access to the world of functions. 
Therefore, they have been given a special attention and status, starting from the early 
years of age.   Linear or proportional relations refer to the function of the form f(x) = 
ax (with a≠0) and are represented graphically by a straight line passing through the 
origin (De Bock, Verschaffel, & Janssens, 2002). The basic linguistic structure for 
problems involving proportionality includes four quantities (a, b, c, d), of which, in 
most cases, three are known and one unknown, and an implication that the same 
relationship links a with b and c with d. “A pianist needs 5 minutes to perform 2 
musical themes. How much time does he need to execute 3 themes of the same 
duration as the first ones?” In this case, of true proportionality, the relationship is a 
fixed ratio (2 x 2,5 =5, 3 x 2,5 = □) (Behr, Harel, Post, & Lesh, 1992).  

However, there is a case where a problem matches this general structure without 
being a proportional one. In this case the problem is considered “pseudo-
proportional”, because of the strong impression it creates for the application of the 
linear model.  For example, in the case of the constant problem: “A pianist needs 5 
minutes to execute a musical theme. How much time do 3 pianists need in order to 
execute the same theme?”,  students spontaneously answer that they need 15 minutes, 
falling in this way to the pseudo-proportionality trap; that is they do not consider the 
fact that the 3 piano players perform the theme simultaneously. Therefore, if a 
problem matches the general linguistic structure of proportionality, the tendency to 
evoke direct proportionality can be extremely strong even if it does not befit these 
problems (Verschaffel, Greer & De Corte, 2000).   

In recent years, researchers (De Bock, Verschaffel, & Janssens, 1998; De Bock, Van 
Dooren, Janssens, & Verschaffel, 2001; De Bock et al., 2002; Modestou, Gagatsis, & 
Pitta-Pantazi, 2004; Van Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2005) 
have examined students’ tendency to deal linearly with non-proportional tasks, and 
have suggested ways of overcoming it.  In particular, De Bock et al., (1998, 2002) 
showed an alarmingly strong tendency among 12-16 year old students to apply 
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proportional reasoning to problem situations concerning areas, for which it is not 
suited. Furthermore, the use of a number of different experimental scaffoldings did 
not yield the expected results. The inclusion of visual support at the non-proportional 
problems, like self-made or given drawings, did not have a beneficial effect on 
students’ performance, as students most often relied on formal strategies such as 
using formulas (De Bock et al., 1998).  Students in some cases even discarded the 
results given from well-used formulas for finding the area and volume of a figure, in 
favour of the application of the linear model (Modestou et al., 2004).  

Students’ involvement in a real-problem situation with real materials and authentic 
actions led students to avoid the linear model, and therefore to show high 
performance at the task (Van Dooren, De Bock, Janssens, & Verschaffel, in press a). 
However, the results were only temporary, as students failed at a post-test with non-
proportional tasks.  The inclusion of an introductory warning, before the actual test 
that informed students of the non routine character of the tests, yielded small but 
significant effects on students’ performance (De Bock et al., 2002). In the same 
study, the rephrasing of the usual missing value problems into comparison problems 
proved to be substantial help for many students. However, in both cases students’ 
success rates at the proportional items decreased, as some students started to apply 
non proportional methods to these problems.  Similar drawbacks were observed and 
in a series of ten experimental lessons aiming at students’ conceptual change (Van 
Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2003).  

The actual processes and the mechanisms used by students while solving non-
proportional problems were unravelled by means of interviews (De Bock et al., 
2001). It appears that the "illusion of linearity" is not the only factor responsible for 
the inappropriate proportional responses. Other factors include intuitive reasoning, 
shortcomings in geometrical knowledge and inadequate habits and beliefs about 
solving word problems. In addition, Van  Dooren, De Bock, Janssens & Verschafell 
(in press b) argue that the explanatory elements of the phenomenon of the illusion of 
linearity can also be found in (1) students’ experiences in the mathematics 
classrooms, (2) the intuitive, heuristic nature of the linear model, and (3) elements 
related to the specific mathematical problem situation in which linear errors occur. 

From the literature review it becomes evident that the “illusion of linearity” is not a 
result of a particular experimental setting. It does not occur due to ignorance, 
uncertainty or chance, but it results from the application of a previous piece of 
knowledge - that of linearity - which was interesting and successful, but in another 
context is revealed as false or simply un-adapted (Brousseau, 1997). This error is not 
erratic and unexpected, but is reproducible and persistent. Therefore, we argue that it 
occurs due to the epistemological obstacle of linearity, in the sense given by 
Brousseau (1997). 

Linearity appears to be deeply rooted in students’ intuitive knowledge and is used in 
a spontaneous and even unconscious way, which makes the linear approach quite 
natural, unquestionable, and to certain extends inaccessible to introspection or 
reflection (De Bock et al., 2001).  Therefore, the purpose of this study is to 
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investigate whether the need to select one problem, among three word problems of 
geometrical nature (an appropriate, a pseudo-proportional and a distracter of 
impossible mathematical character), so that it matches with a given numerical 
answer, could make students question the spontaneous and uncritical application of 
linearity. The originality of our research lies in fact in the formation of the written 
test in general, as well as in the mathematical character of the tasks selected to 
accompany the pseudo-proportional problem in each group. These tasks were not 
linear, as in most researches discussed above, and in most cases required the 
application of mathematical formulas for their solution.    

METHOD 

The sample of this study consisted of 244 students of grade 10 (15-year olds) of 6 
different lyceums in Cyprus. The particular grade was chosen as the test consisted of 
tasks of geometrical nature that required the use of mathematical formulas for their 
solution. Therefore, 15-year old students could more easily handle such tasks. 

The students were administered a 40 minutes test that consisted of 9 geometrical 
word problems concerning the perimeter, the area and the volume of different figures, 
grouped in threes. Each group of problems was accompanied by a given number. 
According to the instructions of the test, the students first had to solve all the three 
problems of each group and then to choose the problem that was appropriate for the 
given number, i.e. the one problem that had the same solution as the number given at 
the beginning of each group of  word problems (Elia, 2003).  

Table 1: Example of the problem formulation in the first group of problems   

Each group of problems consisted of the Appropriate for the given number problem 
(Α1, Α2 & Α3), of one Pseudo-proportional problem, where the application of the 
linear model would give the given number as an answer (Pa1, Pa2, Pv3), and one 
Impossible problem (Im1, Im3), that functioned as a distracter. In the case of the 
mathematically impossible problems, any attempt to solve them would result the 
given number as an answer. As an exception to the formulation of the groups, a 
perimeter pseudo-proportional problem (Pl2) was included in the place of the 

1.           50 

A. 

Mr. Ben emptied all the water of an open cubic tank, in order to paint it. If he 
needs 10L of paint to paint the bottom of the tank, how much paint will he 
need for the entire tank?                                                      (Appropriate - A1)

B. 

George measured the surface of his classroom floor and found that its area is 
25m².  The gym’s floor has double the dimensions of the classroom. What is 
the area of the gym’s floor?                                 (Pseudo-proportional - Pa1)

C. 

A classroom has two rectangular blackboards joint together with a common 
width. The first blackboard’s perimeter is 30m and the second one’s 20m. 
How many meters of ribbon are needed in order to frame both blackboards 
together?                                                                              ( Distracter - Im1) 
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impossible problem, in the second group of problems. An example of the first 
group’s problems is given above, in Table 1.  The other two groups were formed 
accordingly.  

It is obvious that with a large number of students’ making the Errors (ElPa1, ElPa2, 
ElPl2, ElPv3, ElIm1και ElIm3) that lead them to the same answer as the given 
number, the Choosing (CΑ1, CΑ2, CΑ3, CPa1, CPa2, CPl2, CPv3, CIm1, CIm3) of 
only one problem as appropriate for the given number would create students an 
internal conflict. With this way we attempted to question the spontaneous and 
uncritical use of the linear model for solving all multiplicative word problems.  

For the analysis of the collected data two separate analyses were conducted. A chi-
square (Phi Cramer’s V) was conducted with the use of the statistical package of 
SPSS, as well as an implicative statistical analysis using the computer software CHIC 
(Bodin, Coutourier, & Gras, 2000). The latter research data analysis (CHIC) enables 
the distribution and classification of variables, as well as the implicative 
identification among the variables.  

RESULTS 

An initial analysis of the data showed that almost 19% of the students either choose 
more than one problems as suitable for the given number, or did not make a choice at 
all. In particular, 71% of these students preferred not to make a choice rather than 
disobey the instructions of the test.  

 
1st group of 

problems       
(Ans. 50) 

2nd group of 
problems        

(Asn. 18π) 

3rd group of 
problems        
(Ans. 30) 

Appropriate (A) 46,2% 44,7% 60,4% 

17,8% 
Pseudo-proportional (P) 19,3% 

37,5%1 
9,7% 

Impossible (Im)  Distracter 34,5% - 29,9% 

Table 2: Choice percentages for the problems of each group 

From the students that did make only one choice, the majority (46,2%, 44,7%, 
60,4%) chose the appropriate problems for the given numbers of all three groups 
(Table 2).  Almost one third of the students (34,5%, 29,9%) chose the impossible 
problems (distracters) whereas the pseudo-proportional problems where the least 
preferred by the students. 

However, these results are not indicative of students questioning neither the 
application of the linear model at the non-proportional problems nor the credibility of 

                                           
1
 The particular problem, even though non-proportional, had the same linguistic formulation as the 

impossible problem of the 1st group of problems, something that led students to handle it as such.   
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the given results. Therefore, it was important to examine the factors that led students 
to choose each problem. These factors are related with the finding of the given 
number as a solution to each problem. They can be synopsized to the correct solution 
of the appropriate problems, as well as the errors of applying the linear model at the 
pseudo-proportional problems and the attempt to solve the impossible problems. 
Table 3 presents students’ percentages at each group’s problems in respect to the 
above factors; that is how many students found the correct answer at the appropriate 
problems, how many applied the linear model while solving the non-proportional 
problems and how many attempted to solve the impossible problems. 

The data presented in Table 3 show that almost one third of 10th grade students 
erroneous applied the linear model in order to solve the non-proportional problems of 
all three groups (31%, 30,5%, 29,9%).  However, more than 50% of the students fell 
into the linear trap at the second pseudo-proportional problem (Pl2) of the 2nd group 
because of its resemblance with the linguistic formulation of the impossible problem 
(distracter) of the 1st group of problems. 

  
1st group 

of problems  
(Ans. 50) 

2nd group 
of problems  
(Asn. 18π) 

3rd group of 
problems     
(Ans. 30) 

 Factors  

Appropriate (A) Correct 
answer 

53,8 % 66% 74,6% 

30,5% Pseudo-proportional 
(P) 

linear model 
application 

31 % 
55,8% 

29,9% 

Impossible (Im) 
distracter 

solving the 
problem 

48,2 % - 48,7% 

Table 3: Factors that affect the choosing of each problem for the three groups 

A more detailed analysis of the data presented in Table 3 in relation to the choice 
percentages for each problem (Table 2) gives more insides to the way students made 
their choices. In particular, 55,7%, 51,7%, 27,1% and 61,8% of the students  that 
used the linear model to solve the area (Pa1, Pa2), volume (Pv3) and perimeter (Pl2) 
pseudo-proportional tasks, respectively, chose them as the right problems for the 
given numbers (Cramer’s V Pa1=0.619, p<0.01; Cramer’s V Pa2=0.587, p<0.01; 
Cramer’s V Pa3=0.387, p<0.01; Cramer’s V Pl2=0.563, p<0.01). The fact that almost 
50% of the students questioned their own linear answers is encouraging, since a more 
thorough evaluation of the linear model’s applicability in all multiplicative 
comparison problems is impelled. However, the number of students that obstinately 
used the linear model and chose the pseudo-proportional problems remains too large 
to be overlooked.   Similarly, in the case of the distracters (Im1, Im3), 68,4% and 
53,1% of the students that solved them by just combining the problem’s data, chose 
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them as the appropriate for each group’s given numbers  (Cramer’s V Im1=0.688, 
p<0.01; Cramer’s V Im3=0.493, p<0.01).   

Having seen the influence of students’ errors at choosing the correct problem for the 
given numbers, it is important to consider the influence of finding the correct solution 
at the appropriate problems, on this choice.  Therefore, it appears that in these 
problems (Α1, Α2, Α3) 81,1%, 65,4% and 78,9% of the students that solved them 
correctly, chose them and as the representative of each group of tasks (Cramer’s V 
Α1=0.756, p<0.01; Cramer’s V Α2=0.580, p<0.01; Cramer’s V Α3=0.649, p<0.01). 
Quite noticeable, however, remains the fact that almost 25% of the students that 
solved the appropriate problems correctly did not select them, as they were more 
inclined towards the solutions of the pseudo-proportional and impossible problems.  

The implications among students’ choices, errors and solutions given at each task are 
presented graphically in Figure 1. The majority of relations that are formed in the 
implicative diagram concern two variables that refer to the same problem. 

       

 

 

 

Figure 1: Implicative diagram among students’ choices                                         
and the solutions and errors presented in each task   

In particular, the implicative relations of the left hand side show that the students who 
chose the appropriate problems for each group of tasks (CA1, CA2, CA3) had 
previously solved them correctly. Reversely, the students that chose the pseudo-
proportional problems as the appropriate ones for the given numbers (CPa1, CPa2, 
CPv3, CPl2), used proportional reasoning in order to solve the problems, falling in 
this way to the linear trap.  Students behaved in a similar way and in the case of the 
impossible problems (Im1, Im3). Therefore, the students that chose the particular 
problems had already given them a solution. The analogy that exists between the 
implicative relations that concern the appropriate problems and the respective 
relations that concern the non-proportional tasks indicates that the linear solution of a 
pseudo-proportional problem attains students with the same confidence and certainty 
for its correctness as any truly correct solution.  

DISCUSSION 

This study provides further indications concerning the application of linearity in 
pseudo-proportional problems of geometrical nature. The results showed that even at 
the age of 15 almost one third of the students use the proportional reasoning 
spontaneously in order to solve multiplicative comparison word problems. These 
findings even though not the ones sought after, they seem encouraging compared to 
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the findings of our previous work (Modestou & Gagatsis, 2004), where only 9% of 
the 13 year old students could solve correctly the respective problems.  

All the results given from the implicative diagram as well as the chi-square’s 
analysis, concerning students’ decisions on the appropriate problem for each group of 
word problems, conclude that students make choices that are methodical, and which 
are based on the answers given to the tasks.  In particular, it appears that that the 
majority (75%) of the students who correctly solved the appropriate problems chose 
them at the same time. In an analogous manner 61% of the students that attempted to 
solve the impossible problems (distracters), chose them and as the appropriate ones 
for each numerical answer. Students’ behavior differentiated slightly in the case of 
the non-proportional tasks, as almost half of the students that applied the linear model 
in order to solve them, did not choose them and as the appropriate ones. 

The research design, therefore, seems to have helped students question to some 
degree linear model’s applicability in all multiplicative comparison problems. 
However, the number of students that persistently used the linear model and chose 
the pseudo-proportional problems, as they felt confident in the correctness of their 
solutions, remains too large to be overlooked. This fact is even more significant 
considering that a large amount (17%) of these students rejected the appropriate 
problems, which they had previously solved correctly, in favour of the pseudo-
proportional ones.   

The strong belief in the correctness of the results given by the application of the 
linear model   indicates that students did not make random choices, but however were 
inclined to them by, what we argue constitutes, the epistemological obstacle of 
linearity.  Linearity resisted occasional contradictions for the establishment of a better 
piece of knowledge, making for one more time obvious its’ deep rooted, natural and 
unquestionable character. Therefore, in order to handle this epistemological obstacle, 
a proper didactical situation must be organised (Brousseau, 1997) in such a way that 
the contestation of linearity will arise spontaneously as a necessary tool for the 
solution of the problem. 
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We examine 5th and 6th grade students’ ability to reason during problem solving 
activity and teachers’ evaluation of their arguments. Three tasks were distributed to 
236 students asking them to decide on the conclusion and justify their decisions. 
Indicative examples of the students’ responses were given to 16 teachers for 
assessment during semi-structured interviews. The results suggest that a considerable 
proportion of students provide no mathematical justification and another proportion 
supported their argument on numerical examples. Some teachers were found to value 
justifications based on numerical examples as equally good and occasionally even 
better than mathematically valid statements. It seems that any effort for improvement 
should start from changing teachers’ views and didactical processes. 

INTRODUCTION 

Principles and Standards for School Mathematics NCTM (2000) draw attention on 
developing of students’ mathematical reasoning, as well as on the assessment of this 
competence. Teachers should encourage students to justify their assertions and 
statements, and search for new methods and means to develop students’ mathematical 
reasoning. However, it is not easy to specify the type of arguments that should be 
expected by students and the kind of reasoning that should be taught to primary 
students. Research shows that not all students’ statements and arguments in 
mathematical problem solving (MPS) are mathematically valid arguments (see e.g., 
Evens & Houssart, 2004). Students often reason according to their personal 
experiences, and teachers who seek to understand what is actually behind an 
argument should escape their “egocentricity” and think through a child’s perspective 
(Tang & Ginsburg, 1999). Therefore, teachers’ assessment of students’ arguments is 
essential to developing of students’ mathematical reasoning. However, no piece of 
research seems to have investigated how teachers appraise students’ arguments.   

THEORETICAL BACKGROUND AND AIMS 

Mathematical reasoning or justification is a type of “weak proof” for a mathematical 
assertion. Russel (1999, p.1) argues that reasoning refers to “what we use to think 
about the properties of these mathematical objects and develop generalizations that 
apply to whole classes of objects”. Recent studies (e.g., Pehkonen, 2000) suggest that 
primary students have difficulty in mathematical reasoning. It is, however, important 
in Mathematics teaching to let students develop the habit to ask for reasons and 
provide arguments in their mathematical activities as a preparation for the ultimate 
goal, which is to produce formal proofs in high school. 
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In this study we adopt the categorization of students’ arguments proposed by Evens 
and Houssart (2004), which refers to reasoning in MPS; they propose four types of 
responses: 1) wrong or irrelevant, 2) restatement or reinforcement, 3) providing 
numerical examples and 4) justification. The first type refers to responses that are 
irrelevant to the solution of the problem, either due to incorrect course of solution or 
to arguments that are not rationally connected to the problem. The second type refers 
to mere restatements of the data, most likely in ones’ own words, without any 
substantial addition to already given information. The third type concerns arguments 
limited to direct or indirect use of examples, a type of justification that might be 
accepted for primary students, as non-well articulated inductive reasoning. The last 
type refers to responses that have the element of generalization, without being based 
on testing examples. The same authors found that a large percentage of 11-year olds 
(42%) managed to give some form of valid mathematical reasoning, even with 
weakness in expression. On the contrary, similar studies (i.e. Healey & Hoyles, 2000) 
suggest that students support their responses on testing examples.  

Assessment in mathematics is the process of gathering information concerning 
students’ mathematical abilities, to be used for various educational purposes (Lappan 
& Briars, 1995); it should not be considered as the final part of teaching. Assessment 
is an integral part of teaching, giving feedback to teachers about the efficiency of the 
teaching/learning process; it is an aid to adjust and redesign their teaching in view of 
the outcomes (Cooney, Badger & Wilson, 1993). Since problem solving is at the 
heart of mathematics, it should also be at the heart of assessment (Lester & Kroll, 
1990). Assessment of MPS gives a measure of the level of success of the learning 
process, though assessment tasks are frequently limited to routine-problems and 
short-answer questions asking reproduction of knowledge (Webb, 1992). Teachers 
rarely ask students to give written reasons, due to time pressure and students’ 
difficulties to express their thoughts in writing (Philippou & Christou, 1997).  

In the light of the above discussion, the aim of this study was to examine primary 
school students’ ability to reason in problem solving and to investigate how teachers 
assess students’ reasons in MPS. The research questions were:  

1. How able are 5th and 6th grade students to reason in MPS and what kind of 
arguments do they give? 

2. How do the teachers conceive and appraise students’ arguments in MPS?  

METHODS 

Participants were 236 primary school students of the 5th and 6th grade, 120 boys and 
116 girls from six schools. Students were given about 40 minutes to consider the 
following three tasks, state whether they agree or disagree with Mary and explain 
their reasons in writing: 

TASK 1: Consider a rectangle with 6 cm in length and 4 cm wide. If we half the width 
of the rectangle and double the length, we see that the area remains the same. Mary 
says: “This does not stand for all rectangles.”  
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TASK 2: Mary tried several examples to check the sum of two odd numbers. She 
tried: 1+3=4, 3+5=8, 7+3=10, and concluded: “If you add two odd numbers, you 
will never have an odd sum.” 

TASK 3: The rule for generating the number sequence: 1, 4, 7, 10, 13, 16 … is “add 
3 each time”. Mary says: “No matter how far you go, there will never be a multiple 
of three in the sequence.” (Evens & Houssart, 2004). 

Based on the categories proposed by Evens and Houssart (2004), students’ responses 
were assorted in five types: nothing on script, wrong or irrelevant, restatement, 
numerical examples, and justification. Each category is presented with progression 
from the least to the most sophisticated answers, when applicable.    

Semi-structured interviews with 16 teachers of the participating schools were 
conducted. They were asked to mark some of the students’ arguments, on a scale 0 to 
5. The arguments presented to the teachers were examples that covered each of the 
categories for each of the three tasks. The quotes were given one after the other from 
the simpler one to the most sophisticated.    

FINDINGS  

Table 1 summarizes the frequencies of students’ responses on each of the tasks. 
Clearly, in each of the three tasks, about one third of the students either provided no 
justification or gave wrong or irrelevant answers. 

(N=236)    Task 1 Task 2 Task 3 

Reasons f % f % f % 

Nothing on script 19 8.1 22 9.3 30 12.7 
Wrong or irrelevant 65 27.5 51 21.6 52 22 
Restatement 32 13.6 56 23.7 20 8.5 
Examples given/tested 98 41.5 99 41.9 81 34.3 
Some degree of justification 22 9.3 8 3.4 53 22.5 

Table 1: Frequencies of students’ reasons given in each task 

In all tasks, the highest proportion of students justified their answer on the basis of 
numerical examples (41.5%, 41.9%, 34.3%). It is noteworthy that some students 
simply restated the information already given in the question (13.6%, 23.7%, 8.5%). 
The lowest proportion of mathematically acceptable explanations was given in Task 
2 (3.4% of the students), while the highest proportion of acceptable explanations was 
given in Task 3 (22.5% of the students) and less than ten percent of students gave 
valid arguments in Task 1 (9.3%). 

The above five categories were next analysed on the basis of specific students’ 
responses in each task separately. Following the analysis of each task we present and 
discuss the teachers’ appraisals of each response type.      

Task 1  

Wrong or irrelevant answers: In task 1, some students gave explanations that were 
irrelevant with Mary’s statement for example: “This does not stand for all rectangles 
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because simply the length gets larger and the width gets smaller” (S1). Many students 
failed to work out the example correctly, for instance “I don’t agree because 4×6=24 but 
2×18=36”. Others worked Mary’s numerical example right, but argued that this does 
not stand for all rectangles because: “The area of the rectangle with sides 6cm and 4cm is 
24. If the sides are 12cm and 2cm the area is again 24 but this does not happen in all 
rectangles”. Other students thought that since the dimensions of the rectangle change, 
the area would also change: “Since the two sides change the area will also change”.  

Restatement: Some students simply restated the information already given in the 
question: “I agree because if we split the width and double the length the area will remain 
the same” (S2).   

Numerical examples: Some students tried to explain their answer by using Mary’s 
numerical example: “Because 6×4=24 and 12×2=24, so the area is the same”. Some 
children also drew Mary’s rectangle: “I drew a rectangle, I multiplied the one side and I 
divided the other and the area remained the same”, while other students went beyond the 
example already given applying their own examples. Some students gave additional 
examples “If the one side is 8 and the other 10 the area is 80. If 8 became 4 and 10 became 
20 then 4×20 is again 80” (S4), while others just mentioned that they worked some 
“This stands for all rectangles because I tried others as well” (S3). 

Justifications: Some children justified their answer by the argument we multiply the 
length and divide the width with the same number, though not making finite mention 
why the area remains constant: “This stands for all rectangles because we multiply one 
side and divide the other with the same number”. Other children moved further, making 
the general statement: “Because multiplication and division are reverse operations, 
divided by two and times two” (S5).     

Table 2 shows that most teachers (N=11) gave no marks for irrelevant answers. Half 
of the teachers gave more than 3 points to simple restatement, arguing, “It’s correct. It 
seems that he/she understands Mary’s statement”. The most accredited response seems to 
be Statement 4 (S4), which gets 3 points or more, from all the teachers. It is 
noteworthy that teachers who gave high grade to S4 argued, “The student gave a clear 
example. He/she explained very well. S5 is not clear. It needs an example”. This shows 
that all teachers accept reasoning by arithmetical examples, as even better than actual 
justification, which received less than 3 points; one teacher gave zero to S5 arguing, 
“I can’t understand this thought. He/She must explain better by giving an example like in 
S4”. It needs to be noted that although both S3 and S4 justify by examples, S3 was 
graded worse because the examples were not given.  

Grading 
Statements 

0 1 2 3 4 5 N 

S1: Irrelevant 11 1 4 0 0 0 16 
S2: Restatement 0 2 3 3 7 1 16 
S3: Examples (not given) 0 1 3 5 0 7 16 
S4: Examples (given) 0 0 0 4 5 7 16 
S5: Justification 1 0 2 1 5 7 16 

Table 2: Teachers’ Assessment of Task 1   
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Task 2  

Wrong or irrelevant answers: Some students gave irrelevant answers such as: “It 
can’t be an even number all the times”. A common mistake among the students was to 
add an odd number with an even number: “Because 3+2=5… so it’s not always an even 
number”. One student added three odd numbers, found an odd sum and rejected 
Mary’s statement: “Because if I add 3+3+3 then the sum is an odd number, 9” (S1).  

Restatement: Again some students restated the data of the task: “Because that’s how it 
always goes” (S2), “If we add two odd numbers the sum will be an even number” (S3).    

Numerical examples: In task 2, few students gave reasons using the examples already 
given in the task: “I did the additions given and the sum is always an even number”. Other 
students gave their own examples such as: “I added many odd numbers 9+9=18, 
9+5=14, 1+3=4 and the sum is always an even number” (S4). Some students provided 
numerical examples by adding two-digit odd numbers such as: “35+35=70, 53+57=110 
so when you add odd numbers the sum is even number”. Other students simply 
mentioned that they tested numerical examples but they did not provide any: “I did 
several additions with odd numbers and the result was always an even number.” 

Justification: Some students gave a form of valid justification by arguing that: 
“Because each odd number is one more than even” (S5). One student tried to explain it 
more extensively by using a numerical example as an aid to express the general rule 
s/he had in mind: “I said 7+5 take away 1 will became 6 and another 1 from 5 will become 
4. If we add them the sum will be even and if we add the two it will be even again” (S6).    

Table 3 shows that again most teachers gave no marks to irrelevant responses 
arguing, “This student didn’t understand the problem. He/She added three instead of two 
odd numbers”. As far as restatements are concerned, S2 was granted no marks from 
most teachers, while some teachers gave marks and one teacher gave full marks. The 
teacher who gave full marks argued that “The student seems to understand the problem 
but he/she can’t express his/her thoughts” while the teachers who did not give marks 
argued “He/she does not explain. His/her justification is not mathematical”. A longer 
restatement (S3) received better marks, while there appears again lack of 
homogeneity in teachers’ grading. Almost half of the teachers gave 3 or more points 
to this statement arguing, “It is correct. He/She could explain better or give an example 
but he/she is in a correct path” while the others gave less than 3 arguing, “He/she doesn’t 
explain at all. He/She simply restates the data given in the task”. Reasoning by example 
was highly received in this task, even higher than justification. Many teachers 
mentioned that although S5 and S6 are correct, students could enrich their 
justification by the use of examples like those in S4. Others did not understand 
students’ arguments, due to poor language expression.     

Grading 
Statements 

0 1 2 3 4 5 N 

S1: Irrelevant 10 4 0 1 1 0 16 
S2: Restatement (short) 10 0 2 3 0 1 16 
S3: Restatement (long) 4 1 4 3 2 2 16 
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S4: Examples  1 0 0 5 5 5 16 
S5: Justification  0 2 1 1 7 5 16 
S6: Justification (General rule) 0 2 0 3 5 6 16 

Table 3: Teachers’ Assessment of Task 2  

Task 3 

Wrong or irrelevant answers: In task 3, a few students gave irrelevant answers such 
as: “I agree with Mary because three is not an even number so there isn’t a multiple of three 
in the sequence”. Some students argued that if the sequence continues there will be a 
multiple of three without giving an explanation: “Mary is wrong. There are multiples of 
three in the sequence”. Some students made numerical mistakes such as: “Because 1, 4, 
7, 10, 13, 16, 19, 21 (3×7=21), so there is a multiple of three. Mary is wrong” (S1).  

Restatement: Restatements in this task were of the type: “If you add three each time 
there will never be a multiple of three in the sequence” (S2).  

Numerical examples: In task 3, some students provided explanations using the 
numbers already given: “The numbers 4, 7, 10, 13, 16 are not divided by three. There 
aren’t multiples of three”. Some students continued the sequence to justify that there 
are no multiples of three: “I continued the pattern 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 
49, 52. There aren’t multiples of three” (S3). Other students mentioned that the sequence 
continues without mentioning the numbers: “I continue the sequence and there isn’t a 
multiple of three” (S4). One student continued the sequence but he/she stopped at 31, 
arguing that there is a pattern at the unit digit: “I continued the sequence but I stopped at 
31. There is a pattern at the units 1, 4, 7…. Until 31 there isn’t any multiple of three” (S5).   

Justification: Some children focused at the starting point of the sequence providing a 
valid form of justification: “I have to start from 3 or 0 to have a multiple of 3” (S6). Other 
students focused on comparing the numbers of the sequence with the multiples of 
three: “Because it is one bigger from multiples of 3”. Some students mentioned both the 
starting point of the sequence and the comparison of numbers: “Because it starts from 1 
not from 0, the numbers will always be one more than the multiples of 3” (S7).   

Table 4 summarises the teachers marking of students’ arguments. Clearly, most 
teachers give no marks to wrong response, though some of them would appreciate 
students’ efforts arguing, “He/she tried to continue the sequence… He/she just made a 
numerical mistake”. There is again lack of homogeneity in teachers’ grading as far as 
restatement is concerned. Some teachers referred that the student simply restated the 
data while others argued, “He/she understands the problem. It’s correct” giving 3 or 
more points. Examples received high marks again with S4 receiving relatively lower 
marks because the examples were not given. Once again teachers supported 
numerical examples as valid forms of justification and not many expressed the need 
for a general rule. Although in this task justification received higher marks than 
numerical examples, most of the teachers referred “Students in statement 6 and 7 could 
give an example. They could continue the sequence like student in S3”. 
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Grading 
Statements 

0 1 2 3 4 5 N 

S1: Wrong (numerical mistake) 11 2 1 2 0 0 16 
S2: Restatement 5 3 3 3 1 1 16 
S3: Examples (given) 0 0 1 5 6 4 16 
S4: Examples (not given) 2 0 4 5 4 1 16 
S5: Examples (pattern at the units) 0 0 0 3 9 4 16 
S6: Justification (Starting point) 0 0 1 1 6 8 16 
S7: Justification (Starting point/Comparison) 0 0 0 1 4 11 16 

Table 4: Teachers’ Assessment of Task 3  

CONCLUSIONS  

The findings of this study indicate that an alarmingly large proportion of the students 
were unable to give a relevant response, while the majority of the remaining gave 
arguments based on numerical examples. The latter is in line with results by Healey 
and Hoyles (2000), who argue that preference to using numerical examples, as 
opposed to accepted forms of proof, is found even amongst older students. Arguing 
by example should not be surprising, as it may form the basis of inductive reasoning, 
provided one guards against overdue generalization. Though Mathematics is 
renowned as prime area that offers the chance to develop students’ ability to reason, 
the outcomes seem to fall short of objectives. This is line with earlier findings (Evens 
& Houssart, 2004; Pehkonen, 2000), though our findings indicate a wide variation of 
students’ arguments within each category.   

The situation seems to be more complex regarding teachers’ assessment. Apparently, 
teachers’ appraisals are based on subjective criteria and differ far from one another. 
This was evidenced in the range of points they proposed in responses classified as 
restatement, where some teachers found them as good answer giving high grades, 
while others gave low grade because students simply rephrased. In the case of 
numerical examples, most teachers gave high grades. It is noteworthy that they were 
graded evenly with mathematical justification and occasionally higher. It is important 
that, even in the case of actual justification, students’ responses did not receive high 
marks, due to poor expression, which made their statements not explicable to the 
teachers. The teachers’ trend to accept as valid, argumentation by example may 
contribute to and enhance the students’ conception about the validity of this type of 
argument.   

A point of possible focus in teaching and assessing ability to reason is to engage 
students’ in group discourse asking the classical question “why”, drawing distinction 
between general properties and special cases, providing simple examples, preferably 
from everyday life, and counterexamples. So far, it seems that the goal for an early 
appreciation by students of the meaning and value of reasoning, and the process of 
“proving” seems to remain simply an ambition. As in most cases change should start 
from developing and testing in practice paradigms directed to teachers needs; how to 
initiate discussion, to build on false students’ arguments, encourage analysis of 
examples, draw attention on possible obstacles, etc. 
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USE OF EXAMPLES IN CONJECTURING AND PROVING: AN 

EXPLORATORY STUDY 

Francesca Morselli 

Dipartimento di Matematica Università di Torino – Italy 

 

In this paper we report the first part of a study concerning the use of examples in 
conjecturing and proving, in Elementary Number Theory. The study was carried out 
on protocols of university students: we analyzed students’ behaviours and we seized 
different uses of examples among the groups with different mathematical background 
and relationship with mathematics. 

INTRODUCTION 

This paper deals with the first part of a study on the use and value of examples in the 
process of conjecture and proof, seen as a special case of problem solving. In 
particular, it is an open problem solving (Pehkonen, 1991), since the starting point 
(i.e. the property to be proved) is not given in the text: the student has to find out the 
property and afterwards justify it. Exploring, in order to find out a property, and 
argumenting, in order to find arguments that justify the property, are crucial 
activities. Polya (1945), dealing with the phases of problem solving (understanding 
the problem, devising a plan, carrying out the plan, looking back), underlined the 
importance of looking at the problem from different standpoints, searching for a 
fruitful idea. Among the heuristic strategies, Polya mentioned induction, which is the 
discovery of general rules through the observation and combination of specific 
examples. Schoenfeld (1992) stressed that heuristic strategies (among which, the 
reflection on specific cases) are fundamental for the success in problem solving. In 
the special case of Elementary Number Theory, it seems worthwhile to analyze the 
heuristic strategies concerning the use of examples, also referring to more recent and 
specific contributions (e.g. Alcock, 2004) that deal with the use of examples by 
experts and students. This is the focus of the research reported here.  

THEORETICAL BACKGROUND 

The activity of conjecturing and proving encompasses many specific phases. These 
phases are listed here below, according to an ideal schema; we are aware that, in the 
real process, the phases occur and are intertwined in different ways (see Carlson & 
Bloom, 2005 for general problem solving); we’ll refer to the ideal schema in order to 
single out some typical behaviours linked to them: 

1. exploring the problem, in order to find out a property  

2. formulating and communicating the conjecture 

3. exploring the conjecture and discovering theoretical arguments that validate it 

4. constructing a proof, that must be acceptable by the community of mathematicians 
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Examples may be useful in each of these phases. First of all, they may help to 
understand the text and get into the problem. Afterwards, they may be worked out in 
order to discover a property (phase 1). Studies on the cognitive unity of theorems 
(Garuti, Boero & Lemut, 1998) showed that the arguments mobilized to produce a 
conjecture may give important hints for the subsequent proof: 

“During the production of the conjecture, the student progressively works out his/her 
statement through an intensive argumentative activity functionally intermingled with the 
justification of the plausibility of his/her choices. During the subsequent statement-
proving stage, the student links up with this process in a coherent way, organising some 
of the previously produced arguments according to a logical chain” (p.345) 

This “intensive argumentative activity” may consist in a reflection on examples. 
Once perceived the property, the examples may be useful to check its validity and to 
formulate and communicate the conjecture (phase 2). Reflection on examples may 
also help to find some arguments for which the property holds (phase 3). Many 
studies showed that students are keen to use examples in argumenting and proving. 
Harel & Sowder (1998) dealt with the inductive proof scheme, that consists in 
ascertaining for themselves (or persuading others) by “quantitatively evaluating their 
conjecture in one or more specific cases”. Balacheff (1987) described pragmatic 
proofs, carried out through the action on the representations of mathematical objects: 
among these proofs, the naïf empiricism, that consists in validating a statement by 
verifying it on some cases, and the crucial experience, that consists in validating a 
statement by verifying it on a “difficult” case. According to Balacheff, another proof 
is qualitatively different from the previous ones: the generic example, that consists in 
showing the validity of a statement through transformations on a mathematical 
object, considered as the typical representative of the mathematical object involved in 
the conjecture. All the aforementioned studies describe a sort of natural tendency of 
the students to refer to examples in proving and stress that this use of examples must 
be overcome to reach a formal proof. Regarding the phase of proving (phase 4), 
Moore (1994) suggested that one of the causes of difficulty in producing a formal 
proof is the fact that “students are unable, or unwilling, to generate and use their own 
examples” (p.251). This difficulty is linked to a poor concept usage, defined as “the 
ways one operates with the concept in generating or using examples or in doing 
proofs” (p.252). Other authors (Weber & Alcock, 2004; Alcock & Weber, 2005) 
dealt with the potentialities of referring to examples in proving: they distinguished 
between a syntactic approach to proof, where proof is carried out by manipulating 
definitions and relevant facts in a formal way, and a referential approach to proof, 
where “the prover uses (particular or generic) instantiation(s) of the referent objects 
of the statement to guide his or her formal inferences” (Alcock & Weber, 2005, p.33). 
The authors observed that a syntactic approach may lead to formally correct proofs 
that do not give the sense of the property, whilst a semantic approach may foster the 
production of a proof that convinces and explains (Hanna, 1990); of course, it is 
important to be able to link semantic and syntactic aspects. Alcock & Weber also 
argued that the students do not exploit a semantic approach because they are unable 
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to use examples to generate a proof or because they don’t feel allowed to do it, for a 
sort of generalization of the maxim “you can’t prove by example”.  

In summary, examples seem to have an ambiguous role: they are useful during the 
exploration, but they don’t have the value of general reasoning. On the other hand, 
the use of instantiations allows a semantic control and may guide the construction of 
the proof. Furthermore, Alcock (2004) showed that expert mathematicians (university 
professors) use examples in three classes of situations (understanding a statement, 
generating an argument, checking an argument). Those professors also note with 
surprise that their university students are not able to refer to examples in the same 
way. This remark suggests us to investigate whether and how those who are not 
expert mathematicians refer to examples during an open problem solving, where the 
exploration is particularly encouraged by the open form. We wonder whether, where 
and how students refer to examples and whether may take place a sort of referential 
approach to proof, in the context of Elementary Number Theory. In the present study, 
we propose two levels of analysis: a cognitive level, on the effective role of examples 
in conjecturing and proving, and a cultural level, on the value the students give to 
examples and the ways of working with them.  

METHODOLOGY 

We observed the processes carried out by university students with a different 
mathematical background and a different relationship to the discipline. Totally, 47 
students were involved in the study: 7 students (volunteers) attending the first year of  
the course for the degree in Mathematics, all the students (11) attending the third year 
of the course for the degree in Mathematics (these students had all chosen the 
curriculum for the formation of Mathematics teachers for Secondary  School), all the  
students (29) attending the third year of the course for the degree to become Primary 
Teacher (these students had all chosen a curriculum for the formation of generalist 
teachers for Primary School). Henceforth, we’ll call apprentice mathematicians the 
students attending the course for the degree in Mathematics, whose curriculum is 
strongly characterized by Mathematics courses, and non-mathematicians the students 
attending the courses for the degree to become Primary Teachers, in whose 
curriculum Mathematics has a marginal role. Referring to our theoretical framework, 
the choice of such a population was done to verify whether there are, and what are, 
differences in the use of examples according to the mathematical background and 
relationship to mathematics. The students were given the following problem:  

What can you tell about the divisors of two consecutive numbers?  

The choice of the context of Elementary Number Theory is functional to our focus (in 
Elementary Number Theory, algebra can be used to prove arithmetic properties that 
are easy to perceive through suitable examples) and to our intention of comparing the 
processes carried out by students with different mathematical background (the 
problem is at the grasp of the non mathematicians). The problem is accessible in 
terms of mathematical concepts involved, property that characterizes the divisors of 
two consecutive numbers (the only common divisor is 1) and for the fact that a proof 
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can be carried out at different mathematical levels (considerations on divisibility, 
properties of the remainder, algebraic proofs).  

The students worked out the problem individually, writing down their process of 
solution (it was explicitly required to write down all the attempts and, as much as 
possible, to comment them); afterwards, we realized semi-structured individual 
interviews, where the students were asked to reconstruct their process (following the 
written trace) and comment it. If a student had not completed the task, during the 
interview he/she was asked to try and complete the solution, interacting with the 
interviewer. The interviews were audio-recorded. 

AN ANALYSIS OF SOME STUDENTS’ BEHAVIOURS 

An overview of students’ behaviours 

The analysis of the protocols was focused on the functionalities of examples during 
the process and not on the validity of the final product (meaningfulness of the 
conjecture, correctness of the proof). This analysis evidenced a great variety of uses 
of examples. In order to organize this variety, we singled out four typical profiles 
related to the use of examples in the various phases.  

The first profile is characterized by an exploration carried out through work on 
algebraic formulas. The manipulation of formulas leads to the discovery of the 
property, which is formally expressed (phase 2), and, at the same time, to the 
algebraic proof of such a property (phases 1 and 3 coincide). Afterwards, the proof 
may also be rewritten in a more rigorous way (phase 4). Numerical examples are 
never used. 

The second profile is characterized by a short exploration on numerical examples 
(phase 1) that leads to the discovery of a property. The conjecture is formulated 
(phase 2), and an algebraic proof is carried out (that is to say, phases 3 and 4 
coincide). Sometimes the students, since they have the project of carrying out an 
algebraic proof, seem to use numerical examples just to get some hints for a symbolic 
representation.  

The third and fourth profile are both characterized by an exploration (phase 1), 
carried out through numerical examples, with the aim of understanding the problem, 
recalling the mathematical concepts involved (that is, the concept of divisor) and 
discovering a significant property.  

In the third profile, the reflection on numerical examples leads to a sense of 
understanding of the reasons why the property holds (for example, properties of the 
remainder); these reasons are used as arguments in phase 3. The conjecture is 
formulated in the natural language and accompanied by numerical examples, which 
have the function of checking the conjecture and illustrating it (phase 2). The 
argumentation is carried out in the form of a generic example, or with arguments 
expressed in natural language and accompanied by illustrative examples. There isn’t 
any algebraic proof.  
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In the fourth profile, the exploration often lacks of method and is badly oriented (for 
instance, the divisors of the two numbers are listed all together, without the intention 
of comparing them). The conjecture is expressed in natural language and 
accompanied by numerical examples, that have the functions of checking the 
conjecture and illustrating it (phase 2). The phase 3 is made up of a pragmatic proof 
(check on numerical examples) or is completely absent.  

Once identified the four profiles, we realized that these profiles were differently 
distributed amongst the apprentice mathematicians and the non-mathematicians. All 
the apprentice mathematicians are characterized by profiles 1 (3 students) and 2 (15 
students), whilst the non mathematicians are characterized by profiles 3 (8 students) 
and 4 (21 students). We may note that the apprentice mathematicians attending the 
first year of courses have a mathematical background which is the same (secondary 
school with scientific orientation) of some non mathematicians, but the former are all 
characterised by profile 2, whilst the latter are all in the profiles 2 and 3. The 
apprentice mathematicians attending the first year, even if just enrolled, seem to have 
a relationship to mathematics completely different from that of the non-
mathematicians, relationship that may determine a different behaviour.  

Analysis of some typical behaviours  

We may observe that some apprentice mathematicians (those belonging to profile 1) 
seem not to need the reference to numerical examples, in order to discover the 
property or to argument: they are keen to exploit symbolic manipulations. For these 
students, formulas seem to play the role of examples, since they represent the 
structure of the problem and foster the reflection. A typical excerpt comes from the 
protocol of Valentina, apprentice mathematician (profile 1): 

 “Given n∈N, if it is divisible by d∈N, then the remainder of the division of n by d is 0, 
that is to say n mod d is 0, that is to say in Zd n=0. When I consider n+1, reasoning in the 
same way I realize that dividing by d I get remainder 1, that is to say n+1=1 in Zd ∀d≠1. 
Then, the only common divisor for n and n+1 is 1.” 

The exploration carried out by Valentina seems to be very useful: at the same time 
Valentina discovers the property and proves it, since the reasoning is already carried 
out in general terms. Valentina doesn’t need any numerical example because her 
“mathematical culture” allows her to “read” the formulas and exploit them. We stress 
the attention on the following quotation from the a posteriori interview (Valentina 
had been asked about the use of numerical examples):   

 “[…] this could be dangerous because induction does not always works, I mean, if we 
have limited cases, it is not a good method, it could even be absolutely wrong. But one 
could start from them; afterwards of course it is necessary to prove it in general… […] 
and just consider the hypothesis and try and think about them, from a general point of 
view, just…non numerical, but n, n+1, what they mean, and try exactly to think about 
them, what this data mean […].” 
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The proof carried out by Valentina may be considered a sort of referential proof 
(Alcock & Weber, 2005). Another interesting use of formulas is in the protocol of 
Michela, apprentice mathematician (profile 1):  

“To say that α is divisible by β means that α=βη.  
n=αβ     β divisor of n.  
n=(αβ)+1=αβ+1. Hence, two consecutive numbers cannot have the same divisor. […]” 

The formulas seem to be, for these apprentice mathematicians, as concrete and 
meaningful as numbers. Moreover, they are general. In this sense, we may say they 
have the same generality of the geometric figure as equivalence class of drawings 
(Parsysz, 1988), even if, the syntactic work on a formula may allow to discover and 
prove at the same time, whilst the work on the geometric figure can only mediate the 
access to propositions, that afterwards have to be organized in a logical chain.  

Other apprentice mathematicians (those belonging to profile 2) seem to neglect an 
exploration that could lead to the comprehension of the reasons, and prefer to engage 
in a syntactic algebraic proof that doesn’t allow grasping the sense. Sometimes, they 
refer to numerical examples just to get some hints for a symbolic representation. This 
has a sort of negative effect: numerical examples, when observed in a superficial 
way, may lead to focus on the distinction odd/even and, consequently, to choose 2n 
and 2n+1 as a suitable representation of the two numbers. Actually, such a 
representation diverts from the real main character, namely the generic divisor of the 
first number, which cannot divide the successive number. We present, for instance, 
the attempt of proof carried out by Debora, apprentice mathematician (profile 2):  

“If a even  a+1 odd. If a odd  a+1 even. 2 is not a common divisor. 2k is not a 
common divisor. 
If a=3k  a+1=3k+1. 3 is not a common divisor. 3k is not a common divisor.  
If a=5k  a+1=5k+1. 5 is not a common divisor. 5k is not a common divisor.” 

Debora’s first attempt of proof ends at this point; We report an excerpt from the a 
posteriori  interview:  

“[…] I could not find a general criterion, I mean, a way of saying all those things without 
doing it for 5, 7, 11… otherwise, it would have been endless! […]”. 

Actually, the “general criterion”, that is to say a general version of Debora’s 
reasoning, should have been realized through a generalization on the divisor and not 
on the first natural number.  

Whilst Debora is able to turn to an algebraic proof (by contradiction), other 
apprentice mathematicians get lost in manipulations, that are heavy because of the 
choice of the representation and because the algebraic work is not guided by a sense 
of the property. For instance, Sara, apprentice mathematician (profile 2), after having 
discovered the property by means of two numerical examples (1-2, 2-3), writes: 

 “Two consecutive numbers are “made up” of an even number, divisible by 2 (=2n, n∈N) 
and an odd number (=2n+1, n∈N). Let’s suppose that 1 is not the only common divisor, 
that is ∃ k such that k/2n e k/2n+1. 2n= ka, a∈N  also in ka there must be the factor 2 
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 k=2c or a=2d; 2n+1= kb, b∈N  since k is common, k=2c, or b=2e. But only the 
product of two odd numbers is an odd number  I could not finish for a matter of time.” 

The two last excerpts show that some apprentice mathematicians are keen to turn to 
an algebraic proof, neglecting an argumentation that could give the sense of the 
property. On the contrary, some non-mathematicians (those belonging to profile 3) 
seem to work better on numerical “concrete” examples. Monica, non-mathematician 
(profile 3), after having perceived the property through a numerical exploration, 
writes the following argumentation: 

 “[…] Certainly, two consecutive numbers cannot have common divisors that are even, 
since odd numbers cannot be divided by an even number. They also cannot have 
common divisors different from 1, because between the two numbers there is only one 
unity; if a number is divisible by 3, the next number that is divisible by 3 will be greater 
of 3 units, and not of only one unit. Since 3 is the first odd number after 1, there are no 
other numbers that can work as divisors of two consecutive numbers.”  

This argumentation, carried out through a generic example, gives an insight into the 
reasons why the property holds and is linked to the concept image (Tall & Vinner, 
1981) of divisibility held by Monica. The student doesn’t seem to need to pass from 
such an argumentation to an algebraic proof.   

We may say that the non mathematicians belonging to profile 3 need to rely to 
numerical examples to reflect on the structure, maybe because they don’t have at 
disposal a powerful proving strategy (such as the proof by contradiction) and they are 
less accustomed to algebraic manipulation. For this reason, their reflection on 
numerical examples is rich, as we can see in this excerpt from Carola’s protocol (non 
mathematician, profile 3):  

“[…] If I take a natural number, I can, analysing its digits, to find its divisors. Adding 1, 
the divisors change. For example: 20 is divisible by 2, by 5, by 10 because the final digit 
is 0, and it is also divisible by 1, by itself and by 4. If I add 1 to 20, I have 21: the 
divisors of 21 are different, the last digit has changed then I cannot use the divisors.[…] 
The rule is that if I add 1 to a number, the divisors I have found for the first number 
cannot work for the second number (otherwise I would not have a natural number) […]. 

We observe that the non-mathematicians carry out a free and boundless exploration, 
which leads to a sense of the property, but afterwards there is the problem of 
organizing the arguments into a general proof, that is not always possible at this level 
of mathematical culture.  

CONCLUSIONS 

Concerning the use of examples in conjecturing and proving in Elementary Number 
Theory, we observed how the exploration on numerical examples might be fruitful, if 
it is carried out within a project (that influence the choice of examples and the way of 
looking at them) and not done “at random”. Similarly, algebraic formulas may play 
the role of (generic) examples and foster the reflection on the structure of problem, if 
the work on such formulas is consciously oriented towards a solution and not a mere 
sequence of blind manipulations. Furthermore, we argued a relevance of the 
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relationship to mathematics in determining these different ways of exploiting 
examples.  

We wonder whether, and in which way, our results are specific to the context of 
Elementary Number Theory. For this reason, we are currently analysing processes of 
conjecture and proof carried out by the same students in the context of Real Analysis.  
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We have been investigating the potential of a web-based discourse platform 
Knowledge Forum (Bereiter & Scardamalia) to support grade 4 students' 
understanding of functions through linear generalizing problems.  We will present 
verbatim discussions from the KF database that occurred when students from diverse 
urban classrooms were linked electronically to collaborate on a series of problems.  
Analyses of student contributions to the database revealed their increasing 
understanding of explicit functional relationships, formulate generalizations, and 
negotiations of multiple rules and representations.  It appeared that KF supported 
students in providing justifications for their conjectures of functional rules within the 
context of specific problems. 

PATTERNS AND FUNCTIONS: AFFORDANCES AND DIFFICULTIES 

Pattern and functions is one of the four strands identified in the early algebra standard 
(NCTM).  Pattern activities offer a powerful vehicle for understanding the dependent 
relations among quantities that underlie mathematical functions (e.g.,  Blanton & 
Kaput, 2004; Schliemann et al., 2001; Warren, 2000) as well as a concrete and 
transparent way for young students to begin to grapple with the notions of abstraction 
and generalizations.  However, research demonstrates that the route to functional 
thinking through patterning is difficult (e.g., Kieran, Noss, Stacey).  Linear 
generalizing problems are often presented in textbooks in geometric contexts with the 
goal of providing visual support for rule finding.  One difficulty for students is a 
tendency to focus solely on the numeric aspect of these patterning activities, even 
when patterns are presented visually (Noss et al., 1997).  Mason (e.g. 1997) observes 
that when geometric sequences are introduced, the emphasis is on the construction of 
a table of values from which a closed form formula is extracted and checked with one 
or two examples.  Mason suggests that students instead be given opportunitities to 
find multiple kinds of patterns and that visualization and manipulation of the figures 
on which the generalizing process is based can facilitate rule finding and formula 
making.  Lee (1996) uses the term "perceptual agility" to characterize the ability to 
see multiple patterns coupled with a willingness to abandon those that do not prove 
useful. 

Another fundamental difficulty is the lack of rigor and commitment to justifications 
that students demonstrate (e.g., Stacey, 1989; Mason, 1996; Lee, 1996; Lannin, 
2002).  Stacey found that students construct rules and generalizations too readily with 
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an eye to simplicity rather than accuracy.  Cooper and Sakane (1986) further reported 
that once students select a rule for a pattern, they persist in their claims even when 
finding a counter example to their hypothesis. 

OUR RESEARCH METHODS AND PROCEDURES 

For the past two years we have been working on a researchproject with grade 4 
children in diverse urban settings to foster an understanding of patterns and 
functions as well as flexibility of perception and a disposition for providing 
justifications (e.g., Moss, 2005; Moss & Beatty, 2005). Participants in the sudy 
reported here included students from a University laboratory school (n=22) and 
two classrooms from an at-risk inner city public school (n=48) and their teachers. 
The intervention that we implemented was comprised of two distinct parts. 
Initially students were presented with an instructional sequence designed to have 
them gain experience in building and manipulating geometric sequences, and 
integrate these experiences with numeric functions learned through "guess my 
rule" activities. The second part of the intervention - the focus of this paper - 
involved collaborative problem solving on the web based knowledge building 
platform, Knowledge Forum (KF)(Bereiter & Scardamalia, 2003). For this part of 
the study students from two schools were linked electronically and invited to 
collaborate on solving generalizing problems presented on the database.  The 
problems included both linear and quadratic functions embedded in various 
different contexts - three pairs of structurally similar problems. At no point were 
the solutions to the problems given, nor were students told whether their solutions 
were correct or incorrect. In addition, no teacher or researcher posted notes on the 
database, so that it was clear to students that it was their responsibility to work 
together to find the solutions to these problems. Our conjecture was that 
incorporating KF as a means of allowing children to collaboratively problem solve 
on a database would allow students access to multiple pattern "seeings" (Mason) 
and that the discourse structure would provide an authentic context for 
collaboration that would necessitate the provision of proofs and justifications. 

DATA SOURCES AND ANALYSES 

In order to assess student learning we collected quantitative data based on 
students' gains on pre- and post-tests of functional understanding. We also 
videotaped and transcribed interviews with targeted high, medium and low 
achieving students to track the development of their learning. Finally we analyzed 
all of the discussions that took place on the database and it is these database 
results that we present in this paper. our analyses of the KF database not only 
involved a general tracking of student learning but also involved quantitative and 
qualitative analyses of all of the students'; contributions in terms of the type and 
purpose of each note posted. Before going to the final presentation of these results, 
it is important to describe how KF works and to elucidate the theoretical 
framework that underlies its design. 
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KNOWLEDGE FORUM 

Knowledge Forum, originally known as CSILE (computer supported intentional 
learning environment) was developed as a forum for discussion and knowledge 
building by learning theorists Bereiter & Scardamalia based on their early work in 
intentional learning (please see Bereiter & Scardamalia, 2003). When students work 
on KF they have the potential to contribute individual ideas or to build onto ideas of 
others. An important feature of KF that sets it apart from other threaded discourse 
systems is the ownership given to the student participants. Students work on the 
database independently of their teachers, thus it is not the teacher who asks for 
clarification and revision of the ideas or conjectures but rather the students 
themselves who take on this responsibility. 

Students work in problem spaces called views. Figure 1 presents a view of the 
Perimeter Problem. The small squares represent student notes and the connecting 
lines represent discussions created as students read and respond to each other's 
contributions. the notes with small circles are referred to as build-ons, or responses to 
notes posted by other students. The database views are continuously evolving 
interactive discourse spaces, where each thread of conversation is documented, webs 
of interchanges graphically displayed, and collective understandings captured as they 
progress. Six different views were created for each of the six linear generalizing 
problems used in this study. 

A note (Figure 2) contains a space for composing text and metacognitive scaffolds 
designed to encourage students to engage in theory building while they write their 
notes (Scardamalia, 2003). These scaffolds include my theory, I need to understand, 
new information, a better theory, and putting our knowledge together. 

The note in Figure 2 is a student's contribution to the Perimeter Problem. Her theory 
was posted with the anticipation that others would respond (even though the author 
has already revised her own thinking, using the scaffold A better theory). 

Students can also use the graphics palette to create illustrations, or they can scan in 
drawings, function tables or photographs to further explain their thinking. In our 
study students included visual, numeric and written representations for two purposes 
- as tools for problem solving, and as a means of illustrating their understanding. The 
database is a permanent record of each student's thinking, and the thinking of others 
that can be revisited at any time. 

EPISTEMIC AGENCY 

While students are usually good at generating ideas, the notion of taking 
responsibility for continuous idea improvement does not come naturally to them 
(Scardamalia, 2003). The KF database fosters a shift in responsibility for cognitive 
advancement form the teacher to the students. In the KF database students are 
responsible for generating theories, improving ideas, building models and monitoring 
the progress of the ideas. It is not the teacher who asks for clarification and revision 
of the ideas or conjectures presented, but rather the students themselves who take on 
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this responsibility. Students' theories are not offered as final "fair accomplies" but 
their contributions are taken as stepping-stones for further idea development. Both 
the metacognitive scaffolds and the visual linking of build-on notes encourage 
students' push to examine conjectures of their classmates critically, with the goal of 
making them better. Although idea generation currently occurs in traditional 
classrooms, it is this rigor for continuous idea improvement that delineates the 
knowledge building database. In our study we saw this "epistemic agency" 
instantiated through the students' offering ideas in such a way that a fit between 
personal ideas and the ideas of others was negotiated. 

ANALYSES AND RESULTS 

In all there were 297 notes with individual contributions ranging from 3 - 18 notes 
per student. The majority of these notes (72%) advanced the collective knowledge 
either by contributing or building onto ideas and theories. The remaining notes either 
offered encouragement ("I think you almost have it, keep trying") or congratulations 
("Good job, I like how you explained your answer!"). it must be noted that these 
collaborative exchanges were posted by students from very different mathematical, 
cultural, and socioeconomic backgrounds. 

Given this level of diversity, of particular interest were the analyses we conducted 
comparing differences in the kinds of notes created by high- and low-achieving 
students. In these analyses we compared the number of original notes to the number 
of build-on or response notes posted by both groups.  The graph in Figure 3 displays 
the overall results. For higher achieving students 53% of their notes were responses, 
and 46% were original ideas. In contrast 70% of the notes contributed by the lower 
achieving group were responses to other notes, and 30% were notes contributing 
original ideas. 

Qualitative analyses revealed that when lower achieving students read and built onto 
the theories of higher achieving students, they did so by translating the ideas of others 
into modified representations, indicating that they were not just repeating the ideas of 
others but were incorporating them into their own understanding using language, 
drawings or other representations that were meaningful to them. for example in the 
following notes MB, a higher achieving students, presents his solution to the 
Trapezoid Table problem (in this problem students are challenged to find a rule for 
predicting the number of chairs that can fit around any number of trapezoid-shaped 
tables placed end to end). LS who had not yet found a solution is able to take MB's 
solution and incorporate the ideas to support and move her own understandings 
forward. 

My theory - MB 

My theory is that the rule is x3+2. I figured it out because there are always 2 chairs at 
the 2 ends of one or more trapizoids joined together and there are always 2 on the 
long side which is on the top or bottom and whatever the opposite side is it has 1 
chair. 2+1=3 so I then figured out the rule was x3+2. my evidence is I thought abut it 
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then i tried on a piece of paper by drawing the trapizoid tables, I also made a T-chart 
and it worked. 

Your right! - LS 

I agree with you because 3 tables equal 11 and you said times 3+2. So 3 tables 
times3=9 then you said +2 and that = 11. You are right. 

In LS's response to MB, we can see that she (LS) was able to move her thinking 
forward by applying MB's rule and figuring out that it worked. In the exchange that 
we present next, which took place between 5 students working on finding solutions to 
the Perimeter problem, the discussion that the students engage in furthers the 
understanding of all of the participants. These students were from all three of the 
classrooms involved in the study, and represent students of both high and low math 
ability. The problem read: A 3 y 3 grid would have 8 squared shaded in the perimeter, 
a 5 by 5 grid would have 16 squares shaded in the perimeter, how many shaded 
squares would there be in the perimeter of an n by n grid? 

Eureka! AW 

My theory is that for the 5x5 question you do 5x5=25 the square of 25 is 5 and you 
minus two from the square and square that then minus it from your original number 
and you have your answer! First i drew the five by five grid and there was nine in the 
middle to take away - 3x3=9 so then i figured out a 6x6 square was 36 and i know 
that inside there would be a 4x4 square to take away so the difference between 6 and 
4 is 2 so it was 36-16=20 

nxn=nsquared - (n-2) squared - so minus (n-2) squared from nsquared 

Another rule - ST 

I have another rule for you and it is the output x 4-4. in the rule it is x4 because there 
is 4 sides in a square. It is -4 because when you multiply 4 you are repeating the 
corners twice so you -4 

Both right? - GA 

I agree with you and disagree with you AW because you got the answer but in a 
complicated way. I disagree with you because there's an easier way than taking the 
square of 25, subtracting 2 from it and square that and then subtract that from your 
original answer. I got the rule times 4-4 because a square has 4 sides and you don't 
count the corners twice. i agree with you because you got it right. 

2 rules - AW 

But there might be two rules because we got the same answer for both so i think there 
is more than 1 way to figure the problem out.  

The perimeter with squares - TG 

My theory is that the output is equal to the input x input - unshaded squares. Also it 
works for every one so that's how I know that it is one of the rules. I built some 
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squares with cubes and subtracted the unshaded squares and tried a different rule and 
the rule was that the input x input - unshaded squares = shaded squares. 

Same Way - AW 

I think that i go the same answer as you but i worded it differently i wrote it on a note 
called Eureka! we used the same way to figure it out but different wording between 
personal ideas and the ideas of others was negotiated. 

These exchanges demonstrate the kinds of discourse that the students engaged in on 
the database and how the access to other students' ideas appeared to contribute to and 
broaden their reasoning and strategies. The students negotiated the idea of multiple 
solutions to a particular problem, and discussed approaches for solving the problem, 
rather than merely accepting ideas as "right" or "wrong". 

DISCUSSION 

By the end of the intervention, students were able to collaboratively formulate 
solutions for complex generalizing problems. Furthermore, throughout the database 
there are examples of students demonstrating a disposition to rule finding and 
evidence building that is unusual for many students (Stacey, 1989; Lee, 1996; Mason, 
1996; Lannin, 2002). Students also displayed a propensity to prove their solutions 
within the context of a problem. They displayed an ability to view problems in a 
multitude of ways, and shared their understandings through a variety of 
representations including drawings, functional tables, natural language, syncopated 
language (Sfard, 1995) and more formal algebraic notation. In addition, students 
recognized the benefits of working together to synthesize their Research 
understanding in a way that was accessible to all members of the group. In the words 
of one student, "looking at others improved my ideas and how I thought about the 
question, and when I did my own I could use some of the ideas that were already 
there."   
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IMPROVING MATHEMATICAL KNOWLEDGE THROUGH 

MODELING IN ELEMENTARY SCHOOLS 
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The study presents the results of a 6th grade class (11 year olds) working on a 
modeling activity. Traditional mathematics textbooks mostly provide single and 
straightforward solution problems at which students only apply a formula to reach a 
solution. On the contrary, students’ work on modeling activities focus on analysing a 
problematic situation, setting and testing conjectures and model construction. In 
modeling activities students work in small groups and they are actively engaged in 
fruitful discussions with their peers and teacher. The results of the study showed that: 
(a) students with no prior experience in modeling activities applied effectively their 
informal mathematical knowledge to solve an authentic problem, and (b) social 
interactions in groups enhanced the discovery of mathematical knowledge.  

INTRODUCTION  

The economy and work force demand for school graduates to be able to work 
collaboratively in demanding projects, to effectively use new technological tools and 
to possess more flexible, creative, and future-oriented mathematical skills. 
Professional organizations (AAAS, 1998; NCTM, 2000) address the need for a change 
in the school mathematics and propose reforms in mathematics education. Most of 
these reforms emphasize a critical need for students to study mathematics in real world 
contexts and to construct models in exploring and understanding problem situations 
(Greer, 1997). In mathematical modeling students develop important mathematical 
processes, such as describing, explaining, predicting, representing, and organising 
data (NCTM, 2000). Mathematical modeling that explores interesting and non trivial 
situations for students, can become an effective medium for students to be actively 
engaged in acquiring mathematical knowledge (Blum & Niss, 1991) in experientially 
real contexts (Gravemeijer, Cobb, Bowers, & Whitenack, 2000). 

THEORETICAL FRAMEWORK 

In the present study, a model is defined as a construct consisting of elements, 
relations and operations that can be used to describe, explain or predict the behaviour 
of some other familiar systems (Doerr & English, 2003). Models focus on the 
structural characteristics of the systems that they are referring to, and are expressed 
using a variety of representational media, including written symbols, diagrams or 
graphs (Lesh, & Lehrer, 2003; Lesh & Doerr, 2003). Models constructed by students 
for a problematic situation may also inform teachers and researchers about students’ 
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mental models and conceptions about mathematical constructs (Greer, 1997; Lesh & 
Doerr, 2003).  

Modeling activities move beyond traditional problem solving experiences, by 
addressing adequately the knowledge, the processes, and the social developments that 
students require in dealing with increasingly sophisticated systems (Lesh, & Lehrer, 
2003; English & Watters, 2005). Modeling activities for young learners, designed for 
group work, are inherently social experiences (Lesh, Cramer, Doerr, Post, & 
Zawojewski, 2003) and provide the basis of effective communication and teamwork. 
Students need to effectively communicate with their peers to develop and refine 
models that can be applied in a range of contexts (English, 2003). 

Modeling activities involve mathematizing – by quantifying, dimensioning, 
coordinating, categorizing, algebraizing, and systematizing relevant objects, 
relationships, actions, patterns, and regularities (Lesh et al., 2003). Modeling 
activities aim to help students externalize their understanding of situations by 
developing models which can serve in conceptualizing mathematical ideas and 
processes (Lesh et al., 2003).  These models focus on significant mathematical 
structures, patterns, and regularities and the development of such products requires 
multiple cycles of interpretations, descriptions, conjectures, explanations and 
justifications (Schorr & Amit, 2005; Lesh et al., 2003).  

Current research in mathematics education is demonstrating that young learners can 
be benefited from working with authentic modeling problems (English & Watters, 
2005). In particular, it has been argued that modeling activities can help students to 
build on their existing understandings, to engage in thought-provoking, multifaceted 
problems within authentic contexts that allow for multiple interpretations and 
different approaches (Schorr & Amit, 2005; Doerr & English, 2003). Specifically, in 
a project with modeling activities, 10 year old students were able to work 
successfully with mathematical problems when presented as meaningful, real-world 
case studies. Students were also able to discover relationships and patterns in data 
and applied their learning in working with similar problems (English, 2003). Finally, 
Doerr and English (2003) showed that students working with modeling activities 
developed their abilities in planning and revising their models by challenging one 
another’s assumptions and claims, and asking for clarification and justification for 
problem solutions.  

THE PRESENT STUDY 

The Purpose of the Study 

The aim of the present study is to explore the ways in which students work in 
modeling activities to develop the concept of average. To this end, it is expected from 
students to work with authentic mathematical problems, using their prior 
mathematical knowledge to investigate, make sense and understand specific problems 
which lead to a conceptual understanding of average.  
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Participants and Modeling Activities 

Twenty students (12 females and eight males) from an intact 6th grade class in an 
urban school in Cyprus participated in two modeling activities. None of these 
students had prior experience in solving problems in a mathematical modeling 
context.   

In this study two modeling activities were presented to students, namely the “Drug 
Industries Golden Award” and the “Summer Camp Job”. Both activities derived from 
a list of problems found in Lesh and Doerr (2003). The purpose of the first activity 
was to provide opportunities for students to organize and explore data, to use 
statistical reasoning and to develop appropriate models for solving the problem. The 
“Summer Camp Job” activity provided opportunities for students to apply the models 
and new learnings they had developed in the content of the “Drug Industries Golden 
Award” activity. The second activity also provided a setting for students to focus and 
work with the notions of ranking, selecting, aggregating ranked quantities and 
weighting ranks.  

The application of the “Drug Industries Golden Award” activity (see Figure 1) 
followed three stages: (a) the warm-up stage in which students read an article about 
Ian Fleming with the purpose to familiarize themselves with the context of the 
modeling activity, (b) the readiness stage which involved the discussion of the article, 
and (c) the modeling stage in which students were engaged in constructing a model to 
answer the basic questions of the problem.  

Procedure 

Students spent two 40 minutes sessions in completing each of the two modeling 
activities. Each activity started with a whole class discussion on the warm-up task 
and readiness questions. Then students worked in groups of three or four to provide 
solutions for the activity. After completing their work, each group presented its 
models to the rest of the class for questioning, comparing with others’ models and 
constructive feedback. Students again worked back in their groups to revise and 
refine their models. Finally, a whole class discussion focused on the key 
mathematical ideas and processes that were developed during the modeling activity. 

Data Sources and Analysis 

The data for this study were collected through (a) videotapes of students’ responses 
during whole class discussions, (b) audiotapes of students’ work in their groups, (c) 
students’ worksheets and final reports detailing the processes used in developing 
models, and (d) researchers’ field notes. Videotapes and audiotapes were analyzed 
using interpretive techniques (Miles & Huberman, 1994), for evidence of students’ 
mathematical developments towards the statistical concepts appeared in the modeling 
activity. Due to space limitations, we mainly present the results of one group of 
students, working on the “Drug Industries Golden Award” activity.  
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Use the reaction times in the table below to rank the four drugs by their effectiveness. Write 
a letter, explaining and documenting your results, to the chairman of the Drug Industries 
Association.  
 

Kanatol Saracetamol Ralpol Kefapol 

20 10 12 10 
18 19 14 12 
19 13 15 17 
22 11 15 17 
15 11 7 17 
14 12 9 19 
23 10 9 22 
12 9 8 22 
11 8 8 21 
10 8 15 10 
7 14 19 7 
9 13 10 7 

10 12 10 7 
17 17 23 19 
13 11 24 18 
12 11 23 14 
14 13 10 12 
14 20 8 10 
8 25 17 10 
9 13 19 10  

Figure 1:  The Drug Industries Golden Award Activity 

RESULTS   

Students’ purpose in the modeling activity was to provide a reasonable answer of 
how to select the best drug. The results are presented on the basis of the modeling 
cycles developed in students’ work after the analysis of the transcripts.  
 

Cycle 1: Focusing on Subsets of Information  

The first purpose of students’ work was to rank the four pain-relief drugs, according 
to their effectiveness. In this first attempt, students’ efforts focused on subsets of 
information, as they only concentrated on the smallest reaction time for each drug. 
The transcript below shows how students perceived the solution of the problem. 
These initial solutions created the need for students to search for more justifiable 
solutions.     

Helen:  I believe that Saracetamol is the most effective since it has the least 
reaction time. Other drugs need more time.  

Alex:  Yes, but what about Kefapol? In three cases it needs the least time to act.  
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Alice: Check over here! Kefapol’s times are 17, 17 and 17 while Saracetamol’s 
are 11, 11 and 12 respectively. 

Alex:  You are right, but Saracetamol has also 20 and 25 minutes reaction time.  

The students engaged in debates over how to generate a comprehensive model which 
could handle both small and big reaction times. This first discussion led them to 
approach the problem in a more systematic way. Students used their informal 
knowledge to make a number of conjectures and justify their claims:  

Helen:  Let’s circle in each line the drug with the smallest reaction time.  

Researcher:  How will you rank the drugs?  

Alice: We will count the number of circles for each drug.  

The above process did not lead to an appropriate answer to the problem; however, 
this approach forced students to argue about its usefulness since there were drugs 
with the same reaction time. Alex suggested circling both drugs. Based on this idea, 
students ranked the drugs in the following order: Saracetamol, Ralpol, Kefapol and 
Kanatol. A similar but more “refined” approach was used by a second group of 
students. Their solution was to circle both the smallest and biggest reaction times and 
then subtracting the two numbers. That group ended with a different drug ranking: 
Saracetamol, Kefapol, Ralpol and Kanatol.  

Since none of the groups used a systematic approach to tackle the problem, there 
were long debates during students’ presentations. Different approaches and 
contradicting results led students to face the need to mathematize their procedures. 
Thus, students began to use two main mathematical operations to handle the data for 
each drug, namely, (a) totalling the amounts of reaction time for each drug, and (b) 
finding the average for each drug and comparing the averages. 

Cycle 2: Using Mathematical Operations and Processes   

The core characteristic of the solutions appeared in the second cycle was the adoption 
of more sophisticated mathematical processes. Alex’s group next approach was based 
on the assumption that any new development should consider all reaction times and 
not only the best or/and worst reaction times.  

Alex:  We should add all reaction times for each drug. 

Alice: Why should we do that? 

Helen: Alex is right. By adding all numbers ... find the drug with the least sum. 
This one will be the most effective pain relief drug.  

This new mathematical approach, based on finding the sum of reaction times for each 
drug changed the ranking of the drugs to: Saracetamol, Ralpol, Kanatol and Kefapol. 
Students were really surprised since the last ranking was quite different from 
previous ones.  

The big numbers that students encountered while working with “sums-model” started 
a new round of discussion. Helen suggested that they could divide the sums by the 
number of the cases to find the average, because “it’s difficult to work out the sum of 
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reaction times, especially if we have more cases”. Alex realized that Helen’s model 
would produce the same ranking, since “we divide the sums by the same number, so 
nothing will change in the ranking”. Alice was a little bit confused and remained 
unconvinced; however, she asked for more clarifications as shown in the transcript 
below: 

Helen: First we add all times and divide by ... (she was interrupted by Alice) 

Alice: Four. We have four drugs. 

Alex: No, this is not correct. We do not find the average like this. We need to 
divide by twenty, the number of cases.  

Alice: You mean that we add all reaction times and divide by 20? 

Alex: No, there is no reason to add all reaction times. We only add the reaction 
times for each drug because we need to calculate the average for each 
drug. 

Helen: We do not always divide by 20 but with the number of cases. We need 
one average for each drug to find the differences between the four drugs. 
We could also calculate one average for all drugs, but only to compare 
these four drugs with other ones.  

Most groups used a systematic approach to find a solution to the problem, either by 
finding the sums of reaction times or by working with the average. It should be noted 
that not all students approached the problem using a mathematical approach. For 
example, James, even after the discussion and the groups’ presentations of 
appropriate solutions, believed that the “best drug” was the one having the smallest 
reaction time in one case.  

A representative and interesting snapshot of students’ work appeared in the letter they 
sent to the Chairman of the Drug Association. They made evident that they spent a lot 
of time searching for the best solution, and they were confident that their final 
solution was correct. Quite impressive was a group’s comment on the transferability 
of their model:  

“Comparing the averages is also appropriate for similar competitions you will have in 
the future. Our solution can be used to find the most effective drug, even in cases with 
more than four drugs. You also can use average to compare other products, like day 
skin creams. Be careful though, since in other cases, you might need to find the highest 
and not the lowest average”.     

The final presentation of students’ suggested models and solutions resulted in one 
more round of arguments and a discussion on the meaning of average. One student 
pointed that a drug’s average is the time needed for the drug to react in most of the 
cases. Alex disagreed with her, mentioning that: “the average actually shows the 
reaction time of a drug if that time is the same for all cases”. 

DISCUSSION 

An important conclusion of the present study is that the participating students were 
able to work successfully with mathematical modeling problems when presented as 
meaningful, real-world case studies. The framework, within the problem was 
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presented, helped students to realize and to get familiar with the problematic situation 
and thus enhanced their statistical understandings (English, 2003). At the same time, 
the activity did not narrow students’ freedom and autonomy to approach and analyze 
the problem taking into account their prior and informal knowledge. On the contrary, 
students’ work was impressive; they analyzed the problem using different viewing 
angles, set and test hypotheses, evaluate, modify and refine their models and 
solutions, just like professional mathematicians!  

On the problem presented here, the students progressed from focusing on subsets of 
information which resulted in not suitable models to applying the appropriate 
mathematical concepts and processes that helped them finding an effective 
mathematical model. This new model was reusable, shareable and could serve to 
construct more sophisticated models for solving even more demanding problems 
(Doerr & English, 2003). It was also clear that many students identified the structural 
elements of the problem in developing their final model, in such a way that they 
could easily transfer and modify their models in the second activity. At the same time 
it is impressive that students’ models took place in the absence of any formal 
instruction, and involved the children in describing, analyzing, explaining, justifying, 
checking, and communicating their ideas with peers and teachers (Lesh et al., 2003). 
Quite important were also students’ efforts in documenting their solutions in a letter 
to the Chairman of the Drug Association. Few problems in traditional textbooks 
generate learning of this nature and quality (English, 2003) and students appeared to 
be successful and productive.  

An important aspect of students’ work is the communication and social interaction 
that took place naturally within the groups. These interactions engaged students in 
analyzing, planning and revising courses of action, challenging one another’s 
assumptions and claims, and ensuring the group worked as a team. Given the 
importance of communication and sharing of ideas in mathematics education 
(NCTM, 2000), there is evidence that modeling activities can successfully serve in 
this direction.   

Finally, a possible direction for future research in the area could be the investigation 
of students’ ability to transfer effectively their constructed models in solving similar 
structured problems and to modify ready made models (by peers) in solving 
problems. Quite interesting would also be the examination of the role of new 
technological tools in solving non routine authentic problems like the one presented 
here and to investigate whether the use of technological tools can provide alternative 
approaches and developed models.  
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A broad descriptive study of 103 first graders and 16 longitudinal case studies found 
that children’s perception and representation of structure1 generalised across a wide 
range of mathematical domains. Children’s strategies showing use of pattern and 
structure were determined from task-based interviews. A high positive correlation 
(0.944) was found between children’s performance on forty Pattern and Structure 
Assessment (PASA) tasks, and four stages of structural development: pre-structural, 
emergent, partial, and structural. Multiplicative structure, including unitising and 
partitioning, and ‘spatial structuring’, were found as critical to development of 
pattern and structure. 

BACKGROUND  

The development of mathematical concepts involves the recognition of patterns and 
structural relationships within and between mathematical objects and situations. 
Mathematical patterns encountered in school range from number sequences and 
spatial arrays to algebraic generalisations and geometrical theorems. Broadly, a 
pattern may be defined as a numerical or spatial regularity, and the relationship 
between the various components of a pattern constitute its structure. Pattern and 
structure may be regarded as inherent or constructed from, brought to or imposed on 
mathematical systems. Research on children’s development of mathematical concepts 
and their representations (e.g., counting, grouping, unitising, partitioning, estimating, 
base ten and multiplicative structure, and algebraic reasoning) has highlighted the 
role of pattern and structure. Goldin (2002) described the development of structure in 
children’s representations and found that it leads ultimately to the construction of 
autonomous representational systems. However, there have been few studies with 
young children that have described general characteristics of structural development 
and how pattern and structure are integral to concept development.  

In our PME 28 report (Mulligan, Prescott & Mitchelmore, 2004) we described how 
the mathematical structure present in children’s representations generalised across 
five mathematical domains: time (clockface), number, space and algebra (triangular 
pattern), measurement (unitising area and length) and data (picture graph). Individual 
profiles of responses were reliably coded as one of four broad stages of structural 

                                                 
1 In this paper we refer to the term ‘structure’ to encompass our definition of both pattern and structure. 
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development: pre-structural, emergent, and partial structural stages, followed by a 
stage of structural development.  

At PME 29 (Mulligan, Prescott & Mitchelmore, 2005) we reported the consistency of 
this structural development across tasks for eight high achieving and eight low 
achieving individuals, who were tracked over a two-year period. A fifth stage, an 
advanced stage of structural development was identified for high achievers, where 
the child’s structural ‘system’ depicted an increased level of abstraction. However 
developmental patterns for the low-achieving cases were inconsistent; the transition 
from a pre-structural to an emergent stage was somewhat haphazard and some 
children reverted to earlier, primitive images after a year of schooling. There was 
further new and compelling evidence that structural development was impeded 
because children fail to perceive structure initially and thus they continue to produce 
increasingly crowded and chaotic responses that often rely on replication of 
superficial, non-mathematical features. 

In this paper we report the primary analyses of structural development for 103 first 
graders who participated in the first year of the study. An aim of the study was to 
investigate the consistency of children’s strategies for solving a wide range of 
mathematical tasks that incorporated common features of pattern and structure. The 
use of multiplicative structure and unitising were key features of the tasks. We 
provide evidence that early mathematics achievement is strongly linked with the 
child’s development of mathematical structure; mathematical structure is an 
underlying characteristic that generalises across content domains. We build further 
upon previous analyses (Goldin, 2004, in communication; Goldin, 2002; Gray, Pitta 
& Tall, 2000; Tall, 2005, in communication; Thomas, Mulligan & Goldin, 2002), 
with the aim of making as explicit as possible the bases for our identification of 
developmental stages of mathematical structure. The implications of this research for 
classroom-based research using a Pattern and Structure Assessment (PASA) 
interview instrument and a Pattern and Structure Mathematics Awareness Program 
(PASMAP) are outlined. 

THEORETICAL FRAMEWORK 

Our studies on the role of structure in early mathematics have integrated a number of 
theoretical perspectives that can be traced to previous work on multiplicative 
reasoning (Mulligan & Mitchelmore, 1997). These studies were based largely on 
theories of Fischbein (‘intuitive models’) and Vergnaud (‘conceptual fields’). Further 
research on children’s representations of multiplicative situations and the structure of 
the numeration system led us to adapt Goldin’s model of cognitive representational 
systems (Goldin, 2002; Thomas, Mulligan & Goldin, 2002). We also took into 
account more explicitly, theories on imagery and ‘procepts’ to explain qualitative 
differences in low-achieving students’ use of imagery and concept development 
(Gray & Tall, 2000; Pitta-Pantazi, Gray & Christou (2004). The study of two- and 
three-dimensional structures (Battista, Clements, Arnoff, Battista & Borrow, 1998), 
and measurement concepts (Outhred & Mitchelmore, 2000) directed us to include the 
study of ‘spatial structuring’ as a critical feature, as it involved the process of 
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constructing an organisation or form. This drew our attention to construction of 
multiplicative features shown in groups, arrays, grids, equal-sized units and graphs. 

Further development of our research project complements other recent studies of 
early mathematics aimed at describing underlying conceptual bases of abstraction and 
generalization and the role of mathematical modelling and reasoning. For example, 
studies such as the Measure Up (MU) project (Slovin & Dougherty, 2004) where 
children approach mathematics through measurement and algebraic representations 
or those by English and Watters’ (2005) that focus on structural characteristics such 
as patterns, and relationships rather than superficial features of problem-solving 
situations. We also integrate some features from studies of early algebraic reasoning 
(Blanton & Kaput; Schliemann, Carraher, Brizuela, Goodrow, & Peled, 2003; 
Warren, 2005) focused on number patterns and functional thinking.  

Number Measurement Space/Graphs/Patterns 

Subitising: visualise 
array 2 × 3 

Length: use informal equal 
sized units 

Pattern/visual memory: reconstruct 
triangular pattern of dots  

Rote counting: 
multiples of 2, 5 & 3  

Length:  partitioning 
halves and thirds 
(continuous) 

2 Dimensional space: use one unit 
to calculate area of 2D shape 

Perceptual counting: 
multiples of 2 (1–30) 

Length: construct units on 
‘empty’ ruler 

2 Dimensional /3 Dimensional: 
units of volume in 2D net and box 

Counting: represent 
multiples (2, 5 & 3) on 
numeral track (1–30) 

Area/Unitising: visualise 
and calculate area using 
one unit 

Angles: represent and draw corners 
of a square 

Ten as a unit using 
currency  

Area: drawing units in 
partial grid  

Picture graph: use grid and table 
 

Partitioning 2x8x2 grid Mass: unitising, comparing 
informal units of mass 

Picture graph: construct picture 
graph from table  

Partitive & quotitive 
sharing 

Volume: use one unit in 
2D net and box 

Create/ draw self generated patterns

Combinatorial: 2x3 Time: draw o’clock  on 
‘empty’ clockface 

 

Table 1: Framework of pattern and structure assessment (PASA) tasks 

METHOD AND ANALYSES  

Task-based videotaped interviews were conducted with 103 first graders 
representative of a wide range of mathematical abilities and diverse socio-economic 
and cultural backgrounds. (For method see Mulligan et al, 2004; 2005). Forty 
individual tasks representing thirty different mathematical concepts and sub- 
categories were integrated into an initial assessment framework (see Table 1).  

These were representative of key concepts and processes that had been the subject of 
investigation in related studies usually focused on a single mathematical content 
domain such as counting or unitising. The assessment included tasks that were 
beyond mathematics curriculum expectations. Each task required children to use 
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elements of mathematical structure such as equal groups or units, spatial structure 
such as rows or columns, or numerical and geometrical patterns. Children were 
required to explain their strategies and draw representations such as reconstructing 
from memory, a triangular pattern and to visualise, then draw and explain their 
mental images. The analyses of data involved both qualitative and quantitative 
methods involving systematic coding of videotaped interviews, and interpretation of 
children’s drawn and written representations. The primary analysis of the first 
interview data focused on the reliable coding of responses as correct/incorrect for all 
forty tasks and the matrix examined for patterns. A composite score was compiled for 
each student to gain a general picture of the performance data and item difficulty. 
Subsequently, individual children’s responses to all forty tasks (individual profiles) 
were assigned a strategy indicating evidence of structural features.  

As a result of this process, each child was assigned a stage of structural development. 
It was found that the children could be unambiguously sorted into four broad groups 
and correlations were generated for student performance by grouping (pre-structural, 
emergent structure, partial structure, structure). The presence of structural features 
shown in the drawn representations to five of these tasks (clock face, triangular 
pattern, area, length and picture graph) were analysed in depth because they gave 
the most convincing evidence of the child’s use of structure. However, it was not 
assumed that this would be consistent with the child’s performance data or that it 
would be consistent across most tasks.  

DISCUSSION OF RESULTS 

Between 50% and 70% of the children could solve most of the tasks, but these were 
solved with a wide range of strategies depicting the relative use of structural features. 
Several tasks proved most difficult: counting in multiples of three, a quotition 
problem without the use of materials, using ten as a unit of currency, a combinatorial 
problem and showing thirds on a continuous length. Most students completed the 
graphs’ tasks showing the correct quantity but were unable to construct a graph with 
appropriate alignment.  Most children could recognise corners in the angles task but 
could not draw a matching angle. The pattern (visual memory) task proved very 
difficult for students (see Mulligan et. al., 2005). 

Table 2 and Figure 1 show students grouped by stage of structural development 
across the four levels of structural development. The correlation between level of 
structural development and the composite PASA score was 0.944, significant at the 
0.01 level.  

Children at the emergent stage represented larger variability than the other groups. 
Although there were indicators of emergent structure within 80% of the children’s 
responses, the quality and type of structural features was not consistent across 
individuals, for example, the inconsistent use of equal sized units in both the area and 
length tasks. The categorisation of this group may well reflect several sub-categories 
depicting different forms of emergent structure that are context or task dependent. 
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Group Stage Percentage 
students 

No. students Composite PASA score 

1 Pre-structural 
(PRS)  

11 11 3 – 9 

2 Emergent (ES) 38 39 10 – 19 
3 Partial (PS) 27 28 20 – 25 
4 Structure (S) 24 25 26 – 33 

Table 2: Classification of students by stage of structural development. 

The children in Groups 2 and 3 were 
less consistent in their responses in 
terms of assigning a level of structural 
development: there was more 
variability in responses of children in 
these groups: some 20% of responses 
showed pre-structural or partial 
structural responses. For example, a 
child at the emergent stage could score 
well on counting tasks but was 
generally unaware of the presence of 
structural features in other areas. 
Similarly some 20% responses at the 
partial structural stage were more 
likely to show structural rather than 
emergent features. 
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 Figure 1: Performance (total score) by 
level of structural development 

All the low achieving children fell into Group 1 (pre-structural). Conversely, the high 
achieving children all fell into Group 4 (structural) and readily expressed 
mathematical structure in all or almost all of the tasks. The children in Groups 1 and 
4 were all identified on classroom-based assessment measures and other independent 
psychometric tests to be considered as having low or high mathematical ability 
respectively.  

CONCLUSIONS & LIMITATIONS 

It is not conclusive from our data whether the awareness and appropriate use of 
pattern and structure is a good predictor, or a consequence of, successful acquisition 
of basic mathematical concepts and skills. What we can conclude from the qualitative 
analyses is that children at the pre-structural stage did not perceive mathematical 
structure in most of their responses. For example, even in a simple counting task of 
multiples of two, these children were able to count aloud using the pattern correctly 
but could not show the corresponding pattern in units partitioned on a numeral track. 
Similarly partitioning and visualising in equal sized units proved to be difficult across 
a range of tasks. Children who had an advanced awareness of pattern and structure 
excelled across most conceptual areas and showed strong indications of early 
algebraic reasoning. 
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Our findings support our initial hypothesis that the more that a child’s internal 
representational system has developed structurally, the more coherent, well-
organised, and stable in its structural aspects will be their external representations, 
and the more mathematically competent the child will be. We extend Goldin’s (2002) 
model to include two substages of developing structure and an advanced stage of 
structural development that was not expected from such young children. With a 
larger and more diverse sample and a broader range of tasks we may well find further 
substages within these stages. But rather than focusing on validation of stage-based 
developmental theories, we find it more important to identify and describe common 
structural characteristics across these stages that can enhance the development of 
mathematically coherent representations and well formed conceptual ideas. 

In support of Goldin’s theoretical stages of structural development, our analyses 
shows that mathematical structure does not develop in isolation. It develops from an 
emergent (inventive/semiotic) stage or stages in which characters or configurations in 
a new system (or new concept or task) are first given meaning in relation to 
previously constructed structural features. For example, the notion of equal-sized 
groups (multiplicative structure) is found across counting patterns, representations of 
these patterns on numeral tracks; in partitioning and sharing problems, in 
constructing and counting units of length, area and volume. We have also identified 
that children who operate at a pre-structural level may not necessarily progress to an 
emergent stage because they do not perceive some structural features with which to 
construct new ideas. With the advance of new concepts and skills in formal schooling 
young children’s transition from a pre-structural stage to an emergent stage becomes 
problematic, somewhat impeded and increasingly chaotic over time, as seen in the 
many examples of superficial and non-mathematical aspects of pre-structural 
children’s drawn representations.  

Imagery, visual memory, and recognising similarity and difference, each play an 
important role in the development of pattern and structure. But the development of 
multiplicative structures including the base ten system, unitising and partitioning are 
critical to building structural relationships. Spatial structuring was found to play a 
key role in visualising and organising these structures. Our findings show that young 
children are capable of developing more complex mathematical structures, rather 
than relying on unitary counting and additive structures, and informal units of 
measure. We aim to provide an integrated theoretical perspective on the underlying 
bases of early mathematical development: the development of pattern and structure is 
generic to a well-connected conceptual framework in early mathematics. 

FURTHER RESEARCH AND IMPLICATIONS FOR PRACTICE 

There is a considerable body of research showing that low-achieving students of all 
ages have a poor grasp of mathematical patterns and structures. Rather than 
dismissing this finding as a characteristic of an immutable “low ability”, we believe 
that it gives the clue to preventing difficulties in learning mathematics. Our recent 
classroom research suggests that young students can be taught to seek and recognise 
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mathematical patterns and structures, and that the effect on their overall mathematics 
achievement can be substantial. 

In 2003, a school-based numeracy initiative, including 683 elementary school 
students aged from 5 to 12 years, and 27 teachers, was trialled over a 9-month period 
using the PASA instrument and the Pattern and Structure Mathematics Awareness 
Program (PASMAP). Many PASMAP activities developed students’ visual memory 
as they observed, recalled and represented numerical and spatial structures in 
processes such as counting, partitioning, subitising, grouping and unitising. Activities 
were regularly repeated in varied form to encourage generalisation. For example, 
Year 1 students learnt that in a 2 x 3 rectangular grid of squares, the squares are of 
equal size, they touch each other along their sides, there are the same number in each 
row and in each column, and the total number can be counted in multiples or patterns. 
In one lesson, students who initially copied the grid using a scattering of open circles 
later used squares of a reasonable size showing some structure. This occurred once 
the teacher had focused the students’ attention on the importance of the structure of 
the grid. 

PASMAP was further developed in 2005 to reflect more explicitly, aspects of early 
algebraic reasoning. PASMAP was trialled consistently in a design study of one first 
grade classroom over a nine-month period employing 28 children representing a wide 
range of mathematical abilities. The effectiveness of this initiative reflected the 
strong commitment of the recent graduate teacher under mentorship of the first 
researcher. Both initiatives aimed at developing teachers’ pedagogical knowledge 
about the awareness of children’s use of pattern and structure across key 
mathematical concepts. So far we have sufficient empirical and qualitative evidence 
to warrant an independent evaluation of the PASMAP program. Currently we are 
evaluating the effects of a PASMAP intervention for younger low-achieving children, 
aged 4 years 6 months to 6 years, in the first year of formal schooling.  
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EMBODIMENT AND REASONING IN CHILDREN’S INVENTED 

CALCULATION STRATEGIES 

Carol Murphy 

University of Exeter  

 

This paper explores the reasoning of young children in invented calculation 
strategies. It draws on the non-objectivist philosophies of embodied learning to 
analyse the use of the Laws of Arithmetic in invented strategies. In doing so it raises 
questions regarding the ‘a priori’ view of mathematical reasoning and the nature of 
children’s learning of informal and formal arithmetic. It raises questions regarding 
the implications of embodied learning in the primary mathematics classroom.  

INTRODUCTION  

Through recent developments in cognitive science it is becoming accepted that 
humans, along with other animals, have an innate, inherited numerosity that may 
guide the acquisition of mathematics (Butterworth, 1999; Dehaene, 1997). 
Numerosity is combined with the human ability to use symbols, language and 
prediction to develop counting and, with the use of numerals, to create mathematics.  

Lakoff and Nunez (1997, 2000) proposed a theory of embodied learning in 
mathematics where cognition is situated in the mind and developed through 
psychological and biological processes. Grounding and linking metaphors support the 
development of schema. These are influenced both by the body and the environment 
and develop understanding of mathematical ideas. The theory explores deep issues 
related to the universal nature of mathematical ideas and the role of culture in shaping 
the content of mathematics. Epistemologically the theory is non-objectivist. 
Mathematics is viewed as human imagination where mathematical reasoning is based 
on bodily experiences (Johnson, 1987).  

There is much evidence that young children develop their own strategies in arithmetic 
(Carpenter and Moser, 1984; Steinberg, 1985; Kamii et al., 1993; Foxman and 
Beishuizen, 1999). The use of invented strategies has been traditionally viewed as 
evidence of individual construction of mathematics in a Piagetian sense (Steffe, 
1983). In this way the coordination of knowledge of numeration and arithmetic 
operations has been seen as abstract logico-mathematical reasoning and not 
experimental abstraction (Giroux and Lemoyne, 1998). An embodied view would 
suggest that the reasoning involved in these strategies is inductive and that 
abstraction is experimental.   

This paper draws on the non-objectivist philosophies of embodied learning to analyse 
the use of the Laws of Arithmetic in invented strategies. It challenges the notion of 
young children’s mathematical reasoning as deductive and explores the possibility of 
experiential learning in determining commutativity and associativity.   
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A NON-OBJECTIVE VIEW OF MATHEMATICS 

A Piagetian view of mathematics sees construction of knowledge as a progression 
from children’s spontaneous concepts and individual, egocentric views to a ‘true’ 
scientific knowledge (Piaget, 1962).  The child’s ultimate intellectual aim is to arrive 
at a ‘scientific concept’, a detached abstract view of mathematics.  Although Piaget 
recognised mathematics as a “science as a result of man’s mental activity” (Piaget 
and Beth, 1966, p.305), mathematical reasoning was seen as absolute and ‘a priori’.   

Cultural studies provide a different ‘world view’ and challenge Piaget’s 
constructivism (Lerman, 1996). Epsitemologically, Vygotsky suggested a non-
objectivist view of socially constructed, shared knowledge where “concepts are 
socially determined and thus socially acquired” (p.146) but that cultural tools and 
concepts exist “outside of the individual’s mind” (p.135). “Objects in mathematics 
are objective in an intersubjective sense, agreed, useful, long lasting but potentially 
changeable” but the created reality “takes on a life of its own” (p.146).  

This interpretation of Vygotsky suggests that there is an externally created reality to 
be internalised, the implication being that children appropriate the teacher’s (albeit) 
cultural knowledge (Steffe & Tzur, 1994). In seeing this as the ultimate aim it still 
suggests an esoteric, expert/novice model of socio-cultural learning that can reinforce 
the elitist academic view of mathematics.  

Traditionally cognitive science in the 1970s has supported the objectivist view of 
mathematics by examining individual reasoning and the manipulation of arbitrary 
symbols (Nunez et al, 1999). Mathematics was seen as non-corporeal and it did not 
consider how mind and body worked together. Embodied learning provided an 
alternative approach in cognitive science that rejected objectivism. Epistemologically 
“reality is constructed by the observer, based on non-arbitrary culturally determined 
forms of sense making which are ultimately grounded in bodily experience” where 
“cognition is about enacting or bringing forth adaptive and effective behavior, not 
about acquiring information or representing objects in an external world”. (Nunez et 
al, 1999, p.49)  

The view of mathematics as an external reality either in an objective or an 
intersubjective sense may lead it to be taught in an authoritarian way where the 
mathematics is presented as “fully formed and perfectly finished knowledge” (Ernest, 
1994, p.1). In this way academic mathematics may be seen as esoteric, elitist and 
decontextualised where students acquire very specific meanings to the mathematics 
taught in schools. The embodied notion of mathematics as internal and ‘mind-based’ 
may help to remove such an authoritarian view and, in turn, support affective views 
of mathematics.  
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GROUNDING METAPHORS AND EXPERIENTIAL LEARNING 

Lakoff and Nunez (1997, 2000) proposed two types of metaphors from which the 
conceptual structure of mathematics has been developed. The first are termed 
‘grounding metaphors’. These allow everyday experiences to project onto abstract 
concepts. The second are termed ‘linking metaphors’ that yield more sophisticated 
abstract ideas and allow different branches of mathematics to be linked.  

In exploring children’s invented strategies the first type is of interest.  These are said 
to be based on commonplace physical activities such as collecting objects into 
groups, splitting groups of objects and moving objects together and apart. These are 
linked with basic numerosity skills of subitising and counting. In this way the three 
basic grounding metaphors are: 

• Arithmetic is Object Collection 
• Arithmetic is Object Construction 
• Arithmetic is Motion  

The first is a “precise mapping from the domain of physical objects to the domain of 
numbers” (Lakoff and Nunez, 2000, p.55) and is reflected in our language by the 
word ‘add’ as the physical placing of objects or substances into a container or group 
of objects. For example: “Add some logs to the fire”. In arithmetic this becomes “If 
you add 4 apples to 5 apples, how many do you have?”. 

This metaphor, along with the other two grounding metaphors, can be seen to base 
arithmetic firmly in experience and as a human construction. There are objects that 
exist in reality but the idea of a collection or group of objects is a human 
construction. This does not contradict socio-cultural or constructivist views of 
mathematics as a human construction. Vygotsky (1978) saw the perception of real 
objects as a human construction in that we do not just see a world of shape and colour 
but impose a sense and meaning. Constructivists such as von Glasersfeld (1994) have 
stated that mathematics would not exist without the notion of ‘unit’ and that this 
notion is “derived from the construction of objects in our experiential world” and 
quotes Einstein in referring to the concept of objects as “a free creation of the human 
… mind” (p.5).  

INVENTED STRATEGIES AND EXPERIENTIAL LEARNING 

As stated earlier there is evidence of young children inventing their own calculation 
strategies. The innate basis for arithmetic would seem to be limited to subitising 
small numbers of objects (Butterworth, 1999; Dehaene, 1997) but arithmetic is said 
to exist as a human construction of numbers. For example addition would not be 
closed under subitising and relies on the human creation of counting and infinity.  
Although there may be an innate basis for arithmetic, not all arithmetic is innate 
(Lakoff and Nunez, 2000).  

With the invention of their own calculation strategies young children often rely on 
the Laws of Arithmetic. For example when putting a larger number first in counting-
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on in addition children will rely on commutativity. When partitioning numbers into 
tens and units or ‘bridging’ across the decades children will rely on associativity.  

The question arises ‘How do children learn to use these?’ There is a possibility that 
social mediation plays a role as children check their answers using these strategies 
but this does not explain how children develop them in the first instance. Some 
children will have developed their own strategies before starting school or in a formal 
mathematics classroom where their use is discouraged.  

Lakoff and Nunez proposed that the Laws of Arithmetic only exist through human 
construction of numbers and that the laws are a metaphorical entailment of the 
Arithmetic Is Object Collection metaphor. Young children can determine 
commutativity experimentally. In object collections, adding A to B gives the same 
result as adding B to A. The claim is then that they will find that, for numbers, adding 
A to B gives the same result as adding B to A. Similarly associativity can be 
determined experimentally where adding B to C and then adding A to the result is the 
same as adding A to B and adding C to the result in both collection of objects and 
numbers.  

Gelman and Gallistel’s (1978) empirical studies of young children’s counting have 
found that children develop numerical reasoning as they develop the principles of 
counting beyond ‘one-one correspondence’. A further principle of counting, ‘order-
irrelevence’, requires a more abstract view of number as the child finds out that the 
order in which you count a set of objects does not affect the number you end up with. 
This can then extend to addition and the realisation that this can be commutative. 

“Addition in the child’s view, involves uniting disjoint sets and then counting the 
elements of the resulting set. According to the order irrelevance principle it does not 
matter whether in counting the union you first count the elements of one set and then the 
elements from the other or vice versa” (p.191).  

When extended to three sets, associativity is also implicit in the child’s numerical 
reasoning. In such a way young children may implicitly determine commutativity and 
associativity as Laws of Arithmetic that tell them how numbers can be manipulated. 
They have moved beyond the innate numerosities and are beginning to reason with 
number.  

INFORMAL AND FORMAL ARITHMETIC 

By analysing the use of commutativity and associativity in invented strategies in 
terms of experiential learning it is possible that children develop early reasoning in 
number inductively but that this reasoning may be intuitive or implicit. Roter (1985) 
found that children were able to carry out unconscious abstract processes to some 
degree. By exploring inductive cognitive activities based on sequences of simple 
geometric shapes determined by complex rules it was found that children could 
abstract complex knowledge from the environment where the knowledge obtained 
was tacit.  
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This suggests the development of implicit, informal mathematical practices as used 
in everyday life. These practices are often intuitive and are used with little or no 
formal justification. They may be accepted on a pragmatic basis and empirically 
determined. The notion of embodied learning, grounding metaphors and the 
deductive determination of the Laws of Arithmetic through the order-irrelevance 
principle would support this implicit experiential learning of informal mathematics 
and the unconscious abstraction of knowledge from the environment.  

Formal mathematics, on the other hand, is based on proofs and axioms where 
reasoning is deductive. Tall (2001) questioned the founding of formal constructions 
in mathematics from natural or informal embodied concepts. Formal mathematics is 
seen to focus on definitions and formal deduction to “avoid any appeal to intuition” 
(p.203). It is recognised that informal ideas often come before the axiomatic 
theories and that they may persist after but Tall indicated they could sometimes be 
contradictory. In this way Tall asserted that not all “thought is related to embodied 
perception” (p.207) and saw formal and informal mathematics as two distinct 
perceptions of mathematics. Auslander (2001) also critiqued the role of metaphor in 
the development of more advanced mathematics and queried how the “spontaneous 
use of young children meets with the analysis of academic mathematics” (p.2).  

An embodied view of learning would see all reasoning as imagination based on 
bodily experiences (Johnson, 1987). Based on experiential philosophy, it looks to 
the brain and the body to explain all understanding from a naturally based account 
(Lakoff and Johnson, 1999).  Lakoff and Nunez (2000) asserted the role of 
metaphors as the “basic means by which abstract thought is made possible” (p.39). 
It is explained that  

“much of the ‘abstraction’ of higher mathematics is a consequence of the systematic 
layering of metaphor upon metaphor, often over the course of centuries” (p.47) 

It is also however recognised that mathematics viewed as formal and disembodied 
will look ‘very different’ to embodied mathematics.  

There is insufficient space in a paper of this length to explore this fully but there is 
enough to see that a contention exists between the development of natural, informal 
mathematics and the understanding of formal mathematics and the role that 
conceptual metaphors may play in this.  

From a pedagogical perspective this raises questions related to the teaching of 
arithmetic and the relationship between children’s informal, intuitive arithmetic and 
the formal mathematics that may be presented to them in the classroom. Figure 1 
presents two extreme paths through informal and formal arithmetic. No curriculum 
would follow just one of these paths. The path that follows through from 
experiential learning suggests the inductive development of early mathematical 
reasoning from empirical experience. We know that many children do invent 
strategies so this grounded route must play a role in many children’s mathematics. It 
is anticipated that  
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Fig. 1: Paths for Informal and Formal Development of Arithmetic 
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children following this route would arrive at the use of the standard algorithms with a 
greater capacity for reasoning intuitively.  

If the curriculum includes the teaching of mental calculations that are presented 
formally it is possible that children will base this on the practical experiences 
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developed from counting rather than the early reasoning based on order-irrelevence 
and the implicit use of the Laws of Arithmetic. If however children move from a less 
experiential route and calculations have been learnt as facts with little concrete 
verification they may learn to use standard algorithm based on limited numerosity 
skills. The child’s thinking about the algorithms will be limited and learning may be 
procedural.  

CONCLUSION 

The notion of embodied mathematics provides further lenses with which to 
investigate learning in mathematics. By reviewing children’s learning in mathematics 
through these lenses we begin to raise further questions related to pedagogy. 

It has not been possible to explore the contentions between formal and informal 
mathematics fully but whether the transition from informal mathematics to formal 
mathematics is seen as bridging a distinct gap or as an evolution from embodied 
experience to abstract thought, metaphors could be seen as having a key role. A 
further question would be to consider the different metaphors children use in carrying 
out informal invented strategies and formal algorithms.   

This analysis has explored children’s informal use of arithmetic and their 
unconscious, implicit abstraction of mathematics and begun to consider the 
pedagogical implications in the teaching of arithmetic from an informal and a formal 
perspective. It is possible to explain children’s invented strategies from an embodied 
perspective that challenges the constructivist notion that the mathematical reasoning 
underpinning these strategies is deductive logico-mathematics in a positivist sense. 
Empirical studies are needed to determine this so that we can better understand how 
children’s early reasoning develops into their first mathematical thinking beyond 
numerosities and how they use this to develop mental calculations and later become 
proficient at a range of informal and informal strategies. 
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WHEN THE WRONG ANSWER IS THE "GOOD" ANSWER: 

PROBLEM-SOLVING AS A MEANS FOR IDENTIFYING 

MATHEMATICAL PROMISE  

Dorit Neria, Miriam Amit 

Ben Gurion University of the Negev 

 

Cognitive characteristics of mathematical talent include flexibility in data 
management, and the ability to generalize and abstract. These features can be 
detected in non-routine problem-solving processes. A qualitative analysis of solution 
strategies – regardless of the answers' correctness – can provide pertinent 
information on students' mathematical thinking. Solution paths - even when the final 
result is wrong – may reflect sophisticated mathematical thinking. On the other hand, 
correct answers are not always achieved by strategies indicative of mathematical 
promise. Our paper presents examples supporting these claims. 

THEORETICAL BACKGROUND  

A number of cognitive, metacognitive, and affective characteristics distinguish 
talented math students from other students. The cognitive differences are observed in 
four major areas: (1) obtaining mathematical information, (2) processing the 
information, (3) retaining the information, and (4) a general component, a 
mathematical cast of mind. The processing of math information includes several 
components, such as the ability to generalize, the ability to think in curtailed 
structures, the striving for simplicity, and flexibility in thinking (Krutetskii, 1976). 
Mathematically talented students are recognized by their ability to formulate 
problems spontaneously, their flexibility in data management, and their capacity to 
generalize and abstract (Greenes, 1981).    

By solving math problems, students have an opportunity to demonstrate and develop 
certain cognitive abilities, such as generalization, reasoning, data analysis, and the 
use of a variety of representations and strategies (NCTM, 2000). 

Success in problem-solving depends on various cognitive, metacognitive and 
affective factors (Garofalo & Lester, 1985; Schoenfeld, 1992). Previous studies have 
shown that students with a talent for math are strong problem solvers (Dahl, 2004; 
Krutetskii, 1976; Schoenfeld, 1992; Sriraman, 2003). These students are often 
identified by standardized tests, even though this method does not always reveal their 
unique cognitive characteristics (Niederer & Irwin, 2001; Wertheimer, 1999).  

When looking for students with these cognitive assets, it is important to examine not 
only the correctness of the answers, but also the essence of the solution process, since 
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wrong answers are not always incongruent with mathematical promise and correct 
answers are not necessarily congruent with mathematical potential.  

This research investigated how mathematically talented students solve non-routine 
problems. The paper will provide examples of wrong answers that substantiate 
students with mathematical promise, on the one hand, and correct solutions that fail 
to demonstrate the cognitive characteristics of talented math students, on the other 
hand. 

METHODOLOGY  

Population 

The research population was made up of thirty-nine 7th-8th grade mathematically 
talented students who participate in "Kidumatica" - an after-school math club in 
Israel for ten- to seventeen-year olds. Kidumatica offers a variety of games, riddles, 
and competitive activities, and the opportunity to develop sophisticated creative math 
thinking.  

Settings and Tool 

The research tool was a questionnaire with five non-routine exercises that included 
the "Hanukah Problem" (Fig. 1). Although the students had a sufficient background 
to meet the challenge, the problem was considered non-routine because the arithmetic 
progression was unfamiliar to them. In addition, most of them had just begun 
learning algebra.  

 

 

 

 

 

 

 

 

 

Fig. 1: The "Hanukah" Problem 

All of the students received the questionnaires at the same time and date. They had to 
come up with solutions accompanied by justifications or explanations. There was 
ample time for completing the questionnaire. 

In Hanukah (a Jewish holiday), we light candles each day of the 8 day holiday.  Every 
day we light one leading candle and additional candles, according to the day of the 
holyday. 

On the first day we light the leading candle and one more candle, 

On the second day we light the leading candle and two more candles, 

On the third day we light the leading candle and three more candles, And so on, until 
the last day of celebration.  

A. How many candles do we light altogether in all the eight days of the holiday? 

B. If the holiday was 30 days long, how many candles would we have to light? 

C. If the holiday was n days long, how many candles would we have to light? 
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Analysis Methods 

The answers were analysed qualitatively according to three criteria (Neria & Amit, 
2004): correctness of the answers, solution strategy, and the mode of representation 
in the solution path. (Note: our paper omits the third category). 

Correctness of answers: The analysis included the right answer, the wrong answer, 
and no answer. This category referred only to the final answer, regardless of solution 
paths. 

Solution strategy: These are the actions or methods used to understand and solve the 
problem (Sriraman, 2003). The categories were based on previous studies and 
included such strategies as: systematic list, non-systematic list, selecting and 
calculating operations, guessing and testing, pattern seeking, etc. (Hembree, 1992; 
Szetela & Nicol, 1992). 

A number of cognitive skills were examined in the Hanukah problem: data 
management, pattern recognition, generalization, and abstraction. The problem 
"opened the door" to a variety of solution strategies (see examples and detailed 
explanations in Figs. 2, 3, 4, 5). 

In Question A, in order to deal with the data, the students had to understand the 
patterns of an arithmetic progression. The solution required adding up the numbers. 
Question B demanded pattern recognition, as well as forming a number of 
generalizations, although a correct answer could be obtained simply by adding up the 
numbers. Question C dealt with pattern generalization and its application in abstract 
form.  

RESULTS  

Correctness of answers: 31 students (79.5%) got the correct answer for Question A, 
while only 11 students (28.2%) and 6 students (15.4%) succeeded with Questions B 
and C respectively. See Table 1: 

 Question A Question B Question C 

Correct Answer 31 (79.5%) 11 (28.2%) 6 (15.4%) 

Wrong Answer 6 (15.4%) 23 (59.0%) 19 (48.7%) 

No Answer 2 (5.1%) 5 (12.8%) 14 (35.9%) 

Total 39 (100%) 39 (100%) 39 (100%) 

Table 1: Distribution of the correctness of answers 

 

Solution strategies: Table 2 refers to the distribution of the strategies used in 
Questions A and B. The strategies for question C are not presented because most of 
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the answers were incorrect and could not be categorised (examples of students' 
answers will appear in the research report).  

In Question A, the majority of students employed a strategy that usually entailed 
adding up the number of candles that were lit each day (increasing numbers). They 
calculated the number of candles on the first day (2 candles), second day (3 candles), 
and so on until the eighth day (9 candles) (Fig. 5). A minority of students chose 
another track. They discovered that by pairing the candles and multiplying by half the 
number of days, they arrived at the total number of candles (Figs. 3, 4). Two students 
solved the problem by using the formula for the sum of an arithmetic progression 
series; therefore the task was not considered a non-routine problem for them.  

 Question A Question B 

Selection of operations and calculation  30 (76.9%) 17 (43.6%) 

Patterns search 5 (12.8%) 12 (30.8%) 

Formula application 2 (5.1%) 2 (5.1%) 

No solution path demonstrated  3 (7.7%) 

No answer 2 (5.1%) 5 (12.8%) 

Total 39 (99.9%) 39 (100%) 

Table 2: Distribution of solution strategies 

 

Two different approaches appear in Question B. The addition of increasing numbers 
was used by 17 students (43.6%) (Fig. 2) while 12 students (30.8%) searched for 
non-routine problem-solving patterns.  

ANALYSIS AND DISCUSSION  

Looking for the correct final answer is not always the most accurate way to pick out 
talented math students. An in-depth analysis of solution paths is also required. 

The answers to Question B (Figs. 2, 3, and 4) are all correct, even though they differ 
in the solution strategy. The answer in Fig. 2 was arrived at through the cumbersome 
process of adding up thirty numbers, whereas the answers in Figs. 3 and 4 were 
obtained in a more sophisticated way – by recognizing a pattern and then 
generalizing it. Furthermore, although the student in Fig. 5 failed to solve Question 
B, he demonstrated a high level of mathematical thinking by his formulation of a 
series of partial sums in an arithmetic progression - a solution path that indicates 
intuitive algebraic thinking.  

Answers to question C shows that wrong answers can demonstrate sophisticated 
mathematical thinking. A correct answer required not only the ability to generalize, 
but also the ability to write the generalization in abstract form. Although the answers 
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in Figs. 3 and 4 are incorrect, they illustrate the students' ability to generalize and 
think abstractly, while possibly lacking the formal knowledge required for writing the 
correct answer. The two students identified the data pattern and figured out how to 
apply it to concrete situations, as in Questions A and B. They generalized the number 
pattern, but failed to express in abstract form the connection between the number of 
days (n) and number of candles. One student made one step further (Fig. 3) and used 
the variables x, y, and z to express the candles in each day. A creative student (Fig. 4) 
"invented" an original form of symbols: to express the first day she wrote "x<" 
(meaning: small x) and the last day "x>" (meaning: big x). 

The student in Fig. 5 chose a different solution strategy altogether. In order to answer 
Question A, he used addition, and then proceeded to search for the relationship 
between the number of days and number of candles. He made a chart and 
systematically tried to find the algebraic expression for the required connection, using 
only n as a variable. Having failed to do so, he was unable to answer Questions B and 
C. 

Although the answers to question C in Figs. 3, 4, and 5 are wrong answers, because 
the students did not obtain a correct solution, they are in fact good answers, since the 
solution strategies indicate mathematical promise.  

 

 

 

 

 

 

 

 

                                                                                                

 

                                                                                                    

                                                                                                 

                             

                                    Fig. 2 

In fig. 2, Solving question B the 
student used the strategy of selecting 
operations and calculating. He spread 
out the days (right column), the candles 
to be lighted each day (middle 
column), and partial sums (left 
column). 

The correct total sum, 495 candles, 
appears on the right. 



Neria & Amit 

 

4 - 230 PME30 — 2006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               Fig. 3 

 

 

 

 

 

 

 

                    

 

                    

 

                        

                                 Fig. 4 

 

In fig. 4 the student wrote the 
answers to questions A and B 
without demonstrating how she 
obtained them.  it is reasonable to 
assume that she was unfamiliar with 
the sum of arithmetic progression 
formula, otherwise she would have 
used them in question C. 

The surprising formula in C is 
elaborated in the analysis of results 
and discussion section of this paper. 

In fig. 3 the upper part is the answer to 
question A. The student wrote the 
number of candles to be lighted each day, 
and paired them (1st and 8th day, 2nd and 
7th day and so on). She found that there 
were four equal sums of 11 (11 ⋅ 4). 

The answer to question B is located in the 
center. The student applied the pattern 
she found in question A to B, and got a 
correct answer. 

In the lower part is the answer to question 
C. The student marked the number of 
candles lighted on the first day as x (and 
not 2, as expected), y stood for the 
number of candles lighted on the second 
day and z stood for the number of candles 
on the last day. She then proceeded and 
multiplied the sum of candles 
(x+y+…+z) by half of the number of 
days (n), just as she had found in 
questions A and B. 
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                                     Fig. 5 

CONCLUSIONS AND IMPLICATIONS 

Our study supports the claim that quantitative assessments, such as multiple-choice 
questions, are insufficient for discovering mathematical talent and that additional 
assessment methods are needed (e.g. Ablard & Tissot, 1998; Sheffield, L.J., 1999; 
Wertheimer, 1999). By concentrating exclusively on correct final results, important 
information about math thinking may be overlooked. 

We have noted that "wrong" answers are sometimes "good" answers because they 
identify talented students who demonstrate mathematical creativity and 
sophistication.  

Thus, the inclusion of non-routine problems and the documentation and analysis of 
solution paths are crucial for the discernment and cultivation of mathematically 
talented students. 
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In fig. 5 the answer to question A is in 
upper part. The student added up the 
number of candles to be lighted each 
day. 

In order to answer question B, the 
student wrote two columns: in the left 
column he numbered the days and in 
the right column he wrote, for each 
day, the accumulated number of 
candles that have been lighted until 
that day (included). This strategy did 
not lead to a final result. However, in 
his attempts he demonstrated 
sophisticated mathematical thinking, 
in fact, he formulated a series of 
partial sums. 

Right to these columns, the student 
tried to answer question C, by 
generalising the sums he calculated in 
question B. 
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THE CONCEPT OF EQUATIONS: 

WHAT HAVE STUDENTS MET BEFORE? 

Rosana Nogueira de Lima (PUC/SP – Brasil)1 

David Tall (University of Warwick – UK) 

 

In this paper, we present results from a research study designed in collaboration with 
teachers to investigate how Brazilian 15-16-year old students interpret the concept of 
equation and its solution. Data from a questionnaire, an equation-solving exercise 
and interviews with selected students are reported and analysed in terms of how the 
students are affected by their earlier experiences in arithmetic and algebra.  

INTRODUCTION 

Teaching and learning algebra has long been seen as a source of difficulty. The 
situation in Brazil reveals problems similar to those in the literature. Freitas (2002) 
categorised student errors solving linear equations in terms of misunderstanding 
algebraic rules. Our purpose here is to use a theory of long-term mathematical growth 
involving embodiment, symbolism and proof (Tall, 2004) to seek deeper reasons for 
these phenomena. 

LITERATURE REVIEW 

Kieran (1981) gave evidence that the equals symbol is often seen as a “do something 
symbol” rather than a sign to represent equivalence between the two sides of an 
equation: ‘2+3=5’ means ‘add 2 and 3 to get 5’ and an equation such as 4x − 1 = 7  is 
seen as an operation to find a number which when multiplied by 4 and 1 is subtracted, 
gives 7. Filloy & Rojano (1989) emphasised the difficulty when the unknown appears 
on both sides of the equation, by naming it ‘the didactic cut’ between arithmetic and 
algebra.  

As process-object encapsulation theories appeared, Linchevski and Sfard (1991) 
suggested that a major problem is that students view algebraic expressions as 
procedures of evaluation rather than as mental entities that can be manipulated. 

Tall & Thomas (2001) distinguished three levels of algebra: evaluation algebra (the 
evaluation of algebraic expressions such as 4*A1+3 as in spreadsheets or in the initial 
stages of learning algebra), manipulation algebra (where algebraic expressions are 
manipulated to solve equations), and axiomatic algebra (where algebraic systems 
such as vector spaces or systems of linear equations are handled by definition and 
formal proof). 

The story emerging from these theories tells how operations in arithmetic are 
expressed as generalized expressions of evaluation, which in turn become mental 
entities for manipulation, later to be translated into formal terms. 
                                           
1 The first author was supported by the CAPES Foundation, Ministry of Education of Brazil. 
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Reflecting on this development, Tall (2004a) theorized that this development is a life-
long journey through three distinct worlds of mathematics: 

A conceptual-embodied world of perception in which sense making becomes 
increasingly sophisticated by verbalizing properties of objects through description, 
definition, thought experiment and (Euclidean) proof. 

A proceptual-symbolic world of action-schemas, such as counting, that are symbolized 
and routinized as procedures, where they may remain to give procedural thinking or be 
seen as an overall process symbolized as an entity, such as number, whose symbol is 
used flexibly as process or concept (procept). 

A formal-axiomatic world of formal definition and mathematical proof. 

These three worlds will be named ‘embodied’, ‘symbolic’ and ‘formal’ in the 
remainder of this paper. It is theorized that the embodied and symbolic worlds 
develop in parallel, but operate in different ways. Human meaning begins from 
coherent embodiment of connections between concepts. Action-schemas, however, 
can be routinized and learnt by rote. We hypothesise that symbolic meaning comes 
from two distinct sources: from relationships with meaningful embodiment and from 
the internal coherence of the symbolism. 

Watson (2002) revealed a parallel between compression of knowledge in the 
embodied and symbolic worlds, which arises through a shift of attention from the 
steps of an action-schema to its overall effect. For instance, 2x+4 is a different 
sequence of actions (double the value and add 4) from 2(x+2) (double the result of 
adding two to the value), but has the same underlying effect. Such a viewpoint gives 
a practical way of conceptualizing the shift from procedure of evaluation to flexible 
algebraic manipulation. 

One further element in long-term learning is the effect of prior knowledge, based on 
structures ‘set-before’ in our genes or ‘met-before’ in our experience. Tall (2004a) 
termed a current structure resulting from earlier experiences a met-before. Some met-
befores—such as those in a well-designed curriculum—can be a positive foundation 
for successful development, others, such as epistemological obstacles studied by the 
French School (Brousseau, 1997), can cause conflict in a new context and have a 
negative effect on learning. The theory of met-befores therefore represents these 
positive and negative aspects in a single theory. It is our purpose in this paper to use 
this framework to analyse the conceptions developed by students studying algebra. 

RESEARCH METHODS AND DATA COLLECTION 

The first author worked in collaboration with five secondary Brazilian teachers to 
discuss issues concerning equations and to design instruments for collecting data. The 
research involved 77 students in three groups of 15-16 year-old high school students: 
26 first year and 32 second year from a public school in Guarulhos/SP, 19 second 
year students from a private school in São Paulo/SP. Three instruments were 
designed by teachers and researchers in collaboration and a further test was inserted 
by the researcher to clarify issues arising during analysis of data, as follows: 
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A brainstorming session to categorize words used in algebra starting with EQUATION, 
conducted by the teacher in class, observed by the researchers. 

A written questionnaire concerning the notion of equation, its solution and its use in 
solving problems, administered in class by the teachers (table 1). 

A written equation-solving task, added by the researcher after reviewing the data from 
written questionnaire, administered by the teachers (table 2). 

Interviews with selected students conducted by the researcher in the presence of an 
observer, based on aspects arising from the earlier data. 

 
Table 1: Questionnaire 

 

Solve: 3x − 1 = 3 + x  5t − 3 = 8  2m = 4m   

 m2 = 9  3l2 − l = 0  a2 − 2a − 3 = 0  r2 − r = 2  

Table 2: Equation-solving task 

ANALYSIS OF DATA 

Here we analyse the data collected in the Questionnaire, Equation Solving Task and 
the Interviews, supplemented by the initial brainstorming task. 

Questionnaire 

Students’ most frequent responses to question 1 (What is an equation?) were of the 
form: “It is a mathematical calculation” or “It is a calculation you do to find the 
solution, to find x”. These suggest that most students seem to see an equation either 
as an arithmetic calculation, or as a calculation in which it is necessary to find the 
value of x, meaning the unknown. (Similar results were found by Dreyfus and Hoch, 
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2004.) In addition, while some students (21 out of 77) referred to the unknown as an 
important feature of equations, no student explicitly mentioned the equals sign. This 
is consistent with the likelihood that students do not see the equals sign as an integral 
part of an equation, but as “sign to do something” in the sense of Kieran (1981). This 
“action to be performed” is almost certainly a met-before from the students’ previous 
experience of arithmetic, where the equals sign indicates that an arithmetic 
calculation is to be performed. 

The responses to question 2 (What is an equation for?) relate mainly to mathematical 
contexts such as “to find the unknown value”, rather than real-life problem solving 
(“Not much in daily life, but may be useful to people who like maths”). 

Question 3 (Give an example of an equation) had 47 valid responses such as 
‘ 2193 =++ xx ’, or ‘ 0322 =+− xx ’ and 23 other responses that included 
‘ 30 − 20 +15 ⋅ 5− (−5+1) =’ or ‘

  
15x + 5+ (+3x + 7x) + 5{ }+ (+3) =’. The latter reveal 

an equation as a numeric process to be calculated or an algebraic expression to be 
evaluated to find a value to give the right-hand side. Forty-six students actually solve 
the equations or evaluate the expressions given. 

In question 4, (What does the solution of an equation mean?), students responded in 
terms of “The solution to a mathematics problem”, or “The unknown value”. Some 
responses involved “The calculation of angles and measures”, where equations 
expressed known facts such as two angles adding to a right angle. Every case 
involved an expression to be evaluated. No student related equations to a real-world 
problems.  

Question 5, 6 required the solutions of t2 – 2t = 0 and (y – 3).(y – 2) = 0. Analysis of 
the solutions suggested the need to study a wider range of problems, which are 
analysed in the equation-solving task, discussed below. 

The practical “fence” problem in question 7 produced a few responses using the 
numbers given in an equation such as 40 + 40 + x + x = 200, but no one gave an 
equation in the form x.(40 – x) = 200 that would lead to the required solution. One 
student only gave a correct numerical solution with sides 10m and 20m, writing the 
answer straight down, probably because he noticed that these numerical values 
satisfied the condition. Thus none of the students symbolised the physical problem as 
an algebraic equation. 

In question 8, where students were asked to analyse and comment on John’s one-line 
solution of the equation (x – 3).(x – 2) = 0, three students checked that the solution 
was correct by explicitly substituting the values for x and checking the arithmetic. 
Apart from this, the most common response from sixteen students was to try to solve 
the equation and compare results. Only 3 of these were correct. Solution methods 
varied, with 14 students beginning by multiplying out the brackets, performed 
correctly by only 6. Five students attempted to use the quadratic formula. No student 
mentioned the fact that ‘if the product of two numbers is zero, then one of them must 
be zero. 
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The two methods illustrated were either the remembered quadratic formula, or the use 
of arithmetic method of checking an equation by carrying out a calculation. The 
former is procedural; the latter need only treat the equation as a calculation process 
giving a numerical result. Both are clearly met-befores: the use of the formula to 
solve the equation, and the experience of checking a calculation to verify that it is 
correct. Neither goes beyond the procedural calculation of evaluation algebra to move 
to the flexible use of algebraic expressions as process or concept characteristic of 
manipulation algebra (in the sense of Tall & Thomas, 2001). 

Equation-solving task 

This task, added by the researcher, to supplement questions 5 and 6 above began with 
three linear equations: 

  3x −1= x + 3,   5t − 3 = 8  and 2m = 4m . 

The most used and successful met-befores to solve them were the rules of “change 
side change sign”, transforming 3x – 1 = x + 3  into 3x – x = 3 + 1 and, on reaching an 
equation of the form 2x = 4, to “move the coefficient of x to the other side of the 
equals sign and divide by it”, in this case giving x = 4/2. Such solutions involve a 
movement of the symbols, together with an extra technical element (such as changing 
the sign) to give the correct result. As such they could easily be rote-learnt as 
meaningless embodied actions, shifting symbols and doing something else at the 
same time. Such operations may be fragile and applied inappropriately, for instance, 
students may change sides without changing signs, or change the sign of the 
coefficient of x as they shift it to the other side, or change ax = b erroneously to x = 
a/b. These errors were also noted by Freitas (2002) and theorised by Linchevski and 
Sfard (1991) as ‘pseudo-conceptual entities’. 

Other errors in interpreting linear equations related to the equals sign. Several 
students interpreted 2m = 4m as a sum, giving 6m. Perhaps students needed to “do 
something”, so they perform an operation. Some students also need to find the value 
of m and 2m = 4m was turned into 6m, then m = –6. 

In the case of quadratic equations, four new equations were given: 

m2 = 9, 3l2 – l = 0, a2 –2a – 3 = 0, r2 – r = 2 

and analysed together with 

t2 – 2t = 0, (y – 3).(y – 2) = 0 

from the original questionnaire. 

The first equation m2 = 9 was often seen as a problem to find the square root knowing 
the square is 9, so the solution is m = 9 and so m = 3. The other equations were 
approached either by testing numeric values to see if they were solutions or by using 
the quadratic formula. None of the students used the property that if the product of 
two factors is zero, then one of the must be zero, even in the case of (y – 3).(y – 2) = 
0. In interview, students did not seem to believe it. The only met-befores seem to be 
numeric ‘guess and test’ to seek solutions, or an attempt to use the quadratic formula. 
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The students are therefore at a procedural level relying on a single procedure, without 
the appreciation of several procedures to give alternative approaches and certainly not 
approaching a flexible level of moving between expressions as processes to evaluate 
and concepts to be manipulated. They respond at a fragile procedural level rather than 
proceptual. 

Interviews 

Fifteen students were selected for interview to give a spectrum of levels of response, 
including mainly those who used non-standard algebraic manipulations. They were 
asked to talk about their responses. The equals sign (which was not mentioned in the 
written responses) arose in two responses, however, it was still regarded as a sign to 
give a result. Calculations were often made in a fragile way that led to error, for 
instance, some students said that t2 is equal 2t because it is t . t, which is the same as 
2t, so t2 – 2t = 0. When a fuller explanation of their understanding of equation was 
requested, the responses again indicate mainly a focus on the calculation involved 
and on the need to find the value of the unknown. 

Students often referred to the use of rules to solve equations. None mentioned the 
idea of performing the same operation in both sides (just as none of them used this 
technique in the equation-solving exercise). The rules given involved operating on 
the symbols as “a rule that must be used to solve an equation, otherwise the right 
solution will not be found”. The language used often seemed to have an embodied 
meaning relating to actions performed on the symbols in the equation such as “pick 
this number and put it at the other side of the equals sign”, “I take off the brackets”, 
or “the power two passes to the other side as a square root”. These actions have 
underlying embodied foundations that relate not to real-world activities, but to 
moving symbols around, with a mysterious twist to make things right. It seems as if 
students are more comfortable trying to shift symbols rather than to perform the same 
operation to both sides. 

Rules that they have met before in arithmetic were sometimes misapplied. For 
instance, when solving t2 – 2t = 0, a student wrote 1t2 – 2t1 = 0 and performed the 
subtraction as –1t = 0, because “you have to subtract powers as well” (subtracting 
the constants 2 from 1 and the exponent 1 from 2). 

Another student solving the equation 3l2 – l = 0 explained, “I leave 3 aside, pick up 2 
(the exponent), then make 2l and put 3 and l together”, reaching 2l – 3l = 0. To 
subtract these terms, she said, “plus with minus is minus; different signs, add 
numbers” and wrote down –5l = 0.  

Discussion 

The data collected shows that these students’ conceptions of equations and ways of 
solution are fundamentally based on arithmetic met-befores, where the equals sign is 
conceived as “something to do” to “get the solution” and on what they recall from 
previous experience in algebra. Their main solution method is the quadratic formula, 



Nogueira de Lima & Tall 

 

PME30 — 2006 4 - 239 

which could give a correct solution whether or not it is fully understood, but was 
often fragile and applied incorrectly. 

There was no aspect of embodiment of real-world contexts in their conceptions of 
equations. There was no mention of equivalence between the two sides of the 
equation, nor of applying the same operation to both sides to simplify the equation in 
the process of moving towards a solution. 

Discussion with the teachers revealed that there was a widespread belief that algebra 
was difficult and so there was a strong focus on the quadratic formula because it was 
seen as the most efficient way of getting a solution with less possibility of students 
making mistakes. This focus on a single procedure seems to have the effect of 
impeding the development of any flexibility to give meaning to equations and their 
solution. There is no possibility of a shift from procedural methods of evaluation to 
more flexible operations of manipulation algebra. 

We share the widespread belief that the teaching of algebra in general and equations 
in particular should be based on experiences that give meaning. Embodiment gives 
human meaning, but does not feature in the experiences of these students. Symbolic 
meaning arising from the coherent relationships between different methods of 
solution is also unlikely. Instead the students have limited procedural knowledge that 
is fragile and prone to error. 
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TEACHING BECOMES YOU: THE CHALLENGES OF PLACING 

IDENTITY FORMATION AT THE CENTRE OF MATHEMATICS 

PRE-SERVICE TEACHER EDUCATION 

Kathleen T. Nolan  

University of Regina 

 

In spite of introducing new forms of instruction and assessment during teacher 
education programs, traditional textbook and teacher-directed approaches prevail in 
mathematics classrooms. Such approaches still dominate because of a number of 
socio-cultural issues relating to pedagogical identity, classroom culture, the 
perceived nature of mathematics, and personal epistemological beliefs. Because new 
and innovative forms of instruction and assessment look very different from current 
classroom practices, attempts to implement them highlight several obstacles to 
change in the teaching of mathematics. In this paper, I briefly discuss three such 
obstacles that emerged and dominated the discourse during a research process with 
secondary mathematics pre-service teachers.  

INTRODUCTION  

As many mathematics researchers have documented, there are a range of personal, 
political, and social factors that influence the development of mathematics teachers 
and their pedagogical identities (Goos, 2005; Kaartinen, 2003, Lerman, 2005; Nichol 
& Crespo, 2003; Walshaw, 2005).  If one acknowledges the importance of these 
factors, many dimensions of a mathematics teacher's pedagogical identity can be 
viewed through socio-cultural lenses. For instance, in terms of the preparation of 
mathematics teachers within a teacher education program, a socio-cultural 
perspective would propose that “teacher preparation is not just the technology that 
equips future teachers with knowledge and proficiency. It rather lays the foundations 
for novice teachers’ enacting of new or modified patterns of interaction.” (Jaworski 
& Gellert, 2003, p. 850) In spite of introducing new modes of classroom interaction 
during teacher education programs, traditional textbook and teacher-directed 
approaches prevail in mathematics classrooms. According to several researchers 
(Jaworski & Gellert, 2003; Lerman, 2005), such approaches still dominate because of 
a number of socio-cultural issues relating to classroom culture, the perceived nature 
of mathematics, acceptable styles of interaction, and personal epistemological beliefs. 
These issues are often neither trivial nor overt in the lives of pre-service teachers but, 
instead, embedded within their actions and motivations.  

As will be discussed in this paper, enacting such new and modified patterns is not an 
easy task for novice teachers who find themselves faced with the conservative power 
of school tradition and culture. Since new and modified patterns of interaction often 
fly in the face of current status quo practices, they highlight the obstacles to change in 
the teaching of mathematics. While it is important to recognize that “teachers of 
mathematics are all in the process of pedagogical identity development through 
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which they are learning to see themselves as becoming the teachers that they value 
most” (Bishop, Seah & Chin, 2003, p. 755), it became apparent in this study that 
placing an exploration of mathematics pedagogical identity ‘at the centre’ is a 
challenging task indeed. Rather, the data gathered through the study described in this 
paper indicates that at the centre of mathematics teacher education lie many 
unexplored and unquestioned obstacles to change. 

DESIGN AND PURPOSE OF STUDY  

The research study was designed as a case study to investigate the experiences of 
three pre-service teachers during their internship in secondary school mathematics 
classrooms. The study emerged out of a recognized disconnect between the theory of 
a university-based curriculum course on alternative instruction and assessment and 
the practical implementation of these ideas in mathematics classrooms. The 
university curriculum course focused on studying the theory and practice of 
alternative instruction and assessment strategies such as problem-based learning 
(PBL), portfolio assessment, journal writing, anecdotal records, student interviews, 
and self-assessment. The strategies clearly represented a paradigm shift in 
mathematics teaching and learning for these pre-service teachers (Nolan, 2004; Nolan 
& Corbin Dwyer, in press). Their perceptions of what it means to know, to teach, and 
to learn mathematics did not readily enable (let alone encourage) them to integrate 
these new and different ideas into practice. In fact, as the instructor, I encountered 
substantial student resistance based in their perceptions of the reality of mathematics 
classrooms, curricula, and students.  

The study referred to in this paper was designed to mentor pre-service secondary 
mathematics teachers as they negotiated transitions from the theories of this 
university course to the practices of the classroom. The intent was to provide 
opportunities for pre-service teachers to ‘try out’ the innovative instruction and 
assessment strategies they studied in their university course work through a reflective 
and integrated approach during their internship field experience. The main question 
posed in the study was: What happens in a secondary mathematics classroom when 
pre-service teachers who have been introduced to alternative and innovative 
instruction and assessment strategies in a university-based curriculum course attempt 
to realize the strategies in practice? Since this question was explored throughout the 
pre-service teachers’ internship semester, the research study attempted to view the 
mathematics classroom as a curriculum laboratory (Vithal, 2000) where new ideas 
could be tried under the guidance of experienced cooperating teachers and a 
mentoring teacher educator. While the results of this study successfully point to a 
number of key issues for future directions and further research (Nolan, forthcoming), 
in this paper I wish to highlight results of a different sort—results that point to how 
the research was resisted and ‘explained away’ (Skovsmose, 2005). The data and 
results presented in this paper describe how the original intent to explore the kind of 
teacher one wants to become, while providing opportunities to ‘try out’ one’s 
developing pedagogical identity, ended up being overshadowed by obstacles to 
change and to the research process itself. In other words, in this paper the results 
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point to a need to reflect on the question: do you become a math teacher or does a 
math teacher become you? 

THEORETICAL FRAMEWORK AND DESCRIPTION OF STUDY 

While there are a range of theoretical landscapes for describing and understanding 
how/when/if learning occurs, socio-cultural views of learning are being drawn upon 
more and more by educators and researchers due to an increasing belief that learning 
embodies social, political, historical and personal dimensions. To explore learning 
through socio-cultural lenses means to open the nature(s) of learning to scrutiny by 
(1) viewing learning as situated with/in the social interactions of members of a social 
group (Bauersfeld, 1988), (2) understanding cognition to be both in the minds of 
individuals and distributed across communities of practice (Bohl & Van Zoest, 2003; 
Eames & Bell, 2005), (3) exploring how particular practices of schooling are 
implicated in the constitution of teacher and student identities (Walshaw, 2005) and, 
(4) exploring how meaning is negotiated through the cultural tools (especially 
language) that operate within school discursive practices (Lerman, 1994; Radford, 
1997). In addition, research with/in a socio-cultural framework can highlight the 
importance of a critical mathematics education (Skovsmose & Borba, 2004) by 
drawing attention to assumptions that remain unquestioned while highlighting 
possible alternative images of mathematics practices and discourses (Simmt & Nolan, 
in press). 

Unquestioned assumptions came to the foreground more in this study than was 
originally anticipated and, in the words of Skovsmose (2005), the data revealed a 
noticeable tendency to ‘explain away’ some of these assumptions. The assumptions 
functioned as obstacles to change in much the same way as Begg, Davis & Bramald 
(2003) describe how it is necessary for teachers to ‘overcome the momentum of 
habit’. These authors discuss how certain teacher habits are “tied to our long history 
with traditional schooling practices and are supported by such things as curricula, 
evaluation regimes, and student expectations [and that] changes in practice involve 
more than conscious decisions to do things differently” (p. 622).  But what about 
conscious decisions to not do things differently? Such decisions that resist and 
obstruct a change process can be ‘explained away’ in a number of ways that remove 
any chance for personal and professional agency in the formation of a teacher’s 
pedagogical identity. In analyzing how pre-service teachers encounter a myriad of 
socially-sanctioned filters, Brown (2003) indicates that a set-of-rules approach to 
teacher education is generating resistance to the desire to work toward a professional 
identity of one’s own (p. 155). The data in this study points to such a resistance, with 
a focus on the tendency to deny agency and to ‘explain away’ the obstacles to 
change. 

METHODS AND DATA SOURCES 

Acting in the capacity as both the researcher in this study and the instructor for the 
university curriculum course, I wanted to make a deliberate effort to follow the 
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course discussions, assignments, and learnings into secondary mathematics 
classrooms. My main criterion for selection of the case study pre-service teachers 
was that they expressed a willingness to make an effort to incorporate alternative 
instruction and assessment practices into their internship classroom. Once the three 
pre-service teachers were selected, I met with each of them (and their cooperating 
teachers) to discuss the instruction and assessment strategies they preferred to try in 
their classroom and to create a tentative plan for the internship semester.  

Since the primary objective of the study was to understand what happens when pre-
service teachers attempt to incorporate alternative instruction and assessment 
practices into their classroom, the methods chosen to gather information needed to be 
such that the pre-service teachers’ beliefs, concerns, and practices could be brought to 
light. The methods included individual interviews with the three pre-service teachers 
(monthly), focus group discussions with the pre-service teachers and their 
cooperating teachers (monthly), and maintaining an ongoing reflective artefact in the 
form of a written journal or a weblog. Data was collected by audio-taping and then 
transcribing the interviews and discussions and also by keeping a researcher’s 
journal, in which I made notes of the issues discussed, any challenges or questions 
encountered by the interns, and general thoughts and feelings regarding the research 
conversations. In addition to these formal methods for data collection, my 
commitment to an on-going mentorship approach meant making an effort to maintain 
regular contact with the interns throughout the semester through individual 
conversations (in person, via telephone, webcam, and e-mail). 

RESULTS AND DISCUSSION 

As previously mentioned, the alternative instruction and assessment strategies 
introduced in the university course represented a paradigm shift in mathematics 
teaching and learning for pre-service teachers. Since their experiences and 
perceptions of what it means to know, to teach, and to learn mathematics did not 
prepare them to integrate such new and different ideas into practice, I was not 
entirely surprised (or even initially discouraged) by the reluctance of my 
participants to dive headfirst into the study and try several forms of alternative 
instruction and assessment strategies in their internship classroom. What did 
surprise and discourage me, however, was the extent to which the interns and their 
co-operating teachers spent time ‘explaining away’ the obstacles to change in ways 
that had me ‘backing away’ from my original intentions in the study. 

The data gathered through interviews and focus groups in this study indicate that at 
the centre of mathematics teacher education lie many obstacles to change. These 
centre-stage obstacles include such concerns as the drive to cover content, to master 
a set of management techniques, to bring student skills up to an established grade 
level norm, to passively mimic (rather than actively engage in) problem solving, 
and a host of other issues that became the fodder for ‘explaining away’ possibilities 
for change. For the purposes of this paper, I will briefly discuss three change 
obstacles that emerged during the research process and ended up dominating the 
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discourse. These three obstacles were brought to light through conversations with 
the interns and co-operating teachers in which they chose to ‘explain away’ a 
change process in instruction and assessment. Tied closely to each ‘explaining 
away’ experience was another obstacle—one that emerged and became part of my 
own researcher identity in deciding to ‘back away’ from the planned research 
process. 

“Just like my mom” 

One intern explained away her ability to implement alternative instruction and 
assessment by comparing her cooperating teacher’s expectations to those of her 
mother. She stated: “It’s just like when I was growing up— with my mom there was 
always a particular way to fold the towels. According to my mom, this was not only 
a best way to fold towels, but a correct way. It’s like that with [my coop] in 
teaching math— she’s been teaching for a long time and she knows the best way to 
do it. I just don’t think I can go against that right now.” This intern felt that the 
effort involved in attempting to convince her cooperating teacher that group 
problem solving was a valuable instructional strategy, and a way to supplement the 
traditional individual class work on mathematics problems, was just not worth it. 
This, of course, was tied closely to the intern’s already skeptical view about 
whether she actually believed herself that the change in instructional approach was 
worthwhile. My response as a researcher and mentor was to back away from 
applying pressure. I thought to myself that it would be best to allow her to go with 
the flow of the established classroom dynamics for the sake of her internship 
experience, rather than try to force my research plan.  

“It’s my duty” 

During a conversation with one cooperating teacher, she made it abundantly clear 
that the Department of Education has charged her with the responsibility of teaching 
all the content in the curriculum guide and she feels it is her duty (to government, to 
students, to parents, etc.) to cover everything. “I do not have the right to choose and 
make decisions about what content to cover and what not to cover. It’s all there and 
I need to be sure to not miss anything. What if I skip a topic that would have been 
of interest to even one or two of my students?” This was the cooperating teacher’s 
effort to explain away the possibility of teaching in a constructivist manner through 
a math trail or investigation because it would take too much time. As a researcher 
and colleague, my response was to remain silent. In doing so, however, I believe I 
reinforced her views as I backed away from my desire to draw her attention to the 
differences between covering curriculum content and learning curriculum content. 

“I tried teaching that way” 

During the first meeting with interns and their co-operating teacher I found myself 
treading water, walking on thin ice, and a number of other clichés to describe how I 
introduced the research project. I was confident that implementing alternative 
instruction and assessment strategies would create opportunities for the currently 
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unsuccessful mathematics student to experience and demonstrate mathematics 
knowledge in diversely legitimate ways. When speaking with cooperating teachers 
and interns, however, I became quite cautious in how I advocated for changes in 
mathematics teaching and learning. I felt that, ultimately, a desire to change practice 
reflects dissatisfaction with current practice. How was I to express this 
dissatisfaction with the very source of the current practice without alienating myself 
and the research project from the practicing teachers and interns? As part of the 
conversation, one cooperating teacher responded to my call for more student-
centred problem solving by saying, “I tried teaching in more constructivist ways 
where the students try to solve the problem on their own, but the students said they 
preferred it if I just did an example first and then they could follow it to do more.” I 
felt strongly that this teacher was explaining away the obstacle of student resistance 
to alternative (that is, new) ways to learn mathematics by, in fact, confessing that 
students do not actually learn better that way and that they prefer the way things are 
done now. I wanted to talk to her about how students have learned to play the rules 
of the game over many years and so it is expected that they would resist changing 
the rules and/or the game without understanding why, but I remained silent. In 
remaining silent, I took another step backward from my research agenda. 

CONCLUDING THOUGHTS 

Given the intense motivation and perseverance required to resist the strong current 
of tradition once inside the classroom walls, my research study sought to design a 
means to assist pre-service teachers as they negotiated their way through 
theory/practice transitions on their journey to shaping a pedagogical identity of their 
own. I desired to conduct a study that could bring about significant changes to the 
cultural and discursive practices of schooling that currently stifle innovative 
instruction and assessment in mathematics and work to maintain the power of 
dominant school traditions and images of mathematics knowledge. The obstacles 
encountered were not so much surprises in themselves but the ways in which they 
were explained away left me speechless and, in some cases, paralyzed with/in the 
research process. 

Begg et al. (2003) discuss that obstacles can work in invisible ways to “channel our 
activities in particular ways—the patterns of acting, the habits of interpretation, the 
momentum of history, and so on that give shape and meaning to everyday 
activities” (p. 596). If truly invisible, then it is reasonable to ‘explain away’ 
resistance to change as hegemony at work— masking the obstacles “as the natural 
shoreline” (p. 596). The data in this study, however, suggests that explaining away 
functions to take the spotlight off teacher agency in the development of a 
mathematical pedagogical identity, and instead places the spotlight on a pre-
determined ‘destiny-focused’ math teacher identity. In other words, if we continue 
to explain away and back away from perceived obstacles to change then maybe all 
we really have left to study is how a math teacher becomes us. And this seems, in 
fact, not very becoming at all. 
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STRUCTURE SENSE FOR UNIVERSITY ALGEBRA 

Jarmila Novotná*), Naďa Stehlíková*),  Maureen Hoch**) 
*) Charles University in Prague, Faculty of Education, **) Tel Aviv University, Israel 

 

Building on some research on structure sense in school algebra, this contribution 
focuses on structure sense in university algebra, namely on students’ understanding 
of algebraic operations and their properties. Two basic stages of this understanding 
are distinguished and described in detail. Some examples are given on student 
teachers’ insufficient structure sense and interpreted in terms of various stages of 
structure sense.  

INTRODUCTION 

Many researchers report that the transition from secondary schools to university is 
often a painful process for students. When learning a new idea, the old idea does not 
disappear. Thus in the transition to advanced mathematical thinking, there exist 
simultaneously in a person's mind concept images formed earlier and new ideas based 
on definitions and deductions. The abstract algebra course usually presents the first 
“obstacle” university students, future mathematics teachers, meet.  

Many researches have focused on students’ coming to understand abstract algebra 
concepts such as groups (Asiala et al., 1997, Dubinsky et al, 1994, Hazzan, 1999, 
Zazkis et al., 1996). Simpson & Stehlikova (in press) suggest that the transition from 
working with an example structure to working abstractly involves an intricate 
sequence of shifts of attention:  

1. Seeing the elements in the set as objects upon which the operations act.  
2. Attending to the interrelationships between elements in the set which are consequences 
of the operations. 
3. Seeing the signs used by the teacher in defining the abstract structure as abstractions of 
the objects and operations, and seeing the names of the relationships amongst signs as the 
names for the relationships amongst the objects and operations. 
4. Seeing other sets and operations as examples of the general structure and as 
prototypical of the general structure. 
5. Using the formal system of symbols and definitional properties to derive consequences 
and seeing that the properties inherent in the theorems are properties of all examples. 

Obviously, students must first understand how each operation works and what the 
objects in the set are; this is not necessarily straightforward. In this paper we will 
focus on the first two stages only. 

STRUCTURE SENSE 

Structure sense has been defined and examined in several papers describing students’ 
difficulties when applying knowledge in an algebraic context. In Linchevski & 
Livneh (1999) structure sense is defined and used for describing students’ difficulties 
when using arithmetic knowledge in the early algebra.  In Hoch (2003) and Hoch & 
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Dreyfus (2006) structure sense is used to analyse students’ use of previously learned 
algebraic techniques.  

The authors (Hoch & Dreyfus, 2006) define structure sense for high school algebra as 
follows:  

A student is said to display structure sense (SS) if s/he can: 
• Recognise a familiar structure in its simplest form. 
• Deal with a compound term as a single entity and through an appropriate 

substitution recognise a familiar structure in a more complex form. 
• Choose appropriate manipulations to make best use of the structure. 

The above definition inspired us to attempt to define structure sense for one aspect of 
abstract algebra, namely binary operations and their properties. 

METHODOLOGY  

This study is based on the first two authors’ longitudinal observation of students, 
future mathematics teachers, during the course Theoretical Arithmetic and Algebra. 
Students enter the course with rich experience with building number sets and with 
linear and polynomial algebra (Novotna, 2000). Still, they often have problems with 
basic algebraic concepts. During the last three years, we systematically collected 
students’ works, especially those which contained mistakes. There were about 40 
students in each year.  

First, we only chose work with mistakes which we attributed to students’ insufficient 
understanding of binary operations and their properties and the notion of identity and 
inverse. Initially, taking mistakes as developmental stages of students’ understanding, 
we tried to organise them in a way to fit the scheme for the development of 
understanding the binary operation presented in (Dubinsky et al., 1994). Then we 
classified them according to our perception of how abstract students’ understanding 
of an operation/an object was. For instance, whether he/she based his/her 
considerations on his/her concept image of the object (Tall & Vinner, 1981) or on the 
definition introduced in the course. Finally, we were inspired by Simpson & 
Stehlikova’s scheme presented above which we combined with Hoch & Dreyfus’s 
structure sense definition. As the mathematics we are dealing with is more complex 
than the mathematics Hoch & Dreyfus investigated, the model we propose below is 
more complicated and multi-levelled.  

STRUCTURE SENSE FOR UNIVERSITY ALGEBRA 

We distinguish two main stages of the developing structure sense each of which is 
further subdivided.  

SSE: Structure sense as applied to elements of sets and the notion of binary operation 

A student is said to display structure sense if he/she can: 

(SSE-1) Recognise a binary operation in familiar structures.  
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(SSE-2) See elements of the set as objects to be manipulated / understand the closure 
property.  

(SSE-3) Recognise a binary operation in “non-familiar” structures. 

(SSE-4) See similarities and differences of the forms of defining the operations 
(formula, table, other). 

SSP: Structure sense as applied to properties of binary operations 

A student is said to display structure sense if he/she can: 

(SSP-1) Understand ID in terms of its definition (abstractly). 

(SSP-2) See the relationship between ID and IN: ID → IN. 

(SSP-3) Use one property for another: C → ID, C → IN, C → A. 

(SSP-4) Keep the quality and order of quantifiers. 
(SSP-5) Apply the knowledge of ID and IN spontaneously. 

Abbreviations ID, IN, C, A stand for identity, inverse, commutative property, 
associative property.  

For the sake of clarity, we will explain individual aspects of structure sense on 
particular examples. 

SSE: Elements of sets and the notion of binary operation 

The first stage concerns the notion of binary operation (and its recognition in a 
certain set) and understanding elements of sets as objects to be used in the operation. 

A student is said to display structure sense for elements of sets and binary operations 
(SSE) for algebraic structures with one binary operation if he/she can: 

(SSE-1) Recognise a binary operation in familiar structures  

By recognise, we mean that a student is able to determine whether something is a 
binary operation. By familiar structures, we mean structures which a student meets 
prior to university such as number sets with numerical operations and set functions 
R → R with the composition of functions (see also below). Non-familiar structures 
will be loosely characterised as those which are not familiar to a student. 

Example: A student displays SSE-1 if he/she can determine whether the following are 
binary operations (N is the set of natural numbers, Z is the set of integers, R is the set 
of real numbers): 

( )o,N : yxyx +=o  ( )>,N : yxyx −=>    ( )⊕,Z : yxyx +=⊕  ( )∗,Z : yxyx −=∗   

( )⊗,Z : yxyx ⋅=⊗   ( )•,R : yxyx ÷=•      ( )f,R : kyxRkyx +=∈∃⇔ :f  

(SSE-2) See elements of the set as objects to be manipulated / understands the closure 
property  

Example: A student lacks SSE-2 when given a set of congruences and asked to find 
the identity and he/she starts working with numbers. Later he/she answers that 



Novotná, Stehlíková & Hoch 

 

4 - 252 PME30 — 2006 

identity is 1 without taking into consideration the nature of objects in the set he/she is 
dealing with.  

(SSE-3) Recognise a binary operation in “non-familiar” structures  

Example 1: A student displays SSE-3 if he/she can determine whether the following 
are binary operations: 

( )⊕,Z : 4−+=⊕ yxyx  ( )∗,R : 2−⋅=∗ yxyx    ( )⊗,Z : yxyx 65 −=⊗   

( )•,Z : xyxyx +=• 3  ( )o,R : yxyx =o  

Example 2: A student lacks SSE-3, if he/she says that the operation in the following 
structure is associative because + and ⋅ are associative: (R, •), where R is the set of 
real numbers and x • y = 3x + xy (the operation is not associative). As the operation • 
is composed of + and ⋅, he/she puts together its properties to get the properties of •. 

(SSE-4) See similarities and differences of the forms of defining the operations  

Example 1: A student displays SSE-4 if he/she can see that the two definitions of 
operation * in (Z4, ∗) are the same (Zp is the set of integers 0, …, p - 1):  

Definition 1: x, y ∈ Z4, x ∗ y is the remainder when dividing the sum x + y by 4. 

Definition 2: 

∗ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

Example 2: A student displays SSE-4 if he/she can see that the operations * in (Z4, ∗) 
with Definition 2 of ∗ and the operation ○ in (M, ○), where M = {e, a, b, c} and ○ is 
defined by the table, are the same (isomorphic).  

○ e a b c 

e e a b c 

a a b c e 

b b c e a 

c c e a b 

Example 3: A student displays SSE-4 if he/she can see that the operations in the 
following structures are not isomorphic: (M, ○) where M = {e, a, b, c} and ○ is 
defined as above, and (K, ∗) where K = {X, Y, XY, N} and ∗ is defined as follows: 
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∗ N X Y XY 

N N X Y XY 

X X N XY Y 

Y Y XY N X 

XY XY Y X N 

Note on examples 2 and 3: A student understanding examples 2 and 3 displays a higher 
degree of SSE-4 than is the case with the first example as he/she has to see letters and 
combinations of letters (not only numbers) as objects to be manipulated (SSE-2). 

SSP: Properties of binary operations 

The second stage of SS involves attending to the interrelationships between objects 
which are the consequences of the operations. We, as teachers, “would like our 
students to attend not to the particular objects and operation, but to the fact that 
imposing the operation on the set of objects creates interrelationships which are 
important, such as associativity, inverses etc.” (Simpson & Stehlikova, in press). The 
second stage can be analysed only for students who have at least partial 
understanding of SSE. 

The situation is more complicated here as we have objects of two types: properties 
(commutative, associative, distributive in case of 2 operations) and important objects 
(identities, inverses). Moreover, we can distinguish two standpoints. The first focuses 
on individual properties and objects, the second concerns understanding the role of 
quantifiers in the definition (their type and order).  

For the subdivision of SSP, we looked into mutual relationships among objects. 

A student is said to display structure sense for properties of binary operations (SSP) 
for algebraic structures with one binary operation if he/she can: 

(SSP-1) Understand ID in terms of its definition (abstractly) 

Example 1: A student lacks (SSP-1) if he/she answers that there is no identity in 
(Z99,+), where Z99={1,2,...99} and + is addition in congruence modulo 99, because 
there is no 0 in the set. 

Example 2: Consider the following structure: (Z, •), where Z is the set of integers, 
x • y = x + y – 4 (correct answer for ID: n = 4).  

A student lacks SSP-1, if he/she answers (1) n does not exist because for n = 0 it 
holds x • n = x + 0 – 4 ≠ x; or (2) n = 4 because x + n – 4 = x + 4 – 4 = x; but later 
when he/she calculates the inverse element, he/she gives the answer x-1 = 4 – x 
because x • (4 – x) = x + (4 – x)  – 4 = 0. (See also the comment below.) 

(SSP-2) See the relationship between ID and IN (the latter does not exist without the 
former): ID → IN 



Novotná, Stehlíková & Hoch 

 

4 - 254 PME30 — 2006 

Example: A student lacks SSP-2 if he/she makes the following mistake: Given (F, +), 
where F is the set of odd numbers and + is the addition of integers. The student says that 
the inverse to 3 is –3 as both are odd (however, identity 0 ∈ Z is not element of F). 

Comment: This mistake can also be interpreted in terms of the student’s concept image 
of inverse. Number –3 could have simply been chosen because his/her concept image of 
inverse is a negative number. It is widely accepted that students tend to rely on their 
images from number theory when studying and applying group theory (e.g., Hazzan, 
1999, Stehlikova, 2004). They often hold a deeply rooted image of the additive identity 
in numerical contexts necessarily being 0 and the additive inverse a negative number. 

(SSP-3) Use one property for another: C → ID, C → IN, C → A 

Example 1: A student lacks SSP-3 if he/she makes the following mistake: (P(M), –), 
where P(M) is the set of all subsets of the set  M, – is the difference of sets X – Y = 
={x ∈ M; x ∈ X ∧ x ∉ Y}  and the student says  n = ∅ because X  – ∅ = X (correct 
answer: n does not exist).  

Example 2: A student lacks SSP-3 if he/she makes the following mistake: (R+, ○), where 
R+ is the set of positive real numbers and x ○ y = xy and the student says that it is n = 1 
because x1 = x (correct answer: except for x = 1, the inverse does not exist). 

Example 3: A student displays SSP-3, if he/she understands that he/she does not have to 
investigate all possibilities for A if the operation is C and is given by a table (e.g. at 
(M, ○) above). 

(SSP-4) Keep the quality and order of quantifiers 

Example: A student lacks SSP-4 if he/she makes the following mistake: Given (L, ∗), 
where L is the set of all positive rational numbers, x ∗ y = x/2 + y/2 + xy (it does not 

have an identity) and the student answers 
x

x
n

21+
=  with the following justification:  

We will get n by solving the equation xxn
nx

=++
22

. Then n ∈ L as the denominator 

does not equal 0 for x ∈ L and the quotient of two positive rational numbers is a 
positive rational number. As the operation is commutative, it is sufficient to check 

one equality from the definition: x
x

x
x

x

xx
nx =

+
+

+
+=∗

21
.

21
.

2
1

2
. 

The student does not understand quantifiers. Instead of “there exists n such that for 
all x ...”, he/she uses “for all x there exists n such that ...”. On the other hand, the 
student has SSP-3 (he/she uses C for IN). 

(SSP-5) Apply the knowledge of ID and IN spontaneously 

By that we mean that in a certain context, without being specifically asked to, a 
student is able to use the knowledge of ID and IN to find the solution to a problem. 

Example 1: A student displays SSP-5 if he/she applies the knowledge of ID and IN in 
(Zp,+, ⋅) when dividing two polynomials with coefficients from Zp. For example, in 
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(Z5,+, .), where –0 = 0, –1 = 4, –2 = 3, –3 = 2 , –4 = 1; 1-1 = 1, 2-1 = 3, 3-1 = 2, 4-1 = 4, 
when dividing (3x5 + 4x4 + 2x3 + x2 + 4x + 3):(2x3 + 3x2 + 4x + 1), he/she is able to 
calculate 3 : 2 = 3 . 2-1 = 3 . 3 = 4. On the other hand, he/she lacks SSP-5 if the 
answer for  3 : 2 is 3/2. 

Example 2: A student displays SSP-5 if he/she is solving an equation x + 50 = 5 in 
structure (Z99,+) (see above) and he/she says: “I will subtract 50 from both sides of 
the equation which means that I will add the additive inverse of 50, that is 49, to both 
sides.” (Stehlikova, 2004) 

DISCUSSION AND CONCLUSIONS 

The vague terms “familiar and non-familiar structures” can be specified to a certain 
extent by saying that they must be “conceptual entities in the student’s eyes; that is to 
say, the student has procedures that can take these objects as inputs” (Harel & Tall, 
1989). What will be “familiar” depends on individual students and the way abstract 
algebra was introduced to him/her. We can distinguish at least three paths (V means a 
property or an object, A in index means a familiar structure, B in index means a non-
familiar structure,  D stands for a formal definition): 

VA VA D 

↓  abstraction ↓  analogy ↓  construction 

D VB VA, VB 

↓  construction ↓  abstraction   

VB D  

The first two paths represent the abstraction of specific properties of one or more 
mathematical objects to form the basis of the definition of the new abstract 
mathematical object, the third is the process of construction of the abstract concept 
through logical deduction from definition (Harel & Tall, 1989).   

There is another way of interpreting some problems students have with understanding 
binary operations, their properties and objects (identity, inverse). Stehlikova (2004) 
in her research on structuring mathematical knowledge in advanced mathematics 
described a student coming to know a particular arithmetic structure as a process of 
development from dependence of the new structure on ordinary arithmetic to gradual 
independence.  

In general, there were either students who started reasoning inside [the new structure] 
quite early during their work spontaneously and these were able to find the additive 
identity easily and on the other hand, there were students who relied more on their 
[ordinary arithmetic] knowledge and their attention had to be specifically drawn to 
number 99 in order for them to notice its properties. These students mostly said that there 
was no additive identity because there was no 0. (p. 140)  

The image of 0 as the additive identity does not always have to function as an 
obstacle. For some students, it serves as a generic model of additive identity and they 
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can reconstruct its properties in ordinary arithmetic and use them as a tool for finding 
out the identity in another structure (Stehlikova, 2004). 

The presented model only accounts for binary operations and their properties. A 
model for the student’s understanding of, say, groups would have to be far more 
complex (see e.g. Dubinsky et al., 1994). 

If we attribute students’ difficulties to their lack of structure sense, we can 
concentrate on developing their structure sense. The above model can serve as a basis 
for a teaching programme explicitly addressing the problematic issues. 

Acknowledgement: The contribution was supported by grant GAUK 500/2004/A-PP/PedF. 
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SEMIOTIC CHAINING IN AN EXPRESSION CONSTRUCTING 

ACTIVITY AIMED AT THE TRANSITION FROM ARITHMETIC 

TO ALGEBRA 
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Joetsu University of Education, Japan 

 

In the transition from arithmetic to algebra, it is important to create a learning 
environment which develops the way in which students view mathematical expressions. 
This paper reports how students may develop their views through an expression 
constructing activity. As the result of our analysis in terms of nested semiotic chaining, 
we identified four states of sign combinations and chaining that show how students 
progress in their view of mathematical expressions, and discussed the important role 
of the use of brackets in viewing an expression structurally. 

PROBLEM OF THE TRANSITION FROM ARITHMETIC TO ALGEBRA 

A number of studies have revealed that students’ errors in school algebra may result 
from differences in viewing mathematical expressions between arithmetic and algebra 
(Sfard, 1991). For example, students have difficulty interpreting e.g. x + 7 as the result 
of a calculation, while they may recognize it as the operation of “7 added to x” (This 
problem is known as the gap between operational and structural conceptions). A focus 
of this study is to develop a learning environment that may help students to change 
their operational conceptions into the structural ones. 

Research into school algebra has tended to focus on the teaching and learning of 
symbolic expressions (Kieran, 1992). However, it has recently been reported that we 
can promote students’ algebraic ideas even in arithmetic (Carpenter et al., 2003). It 
may, therefore, be productive to examine how the learning of numerical expressions 
can be connected to symbolic expressions (Miwa, 1996) and also to examine the jump 
that students experience when the object of their thinking moves from numbers 
(quantities) to the relationships between numbers (quantities) (Koyama, 1988). 

In this paper, we shall investigate students’ learning of mathematical expressions in a 
teaching experiment designed for the unit “Four operations with positive and negative 
numbers”, which is taught in Japan just before the unit “Algebraic expressions using 
letters”. We shall examine how such learning may facilitate the students’ transition 
from arithmetic to algebra, beyond just acquiring the calculation procedures. 

THEORETICAL FRAMEWORK 

Epistemological characteristics of constructing mathematical expressions 

We believe that constructing composite expressions might provide good opportunities 
to develop the way in which students look at such expressions, since an algebraic 
expression usually consists of one composite expression and not a number of binary 
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expressions, and a linear equation needs to be formulated in terms of the equivalence 
between composite expressions. 

It is important to note that constructing composite expressions is consistent with the 
mathematical nature of the expression. A mathematical expression is defined as a finite 
sequence of symbols such that (a) the object symbols (1, 2, … , a, x, …), (b) the 
operation symbols (+, –, ×, ÷, …) and (c) the brackets are arranged in accordance with 
the following rules (Hirabayashi, 1996): (Rule 1) The object symbol is an expression in 
itself, (Rule 2) If both A and B are expressions, then (A) + (B), (A) – (B), (A) × (B) and 
(A) ÷ (B) are also expressions, and (Rule 3) All that are constructed using (Rule 1) and 
(Rule 2) are single expressions. According to these rules, expressions like ((((1) + (2)) 
× (3)) – (5)) are constructed one after another. Of course, we can omit some brackets by 
applying supplementary rules such as the precedence of multiplication and division, 
and then get the normal representation (1 + 2) × 3 – 5. We may also notice that in rule 
2 the language is spoken in terms of metalanguage (Allwood et al., 1977; Jakobson, 
1973; Hirabayashi, 1987). 

Our focus is that, in constructing the longer expression, each expression is conceived 
of as a unity, since the operation is carried out between two expressions rather than two 
numbers. Using Douady’s (1997) terms, the expressions may then be regarded not as 
“tools”, but as “objects”. 

Semiotic chaining as the framework for analysis 

Presmeg (2001) proposed a model of nested semiotic 
chaining based on Lacan’s inversion of Saussure’s 
dyadic model (signifier and signified) and Peirce’s 
triadic model (object, representamen, and interpretant) 
(Fig. 1). The model emphasizes the productive role of 
the signifier (R) (= the representamen), the chaining by 
which a signifier in a previous sign combination 
becomes the signified (O) (= the object) in a new sign 
combination, and that “each new signifier in the chain 
stands for everything that precedes it in the chain” (p.7). 

We think that this gives a useful perspective for analysing the activity of constructing 
mathematical expressions. Namely, we expect that it may make it possible to describe 
the states of the sign combinations associated with the transition from the operational 
to the structural view of an expression. 

TEACHING EXPERIMENT 

Participants 

The teaching experiment was performed with 28 seventh graders in a classroom of a 
public junior high school in Japan, with the collaboration of a teacher who had fifteen 
years experience and was interested in developing his lessons. Most students are not so 
willing to talk in a whole class situation but will talk with each other in small groups. 

 

 

 

 

 

 

Figure 1. Presmeg’s  model of 
nested semiotic chaining. 

O2 

 

O1 
I1 

R1 

R2 

I2 
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Therefore, we needed to design lessons that would encourage them to participate in the 
class activities and so we chose a game as the basic format for our teaching experiment. 

Task 

We devised “The Expression Constructing Game” which is played by two groups. 
Each group is issued in advance with cards displaying various expressions. Suppose 
that group A has two cards (+3) × (  ) and (  ) ÷ (  ), and that group B has (-1) × (-2) and 
(-1)3. The teacher announces the initial expression (“-12 = (+4) × (-3)”), and the 
students must then make a longer expression by replacing either of the numbers in the 
expression with an appropriate card. Any suitable number may be inserted in the empty 
brackets. The first group that manages to incorporate all of its cards into the expression 
is the winner. A sample record of a game is shown in Figure 2. If group A had replaced 
+4 with (+8) ÷ (+2), then group B could have used their (-1) × (-2); however, group A 
blocked it. This is a feature of the game. 

 

 

 

Figure 2: A record of the expression constructing game. 

Even when a card is incorporated, it can happen that the value of the whole expression 
may be incorrect if brackets have not been used. If the value is different from the 
original one, then points are not given. Thus, as well as checking the correspondence 
between the replacement expression and the number it replaces, the students must also 
check the correspondence between the whole expression and the original number. In 
other words, in this game both the construction and the calculation of the expression 
are being carried out at the same time. 

Teaching Experiment 

Our teaching experiment was conducted according to the methodologies of Confrey 
and Lachance and Cobb (described in Kelly and Lesh, 2000). Our conjecture was that 
in the act of constructing successive expressions students would upgrade their view of 
expressions from an operational to a structural one. We were interested in when and 
how this development might occur and what factors might sustain it. 

The experiment continued for 12 hours during which the unit “Four operations with 
positive and negative numbers” was covered. During the first six hours, the students 
learned each of multiplication, division and involution with negative numbers 
(Addition and subtraction had already been taught before the unit). The data in this 
paper were obtained from the 7th to 11th lessons, in which the expression constructing 
games were conducted. The lessons were recorded on video camera, field notes were 
made, and transcripts were also made of the video data. 

Two types of data analysis were conducted. First was the ongoing analysis after each 
lesson. Here we analysed what happened in the classroom in terms of the students’ 

 -12 =  (+4) × (-3)

=  (+4) × (+3) × (-1) 

=  (+4) × (+3) × (-1)3 

=  (-8) ÷ (-2) × (+3) × (-1)3 
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activities and utterances. Then we modified the subsequent lesson plan by taking into 
account both the original plan and our analysis of each lesson. Second was the 
retrospective analysis that occurred after all the classroom activities had finished. We 
first divided the classroom episodes into the meaningful entities chronologically in 
terms of what situations appeared to have made the students’ conceptions change, and 
next analysed how they interpreted the situations based on the sign combinations. 
Finally, we made sense of the overall story of their learning by reviewing all the 
analyses in terms of semiotic chaining. 

THE ACTIVITY OF THE EXPRESSION CONSTRUCTING GAME 

Introducing the expression constructing game 

After a brief explanation of the rules, four students were chosen to represent the two 
groups (A: Yoshi and Asa; B: Seki and Hoshi) and played a demonstration game on the 
blackboard. On this occasion the number of cards was limited to four and the cards 
were expressions of multiplication, division and involution (Fig. 3). 

 
 
 

Figure 3. The first situation for introducing the game. 

T (teacher): Let’s decide which team goes first. The team that answers ahead is first. [He 
wrote “-16 = (-2) × ( )” on the board.] 

Yoshi: +8 

T: The game will start with team A. Please replace any one of your cards. 

Yoshi: No. 1. [She wrote “= (-2) × (-4) × (-2).”] (Underlining added by author.) 

S (a student): I agree. 

T: Well, now team B, please. Thirty minutes. 

Hoshi: [He wrote “= (-1) × (+2) × (-4) × (-2).”] 

Yoshi: [She wrote “= (-1) × (-2) × (-1) × (-4) × (-2).”] 

Seki: [He wrote “= (-1)3 × (-2) × (-1) × (-4) × (-2).”] 

S: It’s wonderful! 

The game ended in a draw as both teams completed the expressions successfully. After 
this, the teacher and the students together worked out the final expression to see 
whether it went back to the original number (-16). When the answer turned out to be 
-16, the students unanimously said “great”, “wonderful” and clapped their hands. We 
found that they were surprised that they could make such a long expression and yet the 
result of the calculation coincided with the original number. 

Then the teacher asked them what part of the fifth expression corresponded to -2 in the 
original expression, and the students confirmed that it was part of (-1)3 × (-2) × (-1). In 
so doing, he hoped to encourage them to think of the expression as a unity. 

A. 1. (-4)×( ) 

2. ( )×( ) 

3. (-1/3)×(+12) 

4. (-2)2 

B. 1. ( )×( ) 

2. (-1)3  

3. (-1)×( ) 

4. (-12)÷(+2) 
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Student’s difficulties and overcoming them using the brackets 

In the 8th lesson, a problem occurred in one small group. After the group activities, the 
teacher let three groups present their records of the games. Of course this included the 
group that had experienced the problem. The record of this group is shown in Figure 4. 

 

 

 

 

 

Figure 4. The record of the game in one small group. 

T: Well, Fuji, please tell us about the situation in your group. 

Fuji: It is strange. [She pointed to the last expression] Here, 32 divided by -8 is -4. Then 
divide it by 2, and the answer is 2, because the rest of the numbers are all 1s. 

Yoshi: Mr. Kuro, can I write on the board? It is not good from here to here. [She added the 
underlining.] 

[ = (+32) ÷ (-4) × (-1) × (-1) 

      = (+32) ÷ (-8) ÷ (+2) × (-1) × (-1) ] 

T: Please raise your hand if you can see their problem. 

S: [All students raised their hands.] 

This group was worried because the answer was not -8 once they had changed -4 into 
(-8) ÷ (+2). And, although they had discovered which replacement the mistake had 
resulted from, they could not see how to deal with it. 

At this point, one student said “we can use (-2) ÷ (+2) instead of (-8) ÷ (+2)”. He made 
this suggestion so that the value of the whole expression would be -8. However the idea 
was soon rejected by the other students because it violated the rule that the number 
must be replaced with an equivalent expression. After a while Jo said “Is it all right to 
add brackets? There!” The teacher asked her to write on the board. 

Jo: [She wrote the brackets “(+32) ÷ {(-8) ÷ (+2)} × (-1) × (-1)”. ] 

S: Oh! 

S: That’s right! (with great surprise) 

S: Yes, brackets! 

T: The order is changed, isn’t it? We do here, these brackets first. [He checked the 
calculation with the students.] What about the next expression? 

S: Well, we add the brackets there. 

T: Don’t you think the brackets are great and powerful? 

These exchanges were so influential that all the students now seemed to appreciate that 
brackets could make the order of the calculation change. In fact, in the next game, we 
could hear comments such as “The big bracket -4 plus the bracket -2 … We cannot do 
without using the brackets” from many of the small groups. 

-8  = (+32) ÷ (-4) 

= (+32) ÷ (-4) × (+1) 

= (+32) ÷ (-4) × (-1) × (-1) 

= (+32) ÷ (-8) ÷ (+2) × (-1) × (-1) 

= (+32) ÷ (-8) ÷ (+2) × (-1)3 × (-1) 

[  (   )×(   )  ] 

[  (-1)×(   )  ] 

[  ( )÷(+2) ] 

[  (-1)3 ] 
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The development in the students’ views on the expressions 

Though we could hear lots of students’ comments on the use of the brackets by the end 
of the 9th lesson, at the same time they sometimes used brackets unnecessarily, perhaps 
because they had been so strongly impressed by the use of the brackets in previous 
lessons. However, in checking the records reported on the board in the 10th lesson, the 
students began to notice that there were unnecessary brackets, as a consequence of an 
implicit suggestion made by the teacher (Two out of the three records included 
unnecessary brackets). 

T:  (In checking the expression in which unnecessary brackets were not 
included) … times, divided by, times and divided by. So, as no brackets are 
included, let’s calculate it from the left. 

S:  Oh, I see. The brackets are not necessary in our expression! 

S:  It makes no sense. 

S:  Mr. Kuro, please delete those brackets. They make no sense. [He pointed to 
the expression “{(-2) × (-1)} × (-9) × (-9) ÷ (-3)”.] 

S:  Mr. Kuro, please delete ours too. It is the top brackets. [He pointed to the 
expression “{(+36) ÷ (+2)} × (-3)”.] 

When the teacher asked them whether the brackets could be removed in checking the 
values of the whole expressions, they were able to answer well. But he did not ask them 
under what conditions the brackets could be omitted. If he had asked the conditions for 
the omission of the brackets, they would have had a further opportunity to think about 
the structure of the expression. 

In the 11th lesson, we observed another scenario where the students had not utilized 
brackets. One student changed “-10 = (-30) ÷ (+3)” into “= (-30) ÷ (-12) ÷ (-4)” on the 
board, and no one in her group remarked on the lack of brackets. However, it was soon 
refuted by the other group, with comments like “If we calculate it from the left, it 
doesn’t go well”. We concluded that they still didn’t have a clear awareness of the 
usage of brackets and a similar state of affairs was the case in the 12th lesson too. 
However, through correcting these situations again and again, it seemed that they 
eventually became aware of the necessity for brackets, the order of calculation and the 
characteristics of operations. For example, they made the following expression as a 
final form. 

“ = {(+1) + (-31)} ÷ {(-8) × (1/2) × (+3) ÷ (-4)}” 

When the teacher then asked the students whether the brackets ahead of (-8) could be 
removed, they could in unison state that it was impossible. This recognition seemed to 
indicate that they were now able to adopt a structural view of a complex expression, 
even one they had never previously met. 
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DISCUSSION 

We may distinguish at least four states of the students’ views of the expressions. 

 

 

 

 

First, when the students replaced a number with an expression A as one step in the 
game, the expression may be seen as equivalent to the number (Fig. 5.1). In other 
words, it may not be conceived as something to be calculated but as a unity. We think 
this an important step in starting to view the expression structurally, and the game 
makes it emerge in a meaningful way. 

Second, when we see the game as a whole, the longer expressions B’ were constructed 
one after another based on the old expressions B so that their values were kept constant 
(Fig. 5.2). Here the expressions themselves were handled as objects (Douady, 1997). 
Also their recognition of each expression as a unity seemed to be facilitated through 
the teacher’s navigation that led them to compare a certain part of the expression with 
the corresponding part of the other equivalent expression. We also found that 
successful completion of the expression constructing activity was often greeted by the 
students with surprise. 

Third, the students found that the expression with brackets C’ might regulate both the 
parts and the whole of expression C (Fig. 5.3). Namely, the idea of using brackets 
enabled them to resolve inconsistencies between the replacement of a number with a 
partial expression and the value of the whole expression, and again this was greeted 
with surprise. We think that the brackets contributed to making them see the 
expressions as unities. 

Fourth, they modified the expression with brackets D into the one without brackets D’ 
(Fig. 5.4), and through it were able to see whether adding or omitting brackets in the 
expression would change the order and structure of the whole expression. It should be 
noted that such recognition was gained after correcting some errors. 

Overall, it is clear that these four states can be structured in terms of nested semiotic 
chaining. That is, we can see that the signifier in a previous sign combination became 
the signified in a new sign combination and that each new signifier in the chain stands 
for everything that precedes it in the chain (Presmeg, 2001). We may understand this 
chaining as both the process by which the view of the expression as a unity was 
developed and the process by which the role of brackets were recognized. Just as 
Radford (2003, p.62) stated that brackets “become essential because they help the 
students mark the rhythm and motion of the actions”, it seemed to us that eventually 
the students could read the order and structure of the whole expression from the 
brackets. Prior to this experiment, all that the brackets had meant to the students was a 
command to indicate the precedence of calculation. 

 

 

 

 

Figure 5.1                     Figure 5.2                    Figure 5.3                      Figure 5.4. 
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Namely, it seems that the brackets play a role not only in object language but also in the 
metalanguage for telling about it (Hirabayashi, 1987; Allwood et al. 1977). It may be 
similar to the way in which the plus and minus signs are used to show the meanings of 
adding and subtracting as well as positive and negative numbers and moreover the 
algebraic sum (Sfard, 1991). Thus we believe that providing students with an 
appropriate view of the role of brackets can be an important girder in the bridge from 
arithmetic to algebra, as a proper awareness of this is deeply related to the structural 
conception of expressions.  However, we think it will be necessary to do a more 
detailed semiotic analysis, such as Radford (2003), in order to clarify the transition 
process, which is our future task. 
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KIKAN-SHIDO: THROUGH THE LENS OF GUIDING STUDENT 

ACTIVITY 

Catherine  A. O’Keefe  Xu Li Hua  David J. Clarke 

The University of Melbourne 

 

The lesson event ‘Kikan-Shido’ (Between Desks Instruction) is used to compare 
different forms of guidance provided by teachers in mathematics classrooms across 
six cities. While Kikan-Shido had a recognizable structural form in all the 
mathematic classrooms in the data set, there was variation in both the amount of time 
devoted to Kikan-Shido and in the way individual mathematics teachers’ ‘Guided 
Student Activity’. In this paper, examples of individual teacher guidance are 
examined to draw out the subtleties of practice in three ‘Asian’ and three ‘Western’ 
classrooms. It is posited that differences in activity are related to specific 
pedagogical principles that appear to underlie the teachers’ practice. The 
occurrence of similarities in practice across apparent cultural categories 
problematises simplistic East-West comparative cultural analyses. 

INTRODUCTION 

Of all the Lesson Events that might be observed in mathematics classrooms around 
the world, one of the most immediately familiar is that moment when the teacher, 
having set the students independent or group work, moves around the classroom. This 
paper reports a fine-grained analysis of this Lesson Event in a selection of well-
taught mathematics classrooms located in Berlin, Hong Kong, Melbourne, San 
Diego, Shanghai and Tokyo. The Lesson Event is conceived as a type of classroom 
activity sharing certain features common across the classrooms of the different 
countries studied. Lesson Events represent one type of pattern of participation 
(Clarke, 2004), co-constructed by teacher and students in mathematics classrooms 
around the world, each  having a form sufficiently common to be identifiable within 
the classroom data from each of the countries studied. This paper focuses on one 
specific function of Kikan-Shido (Between Desks Instruction): the provision by the 
teacher of overt guidance of student mathematical activity. 

THE DATA 

This paper reports results from the Learner’s Perspective Study (LPS) based on 
analyses of sequences of ten lessons, documented using three video cameras, and 
supplemented by the reconstructive accounts of classroom participants obtained in 
post-lesson video-stimulated interviews, and by test and questionnaire data, and 
copies of student written material (Clarke, 1998, 2001, 2003). In each participating 
country, data collection focused on the classrooms of three teachers, identified by the 
local mathematics education community as competent, and situated in 
demographically different school communities within the one major city. This gave a 
data set of 30 ‘well-taught’ lessons per school system and, for the purposes of the 
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analyses reported here, a total of over 180 videotaped lessons, supplemented by over 
20 teacher interviews, and almost 400 student interviews.  

KIKAN-SHIDO: BETWEEN DESKS INSTRUCTION 

Japanese teachers possess an extensive vocabulary with which to describe their 
practice. Among the many terms available to them is the term ‘Kikan-Shido,’ which 
means ‘Between Desks Instruction’ in which the teacher walks around the classroom, 
predominantly monitoring or guiding student activity and may or may not speak or 
otherwise interact with the students. For all classrooms in the data set, the activity of 
Kikan-Shido appeared to have four principal functions: (i) monitoring student 
activity, (ii) guiding student activity, (iii) organization of on-task activity, and, 
sometimes, (iv) social talk. These are defined in Table 1.  

 Monitoring Student Activity 

The process through which the teacher: observes the 
progress of on-task activities and homework; ascertains 
student understanding; or selects student work with the 

intention to keep track of student progress, question 
student comprehension and record student achievement. 

 Guiding Student Activity 

The process through which the teacher: provides 
information; elicits student response for the purpose of 

promoting reflection; or facilitates engagement in 
classroom activity with the intention to actively scaffold 

student participation and comprehension of subject 
matter. 

 Organisational 

The process through which the teacher: distributes and 
collects materials; or organizes the physical setting in 

the classroom with the intention to support interactions 
among students and facilitate student engagement in 

learning activities. 

   

 

Kikan-Shido 

Between desks 
instruction in 

which the 
teacher walks 

around the 
classroom, 

predominantly 
monitoring or 

guiding student 
activity and may 
or may not speak 

or otherwise 
interact with the 

students. 

 

 

 Social Talk 

The teacher engages with student(s) in conversations not 
related to the subject matter or current on-task activity. 

Table 1. Definition of the Principal Functions within Kikan-Shido 

Each principal function is comprised of a number of mutually exclusive clustered 
activity codes that have recurrent form across all 180 taped lessons, and the purpose 
of this paper is to examine key differences in instructional practice within Guiding 
Student Activity. Guiding Student Activity is comprised of seven activity codes. 
Table 2 presents the definitions for each activity code. 
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Encouraging Student 

Activity pursued by the teacher designed to motivate, provide support and 
feedback to individual or groups of students. 

 

 

 

 

 

 

Giving Instruction / Advice at Desk 

The teacher scaffolds students’ understanding by providing information, 
instruction or advice, focusing on: the development of a concept that 

addresses meaning; reasoning; relationships and connections among ideas 
or representations; or the demonstration of procedure. 

 

 

 

 

Guiding Through Questioning 

A series of specific teacher questions intended to guide student 
understanding of a procedure or concept during the on-task activity. 

 

 

 

 

 

 

Re-directing Student 

Activities pursued by the teacher to: regulate the behaviour of the 
student(s) who are perceived to be not paying attention to the current on 
task activity; and to support student(s) on-going engagement during the 

lesson. 

 Answering a Question 

The information given by the teacher when requested by a student.  

 Giving Advice at Board 

Instruction or advice is given while an individual or group of students 
work at the board. The instruction or advice may be intended for those 
students working at the board or may be intended for the whole class. 

 Guiding Whole Class 

The teacher walks around the classroom and provides information, 
instruction or advice intended to address the whole class.  

Table 2. Guiding Student Activity Codes Defined 

Using the ‘StudioCode’ video analysis software, it was possible to code for Kikan-Shido, and 
its various functions as they occurred in the video record. Using this coding system we can map 
the various activity codes to a timeline of a single lesson. For the purpose of statistical analysis 
of each teacher’s practice, the individual lesson timelines from each class were combined to 
identify the frequency of occurrence of each activity code across the ten-lesson sequence.  
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The actual functions served by Kikan-Shido help us to distinguish one classroom 
from another.  The ways in which different mathematics teachers initiated Kikan-
Shido were diverse and distinctive. This can be seen graphically in the comparison of 
180 mathematics lessons across six countries in the LPS data set (see Figure 1). Note: 
only Guiding Student Activity and its constituent sub-codes have been recorded. 

                                           

 

Figure 1. Comparison of Kikan-Shido, Guiding Student Activity and its sub-functions 
across 180 lessons from 18 classrooms in six countries. 
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An essential point must be made here: We have analysed sequences of ten 
mathematics lessons taught by eighteen teachers designated as competent in six 
different countries. We do not presume to characterize the teaching of a country or a 
culture on the basis of such a selective sample. Nor do we intend to compare teaching 
in one country with teaching in another. Our analysis is intended to compare and 
contrast the practices of competent teachers and their classrooms, not cultures.  

Figure 1 graphically illustrates both the similarities and the significant differences in 
the way that 18 competent, experienced teachers enacted the lesson event that we 
have called “Kikan-Shido.” For example, AUS3 and USA3 both devoted nearly 45% 
of their class time to Kikan-Shido, but Figure 2 makes it clear that the relative 
weighting of Guiding Student Activity for these two classrooms was completely 
different. If we compare GER3 with JP2, we find similarity not only in the time 
devoted to Kikan-Shido, but even in the relative proportions of Guiding Student 
Activity. However, at the next level of analysis, we find significant differences in the 
manner in which the guiding activities were carried out.  

Similarly, if we compare HK 3 with USA 2, we find similarity in the time devoted to 
Guiding Student Activity, but difference in the utilization and amount of time 
devoted to each activity code. For example, the predominant activity of HK Teacher 
3 during Guiding Student Activity was Giving Instruction and Advice at Desk (80% 
of the time spent on Kikan-Shido). Such explicit preference for one activity code was 
less apparent in the practice of USA Teacher 2 who adopted a more varied 
employment of each activity code. However, if we compare USA2 with JP3, we find 
significant similarities even to the level of the sub-codes. 

The fact that teachers are situated very differently and share some similarities in both 
the amount of time and preference for particular guidance activities suggests not only 
the generality of the pedagogical strategy but also its cultural transferability. It is 
clear from Figure 1 that there are differences between and within each school system. 
The occurrence of such culturally-distributed practices problematises simplistic East-
West comparative analyses. Real understanding of the decisions and pedagogical 
principles underlying each teacher’s classroom practice is only evident from a fine-
grained analysis of Guiding Student Activity as it was enacted in each mathematics 
classroom. The following examples illustrate individual teacher use of Guiding 
Student Activity. 

Motivational Support and Encouragement 

On many occasions, Australian Teacher 1 would provide verbal encouragement to 
individual students (see Figure 2). In fact, the practices of all three teachers in 
Australia and of USA Teacher 3, appeared to prioritise the development of student 
confidence by providing motivational support and encouragement.  

AUST3 She needs that encouragement … she's not particularly independent and 
she's not well skilled and she relies heavily on a lot of other students … on 
this day she was by herself doing the task … and that was really pleasing 
… mmm. 
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Such explicit encouragement was much less evident in the other mathematics 
classrooms studied. In fact, the teachers in the Asian data set (Shanghai, Hong Kong 
and Tokyo), with the exception of SH Teacher 2 (0.4%), typically did not encourage 
students during Kikan-Shido. The only instance of Encouraging the Student coded in 
Shanghai School 1 illustrates a unique strategy that was employed by the teacher 
intended to encourage, motivate and provide feedback to individual students, while 
addressing the whole class:  

SHT1 Be quick – finish the other one. Eh, (to whole class) some of you drew it 
very well. (Points to student 4’s work) You drew it wrongly. (To student 
5) You also were wrong. (To student 6) You. You speed up [moving 
down the row]. You did it right (pat on the back of student 8) [taking up 
the paper of student 9]. Eh, he did it right (to whole class). Student 9 also 
did it right.  

In this example, the teacher draws the attention of the class to the student’s error. 
While the teacher’s intentions appear to be motivational, there is no example of this 
strategy (public announcement of student error) in the Australian, American, German 
or Japanese data. However, similar statements were recorded in SH1, SH2, HK1 and 
HK2. This suggests that encouragement and motivation in these four classrooms were 
predicated on a value system different from that operating in non-Chinese 
classrooms. 

Instruction and Advice at Desk 

Huang (2002) has suggested that the practices of teachers in Shanghai are grounded 
in a different pedagogy from those of teachers in Hong Kong. Certainly, the practice 
of Hong Kong Teacher 3 appeared predicated on different pedagogical principles 
from those underlying the practice of Shanghai Teacher 2. While the dominant 
function of Kikan-Shido in Shanghai School 2 was to Monitor Student Activity 
(20.5% of total class time) (see O’Keefe, Xu & Clarke, in preparation), in Hong 
Kong School 3, an even larger proportion of time was devoted to Giving Direct 
Guidance (21.9%).  The teacher would walk around the classroom in order to help 
students with their difficulties, and the guidance during Kikan-Shido was typically 
quite directive, as illustrated in this example:  

S  [in Chinese] Come here! Come here! Hey! Hey! Come here! I don't 
know how to do question four! (...)  

HKT3 [in Chinese] A little bit different! This time...these two... Both twenty-one 
and twenty-four are multiples of three!  

S  [to T] [in Chinese] Yes! Just to simply it? Okay. 

HKT3 [in Chinese] It isn't to simplify it! It can't be simplified! This one no either 
(...) this one is okay! This one can be simplified but this one cannot.  

S  [to T] [in Chinese] Then how?  

HKT3 [in Chinese] So...this one is okay! This can be simplified! You have to 
divide this by seven and then multiply it by eight. 
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Orchestrating Whole Class Activity 

Although most of the teacher support provided during Guiding Student Activity was 
directed to individual students, teachers (particularly in AUS 2, GER 1 and 2, HK 1 
and 2 and JP 3) also provided information, instruction or advice intended to inform 
the whole class. This type of activity was coded as Guiding Whole Class. The 
exercise of Guiding Whole Class during Kikan-Shido suggests that the teachers 
attached sufficient importance to the class learning as a whole group, such that they 
would give guidance to the whole class, when this was judged to be appropriate, 
while also continuing to give assistance to individual students. Guiding Whole Class 
was enacted differently according to the teacher’s judgment of the situation: either 
upon perceiving the difficulties among students to be global, the teacher would 
interrupt students’ work by making clarifications to the whole class; or the teacher 
would provide information, instruction or advice to the whole class as a way of 
orchestrating whole class activity.  

On identifying a common mistake among the students, Hong Kong Teacher 2 would 
give instructions to the whole class while walking around in order to remind the class 
of the errors they made or tended to make. Here is one sequence of teacher statements 
during Kikan-Shido. 

HKT2 [to VANESSA] Young lady, you've copied down the question wrongly. 
You are really overtaken by the twins!  

HKT2 [to S] What's wrong? Okay. 

HKT2 [to whole class] Hey, be careful with one thing. You've got one thing, 
your fatal mistake is miscopying questions. Very often you copy from 
your book wrongly, or you've copied the first thing correctly, but you get 
it wrong in the second step. Is this illusion or what? Is this a kind of 'sense 
discoordination'? 

CONCLUDING REMARKS 

By examining the practices of 18 competent mathematics teachers in Berlin, Hong 
Kong, Melbourne, San Diego, Shanghai and Tokyo, it has been possible to identify 
the different forms of guidance provided by teachers during Kikan-Shido. While 
Kikan-Shido represents a recurrent form of co-constructed classroom practice, 
evident across all the ‘well-taught’ mathematics classrooms studied, our analyses 
demonstrate that both the proportion of time spent on Guiding Student Activity and 
the distinctive character of each teacher’s guidance appear to be a signature 
characteristic of their practice. The examples provided in this paper illustrate both 
similarities and differences in individual teachers’ use of Guiding Student Activity. 
Where classroom practices are found to be similar across such culturally-disparate 
circumstances, the particular similarities of practice assume heightened significance. 
The fact that teachers are situated very differently and have developed similar 
solutions to a particular classroom challenge suggests not only the generality of the 
pedagogical strategy but also its cultural transferability. We also argue that variations 
in teacher guidance (with respect to form, frequency and timing) are predicated on 
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specific pedagogical principles that appear to underlie each teacher’s practice. On the 
one hand, differences between the practices in classrooms in China and Japan 
represent a challenge to overly-inclusive culturally-based categorizations. However, 
the occurrence of identifiable culturally-distributed practices problematises simplistic 
East-West comparative cultural analyses. In fact, regularities in the practices of 
competent teachers across cultures may provide the basis for an international 
pedagogy of mathematics. 
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HIDING AND SHOWING CONSTRUCTION ELEMENTS IN A 

DYNAMIC GEOMETRY SOFTWARE: A FOCUSING PROCESS 

Federica Olivero 

 Graduate School of Education, University of Bristol UK 

 

This paper draws on a study investigating the use dynamic geometry software in the 
context of open geometry problems requiring conjecturing and proving at secondary 
school level. After setting the context and main result of the study, the paper will 
focus in particular on the analysis of the hide/show tool available in Cabri. The way 
students exploit the possibility of hiding and showing the construction elements of a 
configuration at stake was revealed to play a fundamental role in the development of 
the proving process. This will be illustrated through examples from students’ work 
and implications for teaching will be drawn. 

INTRODUCTION: PROVING AS A FOCUSING PROCESS 

This paper focuses on a particular aspect of a study (Olivero, 2002) investigating the 
use of dynamic geometry software in the context of solving open problems in 
geometry that require conjecturing and proving. 

The study showed that the proving process1 within a dynamic geometry environment 
can be described as a progressive focusing process, in which new empirical and 
theoretical elements (figures, statements and relationships among them, theoretical 
properties) emerge and are transformed over time by the students towards the 
construction of conjectures and proofs. The focusing process requires what Godfrey 
refers to as “developing a geometrical eye” which he defines as “the power of seeing 
geometrical properties detach themselves from a figure” (Godfrey, 1910, p.197). 
Fujita & Jones (2002) illustrate the idea of geometrical eye with an example. 
Consider the problem: if A and B are the midpoints of the equal sides XY and XZ of 
an isosceles triangle, prove that AZ=BY (Figure 1). In order to be able to prove this, 
one needs to ‘see’ first of all that, for example, triangles AYZ and BZY are likely to 
be congruent.  

 

 
 
 
 
Figure 1. Developing a geometrical eye 

                                           
1 The proving process is defined as the process of exploring a situation, formulating a conjecture 
and constructing a proof (Olivero, 2002, p.41). 
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A key element of the proving process is to develop the capacity of focusing on the 
appropriate objects at the appropriate time in the process and being able to change 
focus whenever needed, whenever new elements are discovered and whenever new 
theoretical elements emerge. In the previous example one needs to ‘see two triangles 
as congruent’, i.e. triangles AYZ and BZY need to become the object of the focusing 
process and the property of being congruent needs to “detach” itself from the figure.  

A condition that can help the focusing process is the possibility of having a field of 
experience which allows students to manipulate, interact, and change the objects they 
deal with: such an empirical experience is likely to evoke theoretical elements. The 
research this paper draws on, showed that open problems (Arsac et al., 1988) and the 
dynamic geometry environment support this process.  

METHODOLOGY 

The study (Olivero, 2002) consisted of classroom interventions which took place in 
three secondary schools (15-17 years old pupils) in England and Italy. Students were 
asked to solve open geometry problems involving conjecturing and proving, working 
in pairs and using Cabri. Through an in-depth analysis of case studies of six pairs of 
students2, an explanatory framework, that identifies the key elements in the 
development of the proving process with respect to the affordances offered by the 
dynamic geometry environment, was developed. This paper examines in particular 
the role of the hide/show function in Cabri as a tool to support the focusing process. 

THE HIDE/SHOW TOOL IN CABRI 

Most dynamic geometry software offers the possibility of hiding elements of a figure 
after it has been constructed, and then showing back any of those hidden elements as 
required. ‘Hiding’, which differs from ‘deleting’ an element completely, is a feature 
that is not available in paper and pencil. As we can see from Figure 2, hiding or 
showing elements of a configuration at stake changes the nature of the figure to 
explore because what is visible changes and therefore the potential elements of the 
focusing process change too. 

 

 

Figure 2. Hiding and 
showing construction 
elements in the problem 
‘Perpendicular bisectors 
of a quadrilateral’. 

In the context of the study referred to in this paper, the research problem tackled is: 
how does the use of the hide/show function affect the proving process and the way 

                                           
2 The six pairs were video-recorded and observed during the classroom sessions and their Cabri files 
collected. The results reported in this paper draw on the analysis of all pairs.  
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the focusing develops? The study considered in particular the hiding and showing of 
construction elements, i.e. the elements that link a basic figure with a figure that is 
dependent on it; for example, in the problem ‘Perpendicular bisectors of a 
quadrilateral’3 the construction elements are the perpendicular bisectors and the basic 
objects are the sides of the initial quadrilateral (or the quadrilateral itself). 

Three clearly different ways of working with construction elements appeared in the 
students’ proving processes:  

1. a systematic use of the hide/show tool: hiding construction elements when 
exploring and showing them when proving; 

2. leaving construction elements always visible; 

3. hiding construction elements from some point of the conjecturing onwards and 
not showing them again. 

In the following sections the way the hide/show tool shapes the development of the 
proving process will be illustrated through two particular examples, which show 
modalities 1. and 2.. The 15-year-old Italian students are solving the problem ‘The 
perpendicular bisectors of a quadrilateral’ in pairs. 

A SYSTEMATIC USE OF THE HIDE/SHOW TOOL 

This example shows a very systematic way of hiding and showing construction 
elements (the perpendicular bisectors in this case): throughout the whole proving 
process, Bartolomeo and Tiziana hide the construction lines when exploring and they 
make them visible when proving, moving between the two configurations in Figure 2.      

The students hide the construction lines straight after finishing the construction 
before starting the exploration with dragging, leaving only the two quadrilaterals 
ABCD and HKLM visible. 

55  Bartolomeo: delete the lines, the points are connected anyway. 

While saying this, they transform ABCD from the configuration on the left to the 
configuration on the right in Figure 2. The perpendicular bisectors are no longer 
needed as “the points are connected anyway”: the perpendicular bisectors are seen as 
a tool to construct HKLM and once this is constructed they can be ‘deleted’4. The 
bisectors are always hidden when they continue with the exploration process. 

198 Bartolomeo: so we need to look at the rhombus. 

199 Bartolomeo hides the perpendicular bisectors and then drags A, D and B. 

The perpendicular bisectors are made visible again every time the students attempt to 
prove something. 

                                           
3 You are given a quadrilateral ABCD. Construct the perpendicular bisectors of its sides: a of AB, b 
of BC, c of CD, d of DA. H is the intersection point of a and b, K of a and d, L of c and d, M of c 
and b. Investigate how HKLM changes in relation to ABCD. Prove your conjectures. 
4 Hidden. 
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233 Bartolomeo: here you are … so another trapezium is formed. Let’s prove 
it. So let’s put the perpendicular bisectors again. 

The modality of using the hide/show function shown by Bartolomeo and Tiziana has 
an impact on the perception of the figures on the screen and the development of the 
proving process. Hiding the construction lines allows isolating the two quadrilaterals 
and therefore induces the formulation of conjectures on the relationships between the 
shapes of the two quadrilaterals ABCD and HKLM (for example: "If ABCD is a 
parallelogram then this HKLM is a parallelogram too"). The conjectures and 
corresponding figures are then transformed for the proof, by stating the property that 
will be proven (for example: "so … we must prove that those two [perpendicular 
bisectors] are parallel") and by restoring the construction lines. 

However, it has been observed that showing the construction lines is not always 
sufficient to recall all the properties that were used in the construction itself, as 
shown by the extract below. 

175 Bartolomeo: so, wait, if this is a right angle I can say that…(Figure 3) 

176 Tiziana: no, but it's not a right angle, what are you talking about? So 

177 Bartolomeo: … it must be, otherwise they are not parallel […] 

192 Bartolomeo: … so… let's do this… but look, here there are four right 
angles, otherwise they are not parallel 

193 Tiziana: oh dear, look!… the perpendicular bisector, isn't it? (she 
points at  b) There is always a right angle! 

 

 

Figure 3. Proving the conjecture "If ABCD is a 
parallelogram then HKLM is a parallelogram too" 

While proving the case of the parallelogram, Bartolomeo and Tiziana do not pay 
attention to the fact that the lines they made visible again (the perpendicular 
bisectors), are actually perpendicular bisectors, i.e. lines perpendicular to the sides of 
ABCD. They spend time in constructing a proof in which something is always 
missing, that is a right angle (175-176), which is there but is not ‘seen’ until the very 
end of the proof (193).  

LEAVING CONSTRUCTION LINES ALWAYS VISIBLE 

This example shows a case in which the students leave the construction lines visible 
at all times during the proving process. The extract below shows how this affects 
Debora and Giulia’s formulation of conjectures and attempt to prove a conjecture 
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which is based on empirical elements, i.e. on what they see on the screen only, and 
does not bring in any theoretical element. 

189 Debora:  this is congruent to this (Ac'Mb' and Kd'Ca'), this is congruent to 
this (aBbH and DcLd) this is congruent to this (Hbd'K and MLdb') 
this is congruent to this (c'aHM and LKa'c) [looking at Figure 4] 

190 Giulia:  the figures internal to the quadrilateral, excluding HKLM, are 

congruent in pairs respectively 

191 Debora:  the opposite are congruent […] 

234 Debora:  I’m trying to understand from which point to look at it .. if this one 
…then it becomes something like that. I can’t understand which are 
the biggest sides …ah, it’s upside down! […] 

Figure 4. Showing construction 
elements (a, b, c, d, a', b', c', d' are used 
by the students to indicate the 
intersection points of the perpendicular 
bisectors with the sides of ABCD) 

The students’ exploration up to this moment in the process happens within the spatio-
graphical field (Laborde, 2004) as Debora and Giulia are trying to ‘read’ the figure 
and the statements they produce are descriptions of facts which can be observed on 
the Cabri figure (189-191). We can see that the fact that the construction lines are 
visible has an impact on the conjecturing process: the students focus the attention on 
the small parts in which ABCD is divided by the perpendicular bisectors rather than 
on the two quadrilaterals ABCD and HKLM. Figure 4, in which all construction lines 
are visible, shows both how the multitude of the small quadrilaterals in which ABCD 
is divided and the possible congruencies amongst them may capture the attention and 
how difficult it is to ‘see’ the two quadrilaterals ABCD and HKLM and the 
relationship between them. 

442 Giulia:  so, proofs. We must prove it is an upside down rhombus …here is 
the story … the congruence stuff. Let’s start from these two big 
figures: this one (AaHb’) and this one (Ld’Cc). Can you see them? 
So, let’s prove that this one (c’aHM) equals this one (LKa’c), and 
that this bit (Ac’Mb’) equals this bit (Kd’Ca’). 

Line 442 is the starting point of the proof for conjecture ‘If ABCD rhombus then 
HKLM rhombus’. As we can see, what Debora and Giulia want to prove is what they 
focused on in the exploration (as shown in the previous extract), that is the 
congruence of the quadrilaterals formed inside ABCD and external to HKLM, due to 
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the fact that the exploration has been led by the fact that the construction lines are 
visible, with no apparent theoretical control over what these lines are. This focus does 
not lead them anywhere, and they remain at a spatio-graphical level for a long time, 
without succeeding in constructing a proof. 

HIDE/SHOW AS A FOCUSING TOOL 

The analysis of students’ protocols (Olivero, 2002) has shown that during the proving 
process, the tools available in Cabri (dragging, measuring, hide/show etc) become 
tools for focusing that can be used by the students to shape the way the focusing takes 
place. The hide/show function can be seen as a focusing tool in itself because the 
possibility of showing or hiding elements allows focusing on different 
objects/properties. When the construction lines are hidden, then the exploration takes 
place at a more visual level and theoretical elements do not always play a role or 
emerge in that process. In this case students do not usually pay attention to the 
construction and therefore to the geometrical link between the two quadrilaterals at 
stake. Sometimes, the construction elements may be ignored, and the geometrical 
properties necessary for proving may not be used because they are/were ‘hidden’, 
which is what happened in the case of Bartolomeo and Tiziana analysed above. 

When the construction lines are visible, then the geometrical link between the two 
quadrilaterals is explicitly visible and in general the exploration already contains 
some justification elements (Olivero, 2002). The links between ABCD and HKLM 
are seen not only globally, i.e. in terms of quadrilaterals as wholes, but also, and 
particularly, locally, i.e. in terms of properties of specific elements of the figure (e.g. 
sides or angles). For example, another pair of students formulated conjectures about 
the relationship between two pairs of opposite sides ("so whenever the outside lines 
[sides of ABCD] are parallel the inside ones [sides of HKLM] are"), rather than about 
ABCD and HKLM. The fact that the parallelism of the sides of ABCD implies the 
parallelism of the sides of HKLM is what these students prove later in the process. 
When the construction lines are visible, the situation seems to require a stronger 

theoretical control over the figure as there are more elements that need to be 
appropriately managed at the same time. For example, as shown in the previous 
section, for Debora and Giulia the fact of having the perpendicular bisectors visible 
has a negative effect: once they stop dragging, the students are not able to distinguish 
parameters and variables, and consequently hypothesis and thesis. All lines seem to 
have the same status, so that what they ‘see’ on the screen is a figure split into many 
small quadrilaterals by the perpendicular bisectors rather then two quadrilaterals 
linked through the perpendicular bisectors. Hölzl (2001) deals with similar issues and 
suggests that we need to find ways to help students focus on invariants rather then 
focus on details which suppress the overall. In other words, there is the need to 
develop a geometrical eye that sees and focuses on only what is relevant. 

There is a strong link between what one sees and what one uses in constructing a 
proof. By allowing students to decide what to leave visible and what to hide, the 
hide/show tool gives students control over the theoretical elements they want to use. 



Olivero 

 

PME30 — 2006 4 - 279 

This raises questions related to how the theory is/can be made explicit during the 
proving process. As other research has shown, constructing geometric figures in 
Cabri fosters theoretical thinking (Mariotti, 2000). In fact, in order to construct a 
figure in Cabri, the geometric properties of that figure are needed for the construction 
itself, while this does not necessarily happen on paper5. However, the situation is 
different when some constructions are required on a general quadrilateral (e.g. 
constructing the quadrilateral formed by the intersection of the perpendicular 
bisectors of a given quadrilateral). In Cabri, the fact that there is a menu command 
that constructs the perpendicular bisector of a segment, allows the students to use it 
without thinking about the property of the perpendicular bisector with respect to the 
segment. The only thing to do is to find and use the corresponding command. On the 
contrary, if they were constructing perpendicular bisectors with pencil and paper they 
would need to think about how to draw them, i.e. they would need to know that they 
are perpendicular to the side and go through its midpoint. Therefore in this type of 
problems in Cabri the geometric properties are not needed at the beginning and 
potentially are not evoked. This would explain why some students seem not to pay 
attention to the properties of the construction (e.g. the fact that perpendicular 
bisectors are perpendicular to a side) while proving, as in the case of Bartolomeo and 
Tiziana reported above. 

CONCLUSIONS AND IMPLICATIONS FOR TEACHING 

The possibility of hiding and showing elements in Cabri is a ‘new’ powerful tool of 
dynamic geometry software, because according to what is left visible the focus can 
shift to different elements. What students see on the screen influences the 
construction of conjectures and proofs and choosing what they want to see on the 
screen influences the proving process. In Cabri pupils are in control of what is on the 
screen in an interactive way and they can adjust the situation by hiding and showing 
elements to deal with new discoveries or ideas. 

The hide/show tool can be interpreted from a teaching perspective and should 
become object of teaching. It is important that teachers are aware of this tool 
(together with the other Cabri tools6) and that they make it explicit to students as 
well, so that they are introduced to a use of Cabri, which helps the focusing process, 
i.e. Cabri is transformed into an appropriate instrument that is then internalised 
(Mariotti, 2002). Showing construction lines, together with dragging the figure, will 
help the students to keep in mind the properties of the construction. Hiding some 
elements may be useful when wanting to focus on some particular configuration, for 

                                           
5 For example, when drawing a square on paper the properties of having equal sides and right angles 
do not necessarily need to be evoked; while if a square is drawn in Cabri by only reproducing a 
mental image associated with that particular name, without using its properties, then that figure will 
be messed up when dragging it. 
 6 For the analysis of other Cabri tools, such as dragging and measures, see (Arzarello et al., 2002; 
Olivero, 2002; Olivero & Robutti, 2001). 
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example to avoid what happened to Debora and Giulia, when they had too many lines 
visible and could not identify which quadrilaterals they had to consider. 

The previous discussion leads to broaden the perspective that considers dynamic 
geometry environments only as add-ons, i.e. as environments that provide students 
with resources that experts usually possess, and as such need to be abandoned at 
some stage in the learning process. This paper has shown that it is necessary to take 
into account the potentialities of this type of software, and more generally of new 
technologies, to generate new problems and perspectives with respect to paper and 
pencil, that affect doing mathematics. 
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Universities are designing new courses and licensure programs to support the 
enactment of reform recommendations by prospective teachers. Professional 
development schools provide a context in which prospective teachers collaborate 
with teachers and university professors to connect theory and practice. Teachers’ 
experiences in mathematics often do not reflect current reform recommendations and 
enacting new pedagogy can be problematic for them. This study sought to explore 
how cognitive dissonance may help prospective teachers make their implicit 
conceptions about teaching and learning explicit and support their reconstruction of 
these notions. Findings indicate that elementary teachers’ conceptions about 
mathematics change after experiencing and reflecting on cognitive dissonance.  

Despite calls for reform in school mathematics by The National Council of Teachers 
of Mathematics (NCTM), classroom practices in United States during the last century 
have shown little change (Stigler & Hieber, 1999). The University of Colorado at 
Denver and Health Sciences Centre created a licensure program using professional 
development schools (PDS) to increase the number of highly qualified teachers with 
the leadership skills needed to support educational reform. A PDS is a collaborative 
community of learning which includes prospective teachers (approximately 12), 
teachers, administration, and a site professor who supports educational reform 
through school-wide professional development.   

Prospective teachers work within the PDS to gain practical experiences while 
simultaneously developing their content and pedagogical knowledge in university 
courses. These beginning teachers gradually influence classroom practices at their 
PDS as they examine and discuss the influence of a teacher’s practices with students’ 
learning at weekly site seminars. Annotative stories told by faculty indicate that many 
prospective teachers eventually assume leadership positions in their school, school 
district, and the State of Colorado.  

Current research on the development of elementary teachers concentrates on the 
growth of content (e.g., Lo, 2004; Southwell & Penglase, 2005), pedagogical (e.g., 
Leu & Wo, 2005), or an integration of content and pedagogical knowledge (e.g., Ball 
& Bass, 2000; Beswick, 2005). This research suggests that prospective teachers have 
idiosyncratic knowledge of mathematics content and implement reform 
recommendation that resembles traditional practices. Beswick investigated 
prospective elementary teachers’ conceptions of relational and instrumental 
understanding. She suggested that prospective teachers need powerful evidence to 
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create viable learning experiences that are different from the ones that they 
themselves experienced as a student. Beswick theorized that these new learning 
experiences develop a different kind understanding. These suggestions reflect Ball 
and Bass’s assertion that content and pedagogy must be interwoven as perspective 
teachers learn to teach. This study extends the work of these researchers by 
examining experiences that support prospective elementary teachers’ growth over a 
three year period of time and enable them to assume leadership roles during their 
early career.  

THEORETICAL FRAMEWORK   

From the perspective of symbolic interactionism, individuals learn as they interact 
with other people and the environment (Blumer, 1969). Interactions between 
individuals are exchanges of words, tone of voice, facial expressions, and gestures 
that allow individuals to co-create knowledge by sharing ideas, questioning 
assumptions, and clarifying interpretations. Taylor (2001) suggested that the 
mediation of verbal and non-verbal interactions may transform the concealed implicit 
learning into articulated explicit ideas. He inferred that the interaction of implicit and 
explicit experiences is critical for learning to be transformative. From this stance, 
Olson, Chiado, Sala, & Kirtley (2005) theorized that (a) the transformation from 
implicit to explicit may promote teachers’ self-efficacy, which emerges through 
critical reflection of deeply held beliefs and emotions and (b) an increase in teachers’ 
self-efficacy enables teachers to assume leadership roles.  

Olson, Chiado, Sala, & Kirtley (2005) created a model to describe the relationships 
between formal and informal experiences with the process of transforming implicit 
conceptions to explicit conceptions. Implicit conceptions are difficult for individuals 
to express and encompass many emotions that arise from prior learning experiences.  
Transforming conceptions is a complex reflective process. Formal and informal 
learning experiences are interwoven into conceptions about teaching and learning. 
Olson et al. theorize that implicit conceptions impact how an individual interprets 
new experiences and assimilates new beliefs. They suggest cognitive dissonance may 
allow individuals to make their implicit conceptions explicit and examine their 
implicit conceptions from a new light. When Kirtley reflected on whether her 
practice reflected a newly articulated belief, she experienced a moment of revelation 
and changed in her practice (Olson & Kirtley, 2005).   

The model suggests that cognitive dissonance is one way to prompt individuals to 
critically examine their implicit beliefs in light of new experiences and support 
transformational change. Research using this model to interpret social interactions 
indicated that teachers began to understand and articulate their implicit learning 
through discussions that were punctuated by questions that prompted critical 
reflection. Olson et al. suggest that this critical reflection increases self-efficacy by 
helping teachers connect theory with practice and gain confidence. From the 
perspective of symbolic interactionism, when self-efficacy increases, teachers’ 
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interactions with colleagues change as they voice their ideas in new ways and may 
lead to new informal or formal leadership roles.  

RESEARCH DESIGN AND APPROACH 

A multilevel research design merges the structure of the multi-tiered teaching 
experiment and case study to describe how collaboration develops the knowledge of 
the participants at different levels of learning (English & Watters, 2005). This 
multilevel research study used two phases. The first phase focused on the learning of 
prospective elementary teachers while they participated in mathematics licensure 
courses and field work in a PDS. The second phase began after the prospective 
teachers gained licensure to teach elementary school and decided to complete their 
Master’s Degree in mathematics education. 

Phase 1 

At the first level of phase 1, the prospective elementary teachers solved non-routine 
problems and planned instructional lessons in collaborative groups. Groups consisted 
of four prospective teachers with similar beliefs about the nature of teaching and 
learning mathematics and different levels of proficiency in mathematics. Data 
sources at the first level included: written reflections, written solution strategies, and 
Olson’s field notes made while teaching mathematics education courses. These data 
were analysed for changes in the teachers’ justification, creation of conjectures, and 
spontaneous articulation of mathematical ideas. 

At the second level, the prospective teachers worked in PDS with a clinical teacher to 
plan and teach mathematics lessons to elementary students. The prospective teachers 
videotaped the lessons and collected student work samples for analysis. Using 
developmental frameworks (e.g., cognitively guided instruction), the prospective 
teachers analysed these data for evidence of students’ conceptual understanding and 
learning. Then, they reflected on how their actions influenced elementary students’ 
opportunities to learn. These student products and class discussions were analysed by 
Olson for situations that led to cognitive dissonance. Changes in what teachers 
noticed or analysed were interpreted as evidence of learning.   

Phase 2 

The second phase of this study began after the prospective teachers gained licensure 
to teach elementary school. Colasanti and Trujillo decided to complete their Master’s 
Degree in mathematics education and were selected for case-study analysis. They 
entered the licensure program with different levels of confidence and expertise in 
mathematics and began to collaborate during a course on rational numbers when they 
were hired to teach in the same elementary school. Colasanti and Trujillo continued 
to collaborate throughout their first two years of teaching.  

At level one, Colasanti and Trujillo’s elementary students solved problems selected 
from a reform curriculum. The two teachers monitored their students’ learning and 
met with two school district math coaches to discuss the development of students’ 
understanding. In addition, they explored mathematical ideas during these 
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discussions and how their actions impacted student learning. Colasanti and Trujillo 
wrote reflections about these coaching session, collected student work samples, and 
wrote field notes while teaching. These data were analysed to describe the process by 
which they connected theory with practice and reported in their Master’s Projects.  

At level two, Colasanti and Trujillo participated in graduate courses to complete their 
Master’s Degree and solved non-routine problems designed to help them deepen their 
understanding of mathematical ideas. These courses focused on rational numbers, 
ethnomathematics, and mathematical modelling in which content and pedagogy were 
intertwined. Elementary and Secondary teachers worked together while developing 
content knowledge and worked in grade level groups while creating lessons. Data 
sources included: written reflections, written solution strategies, and Olson’s field 
notes. Data were analysed for changes in teachers’ level of sophistication in their 
mathematical arguments, rationale for their lessons, and analysis of students’ work 
samples.  

At level three, Olson, Colasanti, and Trujillo analysed the learning that occurred at 
level one and two in both phases for situations that led to cognitive dissonance. We 
examined the collected data for patterns that connected (a) graduate course work with 
articulated beliefs about teaching and learning, (b) experiences that led to cognitive 
dissonance, (c) discussions about the dissonance, with (d) the encouragement to 
assume new leadership roles within the school. 

RESULTS AND DISCUSSION 

Colasanti and Trujillo both remembered experiencing elementary mathematics as a 
series of facts and procedures to memorize (reflections, September 07, 2003). 
However, Colasanti’s father enjoyed mathematics and she remembered him 
“emphasizing that understanding what I was doing was going to make it a lot easier 
as math got more complicated.” Colasanti internalized an image of herself as a “doer” 
of math when she understood WHY and this led to understanding. In contrast, 
Trujillo experienced early frustration with math. She believed that math was 
comprised of abstract ideas that she would never understand and recalled being 
ridiculed in high school for using an incorrect strategy. Through these experiences, 
Trujillo came to “hate” math and was “deathly afraid of teaching math” in the 
elementary school (reflections, August 24, 2003). 

From these experiences and emotions, a notion of teaching and learning mathematics 
was constructed that was comprised of both implicit and explicit conceptions. Both 
Colasanti and Trujillo articulated similar teaching goals, “I want to teach in a way so 
that kids will understand math” and envisioned teaching practice as, “I will show 
them how to solve problems and explain each step so that they will understand what 
to do” (reflections, August 24, 2003). Illustrative examples will be presented to 
describe how cognitive dissonance helped Colasanti and Trujillo make their implicit 
conceptions explicit by analysing new experiences learning and teaching 
mathematics.  
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Phase 1 

The licensure program was designed to provide prospective teachers with experiences 
that explored new ideas while working with elementary students in PDS. Both 
Colasanti and Trujillo struggled in the introductory mathematics content course for 
elementary teachers, but for very different reasons. Colasanti reflected, “I never had a 
problem with math and loved timed tests. I didn’t know why we were learning to use 
manipulatives. Math was based on symbols. But, suddenly it clicked when I taught 
geometry. I never got geometry because I am not a visual person” (interview, 
November 28, 2005). Colasanti experienced cognitive dissonance as she questioned 
the usefulness of manipulatives in a mathematics class. Then, she discovered that her 
own ability to conceptualize geometric ideas may have been limited without the use 
of objects to construct mental images. Colasanti taught a unit on geometric shapes 
and then “all of a sudden I knew what a quadrilateral was. It wasn’t just a rectangle or 
something like that. It was a whole group of shapes that included squares and funny 
looking shapes with four sides, just like we talked about in class.” The experience 
exploring geometric ideas in a content course and then teaching geometry to third 
grade students led Colasanti to make her implicit conception that mathematics was 
symbolic manipulations explicit. She then was able to reconsider this conception and 
articulated the importance of using manipulatives in classrooms to help students 
explore characteristics of shapes and construct visual images that can be manipulated 
in the mind (reflection, March 2, 2004). Mathematics was no longer symbols that 
were used to get answers.  

In contrast, Trujillo avoided mathematics because she “never had a grasp of it” 
(interview, November 28, 2005). She struggled in the introductory mathematics 
course for elementary teachers because she “did not have the procedural knowledge 
to solve math problems.” Trujillo experienced cognitive dissonance when she entered 
the introductory course and confronted her belief that she would fail because of her 
limited understanding of mathematics. She discovered that knowing the procedures 
did not help her colleagues and found that she in fact “could solve problems that 
other couldn’t solve.” This led her to reconceptualise her self image and began to 
envision herself as a “math person.” With her new confidence, Trujillo decided to 
complete her Master’s Degree in Mathematics Education and described herself as an 
“elementary teachers who enjoyed math and loved to teach it” (interview, April 14, 
2005). 

Phase 2 

Secondary and elementary teachers finishing their Master’s Degree in mathematics 
education complete a course on the structure of rational numbers. They 
collaboratively investigate multiple representations of rational numbers to solve non-
routine problems (Lamon, 1999), to deepen their understanding of mathematics 
content, and to explore pedagogy that develops conceptual understanding. During the 
spring 2004, Colasanti and Trujillo participated in this course on rational number. 
Olson assigned each teacher to a specific group that mixed the strengths of group 
members. Initally, Colasanti and Trujillo were in different groups but began 
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collaborating after Trujillo accepted a mathematics position in the elementary school 
in which Colasanti had accepted a fifth grade teaching position.  

During the second week of the rational number course (field notes, June 15, 2004), 
Olson asked the teachers to draw a picture to represent 8 ÷ 2. Two thirds of the 
teachers drew a picture of eight objects circles around the two groups of four objects. 
Colasanti explained, “I drew eight objects and put them into two groups.” Trujillo 
responded, “That is really neat! I drew eight objects and put two in each group. The 
answers are the same, four, but what we did was really different.” The teachers in the 
class began to recognize that unless students are asked to show and explain their 
thinking, “we may make incorrect assumptions about their mathematical thinking.” 
This discussion prompted all the teachers in the class to reconsider their implicit 
conceptions that if students arrived at the same answer then their visualization were 
also the same. While all of the teachers recognized that different solution strategies 
often lead to the same correct answer, they had never considered that the way 
students visualize problems may also differ. Articulating this implicit conception led 
the teachers to consider how students’ images of mathematical ideas may differ and 
influence the meaning attached to symbols. 

Olson further challenged the teachers by asking them to represent 4 ÷ 1/3 using both 
interpretations and 3/8 ÷ 3. The group with Colasanti and Trujillo quickly drew four 
circles, partitioned each one into thirds, and then counted the number of thirds. To 
create the measurement model, almost all of the teachers in the class needed a 
problem context. One elementary teacher conceptualized division using the 
measurement model and posed the following problem. “Suppose you have four cups 
(drew four circles on the board) and this is only one third of a jug (drew an oval 
around the cups). How many cups would be in the jug?” Colasanti immediately 
responded, “There would be 12. So division is really just multiplying… oh, I see why 
you invert and multiply.”  

Colasanti and the other teachers experienced cognitive dissonance as they struggled 
to model division of fractions by constructing a unit from a part. They recognized 
that teaching students algorithms may help them get the right answer. But, unless 
students understood how the algorithm reflected problem solving situation, they 
would not be able to apply the algorithm in a problem context. The teachers’ 
experience of conceptualizing 4 ÷ 1/3 using only the partitive model encouraged 
them to reconsider their own conceptual understanding of division. The process of 
using cognitive dissonance to reflect on previous experiences and to articulate 
implicit assumptions mathematical understanding enabled Colasanti and Trujillo to 
reconsider their notions about teaching and learning mathematics.   

Colasanti and Trujillo and continued to collaborate in their elementary school 
through informal meetings. The focus of these meetings was to discuss “how we were 
going to implement [teach] specific concepts in our classrooms” (reflection, 
December 30, 2005). Trujillo noted that “when the students did not have a strong 
enough foundation to start where the book was, we examined the state standards to 
extract what concepts needed to be understood. From there we pulled from our own 
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resources and discussed our plan with our math coaches.” The two district math 
coaches encouraged Colasanti and Trujillo to consider “why we decided to teach 
things a certain way” (reflections, January 2, 2006). This built Colasanti and Trujillo 
self-confidence to use their own knowledge, experiences, and resources to find 
answers to difficult questions. At times, Colasanti and Trujillo reported that their 
principal sat in on these meetings. During their second year teaching (2005-2006), the 
principal began to refer to them questions about mathematics and the staff viewed 
them as mathematics resources (interview, November 28, 2005). 

In summary, cognitive dissonance led Colasanti and Trujillo to transformative change 
when they reflected on their emotional responses, prior experiences, and new 
experiences. We suggest that this process of reflection can help teachers articulate 
their implicit conceptions and that this articulation is critical to support change that is 
transformative. We also suggest that as teachers experience transformative change 
their self-efficacy also changes, thus, positioning teachers to assume new leadership 
roles in their school.   

IMPLICATIONS 

In conclusion, this study suggests that creating opportunities for teachers to examine 
their implicit conceptions about teaching and learning mathematics can be 
accomplished through cognitive dissonance. We describe this process as making the 
implicit explicit and theorize that not only does this process support reflection but it 
also can lead to increased self-confidence. Beswick (2005) suggested that new 
learning experiences can develop a different kind understanding with robust 
evidence. We found that cognitive dissonance may create emotional and experiential 
evidence that can be articulated and analysed to make implicit conceptions explicit. 
This process may be a mechanism that stimulates a belief-system change. Describing 
this process in which cognitive dissonance is used to uncover conceptions about 
teaching and learning mathematics may help teacher educators monitor the process of 
reflection and help them phase questions that promote growth.  

Additional research is needed to examine whether this process is effective with 
secondary and elementary teachers who participate in grade level professional 
development outside university courses. Longitudinal research is also needed to 
investigate experiences that support early-career teachers to assume leadership roles 
in their schools.  
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METACOGNITION AND READING – CRITERIA FOR 

COMPREHENSION OF MATHEMATICS TEXTS 

Magnus Österholm 
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This study uses categories of comprehension criteria to examine students’ reasons for 
stating that they do, or do not, understand a given mathematics text. Nine student 
teachers were individually interviewed, where they read a text and commented on 
their comprehension, in particular, why they felt they did, or did not, understand the 
text. The students had some difficulties commenting on their comprehension in this 
manner, something that can be due to that much of comprehension monitoring, when 
criteria for comprehension are used, might be operating at an unconscious cognitive 
level. Some specific aspects of mathematics texts are examined, such as the symbolic 
language and conceptual and procedural understanding. 

INTRODUCTION 

Problem solving is of course a major aspect of mathematics and mathematics 
education research. Also when discussing reading, this seems often to be done in 
relation to problem solving (Hubbard, 1990), for example, by examining word 
problems (Hershkovitz & Nesher, 2001) or when studying symbolic expressions 
(Ferrari & Giraudi, 2001). However, in this paper, reading comprehension is studied 
in the context of reading a text for learning, using texts that describe and try to 
explain something to the reader, where no specific task to solve is given. 

Some of my previous research studies (Österholm, 2004, in press) have focused on 
the creation of a mental representation when reading mathematics texts, that is, on 
how the reader understands a text. An open question in these studies is to what extent 
the reader believes that the text is understood – a metacognitive aspect. My previous 
studies have used a specific “measure” of comprehension, which may rely on criteria 
for comprehension that do not need to agree with what the reader views as important 
when understanding (mathematics) texts. Thus, different criteria might be used to 
decide if a text has been understood. This is a methodological problem when trying to 
investigate comprehension monitoring ability (Glenberg & Epstein, 1985). 

This paper reports on an exploratory empirical study about what kind of criteria for 
comprehension university students use when reading mathematics texts.  

METACOGNITION AND READING COMPREHENSION 

There are different parts of metacognition, for example, knowledge about cognition 
and self-regulation (Brown, 1985; Schoenfeld, 1987). Comprehension monitoring is 
included in self-regulation and consists of two parts, evaluating comprehension using 
some kind of criterion and “repairing” lack of comprehension using some type of 
strategy (Baker, 1985). 
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Comprehension monitoring 

There exist several different methods for examining comprehension monitoring, 
some of which do not separate the use of criteria and strategies (see Ling, 2000). But 
there are some results that show a general weakness in evaluating one’s own 
comprehension, for example, that students “seem not to gain information concerning 
the actual memorial consequences of their study behavior until they are tested on the 
material” (Pressley & Ghatala, 1990, p. 23), which is sometimes called the test effect. 
While there is some debate over the methods used in this type of research (Ling, 
2000), some results can be explained by the domain familiarity hypothesis, according 
to which the evaluation of comprehension can be “based on these general beliefs 
[about the level of one’s knowledge in a specific domain], rather than on experience 
with the particular texts” (Glenberg & Epstein, 1987, p. 90). 

It has also been noted that much of comprehension monitoring and self-regulation 
seems to occur at an unconscious level (Brown, 1985; Fitzsimons & Bargh, 2004), 
which could explain some results showing poor monitoring, since some research 
methods rely on students’ awareness of their own comprehension. 

Criteria for comprehension 

Baker (1985) gives a comprehensive description of possible criteria for reading 
comprehension, here presented in abbreviated form, and somewhat reformulated, 
with a label for each criterion together with a description of what this criterion 
focuses on: 

Lexical   Individual words 

Syntactic   Grammar 

Semantic criteria: 

Propositional  Integration of ideas in text 
(e.g., when one part of the text refers to another part) 

Structural  Thematic compatibility of ideas in text 
(e.g., if a part of the text fits with the main theme of the text) 

External  Consistency with prior knowledge 

Internal  Consistency of ideas in text 
(e.g., that two parts of the text are not contradicting each other) 

Clarity  Necessary information to achieve a specific goal 

A person’s epistemological beliefs seem to be a natural source for comprehension 
criteria, and for metacognitive processes in general (Hofer, 2004). However, in this 
paper, criteria are taken for granted as existing, how they are created and how they 
evolve will not be discussed. 

PURPOSE 

The purpose of this study can be divided into three main parts. However, since this is 
my first study that has a metacognitive approach to reading comprehension for 



Österholm 

 

PME30 — 2006 4 - 291 

mathematics texts, all three parts are of an exploratory type, where a purpose is to 
generate questions and hypotheses about the studied phenomena, which are planned 
to be studied in more detail in future studies. 

Firstly, due to what has previously been discussed about to what extent processes of 
metacognition can be unconscious, one purpose of this study is to see how much 
students are able to describe parts of their comprehension processes, that is, to 
describe why they regard themselves as understanding a text or not. 

Secondly, the types of criteria given by Baker (1985) will be used and tested as a tool 
for characterizing students’ criteria for comprehension. In particular, since Baker’s 
criteria are general in nature, it is of interest to see whether there is a need to describe 
more specific criteria for mathematics texts, for example, about symbolic expressions 
and algorithmic/procedural aspects. 

Finally, one purpose is to investigate similarities and differences between criteria 
used in different situations: When focusing on macro- or microstructures in the text 
(i.e., larger or smaller parts of the text), when reading different types of texts, and 
when focusing on symbolic or natural language. 

METHOD 

Nine student teachers voluntarily participated in this study, where they individually 
read one or two texts and orally commented on their comprehension. The students 
were studying to become mathematics teachers for the Swedish upper secondary 
level, and had studied some mathematics courses at the university level (in algebra, 
geometry, and analysis). The texts, which are more thoroughly described later, 
describe something that was new to the students. This procedure was part of a larger 
data collecting session with other activities (reading other types of texts and 
answering questions), therefore, some students read only one text while others read 
two different texts. But the activities when reading the texts where the same: The 
student read the whole text and then commented on their comprehension, then the 
text was divided into sections that were shown in order one by one to the student, 
where their comprehension was commented on after each section (comments about 
macrostructure). Finally, a few single statements from the text were given one by 
one, and the students’ comprehension was commented on once again, after each 
statement (comments about microstructure). When commenting on their compre-
hension, the students got to decide to what extent they had understood the text in 
question, and were then asked to explain and give reasons for why they felt that they 
had or had not understood (some part of) the text. 

The conversations with the students were audio recorded and transcribed. The 
transcripts were analysed by noting where comments were made about reasons for 
(lack of) comprehension, and these comments were then categorized using Baker’s 
(1985) types of criteria. At this moment, no testing of reliability of the coding process 
has been performed. Also, it should be noted that this methodology does not directly 
examine the criteria that actually have been used when reading the texts, but 
implicitly gives criteria from the way students talk about their comprehension. 
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The texts 

Two different texts were used in this study, one describing basic concepts of group 
theory (mathematical system and group) and the other describing Newton-Raphson’s 
method for numerically solving equations. Neither text takes up more than one page. 

The text about group theory can be said to focus on conceptual understanding, while 
the text about Newton-Raphson presents a sort of algorithm, and can be said to focus 
more on procedural understanding (at least when compared to the other text). For the 
text about group theory, a total of 13 occasions occurred when the reader was 
prompted to comment on their comprehension (for the whole text, six sections, and 
six statements). Twelve occasions occurred for the text about Newton-Raphson (the 
whole text, seven sections, and four statements). 

Three students read both texts (starting with the text about group theory), three read 
only the text about group theory, and three read only the text about Newton-Raphson. 

RESULTS 

When asked to give motives for their judgments of their comprehension, the students 
sometimes simply pointed to a smaller part of the text, stating that this part was (not) 
understood, but did not give any motive for this statement. Also, sometimes the 
students seemed somewhat uncomfortable with the situation, when asked for motives 
for their judgments of their comprehension. Therefore, this question was not repeated 
as often as planned, instead the students could sometimes more freely comment about 
their comprehension of the text. 

To locate statements that refer to motives for (lack of) comprehension among 
students’ comments were not experienced as problematic, but to categorize a specific 
statement was sometimes difficult. One reason for this is that when giving comments 
about why they did (not) understand, these were sometimes of a much general nature, 
for example, that the symbols in the text made it more difficult to understand or that 
the text was easy to understand because they had studied mathematics courses at the 
university and were familiar with the type of language. Such comments could fit 
many different types of criteria, since they do not refer to any specific content (i.e., 
meaning) of the text, which makes these types of comments seem compatible with 
the domain familiarity hypothesis. 

Examples of students’ comments 

The following is an excerpt from the text about Newton-Raphson (originally in 
Swedish, but translated for this paper): 

If 0)(' 1 ≠xf , then the tangent intersects the x-axis in a specific point. As the next 
approximation x2 we choose the x-coordinate of the intersection point. See picture: 
[picture omitted due to space limitations] 

We can determine x2 by letting x = x2 and y = 0 in the tangent’s equation. This gives the 
formula  
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The first part of this excerpt, up to and including the picture, is section 4 of the text, 
and the remaining is section 5. The first sentence of the excerpt is statement 1, used 
when presenting single statements from the text to the students. Table 1 shows some 
examples of students’ motives for (not) understanding some part of the given excerpt. 

General aspects 

Although it was not a purpose of this study, the connection between students’ beliefs 
and criteria for comprehension sometimes became evident. Some students 
continuously claimed to in principle understand everything read, but clearly had some 
difficulties to grasp the contents of the texts. These students said that they regarded 
learning by reading as virtually impossible in mathematics, and that one needs to do 
some calculations in order to understand. Their beliefs thus made them use somewhat 
superficial criteria for reading comprehension, and they felt that they had understood 
the text, but in some sense not the content of the text (i.e., the mathematics described). 

Other students did not reject the possibility of learning mathematics by reading, but 
regarded it as quite difficult, often using the criterion for comprehension that one 
should be able to use the text (to do some calculations on what the text is about). 
Therefore, they often commented on the need for concrete examples of “how to do”, 
something that corresponds to the criterion of clarity (see example in Table 1). 

Student Text Criterion Student’s comment 

A Section 4 Clarity Difficult to see how to do the 
calculations 

A, B Section 5 Clarity Now I understand what to do 

C Section 5 Propositional It was the one shown before [about 
the tangent’s equation] 

C Section 5 External Or is this something I should know 

A, C, D Statement 1 Propositional [Argumentation that it is true] 

Table 1: Examples of categorization of students’ comments. 

Comparisons 

Table 2 shows that there are no clear differences between students’ comments about 
macro- and microstructures in the texts, but that some differences exist between 
comments about the two different texts, where the external criterion is more 
frequently used for the text about group theory and the clarity criterion is more 
frequently used for the text about Newton-Raphson. Since different persons have read 
different texts, this could be due to that different students mainly use different 
criteria. Only the external criterion shows the same pattern when looking at the three 
students who read both texts. However, the small number of comments makes it 
generally difficult to analyse one particular criterion for individual persons. 

When comparing comments about symbolic expressions and sentences expressed in 
natural language, some qualitative differences and similarities emerge. The following  
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is an excerpt from the text about group theory, and was one of the single statements 
given to students to comment on (originally in Swedish, but translated for this paper): 

The set of all whole numbers together with addition is a group 

Several students understood this statement by “accepting it”, without commenting on 
the including concepts and the relations between them. I would argue that this 
corresponds to a type of syntactic criterion, since only the statement’s grammatical 
structure is taken into account, that the statement “makes sense”. This can be 
compared with a purely symbolic statement, which was part of the text about 
Newton-Raphson and also given as a single statement to comment on: 

))((')( 111 xxxfxfy −+=  

Most of the students wanted to know what the symbols “stand for” for 
comprehension (a type of lexical criterion), often that a specific function and specific 
points (x and x1) needed to be known in order to understand this expression. Nobody 
ever “accepted” this relationship; they always requested a context in order to 
understand, in which it was possible to do the calculations given in the formula. 
However, some students were satisfied with that the calculations could be done if one 
knew the function and the points, but all focused on the knowledge of how to do the 
calculations as a criterion for comprehension, which is somewhat similar to the 
criterion for the single statement in natural language, since it focuses on the grammar 
of the expression (i.e., that it “makes sense” and can be calculated). 

CONCLUSIONS 

In general, the students seem to have difficulties in articulating their motives for 
feeling that they have understood a text, or not. Perhaps this difficulty makes them 
often comment on the meaning of individual words (which is done about one third of 
the time), since this could be seen as a common cause for difficulty when reading. 
The cause for their difficulties could be that most of the monitoring activity takes 

 Text Part of text 

Criterion 
All 

comments Group th. Newton-R. Macro Micro 

Lexical 33 % 37 % 28 % 28 % 41 % 

Syntactic 3 % 4 % 1 % 1 % 6 % 

Propositional 13 % 8 % 20 % 14 % 11 % 

Structural 10 % 9 % 13 % 12 % 8 % 

External 20 % 32 % 6 % 24 % 14 % 

Internal 5 % 5 % 4 % 3 % 8 % 

Clarity 15 % 5 % 28 % 17 % 13 % 

Total (100 %) 163 92 71 99 64 

Table 2: Distribution (in each column) of number of occasions among all students 
that a criterion has been used. 
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place at an unconscious level, that the use of some comprehension criteria has been 
cognitively automatized.  

The major problem in this study seemed to be the collection of data, to get the 
students to comment on their comprehension. However, Baker’s (1985) criteria for 
comprehension, which were originally not created as a tool for categorizing empirical 
data, could be necessary to refine in order to make them more easily usable in 
empirical analyses, especially when using them for mathematics texts. For example, 
Baker (1985, p. 165) refers to the clarity criterion as a “residual, encompassing 
dimensions that cannot be subsumed under any of the other headings”, but this 
criterion seems quite useful, and commonly used, for mathematics texts, perhaps 
especially symbolic parts of texts and texts focusing on algorithmic and procedural 
understanding. Also, these criteria have not been created based on mathematics, and 
therefore these should be related to some specific theories about comprehension in 
mathematics, which in itself is a complex concept (see Sierpinska, 1994). 

No clear differences were found between criteria used for macro- and microstructures 
in the texts, but some differences were found between the two texts. Is this showing 
an adaptive behaviour among readers, when using different types of criteria for 
different types of texts, and is this done consciously or at a more unconscious level? 
This should be examined in more detail. The clearest difference between the texts 
was that the external criterion was much used for the “conceptual text” (about group 
theory) but hardly ever for the “procedural text” (about Newton-Raphson). However, 
it is unclear whether this is due to the conceptual and procedural aspects of the texts. 

When comparing criteria used for statements in natural and symbolic language, there 
exist both similarities (using a sort of syntactical criterion) and differences (accepting 
statements or not). However, since the syntactical criterion is used quite differently, 
in a conceptual manner for natural language and in a procedural manner for the 
symbolic statement, it seems necessary to refine or elucidate the categories of criteria, 
especially when using them for mathematics texts. 
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CLASSIFICATION ACTIVITIES AND DEFINITION 

CONSTRUCTION AT THE ELEMENTARY LEVEL 

Cécile Ouvrier-Buffet 

Paris 7 – Didirem – France 

 

The French curricula strongly recommend activities involving tasks of comparison, 
reproduction, description, construction and representation in plane as well as three-
dimensional geometry. There are now no specific guidelines concerning 
“classification’s activities” regarding geometry. However, those are the very 
activities which lead pupils to explore a concept and then to identify mathematical 
properties useful for the characterization of objects of a given class. My 
epistemological aim is to propose a new point of view on the classification activities, 
that of the construction of definitions. The didactical implications of this perspective 
concern both the identification of classification processes through definition 
construction and the characterization of the guidance of such activities. 

 

During an inaugural conference of “MATh.en.JEANS” (1992), the mathematician 
Berger talked about “convex things” as if they were human beings, in the following 
terms:  

 

A “convex” is a person who is shaped in such a way that every time 
we take two points inside him any segment which joins them is inside.

 

You have here in front of you something which is clearly not convex. 
If you are keen on fractals, then forget it because “the convex” is 
definitely non-fractal. Convexity has a sort of security, control 
function: it guarantees that you have no hole, no hollow, and no 
warped line. 

Let me focus on the above presentation of the concept of “convexity”. It combines 
several features concerning the definition of “convex”: an example and a counter-
example are given in order to illustrate the mathematical definition, along with a 
morphological description of what is a convex figure. It is noteworthy that the 
“convex” concept can be grasped through four complementary and necessary ways: a 
definition couched in mathematical language, the illustration of the delimitation 
between convex figures and non-convex figures by an example and a counter-
example (it will lead us to the etymological meaning of the word “definition”, that is 
to say “delimitation”), a geometrical representation of the purpose and, in the end, a 
definition in common language. In order to achieve the full understanding of the 
current concept, we would still have to characterize a set of situations in which the 
concept of “convex” appears relevant and necessary (in Vergnaud’s 1991 perspective 
of conceptual fields).  
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Through this example, I would like to underline the existing link between classifying 
process and defining process. To establish two classes amounts actually to delimitate 
a concept through what it is and what it is not. In this report, I shall consider a 
classification situation involving the difficult concept of “convexity” and analyze it 
through definitions construction. The results of an experiment, conducted at 
elementary school level with 10 year-old pupils, will be presented. 

CLASSIFICATION AND DEFINITION CONSTRUCTION PROCESSES 

How classification and definitions link up 

There are two ways in which a definition can trap us. Firstly, we can delude ourselves 
into thinking that what can be easily expounded can be easily assimilated. Secondly, 
we can put too much trust in definitions because the latter are the result of a choice 
and thus show only one aspect of the concept. This is precisely what happens when a 
definition is presently axiomatically to a student.  

Considering definitions as markers of the concept formation process gone through by 
the learner opens up a research avenue. In my introduction, I have underlined, the 
strong existing link between classifying and defining. I would also like to emphasize 
the importance of generalization and denomination processes in classifying. 
According to Hacking (1993), classifications and generalisations have to be linked. 
To use a name for one species amounts to producing generalisations and anticipations 
concerning the individual belonging to that species. Thus, using a common name to 
classify amounts to involve it in a projection process. 

The prime importance of grasping characteristics of geometrical objects, during 
classification tasks, has been noticed by Freudenthal (1973) and Fletcher (1964). I 
shall take into account this view and propose a new reading of classifications tasks 
through definitions construction. Let me first recall the most common conceptions of 
the concept of definition in mathematics. 

Commonly held views about mathematical definitions 

Several researches have explored teachers’ conceptions relating to the concept of 
“definition” (Borasi 1992, Ouvrier-Buffet 2003a, Shir 2005). For instance, Zaslavsky 
and Shir underline that the features of a definition are commonly accepted as crucial: 

The imperative features relate to the following requirements: a mathematical definition 
must be non-contradicting (i.e., all conditions of a definition should co-exist), and 
unambiguous (i.e., its meaning should be uniquely interpreted). In addition, there are 
some features of a mathematical definition that are imperative only when applicable: A 
mathematical definition must be invariant under change of representation; and it should 
also be hierarchical, that is, it should be based on basic or previously defined concepts, 
in a non-circular manner (Zaslavsky & Shir, 2005, p.319) 

More generally, I notice the following features: for teachers, at elementary and 
secondary levels, 
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• a definition should be minimal, non redundant (this is closely linked to a 
classical logical aspect: a mathematical theory has to be « well-formed » and 
a definition consists in a necessary and sufficient characterization of a 
concept). This is, in fact, a well-known conception: a definition should be 
useful and should have a specific place in proofs; 

• to define is to give a name. Let me notice that the feature « denomination » 
is very present in teachers’ discourses. However, to study definitions 
construction processes implies to reduce the place of the naming process, 
because the characterization of the concept itself comes first (I will come 
back on this fact below); 

• a definition should state the existence (and also the essence) of a 
mathematical concept, in accordance to the Platonician view which 
maintains that a concept pre-exists to its definition; 

• several linguistic features appear also, such as the following criteria: a 
definition should be precise, short, elegant, familiar and … universal; 

• and, it is crystal clear that the way teachers spell out their exigencies about 
mathematical definitions is connected to teaching and learning: they actually 
underline that a definition should be based on anterior knowledge and should 
allow students to create their own mental image of a concept. 

The question is now: how can we use these conceptions about the definition in order 
to design and manage classifications activities? Let me propose an exemplification.  

A SITUATION ON “CONVEXITY” 

The situation 

The pupils (10 year old) have at their disposal physical objects, consisting in pieces 
of cardboard. It allows a manipulation of the objects. The geometrical figures are also 
given on a sheet (see figures below). The task is the following: “make two classes”. 

  
 

 
 

 

Figure 1: convex and non-convex figures, given to pupils. 
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The methodology 

Five groups of 3-4 pupils took part into the activity. Concerning the progress of this 
activity, a MO (Manager Observer) has a specific place: his aim consists in orienting 
pupils’ research to the construction of a definition of “convex”, starting from classes 
produced by pupils. It implies that the MO has to use a particular command that is: 
the explicit demand of definition. In this perspective, he has to be particularly aware 
of the conceptions of definitions I have presented above. 

A priori analysis 

The concept at stake is “convex”. According to Fletcher (1964), several definitions 
are conceivable, such as: 

• Definition 1: a figure is convex if and even if, two points P and Q being 
given, all the points of the segment PQ belong to the figure. 

• Definition 2: a figure is convex if and even if every straight line passing by 
any point included crosses the boundary in exactly two points. 

• Definition 3: a figure is convex if and even if from each point of its 
boundary it passes at least one line of support. 

Let me notice that a dynamical definition, similar to definition 3, can be stated, in 
common language: roaming the boundary of the figure, the whole figure is always at 
the “same side” (a direction for the roam being chosen). This kind of provisional 
definition should be evolved if logical and linguistic arguments are mobilized for 
instance (see Ouvrier-Buffet, 2003b). 

• Definition 4: a figure is convex if and even if to each external point P to the 
figure corresponds one and only one point of the figure the nearest of P. 

I have chosen the figures for the classification task according to the two following 
constraints. There is at most one figure with curve and non-curve lines in order to 
exclude a classification in accordance to “curve lines and non-curve lines” property 
from pupils’ arguments. Quadrilaterals and other geometrical figures very 
institutionalized were outlawed in order to bypass pre-established classifications and 
definitions. 

Steering a classification situation towards definition construction 

In our perspective, it is necessary for the management to focus on the definition 
construction process, as a transversal competence and not as a final product. 

An epistemological study of the concept of definition (Ouvrier-Buffet, 2003a&b, 
2006) – a study which I can’t report completely here – leads me to characterize some 
guiding styles acting on a definition construction process. Such a process is based on 
four poles, in relation with the kind of the considered situations. One of these poles 
concerns the construction of a theory (that does not concern us at the elementary 
level), another deals with heuristics and problem situations (that includes a specific 
work on examples and counter-examples), and the two other poles concern the 
logical as well as the linguistic aspects. 
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The MO can then manage pupils’ progression, bearing in mind these several 
guidance elements. For instance, he can act taking into account that a definition is a 
specific statement: the MO may then formulate demands concerning logical and 
linguistic aspects of the current definition. The MO can also demand explicitly to 
pupils to generate examples and counter-examples. The latter give the opportunity to 
pupils to come back on the definition they are constructing.  

It is worth stressing that the project on examples and counter-examples is not easy to 
implement at the elementary level. However, this heuristic approach is essential 
during a definition construction process. I underline thus the crucial dimension of 
working on examples and counter-examples in order to test a definition in particular, 
and in order to promote a scientific process in general.  

Moreover, to take on board a relevant remark made by a pupil is a classical didactic 
guidance. Such a move assumes a major importance in the definition construction 
process: it sustains the devolution (in Brousseau’s 1997 sense) of the definition 
construction process. We consider the devolution process to be active throughout the 
experiment thus avoiding the reduction of devolution to the terms of the problem 
itself and to the production of basic strategies (Brousseau, 1997 & Margolinas, 1993). 
If such a move is noteworthy, the one which consists in referring back the pupil to the 
prescribed task (writing a definition) is just as important. 

PUPILS’ STATEMENTS  

Classes produced by pupils 

The experiment described below was realized by the pupils only with cardboard 
figures. We can group theses several classifications into three categories: 
morphological, mathematical and tiling. 

I mean by morphological every classifications involving physical descriptions of the 
manipulated forms. In every pupils’ group, the two following classes appear: 

• rounded / non-rounded: in one group, this classification leads pupils to 
construct orally the definition of a figure which is “more rounded than 
another one”, mobilizing then considerations about the length of a curve and 
the area of a form; 

• pointed / non-pointed. 

I call mathematical the classifications mobilizing explicit anterior geometrical 
knowledge. The pupils explain four different mathematical classifications:  

• figures having an axis of symmetry or not; 
• polygon / non-polygon; 
• figures having diagonals or not; 
• figures having at most one angle and the others. 

The category tiling corresponds to pupils’ manipulations when they produced some 
kinds of “tangram puzzles”. Pupils talked about figures which couple together or not. 
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They consider this classification as anecdotal and the vocabulary they use them laugh 
(the word “accoupler” has sexual connotations in French). 

A group’s progress: the definitions produced  

In this paragraph, I chose to focus on the way one group of pupils construct 
definitions. I shall underline in particular the pupils’ conceptions on the concept of 
definition and the guidance of the process. 

This group has proposed successively three classifications: 

• the figures having an axis of symmetry or not; 
• the figures having at most one angle; 
• and a classification very close to the concept of “convex” such as the 

following excerpt:  

When one connects the corners, the edges, it is interior or exterior. 

This last classification leads pupils to elaborate two other classes, two figures being 
still unclassed (C2 – the holed piece – and C5 – the piece mixing straight curves and 
non-straight line). At this moment, pupils recall the instruction:  

It is not good because three columns are necessary and we have to make two classes.  

The interventions of the MO felt into three distinct stages. Firstly, the MO recalls the 
instruction, that is to say recalls that we want to obtain two classes, then, pupils have 
to resolve the problem of C2 and C5. Secondly, the MO gives the name “convex”: 
this is connected to a philosophical view of definitions (i.e. to give a name before to 
characterize, in order to know what is about). Thirdly, the MO asks for a written 
definition of “convex”. 

The pupils were quick to react, they looked up for the words in the dictionary which 
gave us a chance to point out that the way they relate to mathematical definitions is 
the same as the way they relate to lexical definitions, which does not apply to pupils 
in secondary schools. It becomes apparent then that the linguistic and logical levers 
can no longer be used. Moreover, pupils are content with one definition and the 
repeated questions of the MO are answered only because of the didactic contract. The 
MO can still use mathematical levers consisting in looking for characteristics of 
convexity: the explicit requests of examples and counter examples fall precisely 
within the latter category. The MO must be particularly alert to characteristic 
properties in terms of construction of definitions emerging in the pupils’ discourse. 

Here are the successive definitions written by pupils: I am linking them to the MO’s 
interventions. 

Pupils’ definition 1: “convex: figure with points which connect on the inside”.  

"point" is crossed and replaced by "angles" and then by "angles and round shapes". 

MO: what is the signification of “to connect a round shape”? Can you explain what a 
round shape is?  
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The MO asks then for an example and a counter-example of their first definition. 

Pupils’ definition 2: “regular (or irregular) figures connecting together on the inside”.          

" irregular " is crossed. 

The MO asks then another definition, excluding the idea of “lines on the inside". The 
pupils give a suitable reply:  

Pupils’ answer: When one connects the points, it is interior. One cannot see how we can 
that in another way.  

However, I notice that two other definitions could have emerged: definition 2 and 
definition 3. 

Following on that demand, several definitions were written: 

Pupils’ definition 3: “figure of whatever form, when we connect the two points, they are 
inside”. 

Pupils’ definition 4: “convex: when we draw diagonals, it stays inside the figure”. 

Pupils’ definition 5: “convex: when we link up a point with another, the straight line 
does not get out of the figure”. 

The MO then asks the pupils not to consider the segment but straight lines with the 
potentialities of definition 2 (presented in the a priori analysis) in mind. 

The reader won’t be surprised by the pupils’ responses:  

But we are getting out of the theme! If we draw a straight line on all figures, they can all 
be convex!,  

which, of course no longer complies with the prescribed task i.e. to set up two 
classes. 

CONCLUDING REMARKS 

There is a difference in nature between experiment about the definition constructions 
processes conducted at the primary level than and those conducted at the secondary 
level. Pupils at the elementary level have not yet a “culture” of mathematical 
definitions. This fact implies that the MO’s freedom of action is somewhat limited. 
He cannot explore the whole range of guiding styles allowing a dialectic between 
definition construction and concept formation. However, the conceptual wealth being 
offered by defining situations built on classification tasks is promising. This paper 
illustrates the guidance possibilities of such situations, underlining in particular the 
guiding styles active in the defining process. Such experiments should be conducted 
again so as to fine-tune their impact on grasping of new concept at the elementary 
school. 
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This paper reports on the relation between the construction of mathematical 
knowledge and scaffolded discourse. We work within an operational model of 
‘abstraction in context’ which views abstraction as a vertical reorganisation of 
previously constructed knowledge into new knowledge. We extend this model by 
considering human mediation, the functions of scaffolding interventions and 
emergent goals. We exemplify our arguments by considering verbal data from two 
students engaged in tasks concerned with the graphs of the absolute value of linear 
functions and discuss interrelations between human mediation, scaffolding 
interventions and emergent goals. 

INTRODUCTION 

The term ‘abstraction’ has been largely influenced by empiricist accounts which treat 
abstraction as decontextualised higher-order knowledge involving generalisations 
achieved through the recognition of commonalties isolated in a large number of 
particular instances (see Ohlsson and Lehtinen (1997) for a critique). Many, of late, 
have found this view wanting and proposed alternative accounts which call attention 
to the importance of social and contextual factors (Noss & Hoyles, 1996; van Oers, 
2001; Hershkowitz, Schwarz & Dreyfus, 2001). We focus on Hershkowitz et al.’s 
(ibid.) account (referred to as HSD hereafter) as it offers an operational model for an 
empirical investigation of the abstraction process.  

HSD view abstraction as a vertical reorganisation of previously constructed 
mathematical knowledge structures into the new ones. Such reorganisation occurs in 
an activity through three epistemic actions: recognising, building-with and 
constructing. They argue that abstractions develop through three stages: (i) the need 
for a new structure, (ii) the construction of new structures by means of three 
epistemic actions and (iii) the consolidation of the newly constructed structures. HSD 
provide empirical evidence regarding the stages (i) and (ii) but merely assumes the 
importance of stage (iii). HSD call for further investigation into the validity of their 
model. To this aim we designed a study to subject HSD’s account of abstraction to 
empirical scrutiny and our findings extended this model in several dimensions.  

Monaghan & Ozmantar (in press) make a small but important refinement to the HSD 
model of abstraction by viewing an abstraction as a consolidated construction that can 
be used to create new constructions. In this paper we focus on the construction stage 
and consider human mediation, scaffolding interventions and emergent goals. We 
briefly describe the study, present student verbal data with a commentary and discuss 
interrelationships. 
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THE STUDY 

The main study, of which this paper reports one aspect, set out to investigate the 
validity of HSD’s model with a particular focus on scaffolding and social interaction. 
Our focus on scaffolding stemmed from a realisation that interventions, from a 
knowledgeable agent (e.g. interviewer) providing students with purposeful help and 
regulate them towards the achievement of mathematical abstraction, are important 
(and often uncommented on) aspects of many studies including HSD’s (e.g. van 
Oers, 2001). The metaphor of scaffolding, coined by Wood et al. (1976), refers to 
sensitive and supportive interventions given to learners to achieve a particular level 
of competence not readily available to the learners’ unassisted efforts. Such 
interventions require a tutor’s actions to be ‘contingent’ (Wood, 1991) in supporting 
learners through cycles of monitoring and analysing their performance in relation to 
task’s demands and then assisting them depending on their progress (Scott, 1998).  

In the main study, we employed 20 Turkish (aged 17-18) students who worked on 
tasks concerned with the absolute value of linear functions. Students were selected 
from 134 on the basis of a diagnostic test. This test was designed to identify students 
who had the necessary knowledge to tackle the tasks but were not acquainted with the 
content. Of the students, 14 worked in pairs and 6 worked individually. Four pairs 
and three individuals were scaffolded in their work and the rest were not. All students 
worked on four tasks on four successive days without time limitation. Tasks 1, 2 and 
4 were designed to allow students to construct a method(s) to sketch the graphs of, 
respectively, |f(x)|, f(|x|) and |f(|x|)|, given the linear graph of f(x). Task 3 was designed 
to give students the opportunity to consolidate their constructions in task 1 and 2.  

We present the verbal data of two students (H&S) working with a tutor/interviewer 
(the first author) who aimed to scaffold H&S’s work through a range of interventions, 
from asking for explanations to giving feedback, explanations and directions, if 
needed. H&S worked on task 4 which involved five open questions. Question 1 (Q1) 
asked to sketch the graph of f(x)=|(|x|-4)| and report on the patterns. Students were 
then asked, Q2, to compare the graphs of f(x)=x–4 and f(x)=|(|x|-4)|. Q3 presented 
graph of f(x)=x+3 and asked to use it in sketching the graph of |f(|x|)|. In Q4 four 
linear functions without equations were presented and students were asked to sketch 
the graphs of |f(|x|)| for each of these. Q5 asked students to explain how to obtain the 
graph of |f(|x|)| from the graph of an arbitrary linear function f(x). 

VERBAL DATA  

For the first two questions H&S substituted values for x to accurately draw the graphs 
of f(x) and |f(|x|)|. They recognised symmetries in the W-shaped graph of |f(|x|)| for Q1 
and commented on similarities and differences between the graphs of f(x) and |f(|x|)|. 
They moved on to question 3 and again substituted values for x to accurately draw 
the graphs of f(x) and |f(|x|)|, which was V-shaped. H&S then compared the two 
absolute valued graphs obtained in Q1 and Q3 in relation to the original linear graphs 
of f(x) by focusing on specific line segments, rays and symmetries:  
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133H: Look I think the first part [of f(x) at x>0] always remains the same… oh does it?  

134S: Yes 

135H: But in the first question there is (…) a line segment 

136S: This graph is also symmetric in the y-axis. But I don’t know how it helps us! 

137H: We know that the part of f(x) over the x-axis remains the same, right? 

138S: Yes (…) and also (…) they are taken symmetrically in the x-axis. 

139H: But wait! (…) it [graph of |f(|x|)| for question 3] doesn’t obey this rule…  

140S: Yeah I know, there was a line segment in the first graph  

141H: I don’t think we can ever understand how to use f(x) to draw the graph of |f(|x|)|. 

142S: The first graph was something like W-shaped… but this graph is V-shaped. 

143H: They are totally different! How can we speak in a general way? Even this 
question made things worse rather than helping us. 

144S: We’d better stick to substituting…we can answer the next question by 
substituting. 

Until this point the interviewer intentionally limited his assistance in order to observe 
how far H&S could progress on their own. The interviewer (having monitored that 
H&S had tried, and had given upon, to develop a method to sketch the graphs of 
|f(|x|)| and believing that they were losing confidence in their abilities) intervened and 
suggested that they return to the first question. He brought their earlier constructions 
of |f(x)| and f(|x|) to their attention and suggested that they keep these in mind.  

165I: if you pay a closer attention to the equation… I mean look at the expression itself, 
[|f(|x|)|], it is a combination of these two [|f(x)| and f(|x|)]. Do you see that? 

166H: Yes, that’s right (…)  

167S: Yeah, this [|f(|x|)|] is a combination of f(|x|) and |f(x)| (…) 

168I: Ok, let’s think about it and consider what you know. How can we use our 
knowledge to obtain this graph [of |f(|x|)|]? 

169S: Look it makes sense now (…) 

170H: Yeah, I think it makes sense! If |f(|x|)| is a combination of f(|x|) and |f(x)|, can we 
think about it like a computation with parentheses? 

171I: Computation with parentheses? 

172H: I mean for example when we are doing computations with some parentheses 
like… let’s say for example, (7-(4+2)), then we follow a certain order… 

173S: Right, I understood what you mean… we need to first deal with the parenthesis 
inside of the expression, is that what you mean? 

174H: Yeah, I think it is somehow similar, I can sense it but I am unable to clarify… 

175S: I know what you mean but how could we determine the parenthesis in here? 

176I: You both made an excellent point. OK, let’s think about it together! In the 
expression of |f(|x|)|, can we think about the absolute value sign at the 
outside of the whole expression as larger parenthesis, which includes 
another one just inside. 
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Following 165I intervention, H proposed an analogy with arithmetic in relation to the 
expression of |f(|x|)|. But H&S were unclear as to how to “determine the parenthesis” 
(175S), for which the interviewer (176I) gave an explanation to which H reacted:  

177H: Aha, I got it… I know what we will do. 

178I: Could you please tell us? 

179H: We can consider f(|x|) as if it was the smaller parenthesis! 

180I: Smaller parenthesis? 

181H: I mean it should be the first thing that we need to deal with 

182S: Yeah, I agree… I think we should begin with the graph of f(|x|) and first draw it 

183H: But what next? 

184S: Then we can use the absolute value at the outside… in the similar way of doing 
computations. 

185H: But we will be drawing graphs! Can we really do this? 

186S: I am not too sure if we can… but it sounds plausible… 

187I: What you are doing here is not computation (…) but you are making an analogy 
(…) and I see no problem with that… let’s draw the graph by considering 
what we’ve just talked about and then decide if it will work or not, huh? 

In the above excerpts, H&S planned how to use the structures of |f(x)| and f(|x|) in 
sketching the graph of |f(|x|)|. The interviewer encouraged (187I) H&S to use these 
ideas in sketching the target graph, which they later successfully did, in two steps, 
through the successive application of their earlier constructions of f(|x|) and |f(x)| to 
the given graph of f(x). By doing so, H&S were enriched with a new method to view 
the graphs of |f(|x|)|, which we call the ‘two-step method’ that H explained as follows:  

244H: when drawing f(|x|), part of f(x) at the positive x remains unchanged… then this 
part is taken symmetry in the y-axis and err and also part of f(x) at the 
negative x is cancelled. After that, we apply absolute value to this graph, 
and for this… negative values of y are taken symmetry in the x-axis and 
thus we obtain the graph of |f(|x|)|. 

DISCUSSION 

It is clear from the excerpts that H&S constructed a new method unavailable to them 
before and that the interviewer assisted H&S in their construction. Closer inspection 
of student-interviewer interaction suggested that we focus further attention on three 
particular issues: human mediation, functions of interviewer interventions and 
emergent goals. We discuss these issues below under discrete headings but point out 
that they are interrelated. These considerations, we believe, extend the analytic power 
of the HSD model of abstraction with particular regard to the construction stage. 

Human mediation 

Vygotsky (1981) proposed that higher mental processes and human actions in general 
are mediated by technical and psychological tools and by other humans: “it is through 
the mediation of others…that the child undertakes activities. Absolutely everything in 
the behaviour of the child is merged and rooted in social relations” (cited in Ivic, 
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1989, p.429). We take it as given that the interviewer’s interventions mediated 
H&S’s construction of the ‘two-step method’; he acted as a knowledge artefact which 
the students made essential use of to produce their construction. H’s act of 
recognition, for example, “|f(|x|)| is a combination of f(|x|) and |f(x)|” (170H) was 
interviewer-mediated: it followed the interviewer’s prompt (165I) after which she 
exclaimed “it makes sense!” (170H). Here H’s utterance is not a simple repetition of 
the interviewer’s utterance of 165 as she used this in connecting the expression of 
|f(|x|)| with computational precedence (building-with) and even gave an example 
(172H). Thus, in H’s utterance, not only is the act of recognising but also the 
resulting building-with is mediated by the interviewer’s intervention in 165 and 168. 

But what effect did this mediation have on H&S’s developing construction? One 
could argue that the interventions ‘facilitated’ H&S’s mathematical actions. 
However, our analysis suggests that these interventions brought about crucial 
transformations in H&S’s ways of seeing, talking and acting which went far beyond 
‘mere’ facilitation. When H&S failed to develop a ‘better’ method than substitution 
(143H&144S), the interviewer intervened and brought the structures of |f(x)| and f(|x|) 
to the focus of their attention. Following the interviewer’s suggestion of considering 
|f(|x|)| as a combination of |f(x)| and f(|x|) (165I), a transformation is apparent in the 
students’ seeing (seeing “precedence of operations” in the expression |f(|x|)|; see 
170H-175S), talking (talking about the graphs of f(|x|) and |f(x)| in |f(|x|)|; see 177H-
186S) and acting (merging the graphs of f(|x|) and |f(x)| into a single graph; see 
244H). The importance of these transformations resulting from the interviewer’s 
mediation can be better appreciated when we compare H&S’s earlier considerations 
of these graphs until 144 where they merely focused on the ostensible features of the 
graphs such as “line segments”, “parts” and “symmetries” (133H-144S) which did 
not lead H&S to construct a new method and in fact they eventually declared their 
intention to give up developing a method other than substitution (143S-144H).  

But what functions did the interventions serve in leading to these transformations? 
We attend to this question in next section. 

Functions of the interviewer interventions 

We focus on three functions of interventions that appear important in explaining 
these transformations: reducing uncertainty, direction of attention and regulation.  

In the protocol excerpts, reducing the students’ uncertainty appears to be a crucial 
function of the interventions. During the construction process uncertainty seems to be 
inevitable as construction requires not only that students recognise and use available 
knowledge structures but also that they reorganise them, put them together and forge 
new connections amongst them. Furthermore, all of these actions need to be carried 
out in an ‘unfamiliar situation’ which increases learner uncertainty (see Wood, 1991). 
Indeed construction is the process through which students become familiar with the 
new structure, which presupposes students’ unfamiliarity with the to-be-constructed 
structure before construction. Students have no clear picture of the construction to be 
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formed (for otherwise it would already be constructed) so they confront uncertainty, 
albeit at varying degrees, when striving to construct something unfamiliar to them.  

We can observe the influence of the interviewer interventions in the reduction of the 
students’ uncertainty during their progression towards the target construction. H&S’s 
uncertainty about the aptness of their proposals and explanations appeared during this 
task. For instance, following their suggested analogy to computational precedence 
(170H-174H), they were uncertain as to how to “determine the parenthesis” in the 
expression of |f(|x|)| (175S). They also expressed their uncertainty as to the aptness of 
approaching the graphs of |f(|x|)| through the successive application of f(|x|) and |f(x)| 
(185H&186S). The interviewer played a crucial role in handling H&S’s uncertainty 
when he intervened, for example in 187I, to give positive feedback (“I see no 
problem”), specified a target (“let’s draw the graph … and then decide”) and helped 
H&S to continue their work, which led them to construct the two-step method.  

The second function of the interventions was directing the students’ attentions and 
efforts. The management of attention in collaborative learning environments is 
critically important during new learning (Barron, 2003; van Oers, 2001). Mason & 
Spence (1999) attribute a pivotal role to shifts in one’s attention in doing and learning 
mathematics and they argue that: 

… coming to know is essentially a matter of shifts in the structure of attention, in what is 
attended to, in what is stressed and what consequently ignored with what connections … 
Knowing is not a simple matter of accumulation … [but] rather a state of awareness, of 
preparedness to see in the moment (p.151) 

However, if students are not aware of the importance and necessity of the knowledge 
artefacts at their disposal, they are unlikely to make use of them as they (or their 
attention) are ‘blocked’. This was the case at times for H&S, e.g. when they initially 
focused on specific “line segments”, “parts” and “symmetries” (see 133H-140S), they 
failed to recognise the connection between their knowledge of |f(x)| and f(|x|) and a 
construction of |f(|x|)|. It is with this ‘connection’ that the interviewer’s interventions 
to direct H&S’s attention are particularly important. In H&S’s work, the interviewer 
first brought |f(x)| and f(|x|) to their attention and helped them recall what they knew 
about these functions. Later he drew H&S’s attention to the expression of |f(|x|)| and 
suggested viewing this as a combination of |f(x)| and f(|x|) (165I). Only after ensuring 
that |f(x)| and f(|x|) were the focus of the students’ attention (166H&167S) did he 
invite them to work out an idea as to how to use |f(x)| and f(|x|) to obtain |f(|x|)| (168I).  

The interventions also had a regulative function which often took the form of setting 
goals through, mainly, direct requests, inviting H&S to focus on certain aspects of the 
task e.g. “let’s draw the graph” (187I) and “how can we use our knowledge to obtain 
this graph” (168I). The goals were important in focusing the student’s attention and 
in reducing their uncertainty; it was, to a large extent, through their efforts to satisfy 
these goals that H&S moved closer to the target construction. These goals were not 
predetermined but ‘emerged’ in the course of interaction. We are convinced of the 
importance of such emergent goals in scaffolded discourse. These goals are 
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dialectically shaped by the interviewer’s understanding of the students’ development 
at certain stages in the activity and the students’ understanding of the interventions in 
the context of a particular task. We attend to this issue next.  

Emergent goals in scaffolded discourse during the construction 

HSD’s model of abstraction is an activity theoretic model. Leont’ev’s (1981) 
exposition of activity theory argues that the main goal of an activity is realised by an 
aggregate of actions subordinated to partial goals which can be distinguished from, 
yet are constitutive to, the main goal. Saxe (1991), which is activity theoretic in all 
but name, considers practice-linked emergent goals, little and often unconscious 
goals which come into being and fade away. Saxe’s goals are not static constructions 
but rather are “emergent phenomena shifting and taking new forms as individuals use 
their knowledge and skills alone and in interaction with others to organise their 
immediate contexts” (ibid., p.17). Our use of the term ‘emergent goals’ has 
similarities to Leont’ev’s partial goals and Saxe’s emergent goals: they are emergent 
goals for the interviewer but are partial goals for the students. 

Ozmantar (2004) argues that emergent goals in scaffolded discourse are contingent 
upon dialectically interrelated parameters: the task, the interviewer’s interventions, 
the students’ interpretations and prior emergent goals. Viewing emergent goals in 
relation to the construction of knowledge in scaffolded discourse is a complex matter. 
The complexity stems, to a considerable extent, from the differences in the participants’ 
(i.e. interviewer and students) understandings: the interviewer has a clear vision of 
the target construction and the possible ways to achieve this but the students do not. 
This affects the way in which the participants interpret the task and the main goal of 
the activity. For example, the main ‘goal of the task’ was for the students to construct 
a method to sketch the graph of |f(|x|)|, given the graph of f(x). This was the goal of 
the interviewer but it was not necessarily seen and interpreted in the same way by the 
students. When H&S encountered difficulties in developing a method at the end of 
Q3, they decided to “stick to substitution” which they could use to sketch the graphs 
in Q4 (144S). This suggests that H&S’s goal was to answer the questions and 
complete the task, not to develop a general method. The emergent goals we speak of 
in this scaffolded task arose from the motives of the interviewer, to coordinate the 
students’ partial goals with his interpretation of the main goal of the task. 

Emergent goals in scaffolded discourse belong to the agent in focus; the emergent 
goals of the interviewer generate emergent goals for the student(s). Consider some of 
the interviewer’s emergent goals: to draw H&S’s attention to |f(|x|)| as a combination 
of |f(x)| and f(|x|) (165I&168I) and to understand H’s analogy (171I). Corresponding 
student emergent goals are: to make sense of |f(|x|)| as a combination of |f(x)| and f(|x|) 
(166H, 167S &170H) and to explain the analogy of computational precedence. 

Important questions arise: How are the differences in the structure of emergent goals 
reconciled in the discourse? To what extent should the emergent goals of the different 
parties be compatible for the interventions to be fruitful? Are the differences 
obstacles or essential dynamics of the discourse? We do not have immediate answers 
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to these questions. It is clear, however, that H&S constructed new knowledge (the 
main goal of the activity) through the fulfilment of a series of emergent goals which 
are distinguishable from, yet subordinated to, the main goal itself. It is also clear from 
the protocol excerpts that H&S achieved the construction of the two-step method 
through their efforts to realise these emergent goals. 
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The emphasis of the present study is on the impact of the development of processing 
efficiency and working memory ability on the development of metacognitive abilities 
and mathematical performance. We had administered instruments measuring pupils´ 
metacognitive ability, mathematical performance, working memory and processing 
efficiency to 126 pupils (8-11 years old) three times, with breaks of 3-4 months 
between them. Results indicated that, processing efficiency had a coordinator role on 
the growth of mathematical performance, while self-image, as a specific 
metacognitive ability, depended mainly on the previous working memory ability. 

INTRODUCTION 

There is an increasing consensus that intelligence is a hierarchical and 
multidimensional edifice that involves both general-purpose and specialized 
processes and abilities (Demetriou et al., 2005). Individual differences in 
psychometric intelligence are associated with individual differences in processing 
efficiency and/or working memory (Engle, 2002). According to developmental 
theory, developmental changes in thinking are associated with changes in processing 
speed or efficiency (Kail, 1991), central attentional energy or capacity (Pascual-
Leone, 2000), or working memory (Case, 1985).  

Mathematics does involve some special mechanisms of representation and mental 
processing which are appropriate for the representation and processing of quantitative 
relations. We also believe that these mechanisms are constrained by the organization 
and the possibilities of the human brain. Thus, any research about the architecture 
and the development of mind in respect to mathematics will have to specify the 
domain-specific processes and functions that it involves, the general potentials and 
processes of the human mind that sustain and frame its functioning, and their 
dynamic relations in real time during problem solving. 

In recent years metacognition has been receiving increased attention in cognitive 
psychology and mathematics education (Guterman, 2003; Kramarksi & Mevarech, 
2003; Pappas, Ginsburg & Jiang, 2003). The interest has focused on its role in human 
learning and performance. The present study uses the term “metacognition” referring 
to the awareness and monitoring of one’s own cognitive system. There are important 
questions that are still debate in psychology and in mathematics education concerning 
the relationships among cognitive processes, such as control of processing, speed of 
processing and working memory with metacognitive processes, such as self-
representation, self-evaluation and self-regulation. The present study purports to 
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contribute to the ongoing research on the impact of specific cognitive processes, on 
metacognitive abilities and on mathematical performance. The purpose of the study 
was twofold: First to explore the impact of processing efficiency and working 
memory on metacognitive processes in respect to mathematics and secondly to 
explore if the above interrelations tend to change with development. 

The human mind and the development of cognitive and metacognitive abilities  

The human mind can be described as a three level hierarchical system involving 
domain-general and domain-specific processes and functions (Demetriou & Kazi, 
2001). Speed of processing, inhibition and control, and working memory are the 
basic dimensions that define the condition of this system. The processing system is 
defined in terms of three main parameters: speed of processing, control of processing 
and working memory. The first parameter is the maximum speed at which a given 
mental act may be efficiently executed; it refers to the time needed by the system to 
record and give meaning to information and execute an operation. Control of 
processing determines the system’s efficiency in selecting the appropriate mental 
action. The more demanding a task is, the more processing resources, monitoring, 
and regulation it requires. Finally, working memory refers to the quantity of 
processes, which enable a person to hold information until the current problem is 
solved (Demetriou & Kazi, 2001).  

The neo-Piagetian perspective explains the cognitive development in terms of 
information processing.  The limits in working memory capacity impose constraints 
on cognitive processes, and vary with age (Kemps, Rammelaere, & Desmet, 2000).  
There is evidence that processing speed changes uniformly with age, in an 
exponential fashion, across a wide variety of different types of information and task 
complexities. That is, change on speed of processing is fast at the beginning (i.e., 
from early to middle childhood) and it decelerates systematically (from early 
adolescence onwards) until it attains its maximum in early adulthood (Hale & Fry, 
2000). Concerning the working memory there is general agreement that the capacity 
of all components of working memory (i.e., executive processes, phonological, and 
visual storage) do increase systematically with age. Additionally, there seems to be 
an inverse trade-off between the central executive and the storage buffers, so that the 
higher the involvement of executive processes the less is the manifest capacity of the 
modality-specific buffers. This is so because the executive operations themselves 
consume part of the available processing recourses. However, with age, executive 
operations and information are chunked into integrated units and with development, 
the person can store increasingly more complex units of information (Case, 1985). 

Concerning the metacognitive abilities Kail´s research (1991) indicated that even 
preschoolers are capable of reflecting on their own prior knowledge. By the age of 
about 4 years, children understand the relation between beliefs and knowing, while 
between the ages of 4-7 years children move to a more sophisticated understanding of 
the role of inferential processes in knowledge acquisition (Schneider & Sodian, 
1998). Even though, children’s early understanding of themselves has been 
intensively investigated in the last decades, there is a lack of studies investigated at 
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the same time cognitive abilities and metacognition, in respect to specific domains, 
such as mathematics. Research should be concentrated on the impact of cognitive 
factors on the development of the metacognition at the specific domain, and 
consequently on the respective performance. A reliable model depicting the 
development of those cognitive and metacognitive abilities could be useful in two 
ways: On the theoretical level it will contribute to deeper understanding of this 
important interconnection and on the practical side it may be useful in developing 
teaching programs for the improvement of young pupils´ metacognitive abilities on 
mathematics.  

METHOD 

In the present study we developed and used a self-reported inventory measuring 
metacognition and an inventory measuring mathematical performance. Processing 
efficiency and working memory were measured as well. To specify the nature of 
change in cognitive abilities in mathematics in relation to metacognition and the 
possible interrelations in the patterns of change in these aspects, a series of three 
repeated waves of measurements were taken, with a break of 3-4 months between 
successive measurements, by using the same materials. 

Participants 

Data were collected from 126 children (61 girls and 65 boys), in grades three through 
five (about 8 to 11 years old). Specifically, 37 were 3rd graders, 40 were 4th graders 
and 49 were 5th graders.  

Materials 

The inventory for the measurement of the metacognitive performance was comprised 
of 30 Likert type items, of five points (1=never, 2=seldom, 3=sometimes, 4=often, 
5=always), reflecting pupils perceived behaviour during in-class problem solving. A 
specimen item is: “when I encounter a difficulty that confuses me in my attempt to 
solve a problem I try again”. The responses provide an image of pupils´ self-
representation, which refers to how they perceive themselves in regard to a given 
mathematical problem. The individual’s mathematical ability was measured through 
four numerical tasks, four analogical, four verbal and four matrices for the 
measurement of spatial ability taken from the Standard Progressive Matrices.  

The pupils’ information processing efficiency was measured using a series of stroop-
like tasks devised to measure speed and control of processing, under three different 
symbol systems: numerical, verbal, and imaginal. To measure, for example, verbal 
speed of processing, participants were asked to read at the computer a number of 
words, denoting a colour written in the same ink-colour (for example the word green 
written in green) and they had to type the letter G at the keyboard, indicating the 
written word or the colour of the word.  To measure the two dimensions of numerical 
processing, several number digits were composed of small digits. This task involved 
the numbers 4, 7 and 9. In the compatible condition the large digit was composed of 
the same digits, while in the incompatible condition the large digit was composed of 
one of the other digits. The tasks addressed to the imaginal system were similar to 
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those used for the numerical system and comprised three geometrical figures: circle, 
triangle, square. Reaction times to all three types of the compatible conditions 
(verbal, numerical, imaginal) were taken to indicate speed of processing, while 
reaction times to the incompatible conditions were considered indicative of the 
person’s efficient control of processing. The computer measured reactions times 
automatically.  

  

An imaginal compatible stimuli A numerical incompatible stimuli 

 

To measure working memory, we asked pupils to recall a number of words, sets of 
numbers, and images. The verbal task, for example, combined six levels of difficulty, 
each of which was tested by two different trials. The difficulty level was defined in 
terms of the number of words in the task, which ranged from two to seven concrete 
nouns. The numerical tasks were structurally identical to the verbal task. Specifically 
in the easy trial, only decade numbers were involved, while in the difficult trial the 
two digits of the numbers were different. Both words and numbers presented to 
children as verbal stimuli. In the imaginal task, the stimuli were presented visually at 
the computer. The participants were shown a card on which a number (2-7) of 
geometrical figures were shown and they were asked to choose from four choices the 
card, which had the same figures, at the same relative position with the first one.  

RESULTS 

The collected data of the inventory about metacognitive abilities were first 
subjected to exploratory factor analysis in order to examine whether the factors that 
guided the construction of the inventory were presented in the participants´ 
responses. This analysis resulted in 10 factors with eigenvalues greater than 1, 
explaining 64.74% of the total variance. After a content analysis of the ten factors, 
there were classified in the following four groups: “general self-image” (two 
factors), “strategies” (four factors), “motivation” (two factors), and “self-
regulation” (two factors). The means of the four groups of factors were 
subsequently used in order to avoid a big number of variables at the dynamic 
modelling (Gustafsson, 1988). The present paper concentrated on self-image and 
self-regulation. The items that constructed the two factors about “self-image” 
referred to the beliefs and self-efficacy that pupils had about their abilities, in 
general, and while encountering specific situations, in particular. “Self-regulation” 
in mathematics, the other two factors of the analysis, included clarifying problem 
goals, understanding concepts, applying knowledge to each goal to develop a 
solution strategy and monitoring progress toward a solution.  

In order to specify the dynamic relations between mathematical performance and 
metacognition with processing efficiency and working memory, during the period of 
the study, dynamic modelling was used. The dynamic model explored possible 
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relations among three cognitive variables (processing efficiency, working memory, 
and cognitive performance on mathematics) and two metacognitive variables (self-
image and self-regulation) across the three waves of measurement. The variables of 
strategies and motivation excluded from the last analysis in order to avoid testing a 
complicated model with too many variables and consequently many limitations with 
the statistical analysis. We believed that self-image and self- regulation had a strong 
relationship with the general self-representation. Self-image about personal strengths 
and limitations, in comparison to the abilities of others, is a part of the general self-
representation. While self-regulation is one of the two basic dimensions of 
metacognitive ability and it is too important in order to overcome obstacles 
encountering while solving a mathematical problem.  

The main hypothesis of the dynamic model was that all the variables at the second 
measurement were affected by the respective variables at the first measurement and 
the variables at the third measurement were affected by the respective variables at the 
first and the second measurement. Furthermore, the second hypothesis was that 
significant relations would connect the different variables at each wave of the 
measurements. Analysis was conducted using the EQS program (Bentler, 1995) and 
maximum likehood estimation procedures. Multiple criteria were used in the 
assessment of the model fit (CFI>0.9, x2/df<2, RMSEA<0.05). 

The initial fit of the model tested, without any correlations among the five variables 
in each wave of measurement, was very poor (Χ2=999.359, df=410, Χ2/df=2.42, 
p<0.001, CFI=0.581, RMSEA=0.114). It improved, however, dramatically after the 
above two hypotheses were tested indicating the impact of the first measurement on 
the respective abilities at the second and the third measurements and the connection 
of the different cognitive and metacognitive abilities at each wave of the 
measurements. After a few error variances were allowed to correlate, according to the 
indications of the LMTEST, the fit of the model was excellent (Χ2=434.964, df=373, 
Χ2/df=1.16, p=0.01, CFI=0.956, RMSEA=0.039). The parameter estimates of this 
model are shown in Figure 1. 

A notable finding from the specific dynamic model was the predominant role played 
by the processing efficiency, affecting significantly all the others cognitive and 
metacognitive variables even at the first measurement. The statistically significant 
loading of processing efficiency (PE1) on working memory (WM1) was -0.337, on 
mathematical performance (COG1) was -0.206, on self-image (SI1) was -0.198 and 
on self-regulation (SR1) was -0.262.  At the same time, the predominant role of 
processing efficiency on the whole system was underlined by the result that the 
loading of processing efficiency at the first measurement on cognitive mathematical 
performance at the third measurement was significant (-0.397). The negative signals 
were explained by the fact that the high processing efficiency translated into low 
reaction time. The loading of working memory at the second measurement (WM2) on 
the mathematical performance at the third measurement (COG3) was significant as 
well (0.495). Consequently the mathematical performance depended mainly on the 
previous processing efficiency and the working memory.  
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PE= Processing Efficiency, WM= Working Memory, COG= Cognitive Abilities on 
Mathematics, SI= Self Image,  
SR= Self-regulation,  1= first measurement 2= second measurement 3 =third measurement 
* Significance at the .05 level, 

Figure 1: The dynamic model of cognitive and metacognitive abilities 

The model parameters indicated that there was a general pattern of individuals´ 
differences at the first measurement that persisted at the second and the third 
measurement in the case of working memory. This is evidenced from the continuing 
significant loadings of each variable at different measurements. Specifically, the 
loading of the working memory ability at the first measurement (WM1) on the 
working memory ability at the second measurement (WM2) was 0.814. Similarly, the 
loading of the working memory ability at the first measurement, and the loading of 
the same variable at the second measurement on the working memory ability at the 
third measurement (WM3) were 0.767, and 0.349, respectively.   

The performance of self-image at the third measurement (SI3) was affected by the 
initial condition (WM1) of the working memory (0.239) and the mathematical 
performance (COG3) at the third measurement (0.530). This is an important 
indication of the factors that affect individuals´ self-image in mathematics. Actually 
the impact of the mathematical performance at the same measurement was 
expectable, because of the recent experiences. Nevertheless the impact of the initial 
condition of the working memory ability indicated the important impact of cognitive 
processes and abilities on the self-image.  
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DISCUSSION 

The findings of this study lead to some potentially important conclusions about the 
development of cognitive and metacognitive processes. The human mind is much 
more complex than simply cognitive abilities and processes and their presentations 
(Demetriou & Kazi, 2001). Metacognition is constrained by the processing potentials 
of the mind. The existence of significant correlations among different cognitive 
abilities, especially between processing efficiency with working memory and 
cognitive performance on mathematics suggest that growth in each of the abilities is 
affected by the state of the other variables, especially the state of processing 
efficiency at a given point of time. From the analysis of the dynamic model, it is quite 
clear that the processing efficiency has a coordinator role on the cognitive system and 
the individual´ s metacognitive performance, even from the first measurement.  

Results indicated that individuals´ self-image depended mainly on previous working 
memory ability and partially on the recent mathematical performance. It is very 
important the effect of mathematical performance on the self- image at the final 
measurement. It seems that mathematical performance is the only cognitive ability, 
for which individuals have direct consequences which are expressed by remarks, 
awards and most often rewards by significant others i.e., teachers and parents.  

Demetriou et al. (2005) suggest that both the working memory and the processing 
efficiency are associated with individual development differences on thinking. A 
change at the metacognitive system influences the functioning of the cognitive 
system and vice-versa.  The results of the present study indicated that changes on 
thinking and metacognitive performance might be associated with processing 
efficiency and working memory, even at the years of the primary education, at the 
specific domain of mathematics.   

We have seen that there is a very close relation between the development of 
mathematical performance, the development of metacognition and the development 
of processing efficiency and working memory. The implication of this finding is very 
clear: the complexity and the constructions in mathematics at a particular age reflect 
to a large extend the available processing and representational resources of the human 
mind. In educationally relevant items, this statement implies that having accurate 
information about these dimensions of domain free processes would greatly help the 
teacher decide what is learnable, at the ages concerned, of the various concepts and 
skills he wants to transmit and how individual children will respond to them. Further 
investigation could lead to intervention programs for the improvement of 
metacognitive performance on mathematics. Future studies could investigate whether 
changes on cognitive performance, especially on cognitive processes, such as 
processing efficiency and working memory capacity, tend to follow changes on 
metacognitive knowledge, self-evaluation, self-regulation and self-representation.  
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MEASURING AND RELATING PRIMARY STUDENTS’ MOTIVES, 

GOALS AND PERFORMANCE IN MATHEMATICS  
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This paper presents some preliminary results of a larger study that investigates the 
relationship between students’ conceptual understanding of fractions, students’ 
motivation and their social context (teachers’ practices in the mathematics classroom 
and students’ socio-economic status). Data were collected from 302 sixth grade 
students through a questionnaire comprised three Likert-type scales measuring 
motives, goals and interest, and a test measuring students’ understanding of 
fractions. A hypothesized model connecting students’ understanding of fractions and 
different motivational constructs was next tested. Findings revealed that students’ 
understanding of fractions and their interest in mathematics were influenced by their 
fear of failure, their self-efficacy beliefs, and their mastery goals. 

BACKGROUND AND AIM OF THE STUDY 

The relationship between students’ achievement and affect has recently attracted 
increased interest on the part of mathematics educators (see e.g., Hannula & 
Pehkonen, 2004; Breen, 2004). In a sense it was a response to educational 
psychologists who have investigated factors that promote and undermine affective 
constructs like students’ motivation and beliefs (Pintrich, 1993). Current studies on 
the relationship between motivation and achievement tend to highlight the 
multidimensional and situational nature of the construct of motivation.  According to 
this contextual perspective, the efficacy of motivational determinants to predict the 
performance and achievement of individuals may vary according to culture, the 
contexts they are called on to act (mathematics or language), their personal 
characteristics etc. (Buffard & Couture, 2003). 

Four basic theories of social-cognitive constructs regarding student motivation have 
so far been identified: achievement goal orientation, self-efficacy, personal interest in 
the task, and task value beliefs (Pintrich, 1993). In this study we conceptualise 
motivation according to achievement goal theory, arguably one of the dominant 
theories in the field of motivation today (Zusho et al., 2005). Achievement goal 
theory was developed within a social-cognitive framework and focuses on students’ 
purpose of task engagement and how this goal orientation influences the way students 
approach, engage and respond to achievement situations (Elliot & Church, 1997).  

Two particular goals have recently been emphasized in the literature, namely mastery 
goals that focus on learning and understanding, and performance goals that focus on 
the demonstration of competence. Recently, there has been a theoretical and 
empirical distinction between performance-approach goals, where students focus on 
how to outperform others, and performance-avoidance goals, where students aim to 
avoid looking inferior or incompetent in relation to others (Elliot & Church, 1997). 
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Goal orientation research suggests that a mastery goal orientation is associated with 
positive achievement beliefs that lead to adaptive educational outcomes. More 
specifically, the limited research related to students’ mathematics achievement 
revealed that the adoption of mastery goals was associated with a positive pattern of 
engagement that included challenge seeking and persistence in the face of difficulty 
(Kaplan et al., 2002). Moreover mastery goals were positively related to students’ 
ability in problem solving strategies and to students’ achievement in mathematics test 
(Kaplan et al., 2002). Contrary to the adaptive nature of mastery goals, performance-
avoidance goals were found to be associated with test anxiety, low achievement and 
avoidance of help seeking in mathematics classroom (Elliot, 1999; Kaplan et al., 
2002). The findings regarding performance-approach goals are mixed and show both 
positive and negative effects. This motivational orientation was related to self-
efficacy, positive attitudes towards the task and positive relations between 
performance-approach goals and grades (Elliot, 1999). Other studies however found 
that the adoption of performance-approach goals was positively related to 
maladaptive outcomes such as experiencing negative affect in response to a difficulty 
and challenge, using low-level learning strategies, and attributing failure to low 
ability (Kaplan et al., 2002). 

Recently there is also an increased emphasis into the antecedents of these three 
achievement goals. Particularly the hierarchical model of motivation developed by 
Elliot & Church (1997) argues that the three achievement goals appear to mediate the 
relation between achievement motives; in particular the success approach motive 
(need for success, self-efficacy) and the motive to avoid failure (fear of failure), and 
select achievement and motivational outcomes. More specifically, Elliot & Church 
(1997) found that the need for success was associated with the adoption of both 
mastery goals and performance-approach goals, while the fear of failure was linked 
to both performance-approach and performance-avoidance goals. These goals were 
differentially related to academic outcomes; the mastery goals predicted students´ 
interest, while performance-approach goals were related to actual performance (Elliot 
& Church, 1997).  

Although there are numerous studies investigating the relationships between 
achievement goals and specific motivational constructs or achievement (Kaplan et al., 
2002), relatively few studies have tried to test causal models that combine students’ 
achievement motives, their goal orientations and actual achievement as well as their 
personal interest in mathematics. Most importantly, very few studies in this research 
area refer to primary school students in the context of mathematics teaching and 
learning. 

In this respect the purpose of the study was: as their personal interest in the task.  

• To test the validity of the measures for the six factors: fear of failure, self-
efficacy, mastery goals, performance-approach goals, performance-
avoidance goals, and interest, in a different social context. 
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• To examine the relationships between students’ achievement motives (fear 
of failure, self-efficacy), achievement goals (mastery, performance approach 
and performance avoidance goals) and outcomes (students’ interest in 
mathematics and mathematics achievement). 

• To test a causal model that examines the relationships between students’ 
achievement motives, achievement goals and achievement outcomes. 

METHOD 

Participants were 302 sixth grade students, 137 males and 165 females from 16 intact 
classes of an economically homogeneous school district.  All participants completed 
a questionnaire comprised of three scales measuring: a) achievement motives (fear of 
failure and self-efficacy), b) achievement goals (mastery, performance-approach and 
performance-avoidance), and c) outcomes (interest). Specifically, the questionnaire 
comprised of 35 Likert-type 5-point items (1- indicating strong disagreement and 5 
strong agreement). The five items measuring Self –efficacy were adopted from the 
Patterns of Adaptive Learning Scales (PALS) (Midgley et al., 2000); a specimen item 
was “I’m certain I can master the skills taught in mathematics this year”. Students’ fear of 
failure was assessed using nine items adopted from the Herman’s fear of failure 
measure (Elliot & Church, 1997); a specimen item was “I often avoid a task because I 
am afraid that I will make mistakes”. The five-item subscale measuring mastery goals, 
as well as the five-item measuring performance goals and the four-item measuring 
performance-avoidance were adopted from PALS; respective specimen items in each 
of the three subscales were, “one of my goals in mathematics is to learn as much as I can” 
(Mastery goal), “one of my goals is to show other students that I’m good at mathematics” 
(Performance-approach goal), and “It’s important to me that I don’t look stupid in 
mathematics class” (Performance-avoidance goal). Finally, we used Elliot & Church 
(1997) seven-item scale to measure students’ interest in achievement tasks; a 
specimen item was, “I found mathematics interesting”. These 35 items were randomly 
spread through out the questionnaire, to avoid the formation of possible reaction 
patterns. 

To investigate the relationship between the above motivational and social factors and 
the students´ understanding of fractions a three-dimensional test was also 
administered, each dimension corresponding to each of the levels of conceptual 
understanding- interiorization, condensation and reification- proposed by Sfard 
(1991). The tasks comprising the test were adopted from published research and 
specifically concerned the measurement of students’ understanding of fraction as part 
of a whole, as measurement, equivalent fractions, fraction comparison (Hannula, 
2003; Lamon, 1999) and addition of fractions with common and non common 
denominators (Lamon, 1999). We developed tasks corresponding to each of Sfards’ 
conceptual levels. In this paper, however, we report only on the relation among 
measures of students´ motives, goals and social factors, and achievement.  
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FINDINGS 

With respect to the first aim, the students’ responses were subjected to exploratory 
factor analysis, which resulted in a six-factor solution, explaining 54.80% of the total 
variance. All loadings were high and statistically significant, ranging from .45 to .86. 
The six factors corresponded to students’ achievement motives, goals and outcomes 
as were described in the questionnaire, with one exemption: the fear of failure factor 
was split in two parts. This finding supports the construct validity of the 
questionnaire used to collect data on pupils’ motives, goals and outcomes. Factor 
scores for each dimension were estimated by calculating the average of the items that 
comprised each factor. Table 1 presents the mean scores, standard deviations, and 
Cronbach’s alpha coefficients for each of the six factors.   

Factors Mean SD a 

Interest 3.85 .89 .89 
Mastery goals 4.52 .46 .71 
Performance approach goals 3.08 .93 .80 
Performance avoidance goals 2.85 .93 .51 
Fear of failure 2.20 .78 .66 
Self efficacy 4.09 .62 .71 

Table 1: Means, Standard Deviations and Cronbach’s alpha coefficients of the six factors 
identified by exploratory factor analysis. 

The Cronbach’s alphas were found quite high (ranging from .66 to.89) for five of the 
factors, while alpha was low for the factor performance-avoidance goals. The latter 
result might be partially attributed to the fact that the factor comprised of only four 
items and partially to cultural difference between USA, where the scale was 
developed and Cypriot students. Specifically, one of the traditional trends in Cypriot 
schools provides that most students attend private coaching institutions, or pay for 
private coaching at home, particularly whenever they believe that they run the risk to 
fail. So, instead of avoiding a subject, they would most probably try to find ways (i.e. 
private mathematical lessons) in order to approach a task efficiently.  

Table 2 presents the correlations between the variables. Mastery goals were 
positively correlated with self-efficacy (.467) and with both outcomes, strongly with 
interest (.470) and less strongly with achievement (.180). On the other hand it was 
found to be negatively associated with the fear of failure (-.358). Performance-
approach goals were not related to fear of failure but they were positively related to 
self-efficacy (.208). The fear of failure motive was also negatively related to interest 
(-.440) and to students’ achievement (-.278) while it was also negatively related to 
self-efficacy (-.358). Lastly, the achievement motive self-efficacy was also positively 
related to achievement (.208).  
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Variable 1 2 3 4 5 6 
1. Fear of failure - -.421** -.358** .018 -.440** -.278** 
2. Self-efficacy - - .467** .208** .470** .208** 
3. Mastery goals - - - .106 .470** .180** 
4. Performance goals - - - - .171** -.095 
5. Interest - - - - - .135* 
6. Achievement - - - - - - 

Table 2: Correlations for the Variables. 
* Correlation is significant at the 0.05 level. **Correlation is significant at the 0.01 level. 

In order to examine the antecedents of achievement goals and the consequences of 
the adoption of achievement goals, multiple regression analysis was performed. The 
regression of mastery goals on the antecedents self-efficacy and fear of failure 
revealed significant main effect (F =49.755, p<.001) for both self efficacy, β=.384 
p<.001 and fear of failure, β=-.197, p<001. Specifically, students who felt high fear 
of failure were more likely not to adopt mastery goals. Students who believed that 
they could master mathematics if they tried hard (high self-efficacy) were more likely 
to adopt mastery goals. Regressing performance goals on the antecedents (self-
efficacy and fear of failure) revealed moderate effect for fear of failure β=.128 and 
p<.05 and significant effect for self-efficacy β=.262 and p<.001. Students who felt 
high fear of failure were more likely to adopt performance-approach goals. That is 
their focus was on the demonstration of competence relatively to others. Students 
who had high self-efficacy beliefs they were also likely to adopt performance goals. 

The regression of interest on achievement goals was also significant F =46.047, 
p<.001. Particularly the regression of interest on mastery goals revealed significant 
main effect, β=.457, p<.001, while the regression of interest on performance-
approach goals revealed modest significance (β=.123 and p<.05). The adoption of 
mastery goals, that is focusing on the development of competence and task mastery 
led to advanced interest in mathematics. The same results revealed moderate effect 
for performance-approach goals.  Students who focused on the demonstration of 
competence relatively to others, showed an interest in mathematics.  

The regression of mathematics achievement on achievement goals revealed moderate 
effect on both goals (F=7.128, p=.001) with mastery goals to have more effect 
(β=.192 and p=.001) than performance-approach goals (β=-.115 and p<.05). Students 
whose focus was on the development of their competence and task mastery were 
more likely to achieve higher conceptual understanding of fractions than students 
who held low mastery goals. Students, whose focus was on the demonstration of 
competence relatively to others, were more likely to have lower conceptual 
understanding of fractions than students who held low performance goals. 

Structural equation modelling was also applied to test the relationships between 
students’ achievement motives, achievement goals and achievement outcomes using 
EQS (Hu & Bentler, 1999).  Particularly, the causal model suggested by theory and 
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practice claims that the relation of motives (self-efficacy and fear of failure) to 
outcomes (interest and achievement) is mediated by the achievement goals.  Three 
types of fit indices were used to assess the overall fit of the model: the chi-square 
statistic, the comparative fit index (CFI), and the root mean of square error of 
approximation (RMSEA). The chi square index provides an asymptotically valid 
significance test of model fit. The CFI estimates the relative fit of the target model in 
comparison to a baseline model where all of the variable in the model are 
uncorrelated (Hu & Bentler, 1999). The values of the CFI range from 0 to 1, with 
values greater than .95 indicating an acceptable model fit. Finally, the RMSEA is an 
index that takes the model complexity into account. An RMSEA of .05 or less is 
considered to be as acceptable fit (Hu & Bentler, 1999).  As reflected by the iterative 
summary, the goodness of fit statistics showed that the data did not fit the model well 
(x2 =71.64, df= 6, p<.000; CFI=.791 and RMSEA=.19).  

 

 

 

 

 

 

 

Figure 1: Path model 

Subsequent model tests revealed that the model fit indices could be improved by 
adding paths joining directly students’ fear of failure to interest and achievement and 
students’ self efficacy to interest. The model that emerged after these modifications 
had a very good fit to the data (x2 =3.66, df= 3, p>.30; CFI=.998 and RMSEA=.027). 
Figure 1 shows the model that emerged, as well as the path coefficients among the six 
factors. The following observations arise from Figure 1. Students who felt high fear 
of failure had low interest in mathematics and low mathematics achievement. 
Students that held high self-efficacy that is, the students who believed that they could 
master mathematics if they tried hard enough, they had high interest in mathematics.  

Mastery goals were based on fear of failure (-.197) and were strongly based on self-
efficacy (.384). Performance-approach goals were moderately based on fear of failure 
(.128) and self-efficacy (.262). Students who felt high fear of failure had high 
performance goals.  

Interest was predicted directly by mastery goals (.266), by performance-approach 
goals (.102), by self-efficacy (.218) and by fear of failure (-.255). The mathematics 
achievement was predicted directly by mastery goals (.105), by performance goals (-
.102) and fear of failure (-.239). It can be claimed from the model in figure 1 that 
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mastery and performance-approach goals served as mediators of the direct 
relationship between self-efficacy and mathematics achievement.   

DISCUSSION 

The present study is within the framework of the ongoing discussion about the 
relationship between students’ motivation and achievement. Factor analysis in 
conjunction to other studies (Elliot & Church, 1997; Zusho et. al., 2005) did not 
support the trichotomous: approach-avoidance-achievement goal conceptualization. 
Specifically, the data did not support the distinction in three different achievement 
goals (mastery, performance-approach and performance-avoidance goals). This may 
be partially due to cultural differences between environments, or to variable samples’ 
age; in the present study participants were just above 11 years of age, while in other 
studies the samples consisted of college students. Another possible cause of this 
phenomenon may be the limited number of the items that measured the performance 
avoidance goals.   

The strongest predictor of students’ achievement and their interest in mathematics 
was students’ fear of failure. The model shows that fear of failure had a direct effect 
on students’ achievement and to their interest in mathematics, and indirect effect on 
both variables via mastery and performance goals.  The negative effect that the fear 
of failure, or fear for mathematics had on students’ achievement is stressed in many 
studies (Breen, 2004; Elliot & Church, 1997). However, unlike the results of this 
study, in Elliot’s & Church’s study (1997) fear of failure appeared in the causal 
model to have only an indirect effect on students’ achievement and interest. 

Consistent with previous research findings, (Elliot & Church, 1997; Zusho et al., 
2005) path analysis investigating the antecedents of each of the two goal orientations 
revealed that mastery goals were predicted by self-efficacy and performance goals 
were predicted by both, fear of failure and self-efficacy.  

Path analysis investigating the consequences of achievement goals adoption for the 
outcomes, interest in mathematics and achievement in mathematics revealed that 
performance-approach goals facilitated interest in mathematics but proved to have 
negative effect on students’ achievement in mathematics. Elliot & Church (1997) and 
Zusho et. al., (2005) found in their studies that performance-approach goals had 
positive influence both on interest and on achievement. In addition, the data of this 
study revealed that mastery goals facilitated both students’ interest and mathematics 
while Zusho et. al., (2005) in their study found that mastery goals facilitated only 
students’ interest.  

Beta values were poorer in this model than the models in the other studies (Elliot & 
Church, 1997; Zusho et al., 2005). One explanation is what Hannula & Pehkonen 
(2004) support that the casual relationship between achievement and affective 
constructs is problematic and varies according to students’ age. Moreover, it may 
well be that other factors like teacher’s practices and the students’ socio-economic 
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status have a stronger impact on the different motivation and performance outcomes 
that students in this age adopt, factors that this study will investigate further.    
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THE INTUITIVE RULE MORE A-MORE B: 
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The aim of this study was twofold: First to examine the impact of the intuitive rule 
“more A-more B” on Cypriot students while dealing with geometric tasks and 
secondly to investigate whether teaching with the use of dynamic geometry may help 
children overcome the effects of the rule. The study was consisted of two parts. The 
first one was conducted with seventy-seven 6th graders who were presented with 
seven tasks concerning the sum of angles in triangles and quadrilaterals. The second 
was conducted with two 5th grade classes which were taught with two different 
teaching approaches, the traditional teaching approach and the approach with the 
use of a Dynamic Geometry software (DGs) called Euclidraw Jr. The results 
indicated that the intuitive rule has great impact on students’ reasoning and that the 
use of DGs was more effective than traditional teaching.    

 INTRODUCTION  

Numerous pieces of research have investigated students’ conceptions and reasoning 
processes in a wide range of content areas (Fischbein, 1999). Many have pointed out 
the persistence of students’ misconceptions, preconceptions or alternative 
conceptions. Although most of this research has been content specific and aimed for 
detailed description of particular misconceptions, several researchers have searched 
for common roots and have tried to build a unifying theoretical framework. One 
theoretical framework is the intuitive rules theory, established and further developed 
by Stavy and Tirosh (2000), which offers one explanation why students make errors. 

In their book, Stavy and Tirosh also concentrated on identifying effective teaching 
methods that can facilitate students in overcoming the impact of these intuitive rules.  

The aim of this study is twofold: First to investigate whether students that had been 
taught that the sum of angles in a triangle is 180o, are affected by the intuitive rule 
“more A-more B” and secondly to investigate whether teaching with the use of 
dynamic geometry may help children overcome some of these errors.  

THEORETICAL BACKGROUND 

The Intuitive Rules Theory  

Stavy and Tirosh (2000) have introduced the theory of the intuitive rules for 
analysing and predicting individuals’ erroneous solutions to mathematical and 
scientific problems. They argue that students are affected by a restricted number of 
intuitive rules when they solve a wide variety of conceptually non-related tasks that 
share some common external features. These tasks differ with regard to their content 
area and/ or to their required reasoning.  
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One intuitive rule which has been extensively investigated, is more A-more B, and its 
strong explanatory and predictive power has been widely reported (Tirosh & Stavy, 
1999). The intuitive rule more A-more B is reflected in students’ responses to 
comparison tasks in which two objects which differ in certain, salient quantity A are 
described (A1>A2). The students are then asked to compare the two objects with 
respect to another quantity B (B1=B2 or B1<B2). In such cases, many students 
responded inadequately that B1>B2, according to the rule more A (the salient 
quantity) – more B (the quantity in question) (Tirosh & Stavy, 1999).  

The intuitive rules theory has been reported to be a good explanatory framework for 
analysing students’ solutions to a wide range of mathematical topics, since it 
accounts for many of the incorrect solutions given. In addition to this, it has been 
argued that it has a strong predictive power, since it enables educators to foresee 
students’ reactions.        

According to Stavy and Tirosh (2000) the intuitive rules carry Fischbein’s (1999) 
characteristics of intuitive knowledge. This means that students’ solutions which are 
in line with the intuitive rules are self-evident. Students use them with great 
confidence and they often persist despite formal learning. Moreover the intuitive 
rules share the attributes of globality and coerciveness. 

In light of the theory of the intuitive rules, which essentially claims that students’ 
responses to given tasks often rely on external, irrelevant features, the importance of 
encouraging critical thinking is evident. Students should be encouraged not only to 
rely on external features of the tasks, but to critically examine their responses. In 
order to achieve this, Stavy and Tirosh (2000) suggest three teaching approaches: 
teaching by analogy, conflict teaching and attention to relevant variables. In teaching 
by analogy, students are presented with a series of tasks (‘anchoring task’, ‘bridging 
tasks’) in order to reach a ‘target task’, known to strongly suggest the intuitive rule. 
In the conflict teaching, students are first given a task known to elicit an incorrect 
response, and then they are presented with a situation that contradicts their initial 
response. The contradiction may be created in several ways, by presenting students 
with contradictory concrete evidence or different representations, and by confronting 
them with an extreme case. Another teaching approach that could be used, is to draw 
their attention to relevant variables that they tend to disregard when solving a given 
problem. The teaching intervention with DGs used in this study carries mainly the 
characteristics of conflict teaching and attention to relevant variables approaches.   

THE STUDY 

The study was consisted of two parts. The first one was conducted with seventy-
seven 6th graders who had studied triangles in the framework of Euclidean geometry. 
The aim was to investigate whether these students that had been taught that the sum 
of the angles of a triangle is 180o, give incorrect answers to tasks related to this topic 
that are based on the intuitive rule more A-more B. The second part was conducted 
with two 5th grade classes of a primary school in Cyprus (the first one consisting of 
19 students and the second of 20 students). The 5th graders had been taught about 
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different types of triangles and angles and how to measure angles with the use of a 
protractor. The aim was to investigate whether teaching ‘The sum of angles in a 
triangle’ with the use of a DGs is more effective.    

The students participated in the first part were given a questionnaire consisting of 
seven comparison tasks, involving the sum of angles in triangles and quadrilaterals. 
The students were given 60 minutes to answer it. Here we present three sample tasks. 

 
Task 1        

                                  D 
     A                                                                  
 

 
 
B           C                 E             F
  
 
In triangles ABC and DEF AB< DE, BC< 
EF and AC<DF.  
The statement: “The sum of angles in 
triangle ABC (A+B+C) is smaller than the 
sum of angles in triangle DEF (D+E+F)” is 
correct/ wrong. Explain your answer. 

 
Task 2 

                             
            A                    D 
 
 
 
 
  B                 C                      E              F 

 
In triangle ABC all angles are smaller than 
90o. In triangle DEF, the angle E is larger 
than 90o. “The sum of angles in triangle 
ABC (A+B+C) is smaller/ bigger/ equal to 
the sum of angles in triangle DEF 
(D+E+F). Explain your answer.  

 

Task 3 

                                                   A              B                            E                               F 

 

                                                                   C                                                           G       

                                            D                                            H 

In quadrilaterals ABCD and EFGH AB< EF, BC< FG, AD<EH and DC<HG. 

The statement: “The sum of angles in ABCD (A+B+C+D) is smaller than the sum of angles in 
EFGH (E+F+G+H) is correct/ wrong. Explain your answer. 

The students that participated in the second part of the study were first given a pre-
test consisting of five comparison tasks, involving the sum of angles in triangles. 
The tasks were identical with those given in the first part. The sum was to again 
investigate whether these students are affected by the intuitive rule and fail to use 
measurement of angles to respond to these tasks. After the pre-test, students in the 
first class, called experimental group, were taught ‘The sum of angles in triangles’ 
with the use of a DGs, called Euclidraw Jr. What is important about DGs is that 
they provide tools which make explicit the clarification and description of 
geometrical ideas that often remain implicit in paper and pencil environments 
(Gawlick, 2002). DGs provide revolutionary means for developing geometrical 
understanding and enhancing students’ ability to define and identify geometrical 
properties and dependencies between them (Mariotti, 2001). Moreover, it is widely 
accepted that DGs capabilities help students develop heuristics, built meanings for a 
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variety of mathematical concepts and generally, develop their understanding 
(NCTM, 2000). The most important feature of DGs, including Euclidraw Jr, is the 
operation of dragging (Botana & Valcarce, 2002), a process in which a geometrical 
construct can be enlarged, diminished, shuffled and rotated while the basic 
characteristics and properties of the construct remain the same. This process allows 
the creation of a great number of examples of geometrical shapes in just a few 
minutes. 

The experimental group worked collaboratively in the school’s computer lab which 
had four computers. The tasks designed for this group were not simply replications 
of the paper and pencil tasks which appear in the mathematics textbooks, but they 
exploited the dynamic capabilities of the software. The teaching approach that was 
used along with the use of Euclidraw Jr combined two of the teaching approaches 
suggested by Stavy and Tirosh (2000), conflict teaching and attention to relevant 
variables. Conflict teaching, since students were first presented with a question that 
elicited an incorrect solution and then they were given the opportunity to explore 
with the software the sum of angles in different kinds of triangles (many 
representations and even very extreme ones, for example very thin triangles with an 
obtuse angle of 178°). The software gave students the possibility while changing the 
dimensions and angles of a triangle to observe that the sum remained stable 
(concrete evidence and extreme case). In addition, they drew their attention to the 
sum of the angles and not to each angle separately (attention to relevant variables), 
since they could create numerous triangles and simultaneously observe on a table 
that they created the size of each angle and the sum of all three angles.    

Students in the second class, called traditional group, were taught in the traditional 
fashion, meaning that the lesson was carried out in their normal classroom using 
only their mathematics textbooks, pencil, paper, scissors and geometrical 
instruments. Although the term ‘traditional teaching’ is used, it is important to 
clarify that this does not imply that students were presented with rules with no 
reason, but constructivist approach was implemented. Students were again 
presented with a cognitive conflict situation and the teacher also stressed the 
importance on concentrating on the sum of angles (attention to relevant variables). 
The teacher encouraged students to make conjectures, discuss with their classmates 
and discover mathematical rules. However, what was missing was the existence of 
the great number of examples that was presented with the DGs, the accuracy that 
the software offered, the possibility of creating extreme cases of triangles and also 
the opportunity to simultaneously see the triangle, the measurements of each angle 
and the sum. All these were only achieved in the experimental group with 
Euclidraw Jr.  

Both interventions lasted 80 minutes. A week later, both groups were administrated 
a post-test consisting of seven tasks. The five tasks involving the sum of angles in 
triangles were identical with those given in pre-test, while two tasks involved the 
sum of angles in quadrilaterals.  
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RESULTS 

Part 1  

Table 1, shows that most of the students (56.2%) incorrectly responded that ‘The sum 
of angles in triangle ABC is smaller than the sum of angles in triangle DEF’. Half of 
the students (50.1%) gave an explanation in line with the intuitive rule more A-more 
B. Only 6.1% of them gave no explanation. In particular, the main arguments 
projected were: “bigger triangle therefore bigger sum of angles”, “bigger angles 
therefore bigger sum”. About a third of the participants (36.4%) responded correctly 
that ‘The sum of angles in the two triangles is equal’. The main explanation given by 
these participants was that: “The sum of angles in all triangles is 180o”. It is also 
noteworthy that 7.4% of the participants did not respond to this task.  

 

Solution  
 

Justification Task 1 (%) 

N=77 

The statement is correct  56.2 

 More A-more B 50.1
 No explanation  6.1

The statement is wrong*  36.4 

 Sum of angles in triangles 180Ο 36.4
 No explanation  0
No response  7.4 

         * correct response  

  Table 1: Frequencies of students’ responses and justifications to task 1 

Table 2, reveals that 70.1% of the students incorrectly responded that ‘The sum of 
angles in oblique triangle is smaller than the sum of angles in the triangle with an 
obtuse angle’. The vast majority (48.1%) provided an explanation that was in line 
with the intuitive rule more A-more B. Specifically, they argued: “bigger angle 
(>90o) therefore bigger sum”. A substantial number of participants (11.7%) provided 
an inexplicit explanation, 9.1% made a restatement of the answer and only 1.2% of 
them gave no explanation. Yet, a few students (5.2%) also incorrectly responded that 
‘The sum of angles in oblique triangle is bigger than the sum of angles in the triangle 
with an obtuse angle’, although they gave inexplicit explanations. A small percentage 
of students (18.2%) answered correctly, arguing that ‘The sum of angles in oblique 
triangle is equal to the sum of angles in the triangle with the obtuse angle’. Only half 
of them (9.1%) gave explicit explanations such as: “the sum of angles in all triangles 
is the same”. A number of students (6.5%) gave no response to this task. 
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Solution Justification  Task 2 (%) Ν=77  

Smaller  70.1 

 More A-more B 48.1
 Inexplicit explanation 11.7
 Restatement  9.1
 No explanation 1.2

Bigger   5.2  

 Inexplicit explanation 5.2
 No explanation 0

Equal* 18.2 

 Sum of angles in triangles 180Ο 9.1
 Inexplicit explanation 9.1
 No explanation 0 

No response  6.5  

* correct response  
Table 2: Frequencies of students’ responses and justifications to task 2 

Table 3, shows that almost two thirds of the students (62.3%) incorrectly responded 
that ‘The sum of angles in quadrilateral ABCD is smaller than the sum of angles in 
quadrilateral EFGH’. Only 37.7% of them gave an explanation in line with the 
intuitive rule more A-more B, arguing that: “bigger figure therefore bigger sum of 
angles” or “bigger sides therefore bigger sum”. A substantial number of participants 
(10.4%) made a restatement, 9.1% provided an inexplicit explanation of the answer 
and 5.1% gave no explanation. About a third of the students (35.1%) responded 
correctly, most of them (28.6%) claiming that ‘The sum of angles in quadrilaterals is 
the same’. Lower percentages of students who answered correctly, gave either 
inexplicit (2.6%) or no explanation (2.3%), or made a restatement (2.6%). A small 
percentage (2.6%) gave no response. 

Solution Justification  Task 3 
(%) 
Ν=77 

The statement is correct  62.3 
 More A-more B  37.7
 Restatement  10.4
 Inexplicit explanation 9.1
 No explanation 5.1

The statement is wrong*  35.1 
 The sum of angles in quadrilaterals is the same  28.6
 Restatement 2.6
 Inexplicit explanation 2.6
 No explanation 2.3

No response   2.6 

     * correct response  
Table 3: Frequencies of students’ responses and justifications to task 3 
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Part 2 

In the case of the 5th graders, the study showed that the impact of the intuitive rule 
was even greater in students’ responses. Due to space limitations we will not show all 
these tables for the 5th graders, but move directly to the results of the impact of 
teaching with dynamic geometry software. 

Table 4, shows that students’ achievement in tasks 1 and 2 of the pre-test for both 
groups was the same. Most of the students in both groups gave incorrect answers 
which were in line with the intuitive rule more A-more B. In particular, they argued 
that: “bigger triangle therefore bigger sum of angles” and “since the second triangle 
has got an angle which is bigger than 90o, the sum of its angles is bigger”. It seems 
that the traditional teaching method had no impact on students thinking, since all of 
them, except one, in the post-test gave the same incorrect answers in line with the 
intuitive rule. In contrast, teaching with Euclidraw Jr, had great impact on students’ 
thinking, since seven of them responded correctly to the post-test, while at the pre-
test gave answers in line with the intuitive rule. More specifically, five of the students 
who changed their answer, argued that: “all triangles have the same sum of angles”. 
The other two claimed that: “the sum of angles in all triangles is 180o”. 

 Experimental group N=19 Traditional group N=20 

Tasks Pre-test Post-test Pre-test Post-test 

Task 1 13 6 13 12 
Task 2 16 9 15 15 
Task 3 - 10 - 15 

Table 4: Frequencies of the students’ responses in line with the intuitive rule more A-
more B for the experimental and traditional group before and after the interventions 

Not surprisingly, in task 3 which involved the sum of angles of quadrilaterals, most 
students in the traditional group gave answers that were in line with the intuitive rule. 
It is also noteworthy that the seven students of the experimental group, who changed 
their incorrect answer in task 1 and 2, gave a correct response in this task. Five of 
them argued that: “all quadrilaterals have the same sum of angles”, while two of 
them claimed that: “the sum of angles in all quadrilaterals is 180o”.    

DISCUSSION 

The first aim of the study was to examine the impact of the intuitive rule more A-
more B on Cypriot 5th and 6th graders. Our findings strongly support that students are 
affected by the intuitive rule when dealing with comparison tasks involving the sum 
of angles in triangles and quadrilaterals. Almost half of the students in all tasks 
(50.1%, 48.1%, 37.7%) gave responses that were in line with the intuitive rule 
arguing that: “bigger triangle therefore bigger sum of angles”, “bigger sides or 
angles therefore bigger sum”. It is obvious that a number of participants focused on 
the external features, such as the size of the triangles, sides and angles. Consequently, 
the intuitive rule seems remarkably influential in directing students’ reasoning.  
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The second aim of the study was to examine whether teaching with the use of 
dynamic geometry may help children overcome the impact of the intuitive rule. The 
traditional teaching method had almost no impact on students’ reasoning, while the 
use of DGs had greater impact. Most of the time in the traditional group had been 
spent in cutting and placing the angles and measuring with the protractor. On the 
contrary, in the experimental group no valuable time had been spent in such time-
consuming activities. This group had plenty of time to explore the data, discuss and 
finally reach a conclusion about the sum of angles in all triangles. Although both 
groups had observed that the sum of angles is always 180°, the traditional group was 
not convinced that this rule stands for every triangle, because they had no time or 
means to explore many triangles nor were their measurements always accurate. The 
experimental group due to the DGs tools were able to construct a great number of 
triangles in just a few minutes and also have accurate measurement. The dragging 
mode gave them the opportunity to broad the range of accessible triangles. Some of 
them were actually “extreme cases of triangles” (e.g. very thin). Students were able to 
drag the triangles and see that the angles and sides were changing and also have the 
accurate measurement of these items on a table. At the same time there was only one 
number on the screen that remained constant: the sum of angles=180°. We believe 
that this was a very strong representation. The impact on students reasoning was 
greater than the impact of the traditional method, since more students changed their 
reasoning in the post-test, but it seems that it is not easy to overcome the effects of 
the intuitive rule, even after an intervention. In the future, it would be interesting to 
consider alternative intervention or investigate with the use of delayed tests which 
intervention has the most long lasting effect.   
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THE REFLECTIVE ABSTRACTION IN THE CONSTRUCTION 

OF THE CONCEPT OF THE DEFINITE INTEGRAL: 

A CASE STUDY 

Theodorus Paschos and Vassiliki Farmaki 

Department of Mathematics, Athens University 

 

In this paper we report the case study of Maria, a first year university student of 
Mathematics. By an activity and an interview, we try to analyze her mental 
operations. Employing the Piagetian theory of reflective abstraction we study the way 
in which she acts in order to calculate the distance covered in a time interval of a 
non-uniformly accelerating motion problem. This case study is a part of a research 
activity that aims at the intuitive approach and understanding of Calculus concepts, 
using motion problems. The focal analysis of the interview’s content allows for an 
investigation in depth of qualitative elements of the student’s mathematical thought.  

INTRODUCTION 

The transition to formal mathematical thinking is not an obvious intellectual process 
for the majority of students. Research in didactics of mathematics has investigated 
various students’ difficulties in order to understand definitions, concepts, 
propositions and their proofs, when we teach them in strict symbolic formulation. 
The intuitive approach via mathematical or real life situations, which are familiar to 
the students, may constitute a substantial step toward the emergence of new concepts. 
The students can develop mathematical models for manipulating the concepts images 
which may lead them to the need for formal mathematical argument. Many 
researchers apply a solving problem strategy that first develops new concepts which 
may be useful, before the appropriate definitions are constructed in order to form the 
basis for a formal theory (e.g. Poincaré, 1913; Hadamard, 1945). In this paper we 
report the case study of Maria, a first year student of Mathematics Department, 
aiming to interpret her mathematical activity on a non-uniformly accelerated motion 
problem. The graphical representation of the motion in a system of velocity-time axes 
leads her to the algebraic context aiming to description of a calculation method of the 
distance covered as an area of the region formed in the graph. In the interview she 
attempts to justify her initial intuitive answers revealing interesting sides of her 
mathematical thinking. We employed the theoretical framework of reflective 
abstraction (Piaget, 1980), as a general scheme able to describe the emergence of the 
concept of the definite integral as observed from Maria’s mental operations.  

This case study is included in a wider research activity which concerns the 
introduction of the concept of the definite integral and the approach to the 
Fundamental Theorem of Calculus, to first year students of Mathematics Department.  
In our analysis of the interview’s content we employed the focal analysis (Sfard, 
2001; Kieran & Sfard, 2001), as we describe below in the section of Methodology. 
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THEORETICAL FRAMEWORK 

Reflective abstraction is drawn from what Piaget (1980, pp. 89-97) called the general 
coordinations of actions, and as such, its source is the subject and it is completely 
internal. This kind of abstraction leads to a generalization which is constructive and 
results in “new syntheses in midst of which particular laws acquire mew meaning” 
(Piaget & Garcia, 1989, p.299). From Piaget’s psychological viewpoint, reflective 
abstraction is the method that “it alone supports and animates the immense edifice of 
logico-mathematical construction” (Piaget, 1980, p. 92). Piaget distinguishes various 
kinds of construction in reflective abstraction: (a) The interiorization, as a 
construction of internal processes, as a way of making sense out of perceived 
phenomena; as “translating a succession of material actions into a system of 
interiorized operations” (Piaget, 1980, p. 90). Dubinsky (1991, p. 107), argues that 
“interiorization permits one to be conscious of an action, to reflect on it and to 
combine it with other actions”. (b) The coordination or composition of two or more 
processes for the construction a new one. (c) The encapsulation or the conversion of 
a (dynamic) process into a (static) object, in the sense that, “… actions or operations 
become thematized objects of thought or assimilation” (Piaget, 1985, p. 49). Piaget 
considered that “…mathematical entities move from one level to another, an 
operation on such ‘entities’ becomes in its turn an object of the theory…” (Piaget, 
1972, p.70). (d) When a subject learns to apply an existing schema to a wider 
collection of phenomena, then we say that the schema has been generalized. 
Generalisation can also happen when a process is encapsulated to an object. The 
schema remains the same except that it now has a wider applicability. Piaget referred 
to all of this as a reproductive or generalizing assimilation (Piaget, 1972, p.23) and he 
called the generalization extensional (Piaget & Garcia, 1989, p. 299). Dubinsky 
(1991, p. 102) argues that the interiorization of a process, it is possible for the subject 
to think of it in reverse, as a means of constructing a new process which consists of 
reversing the original process. The case of differentiation-integration is an example.  

METHODOLOGY 

The data that we will present is part of a qualitative action research aiming at the 
investigation of how the students shift from the intuitive to the formal mathematical 
knowledge. Initially, the aim of the experimental instructive approach was to 
introduce the first year students to the definite integral. In an interactive milieu the 
students worked in pairs (activities on work sheets) and discussed about the solution 
of various motion problems. A group of students participated in individual interviews 
which fully transcribed. We applied the focal analysis in order to analyse in depth the 
data from the transcripts.  

According to Sfard (2001), focal analysis is a methodological tool for investigation of 
communication effectiveness between individuals. The communication will not be 
regarded as effective unless, at any given moment, all the participants seem to know 
what they are talking about and feel confident that all the parties involved refer to the 
same things when using the same words. The word focus is interpreted as the 
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expression used by an interlocutor to identify the object of her or his attention. Sfard 
considers two focal ingredients: pronounced and attended. The pronounced focus 
concerns the key-words or phrases that imply the attended object. However, there is 
more to communication than the pronounced and attended aspects. Whatever is 
pronounced or seen evokes a whole cluster of experiences, and relates the person to 
an assortment of statements he or she is now able to make on the entity identified by 
the pronounced focus. This collection of experiences and discursive potentials is 
called intended focus. The intended focus, which seems to be the crux of the matter, 
is an essentially private dynamic entity that changes from one utterance to another.  
In our report we employed focal analysis as a tool for research, interpretation and 
understanding the mental trajectory of the student interviewed. The attended focus in 
our analysis is presented in the form of explicit or implicit operations of the 
interviewee as these are presented by the pronounced focus (Famaki & Paschos, 
2005).  

THE CASE STUDY  

The aim of the activity, in which Maria worked, was: (a) to connect the distance 
covered during a time interval with the area of the region between the velocity graph 
and the time axis; and, (b) to determine a unit of measurement of area on the given 
graph and calculate the area of the region by approximation. In the previous activities 
the students worked on uniform and uniform accelerated motion problems in which 
they calculated the distance covered as rectilinear figures’ area on the (u-t) graph. 

The worksheet of Maria (fig. 1): 

Consider that the following u-t graph represents the movement of a material point. 
Calculate by approximation the distance covered during the first second of the motion.  

 

Figure 1: Maria wrote without reasoning that U ≅ t2. She mentioned: “I partition the interval 
[0, 1] in k equal time sub-intervals in which I consider that the velocity variation is 
constant”. She also wrote the formula inΔS = U Δt + (1/2)ΔUΔt  in order to calculate the 

distance covered.  
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AN EPISODE OF THE INTERVIEW. (Interviewer : I, Maria: M)  

1      Ι:           We suppose that the graph represents the movement of the point and we 
2                   want to calculate by approximation the distance covered during the 1st sec. 
3                   On the worksheet you wrote U ≅ t2. How is this derived?    
4      Μ:         From the graph. It looks alike, so I write ‘roughly’ [U ≅ t2]. 
5      I:           Are you trying to find  the right formula? What if given a different graph? 
6      M:         I would search for something else.   
7       I:          Do you mean that you would try to find a correspondence between the  
8                   graph and a particular function? 
9      M:         May be, taking into account the parts of the graph. 
10     I:          Then you would find different formulas for different parts of the graph?   
11    M:         May be.  
12     I:          What would your next step be? 
13     M:        I partition the time interval in k equal sub-intervals and I assume that in 
14                 each of them the velocity’s variation is constant, .... aha !!, … the crucial 
15                 observation is that the velocity’s variation is constant, hence the velocity 
16                 looks like this [U ≅ t2]. Since the variation of the velocity is constant, using 
17                 the knowledge concerning the derivative and that the velocity is 1 at the 
18                 time instant 1, I come to the conclusion that the velocity looks like this. 
19     I:          Here, you use the formula  inΔS = U Δt + (1/2)ΔUΔt . 
20     M:        Uin ?, aha!, I mean Uin at a time sub-interval Δt. I take the rectangle and 
21                 the triangle above it (she shows on the graph). 
22     I:          Do you consider the elementary arc as a line segment? 
23     M:       Yes, exactly. 
24     I:          And you do so in order to find an approximation to the area of the region? 
25     M:        I was trying to work with k, so that when k increases the line segment  
26                 approaches continuously to the curve. OK, the area which I will find will 
27                 be always bigger than the area of the curvilinear region, but it will  
28                 approach it continuously as Δt decreases. 
29     Ι:         Which is the area that you will find?  
30     M:       The area which results if we add all the elementary ΔS.  
31     Ι:          How do you know this method for calculating the distance covered?  
32     M:        I am using previous knowledge obtained in High school.             



Paschos & Farmaki 

 

PME30 — 2006 4 - 341 

FOCAL ANALYSIS OF MARIA’S INTERVIEW  

Utterances Pronounced focus Attended focus Intended focus 

 
 
1-3/ 4  
 
8 / 9 

 
 
“From the graph. It looks 
alike… [U ≅ t2]”. 
“…taking into account 
the parts of the graph”. 

From the graph to the 

function’s formula: 

1. Find a formula 
corresponding to graph. 
2. Find the function’s formula 
in every case. 

 
 
The function 
formula 

12 / 13-14 “I partition the time 
interval in k equal sub-
intervals,… in each  
of them the velocity’s 
variation is constant”. 

Focusing on the partition of 
the time interval and the 
function’s variation in every 
time sub-interval.  

The time interval 
partition in order 
to focus on the 
function 

 

 

13-14 

 

 

16-18 

 
 
“I assume that in each of 
them the velocity’s 
variation is constant”.  
“Since the variation… is 
constant, using the 
knowledge concerning 
the derivative… the 
velocity is… [U ≅ t2]”. 

Reasoning for choosing the 

formula U ≅ t
2
: 

1. Assume that the velocity’s
variation is [approximately]
constant. 
 
2.  The constancy of the [rate] 
of the velocity’s variation 
leads to the initial function 
U ≅ t2. 

 
 
 
The function 
formula  

 
19 / 20-21 

 
“…at a time sub-interval 
Δt. I take the rectangle 
and the triangle above 
it”. 

Focusing on the graph 

The elementary distance 
covered is represented 
approximately by the 
rectilinear figure. 

 
Approximation  
to the curvilinear 
figure 

22-24 / 
25-26 

 

 

 

 26-28 

 

 

 

 

29 / 30 

 
“when k increases the 
line segment approaches 
continuously to the 
curve” 
“the area…will be 
always bigger than the 
area of the… region, but 
it will approaches it 
continuously as Δt 
decreases”. 
“The area which results 
if we add all the 
elementary ΔS”. 

Area’s approximation  
1. As k increases, the line 
segment converges to the 
curve.  
 
 
2. The convergence of the 
elementary rectilinear figure 
area to the corresponding 
curvilinear region area.  
3. The area of the whole 
figure is obtained by adding 
the elementary areas. 

 
 
 
The distance 
covered is 
calculated as an 
area by 
approximation 
and addition  
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INTERVIEW’S CONTENT ANALYSIS - OBSERVATIONS  

1. As we observe on the worksheet, the symbols ΔS, Δt, Uin, t1, t2, used by M. do not 
appear in the graph. It seems that ΔS is the area of the region corresponding to Δt, in 
some of the ‘k equal time intervals [Δt]’ in which she divided [0, 1]. M. interprets 
intuitively the graph and decides that the formula of the velocity function is U ≅ t2. 
The reservation that she expresses by writing U ≅ t2 is not an obstacle for her actions. 
Decoding her worksheet we observe that she chooses a trapezium whose area she 
determines as inΔS = U Δt + (1/2)ΔUΔt . The trapezium is determined by Δt=t2-t1, the 

line segments corresponding to the values U1 and U2 of the velocity on the 
corresponding time t1 and t2, and the chord on the curve determined by the points 
(t1,U1) and (t1,U1). The ΔU corresponds to U2-U1 and Uin to U1. We believe that this 
mental image is guiding her actions.   

2. Let us try to relate what we just mentioned with the dialogue in the episode. At 
first sight it seems that for M. a function is adequately defined only if given by a 
formula. Although she observes the graph, she is searching insistently for the formula 
because she obviously considers that only by knowing the formula she will be able to 
act (lines 1-11, 14-18). However, if we connect this attempt with what she says at line 
32, it becomes clear that she relies in knowledge acquired in High school 
mathematics, according to which the area is the limiting value of the sum of 
elementary areas determined by the partition of the region formed between the graph 
of a continuous function and the x-axis in a closed interval of the domain of the 
definition of the function. Thus Maria assumes that the calculation of the area 
presupposes the knowledge of the formula for the velocity function. 

3. Maria tries to answer the question ‘how is formula U ≅ t2 derived?’ (lines 1-11). 
Initially, the image of the given graph leads her to the choice of the formula U ≅ t2. 
Both this choice and the a posteriori attempt of its justification (lines 13-18) reveal 
interesting mental operations: (a) Maria is ‘trapped’ in the image which ‘looks like’ 
something familiar to her. The mental scheme she has constructed correlating 
function U(t) = t2 with its graph, seems to constitute an obstacle in this case, 
exploiting only the information given that point (1,1) belongs to the graph (lines 17-
18). According to Brousseau (1983), an obstacle manifests itself from non-random 
errors. These are rather errors related with a characteristic perception, an old 
‘knowledge’ which manages to dominate in a range of actions. (b) Maria attempts to 
interpret her initial choice by referring to differential calculus (lines 16-18). She 
considers that velocity is changing at a constant rate in some Δt, so that a good 
approximation results in the corresponding part of the parabola (lines 13-14). 
However, the choice of linear function for the velocity leads her to some initial 
function which she knows, from differential calculus, to be of the second degree. In 
attempting to interpret M.’s mode of thinking, we might note that: (1) While she 
recognizes the distance covered as area of a region in the velocity graph (lines 20-21, 
26-28), in order to justify her choice U ≅ t2, she does not correlate it with the initial 
velocity function, but with velocity itself. (2) Maria’s reference to the derivative and 
the way of transition from a linear to a second degree function (lines 16-18) indicate 
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particular mental operations on the differentiation that have been interiorized. The 
interiorization of the procedure of differentiation seems to guide M. to the inversion, 
as an action that can open the way for her mental construction of the procedure of 
integration.  

 4. In the second part of the dialogue, M. explains what she has done in order to 
approximate the area of the curvilinear region: (a) she “partitions the time interval in 
k equal time subintervals…” (lines 13-14), and (b) she chooses one of the trapezia 
which are formed by the partition ‘taking the rectangle and the triangle above it’ in 
some Δt (lines 20-21), whose area, being equal to ΔS=UinΔt+(1/2)ΔUΔt, represents 
approximately the distance covered. It seems that in the particular trapezium she 
‘observes’ all the trapezia in general that are formed by the partition. The choice of 
the formula  ΔS=UinΔt+(1/2)ΔUΔt, implies the coordination of several processes and 
mental objects: on the one hand, the coordination of the function process with its 
graphical representation, where the value Uin and the variation ΔU are represented as 
line segments’ length on the graph (here Maria coordinates–composes the geometric 
object (trapezium) with the velocity function graph); on the other hand, the 
coordination of the distance covered function with the area of the formed figure on 
the graph. Also, (c) she studies the generic trapezium in a dynamic manner, 
describing a process of approaching at the limit the curvilinear region (lines 25-28), 
each approximating distance covered being determined by the sum of all the 
elementary areas ΔS (line 30). Maria’s description shows that she has a scheme for 
the calculation of the curvilinear region area which, suitably extended, can lead to the 
formation of a general scheme. Her actions on several objects (function, graph, 
geometric figure, limit), the interiorization and the coordination of the processes on 
these objects, can lead to new processes and, finally, by encapsulation and 
generalization to the construction of the definite integral concept.  

DISCUSSION 

In the case study presented, we aim to interpret Maria’s mental operations employed 
for the construction of the definite integral concept; this construction involves 
necessarily the coordination of several mathematical objects, and possesses a 
complexity, typical of the process of learning in general, that does not allow for the 
observation of a continuous and smooth course of development. Our interpretation is 
based (a) on the general methodological tool of focal analysis, developed by Sfard 
(2001), applied to the communication between student and teacher, including the 
interviews’ content analysis, and (b) on the theoretical framework of reflective 
abstraction, developed by Piaget (1980). Through the communication with students 
and the analysis of the data, using (a) and (b), the stages of knowledge, the concepts 
images, and the mental mechanism and operations of the students are gradually 
revealed. Understanding this mechanism will allow us to decide and distinguish 
whether the students come to a true understanding of the definition of the definite 
integral concept, as opposed to having just an empirical perception of integration, by 
which they can act effectively only in a limited and particular framework.  
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The methodology developed here may have a wider applicability in guiding our 
actions to help students develop advanced mathematical thinking. With appropriate 
modifications (regarding the instruction designing and the development of activities) 
of the methodology employed here, we may well be able to develop learning 
processes, by which the student is enabled to construct  mathematical concepts, in 
general, and not just for the concept of the definite integral. 
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INFINITY OF NUMBERS: HOW STUDENTS UNDERSTAND IT  
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Some results of the research project ‘Development of Understanding and Self-
confidence in Mathematics’, implemented at the University of Turku (Finland) during 
the academic years 2001–03, are reported. The project was funded by the Academy 
of Finland (project #51019). It was a two-year study for grades 5-6 and 7-8. The 
study included a quantitative survey for approximately 150 Finnish mathematics 
classes out of which 10 classes were selected to a longitudinal part of the study. This 
paper is based on the survey results, and will focus on students’ understanding of 
infinity and the development of that understanding. The results show that most of the 
students did not have a proper view of infinity but that the share of able students 
grew, as the students got older. 

Most primary children are very interested in infinity, and they enjoy discussing the 
concept, if the teacher is only ready for it. On one hand they have a concrete view on 
the world around and mathematics, and on the other hand they are ready to play with 
numbers. Thus, questions on infinity may also come into light. Infinity awakes 
curiosity in children already before they enter school: “preschool and young 
elementary school children show intuitions of infinity” (Wheeler, 1987). However, 
this early interest is not often met by school mathematics curriculum, and infinity 
remains mysterious for most students throughout school years. 

INFINITY IN MATHEMATICS 

Actual and potential infinity 

Consider the sequence of natural numbers 1, 2, 3, … and think of continuing it on 
and on. There is no limit to the process of counting; it has no endpoint. Such ongoing 
processes without an end are usually the first examples of infinity for children; such 
processes are called potentially infinite.  

In mathematics, such unlimited processes are quite common. Consider, for example, 
drawing regular polygons with more and more sides inside a circle, or counting more 
and more decimals of � . However, the interesting cases in mathematics are, when 
infinity is conceptualised as a realised “thing” – the so-called actual infinity. The set 
of all natural numbers is an example of actual infinity, because it requires us to 
conceptualise the potentially infinite process of counting more and more numbers as 
if it was somehow finished. (Lakoff & Núñez 2000) 

The question of infinity has its roots already in the mathematics of ancient Greece, 
for example, the famous paradox of Zenon (cf. Boyer 1985). However, the transition 
from potential to actual infinity includes a transition from (an irreversible) process to 
a mathematical object. This step the Greek mathematicians were unable to 
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accomplish (Moreno & Waldegg, 1991). In the history of mathematics, the exact 
definition of and dealing with infinity is something more than one hundred years old. 
The foundation of infinity as modern mathematics sees it was laid when Dedekind 
and Cantor solved the problem of potential infinity at the end of the 19. century, and 
Cantor developed his theory of cardinal numbers. (e.g. Boyer 1985, Moreno & 
Waldegg, 1991) 

We may distinguish different kinds of infinities in mathematical objects. For 
example, the set of natural numbers has infinitely many elements, and it has no upper 
bound. Therefore, the numbers may become bigger and bigger. But every bounded 
subset of natural numbers is automatically finite, whereas the same is not valid for 
rational numbers. For example, the set of rational numbers between zero and one has 
infinitely many elements, but it is bounded. Furthermore, between any two rational 
numbers there are infinitely many rational numbers. This property of rational 
numbers is called density, whereas no set of natural numbers is dense. 

Tsamir & Dreyfus (2002) summarise the problems mathematicians have had with 
actual infinity,  as follows:  

Actual infinity, a central concept in philosophy and mathematics, has profoundly 
contributed to the foundation of mathematics and to the theoretical basis of various 
mathematical systems. It has long history and persistently been rejected by 
mathematicians and philosophers alike, and was highly controversial even in the last 
century in spite of the comprehensive framework provided for it by Cantorian set theory. 

Hence, although the concept of infinity as a potentiality is relatively easy for 
mathematicians, the concept of actual infinity is counterintuitive and difficult. 

Students’ conceptions of infinity 

Infinity has been an inspiring, but difficult concept for mathematicians. It is no 
wonder, that also students have had difficulties with it, although they might be 
fascinated about it. Previous research has identified typical problems and constructive 
teaching approaches to cardinality of infinite sets. Students use intuitively the same 
methods for the comparison of infinite sets as they use for the comparison of finite 
sets. Although students have no special tendency to use ‘correct’ Cantorian method 
of "one-to-one correspondence," they are prone to visual cues that highlight the 
correspondence. For example, students tend to match set {1, 2, 3…} more easily with 
the set {12, 22, 32 …} than with the set {1, 4, 9 …}. (Tsamir & Dreyfus, 2002) 

Fishbein, Tirosh and Hess inquired students’ view of infinite partitioning through 
using successive halvings of a number segment (Fishbein & al. 1979). They 
concluded that students on grades 5–9 seem to have a finitist rather than a nonfinitist 
or an infinitist point of view in questions of infinity. 

Even at the university level, the concept of infinity of real numbers is not clear for all 
students (cf. Merenluoto & Pehkonen 2002). For example, Wheeler (1987) points out 
that university students distinguished between 0.999… and 1, because “the three dots 
tell you the first number is an infinite decimal”. 
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Focus of the paper 

We want to find out what is the level of students’ understanding on infinity in Finnish 
comprehensive school, and how this understanding develops from grade 5 to grade 7.  

We will distinguish three levels of students understanding of infinity. The lowest 
level is when they do not understand infinity, but use only finite numbers. In the 
intermediate level, the students understand potential infinity, and use processes that 
have no end. Those students, who have reached the third level, are able to 
conceptualise actual infinity and the final resultant state of the infinite process.  

METHODS 

The paper describes some partial results of the research project “Development of 
Understanding and Self-confidence in Mathematics”, implemented at the University 
of Turku (Finland) and financially supported by the Academy of Finland. The project 
was a two-year longitudinal investigation on grades 5–8. More results of the project 
are to be found in the papers Hannula & al. (2004), Hannula & al. (2005), Maijala 
(2005) and Hannula & al. (2006). 

In order to measure the level of students’ self-confidence and understanding of 
number concept in grades 5 and 7 of the Finnish comprehensive school, we designed 
a survey. The representative random sample of Finnish students consisted of 1154 
fifth-graders (11 to 12 years of age) and 1902 seventh-graders (13 to 14 years of age). 
The response rate of schools was 72 %. The questionnaire consisted of five parts: 
student background information, 19 mathematics tasks, success expectation for each 
task, solution confidence for each task, and a mathematical belief scale. It was 
administered by teachers during a normal 45-minute lesson in the fall 2001. 

We focus here on mathematics tasks: In the 19 mathematical questions, there were 
three that measured students’ understanding of infinity (tasks 5, 7 and 8). Task 5 
measured understanding of infinitely large natural numbers. The two other tasks 
measured understanding of the density of the rational numbers. 

Task 5. Write the largest number that exists. How do you know that it is the largest? 

Task 7. How many numbers are there between numbers 0.8 and 1.1? 

Task 8. Which is the largest of numbers still smaller than one? How much does it differ 
from one? 

In this paper we will concentrate on the results of these three infinity tasks. 

RESULTS 

Survey results of competence 

We categorized student responses to the infinity tasks according to how proper we 
deemed answers to be. In each question, we can find answers that remain on the level 
of finite numbers, answers that describe processes that do not end (potential infinity) 
as well as some answers that indicate that the student has an understanding of the 
final state of the infinite process (actual infinity). 
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In the following, there are the answer categories and scoring for Task 5 given. 

Task 5. Write the largest number that exists. How do you know that it is the largest? 

Answer categories (and scoring):   

- Actual infinity 2: There is no largest number (4 points) 

- Actual infinity 1: Infinity, ∞ (3 points) 

- Potential infinity: Unending number, e.g. 9999… (2 points) 

- Finite: A number larger than one million, e.g. 99999999999999999, centillion (1 
point) 

To give a general description of the development from fifth grade to seventh grade 
we compared the answer distributions in each item. In figures 1–3 we can see, that 
tasks were demanding and most students scored only zero or one point per task 
(maximum being 4–5 points). As expected, seventh graders gave better answers.  
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Fig. 1. Students’ scoring for task 5. 

In task 5 (infinitely large), the development consisted mainly of the decrease of finite 
numbers as answers and of increase of different types of infinite answers.  

In the following, there are the answer categories and scoring for Task 7 given. 

Task 7. How many numbers are there between numbers 0.8 and 1.1? 

Answer categories (and scoring): 

- Actual infinity: Infinitely many (5 points) 

- Potential infinity: Unending number, e.g. 9999… (4 points) 

- Finite 3: A finite number larger than one million, e.g. 9999999999999 (3 points) 

- Finite 2: Working with more than one decimal, a number between 20 and one million 
(2 points) 

- Finite 1: Working on one decimal level (even incorrectly),  2, 3 or 4 (1 point) 
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Fig. 2. Students’ scoring for task 7. 

In task 7 (infinitely many), the decrease was mainly in completely incorrect answers 
(typically 0.3) and in single decimal thinking, and the biggest increase was in correct 
answers (infinitely many).  

In the following, there are the answer categories and scoring for Task 8 given. 

Task 8. Which is the largest of numbers still smaller than one? How much does it differ 

from one? 

Answer categories (and scoring):   

- Actual infinity: There is no such number (5 points) 

- Potential infinity 2: Such number cannot be written (4 points) 

- Potential infinity 1: 0.999… (3 points) 

- Finite 2: 0.999; three or more decimals (2 points) 

- Finite 1: 0.9; 0.99 (1 point) 
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Fig. 3. Students’ scoring for task 8. 
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In task 8 (infinitely close), the decrease was mainly in completely incorrect answers 
(typically ‘zero’ or ‘minus infinity’), and a significant increase was in answers 
(0.999…) that require understanding of potential infinity, but not actual infinity.  

The chi square test revealed significant gender differences in task 5 (infinitely large) 
on fifth grade, and in task 7 (infinitely many) and task 8 (infinitely close) on seventh 
grade; in both cases boys gave significantly more frequently answers of infinite 
nature than girls. 

Summary of competence results. In the fifth grade, 20 percent of the students have 
some understanding of the infinity of natural numbers, but only few have any 
understanding of density of rational numbers. The situation is not much better in the 
seventh grade. Yet, there is an obvious development from grade 5 to grade 7 in 
student levels of answering these questions. Infinity of natural numbers is understood 
earlier than infinity of subsets rational numbers, and potential infinity is understood 
earlier than actual infinity. Boys perform much better than girls in these tasks dealing 
with infinity. 

Survey results of confidence 

According to the chi square test both the students’ success expectation and solution 
confidence related to their answers (with an exception of the fifth grade boys’ success 
expectation). In the tasks 5 and 8, the students’ solution confidence increased, as their 
answers got better. In task 7 (infinitely many), however, the relationship between 
answer and confidence was more complex (Table 1). Students who gave 0- or 1-point 
answers were modestly uncertain, while solution confidence was much lower for 2-
point answers. Confidence remained low for 3- and 4-point answers and was high for 
5-point answers. Students who operate on one decimal level seem to be confident on 
their answers, while those more advanced students who move beyond that level have 
lower confidence. Only when they realize that there are infinitely many numbers 
within the given interval, they regain high confidence.  

Table 1. The means of solution confidence for responses of task 7. 

Points for 
task 7 

N Success 
expect. mean 

Std. 
deviation 

N Solution 
confid. mean 

Std. 
deviation 

0 561 4.06 1.06 539 3.42 1.35 

1 1933 4.15 0.94 1922 3.68 1.16 

2 171 3.99 0.94 169 2.91 1.19 

3 109 3.54 1.28 104 3.10 1.56 

4 42 3.88 1.11 40 3.18 1.52 

5 210 4.07 1.16 210 3.92 1.12 

Total 3026 4.09 1.00 2984 3.58 1.24 
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The relationship between answer and success expectation was slightly different from 
the relationship between answer and solution confidence presented above. For task 5 
(infinitely large) those students who gave 3-point answers (“infinity”) had highest 
expectations, for task 8 (infinitely close) expectations were highest when the answer 
got 2 or 3 points (“0.999”, three or more decimals or “0.999…”, respectively). This 
suggests that those who gave the best answers did not know the right answer 
beforehand, but they had to produce it during the test. Furthermore, for task 7 
(infinitely many) only those students who gave 3-point answers (a large finite 
number) had much lower expectations than others. Especially those students who 
gave a 2-point answer (20 – one million) had roughly as high expectations as others.  

In all cases, the students’ success expectation was higher than their solution 
confidence. In the result group 2 (Working with more than one decimal, a number 
between 20 and one million), the difference was the biggest one, and in the best 
answers (group 5) the smallest one. 

Summary of confidence results. The students’ confidence both before and after 
solving the task is related to the success they have. That is what we should expect to 
find. However, those who gave the most sophisticated answers were not the most 
confident in their expectations. 

In the task 7 (how many numbers are there between 0.8 and 1.1), the students’ 
confidence had even more complex relationship with success. Many of the students 
indicated strong false confidence in their one-decimal thinking of numbers. 
Furthermore, when their thinking begun to advance, their confidence dropped. 
Sometimes they even had an initial expectation of success before they begun to solve 
the task but this confidence fell after they had tried to solve the task. Confidence was 
reassured when they reached the level where they had an understanding of the density 
of rational numbers.   

CONCLUSIONS 

Boys give better answers than girls in tasks dealing with infinity.  This finding can be 
understood in the light of the general conclusion made by Fennema and Hart (1994). 
According to them, gender differences in mathematics still remain within the most 
difficult topics. The test used can be regarded as an example of a very challenging 
one that is likely to produce large gender differences. 

In most cases students who gave better answers were also more confident of their 
answers. This is what we would have expected. However, findings for task 7 confront 
this expected tendency. Also Merenluoto (2001) has found similar results. There was 
a general tendency for confidence to increase as the answers got better, but also some 
topics where this was not the case.  

In another analysis of the longitudinal development of student competence in number 
concept, we noticed that proper understanding of fractions as numbers is an important 
predictor of learning the density of rational numbers (Hannula & al. 2004). This 
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suggests that learning fractions is an important opportunity for this challenging 
conceptual change. 
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THE ASSESSMENT OF UNDERGRADUATE MATHEMATICIANS: 

RECRAFTING ASSESSMENT OF LEARNING TO PROVIDE 

OPPORTUNITIES FOR ASSESSMENT AS LEARNING 

Hillary Povey and Corinne Angier 

Sheffield Hallam University 

 

This article considers assessment practices in the field of higher education 
mathematics courses. It argues that, within the potentially deleterious context of 
summative assessments, it is possible to re-craft the demands on students in order to 
incorporate some opportunities for educative assessment. Evidence, in the form of 
stories of students' experiences, is offered to suggest that such practices have a 
contribution to make to supporting students in making positive disciplinary 
relationships. 

INTRODUCTION 

Recent research into students' experience of undergraduate mathematics at an English 
university included an account of those who fail (Macrae, Brown, Bartholomew and 
Rodd, 2003). The university which was the object of that study is among the elite 
higher education institutions for mathematics in the United Kingdom, so entrants 
arrived there with a history of success with the subject; yet a minority of the 
participating students performed so poorly in their assessments that they were unable 
to complete their course successfully. For example, one student, coming to the 
University with four top grade Advanced Level passes, failed his final year and left 
without obtaining a degree. Tellingly, we suggest, he was from an ethnic minority 
background which was untypical of the institution's intake; he had attended at an 
inner city comprehensive school in Birmingham, again untypically; and he was the 
first member of his extended family to go to university. 

This article reports on research data from a significantly different higher education 
institution, drawing on work currently taking place in the teaching of mathematics in 
a centre for mathematics education at the ex-polytechnic university in England where 
we work. It falls within an action research paradigm. We have previously reported an 
overview of this research project (Povey and Angier 2004). Further analysis 
suggested that assessment - the nature of the assessments undertaken and the students' 
response to them - was a key aspect of the students' experience: patterns were 
observed which will be reported more fully elsewhere. Here, we focus on just two of 
the students who participated in the study, Geoff and Anna (pseudonyms). Each had 
previously failed in university mathematics but they both went on to become 
effective mathematicians, achieving first class honours standard in their final 
mathematics assessments. Brief stories are told of these two students, pointing up 
how each of them engaged, more or less wholeheartedly and/or effectively, with the 
educative aspects of their assessments. We do not regard this research methodology 
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as unproblematic but nevertheless want to offer an alternative to 'the limited approach 
of method- or technique-led research' (Nixon et al 2003 p91), one which recognises 
'individuals as living storied lives on storied landscapes' (Clandinin and Connelly 
2000 p 24). (See Angier and Povey with Clarke, in press, for a fuller discussion.) We 
conclude by discussing the positive disciplinary relationships that the students were 
able to create during their course. 

ASSESSMENT PURPOSES  

In recent years, there has been a great deal written about the importance of 
assessment in education (see Black et al, 2003, Broadfoot and Black, 2004 for recent 
contributions). Currently, formal assessment can come to dominate the student 
experience of education at many levels, including at the university. In common with 
most English universities, these students followed courses which are modularised. A 
typical pattern was comprised of six separate modules in an academic year, with a 
separate summative assessment required for each module. Summative assessment, in 
general, tends to have a negative impact on students, damaging student self-esteem 
and reducing the student engagement with self-assessment: both these in turn produce 
a deleterious effect on attainment (Black and Wiliam, 1998a; Harlen and Deakin 
Crick, 2003). However, regular and repeated summative assessment is a current 
requirement at our institution.   

Given this context, we try to offer the students as wide a range of assessment 
experiences as possible and, in the case of almost all summative assessment, we try 
also to provide opportunities for formative assessment and also for what we label 
educative assessment as well. These three terms help us focus on three different 
purposes of assessment. The distinction between assessment of learning (summative 
assessment) and assessment for learning (formative assessment) is now a familiar one 
(see, for example, Black and Wiliam, 1998b). This paper also explores the notion of 
assessment as learning, educative assessment, where assessment practices are 
constructed to be part of the learning process itself. We argue that these educative 
aspects of assessment help create opportunities for previously lower attaining 
students, particularly those who come to the university with less social and cultural 
capital, to re-create their mathematical sense of self productively and in such a way 
as to support their personal epistemological authority. 

Typically, summative assessment of learners has been concerned with certification, 
its purpose being to pass, fail, grade or rank a student; additional purposes may be to 
select students for future study or employment or to predict success in future study or 
employment (Earl, 2003). Summative assessment has also become very widely used 
as a policy tool (Broadfoot and Black, 2004), largely linked to quality assurance: in 
this case, it is still concerned with passing, failing, grading and ranking but this time 
of institutions (or of teachers) rather than of learners (Barton, 1999).   

On the other hand, formative assessment has been concerned with feedback from 
teachers to the learners themselves on their performance and their learning; and its 
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purpose has been to provide information to teachers and students for the enhancement 
of learning (Black and Wiliam, 1998b).   

In the case of educative assessment, the assessment practices are recognised as 
themselves being part of the learning process. Sometimes, the expression 'assessment 
as learning' is used to describe certain classroom practices which better support the 
educational development of students (Earl, 2003), emphasising the importance of 
classroom feedback on well designed tasks as a critical element in helping children 
learn. Whilst sympathetic to such an approach, and sharing a concern with the nature 
of tasks which are set for learners, the focus of this article is rather different: it is 
concerned with changing summative assessment practices to make them, at least in 
part, educative too. 

OUR ASSESSMENT PRACTICES 

It will be helpful to have some sense of what assessment the students faced. In 
general, in our assessment practices we aim to devise tasks which are challenging 
learning experiences, that develop skills and lead the student into new areas of 
mathematics, rather than closed tasks which take the student back over prior study. 
Details vary from year to year but the mathematics assessments for these particular 
students included conventional three hour examinations; oral presentations to their 
fellow students of independent mathematical research; posters reporting their own 
mathematical work on given topics; academic essays about the history of 
mathematics which included working in depth with the associated mathematical 
topics; individual mathematical projects on topics of the students' choosing leading to 
individual reports; group projects on a given topic assessed by extensive written joint 
report and individual viva; academic essays about the nature of mathematics 
requiring an understanding of recent mathematical developments; and portfolios of 
more open and/or more closed problem-based coursework tasks.   

Those aspects of the assessments that we are labelling educative have a number of 
characteristics. First, the students have the space to explore and find out about their 
mathematics, space in which to try out different approaches to the subject, space to 
develop their own ideas. The criteria for assessment allow a wide range of skills to be 
acknowledged, for example, posing problems as well as solving them or 
communicating their mathematics visually or orally. Mathematical imagination is 
valued. Second, the students have the opportunity to become aware of their own 
progress and to find out about themselves as learners of mathematics. For example, 
they are sometimes asked to give an account which includes reflections on their 
attitudes and emotions or to elaborate the process of bringing their mathematical 
thinking to fruition, explaining and evaluating choices, approaches, methods. Third, 
many of the assessments involve negotiation, either with their tutors or with their 
peers or with both. In some case this challenges standard conventions of where 
authority lies, for example, devising the criteria by which they are to be assessed or 
deciding, in part, how marks are to be allocated amongst themselves at the end of 
group projects.   
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THE STUDY AND ITS CONTEXT 

The participants in this study were the members of a small cohort of students 
following one of the longer routes into secondary mathematics teaching. On their 
course, they studied undergraduate mathematics for two years within the context of a 
centre for mathematics education; (this was followed by a professional year). They 
studied mathematics to honours level but within a narrower range than would a single 
honours student.   

For the research project, we interviewed each of the students, sometimes alone and 
sometimes in pairs. The interviews, which were taped and transcribed, were fairly 
unstructured and were personal and informal in tone. We began working with these 
texts in a familiar way, each reading and re-reading the transcripts, immersing 
ourselves in the data and searching for themes. In addition we drew on other 
qualitative data: written reflections from one or two of the students and email 
conversations with one or two others. We had not expected the students’ experience 
of assessment to be a key issue but it emerged as such from this initial data. In order 
to explore this theme, we decided to add to our data by looking at some of their 
written assessed work as well. We used narratives, extracts from two of which 
follow, to re-interrogate the data. (Unless otherwise stated, the data presented is from 
the interview transcripts. These have been subject to minor editing for clarity.) 

GEOFF’S STORY 

When he started his current course, Geoff was 32 years old and had spent most of the 
previous decade working as a heavy goods vehicle driver. Before this, he had 
performed moderately at mathematics at school but had then, twice, failed the first 
year of a mathematics degree, once at a Scottish technical university and once at a 
London polytechnic university. Naturally, following these experiences, mathematics 
had felt very much like "unfinished business" for Geoff: he had made the very risky 
decision to return to higher education. In our interview, Geoff was asked to compare 
his previous experiences of mathematics with his current ones. The first thing he 
mentioned related to assessment. 

It’s a very different course. The others were predominately exams which makes a big 
difference. … [Previously] you’re taught, you do an exam and you either pass or fail 
whereas here it’s like “Well now you go and find out something” or you work something 
out for yourself. We have done a couple of assignments where you start without looking 
at any reference material at all, it’s just your own – you’re given a starting point and go 
off and work it out for yourself sort of thing. It’s just completely different.  

We asked him to consider the role of examinations on his current course, particularly 
the conventional examination with which the pure mathematics strand of the degree 
finishes at honours level.   

It’s quite bizarre really saying that I don't like exams. I've only done two on this course 
so far and I did really well in both of them that - having said that, I don't particularly like 
them. I got back a little bit into the old style which was get all the information in the 
sessions and then, a week before the exam or a few days before the exam, you then think 
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about organising your notes and seeing whether you can actually remember any of it. So 
it was a bit of a cramming session really. That’s not to say that I didn't pay attention in 
every other session because I did and I enjoyed a lot of the work that we did but it was 
very much of a “I can put this thing aside until I really need it just before the exam” 
which is not necessarily the best way to do it. 

He compared this with his active and personal involvement with coursework 
assignments. 

For that [exam module], I admit that I didn't do any extra work, I didn't follow it up. I did 
far too much work in other units which were less credit. But that’s because it was 
coursework, it was an ongoing thing, and I kept going back to it and, you know, 
sharpening it up and adding extra bits and so on and - that’s probably what happens when 
it's an exam thing, an exam at the end, you can put things aside and not look at them 
again. So the coursework keeps you actively involved in the subjects. 

He had found that the method of assessment significantly affected his relationship 
with the subject, how he worked, and his level of engagement. Whereas coursework 
assessment was educative, examinations not only were not educative in themselves, 
their influence also spilled over into less productive ways of working within the 
module itself. The issue of authoritative knowing (Povey, 1995) was a central one for 
Geoff. Being assessed on his own ideas, on work he had had to structure for himself 
and defend to himself, was of fundamental importance to him. He was drawn into this 
in such a way that his relationship with mathematics and his understanding of himself 
as a mathematician changed. As he neared the end of his course, Geoff was able to 
see himself not just as a receiver of other people’s mathematics but also as an author 
and originator of mathematics as well. 

ANNA’S STORY 

Anna was in her early twenties when she joined the course. She had previously 
started a degree in Systems Engineering at a Scottish technical university but left 
after three months. Last minute pressure from her mother had led her to enrol on the 
current course and she was very ambivalent about her decision. The central problem 
in her previous university studies had been the teaching style adopted and the 
concomitant model of knowledge and assessment. 

We had lectures in bulk. I think it was up to 300 people in the lecture and then the 
tutorials were about 20 to 25. I knew that I couldn't go back to that kind of learning … 
because it wasn't personal. All they were doing was they gave us good notes … it was 
very directed, like one guy literally said at the beginning of term “If you sit here and 
write down every single note that I make on the OHP then you will do fine” - and that 
was all we had to do. 

Anna claimed that, in contrast, she found the processes to which she had been 
introduced as part of her assessed work on her current course helpful in developing 
her mathematical thinking. But she also found our way of working difficult to come 
to terms with. For example, some assessments require the students to reflect on the 
mathematics they are presenting and on how they came to know it. 
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I find it strange that tutors care enough or find it important enough to find out what we 
think and get us to write these strange ramblings. It’s even funnier that the more honest 
and completely blunt I am, the more excited the marker seems to get. I still find it odd 
when tutors are excited about a project we are going to do – it’s almost as if they can’t 
wait for the results. It’s great to have such a high degree of choice … we are encouraged 
to take part in ‘airy fairy’ investigations but tutors don’t seem to be fazed by the fact that 
I get frustrated and take it out on everyone else, which often frustrate me even more! I 
remember shouting at [one tutor] about the ridiculousness of doing [a particular] 
assignment … while she sat excitedly talking about all the different lines of enquiry and 
possible variables …  (notes sent to us) 

It is clear that the educative aspect of the assessments is not universally welcomed 
and enjoyed by the students. Anna had some positive experiences to relate about 
engaging with assignments but could find the openness of the approach and the lack 
of overt structure frustrating in the extreme. Anna consistently produced coursework 
of a very high standard indeed but she always claimed to be surprised when her work 
was valued by other people - her peers and her tutors - and she found it hard to 
recognise and appreciate her own achievements. She still struggled with thinking 
about mathematics in a broad and creative way. 

I think I liked having the choice but at the same time I find it hard especially getting 
started because I'm never sure what I want to do. And I think it’s hard as well at the end 
because I don't necessarily feel that I have learnt anything, whereas looking at other 
people’s work I think "wow”. You know, they've done so much and they must really 
understand it now. And I look at what I've done and think "well, you know, this is quite 
good but I really don't think I've done that much" … all the time I'm understanding that 
my definition of maths is too narrow and so you know people say "oh that’s good” when 
I think I haven't actually done any maths. So it’s confusing that they think that what I've 
done is so amazing when actually I don't think I had a lot to do with anything. So it’s 
kind of like how I perceive maths. 

Anna seemed to us to revel in her mathematical studies but she leaves us challenged 
by our ineffectiveness in engaging her fully in educative assessment. Nevertheless, 
despite her difficulties, she asserted strongly that her relationship with mathematics 
had changed significantly, that she had learnt to appreciate mathematics more and 
that she had had ‘the privilege to be involved in some “wow” moments’ as a result of 
her creative engagement with the subject.  

DISCUSSION 

We have used student stories to try to capture something of the experience of what 
we have termed educative assessment. Our students struggle and we expect them to 
do so. They struggle with the mathematics, they struggle with our definitions of 
mathematics and they struggle with the forms of assessment that we practise. They 
may not necessarily agree with our stance – indeed the evidence suggests they often 
do not – but they are consciously engaging in the debate about what is of value. We 
recognise the description given by a teacher supervisor of students in Denmark for 
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whom the learning of mathematics in higher education was entirely structured around 
their assessed project work.  In the early stages of their learning,  

the students feel ‘overloaded’ and experience a mild form of hopelessness.  They have to 
work a lot on their own without the usual, small, reassuring problems.  This is fully 
intended because it, to some extent, stimulates the researcher’s state of mind.  (Vithal et 
al, 1995: 204) 

We believe that that ‘researcher’s state of mind’ is developed by educative 
assessment practices, where the students have to engage in doing mathematics, in 
creating the mathematics for themselves, rather than simply meeting the results of the 
mathematical activity of others. 

In many countries, few people choose to study mathematics in post-compulsory 
education and, of those who do, many are reported failing and/or disliking the subject 
(Mann, 2003; Macrae et al, 2003; Boaler and Greeno, 2000). Jo Boaler found 
students were unwilling to pursue mathematics because 

they did not want to be positioned as received knowers, engaging in practices that left no 
room for their own interpretation and agency. (Boaler, 2002:115) 

Many undergraduates find current practices which emphasise ‘a “performance” 
route’ (Mann, 2003:20) to success, with mathematics being ‘ “a kind of competition 
you train for” ‘(Mann, 2003:19), alienating and oppressive. We suggest that 
conventional assessment practices in mathematics in higher education, currently 
almost exclusively individual timed examination performance (Rodd, 2002), 
contribute in no small measure to this. The two narratives indicate that students' 
assessed work is an important site for the building of their relationships with the 
discipline of mathematics and for their work on their developing identities as 
mathematicians. They give evidence that re-crafting assessment practices to allow 
frequent opportunities for educative as well as formative and summative assessment 
impacts on ways of knowing and contributes to allowing the development of both 
epistemological authority and agency in learners of mathematics; and that these 
things happen in ways which open up the subject to wider participation and make 
successful engagement with mathematics not just the prerogative of the few.   
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SOCIAL COGNITION EMERGING FROM STUDENT-TO-

STUDENT DISCURSIVE INTERACTIONS DURING 

MATHEMATICAL PROBLEM SOLVING 

Arthur B. Powell 
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This paper presents empirical evidence for the theoretical construct of social 
cognition—the cognitive by-product of the discursive interactions among small 
groups of individuals collaborating in mathematical problem solving that is not 
attributable to any one individual.  The example is of four high school students, 
working independently solving a combinatorial problem set in a non-Euclidean 
context. 

INTRODUCTION 

In mathematics education, discourse and its cognitive influence in mathematics 
classrooms have been the subject of numerous studies.  The importance of 
communication and discussion for learning are processes about which mathematics 
educators agree.  As Cobb, Boufi, McClain, and Whitenack (1997) note, consensus 
on this point within the mathematics education community transcends theoretical 
differences and include researchers who draw primarily on mathematics as a 
discipline, on constructivist theory, and on sociocultural perspectives.  This 
consensus notwithstanding, two broad lines of research can be distinguished.  On the 
one hand, the nature of communications and how teachers can encourage and support 
communicative acts among students that are both productive and mathematical have 
been the subject of empirical research and theoretical reflection (for example, see 
Alrø & Skovsmose, 1998; Fernandez, 1994; Maher, 1998; O'Connor & Michaels, 
1996; Seeger, 2002; Sfard, 2000, 2002).  In these studies, teachers’ are seen as 
instrumental in triggering on the part of students either reflective discourse or 
otherwise productive discussions.  However, a question that arises is whether and 
under what condition can such discussions occur among students themselves, 
particularly when teachers’ play a minimal role in triggering reflective discourse.  
Furthermore, do such social collaborations enable students to go beyond exchanging 
information to developing discursively ideas and reasoning that go beyond those of 
any individual student but that are later reflective of individual student’s 
understanding?  That is, is social cognition possible in these settings? 

THEORETICAL PERSPECTIVE 

In this study, key terms include discourse, student-to-student or peer mathematical 
discussion, and social cognition.  Discourse here refers to language (natural or 
symbolic) used to carry out tasks—for example, social or intellectual—of a 
community.  In agreement with Pirie and Schwarzenberger (1988), peer 
conversations are mathematical discussions when they possess the following four 
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features: purposeful, focus on a mathematical topic, involve genuine student 
contributions, and are interactive. 

The term social cognition refers to a process through which ideas and reasoning 
emerge from discursive interactions of interlocutors that go beyond those of any 
individual interlocutor but are later reflective of individual interlocutor’s 
understanding.  The product of social cognition is not attributable to any one 
individual but rather is a negotiated entity, constituted from discursive interactions, 
and eventually a shared part of the awareness of each interlocutor.  This notion 
surfaced from analysis of features and functions of conversational exchanges among 
four students engaged collaboratively, without assigned roles, to understand and 
resolve an open-ended, combinatorial problem, which is presented in the next section. 

The analysis of conversational exchanges is informed by the work of Davis (1997), 
who inquires into teacher listening and its consequent impact on the growth of 
student understanding.  This study builds on his inquiry.  It also applies and extends 
Davis’s categories to analyze discursive interactions of students engaged in 
discourse.  This theoretical construct contains has four category—evaluative, 
informative, interpretative, and negotiatory—described below, and guides the inquiry 
into how learners’ discursive exchanges contribute to the mathematical ideas and 
reasoning that they evidence. 

Evaluative: an interlocutor maintains a non-participatory and an evaluative stance, 
judging statements of his or her conversational partner as either right or wrong, good or 
bad, useful or not. 

Informative: an interlocutor requests or announces factual data to satisfy a doubt, a 
question, or a curiosity (without evidence of judgment). 

Interpretive: an interlocutor endeavors to tease out what his or her conversational partner 
is thinking, wanting to say, expressing, and meaning; an interlocutor engages an 
interlocutor to think aloud as if to discover his or her own thinking. 

Negotiatory: an interlocutor engages and negotiates with his or her conversational 
partner; the interlocutors are involved in a shared project; each participates in the 
formation and the transformation of experience through an ongoing questioning of the 
state of affairs that frames their perception and actions. 

These are not mutually exclusive categories; a unit of meaningful conversation may 
have more than one interlocutory feature.  Based on the theoretical perspective of this 
study and analysis of the data, social cognition arises from negotiatory interlocution 
in a collaborative problem-solving setting.  It presupposes that interlocutors are 
engaged in a student-to-student, mathematical discussion with minimal teacher 
intervention. 

METHOD 

The participants are four students in their senior year of high school, who are 
studying advanced high school mathematics and who, from their entry into first grade 
have participated in mathematical activities of a longitudinal study on the 
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development of mathematical ideas.1  For twelve years, these students have engaged 
tasks from several strands of mathematics, including algebra, combinatorics, 
probability, and calculus both in the context of classroom investigations as well as in 
after school settings (Maher, 2005).  In high school, they worked on mathematical 
problem solving typically found in elementary undergraduate classes.  In this study, 
during an after-school problem-solving session, the students collaborate on a 
culminating task—The Taxicab Problem—of the research strand on combinatorics: 

A taxi driver is given a specific territory of a town, shown below.  All trips originate at 
the taxi stand.  One very slow night, the driver is dispatched only three times; each time, 
she picks up passengers at one of the intersections indicated on the map.  To pass the 
time, she considers all the possible routes she could have taken to each pick-up point and 
wonders if she could have chosen a shorter route. 

What is the shortest route from a taxi stand to each of three different destination points?  
How do you know it is the shortest?  Is there more than one shortest route to each point?  
If not, why not?  If so, how many?  Justify your answer. 

Accompanying this problem statement, the participants have a map, actually, a 6 x 6 
rectangular grid on which the left, uppermost intersection point represents the taxi 
stand.  The three passengers are positioned at different intersections as blue, red, and 
green dots, respectively, while their respective distances from the taxi stand are one 
unit east and four units south, four units east and three units south, and five units east 
and five units south. 

The data sources consist of the problem task; a video record of about 100 minutes of 
the activity of the four participants from the perspective of two video cameras; a 
transcript of the videotapes combined to produce a fuller, more accurate verbatim 
record of the research session; the participants’ inscriptions; and researcher field 
notes.  The transcript is a textual rendering of verbal interactions, specifically, turn 
exchanges among the participants and between them and researchers, which in all 
consists of 1,619 turns at talk. 

Our analytic method employs a sequence of phases, informed by grounded theory 
(Charmaz & Mitchell, 2001), ethnography and microanalysis (Erickson, 1992), and 
an approach for analyzing video data (for an elaboration and examples of these 
phases, see Powell, Francisco, & Maher, 2003). 

Besides the non-Euclidean geometric setting, the Taxicab Problem has an underlying 
mathematical structure and encompasses concepts that resonate with those of other 
problems the participants have worked on in the longitudinal study (for details, see 
Maher, 2005).  Their implicit task was to formulate and test conjectures.  Researchers 
explicitly announced that they were to explain and justify conclusions.  After they 
                                           
1 This work was supported by grant MDR-9053597 (directed by R. B. Davis and C. A. Maher) and 
REC-9814846 (directed by C. A. Maher) from the National Science Foundation.  Any opinions, 
findings, and conclusions or recommendations expressed in this paper are those of the authors and 
do not necessarily reflect the views of the National Science Foundation. 
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worked on the problem for about an hour and a half, researchers listened as they 
presented their resolution and asked questions to follow movements in their discourse 
toward further justification of their solution.  Their resolution goes beyond the 
problem task: They generalize it and propose isomorphic propositions.  It is in both 
of these actions that the students evidence of social cognition. 

RESULTS 

In an earlier analysis of these data from the analytic lens of the four categories of 
interlocution, Powell and Maher (2002) have illustrated that the conversational 
interactions among learners can advance their subsequent individual and collective 
actions.  They showed how among the four interlocutory categories, 

(1) interpretive and hermeneutic [negotiatory] interlocution have the potential for 
advancing the mathematical understanding of individual learners working in a small 
group, (2) the personal or individual understanding of a learner is intermeshed with the 
understanding of his or her interlocutors, and (3) the mathematical ideas and 
understanding of an individual and his or her group emerge in a parallel fashion. (p. 328). 

The purpose of this paper is to provide evidence of social cognition.  As will be 
shown, social cognition is possible when interlocutors are engaged in negotiatory 
interlocution.  It is during this type of conversational exchange that it is possible for 
ideas and reasoning to emerge that goes beyond those of any individual interlocutor 
and that are later reflected in individual interlocutor’s understanding. 

In the research sessions, the students work independent of the intervention from 
researchers and engage in student-to-student, mathematical discussions.  Clockwise 
from the left, seated on three sides of a trapezoidal-shaped table are the four 
participants, Michael, Romina, Jeff, and Brian.  At the start of the session, Researcher 
1 pulls up a chair, sits on the right side of the table between Jeff and Brian, thanks the 
four students for coming, distributes the Taxicab Problem, and asks them to read and 
see whether they understand the task.  Afterward, the researcher stands up and, 
backing away from the table, removes her chair. 

In the first four minutes of the research session, the researcher spends little time at the 
table with the students and responds only to student questions in a tailored yet sparse 
manner.  From then until 64 minutes later, the students engage with themselves.  
They rather quickly organize themselves by requesting colored markers and assigning 
subtasks to each other.  Jeff inquires about why the routes to the blue destination 
point have the same length, Michael explains.  Romina requests help in devising an 
area, Jeff and Michael respond and inform her that the applicable notion is perimeter, 
not that of area.  In general, the students carefully and respectfully listen and respond 
to each other’s questions, statements, and ideas. 

The first example of social cognition occurs after 14 minutes into the problem 
solving session. After almost 14 minutes into the research session, there is an 
interesting and pivotal interaction among Romina, Brian, and Jeff: 

ROMINA: I think we’re going to have to break it apart and draw as many as possible. 
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BRIAN: Yeah, //that’s what I’m going to do. 

JEFF: //And then have that lead us to something?  What if we do- why don’t we 
do easier ones?  You know what I’m saying?  What if the- the thing- Do 
you have another one of these papers? 

In Episode 1, an agenda for action emerges from the students’ interlocution.  Brian 
and Jeff accept the task implied in Romina’s statement and act on her heuristic.  
Furthermore, Jeff refines her suggestion in his interrogative: “why don’t we do easier 
ones?”  Romina’s statement and Jeff’s interrogative establish a new agenda for the 
group’s actions.  Importantly, this action agenda represents a watershed in their 
mathematical investigation.  From this point onward, they no longer work on the 
combinatorial problem as given but instead pose and work on simpler situations to 
glean relevant information and extract insights from those situations so as to inform 
their understanding and resolution of the given problem.  This agenda emerges results 
from the students’ negotiatory interlocution.  It was not posed fully formed by any 
one student.  However, after its emergence from the social cognition of the group 
forms part of the students’ understanding of how they will proceed to resolve the 
given problem. 

Another instance of social cognition transpires over many turns of speech, spanning 
from about turn 159 to turn 1320.  Space does not permit a full illustration of the 
development of the ideas and reasoning that comprise the students’ social cognition.  
They have continual discursive interactions with the aim of building an isomorphism 
between a rule for generating the entries of Pascal’s triangle and the number of 
shortest routes to points on the taxicab grid.  Early in their work, the students 
manifest embryonic thinking about an isomorphism.  Romina wonders aloud: “can’t 
we do towers2 on this” (turn 159).3 Her public query catalyzes a negotiatory 
interlocution among Michael, Jeff, and her.  Jeff, responding immediately to Romina, 
says, “that’s what I’m saying,” (turn 160) and invites her to think with him about the 
dyadic choice (“there or there” turn 162) that one has at intersections of the taxicab 
grid.  Furthermore, he wonders whether one can find the number of shortest routes to 
a pick-up point by adding up the different choices one encounters in route to the point 
(turn 162).  Romina proposes that since the length of a shortest route to the red pick-
up point is 10, then “ten could be like the number of blocks we have in the tower” 
(turn 169).  Romina’s query concerning the application of towers to the present 
problem task prompts Michael’s engagement with the idea, as well.  As if advising 
his colleagues and himself, he reacts in part by saying, “think of the possibilities of 
doing this and then doing that” (turn 180).  While uttering these words, he points at 
                                           
2 The Towers Problem is to build towers (for example, with Unifix cubes) of particular heights 
when selecting from a certain number of colors.  From grades 3 to 10, the participants have worked 
on versions of this problem with varied conditions. 
3 For Romina and other participants in the longitudinal study, this comment is pregnant with 
mathematical and heuristic meaning derived from their constructed, shared experiences with tasks 
and inscriptions in the combinatorial and probability strands of the study. 
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an intersection; from that intersection gestures first downward (“doing this”), returns 
the to point, and then motions rightward (“doing that”).  Similar to Jeff’s words and 
gestures, Michael’s actions also acknowledge cognitively and corporally the binomial 
aspect of the problem task.  Through their negotiatory interactions, Michael, Jeff, and 
Romina raised the prospect of as well as provided insights for building an 
isomorphism between the Taxicab and Towers Problems. 

The prospect and work of building such an isomorphism reemerges several more 
times in the participants’ interlocution, and each time, they further elaborate their 
insights and advance more isomorphic propositions.  Eventually, the building of 
isomorphisms dominates their conversational exchanges.  Approximately thirty-five 
minutes after Romina first broached the possibility of relating attributes of the 
Towers Problem to the problem at hand, the participants reengage with the idea.  
Romina speculates that between the two problems one can relate “like lines over” to 
“like the color” and then “the lines down” to the “number of blocks”(turn 738).  What 
is essential here is Romina’s apparent awareness that each of the two different 
directions of travel in the Taxicab Problem needs to be associated with different 
objects in the Towers Problem. 

Romina uses this insight later in the session.  She transfers the data that she and her 
colleagues have generated from a transparency of a 1-centimeter grid to plain paper.  
Their data are equivalent to binomial coefficients.  She identifies one unit of 
horizontal distance with one Unifix cube of color A and one unit of vertical distance 
with one Unifix cube of color B: 

Like doesn’t the two- there’s- that I mean, that’s one- that means it’s one of A color, one 
of B color [pointing to the 2 in Pascal’s triangle].  Here’s one- it’s either one- either way 
you go.  It’s one of across and one down [pointing to a number on the transparency grid 
and motions with her pen to go across and down].  And for three that means there’s two 
A color and one B color [pointing to a 3 in Pascal’s triangle], so here it’s two across, one 
down or the other way [tracing across and down on the transparency grid] you can get 
three is two down [pointing to the grid]. (turn 1210) 

Furthering the building of their isomorphism, Michael offers another propositional 
foundation.  Pointing at their data on the transparency grid and referring to its 
diagonals as rows, he notes that each row of the data refers to the number of shortest 
routes to particular points of a particular length.  For instance, pointing the array—1 4 
6 4 1—of their transparency, he observes that each number refers to an intersection 
point whose “shortest route is four” (turn 1203).  Moreover, he remarks that one 
could name a diagonal by, for example, “six” since “everything [each intersection 
point] in the row [diagonal] has shortest route of six”(turn 1205).  In terms of an 
isomorphism, Michael’s observation points in two different directions: (1) it relates 
diagonals of information in their data to rows of numbers in Pascal’s triangle and (2) 
it notes that intersection points whose shortest routes have the same length can have 
different numbers of shortest routes. 

Later in responding to a researcher’s question, the participants develop a proposition 
that relates how they know that a particular intersection in the taxicab grid 
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corresponds to a number in Pascal’s triangle.  They focus their attention on their 
inscriptions, A and B, in Figure 1.  Michael and Romina discuss correspondences 
between the two inscriptions.  Referring to a point on their grid that is five units east 
and two units south, Romina associates the length of its shortest route, which is 
seven, to a row of her Pascal’s triangle by counting down seven rows and saying, 
“five of one thing and two of another thing”(turn 1313).  Michael inquires about her 
meaning for “five and two” (turn 1314).  Both Romina and Brian respond, “five 
across and two down”(turns 1317 and 1318).  She then associates the combinatorial 
numbers in the seventh row of her Pascal’s triangle to the idea of “five of one thing 
and two of another thing,” specifying that, left to right from her perspective, the first 
21 represents two of one color, while the second 21 “is five of one color” (turn 1320), 
presuming the same color.  Using this special case, Romina hints at a general 
proposition for an isomorphism between the Taxicab and Towers Problems. 

DISCUSSION 

The above presents evidence that through negotiatory interlocution students build an 
isomorphism during the course of the problem-solving session.  The isomorphism 
results from social cognition since not one student presents the isomorphism fully 
formed but rather their discursive interactions constitute a co-construction of the 
isomorphism.  It can be observed that early in the problem-solving session the three 
participants—Romina, Jeff, and Michael—articulate awareness of object and 
relational connections between their current problem task and a former one, the 
Towers Problem.  Later, upon noticing that their array of data resembles Pascal’s 
triangle and conjecturing so, the participants embark on building an isomorphism 
between the Towers Problem and the Taxicab Problem as an approach to justifying 
their conjecture since from previous experience they know that Pascal’s triangle 
underlies the mathematical structure of the Towers Problem.  In this sense, their 
strategy can be interpreted as justifying their conjecture by transitivity: (a) Pascal’s 
triangle is equivalent to Towers and (b) Towers is equivalent to Taxicab; therefore 
implying that (c) Pascal’s triangle is equivalent to Taxicab.  They know (a) is true 
and embark on demonstrating (b) to justify and conclude (c). 
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UNDERSTANDING TEACHERS’ MATHEMATICAL 

KNOWLEDGE FOR TEACHING: A THEORETICAL AND 

METHODOLOGICAL APPROACH* 

Arthur B. Powell and Evelyn Hanna 
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We explore an emergent approach for understanding the development of teachers’ 
mathematical knowledge for teaching that is rooted in the discursive interaction of 
practice and emerges from an ongoing investigation of learning and teaching.  We 
offer a theoretical foundation for the methodological approach and examine the 
interplay of knowledge that is pedagogical, mathematical, and epistemological. 

INTRODUCTION 

The mathematical knowledge and pedagogical competence of teachers are 
intertwined, and improving both is key to upgrading students’ mathematical 
achievement.  High quality standards, curriculum, instructional materials, and 
assessments are important but not enough to improve students’ learning of 
mathematics.  As Ball, Hill and Bass (2005) argue, “little improvement is possible 
without direct attention to the practice of teaching … [h]ow well teachers know 
mathematics is central” (p. 14).  Conceivably, this explains why recently there has 
been considerable discussion and research on teachers’ subject-matter knowledge, 
pedagogical content knowledge, and mathematical knowledge for teaching (for 
example, Ball, 2000; Fennema et al., 1996; Hill, Rowan, & Ball, 2005; Maher & 
Alston, 1990; Shulman, 1986; Tirosh, 2000). 

A pressing area of inquiry concerns the nature and development of mathematical 
knowledge that facilitates effective teaching and, in turn, promotes successful 
mathematics learning.  Educators and researchers of mathematical education agree 
that teachers benefit from having a disposition toward self-sustaining and generative 
change as well as a robust knowledge of mathematics that is primarily conceptual and 
specialized to the insights and particularities appropriate for teaching (Ball, Hill, & 
Bass, 2005; Franke, Carpenter, Fennema, Ansell, & Behrend, 1998; Sowder, in 
press).  This consensus notwithstanding, a critical question that arises is by what 
means can teacher educators and researchers understand the development of teachers’ 
mathematical knowledge for teaching. 

How might educators and researchers investigate and understand the development of 
teachers’ mathematical knowledge for teaching?  One approach is exemplified by 

                                           
* This work was partially supported by a grant from the National Science Foundation, REC-
0309062 (directed by Carolyn A. Maher, Arthur B. Powell, and Keith Weber).  Any opinions, 
findings, and conclusions or recommendations expressed in this paper are those of the authors and 
do not necessarily reflect the views of the National Science Foundation. 
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recent efforts to develop large-scale, multiple-choice measures of the content 
knowledge for teaching held by teachers and to evaluate the extent to which 
professional development programs contribute to this knowledge (Hill & Ball, 2004; 
Hill, Schilling, & Ball, 2004).  Another perspective seeks descriptions of how 
teachers develop their mathematics knowledge for teaching in the complex, 
discursive interaction of actual practice as students evidence their mathematical ideas 
and reasoning. 

To reply to the methodological question of how to understand the development of 
specialized content knowledge needed for effective practice requires both theoretical 
and empirical responses.  In this paper, we explore an emergent approach for 
understanding the development of teachers’ mathematical knowledge for teaching 
rooted in the discursive interaction of practice.  In so doing, we also offer a 
theoretical foundation for the methodological approach. 

THEORETICAL PERSPECTIVE 

The theoretical perspective for our methodological approach has several sources.  It 
is based on the assumption that effective teaching requires teachers to attend to and 
endeavor to understand the mathematical ideas and reasoning of their students 
(Maher, 1998; Sowder, in press).  In agreement with Shulman (1986) and Ball et al. 
(2005), our perspective recognizes that to teach a school subject like mathematics 
effectively necessitates knowledge of mathematics that “goes beyond the knowledge 
of subject matter per se to the dimension of subject matter knowledge for teaching” 
(Shulman, 1986, p. 9).  However, our view of mathematical knowledge for teaching 
transcends an epistemological stance that it entails “ways of representing and 
formulating the subject that make it comprehensible to others” (Shulman, 1986, p. 9).  
In contrast, we embrace the idea that strictly speaking teachers cannot convey or 
communicate knowledge to students.  Instead, teachers can invite students to engage 
with a mathematical task and discursively connect with students to understand their 
emergent mathematical ideas and reasoning, as they build their knowledge.  
Researchers can infer teachers’ mathematical knowledge for teaching by analyzing 
their practice in action, including interactions with students, questions they ask, 
issues they make salient to students, student artifacts they use, as well as post-session 
analyses they perform of their actions, plans, and students’ work. 

Interaction also provides a lens through which to view mathematical knowledge for 
teaching and pedagogical knowledge.  These two kinds of knowledge though 
conceptually different do at times, as we have observed, interact and even intersect.  
When they do intersect, they are essentially indistinguishable one from the other.  
This is analogous to two non-parallel planes intersecting and forming a line.  It is not 
useful to say whether the line belongs strictly to one plane or the other.  It belongs to 
both planes simultaneously.  Like the line, teachers’ mathematical knowledge for 
teaching can be observed through their pedagogical moves; that is, by way of their 
pedagogical knowledge revealed in their moment-to-moment discursive interaction 
with students.  In this paper, based on our methodological approach, we provide 
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empirical evidence to substantiate the theoretical claim that pedagogical and 
mathematical knowledge for teaching are in some instances mutually constitutive. 

Our notion of pedagogical knowledge also addresses teachers’ inferred knowledge of 
the status of students’ knowledge.  A component of teachers’ practice is their ever-
evolving, inferential awareness of students’ emerging mathematical knowledge.  As 
Steinbring (1998) notes, a teacher “has to become aware of the specific 
epistemological status of the students’ mathematical knowledge. … to diagnose and 
analyze students’ constructions of mathematical knowledge and … to compare those 
constructions to what was intended to be learned in order to vary the learning offers 
accordingly” (p. 159).  Teachers’ epistemological awareness of students’ 
mathematical knowledge while teaching enables teachers to pose new challenges for 
students to advance their building of mathematical ideas and reasoning. 

We see our work contributing a theoretical perspective and a methodological 
approach.  Theoretically, we view as inextricably linked mathematical knowledge for 
teaching and pedagogical knowledge.  Methodically, to understand the nature and the 
development of teachers’ knowledge for teaching mathematics, we consider it to be 
observable through an analysis of teachers’ moment-to-moment pedagogical 
interactions with students under particular conditions.  The conditions include 
students working in collaborative groups to solve open-ended, well-defined problems 
and teachers attending to students’ mathematical ideas and reasoning.  We believe 
that teachers can best understand students’ emerging and evolving mathematics when 
teachers observe and discursively interact with students engaging in mathematical 
tasks, endeavoring to understand students’ mathematical behavior from their 
perspective (e.g., Fennema et al., 1996; Noddings, 1992; Tirosh, 2000).  In this 
professional activity, teachers reveal to themselves and to others their mathematical 
knowledge for teaching as they respond to students’ discursive and inscriptive 
productions. 

METHOD 

This study is an adjunct of larger, ongoing analyses that emerge from a multi-prong, 
three-year research endeavor, “Informal Mathematics Learning Project” (IML).  Two 
primary goals of the IML project involve investigating (1) how middle-school 
students (11 to 13 years old) develop mathematical ideas and reasoning over time in 
an informal, after-school environment and exploring the relationship between agency 
and students’ learning as well as (2) how teachers facilitate IML sessions and attend 
to students’ ideas and reasoning.  The IML sessions occur in a middle school, after-
school program in Plainfield, New Jersey, an economically depressed, urban area, 
whose school population is 98 percent African American and Latino students. 

For an academic year and a half, including the intervening summer, three pairs of 
teachers facilitated 20 sessions, 90-minute each, with a cohort of approximately 20 
sixth grade students, while graduate students from Rutgers University observed as 
ethnographers.  This cohort explored similar mathematical tasks that had engaged an 
earlier cohort of students with whom researchers from Rutgers University worked, 
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while the teachers participated as observers, taking field notes, and as co-
investigators in post-session debriefings.  Nonetheless, the teachers were not given a 
script; rather, they developed their own by selecting tasks and planning their own 
sessions.  For about 50 minutes after each research sessions, the teachers and 
graduate students with a researcher discussed their observations and reflections on 
the tasks and the ideas and reasoning of students.  Research and debriefing sessions 
were videotaped, and student and teacher inscriptions were stored electronically. 

The mathematical tasks on which students were invited to work range across strands 
of mathematics that include rational numbers, combinatorics, probability and data 
analysis, and algebra.  By design, the tasks are open-ended and well-defined, in that 
students were invited to determine what to investigate and how to proceed, identify 
patterns and search for relationships, make and investigate mathematical conjectures, 
develop mathematical arguments to convince themselves and others of their 
conjectures, and evaluate their own arguments and those of others. 

To understand the nature and development of mathematical knowledge for teaching, 
we analyzed data from the planning, implementation, debriefing sessions, and written 
reflections on the first two IML sessions that two teachers, Lou and Gilberto, 
facilitated as well as student work.  These teachers have respectively six and two 
years experience teaching middle school students and the second is a bilingual 
teacher.  For each session, there were between three and five video cameras, each 
with a boom microphone, capturing images from different student work groups and 
whole class discussions.  Our videodata analysis follows methodological suggestions 
outlined by Powell, Francisco, and Maher (2003), coding all data inductively and 
deductively.  Our initial coding scheme intended to flag instances of teachers’ using, 
commenting, and questioning about mathematics and pedagogy.  Analyzing the data 
to understand teachers’ mathematical knowledge for teaching, we noticed several 
instances of an intersection among pedagogical, mathematical, and epistemological 
knowledge, some of which present in the following section. 

RESULTS 

The purpose of this paper is to theorize and explore an emergent approach for 
understanding the nature and development of teachers’ mathematical knowledge for 
teaching.  Above, we described a method for flagging critical events from data that 
provide investigators with insight on teachers’ content and pedagogical knowledge as 
well as their epistemological awareness of students’ mathematical knowledge.  This 
section describes how we applied our methodology to video and document data.  
Space limitations only permit us to present three critical events, occurring in two 
consecutive sessions. 

The first concerns teachers grappling with how to orchestrate the next session based 
on events that transpired in that day’s session.  In the session, students worked on the 
following task with Cuisenaire rods: If the light green rod has the number name two, 
what is the number name for the dark green rod?  Three individual students each 
presented a different solution at an overhead projector. 
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Tiffany stated that since the light green rod has the number name two, then the white, 
the red, the purple, the yellow, and the dark green rods have respectively the number 
names zero, one, three, four, and five.  Devon asserted that the white, the red, the 
light green, the purple, the yellow, and the dark green rods have the number names 
one, two, three, four, five, and six, respectively.  Finally, Sameerah reasoned that 
since light green has the number name two, then the dark green has the number name 
four because two light green rods have the same length of one dark green rod and 
therefore, two plus two is four.  With different results, both Tiffany and Devon lined-
up their rods according to their heights and used their ordinal position to reason what 
number names to assign the rods.  Applying a different strategy, Sameerah reasoned 
based on the additive property of length (two light green rods placed end-to-end are 
equivalent in length to a dark green rod) to name the dark green rod four.  The 
session concluded with Lou and Gilberto asking the students to think about the three 
different solutions and announcing that the following day they will revisit them. 

During the debriefing session, Lou and Gilberto discuss with the research team (one 
Rutgers researcher and other district teachers) a possible intervention to assist the 
first two students and others students who agreed with them reconsider their ordinal 
reasoning to additive reasoning.  In designing an intervention, Gilberto sets up a 
scenario that evidences his awareness of the students’ existing knowledge, the 
reasoning that they are applying, and possible trajectories that they might follow if 
the intervention is implemented.  Gilberto comments as follows: 

The only reasoning that is based on length is // the other two are based on order.  They 
[students] organize them from least to greatest and they are saying this is the first, this is 
the second, // use ordinal numbers … [Lou and Gilberto decide to ask the students which 
rod has the number name one given that light green has the number name two.]  They are 
going to say this one [pointing to a red rod] and then we can say well then what is true 
about // one and one. [Video CD 076E, Time: 42:54, Date: 11/17/05] 

Gilberto’s point is that students will arrive at a contradiction because the length of 
two red rods is greater than the length of one light green rod.  In this critical event, 
Gilberto displays three types of knowledge.  The event is an intersection among 
content and pedagogical knowledge and epistemological awareness of the status of 
his students’ mathematical ideas and reasoning. 

Our second critical event is four non-sequential but related events.  It begins a few 
minutes before students arrive for the second session with Lou and Gilberto finalizing 
their plan.  Lou states that an issue with the previous day’s task is that there is no 
available rod to represent the unit.  In the previous session, Lou interacted with a 
student, Sonia, who wanted to find a rod that had the number name one given that 
light green is called two.  She continues to work on this task throughout the second 
session.  Occasionally, a teacher whose role was that of an observer asks her 
questions about her work.  When Sonia correctly draws on centimeter-graph paper a 
“rod” to represent the length of a unit, the observing teacher asks her to explain her 
reasoning to Lou.  For approximately two minutes, he asks her exploratory questions 
to understand her representation and reasoning.  While the teacher insists to Lou that 
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Sonia present her findings to the entire group, Lou reveals a pedagogical belief that it 
is important that she share her findings in the form of a claim so that the other 
students are invited to explore and either verify or disprove Sonia’s claim.  This 
critical event evidences Lou’s mathematical knowledge for teaching as he judges the 
soundness of Sonia’s findings.  This event also indicates Lou’s pedagogical 
knowledge.  He values having students verify results rather than accept assertions as 
unexamined facts. 

Our third critical event combines Gilberto’s interaction with Sonia and his reflective 
comments during the second session’s debriefing.  Sonia has difficulty wording her 
claim when she presents it to the class at the overhead projector.  Gilberto endeavors 
to understand her representation and reasoning by asking her several exploratory 
questions.  In the debriefing session, Gilberto offers the following reflection: 

[T]his experience … [facilitating the after-school sessions] // made me see how important 
communication is // when you are talking about math and how important it is to 
understand the thinking of the students // what they mean what they want to say // 
sometimes what they tell us is something // we understand something different // and // 
it’s really important // you know deepening in the way the students think and come out 
with, with ideas we also have to look for strategies to be able to // question them in order 
to get what they are saying and helping them uh see if something is wrong or if 
something is right [Video CD 078E, Time: 11:20, Date: 11/18/05] 

When Gilberto mentions, “deepening in the way the students think,” he is referring to 
deepening teachers’ understanding of students’ mathematical ideas and reasoning. 

Gilberto evidences his desire to understand each student’s reasoning as he questioned 
the three students who presented their different solutions to this first task and when 
he posed questions to Sonia about her work.  We interpret his statement, “helping 
them see if something is wrong or if something is right” in light of his practice.  In 
the sessions, he refrains from telling students whether they correct; rather, he poses 
exploratory questions to provide them with opportunities to articulate and develop 
further their mathematical ideas and reasoning and so that he can to understand them.  
This third critical event signals his development of content and pedagogical 
knowledge.  From his facilitating experience, he is aware that he needs to have 
knowledge of mathematics for teaching and pedagogical knowledge to assist students 
to develop their understanding of underlying mathematical concepts. 

DISCUSSION 

In our study of teachers’ knowledge for teaching mathematics, we note three 
categories of knowledge from which teachers interact with students.  The first is their 
knowledge of mathematics.  Teachers entered the research setting with an existing 
body of mathematical knowledge that enabled them to judge the mathematical 
soundness of students’ arguments.  The second category is the epistemological, 
inferential awareness of the students’ existing and evolving knowledge, which we 
call teachers’ epistemological knowledge.  It embodies a teacher’s ability to make 
sense of students’ representations, ideas, and arguments as indications of the 
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emergent and evolving status of students’ knowledge.  The third category is teachers’ 
mathematical knowledge for teaching and is applied in specific contexts to assist 
students develop their mathematical ideas and reasoning.  In the context reported in 
this paper, teachers use this knowledge to provide opportunities for students to 
explore and develop their understanding of the mathematical concepts at hand. 

By analyzing teachers’ practices in action, we notice that their knowledge of 
mathematics, epistemological knowledge, and knowledge of mathematics for 
teaching intertwine, interact, and intersect.  For example, Gilberto’s awareness that 
Tiffany and Devon are using ordinal reasoning to give solutions of five and six, 
respectively, for the dark green rod is an example of his mathematical and 
epistemological knowledge.  He was able to deduce that the students were applying 
ordinal reasoning, but that they needed to move towards additive reasoning to 
understand an underlying mathematical concept of operating with rational numbers.  
From this knowledge, Gilberto designed an intervention comprised of pedagogical 
moves informed by his understanding of possible student trajectories.  These 
pedagogical moves included his epistemological awareness of students’ current 
knowledge as well as his content knowledge.  From his pedagogical moves, we are 
able to infer his mathematical knowledge for teaching.  His mathematical 
knowledge and his pedagogical knowledge interact, one influencing the other, and 
his pedagogical moves provided a lens into his mathematical knowledge for 
teaching. 

From a methodological perspective, we have coded data that gave insight into 
teachers’ knowledge for teaching mathematics.  For example, at the end of the first 
session, teachers grappled with what to do the following day based on the activities 
from the first session.  Throughout their fifty-minute “grappling” session, teachers 
reflected on students’ work, designed interventions, and discussed possible outcomes.  
Teachers’ pedagogical practice in action shed light on their mathematical knowledge 
for teaching.  For instance, Lou’s ability to understand Sonia’s findings and his 
strong desire to have her present a claim for the other students to explore indicate his 
mathematical knowledge for teaching.  In sum, instances of teachers grappling with 
what to do next and analysis of pedagogical moves provide researchers with insight 
into teachers’ mathematical knowledge, epistemological awareness of students’ 
existing and evolving knowledge, and mathematical knowledge for teaching. 
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CONTINUITIES AND DISCONTINUITIES FOR FRACTIONS  

A PROPOSAL FOR ANALYSING IN DIFFERENT LEVELS 

Susanne Prediger  

Bremen University, Germany 

 

Students’ difficulties with fractional numbers have been treated in many empirical 
studies with different theoretical frameworks for explaining them. Among them, the 
theory of conceptual change has met an increasing interest, focussing on necessary 
discontinuities in the learning process. This article proposes an integrating model 
with different levels in which continuities and discontinuities between natural and 
fractional numbers can be found, including the often neglected level of meaning. The 
model proves to be useful for explaining phenomena found in the presented empirical 
study and for structuring the current state of research.  

DIFFICULTIES WITH FRACTIONS AS AN ISSUE OF RESEARCH 

In many different countries, empirical studies on students’ competencies and 
conceptions in the domain of fractions have shown enormous difficulties. Whereas 
algorithmic competencies are usually fairly developed, understanding is usually 
weaker, as well as the competencies to solve word or realistic problems including 
fractions (e.g. Hasemann 1981, Barash/Klein 1996, Aksu 1997).  

One common aspect of several approaches for explaining the difficulties is the 
emphasis on discontinuities between natural and fractional numbers; Streefland 
(1984) for example spoke of “N-distractors”, Hartnett / Gelman (1998) described 
early understandings of natural numbers as barriers to the construction of new 
understanding and pointed out that students see continuities where discontinuities in 
the dealing with numbers should appear. Brousseau (1980) classified these hidden 
discontinuities as epistemological obstacles. The discontinuities have been 
systematized by different authors, e.g. Stafylidou/Vosniadou (2004), their lists 
comprise for example the fact that the uniqueness in the symbolic representation of 
natural numbers does not hold for fractions (since several fractions can represent the 
same fractional number). Other famous discontinuities are the density of numbers and 
the order-property of multiplication: Whereas multiplication always makes bigger for 
natural numbers (apart from 0 and 1), this cannot be applied to fractions.  

Among different theoretical approaches to explain students’ difficulties with these 
discontinuities, the conceptual change approach (Posner et al. 1982) has gained a 
growing influence in mathematics education research (e.g. Lehtinen/ Merenluoto/ 
Kasanen 1997, Stafylidou/Vosniadou 2004, Lehtinen 2006). On the basis of a 
constructivist theory of learning and inspired by Piaget’s notion of accommodation, 
the conceptual change approach has emphasized that learning is rarely cumulative in 
the sense that new knowledge is only added to the prior (as a process of enrichment). 
Instead, learning often necessitates the discontinuous reconstruction of prior 
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knowledge when confronted with new experiences and challenges. Problems of 
conceptual change can appear, when the learners’ prior knowledge is incompatible 
with the new necessary conceptualisations. The key point in the conceptual change 
approach adopted here is that discrepancies between the intended mathematical 
conceptions and the real individual conceptions are not seen as individual deficits but 
as necessary stages of transition in the process of reconstructing knowledge.  

Other authors have emphasized the importance of underlying mental models 
(Fischbein et al. 1985, Greer 1994) or ‘Grundvorstellungen’ (GVs, see vom Hofe et 
al. 2005) for explaining students’ difficulties. This paper goes beyond the current 
state of research by integrating the so far competing approaches for explaining 
students difficulties.  

PROPOSAL FOR AN INTEGRATING LEVEL MODEL  

The purpose of the here presented integrating model (see Fig. 1) is to provide a 
conceptual tool for describing the precise locations of students’ difficulties with 
discontinuities, i.e. the quality of the obstacles hindering students to master the 
necessary changes in the process of conceptual change.  

Following Fischbein et al. (1985), the model differentiates between algorithmic, 
intuitive and formal understanding. The formal level includes the definitions of 
concepts and of operations, structures, and theorems relevant to a specific content 

domain. This type of knowledge is formally represented by axioms, definitions, 
theorems and their proofs. It is not within the main scope of this paper. The 
algorithmic level of knowledge is basically procedural in nature and involves 
students’ capability to explain the successive steps included in various, standard 
procedural operations. Although solving of word problems also has procedural 

Algorithmic Level

Intuitive LevelProcedural Skills

Competence of translating word problems into terms 

Intuitive rules, e.g. re order-properties of multiplication

Individual models for operations 

Individual models for fractions 

meanings
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laws and attributes
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application

Explicit Knowledge on Definitios and theorems

    Figure 1:  Obstacles can lie deeper – Different layers of students’ difficulties  



Prediger 

 

PME30 — 2006 4 - 379 

aspects, it is assigned to the intuitive level since, as will be shown in the next 
sections, it is directly connected with other aspects of the intuitive level.  

Intuitive understanding is characterized as the type of mostly implicit knowledge that 
we tend to accept directly and confidently as being obvious. On the intuitive level, we 
distinguish between conceptions about mathematical laws or properties called 
intuitive rules (like “multiplication makes bigger”) from those about the meanings of 
concepts (like the interpretation “multiplication means repeated addition”).  

Nearly all studies dealing with conceptual change in the field of fractions have treated 
intuitive knowledge, but they have mainly focused on the level of intuitive rules. In 
contrast, they have neglected the level of meanings (modelled by the constructs of 
‘Grundvorstellungen’ by vom Hofe et al. 2005 and mental models by Fischbein et al. 
1985). The following sections will show why both levels must be considered 
integratively for understanding processes of conceptual change adequately. The next 
section sketches how this model can help to structure the current state of research. 
Furthermore, the presented empirical study about the multiplication of fractions gives 
evidence for the fact that the difficulties on different levels are highly connected, 
each level giving reasons for obstacles on the level above.  

RESEARCH QUESTION FOR THE EMPIRICAL STUDY 

This paper presents results of an empirical study dealing with students’ competencies, 
content knowledge and conceptions of fractions and their operations as well as the 
connections between different conceptions (Prediger 2004). The report is here restric-
ted to the specific part of the study which is related to multiplication. 

This part of the study started from a phenomenon which has been shown by many 
empirical studies (cf. e.g. Brousseau 1980, Streefland 1984, Fischbein et al. 1985, 
Barash/Klein 1996): Although most students’ show relatively good algorithmic skills 
in multiplying fractions, many of them work with the intuitive rule that 
‘multiplication makes bigger’, which is mostly inherited from dealing with natural 
numbers. This phenomenon is also often cited within the framework of conceptual 
change and was hence an interesting case for being elaborated.  

The survey of existing literature showed that the conception “multiplication makes 
bigger” and its generalization from natural to fractional numbers offers an obstacle 
for activating the multiplicative operation when mathematizing word problems from 
which they know that the result must be smaller than the factors (cf. Bell et al. 1981, 
vom Hofe et al. 2005). This is a first example for the fact that the problems on one 
level (translating word problems) can be influenced by a problem on the level 
underneath (the intuitive rule concerning the order property).  

Fischbein et al (1985) gave empirical evidence for the thesis that the pertinacity of 
the intuitive rule “multiplication makes bigger” is often connected with the 
continuing maintenance of the interpretation of multiplication in the repeated 
addition model (which does not work for fractions). Whereas the influence of the 
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repeated addition model is well studied, the great variety of other individual models 
for the multiplication of fractions and naturals must be explored more systematically.  

That is why our study was guided by the following research questions: Which 
individual models for the multiplication do our students activate, and how do these 
models influence the intuitive rules about the order property and the use of 
multiplication? Where are the most crucial obstacles? 

DESIGN OF THE STUDY 

Our study was designed in a two step format, in which the written test of the first 
step was complemented by a qualitative clinical interview study. For the second 
step, 38 students in grade 7 to 10 (age 11 to 16) of different German schools have 
been asked in semi-structured pair interviews. 12 of the 19 interviews have been 
transcribed and analysed with respect to the interviewees’ conceptions about 
multiplication of fractions and their connections on the different levels. The 
interviews have been videotaped or tape-recorded and transcribed. In a qualitative 
data analysis, the transcripts were interpreted on the basis of the individual 
conceptions derived from the written test and by careful comparison of cases (cf. 
Flick 1999).  

The first step consisted of a 80 minutes paper and pencil test, written in all four 
Grade 7 classes of a German grammar school. 81 tests could be analysed, in total 44 
boys and 37 girls (about 12 years old). The students’ answers have been evaluated 
quantitatively in a points rationing scheme. Where appropriate, the answers have 
also been analysed qualitatively by categorizing the manifested conceptions about 
fractions and their operations in a data-driven, not theory-driven way (cf. Flick 
1999). 

Among the 11 test items, four concerned the multiplication on the different levels 
(see Fig. 1). Item 1 requested algorithmic knowledge, namely the skill to conduct 
the basic operations like 5 2

6 3
⋅ . Item 3 posed a word problem that could be treated 

with multiplication when students knew the part-of-interpretation for the 
multiplication ( 3

4 60of  as 3
4 60⋅ ). Item 2 operated on the level of intuitive rules, 

asking in a multiple choice format whether multiplication of fractions makes bigger 
or smaller or sometimes bigger, sometimes smaller. Item 6 (“Find a word problem 
that can be solved by means of the following equation: 3 1 1

4 43
⋅ = ”) operated 

exploratively on the level of meaning. It was given in an open item format in order 
not to impose a presupposed mental model but to gain a wide choice of impressions 
of the really existing individual mental models. 

MOST IMPORTANT RESULTS  

68 of 81 students, i.e. 84%, could calculate the multiplication item 1b correctly. The 
item’s result 5/9 (which is bigger than both factors) could not prevent most of the 
students from approving the property “multiplication makes bigger” in Item 2. 29 of 
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the 68 students with correct results in Item 1b chose an intuitive rule about the 
multiplication of fractions which is only true for natural numbers, hence, the known 
findings (see above) about this intuitive rule could be replicated in our sample. 

Compared to the results given by Fischbein et al. (1985), the explorative item format 
for Item 6 facilitated a more detailed and multi-faceted impression of the students’ 
individual models. The individual models for multiplication expressed by the 
probands were very heterogeneous and quite distant from the mathematically 
sustainable models. By coding and categorizing, the following individual models 
could be specified:  

• No answers concerning meaning: 38 of 81 students could not show any individual 
interpretation of multiplication in Item 6. 12 students did not give any answer. 26 
answers were only related to calculations (e.g. by explaining the way of calculation).  

• Adequate individual models: Only 12 students formulated interpretations being 
coherent with the mathematical perspectives. 4 students formulated a story of a 
diminution lens and showed their individual model of scaling up and down. Two 
students used multiplicative comparison. Six students made explicit their part-of-
interpretation for the multiplication (cf. Figure 3 for the different models). 

• Traces of sustainable models: 14 students disposed of interesting traces of sustainable 
individual models. Two students translated the multiplication with 1

3  by a division by 

3 and formulate a word problem of sharing. Twelve other students worked with the 
part-of-interpretation but formulated them in an incomplete way, e.g. “Peter has 3

4  of 
a cake. He gives away 1

3  of it. How much does he keep?” 

• Non-sustainable models: 17 students expressed non-sustainable individual models of 
the multiplication of fractions, the most dominant being additive (e.g. “ 3

4  cake and 
then 1

3 .”)  

Although the sample size does not allow statistical significance for the dependencies 
between the order conceptions and the quality of manifested individual models, the 
results show a distinct tendency. Whereas 75% of those students who could not 
express a sustainable individual model have expressed an order conception which is 
only fruitful for natural numbers, there were only 50% among those with traces of a 
sustainable model and only around a third of those who expressed a sustainable 
individual model for the multiplication.  That means that the formation of adequate 
individual models proves to be the major obstacle for overcoming the over-
generalized intuitive rule “multiplication makes bigger”. Not yet stable individual 
models like an incomplete part-of-interpretation can only partially suffice for the 
formation of adequate order conceptions.  

These quantitative results could be strengthened by the interview study in the second 
step. This can be illustrated by this prototypical passage:  
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Tim:  That is clear, multiplication makes it bigger [...] 

Interviewer:  What does that mean when you multiply two numbers?  

Tim:  Well, this and this times plus itself! 

Interviewer:  Okay, but what does 5/6 times 2/3 
plus itself mean, then?  

Tim:  How? [hesitates 3 sec] no idea! 

Interviewer:  Could you think about it in another 
way?  

Tim:  (draws a picture) 5/6 pizza and 2/3 
pizza, how can I multiply them?  

When in situations like this one, the interviewer headed for a part-of-interpretation by 
giving hints, an interesting new obstacle appeared. As Tim in this passage, many 
interviewees clang to the interpretation of a fraction as a part of a whole. This basic 
model for fractions is extensively taught in Germany. Tim’s problem is represented in 
a pointed way by the individual representation in Figure 2, drawn similarly by several 
other interviewees. The inseparable link between fractions and their circle (“pizza”)-
representations makes it impossible for some interviewees to interpret the second 
factors in another way, for example like proportion or part of the first.  

DISCUSSION: STRUCTURING EMPIRICAL FINDINGS  

The findings of our and previous empirical studies about multiplication of fractions 
can be resumed to four connected findings that describe the learners’ thinking in 
deeper and deeper levels in the model of Figure 1. Formal knowledge was not within 
the scope of the study, hence, it does not appear.  

1. Finding:  Algorithmic competencies for the multiplication of fractions alone do not 
qualify students to utilize their competencies in reality-oriented situations or word 
problems (Barash/Klein 1996, p. 35f.). In general, students’ competencies to solve 
real problems or word problems are low (Hasemann 1981, Aksu 1997). 

2.  Finding: One important (but not the only) reason for the first finding is the 
intuitive rule “multiplication makes bigger”. This intuitive rule incapacitates lear-
ners from choosing the multiplication for translating problems from which they 
know that the result must be smaller than the factors (cf. Bell et al. 1981, vom 
Hofe et al. 2005). This finding could be reproduced within the current study. 

3.  Finding: The pertinacity of the intuitive rule “multiplication makes bigger” 
(second finding) is linked to non-sustainable individual models for multiplication 
of fractions (the finding is supported by Greer 1994 and Fischbein et al. 1985). 
Our written test and even more the interviews have shown the strong connection 
between both levels.  

4.  Finding:  One possible reason for the incomplete formation of sustainable 
individual models of multiplication of fractions (third finding) could be found by 

Figure 2: Individual represen- 
tation of the multiplication  
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the interviews in the limited conceptions of fractions, being only interpreted as 
parts of a whole.  

In total, these findings give evidence for the thesis that the difficulties on the different 
levels are highly connected, each level giving reasons for obstacles in the upper level.  

Additionally, the level model helps us to re-locate the exact place of the 
epistemological obstacles in the process of conceptual change from natural to 
fractional numbers. As sketched in the first section, most researchers in conceptual 
change locate the problem on the level of laws and rules. In this level, the transfer of 
rules from natural numbers to fractions simply appears to be a problem of hasty 
generalization. In contrast, our study could elaborate Fischbein et al.’s (1985) 
emphasis on the importance of the underlying level of meaning, namely the mental 
models. Whereas Fischbein et al. focused on the most important model ‘repeated 
addition’, our study could explore the factual variety of individual models for 
multiplication by using explorative data collection strategies (open item format and 
semi-structured interviews). By these means, we can enlarge Fischbein’s findings 
considering all possible models of multiplication.  

We can now complement the list of discontinuities on the level of laws about 
properties of fractions and their operations (given by Stafylidou/Vosniadou 2004) by 
another table: Figure 3 amends the list of discontinuities in the deeper level of mental 
models, i.e. in the level of meaning (cf. Greer 1994).  
 

   Natural numbers 
 

Fractions 

repeated addition (3x5 means 5+5+5,  
i.e. 3 wands of 5m length in a row) 

 ??? 

area of a rectangle (3x5 is the area of a 
3cmx5cm rectangle)  

 area of a rectangle (2/3 x5/4 is the 
area of a 2/3 cm x 5/4 cm rectangle) 

????  part-of-interpretation  
(2/3 x 5/2 means 2/3 of 5/2) 

multiplicative comparison  
(twice as much) 

 multiplicative comparison  
(half as much) 

scaling up (3x5 means 5cm is  
stretched three times as much) 

 scaling up and down (2/3 x 5/2 means 
5/2 cm compressed on 2/3 of it) 

combinatorial interpretation (3x5 as 
number of combining 3 shirts +  5 trousers) 

 ???? 

Figure 3: (Dis-)Continuities of mental models for multiplication  
in the transition from natural to fractional numbers 

This compilation makes clear that not all mental models have to be changed, e.g. the 
interpretations as an area of a rectangle or as scaling up can be continued for fractions 
as well as the multiplicative comparison. In contrast, the basic model ‘repeated 
addition’ is not sustainable for fractions, neither the combinatorial interpretation. 
Vice versa, the basic model of multiplication, the part-of-interpretation, has no direct 
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correspondence for the natural numbers. By this analysis of the mathematical 
structures behind, we can now specify the exact location of obstacles: Not the 
intuitive rules are the problem, but the necessary changes of mental models. 
Metaphorically speaking, the obstacles can be located in the flashes of Figure 3.  
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DYNAMIC MANIPULATION SCHEMES OF GEOMETRICAL 

CONSTRUCTIONS: INSTRUMENTAL GENESIS AS AN 

ABSTRACTION PROCESS 

Giorgos Psycharis  

Educational Technology Lab, School of Philosophy, University of Athens 

 

Dynamic manipulation of geometrical constructions enabled by a specially designed 
computational tool, called variation tool, is studied during the implementation of 
proportional geometric tasks in the classroom. The analysis combined the use of two 
theoretical frameworks: instrumental genesis and situated abstraction. The Dynamic 
Manipulation Schemes (DMS) developed by 13-year-old students based on the use of 
the variation tool are reported in the paper. It is indicated that situated abstraction 
may complement instrumental genesis in analysing the links between student’s 
behaviors and expressions of mathematical ideas within particular computational 
settings.  

INTRODUCTION  

This paper is reporting doctoral research aiming to explore 13 year-olds’ dynamic 
manipulation of geometrical figures during activity involving ratio and proportion 
tasks in their classroom. The students worked in collaborative groups of two using 
‘Turtleworlds’, a piece of geometrical construction software which combines 
symbolic notation, through a programming language (Logo), with dynamic 
manipulation of variable procedure values (Kynigos, 2004). In ‘Turtleworlds’, the 
elements of a geometrical construction can be expressed with variables (or functional 
relationships including variables) and dynamically manipulated by dragging on the 
‘number line’-like representation of these variables using a specially designed 
computational tool. Manipulation of geometrical objects in mathematics education 
has mainly been concerned with Dynamic Geometry Software (DGS) environments. 
In these environments manipulation can be characterised as dynamic since it is 
realised through dragging actions offering the ability to change constructed figures by 
interacting with particular features of them, while preserving specific mathematical 
rules (Hegedus, 2005). Some researchers have considered dragging as an instrument 
of mediation between the perceptual level of figures on the screen and the conceptual 
control on them (Hölzl, 1996, Arzarello et al., 1998), while others have confirmed its 
crucial role in supporting students to develop deductive explanations when encounter 
unexpected graphical results (Hadas, Hershkowitz & Schwarz, 2000). The present 
research aims to offer a different perspective on the process of instrumental genesis 
(Verillon & Rabardel, 1995) based on the kinesthetic control of figures in a computer 
environment combining two kinds of representation: dynamic manipulation and 
algebraic notation. The students were engaged in a project to build enlarging-
shrinking figural models of capital letters of varying sizes in proportion by using only 
one variable to express the relationships within each geometrical figure. Thus, 



Psycharis 

 

4 - 386 PME30 — 2006 

proportional reasoning in this study is considered as a system of two variables with a 
linear functional relationship Y=mX (Karplus et al., 1983) which very often is 
perceived by students as additive rather than multiplicative (Hart, 1984) especially 
within geometrical enlargement settings (Kuchemann, 1989). The analysis elaborates 
the role of student’s exploration with the ‘dragging’ modality of the computer 
environment in the process of instrumental genesis and describes how the notion of 
situated abstraction (Noss & Hoyles, 1996) could be used to make sense of pupil’s 
evolving mathematical knowledge interrelated with the use of this specific 
computational tool. 

INSTRUMENTAL GENESIS AND SITUATED ABSTRACTION  

The analytical frame of instrumental genesis is based on the distinction between 
artefact and instrument with the latter having a psychological component (scheme), 
indicating the dialectic relationship between activity and implicit mathematical 
knowledge, that a subject operationalises when using the artefact to carry out some 
task (Guin & Trouche, 1999). The activity that employs and is shaped by the use of 
instruments (instrumented activity) is directed towards the artefact, eventually 
transforming it for specific uses (instrumentalisation), as well as towards the subject 
leading to the development or appropriation of schemes (of instrumented action) in 
which the subject is shaped by actions with the artefact (instrumentation) (Artigue, 
2002). The academic discussion on the above terms appears to admit as a key 
challenge for the integration of technology into classrooms and curricula to 
understand and to devise ways to foster the process of instrumental genesis (Trouche, 
2003). However, it is has been recently highlighted (Hoyles, Noss & Kent, 2004, p. 
314) that “although schemes of instrumented action recognise the crucial shaping of the 
learner by interaction with tools, their very generality makes it all the more important to 
take account of the specific way mathematical knowledge might be developed.” (my 
emphasis). This is what the notion of situated abstraction (Noss & Hoyles, 1996) 
seeks to address, i.e. to describe how learners construct mathematical ideas drawn on 
the linguistic and conceptual resources available for expressing them in a particular 
computational setting as well as the ways in which learners exploit the available tools 
to move the focus of their attention onto new objects and relationships (which may be 
divergent from standard mathematics). In this paper instrumental genesis is 
considered as a process complementary to situated abstraction for effectively 
describing student’s instrumented mathematical knowledge in terms of situated 
abstractions of mathematical ideas that are being developed and expressed during 
their interaction with a specially designed computational tool for dynamic 
manipulation of geometrical objects through dragging.  

RESEARCH SETTING AND TASK 

In Turtleworlds, what is manipulated is not the figure itself but the value of the 
variable of a procedure by dragging on the dynamic manipulation feature of the 
computer environment called ‘variation tool’. After a variable procedure is defined 
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and executed with a specific value, clicking the mouse on the turtle trace  activates 
the variation tool, which provides a slider for each variable (see at the bottom of 
Fig.°1).  

Dragging a slider has the effect of 
the figure dynamically changing as 
the value of the variable changes 
sequentially. In the procedure of 
Figure 1 for letter “A” the first 
variable (:x) changes the length of 
the “slanty” sides, the second (:y) 
the length on the “slanty” sides 
from the base to the edges of the 
horizontal side and the third (:z) 
the horizontal side. The graphics, 
the variation tool and the Logo 
editor are all available on the 

screen at all times. The user can change in each slider the initial value, the end value 
as well as the step of the variation (these numbers are shown in Figure 1 in the small 
boxes beside the sliders). The procedure for drawing a model of a letter with one 
variable can be derived through the functional relation of the only variable to the 
ratios of the sides of a fixed model of the letter. The research took place in a 
secondary school with two classes (A1 and A2) of 26 pupils aged 13 years old and 
two mathematics teachers. During the classroom activity, the students were engaged 
in building models of capital letters of variable sizes, having initially been told that 
the aim was for each letter procedure to have one variable corresponding to the height 
of the respective letter. According to the task, each group of pupils was assigned to 
construct two letters (for a more detailed description of the task see Psycharis & 
Kynigos, 2004). Having already had experience with traditional Logo constructions 
including variables, the students were introduced to the use of the variation tool at the 
beginning of the study by constructing basic geometrical figures (e.g. squares, 
rectangles) with variables.   

METHOD  

During the activity, which lasted four months, each of the two classes had two 45-
minute project work sessions per week with the participant teachers. In the classroom 
a team of two researchers took the role of participant observers and focused on one 
group of students in each class (focus groups), recording their talk and actions and on 
the classroom as a whole recording the classroom activity. In each data collection 
session the researchers used two cameras: a first one was on the focus groups and a 
second one was occasionally moving to capture the overall classroom activity as well 
as other significant details in student’s work as they occurred. Verbatim 
transcriptions of all recordings were made. We adopted an analytic stance integrating 
conditions (why) with interactions (how) (Strauss and Corbin, 1998) accompanying 
the use of the variation tool and the subsequent actions taken by pupils. The 

 

Figure 1: A model of “A” with three variables.
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researcher “read” each dragging on the variation tool as an incident directly linked to 
“before” (cause) and “after” (result). The unit of analysis was the episode, defined as 
an extract of actions and interactions developed in a continuous period of time around 
a particular issue. The extraction of the episodes was based on the following criteria: 
(a) the “initial motive” of the dragging, which mostly concerned distortions to the 
figural representations, (b) the children’s “focal point” while dragging, recognized 
among what they said and did and (c) the “chain of proportional meanings”, which 
accompanied the children’s actions while or after dragging. 

RESULTS 

Early in their work most of the pupils constructed a model of their letter - which we 
refer to as the original pattern – without using any variables (Phase A).  On the next 
phases of their exploration, pupils experimented to change it proportionally by 
choosing different variables for its segments (Phase B) until they built their final one 
with one variable (Phase C). Since none of the students had used the variation tool 
before, they were all at the genesis of instrumentation of this particular tool, 
beginning to form the partnership necessary to integrate its use into their 
experimentation so as to complete the requested tasks. Dragging on the variation tool 
was thus considered as an inevitable part of pupil’s instrumented actions 
characterizing a number of qualitatively different Dynamic Manipulation Schemes 
(DMS) that our data analysis revealed. Along with Trouche (2003), I distinguish 
between ‘dragging as a gesture’ and scheme, considering the former as an observable 
part of the latter. Each scheme is considered below through representative examples.  

Reconnaissance DMS. In a number of 
pupils the initial draggings of the 
variation tool were associated with the 
changes on the figure when moving the 
existing sliders. In a construction of “A” 
(focus group-A2) with three variables 
(Figure 1) such a moving of a slider 
oriented students to recognize the 
interdependence of the lengths of the 
figure. The three sliders were set in the 
values of the original pattern as 
displayed at the bottom of the screen: 

x=75, y=30 and z=37. The ‘distortion’ of the figure (Figure 2) when moving the 
slider of (:x) for the first time lead students to move all the other sliders of the 
variation tool to higher values so as to ‘close’ the shape. In this phase pupils seemed 
to give priority to complete the figure instructed by the visual outcome on the screen 
and not paying attention to some kind of relationship between the selected values. 
However, we may observe that pupils apparently connected at an intuitive level the 
articulation of the figure and the interdependence of the involved magnitudes. The 
emergent reconnaissance DMS can be seen as a usage scheme (Trouche, 2003), 

 
Figure 2: The ‘distortion’ of “A”.   
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oriented towards the management of the variation tool (i.e. recognition of its 
functionalities) as well as an instrumented action scheme, implemented by the 
students to construct a bigger model of “A”.  

Correlation DMS. Another scheme of the use of variation tool at first seemed to be 
another reconnaissance DMS emerging during student’s transition from the 
construction of the original pattern to the dynamically changing constructions with 
the use of variables. However, further consideration showed that students were not 
simply using the variation tool to complete the shape of a letter instructed by the 
visual feedback, as seen above, but there was a partnership evolving with the 
variation tool assigned a defined role in their attempts to distinguish the relations 
underlying the interdependence of the involved values. 

In a “P” construction (Group 9–Α2), 
the correlation dragging of the two 
sliders took its meaning via the 
equivalence of the ratios of the two 
variables involved in the construction. 
In the original pattern (x=400, y=2) 
students considered that the semicircle 
coincided with the middle point of the 
vertical segment. Experimenting to 
construct similar “P” models of 
different sizes, S1 had the idea to set as 
end value for each slider the 
correspondent values in the original 
pattern. He then constructed a (similar) 

figure of “P” so as to preserve the property “intersection in the middle” by dragging 
the two sliders at half of the values in the original pattern (x=200, y=1) that 
corresponded to their middle points (see the current position of the two sliders in 
Figure 3).  

S1: When set at 200 [i.e. slider x] it means that it [i.e. the semicircle] is in the middle.  

R: And how do you know that the semicircle is in the middle?  

S1: We ‘ll also set this in the middle [e.g. the slider y]. It starts from 0 to 2. Therefore, 
we will set it exactly in 1.  

The interrelation of the geometrical property with the arithmetic changes made by S1 
is shown by the different meanings of the word “middle”: at the beginning of the 
excerpt S1 uses it to refer to the figure, while in the end to the middle point of the 
slider y. Here, S1’s specific draggings indicate the evolution of instrumental genesis: 
at the technical level he transformed the variation tool by moving both sliders on 
specific points (instrumentalisation) while -at the conceptual level- gained control of 
the similarity ratio (between the original and the new pattern of “P”) by taking into 
account the preservation of a particular geometrical property.  

Figure 3: “P” with two variables.  
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Testing DMS. The testing DMS emerged as an indication of student’s familiarization 
with the use of computational tools and it was characterized by qualitative 
differentiations in expressing both the geometric and algebraic properties of the 
requested geometrical constructions. Dragging within this scheme was mainly 
associated with testing student’s conjectures based on indications or conclusions of 
preceded DMS. In an “N” construction with one variable, students (focus group–A1) 
integrated the variation tool into their approach and used it to test the situated 
abstraction of the relation between the two construction lengths (r and 1.5*r).   

Dragging the only slider r, students 
realized that the side length did not 
exactly coincided with the horizontal 
line that they had drawn at the letter 
base (Figure 4). 
S2: It is exactly the same, or even worse 
[i.e. the distortion]. 

R: Therefore, this is probably not 1.5 
times… 

S2: Yes, it may be 1.45. [S2 replaces in the 
procedure 1.5 by 1.45 and moves the only 
slider so as to test the new value].   

What is particularly noticeable in the 
above excerpt is that the suggested value 

for the functional operator by S2 precedes the new moving of the only slider 
indicating a shift in the use of the variation tool for validating the relationships 
described in the symbolic expression: students triggered by an abnormality on the 
graphical outcome formed a utility in which dragging in conjunction with the 
symbolic notation helped them to extend the elaboration of the proportional relation 
between the covariant magnitudes so as to prevent the distortion of the shape. At the 
same time the evolving DMS indicates the dynamic nature of the experimentation 
with the variation tool providing a basis for the development of subsequent 
correlations likely to follow.  

Verification DMS. Verification DMS emerged as part of the evolution of the 
students’ familiarization with the control of the mathematical concepts concerning 
the construction of enlarging-shrinking geometrical figures. The functional 
expression of one variable in relation to another was the most difficult type of 
correlation, especially in cases involving arithmetic values not resulting in integer 
quotients. In several cases forming such kind of relationships was facilitated by 
preceding correlations of values leading to integer quotients. For the construction of 
an enlarging-shrinking model of “B”, the students (focus group-A2) chose to employ 
an already developed multiplicative strategy including integer quotients, that they had 
applied successfully in the construction of another letter. The original pattern was 
constructed for the values x=100 and y=0.44 (when replaced in the procedure shown 
in Table 1). In the final enlarging-shrinking model with one variable, variable y was 

Figure 4: “N” with one variable.  
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substituted by the expression x/227.3 since the result of the division 100:0.44 = 
227.272727272 was rounded off by the students.  

[S1 drags the only slider x for enlarging and shrinking the 
letter.]   

S1: [To the researcher] You see?  

S2: We divided 100 by 0.44 and got 227.3.  

By dragging the only slider, S1 verifies the successful 
outcome of the multiplicative construction strategy, 
implying that it can also be followed in cases including 
non-integer correlations. In that sense, this specific 
dragging signals the use of the variation tool as an 

instrument mediating strategies based on properties and relations rather than on 
arithmetic values of a particular type. As far as the nature of the developed 
instrumented actions, we observe a complete shift of student’s attention from the 
graphical to the symbolic representation of the computer environment.  

CONCLUSIONS  

In this paper we have considered the different DMS generated as students begin to 
use the variation tool in constructing enlarging-shrinking geometrical figures by 
means of relations abstracted, i.e. constructed and expressed, within this particular 
computational setting. Under the situated abstraction perspective these DMS illustrate 
the dialectic relationship between the evolution of instrumental genesis and student’s 
progressive focusing on relations and dependencies underlying the current 
geometrical constructions and its representations. According to the results, the key 
difference amongst the described DMS is that in the evolution of instrumental genesis 
the appreciation of the computer feedback was much more closely bound into 
correlations rooted in action (within the same or a new DMS) and inextricably linked 
with the use of the variation tool. As soon as the variation tool became part of 
student’s activity, student’s instrumented actions progressively evolved from the 
visual level (Reconnaissance DMS) to the conceptual level indicated by the 
development of mathematical practices involving the appreciation of the (scalar) 
relation between the lengths of similar figures (Correlation DMS), the testing of 
conjectures (Testing DMS) as well as the verification of employed multiplicative 
strategies (Verification DMS). In future papers, further elaboration of the 
interconnections between the above DMS and their evolution within specific groups 
of students is expected to enrich the analysis. However, the above results indicate that 
dynamic manipulation of figures in a kinesthetic way can be considered as a context 
in which the different instruments built by the students, based on the use of the 
variation tool, may reflect how the implicit emergence of proportionality as a 
concept-in-action (Trouche, 2003) might be explicitly operationalised and articulated 
in mathematical terms of situated abstractions as part of the instrumental genesis. 

To letterB :x :y 
fd :x 
rt 90  

repeat 180 [fd :y rt 1] 
lt 180  

repeat 180 [fd :y rt 1] 
End 

Table 1: The procedure 
of “B”. 
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In this paper we deal with the genesis of students’ algebraic generalization of 
patterns. Our aim is to better understand the way students attend to the perceptually 
given (e.g. the three first elements of a geometric or numeric sequence) and start 
moving beyond it in their attempt to grasp a possible general mathematical structure. 
We provide a multi-semiotic microanalysis of the work done by one Grade 9 student 
and her small-group mates and show how rhythm accounts for a subtle semiotic 
device which helps the students project −at the aural, kinesthetic and visual levels− a 
regularity which proved to be crucial in conveying a sensuous meaning of 
mathematical generality. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

To account for the progressive manner in which the perceptually given is transcended 
in generalizing tasks, Kieran et al. (1996), Love (1986), Mason (1996), and Mason et 
al. (1985) talk about “seeing” or “noticing” the general in/through the particular. 
Following this line of enquiry and drawing from Husserl’s phenomenology and 
Vygotsky’s psychology, in what follows, we investigate the students’ production of 
algebraic generalizations as a process of objectification. 

Our theoretical construct of objectification refers to an active, creative, imaginative 
and interpretative social process of gradually becoming aware of something 
(Radford, 2003). Within this context, the objectification of a general mathematical 
structure in a generalization task amounts to noticing or becoming aware of general 
mathematical properties that are not directly visible as such in the realm of the 
concrete and the particular. In the overcoming of the particular, the visual stimuli 
(numbers, shapes, etc.) are continuously being transformed by an interpretative and 
intentional contextual process anchored in our own personal biography and cultural 
history. It would be misleading, however, to think that the continuous modification of 
the perception of the objects in front of us is accomplished through the organ of 
vision alone. Vision does not merely transform brute perception into conceptual 
objects. Human perception, as well as all higher psychological functions, are indeed 
characterized by a sophisticated collaboration between our historically evolved 
senses (e.g. vision, touch and audition) and also between our senses and the complex 
cultural artifacts and semiotic systems that we use. Thus, language, Mikhailov 
suggested, “constantly participates in converting the perception and understanding of 
the external object into self-awareness and self-consciousness.” (Mikhailov, 1980, p. 
236). 
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As a result of the distinctive historically and culturally mediated nature of human 
cognition, in the objectification of mathematical knowledge recourse is made to body 
(e.g. kinesthetic actions, gestures), signs (e.g. mathematical symbols, graphs, written 
and spoken words), and artifacts of different sorts (rulers, calculators and so on). All 
these signs and artifacts used to objectify knowledge we call semiotic means of 
objectification (Radford, 2003). 

To understand the students’ grasping of mathematical generality, some of our 
previous works dealt with the phenomenological import of language and gestures and 
their various mechanisms to ground generalization. We put into evidence two 
important linguistic functions to which students resort in order to take notice of a 
mathematical structure: a deictic function (based on an intensive use of deictic terms 
such as “this”, “that”) and a generative action function (based on adverbs of repeated 
action like “always”; see Radford 2000, 2002). In subsequent articles we dealt with 
the role of gestures (Radford et al., 2003, 2004) and studied the generalizing function 
of what we termed ‘objectifying iconic gestures’, i.e. hand motions that depict a new 
referent by stressing some of its essential features (Sabena et al. 2005). In terms of 
the sketched theoretical framework, the research question that we want to tackle in 
this paper can be rephrased as follows: How do students coordinate the different 
semiotic means of objectification in generalizing tasks? By deepening our previous 
analyses, we want to better understand the collaboration between eye, word and 
gesture, and also explore an underlying element that proves important in ensuring the 
coordination between them: rhythm. As we shall see, entangled in words and 
gestures, rhythm is a crucial semiotic device through which the students make 
apparent the perception of an order that goes beyond the particular figures. Before 
going into more details, let us first summarize some aspects of our methodology. 

METHODOLOGY: A MULTI-SEMIOTIC DATA ANALYSIS 

Data Collection: Our data, which comes from a 5-year longitudinal research 
program, was collected during classroom lessons that are part of the regular school 
mathematics program in a French-Language school in Ontario. In these lessons, 
designed by the teacher and our research team, the students spend substantial periods 
of time working together in small groups of 3 or 4. At some points, the teacher (who 
interacts continuously with the different groups during the small group-work phase) 
conducts general discussions allowing the students to expose, compare and contest 
their different solutions. To collect data we use three or four video cameras, each 
filming one small group of students. 

Data Analysis: To investigate the students’ processes of knowledge objectification 
we conduct a multi-semiotic data analysis. Once the videotapes are fully transcribed, 
we identify salient episodes of the activities. Focusing on the selected episodes, we 
refine the video analysis with the support of both the transcripts and the students’ 
written material. In particular, we carry out a low motion and a frame-by-frame fine-
grained video microanalysis to study the role of gestures and words. Such a 
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microanalysis is completed with a voice analysis using dedicated software (further 
details are provided below). 

We will focus here on a classical pattern 
problem that Grade 9 students had to 
investigate in a math lesson (see Figure A). 
In the first part of the problem, the students 
were required to continue the sequence, 
drawing Figure 4 and Figure 5 and then had 
to find out the number of circles for Figure 10 and Figure 100. In the second part, the 
students were asked to write a message explaining how to calculate the number of 
circles in any figure (figure quelconque, in French) and, in the third part, to write an 
algebraic formula.  

In this paper,  we provide a microanalysis of the work done on the second part of the 
pattern problem by one of the students: Mimi. Two other students were in her small-
group: Jay and Rita. In the first part of the pattern problem, the students perceived the 
figures as divided into two rows and formulated a factual generalization (Radford, 
2003), i.e. a generalization of actions in the form of an operational schema that can be 
applied to any concrete figure, regardless of its position in the sequence. For instance, 
talking about Figure 100, Jay said: “[Figure] 100 would have 101 [referring to the 
circles in the bottom row] and 102 [referring to the top row]”. (See details in Sabena 
et al. 2005). This factual generalization led the students to answer that there were 23 
and 203 circles in Figure 10 and 100, respectively. 

RESULTS AND DISCUSSION 

The coordination of word and gesture in the overcoming of the particular 

The second part of the pattern problem starts with Mimi reading the question: 
1. Mimi: (reading aloud) We have to explain clearly … how to find out the number of 

circles in any figure of the sequence (she reflects for a while and says) 
Add… Add three to the number of the figure! (pointing to the results 
“23” and “203” already written on the paper). 

2. Jay: No! 101, 100 and (pointing to the answer) you got that, 203. 

Although the students were satisfied with the way 
they answered the questions about Figure 10 and 
Figure 100, Mimi was intrigued by the fact that 
digit ‘3’ appeared at the end of the previous 
answers (line 1). She hence tried to formulate a 
new generalizing schema that would include the 
digit ‘3’ and the number of the figure. As Jay 
quickly noticed, the schema is faulty (line 2). Jay’s 
utterance was followed by a long pause (5.2 
seconds) during which the students silently looked at the figures. Jay became 
interested in Mimi’s idea but, like Mimi, still did not see the link in a clear way. 

 
Table 1 (Picture 1): Jay (in the 

middle) and Mimi (on the right)
pointing at Figure1. 

fig. 1 fig. 2 fig. 3

Figure A: The first terms of the 
pattern as given to the students.
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Trying to come up with something, while putting his pen on Figure 1 and echoing 
Mimi’s utterance, Jay pensively said: “Add 3”. At the same time, Mimi moved her 
finger to Figure 1 (close to Jay’s pencil) and said: “I mean like … I mean like …” 
(see Picture 1 in Table 1). While Jay left the pencil on Figure 1, Mimi retrieved her 
hand.  Then she intervened again and said:  

3a. Mimi: You know what I mean? Like… for Figure 1 (making a gesture; see Table 2, 
Picture 2) you will add like (making another gesture; see Table 2, Picture 3) … 

To explore the role that digit 3 may play, 
in line 3a Mimi makes two gestures, each 
one coordinated with word-expressions of 
differing values. The first couple 
gesture/word has an indexical-associative 
meaning: it indicates the first circle on the 
top of the first row and associates it to 
Figure 1 (see Table 2, left column). The 
second couple achieves a meaningful link 
between digit 3 and three “remarkable” 
circles in the figure. The resulting 
geometric-numeric link is linguistically specified in additive terms (“you will add”) 
(see Table 2, right column).  

Although Mimi has not mentioned or pointed to the first circle on the bottom row, the 
circle has been noticed, i.e., although the first circle of the bottom has remained 
outside the realms of word and gesture, it has fallen into the realm of vision. Indeed, 
right after finishing her previous utterance, Mimi starts with a decisive “OK!” that 
announces the recapitulation of what has been said and the opening up towards a 
deeper level of objectification, a level where all the circles of the figures will become 
objects of discourse, gesture and vision. She says: 

3b. Mimi: OK! It would’be like one (indexical gesture on Figure 1; see Picture 4), one 
(indexical gesture on Figure 1; see Picture 5), plus three (grouping gesture; see 
Picture 6); this (making the same set of gestures but now on Figure 2) would’be 
two, two, plus three; this (making the same set of gestures but now on Figure 3) 
would be three, three, plus three.  

   

Table 3 (Pictures 4 to 6): In Pictures 4 and 5 Mimi makes an indexical gesture to 
indicate the first circle on the top row and the first circle on the bottom row of Figure 
1; in Picture 6, she makes a “grouping gesture” to put together the last three circles of 
Figure 1. 

for Figure 1 you will add 

  
  

 

Table 2 (Pictures 2 and 3): Perceptual 
objectifying effects of word and gesture

on Figure 1. 
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Making two indexical gestures and one “grouping gesture” that surrounds the three 
last circles on Figure 1, Mimi renders a specific configuration apparent to herself and 
to her group-mates. This set of three gestures is repeated as she moves to Figure 2 
and Figure 3. The gestures are accompanied by the same sentence structure (see 
Figure B). Through a coordination of gestures and words, Mimi thereby objectifies a 
general structure in a dynamic way and moves from the particular to the general. 

« one, 
   one, 
   plus three » 

« two, 
   two, 
   plus three » 

« three, 
   three, 
   plus three » 

 
Figure B: On the left, Mimi making the (first) indexical gesture on Figure 1. On the 
right, the new apprehension of the figures as a result of the process of knowledge 

objectification. 

Rhythm and the projection of the general 

The genesis of algebraic generalizations entails the awareness that something stays 
the same and that something else changes. In order to perceive the general, the 
students have to make choices: they have to bring to the fore some aspects of the 
figures (emphasis) and leave some other aspects behind (de-emphasis). Closer 
attention to the previous passage suggests that the objectification of the general 
schema is much more than a matter of coordinating word and gesture. There is 
another important element: rhythm. Rhythm creates the expectation of a forthcoming 
event (You, 1994) and constitutes a crucial semiotic device in making apparent the 
perception of an order that continues beyond the first figures of the sequence. 

To get a better idea of the manner in which the students emphasize and deemphasize 
the various features of the figures through rhythm, we conducted a prosodic analysis 
of Mimi’s key utterance in line 3b (“one plus one plus three” etc.). Prosody refers to 
all those vocal features to which speakers resort in order to mark, in a distinctive 
way, the ideas conveyed in conversation. Typical prosodic elements include 
intonation, prominence (as indicated by the duration of words) and perceived pitch. 
Our prosodic investigation was carried out using Praat (www.praat.org) −a software 
devoted to voice analysis. Our prosodic analysis focused on the temporal distribution 
of words and word intensity. In the top part of Figure C, the waveform shows a visual 
distribution of words in time; the curve at the bottom shows the intensity of uttered 
words (measured in dB). 
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Figure C: Prosodic analysis of Mimi’s utterance conducted with Praat. 

The waveform allows us to neatly differentiate two kinds of rhythms: within and 
between figures. The first type of rhythm, generated through word intensity and 
pauses between words, helps the students to make apparent a structure within each 
figure. In conjunction with words and gestures (the hand performing the same kind of 
gesture on each figure), this rhythm organizes the way of counting. The other type of 
rhythm appears as a result of generated “transitions” between the counting processes 
carried out by Mimi when she goes from one figure to the next. To generate these 
transitions, at the lexical level, Mimi uses the same expression, namely “this would 
be”, the semantic value of which indicates the hypothetical nature of the emerging 
counting schema. At the temporal level, this expression allows Mimi to accomplish a 
separation between the counted figures. At the kinesthetic level, the transition 
corresponds to the shifting of the hand from one figure to the next. Table 3 provides 
us with a precise idea of the within and between figures rhythm.  

Table 3: Intensity and time data of Mimi’s utterance, as derived from Praat prosodic 
analysis. Rows 1 and 2 show the intensity (dB) and time position of words (s), both 
measured at the middle of the duration of the word. Row 3 gives the elapsed time 
between consecutive words. Row 4 gives the total time of the speech segments. 

 un 
on
e 

Un 
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e 

plu
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plu
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troi
s 
thre
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this 
wo
uld
’be 

De
ux 
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de
ux 
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thr
ee 

this 
wo
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troi
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plus 
plus 
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52 
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77.
44 

80.
66 

 81.
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81.
24 

77.
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0.1
57 

0.6
65 

1.0
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1.3
48 

0.8
13 

2.1
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98 
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58 

3.4
63 

 4.7
93 
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16 
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47 
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0.5
08 

0.3
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0.3
23 
 

  0.6
37 

0.3
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0.3
05 
 

  0.3
23 

0.2
31 
 

0.286 
 

4. Total 

time (s) 

1.191 0.5
11 

1.302 
 

1.0
35 

0.840 
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The data in row 3 indicate that 12313373832333 ,, aaaaaa <<< , i.e. the data show that 

the time elapsed between the additive preposition “plus” and the uttered number prior 
to it is consistently shorter than the elapsed time between the two uttered numbers 
before “plus”. Thus, while the elapsed time between the second “one” and “plus” is 
0.360 s ( 33a ), the elapsed time between “one” and “one” is 0.508 s ( 23a ). It is also 

interesting to note that, in the case of figures 1 and 2, the elapsed time between “plus” 
and the following word is shorter than the time between “plus” and the uttered 
number before it (i.e. 83933343 , aaaa << ). The rhythmic distribution of words hence 

suggests that the preposition “plus” does not merely play the role of an arithmetic 
operation. By emphasizing and deemphasizing aspects of the figures, it plays a key 
prosodic role in the constitution of the counting schema. 

Note that the temporal distribution of words of the two first speech segments 
( )463.3161.2;348.1157.0 ≤≤≤≤ tt  is quite similar to that of the third speech segment 
( )633.5793.4 ≤≤ t ). However, the data indicate that the duration of the latter (0.840 
s) is shorter than the duration of the former (i.e. 1.191 and 1.302; see row 5). Since 
the students did not need to go beyond Figure 3 to objectify the counting schema, one 
of the reasons for this may be that an adequate objectification of the generalization 
was achieved during the investigation of the two first figures and the third figure 
hence played the role of verification. This particular status of Figure 3 is also 
suggested by the following facts. Firstly, 54104 aa > . Secondly, the intensity of the 

words uttered here is generally higher than the intensity displayed in talking about the 
first two figures (see Row 1). Thirdly, while Mimi touches the circles of the first two 
figures in her indexical gestures, she does not touch the circles of Figure 3. Word 
intensity, time duration and distant physical contact with Figure 3 seem to indicate an 
achieved level of awareness of the objectified mathematical structure.  

CONCLUDING REMARKS 

Because mathematical generality is composed of different layers of depth, the 
grasping of the general is a gradual process of becoming aware of something, a 
process that we have termed, in accordance with its etymological roots, 
objectification. An essential part of this process is the projection of an order into the 
perceptual realm. Without such a projected order, we all would be overwhelmed by 
the tremendous sources of stimuli in our surroundings and the richness of detail and 
nuances of the things in front of us (Fraisse, 1974, pp. 111-112). Three semiotic 
means of objectification played a distinctive role in creating such an order in Mimi’s 
objectification of the general. These were word, gesture and rhythm. Through them, 
some aspects of the figures were brought to the fore; others were left in the back, 
giving rise to a progressive apprehension of the historically and culturally constituted 
mathematical general structures that were the goal of the classroom activity. Indeed, 
though indexical and grouping gestures, Mimi emphasized some circles in the visual 
realm; through words, she endowed them with theoretical content. Rhythm accounted 
for a subtle coordinating mechanism that produced −at the aural, kinesthetic and 
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visual levels− a regularity that proved to be crucial for conveying a sensuous 
meaning of generality. The prosodic analysis showed how words were distributed in 
the temporal dimension of discourse to emphasize and deemphasize features of the 
figures. The ensuing aural meaning of words was synchronized with the kinesthetic 
and visual meanings encompassing the pointed circles and the successive position of 
gestures in the space.  In addition to shedding some light on the genesis of the 
students’ production of generalizations, our results speak in favor of the cognitive 
importance of some aspects of the students’ mathematical activity −such as gesture 
and rhythm− that as yet are not a part of main stream studies in mathematical 
thinking and learning. As our analysis implies, gesture and rhythm are not only 
merely part of the pragmatic dimension of language and communication but of 
mathematical cognition as well. 

Acknowledgment: This paper is a result of a research program funded by the Social 
Sciences and Humanities Research Council of Canada (SSHRC/CRSH). 
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DEVELOPING MATHEMATICAL INITIATIVE IN MINORITY 

STUDENTS 
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To participate in some aspects of reform-oriented instruction, students need to take 
mathematical initiative. However, existing research suggests that low-income 
African-American and Latino students are less likely to take mathematical initiative 
than middle-class, white students. This may prevent minority students from fully 
participating in reform-oriented instruction. In this paper, we will present techniques 
that we have developed in an urban, after school program in mathematics, that  
encourage African American and Latino middle school students to take mathematical 
initiative. 

INTRODUCTION 

In the United States, achieving equity and diversity in the mathematics classrooms is 
a significant social and educational issue. Numerous studies demonstrate that African 
American and Latino students do not attain the same level of achievement as their 
white counterparts (e.g., NCES, 2000). As minority students’ mathematical 
achievement is pivotal to their democratic enfranchisement and economic well-being 
(Moses & Cobb, 2001), their continued struggles with mathematics represent a 
serious problem. In recent years, there has been a shift in the nature of diversity 
research in mathematics education. Diversity research had traditionally been strongly 
influenced by paradigms from cognitive psychology and had taken a deficit-approach 
to minority students’ mathematical achievement (Nasir & Cobb, 2002). That is, 
researchers have sought to understand what knowledge and cognitive skills students 
form various ethnic groups tended to lack. More recently, diversity research has 
focused on increasing the opportunities for different groups of students to participate 
in classroom mathematical activities (e.g., Nasir & Cobb, 2002; Lubienski, 2002).  

Recently, influential organizations such as the National Council of Teachers of 
Mathematics have emphasized that achieving equity should be a goal of reform-
oriented instruction (e.g., NCTM, 2000). Although this type of instruction may have 
the potential to benefit all students and perhaps even close the achievement gap 
between white and minority students (Boaler, 2001), Lubienski (2002) cautions that 
white upper-middle class students may be better prepared to participate in some 
aspects of reform-oriented instruction than other groups of students, citing her own 
experiences as a reform-oriented teacher as support for this concern (Lubienski, 
2000). 

In this paper, we will discuss mathematical initiative and its importance in enabling 
students to participate in the activities of reform-oriented mathematics classrooms. 
Following Powell (2004), we define mathematical initiative as the mathematical 
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action taken by a student in the context of a mathematical task that does not 
specifically indicate or suggest that action. Taking mathematical initiative enables 
students to go beyond simply doing what they are told or implementing procedures 
that they had memorized. Such initiative appears to be necessary to participate in 
many aspects of reform-oriented instruction. For instance, the NCTM (2000) 
recommends that students participate in mathematical discussions, represent 
mathematical situations in novel ways, challenge and critique each other’s 
explanations, and reflect upon their reasoning processes. Participating in each of 
these activities requires students to take mathematical initiative and move beyond 
doing what they are told or recalling procedures.  Martin (2000) suggests that African 
American students may take less mathematical initiative than middle class white 
students; in particular, by the time they reach high school, many African American 
students will only engage in mathematical activity when they perceive it to be 
necessary, and they tend to hold strong procedural views of mathematics. This lack of 
mathematical initiative may prevent them from participating in reform-oriented 
instruction. However, encouraging students of color to take more mathematical 
initiative may allow them more opportunities to participate in mathematical activity 
and improve their mathematical achievement (Powell, 2004). The purpose of this 
paper is to describe techniques that we have developed in an urban, middle-school1 
after-school program that have led African American and Latino students to take 
mathematical initiative.  

RESEARCH CONTEXT 

Research setting. The research reported in this paper occurred in the context of the 
“Informal Mathematical Learning” research project2. In this project, an innovative 
after school program was implemented at Hubbard Middle School in Plainfield, New 
Jersey. Plainfield is an economically depressed urban area; 98 percent of the students 
at Hubbard are African American or Latino. Twenty-four sixth grade students, all 
African American or Latino, volunteered to participate in the Informal Mathematical 
Learning program. In the after school sessions, students were videotaped as they 
completed open-ended, well-defined mathematical problems. The researchers 
encouraged collaboration among students, always asking them to work together on 
tasks and frequently encouraging them to explain their solutions to their peers; at the 
same time, the students were never told whether their reasoning or solutions to 
problems were correct. The goals of this research study were to understand how 
students’ mathematical reasoning developed over time and to investigate the 
relationship between mathematical initiative and mathematical reasoning. 

                                           
1 In the United States, middle school students are in grades six through eight. 
2 The “Informal Mathematical Learning” Project is supported by the National Science Foundation 
ROLE Grant REC0309062. The views expressed in this paper are those of the authors and not 
necessarily those of the National Science Foundation.  
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Data collection. The study was a longitudinal one, spanning three years. This paper 
will present the initial stages of analysis, focusing on students’ use of mathematical 
initiative in the first first four weeks of the study. The participants met with the 
researchers twice a week, where each meeting lasted between one hour and 90 
minutes. There were a total of eight meetings during the four-week period, totalling 
approximately ten hours. During these meetings, students were engaged in problems 
about fractions using Cuisinaire rods. A typical question that students were asked to 
solve was, “If I gave the light green rod the number name one, what number name 
would I give to the yellow rod?” Each of these lessons was videotaped, yielding ten 
hours of video to be analysed. 

Analytical method. The first two authors first decided on a working definition of 
mathematical initiative, then independently identified and transcribed all instances in 
the data where students displayed such initiative. Meetings to compare findings were 
held after the analysis of every two sessions. There was a high level of agreement on 
the identified instances, and any disagreement was discussed and used for further 
refinement of the authors’ understanding of the mathematical initiative construct. 
Then, for each instance of mathematical initiative, the authors identified the aspects 
of the environment that encouraged students to take initiative in a mathematically 
meaningful manner. These aspects, followed by examples of student initiative, are 
discussed in detail in the next section. 

RESULTS 

Aspects of the learning environment that encouraged initiative 

Non-judgmental responses to student comments or answers. Throughout the study, 
researchers consistently displayed a non-judgmental approach in responding to 
student comments or answers. In other words, students were never told if their 
responses were correct or incorrect and participation was always received positively. 
The following excerpt exemplifies this type of researcher behavior (R stands for 
“Researcher”): 

Researcher: What did I call the number name for orange? 

Class: 1 

R: One…ok, so I’m going to write that down. And, I’m asking you what the number 
name is for yellow, and I’d like to hear from Chris. 

Chris: Point five.  

R: You’re going to call the yellow rod  .5…how many picked .5? Only a couple of 
people…why, Chris? 

In this excerpt, the researcher did not indicate whether Chris’ response was correct. 
Instead, she invited Chris to explain his reasoning to the class and allowed the class 
to be the arbiter if Chris’ reasoning was valid. Lubienski (2000) found that students 
of low socio-economic status were less likely to participate in mathematical 
discussions because they believed the purpose of these discussions was to allow the 
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teacher to judge their mathematical understanding; therefore, they would not 
participate out of fear of being incorrect. We believe that the non-judgmental stance 
of the researchers in this study encouraged students to explore novel ideas without 
fear of a negative response by the researchers. 

Appropriation of initiative. At times, students would take initiative by extending a 
problem stated by the researcher. In some cases, students generalized the problem 
that was being solved. In others, students posed a new question that built upon the 
previous question that they had just answered. In these cases, the researcher would 
call all the students’ attention to the comment that the student made or the question 
that they raised and build upon it. We suggest that such a pedagogical move is an 
instance of appropriation (in the sense of Cobb, Yackel, and Wood, 1992, p. 20), in 
that the researcher is implicitly letting students know that taking initiative is desirable 
behavior. In the following instance, the students were debating whether the light 
green rod would have the number name 0.3 or one-third if blue had the number name 
one. Dante asks what number name the white rod would have if the light green rod 
had the number name 0.3: 

Dante: Since 3 white cubes go into a light green rod, what are we gonna call …if we call 
the light green 0.3, what are we going to call the white rod? 

Researcher: Let’s follow this here, what Dante says. […] He said if 3 white rods are the 
same length as light green…Do you all agree with that?  

Class: Yeah.  

R: So, the question is what are we going to call the white rod. […] I want you all at your 
tables to figure that out. 

This type of response by the researcher implicitly endorses new questions brought up 
by the students, and encourages the students to think beyond the task currently under 
discussion.  

The nature of the tasks. All tasks used in this project were such that the students were 
unlikely to have encountered them previously; therefore, students could not take a 
procedural approach to them. Further, two specific types of tasks were found to be 
especially encouraging of mathematical initiative. The first consists of extremely 
open-ended tasks, such as “explore the rods in front of you and then tell me what you 
learned about them”, an activity given to the students in the first session. Using such 
widely open questions encouraged students’ creativity and often led students to form 
mathematical connections that would form the basis for future mathematical work.  

The second type of task fostering mathematical initiative subtly invites the students to 
formulate generalizations. Such tasks are either a sequence of tasks with the same 
structure (e.g., a series of questions of the form “If I call the white rod <number>, 
what should I call the <color> rod?”), or a single problem (e.g., “If blue is 1, find the 
number name of each rod in the set.”). Notice that both tasks can be solved without 
any generalizations, but developing a general rule for situations of a given type leads 
to a more time-efficient solution. In the study, many students naturally sought these 
generalizations without prompting.  
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Collaboration among students. The design of the Informal Mathematical Learning 
project placed great importance on free student interaction. Students were seated 
around tables of four or five, and the manipulatives (Cuisenaire rods in this case) 
were placed in the middle of each table to be shared by all. Researchers continually 
encouraged students to discuss the tasks with their tablemates. Also, researchers 
sometimes explicitly prompted to discuss their ideas with their tablemates before 
presenting them to a researcher or sharing them with the whole class. An overhead 
projector enabled students to share their ideas with all the participants in the session.  
We believe that collaboration among students encouraged initiative in at least two 
important ways. First, observing the different reasoning processes and alternative 
solutions of others often led students to engage in the problem that they had solved in 
a different way. For instance, students presented a variety of solutions to the task, 
“Create a train [a sequence of rods] to be given the number name one such that the 
yellow rod will be called one half”. When students saw different trains that would 
satisfy this constraint, this challenged them to find new ways of creating the required 
train and wondering how many such trains could be found.  

Instances of students’ mathematical initiative.  

In the later video sessions that we analysed, we found many instances of students 
taking mathematical initiative. We present several examples below, discussing how 
the aspects of the learning environment that we have just described may have 
contributed to students taking this initiative and highlighting how these instances of 
initiative led students to participate in the mathematical activities and reason in 
sophisticated ways. 

Student as facilitator. In the following instance, students were grappling with the 
following question: “If the blue rod had the number name one, what do you call the 
white rod?” After initially struggling with this problem, Chanel assisted Dante in the 
following manner: 

Chanel [addressing Dante]: If we take this one [pointing to the blue rod], that’s a 
whole…and you take one of these [taking a white rod and placing it along the blue 
one], it’s 1.9…so if you take some more of these, that’s 1.9+1.9+1.9+…+1.9 [9 
times]. Take the white ones away…[places light green rods along the blue]. Now, 
what is this called now? [referring to light green]  

       Dante: 1.3   

Chanel:  Why? 

Dante: It’s 1.3 because 3 light green rods make up the blue. 

Chanel: Alright…so what’s 1.5? 

Although the students use the wrong terminology (i.e., they confused 1.3 with 1/3 
and 1.9 with 1/9), their reasoning is otherwise valid. Here, the initiative consists in 
Chanel’s decision to act as a facilitator for Dante, and also in Chanel’s formulation of 
a new problem for Dante (“what’s 1.5?”). We believe that Chanel’s behavior is at 
least in part due to the behavior modeled by the researchers. Their continual 
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rencouragement of the students to share and explore their ideas in collaboration with 
their peers is also likely to be one of the factors that made this instance happen. 

Devising strategies for counting. The problem that provided the context for this 
instance of mathematical initiative is “How many different trains can you form with 
two purples and two whites?” The students, together with the researcher, had already 
decided that “the order matters” in differentiating between trains (i.e., trains should 
be “read” from left to right). Students displayed mathematical initiative in the 
strategies they employed for arguing that there were only 6 trains of the type defined 
by the problem. Kori and Wayne categorized the trains into “whites together” (trains 
where the two white rods were adjacent), and “whites apart”, and then counted the 
trains in each category. Another strategy displayed by the students was labeled “the 
reverse”: for each created train, create the one obtained by replacing each purple with 
a white, and vice-versa. Finally, a third strategy employed by students was called 
“backwards”: for each created train, create the one obtained by rotating the first one 
180◦, thus obtaining the “backwards” version of the original train. The invention of 
strategies allowed students to make progress in a combinatorics task that was novel to 
them, and to establish an efficient method for checking that they had formed all 
possible trains in each category. These instances of mathematical initiative are likely 
to have been fostered by the nature of the task given to the students, the researchers’ 
constant focus on student thinking, and the researchers’ demand for justification for 
every student answer. 

Creation and use of notation. The students received a follow-up task to the one 
mentioned in the previous example: “How many trains that equal in length to the  
purple rod can you create?” One instance of mathematical initiative in this context 
comes from Lorrin. She built a few trains that were equal in length to the purple rod, 
then decided to use strings of letters in keeping track of the trains built so far (e.g., 
WWR represented a white-white-red train). In doing so she not only created a new 
representation for the trains already found, but also devised a way of obtaining new 
trains from existing ones by directly manipulating strings of letters. We hypothesize 
that this instance of mathematical initiative was fostered both by the researchers’ 
focus on mathematical reasons for answers and the fact that the task was a follow-up 
to a previous problem, so the students already had counting strategies to build on. 

DISCUSSION 

The preceding examples illustrate African American and Latino students taking 
mathematical initiative and participating in mathematical activities. These students 
were exhibiting this behavior with relatively little exposure to our research 
environment. Each of the instances in this paper occurred within the first eight 
sessions of our study. This paper also reports aspects of the study that we believed 
were instrumental in inviting students to take this mathematical initiative. We hope 
that teachers and researchers can use this work to develop initiative in their own 
students so that these students can fully participate in the activities of reform-oriented 
classrooms.  
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We propose two directions for future research. First, we recognize that the conditions 
under which our project operated differ in many ways from those of a regular 
classroom. We realize that teachers, under the constraints of traditional classrooms, 
may not always be able to implement the techniques that we describe. This does not 
mean that the study has no implications regarding instruction in public schools, but 
that further research is needed in order to determine which of the aspects of the 
learning environment identified in this paper are replicable under the restrictions of a 
public school system. To illustrate one difficulty that a teacher might have, consider a 
student who poses a challenge question that is not germane to the topic that the 
teacher intends to teach. Does the teacher spend valuable class time allowing students 
to consider this question? Or does the teacher not follow up on the student’s question, 
which may discourage this student from taking mathematical initiative in the future? 
These are difficult issues that practicing teachers must contend with that are not 
addressed in our study. 

Another suggested direction for future research concerns the study of the relationship 
between mathematical initiative and success as a problem solver and mathematics 
learner. In other words, in what ways, and to what extent, does mathematical 
initiative contribute to students’ understanding of mathematics, and consequently 
achievement? We are currently investigating this issue by analysing further data 
collected from our study.  

In conclusion, there are still important questions regarding student mathematical 
initiative to be addressed. However, considering the findings outlined in this paper, 
we have reasons to believe that encouraging mathematical initiative in urban students 
can lead to fuller participation in mathematical activity. 
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A MODEL OF TEXTBOOK USE  

Sebastian Rezat 

Institut für Didaktik der Mathematik, Justus-Liebig-Universität Giessen, Germany 

 

The aim of this paper is twofold. On the one hand it is intended to develop a model of 
the activity ‘textbook use’ that is of particular interest for research in mathematics 
education. On the other hand it is supposed to make a contribution to activity theory 
striving for “transcending the boundary between theory and practice” (Engeström, 
1990) by applying activity theory to a particular activity. It appears that in the case 
of textbook use the triad ‘subject – mediating artefact – object’ as the nucleus of the 
human activity system does not entirely represent the activity ‘textbook use’. This will 
raise issues according to the model of the human activity system as suggested by 
Engeström (1999b).  

INTRODUCTION 

As Even and Schwarz (2002) point out, “the focus of research in mathematics 
education has extended from the individual student's cognition and knowledge to 
contextual, socio-cultural and situated aspects of mathematics learning and knowing. 
From a socio-cultural perspective not merely the “practices and culture of the 
classroom community” (Even & Schwarz, 2002) are of particular interest, but the 
study of artefacts of the mathematics classroom and their use.  

Howson (1995), who states that „despite the obvious powers of the new technology it 
must be accepted that its role in the vast majority of the world’s classrooms pales into 
insignificance when compared with that of textbooks and other written materials” 
underpins the particular interest in the textbook and its use for research in 
mathematics education. In fact the textbook is associated with most of the activities 
related to teaching and learning mathematics.  

While textbooks and the comprehension of mathematical text (cf e.g. Österholm, 
2004) have received some attention in research on mathematics education, several 
authors point out a dearth of research into the use of texts (Gilbert, 1989; Love & 
Pimm, 1996). One reason may be the difficulty of obtaining data on the use of 
textbooks (cf Love & Pimm, 1996). Another reason may be the lack of a theoretical 
framework for textbook use. An appropriate theoretical framework might in fact be 
regarded as a prerequisite to collect data on the use of textbooks. 

Therefore, the first aim of this paper is to develop a model of the activity ‘textbook 
use in teaching and learning mathematics’. 

From an activity-theoretical perspective this activity is striking because it is 
connected to a particular artefact by definition. If activity theory aims at being “a 
pathbreaker in studies that help humans gain control over their own artefacts” 
(Engeström, 1999a) it should be capable to provide a model for the activity ‘textbook 
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use’. It appears that in the case of textbook use the triad ‘subject – mediating artefact 
– object’ as the nucleus of the human activity system does not entirely represent the 
activity ‘textbook use’. This will raise issues according to the model of the human 
activity system as suggested by Engeström (1999b). 

RATIONALE FOR A MODEL OF TEXTBOOK USE BASED ON ACTIVITY 

THEORY 

Activity theory analyses “object-oriented, collective, and culturally mediated human 
activity” (Engeström et al., 1999). The use of a textbook is an activity that is situated 
in the context of institutional teaching and learning. Within that context the use of 
textbooks is object-oriented and collective. The educational system itself is a 
historically and culturally formed system. 

The emphasis of activity theory is placed on “mediation of human action by cultural 
artefacts” (Engeström et al., 1999). As well as the educational system the textbook is 
a historically and culturally formed mediating artefact. The textbook is influenced by 
the educational system and by traditional concepts of teaching and learning. 

Both, the historical development and the literature on textbooks are characterized by 
controversies. It seems that the textbook and its use are best described as a set of 
dichotomies. The following questions may give an impression of some important 
dichotomies: 

• Is the textbook a pedagogical means or a marketed product? 
Mathematics textbooks as well as textbooks in general are developed to 
serve a pedagogical purpose. Nevertheless, “publishing is a business and 
must please its primary customers – teachers – to remain viable” (Chambliss 
& Calfee, 1998). Therefore the textbook is not merely a pedagogical means 
but also a marketed product. “The economics of publishing also imposes 
constraints” (Love & Pimm, 1996) on the development of textbooks as a 
pedagogical means. 

• Is the textbook an instrument for learning or the object of learning?  
The textbook mediates knowledge. In this respect it is designed to be an 
instrument for teaching and learning. However, Engeström (1999b) argues, 
that the main aim of teaching has been to reproduce the text in the textbook. 
Therefore he concludes that the text must be regarded as the object of 
learning. Then again, some authors even call for considering textbooks as 
the object of learning in order to develop a critical attitude towards mass-
media (cf Keitel et al., 1980; Stein, 1995).  

• Is the textbook addressing the teacher or the student? 
On the one hand mathematics textbooks pretend to be addressed to the 
student. Consequently, teacher’s guides are offered in addition to textbooks 
(Keitel et al., 1980). On the other hand, most authors agree that mathematics 
textbooks are addressing both, the teacher and the learner (Griesel & Postel, 
1983; Keitel et al., 1980; Love & Pimm, 1996; Stein, 1995). This dichotomy 
is associated to the issue of the nature of the knowledge that represented in 
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textbooks, i.e. the dichotomy between a mathematical and a didactical nature 
of the knowledge. 

• Is the textbook supposed to be mediated by the teacher or is its intention to 
substitute the teacher? 
Most authors agree that the textbook are not in general conceived to replace 
a teacher, but are written to be mediated by the teacher (cf e.g. Griesel & 
Postel, 1983; Love & Pimm, 1996; Newton, 1990). But nevertheless there is 
a tendency to create teacher-proof textbooks (cf Keitel et al., 1980). 

These dichotomies already demonstrate that a model of textbook use must be capable 
of incorporating dichotomies. According to Engeström (1990) “activity systems are 
characterized by inner contradictions”. Therefore, activity theory appears to be 
especially suited to be a basis for a model of textbook use. 

TEXTBOOK USE FROM AN ACTIVITY-THEORETICAL PERSPECTIVE 

The fundamental interacting components of the activity system are the subject, the 
object and the mediating artefact. Vygotsky (1978) was the first to introduce the 
triangle with these components as vertices as a simplified model of mediated action. 

 

Fig. 1: Vygotsky’s simplified model of mediated action 

A first approach to describe the use of mathematics textbooks by students according 
to this model might be the following triangular representation: 

 

Fig. 2: 2-d-representation of the use of textbook by students (1) 

The activity described in this model is part of the learning activity as a whole. Within 
this activity the textbook serves as an instrument to acquire mathematical knowledge. 
However, this model disregards the widespread agreement that textbook use is 
usually mediated by the teacher (cf Griesel & Postel, 1983; Love & Pimm, 1996; 
Pepin & Haggarty, 2001). 

Newton (1990) claims that “text use is usually perceived as a relationship between 
the teacher, the student and the text”. Keeping in mind that the teacher is regarded as 

mathematical knowledge student 

textbook 

object subject 

mediating artefact 
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the mediator of the text, Newton suggests a different model of textbook use that is 
displayed in Fig. 3. 

 

Fig. 3: 2-d-representation of textbook use with the teacher as mediator of the text 

From an activity-theoretical perspective this model of textbook use has two 
remarkable implications:  

(1) In this model the role of the textbook has changed. It is no longer an 
instrument but the object of the activity.  

(2) From an activity-theoretical perspective the teacher adopts the position of the 
mediating artefact. This means, that either this model is no representation of 
an instrument mediated activity in the activity-theoretical sense of the term or 
that the idea of mediation can not be reduced to artefacts. These two 
alternatives try to explain the position of the teacher within the triangular 
structure of the activity system. Another way of dealing with the mediating 
role of the teacher is to expand the triangle in Fig. 2 to a quadrilateral. The 
new vertex stands for the mediation of the use of the artefact by a person or 
another artefact. 

In the case of textbook use the triangular nucleus of the activity system will expand 
to the following quadrilateral: 

 

Fig. 4: 2-d-representation of the use of textbook by students (2) 

From the student’s perspective this seems to be an appropriate model for textbook 
use. In this quadrilateral structure the student is the user of the textbook and the 
teacher is mediating the use of the textbook. But in this model it is not yet taken into 
consideration that the teacher himself is a user of the textbook. In fact, it was inherent 
in one of the major dichotomies, that the textbooks are even addressing teachers. 

Compared to the student the teacher uses the textbook in a different way. For him it is 
not merely an instrument to acquire knowledge. Different studies substantiate that 
mathematics teachers use textbooks as a means to prepare their lessons (cf Bromme 
& Hömberg, 1981; Hopf, 1980; Stodolsky, 1989; Valverde et al., 2002; Woodward & 
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Elliott, 1990). Hence, for the teacher the textbook mediates didactical aspects of the 
presented knowledge.  

The use of the textbook by the teacher may be either modelled as a separate activity 
system or it may be included in the model of textbook use depicted in Fig. 4. As a 
result, the complexity of the model of the activity ‘textbooks use’ will increase in a 
way that is best represented in the three dimensional shape of a tetrahedron.  

 

Fig. 5: 3-d-representation of the model of textbook use 

This model includes another major dichotomy of the textbook, namely the dichotomy 
with regard to the nature of the knowledge represented in textbooks. But this time it 
appears at one of the vertices. This conforms with Engeström (1999b) who describes 
dichotomies to be characteristic for all vertices of the activity model. 

With regard to the two major subjects that are using textbooks – the teacher and the 
student – Fig. 5 in fact represents a more comprehensive model of textbook use. The 
tetrahedron represents the use of textbooks in class. Each of the triangular faces of 
the tetrahedron reveals another aspect of textbook use. 

(1) student – teacher – textbook 

The student is the acting subject in this triangle and the textbook is the object 
of his activity. The teacher mediates the use of the textbook.  

(2) student – textbook – mathematical knowledge 

The student in this triangle uses the textbook on his own initiative without 
mediation by the teacher. The object of his activity is mathematical knowledge 
in general. The textbook is regarded as the instrument to access the 
mathematical knowledge. It mediates between the mathematical knowledge 
and the student. 

(3) teacher – textbook – mathematical knowledge (didactical aspects) 

This triangle describes the teacher’s use of the textbook. While the teacher acts 
as a mediator of textbook use in the whole activity system he is the subject of 

teacher student 

textbook 

mathematical knowledge/ 
didactical aspects of the 
mathematical knowledge 
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the activity in this subsystem. The object of his activity are the didactical 
aspects of the knowledge represented in the textbook.  

(4) student – teacher – mathematical knowledge  

The traditional didactical triangle or as Chevallard calls it ‘the didactical 
system in the narrow sense’ (cf Chevallard, 1991), that also appears in the 
tetrahedron-model of textbook use does not even include the textbook, but still 
must be considered as a subsystem of the activity ‘textbook use’. It can be seen 
as the complement of triangle (3). The teacher implements the knowledge that 
is represented in the textbook without using the textbook overtly in the lesson. 
He acts as a mediator of the knowledge. Several studies substantiate this way 
of using textbooks (cf Hopf, 1980; Stodolsky, 1989; Valverde et al., 2002; 
Woodward & Elliott, 1990).  

CONCLUSION 

Two conclusions of the preceding section may be drawn. On the one hand it was 
shown, that activity theory can be applied to create a suitable model for the activity 
‘textbook use’. The suggested model includes all the major aspects of textbook use 
with regard to the two primary users. But as presented above it just focuses on the 
nucleus of the activity system, i.e. the triad subject – mediating artefact – object. This 
must be integrated into the whole activity system (cf Engeström, 1999b). 
Furthermore, the fundamental dichotomies in connection with the textbook need to be 
incorporated.  

On the other hand the triad ‘subject – mediating artefact – object’ turned out to be 
unsatisfactory to describe the activity ‘textbook use’ entirely. This was due to the 
fact, that the use of the artefact itself was mediated by another subject. In addition, 
this mediating subject plays a double role, because it is not merely a mediator, but 
also a user of the artefact. This lead to an extension of the nucleus of the activity 
system at best modelled and represented as a tetrahedron. This modification is 
accompanied by a change of the focus of the nucleus of the activity system. 
Originally, the main focus of the triangular nucleus of the activity system is the 
subject (cf Engeström et al., 1999). Likewise, the tetrahedron was created coming 
from the subject. But the final model is not a description of the use of the artefact by 
merely one subject, it rather represents the use of an artefact by two subjects. 
Consequently the tetrahedron-model can be interpreted as the activity that surrounds 
a particular artefact. In this way the artefact is put in the centre of the activity system. 
Put differently, an activity-theoretical model of an activity that is linked to a 
particular artefact automatically situates the artefact in the centre of the activity 
system. If activity theory is intended “to be a pathbreaker in studies that help humans 
gain control over their own artefacts” (Engeström, 1999a) this might be a new 
worthwhile perspective. Further implications for activity theory of this change of 
focus need to be discussed. 
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IDENTICAL TWINS’ PERCEPTIONS OF TWO DIFFERENT 

INSTRUCTIONAL APPROACHES TO LEARNING 

MATHEMATICS 

Candice L. Ridlon 

Brigham Young University 

 

This case study reports on two sets of identical twins (one male pair and one female 
pair) who experienced two different approaches to learning the same mathematical 
content. The twins were separated for the first time in 6th grade. Prior to that time the 
educational experiences of both sets were almost indistinguishable. During the 9-
week study one child from each pair studied mathematics via a traditional explain-
practice approach that focused on facts and procedures, whereas the other twin 
participated in an inquiry-based approach that focused on problem solving. From the 
perspective of the twins, the problem centered approach appeared to significantly 
enhance their achievement and attitude towards mathematics. 

THE FOCUS OF THE STUDY 

For several decades educators have debated the effectiveness of different 
instructional approaches to teaching mathematics. Advocates of the traditional 
explain-practice approach are at odds with reformists who propose an inquiry-based 
approach. This study seeks to deepen understanding of the psychological aspects of 
teaching and learning mathematics by looking at individual differences from the 
perspective of two sets of identical twins who learned the same mathematical content 
using these two contrasting philosophies. 

To understand the experience of identical twins and to explore the efficacy of these 
approaches, we must examine three topics in detail. First, we must comprehend the 
underlying belief systems that resulted in this debate about approaches. Second, we 
must become familiar with the characteristics of each approach. Finally, we need to 
look at identical twins research in order to understand the importance and to interpret 
the experience of the twins.  

THE DEBATE: EXPLAIN-PRACTICE VS. INQUIRY-BASED 

Explain-practice advocates believe that the focus of instruction should be basic facts 
and procedures, such as quick recall of multiplication tables or doing long division 
(Mathews, 2005). They point an accusing finger at inquiry-based approaches as being 
“fuzzy math”, which they claim is responsible for forcing children to “discover” 
mathematical principles beyond their understanding. Traditionalists contend that this 
approach is too time-consuming and does not insure that students end up learning the 
right concepts (Matthews, 2005). Furthermore, they assert that “the starting point for 
the development of children’s creativity and skills should be established concepts and 
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algorithms success in mathematics needs to be grounded in well-learned algorithms” 
(Carson, 2005). They believe that skill mastery leads to understanding.  

Inquiry-based advocates, on the other hand, believe that teachers must develop “each 
student’s mathematical power by respecting and valuing their ideas, ways of 
thinking, and mathematical dispositions” (NCTM, 1991, p. 57). They propose that 
mathematics is more than just knowing basic facts and procedures. Summing up the 
“reform” position, mathematician Roger Howe states that, “It is the ideas in math that 
count [reform] standards are about ideas – problem solving, reasoning and proof, 
communication, and connections” (Addington, Clemens, Howe, & Saul, 2000, p. 
1075). Advocates of inquiry-based approaches believe that instruction must foster 
students’ ability to reason, solve problems, and build connections both within and 
outside of the field of mathematics. 

Debates aside, research has highlighted the deficiencies of the traditional explain-
practice approach. Michael Battista states: 

 Despite research denoting that learning with understanding produces better 
 “transfer” than learning by memorization, traditional instruction places more 
 emphasis on memorization and imitation than on understanding, thinking, and  
 reasoning. Furthermore, even when traditional instruction attempts to promote 
 understanding, it does so using derivations and justifications that are too formal and 
 abstract for most students to make personal sense of (2001, p. 49-50). 

The [US] National Research Council added: 

 Research on learning shows that most students cannot learn mathematics effectively 
 by only listening and imitating; yet most teachers teach mathematics just that way… 
 Much of the failure in school mathematics is due to a tradition of teaching that is 
 inappropriate to the way most students learn (1989, p. 6). 

Many studies comparing explain-practice approaches to inquiry-based problem 
centered approaches have shown that the latter increases students’ achievement and 
positive attitude towards mathematics (Chung, 2004; Cobb et al., 1991; Ridlon, 2004; 
Silver & Lane, 1995).  

CHARACTERISTICS OF THE TWO APPROACHES 

In explain-practice classrooms, children learn mathematics via a teacher-centered 
approach that focuses on basic fact mastery and fluency with algorithms. In this 
instructional model, the teacher demonstrates or explains a procedure and then 
students individually practice that procedure. Students are introduced to new 
concepts incrementally and assessments generally occur weekly. Such approaches are 
supported by curriculum materials that contain “example” procedures followed by 
rows of practice “problems.” 

Inquiry-based instructional approaches are generally student-centered. The particular 
model used in this study was called Problem Centered Learning (PCL), as described 
by Wheatley (1999) in the following scenario: 
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 The class begins with a problem posed by the teacher, or perhaps by a student. The 
 class is then organized into small groups and the students work collectively in groups 
 on the tasks posed. After about 25 minutes, the students are assembled for class 
 discussion in which students present to the class their solutions for consideration by 
 the group which then serves as a community of validators. During the class 
 discussion the teacher is non-judgemental and the viability of solution methods is 
 determined by the class, not the teacher (p. 61). 

PCL is not dependent on a particular curriculum; indeed we used a traditional 
textbook as our primary instructional resource for both classes. More important to 
the approach are its distinct characteristics supported by theory and research. For 
instance, Bauersfeld (1988) proposed that an interactive classroom culture of 
acceptance and support is critical to constructing knowledge. Students need to view 
making mistakes as an inevitable and positive component of the learning 
experience. Thus a non-judgmental environment is an inherent to PCL. 
Furthermore, the kind of collaboration used in PCL is supported by more than 900 
studies citing the positive effect of group learning on student achievement and 
interpersonal relations. Not only have students learned more when they 
communicated in groups, but this strategy appeared to enhance retention of skills 
and content learned (Johnson et al., 2000). 

Regardless of approach, the child’s perspective is important because children’s 
beliefs and attitudes have a profound effect on their performance in mathematics 
(Tsao, 2004). Hackett and Betz’s (1989) research also shows that performance was 
significantly and positively correlated with attitude towards mathematics.  

RESEARCH ON IDENTICAL TWINS 

Monozygotic (identical) twins research impacts this case study in potentially 
meaningful ways. First, identical twins have all their genes in common, and that 
homogeneity results in indistinguishable IQs. Genetic influence also manifests itself 
as a bias toward certain preferences (Skovholt, 1990). Genes tend to specify the 
major dimensions of personality, and research shows that monozygotic twins exhibit 
not only common academic abilities but similar personality factors (Loehlin, 1987). 
A large study by the National Organization of Mothers of Twins Clubs (NOMOTC) 
found that “among identical twins, autonomy, extroversion, independence, and 
sociotrophy (or need for others) were highly correlated. So, if one twin was very 
independent, then her co-twin was likely to be very independent also. Female 
identical twins were even more alike than male identical twins” (1999, p. 9-10). 

Secondly, twins reared together have a common family background molding their 
beliefs, personality, and actions. Loehlin states that “plenty of evidence exists to 
show that both genes and environment contribute to the variation of individuals” 
(1987, p. 137) because identical twins raised in the same home express little 
diversity, whereas those raised apart are somewhat dissimilar. Monozygotic twins 
raised in the same home form their identity very differently than singletons because 
the twins are frequently thought of as a unit, as in “the twins” (NOMOTC, 1999). 
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Thus the circumstances of their birth and a common background contribute to a 
similar belief structure beyond simple genetic influence for such children. 

RESEARCH GOAL 

The purpose of this instrumental, heuristic case study is to explore the effect of two 
contrasting approaches to teaching and learning mathematics (the traditional explain-
practice and the inquiry-based problem centered) on the achievement and attitude of 
children. Due to their monozygotic genetic make-up, common family background, 
and similar prior knowledge from shared educational environment, the identical twins 
in this study are in a unique position to inform the mathematics education community 
of the consequences of these instructional approaches from a child’s perspective. 

METHODS 

Merriam states that unlike typical experiments, surveys, or historical research, “case 
study does not claim any particular methods for data collection or data analysis” 
(1998, p. 28). As this case study was framed as a phenomenon within a larger quasi-
experiment, its interpretation within that context may explain the variables that occur.  

The Participants: Two Sets of Identical Twins 

The boy twins, “Eric” and “Pete”, had lived in a stable home with their natural 
parents since birth. From grades K to 5, they attended a public elementary school that 
used the same explain-practice approach that was now carried forward in the study. 
They had always been in the same class, and neither of them particularly cared for 
mathematics. But in spite of their identical genetic make-up and similar classroom 
experience, the boys were not completely alike. Eric reported that “math was easy but 
boring” and he had consistently better grades than his sibling. He often helped his 
brother Pete with math, although they felt they were equally matched in other areas. 
The boys’ mother said that she spent a great deal of time helping the less motivated 
Pete with his homework because his poor attitude led to relatively poor grades. This 
situation caused a great deal of familial strain. According to Mascazine (2000), this 
slight diversity in monozygotic twins’ learning style strengths is not uncommon.  

Although the girl twins, “Elise” and “Pat”, lived with their natural parents since birth, 
they had a different educational background. Prior to 6th-grade, the girls’ mother had 
home-schooled them. She was a certified elementary teacher and familiar with many 
mathematics resources. The girls related inquiry-based experience with manipulatives 
and multiple solution strategies like drawing pictures or diagrams. They were evenly 
matched as far as attitude and achievement were concerned, although Elise said that 
“math was her best subject” and the family agreed that she was more self-confident 
than her sister “Pat” was when it came to doing mathematics. 

Teachers of the Two Approaches  

A 20-year veteran teacher at the school collaborated with the researcher, also an 
experienced certified teacher. Two of the regular teacher’s class hours were chosen 
for the study. By random assignment, one twin from each pair was assigned to the 
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explain-practice approach while their sibling was in the inquiry-based approach. Both 
teachers were present at all times, but the veteran teacher took charge of instruction 
during the explain-practice lessons and the researcher taught the PCL class. 

Mathematics Content  

Both sets of twins studied the same mathematics content. The topics were identified 
by examining the first nine weeks of the school’s explain-practice textbook. Such 
alignment was necessary because at the end of the study the PCL group returned to 
this text, the regular teacher, and the explain-practice approach with little 
modification. The researcher adapted problems from the text for the PCL class so that 
the procedurally-oriented tasks were presented in potentially meaningful settings.  

The Treatment: A Typical Day in the Two Instructional Approaches 

Eric and Elise, who were thought initially to be the more capable students, were in 
the explain-practice classroom. Their lessons were planned using the scope and 
sequence in the Teacher’s Manual of the explain-practice textbook. Daily lessons 
consisted of a warm-up, introduction to the new concept, practice focusing on new 
concept, and mixed practice focusing on new and previously learned concepts. 

Pete and Pat learned mathematics via the PCL approach. Their lessons began with the 
launch of a problem that they worked on with a partner of similar capabilities. The 
teacher circulated to select groups for presentation based on the strategies observed. 
In a whole class discussion, the community of children judged the merit of solutions.  

Data Collection and Analysis 

Along with the other children participating in the study, each twin took a quantitative 
pre-test and post-test. Parents and students completed an anonymous survey that dealt 
with attitudes and opinions. Persistent observations were made by several individuals. 
PCL students, including Pete and Pat, kept a reflective journal. The twins and their 
parents were interviewed two weeks after the completion of the study. Transcripts of 
interviews were edited by these stakeholders to ensure data was accurate.  

The quantitative data for the entire class was analyzed using descriptive statistics and 
ANOVA (Ridlon, 2004). A second researcher developed an inductive approach to 
encode qualitative data for the study, which was categorized into meta-codes and 
sub-codes. The number of responses in each cluster was counted in order to 
determine predominant clusters. Certain patterns and themes emerged. In the case of 
the twins, the same themes emerged and triangulated the analysis.  

Defining the Case Study 

A study that concentrates on the twins’ perspectives as vehicles to illuminate 
understanding of the larger issue of teaching mathematics by contrasting approaches 
would be characterized as an individualized, heuristic case study (Merriam, 1998). 
Stake (1994) defines an “instrumental case study” as one where “the case is of 
secondary interest; it plays a supportive role, facilitating our understanding of 
something else” (p. 237). For the purposes of this case, that other interest is insight 
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into the effect of different kinds of instructional approaches on the achievement and 
attitude of students.  

RESULTS 

Emergent Theme 1: The Inquiry-based Approach Enhanced Achievement 

In spite of nearly identical pre-test scores, both Pete and Pat scored nearly 20% 
higher on the post-test than Eric and Elise. To explain this achievement difference, 
the boy twins described their experiences in their interview.  

Interviewer:  What would you need to do to be a good mathematician? 

Pete:  Solve problems. 

Eric:  I watch what the teacher does, and do the same thing to get answers. It 
takes too long…one problem takes up the whole board…we just sit there. 

Mother:  Are you supposed to do it exactly like he showed you to do it? 

Eric:  Yes ma’am. Or he’ll mark it wrong. 

Mother:  Do you think the teacher’s way is the only way?  

Eric:  There are other ways. But you have to do it the way the teacher says to do 
it.  Or he’ll mark it wrong and you’ll get a bad grade. You have to put all 
the steps exactly like he does or it’s wrong. 

Pete:  [Note: Pete has returned to the regular class now.] I usually do it my way 
first. Then I go back and do it the long way he says to do it with all the 
steps and put that on my paper so he won’t mark it wrong. But I know I 
got it right because I check the answer I got his way with my own answer. 

Father:  So how did you learn to think like that? 

Pete:  Because in our class the problems were on the board and then we got to 
go up to the board to do them. We worked all together in groups and did 
them. It was fun getting answers by ourselves. It was easy. Because you 
had to understand it using your own ideas.   

The girl twins reiterated a similar perspective on the kind of behavior that translated 
into higher achievement. Elise argued that her classroom experience was more 
difficult, for they had to “copy methods or get a bad grade.” She lamented that, “Pat 
understood it better…It’s the same stuff but our class doesn’t know how to do it.” Pat 
agreed, saying that she tried a variety of strategies in PCL, while Elise could only use 
“one way like in the book. They just had rows of problems for homework.” 

The twins’ journal entries echoed the same theme on achievement. Pat wrote, “Now I 
even have a better grade! I am climbing an extra step a day!” and Pete said, “I always 
learn new stuff.  I feel I have learned so much more than the other way.” 

Emergent Theme 2: The Inquiry-based Approach Improved Attitude 

During their interview, the boys’ family agreed that things had definitely reversed in 
the time span of nine weeks. Eric still felt math was boring, but watching his brother 
“do fun problems” in PCL added dissatisfaction to his complaints. He began to resent 
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the explain-practice approach where he perceived that his “opinion didn’t count.” His 
parents said he had “developed an attitude problem.” On the other hand, previously 
reluctant Pete came to greatly enjoy mathematics for the first time in his life. He 
reported that he “liked to figure things out” and “knew” for himself when he 
understood concepts without the validation of authority figures.   

The girls had a different rationale shaping their attitudes towards the two instructional 
approaches. They were accustomed to trying a variety of alternative strategies in their 
home-school environment. Hence, they complained bitterly about Elise’s loss of 
autonomy in the traditional classroom. The family was united in the belief that she 
“could not ask questions that helped her understand things.” Elise stated, “We don’t 
talk about the problem…that doesn’t make any sense to me. You just have to do it 
with the steps the teacher says.” Her mother had to tutor her in math and it was no 
longer her favorite subject, whereas Pat liked math more than in the past.  

Journal entries, survey responses, and observation notes triangulated the twins’ 
perspective. All data showed a significantly better attitude towards mathematics for 
Pete and Pat as compared to Eric and Elise. 

CONCLUSIONS 

In this case study, identical twins compared their personal experiences in learning 
mathematics via different approaches and concluded that the inquiry-based problem 
centered approach significantly enhanced their achievement and attitude. These 
findings are significant for researchers because the learners’ voices supported what 
more sophisticated research studies have shown us. Teachers who resist a change in 
practice could also benefit; the perspective of the twins might cause them to question 
the effectiveness of their instructional approach. While the opportunity to explore the 
experience of identical twins might not occur again, future research should explore 
the insight we gain about approaches to teaching math from a student’s perspective. 
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WHEN SUCCESSFUL COMPARISON OF DECIMALS DOESN’T 

TELL THE FULL STORY 

      Anne Roche                                        Doug M. Clarke   

Australian Catholic University          Australian Catholic University 

 

Forty-eight students across Grades 3 to 6 were interviewed individually using a 
range of tasks, where the mathematical focus was decimal knowledge and 
understanding. Students who may be categorised as “apparent experts” on a decimal 
comparison test were found to differ considerably in their ability to perform ordering 
and benchmarking tasks. Those students whose explanations when comparing 
decimals reflected a greater place value knowledge and who were not following a 
rule which ultimately treats decimals as whole numbers, appeared to have a more 
conceptual understanding of the decimal numeration system and were able to apply 
this understanding to more difficult (or novel) tasks. Additional data from 321 Grade 
6 students are outlined and reinforce these findings. 

THEORETICAL BACKGROUND 

A connected understanding of decimals, while always a key component of the school 
mathematics curriculum, has increased in importance since the introduction of the 
metric system of measurement and the wider use of calculators and computers. 
Results from major studies (e.g., Brown, 1981; Wearne & Kouba, 2000) indicated 
that decimals create great confusion for many students and studies indicated that 
much of this difficulty arose because students were treating decimals as whole 
numbers. It has also been documented that many students rely on procedures to the 
detriment of number sense or meaning when computing with decimals (Hiebert & 
Wearne, 1985). 

Over the last twenty years there has been considerable documentation of erroneous 
rules or misconceptions that students appear to use when asked to compare or order 
decimal numbers. Naming, defining and fine tuning these rules or codes have been 
the focus of much research (Moloney & Stacey, 1996; Resnick, Nesher, Leonard, 
Magone, Omanson & Peled, 1989; Sackur-Grisvard & Leonard, 1985; Stacey, Helme 
& Steinle, 2001; Stacey & Steinle, 1998, 1999; Steinle & Stacey, 2001, 2002). The 
terms have changed, the definitions varied and where there were once three rules 
(Sackur-Grisvard & Leonard, 1985) there are now eleven (Stacey, 2005). 

A considerable body of research exists on students’ understanding of decimals and 
the prevalence and persistence of misconceptions (Steinle & Stacey, 2003). Much of 
this knowledge has been inferred from responses to pencil and paper decimal 
comparison tests. When students are asked to choose the larger of two decimals and 
do so incorrectly, they are commonly categorised as using one of three erroneous 
rules. Sackur-Grisvard and Leonard (1985) defined three systematic but incorrect 
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rules that fourth- and fifth-grade French students used to decide which decimal 
number was greater: 

• Rule One: The number with the more decimal places is the larger; e.g., 
3.214 is greater than 3.8 because 214 > 8. This rule was fairly common; 
around 40% of fourth graders and 10% of seventh graders used this rule. 

• Rule Two: The number with the fewer decimal places is the larger; e.g., 1.2 
is larger than 1.35 because they believe tenths are always larger than 
hundredths. This rule was the least common, with less than 6% using the 
rule in all grades.  

• Rule Three: A correct judgement is given if there is a zero immediately to 
the right of the decimal point in one of the decimals being compared, but 
otherwise choose as for rule one. This rule remained reasonably constant, 
being used by between 7% and 13% across the four grades.  

 
Resnick, et al. (1989) renamed these rules, calling Rule One the “whole number 
rule”, Rule Two the “fraction rule”, and Rule Three the “zero rule”, and developed a 
decimal comparison test of eight pairs of decimal numbers (including two fractions). 
Moloney and Stacey (1996) developed a pencil and paper test of 15 pairs of decimals 
items. These items were largely taken from Resnick et al. (1989), except that the 
fraction tasks were replaced with decimals.  

Stacey and Steinle (1998) developed a new test, extending that of Moloney and 
Stacey (1996) with 14 core items and 11 supplementary items. This test took the 
categories of “Longer is Larger” (previously whole number rule), “Shorter is Larger” 
(previously fraction rule), “Zero Rule” and “Expert Rule” and classified these in a 
more refined way. By 1999, Stacey and Steinle renamed the “expert” category as the 
“apparent experts” or “task expert”, claiming these students “may possess excellent 
understanding or may apply correct rules not understood or may have one identified 
incorrect pattern of thinking” (p. 446). 

While the use of a decimal comparison test has been found useful for determining 
which students hold specific misconceptions so that these may be addressed during 
classroom instruction (Peled & Shahbari, 2003), this paper’s focus is following the 
students who have success on these tests. In particular, this paper considers the 
implications for students who are categorised as “apparent experts” on a decimal 
comparison test but who achieve this status by using a rule by which zeros are added 
to equalise the length of the shorter decimal and then compare the two numbers as 
whole numbers. Resnick et al. (1989) suggested that students who are taught to add 
zeros may remain at the conceptual level attributed to whole-number-rule students, 
and that “such syntactic teaching would serve to suppress errors in performance 
without improving children’s conceptual understanding” (p. 26). 

Little has been written about the reasoning behind students who have been classified 
as apparent experts and the consequences of this reasoning in working on more 
difficult (or novel) tasks. This aspect formed the basis of part of the present study, 
and is the focus of this paper. 
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THE PRESENT STUDY 

The purpose of the study was to investigate students’ understandings (and 
misunderstandings) about decimals, using a one-to-one, task-based interview. This 
paper focuses on those particular tasks which uncover a range of understandings or 
strategies of students who perform accurately on a decimal comparison test, and the 
consequences of this understanding on more difficult (or novel) tasks. 

Many writers have commented on the power of the one-to-one assessment interview 
as providing powerful insights into student thinking (Schorr, 2001). Bobis, Clarke, 
Clarke, Gould, Thomas, Wright, and Young-Loveridge (2005) reported on the major 
role of the interview in key numeracy projects in Australia and New Zealand. 

The participants were 48 children from a middle-class, co-educational Catholic 
primary school in suburban Melbourne. The students included 8 from Grade 3, 12 
from Grade 4, 19 from Grade 5 and 9 from Grade 6. Information letters and consent 
forms were sent home to around 300 students, and then a sample of those students 
whose parents responded positively was interviewed. General achievement in 
mathematics was not a criterion, although there was clearly a considerable range of 
levels of mathematical understanding across the 48 children. Each child was 
interviewed for around 30 minutes on an assortment of tasks.  No child was asked all 
questions in the set. The three tasks that will be outlined are taken from a much larger 
set of questions within the original interview. These tasks are assessing student 
understanding of the relative size of decimals. 

Tasks Assessing Relative Size of Decimals  

Task 1. A decimal comparison test was constructed (see Fig. 1) to attempt to unearth 
common misconceptions already identified in the literature. 

In this task the student was asked to compare two decimal numbers and say which 
was larger and why.  

1.973   19.73  1.45     1.46    0      0.6           0.376   0.217 

 

0.567   0.3   0.087   0.87    0.7   0.70             0.4      0.3 

   Figure 1: Task 1. Decimal comparison test. 

Task 2. In the next task (see Fig. 2) twelve number cards are arranged randomly in 
front of the student who is asked to order them from smallest to largest. 

    0       0.01       0.10       .356      0.9       1       1.2       1.7     2      1.70    1.05     .10 

Figure 2: Task 2. Ordering a set of twelve decimal numbers. 

According to Steinle and Stacey (2001), “it has been established that comparisons of 
pairs is simpler for students, reducing the information processing demands, yet can 
reveal as much” (p. 434). This may be referring to pairs as compared to triples of 
decimals as first used by Sackur-Grisvard and Leonard (1985). It might however be 
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that the more demanding task of a much larger set may unearth latent erroneous 
thinking. 

The third task (see Fig. 3) was designed to elicit a response that most likely requires 
benchmarking. McIntosh, Reys and Reys (1997) believe that “the variety and 
complexity of the benchmarks in making decisions about numbers and numerical 
contexts, is a valuable indicator of number sense” (p. 6). 

Markovits and Sowder (1994) conducted an intervention program with seventh grade 
students for the purpose of developing number sense. Results from a test following 
the program showed that such students were less likely to use memorised procedures, 
such as adding enough zeros to compare uneven decimals, or converting fractions to 
common denominators, and were more likely to use benchmarks when comparing 
decimals with fractions. 

Task 3. In this task the student is presented with two cards and is asked which of 
these numbers (pointing to the string of numbers) is closest to this (pointing to 0.18). 

 

                                         0.18  0.1      0.2         17    0.15        2 

Figure 3: Task 3. Benchmarking the size of decimals. 

RESULTS AND DISCUSSION 

In relation to the responses to the tasks in the present study, we have suggested that 
students who have no more than one error in the comparison test (Task 1), are 
possibly “apparent experts” or “task experts” as defined by Stacey and Steinle (1998, 
1999). As the set of decimal pairs was not the same as those used by Steinle and 
Stacey, this assumption may be incorrect for some students.   

Different ways of thinking were categorised for those students who achieved no more 
than one error on the decimal comparison set and who were assigned the status of 
“apparent expert”. This thinking generally fell into two groups:  

Justification that we have termed Place Value Judgement (PVJ) are those who used 
fractional language (apart from those explanations that could be categorised as 
shorter is larger thinking) and benchmarking. 

Justification that we have termed Whole Number Judgement (WNJ) predominantly 
used whole number language including those who used the rule for extending 
decimals of uneven length by adding zeros.  

Examples of Place Value Judgement are:  

• 1.46 is greater than 1.45 because 1.46 is one hundredth more 
• 0.567 is greater than 0.3 because five tenths is greater than three tenths, or 

0.567 is more than one half but 0.3 is less than a half 
• 0.87 is greater than 0.087 because 87 hundredths is greater than 87 

thousandths  
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• 0.7 is the same as 0.70 because 7 tenths equals 7 tenths (or 70 hundredths) 
Examples of Whole Number Judgement are: 

• 0.4 > 0.3 because four is greater than three 
• 0.567 > 0.3 because 567 > 300 

In Task 1, each pair was selected to uncover a pattern of behaviour or pattern of 
thinking identified in the literature. Asking the students to justify their choice 
provided a window into their thinking for each pair. Some students were found to use 
a particular pattern or rule consistently, while others changed from pair to pair.  

The most common misconceptions uncovered through this interview were: 

• WNT: Whole Number Thinking; e.g.,  0.217 > 0.37 because two hundred 
and seventeen is greater than thirty-seven 

• LILT: Longer is Larger Thinking; e.g., 0.217 > 0.37 because 0.217 has more 
numbers 

• SILT: Shorter is Larger Thinking; e.g., 0.3 > 0.567 because tenths are larger 
than thousandths 

• RT: Reciprocal Thinking; e.g., 0.3 > 0.4 because ⅓ > ¼ 
• DLZ: Decimals are less than zero; e.g., 0 > 0.6 

Two patterns of thinking that consistently provided correct responses were Place 
Value Judgement (PVJ) and Whole Number Judgement (WNJ). 

Students who made no more than one error in the set of nine pairs of decimals were 
grouped as “apparent experts” and then subdivided into those that used 
predominantly PVJ or WNJ. 

Twenty-four students were asked to order the set of twelve decimals in Task 2 and 
four of these ordered the set correctly. Only two fourth graders (Paula and David) 
were asked this question. They both would be classified as “apparent experts” due to 
their number of correct responses in Task 1. Paula would add zeros and then compare 
decimals as whole numbers (and had no errors in Task 1), while David would use a 
Place Value Judgement (with some benchmarking, e.g., 0.37 is closer to four tenths 
than 0.217) (with one error in Task 1). Their results for Task 2 were: 

Paula:  0      0.01     1.05     0.9     .10      0.10    .356     1     1.2    1.7      1.70    2 

David: 0      0.01      0.10     .356      0.9      1      1.05      1.2      1.7        2 

                         .10                                                             1.70 

 Figure 4: Results from Task 2: Ordering a set of twelve decimal numbers. 

The boxed sets indicate David placed one above the other and said that they were 
“the same.” David appeared to be able use his conceptual understanding of decimals 
to correctly complete this task. Paula on the other hand did not appear to notice the 
equivalent decimals, and appeared to be ordering the numbers using a whole number 
rule such that “point nine comes before point ten.” Maybe the integer in 1.05 was 
ignored and the ordering from zero, in her mind, was 1, 5, 9, 10, 10, 356.  
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These two examples suggest that Paula’s ability to compare pairs of decimals with 
perfect accuracy was not an indication of a stable understanding of the relative size of 
decimals. On the other hand, David’s use of place value and fraction knowledge 
meant that he was not distracted by the number of digits and did not misinterpret 
them as whole numbers. 

For Task 3, only four out of 17 students correctly answered “0.2 is two hundredths 
away from 0.18”. All of these were apparent experts from Task 1 and were further 
categorised as predominantly using PVJ in their explanations. Common errors were 
“0.15 because point fifteen is closest to point eighteen” and “17, because seventeen is 
closest to eighteen,” indicating that students were predominantly treating decimals as 
whole numbers. 

Following the Early Numeracy Research Project (Clarke, Sullivan, & McDonough, 
2002), research continued to the Grade 6 level, during which the focus included tasks 
on fractions and decimals. Included in the interview were a decimal comparison test 
and a set of ten decimals which the students were asked to order form smallest to 
largest. While exactly one third of the 321 Grade 6 students could compare the ten 
pairs of decimals with perfect accuracy, only 10% of students could order the set of 
ten decimals correctly. This indicates that the longer ordering task may provide more 
insight into the understanding of the “apparent experts” from the decimal comparison 
test. 

SUMMARY AND IMPLICATIONS 

The present study was designed to assess student understanding of decimals through 
a task-based interview. In this paper the performance of students on a range of tasks  
designed to assess students’ understanding of the relative size of decimals was 
discussed. These tasks follow the progress of students who may be termed “apparent 
experts” on a decimal comparison task. It was found that students who obtained the 
status of apparent expert by using a rule where zeros are added to equalise the length 
of two decimals and then compared as whole numbers, were not able to demonstrate 
a stable understanding of the relative size of decimals on more difficult (or novel) 
tasks. 

Implications for both teaching and research that emerge from this study include the 
following:  

• decimal comparison tasks involving pairs provide information about 
students who hold misconceptions about the relative size of decimals but do 
not confirm the status of “apparent experts”; 

• teaching students to annexe zeros before comparing decimals may be to the 
detriment of their conceptual understanding; 

• ordering more than two decimals is likely to prove a more searching task 
and a greater indicator of a stable understanding of the relative size of 
decimals than looking at a comparison of pairs; 
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• using fractional language to describe decimals more often may contribute to 
a clearer conception of the decimal numeration system (i.e., encouraging 
students to describe 2.75 as “2 and 75 hundredths” rather than “2 point 75”); 

These results add further weight to the calls by many researchers (e.g., Skemp, 1976; 
Wearne & Hiebert, 1986) for teaching which focuses on conceptual understanding to 
a far greater extent than procedural understanding, and emphasise the importance of 
place value in such teaching. The challenge for researchers remains to communicate 
these findings in a form that is accessible to a teaching population, many of whom 
lack confidence in their own knowledge of this important area. 
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We present a research experiment designed to analyze the ways undergraduate 
mathematics university students solve geometry proof problems. On the one side, we 
aimed to identify the types of formal proofs produced by these students. The results of 
this experiment inform on previous categorizations of deductive proofs. On the other 
side, we aimed to observe the ways these students use dynamic geometry software to 
solve proof problems and to determine whether using the software influenced in some 
way their proofs or their processes of solving the problems. 

INTRODUCTION 

A very active research agenda in Mathematics Education is the one focusing on 
mathematical proof. Some research in it described different styles of proofs produced 
by students (either empirical or deductive) (Balacheff, 1988; Antonini, 2003; Harel & 
Sowder, 1998; Zack, 1997). Other research described the mental processes followed 
by students when they move from producing empirical to deductive proofs or the 
ways students progress from producing less to more elaborated kinds of proofs 
(Arzarello, Micheletti, Olivero, Robutti, & Paola, 1998; Kakihana, Shimizu & 
Nohda, 1996; Raman, 2003). Furthermore, many of these research paid attention to 
the claimed advantages of teaching based on dynamic geometry software (DGS) to 
help students in learning deductive proof (Jones, Gutiérrez, & Mariotti, 2000); The 
results from research are not conclusive in confirming such claim: A majoritary 
conclusion is that DGS environments help students to find the way to solve geometry 
proof problems, but some researchers prevent from possible obstacles in making 
students feel the need of making deductive proofs, due to the power of conviction of 
dragging explorations with DGS (Chazan, 1993, and Healy, 2000). 

Most research in this agenda focused on primary and, mainly, secondary school 
students, with only a few research projects focusing on university students (Blanton, 
Stylianou, & David, 2003, and Weber, 2004, are two of the very few examples), so 
research based on these students is insufficient (Marrades & Gutiérrez, 2000, p. 121). 

A key difference among secondary and mathematics university students is that the 
first ones still have to learn to use deductive reasoning, while the second ones usually 
already have learned to do formal proofs. In this context, an unanswered research 
question is to identify ways the mathematics university students would use DGS to 
produce deductive proofs as solutions of geometry proof problems. The research 
presented in this paper is based on a teaching experiment with undergraduate 
mathematics university students who had showed expertise in writing deductive 
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proofs. The students were asked to solve several geometry proof problems, in a 
paper-and-pencil environment in some cases, and in a Cabri environment in other 
cases. The main objective of our research was to look for differences in the solutions 
of the problems solved in each environment, like producing different types of proofs 
or managing in different ways the difficulties found while solving the problems. 
More specifically, the objectives of the research were: 

• 1. To identify the types of proofs produced to solve geometry proof 
problems in a paper-and-pencil environment and a DGS environment, and to 
look for differences among the types of proofs produced in each 
environment. 

• 2. To explore the influence of a DGS (Cabri) environment, respect to a 
traditional paper-and-pencil environment, in the students’ solutions 
(management of the process of solving, and proofs produced). 

THEORETICAL FRAMEWORK 

The theoretical framework for this research has two components: Classification of 
proofs produced by students, and analysis of students’ use of DGS. 

Bell (1976) asked secondary school students to solve combinatorial proof problems 
so, not surprisingly, the proof types he described are based on the completeness of 
checking specific examples or making deductive arguments for specific sets of cases. 
A category particularly relevant to our study are the complete empirical proofs, 
consisting in checking a conjecture in the whole finite set of possible cases. 

Balacheff (1988), based on experiments where secondary school students had to 
solve several proof problems, mainly paid attention to the different ways the students 
selected the examples used to write proofs. Relevant to our study are Balacheff’s 
categories of naive empiricism, crucial experiment and generic example pragmatic 
(empirical) proofs, and thought experiment conceptual (deductive) proof. 

Harel and Sowder (1998) complemented Balacheff’s categories, since they worked 
with mathematics undergraduate university students, and they obtained detailed data 
for types of deductive proofs. Relevant to our study are the categories of inductive 
and perceptual empirical proof schemes and the categories of transformational and 
axiomatic analytical (deductive) proof schemes. Harel and Sowder coined the term 
proof scheme to refer to “what constitutes ascertaining and persuading” for a person 
(p. 244). To maintain a unique terminology in this paper, in what follows we use the 
term “proof” instead of “proof scheme” to refer to Harel and Sowder’s categories. 

Recently, several researchers have applied the above mentioned sets of categories of 
proofs to their own data, and they have found necessary to introduce some 
modifications for better matching to the data. For instance, Marrades and Gutiérrez, 
(1998, 2000) completed Balacheff’s empirical categories by considering the ways 
students used the examples in their proofs and defining several subcategories. 
Similarly, Ibañes (2001) introduced several pairs of subcategories in Harel and 
Sowder’s (1988) proof schemes to classify some types of proofs that didn’t mach any 
of their categories: Static/dynamic perceptual proofs; Authentic/false, a case/several 
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cases, and systematic/non systematic inductive empirical proofs; Static/dynamic, 
particular/ general, and complete/incomplete transformational analytic proofs. 

The framework used in our research to classify the proofs produced in the experiment 
(synthesized in Figure 1) is an integration of elements taken from the proviously 
mentioned sets of categories that we considered would be useful to classify our 
students’ outcomes, plus some original subcategories. Due to space limitations, and 
because the cases analyzed in this paper are formal proofs, we only explain here in 
detail the classification of deductive proofs in the theoretical framework. 

Empirical Deductive

Perceptual Inductive Thought 
experiment

Formal

Naive 
empiricism

Crucial 
experiment

Generic 
example

Exhaustive

Pure With inference

Transformative Axiomatic

 
Table 1: Categories of proofs. 

A empirical proof is pure when it only includes empirical verifications, and it is with 
inference when, apart from the empirical verifications, it includes some kind of 
reference to known definition, property, etc. To analyze deductive proofs, we 
consider two aspects of the proofs, the presence (or not) of examples in the proof, and 
the explicit use (or not) of elements of an axiomatic system: We differentiate, first, 
among thought experiments, when students use examples as sources of information 
and hints to write several steps in the proofs (Balacheff, 1988), and formal proofs, 
when students write the proofs without any support from the examples apart from, 
maybe, using a figure to visualize the elements involved in the problem; in this case, 
an example might provide the students with an initial idea of how to solve the 
problem, but then the example is not used any more to write the proof. 

We differentiate two subclasses of deductive proofs: Transformative proofs, when 
they are based on mental operations involving goal oriented operations on objects and 
anticipation of the operations’ results (Harel & Sowder, 1998, p. 258), and axiomatic 
proofs, when the proofs are based on elements of an axiomatic system (p. 273). 

Respect to the use of Cabri by our students, the literature offers several elements that 
are pertinent to this research: The ascending and descending phases (Arzarello et al., 
1998) and the cognitive unity of theorems (Boero, Garuti, Lemut, & Mariotti, 1996) 
may help to explain the relationships among empirical experimentations with Cabri 
and the production of a formal proof. The modalities of dragging (Arzarello, Olivero, 
Paola, & Robutti, 2002) may help to identify the aims of the students when they 
observe or transform a drawing on the screen. 
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THE EXPERIMENT 

The sample was a class group of undergraduate students in their 4th or 5th year at 
the Faculty of Mathematics of the Univ. de les Illes Balears (Spain) studying a 
course on Euclidean Geometry. The 8 students in this class participated in the 
experiment. The students worked in 4 pairs, and they were asked to present only a 
joint answer to each problem. The experiment took place during the ordinary classes 
(October to January); There were two classes per week, about 100 minutes per 
class. The first classes were devoted to remind students’ previous knowledge on 
Euclidean Geometry, to teach them some new concepts necessary for next classes, 
and to teach them to use Cabri II+. The rest of the course was organized as a 
problem solving setting jointly conducted by the teacher of the subject and the first 
author of this paper. 

During the teaching experiment, the students solved 16 geometry proof problems. 
The statements of these problems didn’t include any drawing. First the students 
solved 9 problems in their usual paper-and-pencil environment. Then they solved 7 
problems in the Cabri environment. Each pair of students used a computer. 

During all the experiment, both the teacher and the first author were present in the 
classes. Their role was to state the problems, to help students or answer their 
questions, and to manage the time of the classes. For each problem, there was a time 
for the pairs to work on the solution followed by a time to discuss the solutions 
obtained by the students and to institutionalize the new knowledge. 

METHODOLOGY 

The research was organized as a quasi-experiment, with one of the researchers acting 
as a participant observer. Different sources of data were used: In both environments 
we collected i) Researcher’s field notes; ii) Students’ written solutions; iii) Students’ 
self-protocol – this is an innovative tool where, emulating the “think aloud” 
technique for oral problem solving, students were asked to write, during the process 
of solving each problem, notes commenting their way of solving the problem, the 
ideas discussed either accepted or rejected, their decisions, etc. – Furthermore, in the 
Cabri environment, we collected: iv) The files saved by students with the figures 
constructed; and v) The record of session files. 

To analyze the information gathered, we have put together the written solutions, the 
self-protocols, and the record of session (for the Cabri problems); The other data 
(researcher’s notes and Cabri files) were used when convenient. This gave us a 
detailed picture of the way each pair of students had worked to solve every problem. 

DATA AND ANALYSIS OF RESULTS 

We are presenting here, as representatives of the 16 problems solved by the 4 pairs of 
students, abridged versions of a pair of students’ self-protocols and solutions to the 
paper-and-pencil problem 7 and the Cabri problem 13. Note that these students 
consistently use the verb “see” to mean “prove”. 
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Problem 7. 

Let H be the orthocenter of triangle ABC. Let A’ be the intersection of height AH 
and side BC. Let A’’ be the intersection of height AH and the circle circumscribed to 
ABC, with centre O. Let r be the straight line parallel to BC through O. Prove that H 
is the image of A by the product of symmetries with axes r and BC, respectively. 

1. We begin to draw Figure 1. 
2. We see that r ⊥ AA’’ because r is parallel to BC 

which is ⊥ AA’’ (the height). 
3. We want to see [prove] that HA’ = A’A’’. 

The students draw point M’ as intersection of r and 
AA’’. 
5. We also have to see that AM’ = M’A’’. 
6. To see it [conjecture 5] we draw Figure 2. We can see 

that B1M1 and M1A1 are congruent because [in 
triangles B1OM1 and A1OM1] two sides and the angle 
opposite to the longest side are congruent. 

7. Therefore AM’ = M’A’’ perpendicular to r. 
8. Now let’s see that HA’ = A’A’’ in Figure 1. 
10. A’B is a side common to both triangles [A’BA’’ and 

A’BH] and ∠HA’B = ∠A’’A’B = 90°. 
 Now we have to find another equal [congruent pair 

of] angle[s] to prove that the triangles are congruent 
and that HA’ = A’A’’. 

The students drew another figure similar to Figure 1, 
and they labelled as B’ the intersection of height BH 
and side AC. 
11. We see that ∆B’HA ≈ ∆ACA’ because both have a right angle and a common angle. 
 Also ∆CA’A ≈ ∆CB’B because both have a right angle and ∠HA’B = ∠A’’A’B the 

common angle [ C]. 
  CBB’ =  CΑA’’ = α. Now,  A’’BC =  CAA’’ = α because both angles contain the arch 

CA’’. 
12. Then, ∆A’A’’B = ∆A’HB because they have two equal angles and an equal side. ⇒ 

A’A’’ = HA’. 

The students have produced a correct transformative though experiment proof, since 
several drawings have guided them to write the proof in different key moments. 

Problem 13. 

Let ABC be a triangle. Let r and s be two non-parallel straight lines. For each side of 
ABC, draw a parallelogram having its sides parallel to r and s and having the given 
side of the triangle as a diagonal. Prove that the other diagonals of the three 
parallelograms are concurrent. 

The students draw Figure 3 and drag the vertices of the triangle to check the truth of 
the statement. They also use the command member? to verify that the three diagonals 

 
Figure 1. 

 
Figure 2. 
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meet at a single point. Now they try to prove the conjecture ad absurdum: 
2. We draw another straight line. Let’s suppose that this line is the diagonal and it 

intersects the two other diagonals in different points A, B. [Figure 4] 

5. Let M1 be the midpoint of the diagonals of parallelogram PQRS. Then it is the midpoint 
of side PR of the given triangle [ABC]. 

7. John suggests to change to the dual, three concurrent straight lines are three points of 
the same straight line in the dual. But we don’t follow this way. 

                     

Figure 3.                                                                 Figure 4. 
8. We made a drawing on paper trying to do it wrongly 

to see the problem [Figure 5]. 

10. John suggests that we can see that the area of triangle 
ABE is zero, but it seems difficult, and we don’t 
follow this way. 

The students used the Trace in Cabri to see that point 
E moves along the diagonal when they dragged vertex 
R. 
12. We are looking at A and B, but we don’t see any 

property characterizing them. 

15. We look for similarities. (we don’t pursue) 

16. We should see that the diagonals are known cevians of 
some triangle. 

A cevian of a triangle is a segment from a vertex to any point of the opposite side. 
17. We create the parallel to a side through the opposite vertex [they do it for the three 

vertices of ABC] We check on the drawing that the diagonals don’t have any 
relationship to these lines. [they delete the parallels] 

18. We try a triangle whose vertices are intersections of the diagonals with the sides of ABC. 

19. We check if they [the diagonals] are bisectors [they measure several angles], but they 
aren’t. 

The students remind the Ceva’s theorem, they write the theorem’s statement, and 
look for a way to prove it, but they don’t know how to do it. Finally, they make 
another unsuccessful trial on the Cabri figure, and they stop working. 

 
Figure 5. 
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As a summary, the students made a sequence of transformative thought experiment 
trials, since they have permanently handled figures looking for valid conjectures, that 
they were not able to prove. 

CONCLUSIONS 

The comparison of the answers to the two problems by this pair of students lets us get 
some conclusions related to different aspects of the experiment: 

- Classifying the proofs according to the categories mentioned in the Theoretical 
Framework section gives little information about high level mathematics university 
students’ behaviour, since all the proofs produced by them were deductive, and most 
proofs will be transformative thought experiments, since the geometry problems are 
prone to induce such kind of proofs. Therefore, other directions of analysis are 
necessary to have a deeper picture of the students. 

- The relationship among drawings (either in paper or DGS) and the production of 
proofs, that is the role of the figures/examples when the students are writing a proof, 
is quite subtle, and has to be observed carefully: 

- In a thought experiment proof, the examples guide the students’ steps to write the 
proof. This has been evident in the protocols of the two problems analyzed here. 
- In a formal proof, the steps in the proof guide the drawing of examples. Their role 
is not to suggest ideas to the students, but to help the reader understand the proof. 
- In any deductive proof, an example may be the a source of ideas for students but, 
in a formal proof, the example is, at most, the source of the initial idea, and the 
subsequent process of writing the proof doesn’t rest on the example any more. 

- The DGS helps students to empirically identify and check conjectures (by dragging) 
but, when students are reasoning deductively, some times the DGS doesn’t help them 
to find the way to a deductive proof. In these cases, using DGS doesn’t mean any 
advantage over the traditional paper-and-pencil environment. 

- The self-protocol has proved to be a useful methodological tool to get information 
on students’ activity, since it has let us to track their actions, both successful and 
unsuccessful, and decisions. 
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The role of beliefs is largely discussed as an important variable in the learning and 
teaching of mathematics. In this paper we present the results of a study that examines 
the effectiveness of a methods course designed around problem solving. One aim of 
this course was to challenge the mathematical beliefs of a group of preservice 
teachers as a first step to initiate change in their beliefs. The evolving beliefs are 
documented in reflective journals. The journal entries were analyzed according to 
established categories describing mathematical beliefs. 

INTRODUCTION 

The importance of mathematical beliefs is nowadays widely acknowledged (Leder, 
Pehkonen & Törner, 2002). According to Schoenfeld (1998, p. 19), beliefs can be 
interpreted as "mental constructs that represent the codification of people’s 
experiences and understandings". In particular, prospective teachers have developed a 
wide range of beliefs about the mathematical content and the nature of mathematics 
as well as about teaching and learning mathematics before undertaking their first 
education course (Ball, 1988; Feiman-Nemser et al., 1987). These beliefs are often 
based on their own experiences as students of mathematics and, for better or for 
worse, often form the foundation for their own practice as teachers of mathematics 
(Fosnot, 1989; Skott, 2001). As such, it is one of the roles of the teacher education 
programs to reshape these beliefs and correct misconceptions that could impede 
effective teaching in mathematics (Green, 1971).  

This study uses reflective journals to examine how the beliefs of a group of 
preservice elementary school teachers evolve as a result of being enrolled in a 
mathematics method course that was designed and taught with the implicit goal of 
changing their beliefs.  

MATHEMATICAL BELIEFS 

Dionne (1984) suggests that beliefs are composed of three basic components called 
the traditional perspective, the formalist perspective and the constructivist 
perspective. Similarly, Ernest (1991) describes three philosophies of mathematics 
called instrumentalist, Platonist and problem solving, while Törner and Grigutsch 
(1994) name the three components as toolbox aspect, system aspect and process 
aspect. All these different notions correspond more or less with each other. In this 
work we employ the three components defined by Törner and Grigutsch (1994). In 
the "toolbox aspect", mathematics is seen as a set of rules, formulae, skills and 
procedures, while mathematical activity means calculating as well as using rules, 
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procedures and formulae. In the "system aspect", mathematics is characterized by 
logic, rigorous proofs, exact definitions and a precise mathematical language, and 
doing mathematics consists of accurate proofs as well as of the use of a precise and 
rigorous language. In the "process aspect", mathematics is considered as a 
constructive process where relations between different notions and sentences play an 
important role. Here the mathematical activity involves creative steps, such as 
generating rules and formulae, thereby inventing or re-inventing the mathematics. 
Besides these standard perspectives on mathematical beliefs, a further important 
component is the usefulness, or utility, of mathematics (Grigutsch, Raatz & Törner, 
1997). 

CHANGING MATHEMATICAL BELIEFS 

Robust beliefs are difficult to change. However, an abundance of research purports to 
produce changes in preservice teachers of mathematics. Prominent in this research is 
an approach by which preservice teachers' beliefs are challenged (Feiman-Nemser et 
al., 1987). Another prominent method for producing change in preservice teachers is 
by involving them as learners of mathematics (and mathematics pedagogy), usually 
submersed in a constructivist environment (Ball, 1988; Feiman-Nemser & 
Featherstone, 1992). A third method for producing changes in belief structures has 
emerged out of the work of one of the authors in which it has been shown that 
preservice teachers' experiences with mathematical discovery has a profound, and 
immediate, transformative effect on the beliefs regarding the nature of mathematics, 
as well as their beliefs regarding the teaching and learning of mathematics (Liljedahl, 
2005). All three of these approaches are combined in the design and teaching of the 
aforementioned mathematics methods course.  

REFLECTIVE JOURNALING 

Journal writing in mathematics education has a long and diverse history of use. 
Journaling helps students reflect on and learn mathematical concepts (Chapman, 
1996; Ciochine & Polivka, 1997; Dougherty, 1996). It has been shown to be an 
effective tool for facilitating reflection among students (Mewborn, 1999) as well as 
an effective communicative tool between students and teachers (Burns & Silbey, 
2001). More relevant to this study, journaling has become an accepted method for 
qualitative researchers to gain insights into their participants' thinking (Mewborn, 
1999; Miller, 1992). In particular, reflective journals have been shown to be a very 
good method for soliciting responses pertaining to beliefs, even when such responses 
are not explicitly asked for (Koirala, 2002; Liljedahl, 2005). 

METHODOLOGY 

The Participants 

Participants in this study are preservice elementary school teachers enrolled in a 
Designs for Learning Elementary Mathematics course for which the third author was 
the instructor. This particular offering of the course enrolled 39 students, the vast 
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majority of these students are extremely fearful of having to take mathematics and 
even more so of having to teach mathematics. This fear resides, most often, within 
their negative beliefs and attitudes about their ability to learn and do mathematics. At 
the same time, however, as apprehensive and fearful of mathematics as these students 
are, they are extremely open to, and appreciative of, any ideas that may help them to 
become better mathematics teachers.  

The Course 

During the course the participants were immersed into a problem solving 
environment. That is, problems were used as a way to introduce concepts in 
mathematics, mathematics teaching, and mathematics learning. There were problems 
that were assigned to be worked on in class, as homework, and as a project. Each 
participant worked on these problems within the context of a group, but these groups 
were not rigid, and as the weeks passed the class became a very fluid and cohesive 
entity that tended to work on problems as a collective whole. Communication and 
interaction between participants was frequent and whole class discussions with the 
instructor were open and frank. 

Throughout the course the participants kept a reflective journal in which they 
responded to assigned prompts. These prompts varied from invitations to think about 
assessment to instructions to comment on curriculum. One set of prompts, in 
particular, were used to assess each participant's beliefs about mathematics, and 
teaching and learning mathematics (What is mathematics? What does it mean to learn 
mathematics? What does it mean to teach mathematics?). These prompts were 
assigned in the first and final week of the course.  

The Analysis 

The three authors independently coded the data according to each of the four 
aforementioned aspects of beliefs: toolbox, utility, system, and process. The results of 
these independent codings were compared, discrepancies were discussed, and 
pertinent entries were recoded. This process (Huberman & Miles, 1994) led to a more 
elaborate understanding of the framework, as well as a more consistent coding of the 
data.  

In what follows we use excerpts from the participants' journals to exemplify our 
shared understanding of each aspect of beliefs with respect to mathematics as well as 
the teaching and learning of mathematics. 

Beliefs about Mathematics 

Toolbox Aspect 

"My first impression is that math is numbers, quantities, units. In math there is always one 
right answer. […] Math is about [...] memorizing formulas that yield the right answer." 
(Stephanie)  

"When first pondering the question "What is mathematics?" I initially thought that 
mathematics is about numbers and rules. It is something that you just do and will do well 
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as long as you follow the rules or principles that were created by some magical man 
thousands of years ago." (David) 

System Aspect 

"Mathematics is the science of pattern and structure. It uses number sense and 
mathematical concepts to develop a flexible understanding of the world around us." (Nora) 

"Mathematics is a universal language. It is the study of numbers, proportions, relationships, 
patterns and sequences. Becoming literate in this language is important in order to 
understand space and time; to develop logical thinking and reasoning; […]." (Rachel) 

Utility Aspect  

"Math is all around us. We live in a quantitative society. On any given day, we may be 
required to use math to tell us how far over the speed limit we are driving, how much 
money we have left in our bank account to pay our loans, how many more university 
credits we need to graduate, how much prozac we need to take to get through the day or 
simply how many people in this world matter to us." (Sandee)  

Process Aspect 

"For me, math has truly transformed from being a skill or procedure that can be used 
merely for efficiency to being imbedded within a process of meaning-making that goes on 
inside the individual, a construction of understanding that we make up." (Becky)  

 

Beliefs about Learning and Teaching Mathematics 

Toolbox Aspect 

"For me math is a puzzle to figure out. All of the questions or problems we were given in 
school had a solution that I just needed to apply a formula or rule to and the answer would 
be clear." (Chealsy) 

System Aspect 

"To learn mathematics is to learn how numbers are used to represent concepts and matter, 
as well as show relationships and solve problems." (Diana) 

"Learning math means understanding patterns, quantities, shapes, […]. To teach 
mathematics is to teach fundamental number concepts […]." (Lorena) 

Utility Aspect  

"We also teach mathematics that is related to everyday life, for example our system of 
currency and how to measure how tall we are." (Jacqueline) 

"[We teach mathematics] to enable students to function successfully in our world. It is such 
an integral part of everything in and of our world, the more they know, the more choices in 
life they'll have." (Diana)  
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Process Aspect  

"The other thing that stands out is the difference between formally teaching students, and 
actually facilitating learning. By being a facilitator of the learning process, we are able to 
choose situations, activities and problems for the students to work on either individually or 
in groups, and through this approach, students are able to […] try different ideas, and 
develop strategies." (Robyn) 

"I think to teach mathematics you need to let the thinking be put in your students’ hands. 
You need to give them ownership of ideas and let them feel safe and free within the 
classroom." (Michelle)  

The above mentioned quotations represent only a small portion of all the student 
journals. A wide range of statements supporting each category can be found in the 
data. It should be noted, however, that not all excerpts are as easily categorized. We 
are following Dionne's (1984) suggestion that mathematical beliefs constitute a 
mixture of the above mentioned aspects, and as such, clear classification cannot 
always be made. As a result, many journal entries were coded for more than one 
aspect. For example, in the following journal entry, the system aspect is intertwined 
with the utility aspect in beliefs about mathematics.  

"It think it [mathematics] has to do with the complex relationships between numbers and 
the symbols we use to make sense of the world among us. More and more I see maths as 
a system put in place to help us better […] make sense of the world around us. Maths 
allows us to group things, to calculate, to categorize. It's a great way to bring order from 
chaos." (Heng-Zi) 

In addition, the data was checked for comments that were indicative of rhetoric. That 
is, comments that are hollow echoes of conventional beliefs about mathematics and 
the teaching and learning of mathematics. Examples of journal entries that were 
flagged as rhetoric are the following very succinct responses to What is 
Mathematics? 

"Math is the study of numbers and patterns and the relationship between them." (Leslie) 

"Mathematics is the study of numbers." (Reine) 

Amber gives a similar response, but then follows it up with comments that indicate 
that she has internalized these beliefs and made them her own. As a result, Amber's 
comments are not flagged as rhetoric.  

"Math is a language that helps individuals reason, problem solve, and distinguish 
relationships. In order to do these activities, we need an understanding of the basics of 
the language, such as symbol meaning, number values, number relationships, and basic 
skill counting." (Amber) 

In all, there were five participants whose data was deemed to be rhetoric, and as such 
excluded from the aggregation. 
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RESULTS AND DISCUSSION 

The coded data was aggregated to produce a holistic picture of the evolving beliefs of 
the class as a whole. The results of this aggregation are displayed in Table 1. 

  Mathematics 
Before 

Mathematics 
After 

Teaching 
Before 

Teaching 
After 

Toolbox 13 2 7 3 

System 22 19 18 8 

Utility 10 9 26 1 

Process 0 12 6 30 

Table 1: Aggregation of coded data 

The following charts (Figure 1 and 2) show the distribution of beliefs about 
mathematics at the beginning and at the end of the course. 

Beliefs about mathematics at

 the beginning of the course

Toolbox

System

Utility

Process

 
Beliefs about mathematics at 

the end of the course 

Toolbox

System

Utility

Process

Figure 1 Figure 2 

The most obvious change is the degree to which a process aspect of mathematics has 
been introduced into the collective beliefs of the class. In referring to Table 1 it 
appears that the process aspect displaced the toolbox aspect of beliefs about 
mathematics. However, careful analysis of the disaggregated data reveals a more 
complex view of changing beliefs. For some participants changes involved the 
addition of a belief aspect, for others it involved the dismissal of an aspect, and for 
others it involved the replacement of one aspect with another. The net effect, 
however, remains a shift within the class away from the toolbox belief of 
mathematics and towards the process belief of mathematics.  

Figure 3 and 4 show the distribution of beliefs about teaching and learning 
mathematics at the beginning and at the end of the course. 
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Beliefs about learning and teaching 

mathematics at the beginning of the course

Toolbox

System

Utility

Process

 
Beliefs about learning and teaching 

mathematics at the end of the course

Toolbox

System

Utility

Process

Figure 3 Figure 4 

These figures show a significant shift in beliefs about the teaching and learning of 
mathematics towards a process aspect. Here, however, the figures are very 
representative of the changes that occur at the individual level. Most of the change in 
the participants' beliefs about the teaching and learning of mathematics can be 
encapsulated as a change from a system aspect and/or a utility aspect into a process 
aspect.  

CONCLUSION 

A very powerful conclusion from this study is the impact that the problem solving 
environment within the class had on the recasting of these preservice teachers' beliefs 
about what mathematics is, and what it means to teach and learn mathematics. 
Through their own experiences with mathematics in a non-traditional setting most of 
the students come to see, and furthermore to believe, in the value of teaching and 
learning mathematics in the sense of the process aspect. Further research is required 
in order to more closely examine the continuous nature of this change. 
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PARTIAL KNOWLEDGE CONSTRUCTS  

FOR THE PROBABILITY AREA MODEL 
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We present the learning process of a pair of grade 8 students, who learn a topic in 
elementary probability. The students successfully accomplish a sequence of several 
tasks without apparent difficulty. When working on a further task, which seems to 
require only actions they have previously carried out well, they run into difficulty. In 
order to explain this difficulty, we analyze their learning process during the task 
sequence, and identify some partial knowledge.  

SOME THEORETICAL ASPECTS 

Students' incorrect answers sometimes overshadow meaningful knowledge they have 
constructed. On the other hand, correct answers often hide knowledge gaps. In both 
cases, we can speak of partial knowledge. Partial knowledge constructs are the main 
focus of this paper. 

The RBC model (Hershkowitz, Schwarz, & Dreyfus, 2001) will be used as the main 
methodological tool. Processes of knowledge construction are expressed in the model 
by means of three observable and identifiable epistemic actions, Recognizing, 
Building-with, and Constructing (whence RBC). Constructing of new knowledge is 
largely based on vertical re-organizing of existing knowledge constructs in order to 
create a new knowledge construct. Recognizing takes place when the learner 
recognizes that a specific knowledge construct is relevant to the problem she is 
dealing with. Building-with, is an action comprising the combination of recognized 
knowledge elements, in order to achieve a localized goal, such as the actualization of 
a strategy or a justification or the solution of a problem. 

Students' knowledge constructs are individual even if they may be shared (Hershkowitz, 
Hadas & Dreyfus, 2006). Ideally, a student's constructs match suitable mathematical 
principles. In other cases, the fit between the mathematical principle and the student's 
construct is partial. Constructs that partially fit a mathematical principle will be called 
partial knowledge constructs. DiSessa and Wagner (2005) indicate that when many 
elements and relations are involved, some may be missing or malformed. We stress 
that we consider the partiality of knowledge with respect to the mathematical 
principles that underlie a specific learning context. 

THE STUDY 

Contents 

In the long-term research project, of which the present report presents one aspect, we 
observed five grade 8 classes, and six additional pairs of 8th grade students, working 
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on a sequence of tasks in their probability curriculum. Their processes of knowledge 
construction were supported by a learning unit with three stages: (i) calculating 
probabilities in 1-dimensional sample space (1d SS) and representing them on a 
chance bar; (ii) calculating probabilities in 2-dimensional sample space (2d SS) for 
cases where the possible simple events in each dimension are equi-probable; in such 
cases, the 2d simple events can be counted and organized in a table; (iii) calculating 
probabilities in 2d SS for cases, where each dimension has only two possible simple 
events (binomial sample space), which need, however, not be equi-probable; the area 
model was the main tool for this stage. 

The data for this paper stem from the work of one pair of students on a stage iii task 
in a classroom setting. Stage iii consisted of a sequence of tasks for which the amount 
of instructions and clues for the learners were gradually reduced (see Figure 1 for an 
example of one such task).  

 

Figure 1:  The Smog City task 

  

 

 

 

 

 

 

 

 

 

b. Calculate the probability to meet a 
tall smoker. Explain your 
calculations. 

c. What is the probability to meet a 
person who is neither tall nor a 
smoker? 

d. The probability to meet a tall 
smoker 0.06 (See b). 

Jonathan claimed that we can find 

Smog City 

The probability to meet a smoker in 
Smog City is 0.3. The probability to 
meet a tall person is 0.2. (People 
above 180 cm are considered as tall 
people). We shall assume that the 
percentage of the smokers among 
the tall people is the same as among 
the whole population. 

Supose that we are going to meet 
one person in Smog City.  

Our goal is to calculate probabilities 
of various events. 

For our calculations we shall use an 
"Area Square". We shall assume 
that the square represents all the 
possible probabilities and therefore 
its area equals 1.  

a. Here is a division of the square 
according to the probability to meet 
a tall person (the vertical line).  

Please continue the division of the 

Not tall 

0 8

Tall

Smoker

0 3

Not 

smoker
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Principles 

We now list some of the mathematical principles that underlie stage iii of the learning 
unit. The first three principles relate to the 2d SS and the organization of its events in 
the area square. The remaining principles relate to probability calculation in 2d SS 
and its justification. 

(1) (Four Simple Events) A binomial 2d SS consists of two binomial 1d SSs, and 
therefore has four simple events.  

(2) (Side) Every side of the square represents one of the 1d SSs, and is divided into 
two parts according to its probabilities. The division of each side determines a 
division of the square into two rectangles. 

(3) (Matrix) The divisions of the two sides create a division of the square into four 
rectangles representing the four simple events. The event A∩B is represented by the 
rectangle whose sides represent the events A and B, respectively. 

(4) (Cells Ratio) In an area model that is divided into 10×10 cells, probabilities can 
be calculated as ratios: the number of relevant cells/100. 

(5) (Multiplication) The probability of a 2d simple event can be calculated as the 
product of the respective 1d probabilities. 

(6) (Rectangle Area) The justification for the multiplication principle is the 
representation of the event by a rectangle. The area of a rectangle is calculated as the 
product of its side lengths. 

(7) (Part) Alternatively, multiplication is appropriate because we calculate a part of a 
part. 

Data collection and analysis  

All the lessons were videotaped and transcribed. A video camera was focused on the 
pair of students, Roni and Yam. 

A researcher was present in every lesson and took field notes. Milestones of the 
students’ knowledge construction were listed in a development table. When we 
identified partial knowledge constructs, we traced the knowledge construction by 
means of the RBC model, and compared the students’ constructs with the 
corresponding mathematical principles.  

In the next sections, we shall describe and analyse the learning process during the 
Roni and Yam's work on the task sequence, and then try to explain their later actions 
in the light of their earlier constructions. The focus of our analysis will be Roni's 
constructions. We shall consider Yam's contribution to the learning process as part of 
the context for Roni's knowledge constructing. Similar analyses of learning processes 
of student pairs using the RBC-model have been presented by Dreyfus, Hershkowitz 
and Schwarz (2001). These authors considered the emergence of shared knowledge in 
the context of the pair of students. 
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CONSTRUCTING THE AREA MODEL 

Roni and Yam met the area model for the first time in the "Smog City" task (Fig. 1). 
They were working as a pair in the classroom. They correctly answered all the 
questions of the task. They completed the division of the square into four rectangles 
by drawing a segment separating the three upper rows from the seven lower rows. 
They wrote into every rectangle what its area represents, and upon the teacher’s 
prodding, Roni explained:  

210  R: [The probability to meet a tall person who is also a smoker] is zero point 
zero six. [The probability to meet a person who is a smoker but not tall] is 
3 times 8: 0.24. 

222 R: The probability is 56 squares out of 100. 

When discussing question d, Roni and Yam rejected Jonathan’s suggestion and 
accepted Alma’s. Their written answer, dictated by Roni, described in detail the four 
events of the 2d SS and justified the multiplication using principle 7 (Part): 

 "…0.94 are all the other kinds: tall people that do not smoke, smokers who are not tall 
and not tall people that don't smoke. [Alma's] probability is correct because among 0.7 
non-smokers there are 0.56 not tall, and among 0.8 not tall there are 0.56 not smoking. 
(0.14 of the non smokers are tall and 0.24 of the not tall smoke)". 

Yam asked for an explanation and Roni supplied it: 
269 R: Because 0.24 plus 0.56 is 0.8. 

We may say that in the process of carrying out the first task, Roni constructed most 
of the 2d SS principles, at least in the context of the Smog City task. The only 
principle for which there is no evidence is principle 6 (rectangle area as justification). 
In R 269 we can see evidence for an additional construct (Complement): Each 1d 
simple event is represented by a rectangle composed of two adjoining rectangles, 
each of which represents a 2d simple event. The probability of such a 2d simple event 
is equal to the probability of the 1d simple event minus the probability of the other 2d 
simple event. We shall see that the Complement construct plays a central role in 
Roni's thinking.  

The second task, "Arrows", deals with two girls who throw arrows on a target. The 
probability that Ofra will hit the target is 0.3 and the probability that Ayelet will hit 
the target is 0.5. The students are given an empty area square with 
the name Ofra marked on the horizontal axis and Ayelet on the 
vertical one, and are asked to divide it according to the givens and 
to calculate various probabilities.  

Roni leads the division of the square into four rectangles, which 
fit the Side principle but not the Matrix principle: All four events 
are represented in the square; one side is divided according to the 
probability of Ofra to hit, and the other side is divided according 
to the probability of Ayelet to hit; but the axis marked Ofra is 
divided according to Ayelet's probabilities and vice versa (Figure 2). Nevertheless, 
the students’ probability calculations are correct. 

Ofra 

A
ye

le
t 

Figure 2 
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We identified a similar lack of adherence to the Matrix principle in the answer to another 
task that we shall not present here. As in the present case, in spite of the wrong 
organization of the area square, the students answered all questions of that task correctly. 

"Book Bazaar" is the first task presented with an area square that is not divided into 
100 cells. According to this task 0.2 of the books to be sold in the bazaar was marked 
by an invisible code that entitles to a price reduction. In addition, 0.1 of the people 
who bought books win a cookbook. As in the earlier tasks, the students were asked to 
divide the square according to the givens, to write into every rectangle what its area 
represents, and to calculate some probabilities. 

Without measuring, Roni sketches freehand drawings of two segments that divide the 
square into four rectangles and states that the probability to both, win a cookbook and 
get a price reduction is 0.02. Upon Yam’s question, Roni explains:  

61 R: You divide everything into 10, right? 

62 Y: Just a minute. 

63  R:  You divide here into 10 columns. Just one column you paint. Here you 
also divide into 10 rows. Two of them you paint. So you have here two 
cells that you paint together; and eight cells only in this color. 

65 R:  Eighteen cells only in that color. 

Roni thus used the Cells Ratio principle even though he worked with a square that 
was not divided into cells. 

When ending his explanation, Roni starts painting the square and writes the events in 
the proper rectangles. His organization of the events in the area square expresses the 
Four Simple Events principle and the Side principle. Since he does not mark the axes 
in his drawing, there is no expression of the Matrix principle. 

Next, Roni and Yam successfully deal with a task that was presented without any 
drawing. Like in the first task they were asked to relate to an imaginary student who 
calculates a probability of a 2-d event as the product of the respective 1-d events. 
Again Roni accepts the calculation and justifies it using the Part principle. 

A difficulty 

On the basis of their performance up to this point, Roni and Yam might have been 
expected to do well on the "Safety Systems" task: In order to ensure the functioning 
of a machine, two safety systems have been installed. The first system works 
properly in 0.99 of the cases, and the second system works properly in 0.98 of the 
cases. What is the probability that the machine will misfunction, because neither 
safety system will work? Describe and explain your calculations. 

Here, for the first time, Roni and Yam are confronted by a task that can't be 
represented by 10×10 area square. After drawing a schematic area square that 
represents the given probabilities, they hesitate which event to write in each 
rectangle. Several times they write events, erase them and write again. They end up 
having the axes marked "Device A" and "Device B", and having all the 2d events 
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written in the proper rectangles (Figure 3). They did not specify the 1d events nor 
their probabilities on the axes. 

Yam multiplies the probability that device A will work by the probability that device 
B will work and gets the probability that both devices will work (0.9702). Roni 
accepts the calculation and points to the corresponding rectangle. Next, Roni points 
to the rectangle that represents the event "neither system will work" and says: "Look, 
it is two, right? Two multiplied by one". 

Roni writes 0.002 in the rectangle "None [will work]". This wrong probability might 
be the consequence of building with the Cells Ratio principle while considering 1000 
cells instead of 10000. Moreover, Roni does not recognize that he has calculated the 
required probability that the machine will misfunction. 

Roni and Yam try to calculate the other probabilities; they make some calculations, 
doubt and erase them, and turn to another 
task.  

After a few minutes, they return to the 
Safety Systems task, now building-with 
the Complement construct: In order to 
calculate the probability that only system 
A will work, they subtract the (wrong) 
probability that neither system will work 
(0.002) from the probability that the 
system B will not work (0.02) and obtain 
0.018. Similarly, they obtain 0.008 for the 
probability that only system B will work. 
Now they calculate the probability that 
neither system will work by subtracting 
the sum of the three other probabilities 
from 1: 1-(0.9702+0.018+0.008)=1-0.9962=0.0038. In this instance, the Complement 
construct serves as indication that the result is wrong:  Yam notes that the 
probabilities in the rectangle that represents the event "System B will not work” 
should add up to 0.98. Roni is also bothered with the results: "Leave me alone, Yam. 
It's 0.0038. Can't be, but never mind." 

They again leave the question, and soon return to check their answers, but they do not 
advance. The further attempt at the question did not bring about enlightenment that 
the desired probability was already in their hands at an early stage of the calculation 
(up to the computational error). The contrary is true: Now Roni declares that the final 
value, 0.038 seems reasonable to him. However, Roni states that he has no idea 
whether their calculation is correct.    

Partial knowledge constructs 

The Cells Ratio principle and the Complement construct are both correct, and if our 
interest were to assess the correctness of the students' solution we might say that it 
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was correct up to a computational error. However, since our interest is in knowledge 
construction, the students’ actions raise some troubling questions. We shall now 
return to Roni's knowledge construction prior to the struggle with the Safety Systems 
task, in order to identify partial knowledge constructs – constructs that partially fit the 
corresponding mathematical principles. 

The organization of the events in area square model: Roni, together with Yam, 
correctly organized the events in area squares from the very moment that he was first 
introduced to this model. Several times he divided every side of the square according 
to the probabilities of a 1d SS and got an adequate division of the square into 4 
rectangles. He constructed the Side principle and later recognized and built-with it in 
various contexts. We may say that it became an active strategy. We claim that the 
Matrix principle, on the other hand, remained a partial knowledge construct. It was 
constructed in the context of the Smog City task. In this introductory task the given 
1d events and their probabilities were presented on the axes of an area square. In 
other tasks, when the students had to determine themselves what is represented by 
each axis, their answers contradicted the Matrix principle at least twice (see Fig. 2). 
We did not find expressions of recognition of the Matrix principle in their answers to 
the other tasks. 

Probability calculations: Roni constructed the Cells Ratio principle in the context of 
the Smog City task and then recognized it and built-with it in various contexts, 
including when he did not see an area square divided into cells. Roni also constructed 
and then recognized and built-with Complement, which had not been intended in the 
design of the unit. In contrast, the Multiplication principle remained a partial 
knowledge construct. Roni explained why it is a good idea to multiply probabilities, 
when the principle was used by imaginary students, but he never used this strategy. We 
are witnesses to the construction of this principle and to its recognition, but never to 
building-with it. It did not become an active strategy. Roni justified the multiplication 
as a calculation of a part of a part (the Part principle). The principle that justifies the 
multiplication as a rectangle area calculation was not constructed at all. 

Roni's struggle to solve the Safety Systems task in light of his partial knowledge 

constructs 

The absence of the Matrix principle, which had been constructed only for a very 
limited context in which the 1d events and their probabilities were written along the 
sides of the square, can explain Roni's difficulty to arrange the 2d events in the area 
square. In previous tasks he could enter every event in its correct rectangle due to the 
10×10 cells that he saw or imagined. In the Safety Systems task, however, even when 
his organization fit the Matrix principle, possibly after erasing and correcting his 
drawing several times, Roni did not mark the 1d events and their probabilities on the 
axes. Since the given probabilities can't be represented as fraction of denominator 10, 
and therefore the 2d events can't be represented in a 10×10 area square, the most 
efficient strategy to solve this task is by means of the Multiplication principle. But 
this principle had not become an active strategy for Roni. In the absence of the 
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Matrix principle, Roni calculated the probability of the rectangle that represents the 
event "neither system will work" by means of the Cells Ratio principle (and with a 
mistake), fails to recognize that he calculated the desired probability, and tries to find 
it by means of the Complement construct. 

CONCLUDING REMARKS 

Analysis of Roni's constructions reveals that some of his constructs matched the 
mathematical principles that underlie the learning unit only partially. Existing 
knowledge plays a central role in the construction of further knowledge (e.g.  Smith, 
diSessa and Roschelle (1993)). Roni's partial knowledge constructs explain his 
difficulties to solve the Safety Systems task and enable us to understand his later 
actions in the light of his former constructions. 

Roni's partial knowledge constructs were constructed when he carried out the first 
few tasks in the sequence. In these tasks, all his probability calculations were correct, 
even when the context did not include any clue for the use of the area model. From 
this point of view we can claim that Roni's work exemplifies a situation in which 
correct answers hide knowledge gaps. The gaps were hidden, not only to an external 
observer, but also to Roni who did not experience any need for further constructing. 
Roni's success to accomplish the first few tasks is largely due to his construction of 
the Complement construct, which serves him as an alternative principle. The 
combination of the Cells Ratio principle and the Complement construct was efficient 
as long as the given probabilities could be represented in a 10×10 area square, and 
actually delayed the need for further construction. 
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VISUALIZATION IN MATHEMATICS LEARNING 
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This paper describes some important aspects concerning the role of visualization in 
mathematics learning. We consider an example from integral calculus which focuses 
on visual interpretations. The empirical study is based on four problems related to 
the integral concept that highlight various facets of visualization. In particular, we 
are interested in the visual images that students use for working on specific problems 
and how they deal with given visualizations. The findings show the importance as 
well as the difficulties of visualization for the students. 

INTRODUCTION 

The first part of the title is borrowed from a common proverb which highlights the 
importance of visualization in general. Likewise, visualization has a long tradition in 
mathematics and the list of famous mathematicians using or explicitly advocating 
visualization is large.  

One prominent example is certainly the blind Euler whose restriction did not have an 
effect on his creative power. During the years of his blindness he was able to produce 
more than 355 papers – due to his visual imagination as well as his phenomenal 
memory (Draaisma, 2000). Hadamard (1954) pointed out the importance of 
visualization by referring to Einstein and Poincaré. They both emphasized using 
visual intuition. In Pólya’s (1973) list of heuristic strategies for successful problem 
solving, one prominent suggestion is ”draw-a-figure” which has become a classic 
pedagogical advice. 

However, in this paper we discuss some findings which focus on the role of 
visualization ranging from being useful to being an impediment. 

VISUALIZATION IN MATHEMATICS LEARNING 

The role of visualization in mathematics learning has been the subject of much 
research (e.g. Arcavi, 2003; Bishop, 1989; Eisenberg & Dreyfus, 1986; English, 
1997; Kadunz & Straesser, 2004; Presmeg, 1992; Stylianou & Silver, 2004). In 
accordance to Zimmermann and Cunningham (1991) as well as Hershkowitz et al. 
(1989), Arcavi (2003, p. 217) defines visualization as follows:  

Visualization is the ability, the process and the product of creation, interpretation, use of 
and reflection upon pictures, images, diagrams, in our minds, on paper or with 
technological tools, with the purpose of depicting and communicating information, 
thinking about and developing previously unknown ideas and advancing understandings. 
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This definition emphasizes that, in mathematics learning, visualization can be a 
powerful tool to explore mathematical problems and to give meaning to mathematical 
concepts and the relationship between them. Visualization allows for reducing 
complexity when dealing with a multitude of information. 

However, the limitations and difficulties around visualization and even the reluctance 
to visualize have also been largely discussed (Arcavi, 2003; Eisenberg, 1994; 
Stylianou & Silver, 2004). Visual techniques which rely on “not always procedurally 
‘safe’ routines” (Arcavi, 2003, p. 235) are considered to be cognitively more 
demanding than analytical techniques.  

In a different context, visualization is discussed as an important part of so-called 
“concept images” (Tall & Vinner, 1981). The concept image includes visual images, 
properties and experiences concerning a particular mathematical concept. To 
understand a formal mathematical concept requires of the learner to generate a 
concept image for it. Nevertheless, Vinner (1997, p. 67) points out that “in some 
cases the intuitive mode of thinking just misleads us.” In this paper, we focus only on 
the visual aspects of the concept image. 

TREATMENT OF INTEGRAL CALCULUS IN SCHOOL 

Many topics in mathematics have visual interpretations and the integral calculus is 
certainly one of those. This paper is not the place to go into detail on teaching and 
learning integral calculus in Germany; for this general discussion we refer to Blum 
and Törner (1983) and Kirsch (1976).  

For the sake of brevity we limit ourselves in the following to the presentation of the 
major aspect relevant to our study. A classical approach to the integral in school is 
the area calculation problem. This problem allows for using the geometric reference 
for visualization. Thus, the most basic way of introducing integrals is using the close 
connection between the idea of an integral and the idea of an area, initially for 
functions with positive areas in the first quadrant. Later on, this idea is expanded by 
identifying the integral as sum of the oriented areas. 

RESEARCH QUESTIONS 

Much of the research into mathematics students’ knowledge of the integral has been 
oriented by assumptions about what students should know. Instead, we report on 
some ongoing research into what students do know with a special focus on visual 
aspects of the integral. This paper presents some results gained within the scope of a 
larger study to investigate students’ mental representations concerning the integral 
(Rösken, 2004). Our research questions in this study were:  

• What visual images do students have concerning the integral? 

• How do students deal with a given visualization? 

• To what extent are visual images used by the students? 
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    Figure 1               Figure 2 

METHODOLOGY 

The study employed qualitative methods to capture the importance of visualization in 
the learning of integral calculus. The observation of the lessons in question and the 
analysis of the teaching material led to constructing a questionnaire containing 
several problems related to the integral. The students worked on this questionnaire in 
the classroom under supervision and were allowed to use a calculator. For the 
purposes of this paper we focused on four problems revealing diverse aspects of the 
integral. 

The subjects in this study were students in grade 12 of two German high-schools. The 
first class consisted of 24 students, 14 female and 10 male students. The second class 
consisted of 28 students, 6 female and 22 male students. The two classes together 
form a total of 52 students. For the analysis, we do not distinguish between these two 
classes. 

EMPIRICAL RESULTS 

This is not the place to give a detailed analysis of the observed lessons. The main 
approach to the integral discussed above emerged in both classes. In this section, we 
restrict ourselves to the presentation of the problems, the underlying mathematical 
aspects and the students’ answers. 

Problem 1:  

Draw a figure to illustrate the geometric definition of the integral. 

The geometric definition refers to the area concept as already mentioned. We were 
interested in the visual representations that students associate with this aspect of the 
integral. The following table shows the distribution of the students’ solutions: 

Table 1: Students’ answers to problem 1 

 

 

 

90% of the students were able to illustrate the geometric definition of the integral. 
However, it is remarkable that 77% of the students disposed of an image that is 
limited to a positive area. Figure 1 shows an 
example of such visualization which represents 
merely one aspect of the integral concept. This 
restricted visualization will turn out to be an 
obstacle for working on the other problems. 
Figure 2 shows an example for a more adequate 
visualization which was only used by 13% of the 
students.  

Positive area Positive and negative areas No answer 

77% 13% 10% 
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Problem 2: 

Find a formula for the area by using integration. 

a)                                                        b) 

        

 

 

 

 

 

 

In contrast to problem 1, the students were given a concrete visualization and were 
asked to find the integrand as well as the limits of integration. In problem 2b, the 
students additionally had to consider the orientation of the area.  

Table 2 shows the distribution of the students’ answers to problem 2a:  

Table 2: Students’ answers to problem 2a 

Correct answer Incorrect answer No answer

50% 40% 10% 

 

It is notable that the given visualization of this problem differed only slightly from 
the visualization the students chose in problem 1. However, half of the students were 
not able to give a correct answer. Among the incorrect answers, the following terms 
can be found:  

∫
b

a

kdx     ∫
b

a

adx     ∫
b

a

dxxa )(     ∫
b

a

ada     ∫
b

a

dxaf )(  

One difficulty for the students was to name the limits of integration. It is evident that 

finding the integral for the given image conflicts with the standard notation: ∫
b

a

dxxf )(     

Furthermore, the students had major problems to recognize the given constant 
function as a possible integrand. Obviously, they were missing an x-term. One 
student gave the correct answer but stated the following:  
 

: Not possible, because this is a constant function and there is no x in it and  
        that’s why it is not possible to put in the limits. 

 b 

       a 

1    2    3 

 1

 -1

∫
b

dxxf
0
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Figure 3 

Two students solved this 
conflict by drawing a 
supporting straight line as 
shown in figure 3. They 
obtained the answer to this 
problem in a creative 
though complicated way.  

 

Table 3 shows the distribution of the students’ answers to problem 2b:  

Table 3: Students’ answers to problem 2b 

Correct answer Incorrect answer No answer 

40% 54% 6% 

While the difficulties to find the integrand remained, the problem to name the limits 
of integration minimized due to the concrete numbers provided in the illustration. 
However, a new obstacle emerged because of the orientation of the area. Instead of 
the area, the students calculated the integral. This was found in more than half of the 
incorrect answers. Some students solved this conflict by shifting the square above the 
x-axis. 

Problem 3: 

a) Find the area bounded between the function f(x)=sinx and x-axis over [π,2π].  

b) Calculate the integral: ∫
−

π

π

2

sin xdx  

For the answer to problem 3a the students had to calculate an area of negative 
orientation while in problem 3b the same function was given but this time they were 
asked to calculate the integral. Even though the limits of integration changed, the 
answer to problem 3b could be immediately given by visualizing the graph of the 
function and considering problem 3a. This problem demanded that students 
distinguish clearly between the area and the integral concept.  

Table 4 shows the distribution of the students’ answers to problem 3a:  

Table 4: Students’ answers to problem 3a 

Correct answer Incorrect answer No answer 

27% 67% 6% 

Some of the students had difficulties to put in the limits or to give the correct 
antiderivative. More interestingly, 77% of the incorrect answers resulted in giving a 
negative value as area of the function. On the one hand, these students did not use 
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visualization to approach the problem. On the other hand, they did not scrutinize the 
negative value of their result. Only 8% of all students sketched the graph.  

Table 5 shows the distribution of the students’ answers to problem 3b:  

Table 5: Students’ answers to problem 3b 

Correct answer Incorrect answer No answer 

23% 73% 4% 

The distribution of the answers to problem 3b is similar to 3a and the same mistakes 
emerged. Remarkably, in 47% of the incorrect answers a positive value was given. 
The students continued calculating the area as required in 3a instead of the integral, 
some of them even mentioned explicitly “A=2”. Only 8% of all students visualized 
the graph, 6% referred to their solution of problem 3a. 

Problem 4 

How would you proceed to calculate ∫
−

1

1

3 )2sin( dxx   ?  

This problem can be easily solved by visualization. The function is odd so that on the 
given interval [-1,1] the integral equals zero. Only 4% of all students took into 
account these considerations. 8% of the students did not answer at all while the other 
students proposed to work out the integral by substitution (42%), by finding the 
antiderivative (29%) or by integration by parts (17%). To summarize, the solutions to 
this task showed an explicit bias towards an algorithmic approach even though the 
visual one would have been significantly easier.  

DISCUSSION AND CONCLUSIONS 

The selected problems emphasize convincingly some important aspects inherent to 
visualization. On the one hand, visualization proves to be a useful tool for working on 
the problems and the common proverb mentioned in the title seems to be appropriate. 
For example, some students use visualization in a creative way by modifying the 
given task (problem 2; figure 3). This approach enables them to avoid the difficulties 
with the given visualization and thereby sheds light on the underlying obstacles 
concerning this task. Another interesting point is that even students that do not show 
visualization on their paper were able to solve problem 3 correctly. This highlights 
once again the importance of pictures in the mind (Presmeg, 1986).  

On the other hand, visualization raises some difficulties which lead us to modify the 
common proverb mentioned in the title. A picture is worth a 1000 words – only if one 
is aware of its scope: The students in this study largely demonstrated their ability in 
visualizing the geometric definition of the integral (problem 1; figure 1). 
Nevertheless, their chosen visualization only reflects one particular aspect of the 
integral concept. This entails some important consequences for working on the other 
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problems. For example, the restricted visualization proves to be a hindrance for the 
solution of problem 3. The connection of the integral with the area misleads the 
students not to distinguish clearly between the two concepts. Basically, both concepts 
are different from each other, but at the same time, they have a certain though 
marginal intersection which predominates the students’ thinking. 

Another interesting aspect leads us to change the proverb as follows. A picture is 
worth a 1000 words – only if one is able to use it flexibly: First, even if students use 
visualization to solve the problems 2 and 3, this does not mean that they are able to 
solve the problems correctly. They do not dispose of the cognitive flexibility to use 
both visual and algorithmic techniques (Arcavi, 2003). Second, the students usually 
did not choose to visualize in problem 4 but proposed an algorithmic approach 
instead. They are cognitively fixed on algorithms and procedures instead of 
recognizing the advantages of visualizing this problem – a phenomenon which 
Eisenberg (1994) describes as reluctance to visualize. Third, the visualization given 
in problem 2 differs only slightly from the visualizations the students gave in 
problem 1. However, most of the students were not able to deal with this given 
visualization and to adequately interpret the information given in this problem.  

These aspects highlight the ambivalence of visualization as Tall (1994, p. 37) points 
out: “It is this quality of using images without being enslaved by them which gives 
the professional mathematician an advantage but can cause so much difficulty for the 
learner.” Hence, the importance of visualization for mathematics learning and 
teaching is constituted in being aware of the fact that visualization never represents 
an isomorphism of mathematical concepts and their relationships. Therefore, 
visualization should be accompanied by reflective thinking to avoid being enslaved 
by it. 
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ESTABLISHING AND JUSTIFYING ALGEBRAIC 

GENERALIZATION AT THE SIXTH GRADE LEVEL
 
 

Joanne Rossi Becker and Ferdinand Rivera 

San José State University 

 

This is a case study of two sixth graders performing a generalization involving a 
linear pattern that was presented in a pre-and post-interview.  The basic research 
question was: How do sixth graders acquire the ability to establish and justify 
generalizations in algebra? We discuss characteristics of students who are 
predominantly figural in their strategies and claim that figural ability and fluency in 
representations and variable use are essential for success.  

INTRODUCTION  

This study builds on previous studies we have conducted in relation to patterns and 
the formation of generalization in algebra. Based on our work with pre-service 
elementary teachers (Rivera & Becker, 2005, 2003) and ninth graders in a beginning 
algebra course (Becker & Rivera, 2005, 2004), we claim that individuals tend to 
exhibit at least two modes for expressing generality on tasks involving linear 
patterns: numerical and figural. In this study, our sample is a group of twenty-nine 
sixth graders who were in the beginning stage of learning algebra and with minimal 
experience in establishing and justifying generalizations from patterns. This study 
marks the beginning of several years of funded research that seeks to document the 
generalization abilities of middle school students starting at the sixth grade. The 
classroom teaching experiments that have been used and developed in this study 
emphasize a multiple representational view of generalization in both form and 
approach (Rivera & Becker, 2005), with the ultimate aim that students are able to 
move from one representation to the other with flexibility. In this study, we undertake 
the following research problems: How do sixth graders acquire the ability to establish 
and justify generalizations in algebra?  To what extent are sixth graders capable of 
generalizing formulas figurally and/or numerically? How does representational and 
variable fluency enable them to establish and justify generalizations, including their 
ability to assess the equivalence of several different formulas for the same pattern? 
How does their current or prevailing competence in symbol and variable use affect 
the manner in which they perform generalization?  

THEORETICAL FRAMEWORK 

The genesis of our initial theoretical framework in earlier investigations has been 
drawn from similarity studies on induction in developmental psychology (see Rivera 
& Becker, 2003). Similarity is a natural mechanism for comparing entities in 
everyday life. With respect to everyday objects, individuals perform similarity and 
develop generalizations from available concrete objects. In the case of mathematical 
objects, patterns in school algebra oftentimes are represented in both numerical and 
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figural modes which explains the two modes for expressing generality, namely: 
figural and numerical.  

Individuals who are predominantly numerical generalizers establish their formulas 
from the available numerical cues. They do not seem to be consistently capable of 
justifying their generalizations non-inductively or in some other valid way. They 
frequently employ trial and error as a numerical strategy with no sense of what the 
parameters in particular formulas represent. Further, some of their numerical methods 
contain fallacies and contradictions, and they seem to be object-oriented in the sense 
that the formulas they develop tend to be justified solely in terms of how well the 
formulas fit the limited information they have examined. Individuals who are 
predominantly figural generalizers are capable of justifying their generalizations non-
inductively and in other valid ways due, in part, to the manner in which they are able 
to connect their symbols and variables to the patterns that generate the figures. They 
seem to be relation-oriented in the sense that they see sequences of figural cues as 
possessing invariant structures and thus, are necessarily constructed in particular 
ways. We also note that, while students who are predominantly figural generalizers 
do not see the need to set up a table of values in order to establish a general formula, 
those who are predominantly numerical generalizers are predisposed to initially set 
up a table in order to perform a numerical strategy with little regard to how the 
dependent values may be perceived otherwise (for example, figurally). We observe 
that quite a number of numerical generalizers tend to view variables as mere 
placeholders with no meaning except as a generator for certain sequences of 
numbers. With figural generalizers, variables are seen as not only placeholders but 
within the context of a functional relationship. Finally, figural generalizers are more 
likely to be able to generalize to an explicit, closed formula.  Note the terms 
“predominantly numerical” and “predominantly figural” imply the possibility that 
some learners manifest pragmatic modes for expressing generality (Becker and 
Rivera, 2005); that is, their generalization abilities reflect a capacity for employing 
both numerical and figural strategies.  

METHODS 

Twenty-nine sixth grade students (11 boys, 18 girls, mean age of 11) in an urban 
school in Northern California participated in two clinical interviews.  The study 
involved two sequences of  teaching experiments of the Mathematics in Context 
(MiC) curriculum. The students were given five tasks involving algebraic patterns; 
analogous tasks were given in a pre-interview and post-interview, separated by three 
months of instruction involving three MiC units on “Operations,” “Building 
Formulas,” and “Expressions and Formulas.”  We first conducted independent 
readings of transcripts to identify patterns in strategies used for each of the five 
questions on the interview. Then several follow-up discussions and crosschecking 
ensued.  In this study, we report on the results of two individuals, Dung (Vietnamese 
American) and Marlisha (African American) based on their work on one item from 
the interviews, the Square Tiles problem (see Figures 1 and 2).  Note that Figure 1 
was the pre-interview task, while Figures 1 and 2 comprised the post-interview task.  
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Because, in the pre-interview, the students did not know how to write general 
formulas, the interviewer (first author) instead adjusted the prompt to ask students to 
find the 10th and 100th term in the sequence.  In the post-interview, the first part of the 
prompt was followed by questions shown in Figure 2 below. 

Tiles are arranged to form pictures like the ones below. 

 

 

 

 

Picture 1 Picture 2            Picture 3              Picture 4       

Find a formula that enables you to calculate the number of square tiles in Picture “n.” 
How did you obtain your formula? 

Figure 1: Square Tiles Prompt 

A. If the solution has been obtained numerically, respond to the following question: Is 
there a way to explain your formula from the figures? 

B.  How many square tiles will there be in Picture 75? Explain. 

C.  Can you think of another way of finding a direct formula? 

D. Two sixth graders came up with the following two formulas: 

Kevin’s direct formula is:  T = (n x 2) + (n x 2) + 1, where n means Picture number and 
T means total number of squares. Is his formula correct?  Why or why not? 

Melanie’s direct formula is: T = (n x 2) + 1 + (n x 2) + 1  - 1, where n and T mean the 
same thing as in (D) above. Is her formula correct? Why or why not? 

Which formula is correct: Kevin’s formula, Melanie’s formula, or your formula? 
Explain. 

Figure 2: Square Tiles Prompt Part 2 

RESULTS 

The Case of Dung.  At the beginning of the school year, Dung was closest in the 
group to having a concept of variable as a varying quantity representing a 
relationship.  His predominant mode of generalizing was figural, that is, he saw the 
sequence of figures as being related by the following property: “[For Figure] 1, 
there’s one square around it, [for figure] 2 there are two squares around it, and so 3 
and so on.” When asked to find the number of square tiles for figures 6 and 7, he 
stated in clear terms the following process: multiply the figure number by 4 and add 
1. When asked to come up with a possible formula, his written work is shown in 
Figure 3.  
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Figure 3: Dung’s Formula for the Square Tiles, Pre-Interview 

During the post-interview, Dung has retained his predominantly figural mode for 
expressing generality.  Dung quickly saw the one square in the middle as “plus 1” 
and the sides as representing the picture number.  He wrote S for number of squares 
and n for picture number and the direct formula, S = n x 4 + 1.  When asked to find 
the direct formula in another way (part C), Dung made a table, found a constant 
difference of 4, checked it for three values, and derived the same formula. In part D, 
Dung checked each of Kevin and Melanie’s formulas for two different values of n, 
concluding that both were correct.  However, while he was able to explain Kevin’s 
formula from the figures, he was not able to make visual sense of Melanie’s formula, 
using a structural explanation instead: “+1 –1 = 0 so you don’t really need it.” 

 The Case of Marlisha.  In the pre-interview Marlisha’s predominant mode of 
generalizing was figural. Initially, she saw the figural sequence to be involving the 
invariant property of “adding four.” She saw the preceding figure as being 
embedded in the succeeding figure and that the succeeding figure grows by 1 on 
each side. When she was asked to determine the number of square tiles for the 
tenth picture, her figural strategy changed from an additive relation to a 
multiplicative relation.  So for example, when asked for Picture 10, she changed 
how she was visualizing the figure; she first found Picture 6 by taking 6 for each 
“arm” times 4 and adding 1. Then for Picture 10 she multiplied 10 x 4 and added 1 
to get 41.  When asked for Picture 100 she quickly answered 401.  However, 
Marlisha was unable to develop a direct formula. Also, while she was able to 
obtain the correct values for the number of square tiles, her written work shows an 
incorrect use of the equality sign (see Figure 4).  In the post-interview, Marlisha’s 
predominant mode of generalizing was numerical.  She had facility with variable 
quantities and knew the role of the independent and dependent variables. 

    

 
Figure 4: Marlisha’s Use of Equal Sign During Pre-Interview 
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She started this problem by counting the tiles, making a table, looking for a finite 
difference, and getting the formula, S = n x 4 + 1, where S = number of squares and n 
= picture number.  When asked to make sense of her formula from the figures, as all 
her work was numerical, she said “the n represented the picture number and you had 
four corners in the picture, so you multiply 4 times the picture number and plus one 
in the middle.”  Marlisha was unable to find another way to get a direct formula. She 
checked Kevin and Melanie’s formulas for two values of the independent variable 
and declared them both correct (Figure 5). While she was able to interpret Kevin’s 
formula from the figure as “two bottom columns and two upper columns plus the one 
in the middle,” she was unable to understand exactly what Melanie had done to get 
her formula.  

 
Figure 5: Marlisha’s Check of Melanie’s Formula, Post-Interview 

DISCUSSION 

How did Dung and Marlisha acquire the ability to establish and justify 
generalizations in algebra?  To what extent were they capable of generalizing 
formulas figurally and/or numerically?  

Noticing Invariant Relationships Figurally.  In the pre-interview, Dung and Marlisha 
initially saw the sequence of figural cues to have an invariant property. Working 
within a predominantly figural mode of generalizing, they both perceived and 
established the general pattern “multiply picture number by 4 and add 1” and justified 
the statement on the basis that the figural cues had “arms” or “sides” that constantly 
grew with a fixed center square tile. Thus, it was easy for them to find  specific terms, 
such as the tenth term.  Finding a closed form for the nth term was more problematic, 
as discussed below. 

The Significance of Algebraically Useful Figural Strategies. We find Marlisha’s pre-
interview results to be interesting. Her initial figural strategy was additive (that is, 
“adding 4”) with the addition of 1 square tile on each side as a result of seeing a 
preceding figure embedded within a succeeding figure. However, she later abandoned 
the additive relation in favor of a multiplicative relation that then enabled her to 
determine both near and far generalization items successfully (the tenth and 100th 
terms). Thus, while having a figural strategy is useful in establishing a general 
formula, it really has to be algebraically useful. That is, Marlisha’s choice to abandon 
one figural strategy in favor of another was motivated by her need to obtain the 
number of square tiles for Picture 10 and Picture 100 conveniently. Further, it has 
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been claimed that some learners are capable of dealing with near generalization tasks 
(such as finding the seventh term) with ease, but not so in the case of far 
generalization tasks (such as finding the 100th term). Marlisha’s figural strategy of 
having seen four arms that grew based on their picture number and a fixed center 
square made it easy for her to tackle both near and far generalization tasks.   

Additive Versus Multiplicative Relationships in Pattern Formation. We think that if 
Marlisha pursued the “adding of 4” strategy, it might have led to a recursive formula 
(that is, an = an-1 + 4) which we have found to be a common type of response (Becker 
& Rivera, 2005; Rivera & Becker, 2003). In fact, none of the remaining thirty-one 
students in the pre-interview were able to state a possible direct formula (in an almost 
multiplicative form) from the additive relation “adding 4,” that is, an = 5 + 4(n – 1), 
where n is picture number and an  is the number of square tiles. Interestingly enough, 
this equivalent general formula was never suggested in the post-interview with the 
chosen ten students. The preferred general formula was S = n x 4 + 1 which the 
predominantly figural students saw as being transparent from the available figural 
cues.  Thus, in establishing a direct (closed) formula for linear patterns in the form an 
+ b, students’ thinking will necessarily have to transition from an additive to a 
multiplicative process as exemplified by Dung and Marlisha.   

Constructive Versus Deconstructive Generalizations. Dung and Marlisha were both 
adept at what we term “constructive generalizations.” For example, in the Square 
Tiles task, they easily developed a general formula because they saw each figural cue 
as consisting of four sides with a center square. Thus, it was easy for them to make 
sense of Kevin’s direct formula (see Figure 2, item D) because the constant and the 
two coefficients could be explained as the sum of the top two columns plus the 
bottom two columns plus the middle square.  However, they  were unsuccessful in 
making visual sense of Melanie’s direct formula (see Figure 2, item D). Melanie’s 
formula provides an illustration of what we refer to as “deconstructive 
generalization.” In justifying Melanie’s formula, the students had to deconstruct a 
figural cue into, for example, two odd-numbered diagonals of square tiles minus an 
extra middle tile (since it has been counted twice). In fact, the students in the post-
interview who were predominantly figural generalizers performed similarly.   

How does representational fluency enable Dung and Marlisha to establish and to 
justify generalizations, including their ability to assess the equivalence of several 
different formulas for the same pattern?  

Dung’s preferred strategy was figural throughout both interviews. His alternative, 
secondary representation of the Square Tiles task involved a numerical method of 
setting up a table and performing a finite difference method in order to obtain a 
formula.  Marlisha started out to be predominantly figural in the pre-interview. 
However, by the post-interview, she had become predominantly numerical, 
exhibiting some of the characteristics of numerical generalizers stated in the 
Theoretical Framework. She employed a systematic trial and error method as a way 
to verify that the formula matched each dependent value tested. But Marlisha’s 
ability to engage in a figural strategy assisted her later in the stage of justifying the 
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formula. She knew what the coefficient and the constant meant within the context of 
the task. Both the methods of Dung and Marlisha exhibit what we characterize as 
representational fluency in the sense that both were capable of working through 
different types of representations that made the task of generalizing more meaningful 
for them. In a separate research report (Rivera & Becker, 2006, see volume 1), we 
claim that, while several of the predominantly numerical generalizers in the post-
interviews were successful in arriving at a general formula, however, they were not 
representationally fluent in the sense that they could not justify the formula in ways 
other than a mere appearance match. On the other hand, we note that predominantly 
figural generalizers are representationally fluent since they were capable of 
developing alternative representations to justify their general formulas.  

How does the current or prevailing competence in symbol and variable use of Dung 
and Marlisha affect the manner in which they perform generalization?  

We make a strong claim that success in developing and justifying generalizations 
involving patterns in middle school algebra involves having facility in both figural 
ability and variable fluency. That is, they go together in the sense that the lack of 
competence in one aspect undermines the other in salient ways. In the pre-interview, 
while it was evident that both Dung and Marlisha had a figural ability to see an 
invariant relationship among the sequence of figural cues, they were both not fully 
competent in using variables to express the relationship in symbolic terms following 
conventional practices. In fact, the two were working at different levels of variable 
use, namely, absence and situated. Marlisha was unfamiliar with how variables were 
employed to express a generality; this prevented her from stating a direct formula. 
She exhibited the lowest level of variable use, that is, the absence of knowledge in 
using a variable or variables to state a functional relationship. Dung’s level of 
variable use can be characterized as situated in the sense that his use of variables 
reflected numerical actions and operations that remain bounded to the context of 
generalization. In Figure 3, Dung’s use of the variable n has taken several meanings: 
from n in reference to picture n, to n as a result of multiplying by 4, and then to a 
third use of n as pertaining to number of tiles in picture n. In the post-interview, it 
was evident that both Dung and Marlisha were working at the symbolic level of 
variable use, far beyond the earlier levels. Variables were now understood within a 
functional relationship.  The general formula has now become even more compact 
and de-contextualized in the sense that they saw the variables as representing two 
different quantities that vary, that of picture number (n) and number of square tiles 
(S). Further, they were well aware of the importance of a correct direct formula. In 
fact, both were initially motivated to find a correct generalization as a first step that 
would then enable them to compute for near and far generalization tasks (see Figure 
2, item B).       

In summary, these two students demonstrate the growth both in ability to generalize 
linear algebraic patterns and in fluency with variables and multiple representations 
that can be accomplished through instruction that accentuates figural, numerical and 
verbal representations of patterns, and connections among them.  Future work will 
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focus on more complex patterns in which invariant properties are not easily 
perceived, patterns that are not linear, and ways to foster deconstructive 
generalization.  As the students move on to seventh and eighth grades, graphical 
representations will also be introduced to add further to students’ understanding of 
functional relationships. 
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