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INTRODUCTION

When we first agreed in mid-1989 that a need existed for an applied (practical) statistics workshop,

it hardly occurred to us that as many as 63 other people in Alberta would concur! Yet, that was the

final attendance at the First All-Alberta Apphed Statistics and Biometrics Workshop, October 18-

19, 1990, at the Alberta Research Council, Edmonton (Millwoods facihty). We believe these

Proceedings will reflect the fine participation and diversity of interests exhibited by the speakers

and those who attended.

We are fortunate to have received the support of the Alberta Agricultural Research Institute

(AARI) which granted us fiinds through the Research Coordination Grants program; our sincerest

appreciation to the AARI Board for deeming this project worthy of support in 1990. We are most
pleased to say that the Board has approved our application and agreed to renew our funding in 1991.

Plans are well underway for the next workshop to be held in Edmonton, October 21-22, 1991.

In addition to the list of participants in Appendix B and the speakers featured in these Proceedings,

we are indebted to many others who got behind this project and proceeded to help make it happen.

Thanks to Serge Dupuis, Bob Hardin and Keith Toogood for serving on the ad hoc Program
Planning Committee.

Arhlene Hrynyk, her staff, and the late Don Klick, in the Animal Sciences Division, Alberta

Environmental Centre (AEC), were most helpfiil during the early stages by preparing mailing

lists, survey forms and correspondence. Special appreciation to Phil Henry who lent his ideas,

setup the computer aided registration on the Macintosh and created our "Z -Alberta" logo, among
other graphics. Sincere appreciation as well to Janet Smalley and the support staff of the Beef
Cattle and Sheep Branch of Alberta Agriculture for their kind assistance during registration.

Many thanks go to Marilyn Florence who volunteered her assistance during preparation of the

program packets and these Proceedings.

Robert Heimann, Alberta Research Coimcil, suggested our having the workshop at the Edmonton
(Millwoods) facility and kindly Eigreed to act as official local host.

Finally, we are particularly pleased to acknowledge the support we have each received from our

respective directors and branch heads, and the Departments of Environment and Agriculture.

Notwithstanding the fine suggestions for topics from the Program Planning Committee, the

workshop had no theme; our attempt to have a good cross section of applied statistical topics, we
believe, is demonstrated by the contents of these Proceedings.

L. Zack Florence

Alberta Environmental Centre

Laki Goonewardene
Alberta Agriculture
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APPLYING STATISTICS TO PRACTICAL PROBLEMS

Milton Weiss, Consultant

Pincher Creek, Alberta

Applied statistics in agriculture or biometrics had its start about the end ofWWI and early 1920s

when R.A Fisher, Bewail Wright, and L. J. Lush first published on the application of

mathematics and probability theory to animal populations. Various other people at about the same

time or soon after began applying these same principles to designed situations in field trials.

Yates, Fairfield Smith, Haldane, Student, Bartlett, K. Pearson, and others laid a solid foundation

for further advances in designed experiments in agronomy as well as quantitative genetics.

The interruption by WWII did not slow this advance, it more aptly put it on simmer since, when

hostilities ended, a large number of young men and women returned to imiversities to develop

careers. These numbers were greatly enhanced by the aid of various G.I. bills which made it

possible for many to attend university who would otherwise have been denied. This influence

along with greatly increased government support for research and development had an

immediate and profound influence on applied statistics.

There were many timely and extremely well-written texts published in the 15-20 years following

WWII. More importantly, a great number of well-qualified statisticians turned to teaching which

allowed many universities in North America to establish statistics as a valid course in either a

mathematics department or more importantly to establish biometrics or applied statistics as a field

of instruction in agriculture and/or biology faculties.

This has led to the position we are in today, where we can classify our applied statisticians in

various ways, but, for simplicity, we will break them into two groups:

1. A statistician with some background and experience in the subject matter field he

is serving.

2. A subject matter specialist with some interest and training in applied statistics,

particularly with those techniques or tools he uses in his day- to-day work.

A third approach, and one that I have had a lot of experience in, and enjoyment and satisfaction

from is where a statistician and a subject matter specialist work jointly or co-operatively on a

project.

2



It is highly desirable (imperative ?) that the statistician be involved in a project from the start.

Once a project is deemed necessary or worth carrying-out, the statistician should be made a part of

the project team immediately. This will often ensure that the design has the capability, if carried

out properly, of answering the questions posed by the project i.e. that the specified goals can be met.

The statistician should help with the data collection protocol and definitely has valuable inputs

with respect to data edits and validity checks. The analysis to be used should be laid out or specified

at this time, complete with tests of hypotheses, linear comparisons, orthogonal contrasts, and so on.

Once the project has progressed to the stage of analysis and interpretation, the statistician again

becomes vital particularly in the areas of interpretation and drawing of valid conclusions. The

reporting of statistical design, models used, and analysis procedures as well as certain parts of the

results section, are best handled by the statistician or co-operatively between the subject matter

specialist and the statistician. An area which is becoming less of a problem with more people

trained in and/or appreciative of statistics is the role of referee or arbitrator between the author, the

editor, and/or the reviewers on statistical matters. The applied statistician also can provide a

useful role in technology transfer - boiling the whole process down so that it is meaningful to the

end users— not just to other specialists in the subject matter field.

When I first became interested in statistics in the mid 1950s there was one mechanical desk

calculator for a whole class to use (and it usually didn't work). I soon became very proficient in

hand calculations with a pencil, paper, sliderule, and a very large eraser. I was fortunate to have

the opportunity to use the Mystic at Michig£in State University and the Cyclone at Iowa State

University before they became museum pieces. In 1961 1 had my initiation to IBM and the then

popular 650, soon to be replaced in our work by the 1620 in early 1962. Overlapping with this

experience were the wired board (402, 407, 602, etc.) machines. Instead of programming them, you

wired all the instructions one digit at a time into boards and then ran applications from punched

cards.

With the 1620 we really started to move forward - every shop acquired a numerical analyst and one

or more programmers. It was the "in thing" to learn programming; machine language, symbolic

languages and then EUREKA!! we got compilers for Fortran and Cobol. However, computing was

so slow and expensive that you spent days and even weeks desk checking, debugging and

correcting machine language compiled card decks rather than go on the computer and chance

blowing the budget. Every shop was developing programs and exchanging with each other, often

with great duplication of effort. In short, there was little time for the real job of applying statistics

to user problems.
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The next big step was commercial statistical analysis packages - BMD, SPSS, and later SAS. This

was fantasy land. Not only could we get the computer to work for us - the instructions involved

were simple and easy to follow - too easy in some cases. Along with these new packages we were

getting better access to bigger, faster, and less expensive computers. What used to take days and

even weeks to accomplish can now be done in minutes, right from your own desk.

Now we not only have terminals but also micro computers that for a very modest price can do

virtually everything we need right at hand. SAS and many other statistical packages are

available (at a fairly modest cost) for micro-computers.

A note of caution - we can do what we want fast and efficiently in so far as statistics is concerned.

However, many times we forget to apply our statistical knowledge to problems. You rarely hear

mention of such topics as fixed, mixed, or random models, residual analysis, and so on. Yet these

are easily accommodated, at most requiring only a little juggling of the degrees of freedom (df)

and corresponding sums of squares (ss) terms in the ANOVA table. The tests of significance and

comparisons may or may not require extra work beyond this first manipulation as many

packages allow the user to specify the error term to be used.

Personally I like the present situation - 1 can now accomplish in one relaxing evening what used

to take six months (with the help of 3 clerks on calculators) of hard work to achieve.
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Time Series Models in Econometrics

Vic Adamowicz

Associate Professor

Department of Rural Economy

University of Alberta

Edmonton, Alberta

Economists have struggled with attempts to model the structure of the economy for decades. They

have concentrated on so-called structural models of demand and supply, interest rates and money supply,

exchange rates and export quantities, and a variety of other relations which arise from economic theory. The

problem for the statistical modeler, however, is that these relationships cannot be isolated from all the other

aspects of the economy that function around them. We cannot stop the world to examine the relationship

between exports of wheat and the Canada-U.S. exchange rate. A myriad of other influences, including the

influence of time, are creating a smoke screen.

The challenge for economists, or more particularly econometricians, is to find a fan to blow the smoke

away, so that we can see the correct relationship. In most of the physical sciences, the "fan" is experimental

design. Controls are put in place and unwanted smoke is kept away from the relationship in question. In the

analysis of social systems, such designs are not possible. The search for a good "fan" is the attempt to resolve

the "identification problem."

The identification problem is a statistical technicality that arises when the parameters of the underlying

structural model cannot be uniquely "identified" from the data. The classic example is that of supply and

demand. A supply curve traces out the response of sellers, in terms of the quantity they wish to sell, to

changes in the market price. A demand curve traces out the response of buyers to these same market prices.

The data we gather from a market, however, are only the equilibrium quantities and prices (the prices and

quantities agreed on by the buyers and sellers in that period). An estimation of the relationship between price

and quantity reveals a mix of supply and demand factors and not a unique identification of either set of

underlying structural parameters. If we have data on a number of periods of equilibrium, we still cannot sort

out whether we are watching demand, supply or some temporal influence on the price-quantity data.

Economists have chosen a number of approaches to modeling or forecasting. Three forms of modeling

will be discussed in this paper; the traditional structural approach to modeling economic systems over time,

the time series approach and the vector autoregressive approach. The three approaches are quite different in

their statistical methods and their method.of addressing the identification problem.
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Structural Econometric Modeling

Structural econometric models use time series data to estimate the relationships between economic

variables. The statistical techniques are modifications of multivariate analysis. Using the supply-demand

example, a structural model would theoretically assign a particular form to the demand relation and the supply

relation. For example, both quantities would be a function of price but demand may also be a function of

income while supply may be a function of weather factors. Typically there are few explicit dynamic elements in

the equations: quantities today are expressed as functions of prices and other factors in the current time

period.

The modeling process described above requires a strong theoretical base to provide the specification of

the equations. The resulting statistical model has the merit that it is based on theory and should provide more

than just "correlations". However, more works needs to be done to identify the parameters of each function.

Additional restrictions must be placed on the model to be able to isolate the demand function from the supply

function.

In order to "identify" the demand function from the supply function, a very particular set of restrictions

is used. The restrictions must produce a model where there are enough exogenous variables (variables not

determined within the system) in each equation to allow identification. For example, weather is an exogenous

factor. If weather only affects the supply curve, these changes in the supply curve will allow us to trace out all

the equilibrium prices and quantities that occur along a single demand curve. The exogenous variable in the

supply curve identifies the demand curve. Similarly, there must be exogenous variables in the demand curve

which help identify the supply curve. In more complex models the solution to this search for exogenous

variables can become quite difficult. The implication for modeling is that if one wants to be able to identify

the underlying structural equations in their model, they must exclude some factors from the equations. These

restrictions, while solving the identification problem, lead to questions about appropriate specification of the

models. The estimation of these models, even after the identification problems has been solved, involves one

of many variants of multivariate regressions analysis. These estimation techniques include Two Stage Least

Squares, Three Stage Least Squares and a variety of maximum likelihood based approaches (see Judge, et al,

1988).

The structural econometric approach to time series analysis has been criticized for a number of reasons.

First, the models tend not to forecast very well. A variety of reasons have been suggested for the poor

forecasting performance including the fact that little dynamic influence is included in these models.

Nevertheless, structural modelers have maintained that they are attempting to adhere to theory and they
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suggest that empirical analysis without this formal theory is vacuous. A second criticism of structural models

is that they tend to become rather large and expensive to run. An example of a large structural model is

Agriculture Canada's FARM model which contains over 1,000 equations in a number of sectors.

One of the most scathing critiques of structural models came from Robert Lucas (1976). The so called

"Lucas Critique" is based on the notion that the correct theoretical model depends, at least in part, on the

current policy scenario. A change in the policy situation requires a reformulation of the parameters of the

theoretical model. In forecasting the impact of a policy change, however, structural modelers leave the

coefficients intact and adjust the exogenous variables. Lucas argued that these structural models will

undoubtedly provide poor forecasts of policy shocks. Another criticism related to the coefficients of

structural models is attributed to Sims (1980). Sims argues that in attempting to identify traditional models,

overly restrictive assumptions are likely to be used, resulting in poor models.

The criticisms of structural models led to a wave of other models which were designed for forecasting

purposes. These models, which focused on the time series elements in economic data, provide a contrast to

the traditional models, not only by their emphasis on the temporal dimension, but also on their lack of explicit

theoretical base.

Time Series Modeling

Simple time series models concentrate on explaining the data as a stochastic process. The emphasis is

on the temporal structure of the data series. The data are first examined for their structure over time or

degree of stationarity. Most simple time series techniques assume that the data are covariance stationary

stochastic processes (see Judge, et al, 1988). Given covariance stationarity, the series can be modeled as an

"autoregressive process" or a "moving average" process. An example of the former is a first order

autoregressive process (ARl) or

[1] Q, = e(2,-,*e,

A first order moving average process (MAI) can be written as

[2] Q, = £,-<!>£,-,.
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These simple time series representations focus on past value of the series itself or the error process for

explanations of the present observation. A more general time series representation can be specified as

[3] 0(Z)Q, = 4>(i:)e,

where 9 ( L )and 4»( /: )are polynomials in the lag operator. 1

Once the structure of the stochastic process is determined, a model can be estimated and the process

can be used for forecasting. A common approach used to determine the structure of time series models is the

Box-Jenkins approach. The Box-Jenkins approach involves three steps, (1) Identification, (2) Estimation and

(3) Diagnostic checking (see Judge, et al, 1988, chapter 16). Identification includes determining if the process

is covariance stationary and using plots of the autocorrelation and partial autocorrelation function to

determine the order of the process. The process may be autoregressive, moving average or it may be a mixture

of the two. If a model is not stationary, differencing is usually used to remove the trend from the data and

reduce it to stationarity. This differencing process is also called integration. Thus a common name for these

models, ARIMA, stems from the Autoregressive, Integrated, and/or Moving Average components of the data.

Estimation of these models can proceed in a number of ways. The autoregressive models can be

estimated using OLS but a number of other methods are typically used to increase efficiency. The moving

average models must be estimated using nonlinear least squares as the use of lagged values of the error term

in the model requires iteration around an initial condition. There are two types of diagnostics used to check

these models. First, the coefficients are examined to ensure that they do not produce explosive processes. For

example, if a first order autoregressive model has a coefficient that exceeds unity, the process is not stationary.

Second, the errors of the models are checked to determine if they correspond to white noise or a gaussian

mean zero, identically distributed, independent process.

Additional issues in ARIMA modeling include modification of the process for seasonality effects and

the use of transfer functions. Seasonality is modeled by including lags corresponding to the seasonal pattern

in the data. Transfer functions are somewhat similar to dummy variables in regression analysis. They indicate

a break point in the data and a change in coefficient values.

The emphasis in ARIMA models is the time series structure of the data. Cause and effect relationships

are ignored in favour of the temporal dimension. This emphasis on data analysis leaves most researchers who

believe in theory first and models second somewhat disappointed. One can forecast with ARIMA models but

I The symbol L is the lag operator, ie. LYt = Yt-i- The expression e( I )X, describes

9 0 A'
(
+ 9

I
A'

, -
1
+ 9 2 ( - 2 • • •
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the effect of a policy change, unless it is modeled with a transfer function, cannot be simulated. However, even

though ARIMA models do not rely on theoretical specifications, they tend to forecast very well, especially in

the short term. Numerous studies of forecasting performance find ARIMA models to be at least as good as

simple econometric models and they are usually simpler to build and less expensive to estimate. The lack of

theoretical base, however, leaves these models open to attack. The next set of models, VAR models,

incorporate the time series elements ofARIMA models and the structural econometric elements of

traditional models.

Vector Autoregression Models^

A Vector Autoregression Model (VAR) is essentially a dynamic simultaneous equation system. The

dependent variables are, by definition, all endogenous variables and the independent variables are lagged

observations of all variables in the system^. Each equation contains the time series structure of an ARIMA

model with all variables interacting in the system. A VAR model imposes very few a priori restrictions on the

parameters in the simultaneous equation system. This allows the data to provide a representation of the

changes in the system without the "zero restrictions" required in traditional simultaneous equation techniques.

One should note, however, that while a VAR model does not impose zero restrictions on the parameters in

the traditional simultaneous equation fashion, the model does require identification restrictions to provide

information on the response of system variables to shocks. The nature of these restrictions will be outlined

below.

The VAR approach uses the set of lags of all of the endogenous variables in each behavioral equation

as the reduced form or statistical model. The economic structure is identified using the variance matrix of the

residuals to place identifying restrictions on the matrix of contemporaneous coefficients. In VAR models, the

statistical model is developed first and then the structural model is identified. This is opposite to the

approach followed in traditional econometrics and is favoured by some statistical theorists (Spanos, 1989).

While both the VAR approach and traditional econometric approaches require identification

restrictions, the nature of these restrictions are quite different. The traditional approach uses zero restrictions

on parameters for identification while the VAR approach uses the covariance matrix of the reduced form

residuals and the assumption of orthogonal behavioral shocks to establish identification. Both approaches

may be used to study responses to policy shocks (see Mount, 1989; Todd, 1989). The traditional approaches

2 This section is based on the discussion in Jennings, et al, 1991.

3 Where they are considered to be important, exogenous (or deterministic) variables may be included in the
set of independent variables in the system.
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tend to place little emphasis on lags in equations while the VAR approach emphasizes it. The traditional

approach places strict interpretations on the parameters of each equation while the VAR approach interprets

the system as a whole and the analyzes responses to the behavioral shocks (see Orden and Fackler, 1989).

The VAR approach begins with a dynamic equation system of the form

[4] yo-s)= Xk^-o
s-0 s-0

where Y(t) and v(t) are k x 1 vectors and A(s) is a k x k matrix of coefficients for each time period (s) previous

to current time (t). The model in (4) relates the observable data (Y) to sources of variation in the economy

(v). The shocks in v(t) are assumed to "represent behaviorally distinct sources of variation that drive the

economy over time" (Orden and Fackler, 1989, p 496). The vector v(t) has an expected value of zero and an

assumed diagonal covariance matrix, D. The covariance matrix is assumed to be diagonal so that individual

shocks (v(t)) apply to only one behavioral equation at a time. Thus we can evaluate the effect of shocks to

each behavioral equation on each variable in the system.

Assuming that errors from previous lags do not affect the current values, equation (1) can be rewritten

in autoregressive form as

[5] /i(0)y(o = -I/i(5)y(/-s)^KO
s - 1

The matrix A(0) is the set of contemporaneous parameters on Y(t). Multiplying through by A(0) inverse

yields

[6] y(0= t Dis)Y(t-s)^u(t)
s- 1

vvhere D(s) = -A(0)-1a(s) and u(t)=A(0)"lv(t). The vector u(t) is the one step ahead prediction error in Y(t)

and the covariance matrix of u(t) is I . Equation (6) is the autoregressive equation which is estimated given an

assumption on the lag length. It is the reduced form model.

In attempting to identify the effect of a shock to a behavioral equation on the variables in the system we

can use the coefficients estimated in (6) and the observed error to simulate the impact. Since all the variables

are related in the system it is not possible to "untangle" the effects of one variable on another using the

autoregressive representation. However, the autoregressive representation can be used to find the moving

average representation which expresses the level of a particular variable as a function of the error process.

From the moving average process the impact of the behavioral shocks in each equation on each other variable

can be identified.
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The moving average representation of (6) can be written as

[7] y(0= Ic(s)/i(0)-'Ko
s-O

This is the Impulse Response Function (IRF) which describes the effect of shocks to the behavioral relations

on variables in the system"*. The matrix A(0) contains the information required for the identification of the

model. Restrictions on A(0) are analgous to restrictions on coefficients in structural modeling (see Orden

and Fackler for a description of the identification ofVAR models). The IRF summarizes the dynamic

multipliers as implied by our identification. A shock may be represented by the placement of the value unity

in one element of the vector v(t). The IRF provides the response of all variables in the system to this unit

shock. The interpretation of these shocks is analgous to the interpretation of coefficients in a structural

model.

Finally, much of the appeal of VAR modeling lies in the fact that restrictions on the parameters of

reduced form do not need to be specified a priori . Often, however, unrestricted VAR models suffer from

overparameterization, resulting in estimates which reflect purely random fluctuations in the data and not the

systematic variation which we are interested in identifying. Consequently, estimated variances will be too

large and will produce models with poor forecasting performance. One way to handle this problem is to use

Bayesian prior estimation in which stochastic restrictions, in the form of prior distribution weights, are

applied to VAR parameters (see Sims, 1986). Bayesian techniques are used to assign weights to certain lags in

the system. For example, financial data often exhibit random walks, or coefficients near unity on the first lag

and zeros elsewhere. A Bayesian scheme would impose a prior mean of unity on all first lags of the dependent

variable and a prior mean of zero on all other lags. Mixed estimation is used to impose this prior information

(Litierman, 1986).

The VAR approach incorporates the theoretical elements of traditional econometrics and the lime

series elements of ARIMA modeling. Other advantages of the VAR include the fact that model development

and estimation is relatively inexpensive and the forecasting accuracy is quite good. Litterman (1986)

compares forecasts from several large econometric models, simple time series models and a Bayesian VAR

4 See Judge et al., 1988, p. 771-775 for an illustration of the derivation and use of impulse response functions
or innovation accounting.
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model. The results of a forecasting experiment with these models is presented in Table 1. The Bayesian VAR

outperforms the other models in Real GNP Growth and Inflation prediction for most periods (as measured

using mean squared error). The VAR model is also respectable in forecasts of Unemployment.

The forecasting results of VAR models and the fact that policy analysis can be performed with them

makes these tools a viable alternative to structural econometric models and simple time series models. While

a variety of other multivariate time series models exist (Aoki, 1990) the VAR approach is relatively simple to

estimate, relying primarily on OLS regression results, and relatively inexpensive to forecast with. The

application of Bayesian priors to VAR analysis allows for individual researchers to factor in their own beliefs

in a systematic manner. Such beliefs have typically been imposed in an ad hoc manner in structural models.

Conclusions

This paper has described three approaches to time series modeling in econometrics. Traditional

multivariate structural modeling, ARIMA modeling and VAR modeling have been outlined as competing

• chniques. The paper has concentrated on econometric examples but these models are applicable to a wide

range of topics, including those in the physical sciences. This discussion has also been centered around the

ability of these models to predict well and to fit with existing theory. The identification problem, or the

"smoke" caused by non-experimental data, requires careful theoretical modeling as well as proper statistical

analysis. Traditional econometrics has used theory to provide the functional relationships and then attempted

to conquer the statistical modeling problem. Time series models place more emphasis on the statistical

process with little explicit recognition of economic theory. VAR approaches try to combine theoretical

principles with a time series statistical component. However, they address the identification problem after the

estimation of a statistical reduced form model. While the VAR results seem promising one must emphasize

that VARs are really an alternative rather than a successor to structural modeling. The VAR technique is

another kind of fan used to blow away the statistical "smoke".
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Table 1. Mean Squared Error Forecasts 1976:1 - 1979:4

Forecast Horizon: Quarters Ahead

Variable 9 -I J o

Real GNP Growth

Z. /ZO Z.oUl 9 Q^l

AivlJYLA. 0713.U /

1

n7A 1 filJ. Vol.

Univariate AR j.ojo

DdycMdn v/\xv Z.o*tl Z.i'^fo .j.UZl

Inflation

DRI§ 1.605 1.929 2.277 2.894 2.727

ARTMA 1 007 1 7SS 9 911 9 "^97

vj 111 v<ii Idle /vr\ '^111 D.OiSJ '\ 040

Ravfcisin \/Al?Dciy^oiciii V /^jx 1 441 1 710i. / lU 1 640

Unemployment

DRI§ .341 .449 .485 .494 .430

ARIMA .466 .712 .915 1.073 1.236

Univariate AR .362 .493 .541 .566 .576

Bayesian VAR .383 .497 .559 .621 .738

§ DRI structural econometric models forecasts.

Source: Litterman, 1986

13



References

Aoki, M. 1987. State space modeling of time series . Springer-Verlag. New York.

Jennings, S., W.L. Adamowicz and L. Constantino. 1991. Macroeconomic impacts on Canada's lumber sector.

in press Canadian Journal of Forest Research . March 1991.

Judge, G., Hill, R., Griffiths, W., Lutkepohl, H. and Lee, T. 1988. Introduction to the theory and practice of

econometrics . 2nd Edition, John Wiley & Sons. New York.

Litterman, R.B. 1986. Forecasting with bayesian vector autoregressions - Five years of experience. Journal of

Business and Economic Statistics 4:25-38.

Lucas, R.E. 1976. Econometric policy evaluation: a critique. The Phillips curve and labor markets . K. Brunner

and A. Metzler editors, pp. 19-46. North Holland. Amsterdam.

Mount, T.D. 1989. Policy analysis with time-series econometric models:discussion. American Journal of

Agricultural Economics . 71:507-508.

Orden, D. and P.L. Fackler. 1989. Identifying monetary impacts on agricultural prices in VAR models.

American Journal of Agricultural Economics . 71:495-502.

Sims, C.A. 1980. Macroeconomics and reality. Econometrica . 48:1-48.

Sims, C.A. 1986. Are forecasting models useful for policy analysis? Federal Reserve Bank of Minnesota

Quarterly Review . Winter:2-16.

Spanos, A 1990. The simultaneous equations model revisited. Journal of Econometrics . 44:87-105.

Todd, R.M. 1989. Policy analysis with time-series econometric models:discussion. American Journal of

Agricultural Economics . 71:509-510.

14



SOME MULTIVARIATE METHODS

FOR

CATEGORICAL DATA

J.D. Jobson

Professor, Faculty of Business

University of Alberta

Edmonton, Alberta

Taken from : Applied Multivariate Data Analysis, Volume II: Categorical and Multivariate

Methods, by J.D. Jobson; to be published by Springer-Verlag.

15



ABSTRACT
This paper contains two parts. The first part summarizes the method-

ology for fitting loglinear models to three-dimensional contingency tables

using the method of maximum likelihood. An example based on traffic

accident data is used to illustrate the techniques. The second part of the

paper outUnes the logistic regression model for a dichotomous dependent

variable. An example based on female labor force paxticipation data is used

to demonstrate the methodology.

OUTLINE

1. LogUnear Models for Three-Dimensional Contingency Tables

2. Logistic Regression
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1. Loglinear Models for Three-Dimensional Contingency Ta-

bles

The three-dimensionad contingency table arises from the cross-classification

of the categories associated with three qualitative rsindom variables. Ge-

ometrically the table may be viewed as having rows, columns and layers.

The subscripts for the rows, colunms and layers will be denoted by i, j and

k respectively. The number of rows, columns and layers will be denoted

by r, c and i respectively. The probability density for cell {ij,k) will be

denoted by fijk and the theoretic^ ceU frequency by Fijk = n/.jjk for a

total table frequency of n. The zJlocation of a sample of size n to the totzd

of rc£ cells yields cell frequencies riijk. Table 1 shows the riijk for a sample

of size n.

Various marginal totals will be denoted using dots to indicate which sub-

scripts have been sununed. For the three possible two-dimensional tables,

the cell frequencies aie denoted by the marginals riij,, n^.i and n.jfc. For

each of the three variables the univciriate marginals are given by n,-.,
,
n.j.

and n„k-

Table 1 . A Three Dimensional Contingency Table

Columns
Layers Rows 1 2 C

1 1 "121 •• "Icl

2 "221 . . "2cl

r "r21 • • "rd

2 1 "122 . . "ic2

2 "212 "222 .. n2c2

r "rl2 "r22 • • "rc2

i 1 "11/ "12/ •• "Ic/

2 "21/ "22/ .. "2c/

r "rl/ "r2/ • • "rc/
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Table 2. Frequency Table -

Condition

Driver Injviry Level vs. Seatbelt Usage and Driver

Driver Injury Level

Driver Seatbelt Major/

Condition Usage None Minimal Minor Fatal Totals

XT 1 -ir
INonnal Yes 12500

(11817.8)

604

(697.1)

344

(450.2)

38

(51.8)

13486

No 61971

(62161.0)

3519

(3666.9)

2272

(2368.0)

237

(272.2)

67999

Totals 74471 4123 2616 275 81485

Been Yes

Drinking

313

(766.3)

43

(45.2)

15

(29.2)

4

(3.4)

375

No 3992

(4030.9)

481

(283.0)

370

(153.6)

66

(17.7)

4909

Totak 4305 524 385 7Q 5284

Totals Both Conditions 78776 4647 3001 345 86769

Example

An example of a three-dimensional table is presented in Table 2. The three-

way table shows the relationships between extent of injury, seatbelt usage

and driver condition for a Scimple of 86,769 auto accidents.

Models for Three- Way Tables

We begin here with the independence model. The independence model

requires that the joint density fijk in cell (i, j, k) be equcil to the product of

the three univariate marginal densities fijk = fi..f.j.f..k' The theoretical

frequency for a total frequency of n is given by

Fijk = nfijk = Fi.,F.j.F..k/n^

where F,-.. = nfi„ ,
F,j, = nf,j, and F„k = n f,.k .
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Inference for the Independence Model

Given a sample of size n, the maximum likelihood estimators of the ex-

pected cell frequencies imder the independence assumption are given by

Eijk = ni..n.j.n^k/n^ i = 1, 2, . .
. ,

r;

i = l,2,...,c;

The fitted cell frequencies depend only on the row, column and layer

marginals. Using the estimated expected frequencies Eijk, ^^sts

of goodness of fit for the independence model are carried out using either

of two statistics

C / / r, \2

^2 _^ ^ ^ K^ijk - ^ijk)

or

t=i j=i k=i

both of which are asymptotically with {rc£ — r — £ — c-{-2) degrees

of freedom if the independence hypothesis holds. The statistic is the

Pearson statistic, while is derived from a Ukelihood ratio test.

Example

The x^ test of independence for Table 2 yields 1057.47 and 939.90 for the

Pearson and likelihood ratio statistics respectively. Both of these statis-

tics have 10 degrees of freedom and are significant at the 0.000 level. The
expected frequencies under the independence model Eire shown in Table 2 in

brackets. A comparison of the observed and expected frequencies permits

us to conclude the following:

(a) For seatbelt users who appeared normaJ, the number of accidents re-

sulting in no injury was larger than expected, while the number who
sustained any injury was smaller than expected under independence.

(b) For seatbelt users who had been drinking, the number of accidents

resulting in no injury was less than half the number expected under

independence. In the minor injury category there were fewer cases

than expected.
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(c) For non-users of seatbelts who appeared normal, the number of acci-

dents in all injury categories was less than expected under indepen-

dence.

(d) For non-users of seatbelts who had been drinking, the number of ac-

cidents resulting in no injury was less than expected. For the three

injury categories, the number of accidents was much larger than ex-

pected under independence.

Drivers who wore seatbelts and appeared normal sustained fewer in-

juries than expected, while drivers who did not wear seatbelts and had
been drinking suffered more injuries than expected under independence.

For the remaining two categories, the difference between the observed and

expected frequencies seems less obvious. A logUnear model representation

for this table will be used below to identify the interactions among the

three variables. Before attempting to model the variation in the table, a

discussion of various model types is required.

For the remainder of this discussion the samphng model assumed is either

multinomial or independent Poisson. The two distributions eire equivalent

if the sample size n is fixed. Because the product multinomial places ad-

ditional restrictions on some marginab, additional requirements must be

adhered to in order to obtain maximum hkelihood estimates.

Partial Independence

Since there are three variables in the table, it is possible to have two waii-

ables related to each other but both be independent of a third vairiable.

This model is called the partial independence model and is given by

fijk = {fij.)iLk).

In this case, the third variable with subscript Jk is independent of the re-

maining two variables with subscripts i and j. The theoretical frequency

is given by

Fijk = Fij.F.,k/n

and is estimated by

Eijk = nij,n„k/n.

The two-dimensional marginals n,j. are being fitted since Eij, = n,j.. The
goodness of fit statistic in this case has (rc— 1) degrees of freedom.

An exaimple of a partial independence relationship would exist if in Ta-

ble 2 seatbelt usage were independent of both driver condition and driver

injury level, but at the same time driver condition and injury level were

related.
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Conditional Independence

A conditional independence model permits two variables to be indepen-

dent cifter controlling for a third variable. An example of such a model is

provided by

fijk = fi.kf.jk/f..k

where the variables with subscripts i and j sure independent at every level

of the variable with subscript k. The theoretical frequency is given by

Fijk = Fi.kF.jk/F„k

and the maximum likelihood estimator is given by

For this model the two-dimensional marginals n,-.* and n.jk are being fitted

since Ei,k = nj.jk and E,jk = n.jk- The goodness of fit statistic has

£{r — l)(c — 1) degrees of freedom.

An example of a conditional independence model in Table 2 would occur

if, for each of the two driver conditions, driver injury level is independent of

seatbelt usage. In this case driver injury level is related to seatbelt usage,

but if driver condition is held fixed then seatbelt usage and driver injury

level are independent. In other words, any relationship between driver

injury level and seatbelt usage is due to the relation between driver condi-

tion and the other two variables. This result is similar to obtaining a zero

first-order partial correlation coefficient with three quantitative variables.

No Three-Way Interaction

The next step in moving to less restrictive models is to assume that each

pair of variables is related, but that the relation between any pair of vari-

ables does not depend on the level of the third. This model is usually

referred to as the no three-way interaction model. It is not possible to

given cin expression for fijk or for Fijk that would permit us to determine

the estimators Eijk directly. For this model the Eijk are obtained by a

procedure known as iterative proportional fitting.

Since the model to be fitted assumes that all possible pairs are related

but that there is no three-way interaction, we need only fit a model which

preserves the three two-dimensional marginal totals n,j., n,jk and n,-.jk.

The steps for iterative proportional fitting proceed as follows:

STEP 1: Compute the observed marginal totals njj,, n,jk, n,-.*.

STEP 2: Assign the initial value 1 to every estimated cell frequency i.e.,

i;[°^ = l,foraUi,i,ik
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STEP 3: Compute new estimates of the Eijk so that they sum to the

marginal totals n,j. using

STEP 4: Compute new estimates of the Eijk so that they sum to the

marginal totals ni,k using

STEP 5: Compute new estimates of the Eijk so that they sum to the

marginal totals n,jk using

E^l = E^im\ for all U,..

STEP 6 and subsequent steps — repeat the cycle given by Steps 3, 4

and 5 until the changes in the Eijk are smaller than some preassigned

number.

For the fitted model the three two-dimensional marginals Eij., E,jk and

Ei.k wiU be very close to their observed counterparts n,j., n,jk and n,-.jb.

The number of degrees of freedom for a goodness of fit test would in

this case be (r - l)(ib - l)(c - 1).

A no three-way interaction model implies that the interaction between

any pair does not depend on the third variable. For the data in Table 2 a

no three-way interaction model would imply that the interaction between

seatbelt usage and driver injury level does not depend on driver condition.

Similarly the interaction between driver injury level and driver condition

does not depend on seatbelt usage, and the interaction between seatbelt

usage and driver condition does not depend on driver injury level.

Saturated Model

As in the case of the two-way contingency table, the most general model for

the three-way contingency table is the saturated model that fits the data

perfectly. The saturated model for the three-way table includes a three-way

interaction which allows the two-way interaction between any pair to vary

at each level of the third variable. This model will be discussed further

with the introduction of the loghnear model for three-way tables below.
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Loglinear Models for Three-way Tables

The saturated model for the three-way table is given by

In Fiji = /i + + fi2(j) + /i3(Jb) + /^12(ij) + Ml3(tJk) + f^23(Jk) + /il23(»j i).

1 = 1, 2,. ..,r; i = 1.2,...,c; A: = l,2,...,i

where Fijk = true frequency in cell A:) and

»=i j=i fc=i

C /

i=i ik=l

r <

»=i k=i

r c

M3(jb) = 51 - ^'

1=1 j=i

/ii2(.j) = l/^^lnF.jjfc - - /i20) - /i,

c

/il3(ifc) = l/c^lnFjjfc - - /i3(ib) - /i,

i=i

r

/*230*) = 1/r^ln Fijk - M20) - P3(fc) - /i,

t=i

/*123(ij*) = In Fijk - - H2U) - t^3{k) - Pl2(ii),

- /*230*) - /^13(it) - /i.
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The following conditions follow from these definitions

r c /

11/^1(0 = I]/^2(i) = ]C^3(t) = 0,

»= 1 i= l k=l

r c r I c I

1=1 j= l t=l k=l j = l jk=l

r c ^

1=1 j= l Jk=l

The /i parzimeters are functions of various marginal totals in the table

of logcirithms of the theoretical frequencies, lnF,jjb. The /i parzuneters are

functions of the logarithms of various geometric means of the frequencies.

The expressions for the /x parameters may also be written as /i = In F,„
,

InF...,

= lnF.j.- InF...,

/i3(i) = lnF..*- InF...,

/'I2(»i) = lnF,;.- InFi..

-

InF.j. + lnF...,

= hiF.-.,--in^;-.. - lnF..jt + lnF...,

/^23(ii) = lnF.,*--b^.j.

-

- ln^..jb + ln^...,

A'l23(0t) = hi^;ji-

+ hiF,-.. + In F.J. + bF..t-lnF...

where

i^... is the overall geometric mean of all the frequencies Fijk\

Fi„ is the geometric mean of all the frequencies Fijk holding i fixed;

F.J. is the geometric mean of all the frequencies Fijk holding j fixed;

F.,k is the geometric mean of all the frequencies Fijk holding k fixed;

Fij, is the geometric mean of all the frequencies Fijk holding i,j fixed;

F,jk is the geometric mean of all the frequencies Fijk holding j.k fixed;

Fi,k is the geometric mean of all the frequencies Fijk holding i, k fixed.

For eax:h of the models introduced above for three-way tables the cell

frequencies Fijk have different properties. These properties imply that

some of the /i parameters Eire zero.
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Independence Model

In the case of the independence model, Fijk = *" "*
implies that

\nFijk = A* + A*i(t) + A^2(j) + A*3(*) with all remaining /i parameters zero.

Pariial Independence Model

For the partied independence model the two-way interaction between i and

j results in H\2{ij) being non-zero. The other possible interactions are

zero. The loglinear model for this particular partizd independence model is

therefore given by

In Fijk = + Mi(t) + /i20) + /^3(i) + A^i2(.7)-

If the table is collapsed over k, the resulting two-dimensional table is fitted

exactly.

Conditional Independence Model

In the conditional independence model, the relationship between i and k is

captured by /ii3(ijb), and the relationship between j and k is captured by

A*23(jjfe)- Since i and j are independent at every level of k, A*i2(ij) = 0. The
loglinear model in this case is

In Fijk = + + /i20) + A^3(*) + Hl3(ik) + /i230i)-

If the table is collapsed over i or over j, the resulting two-dimensional tables

eire fitted exactly.

No Three-way Interaction Model

In the no three-way interaction model all pairs are related, but these relar

tionships are independent of the third variable. Only the term /ii23(»it) is

zero. The loglinear model is given by

In Fijk =fi + /i2(j) + ;i3(fc) + /il2(»;) + /^13(i]k) + /i230ik).

In this case the three two-dimensional tables obtained by collapsing the fit-

ted table on the third variable have cell frequencies identical to the observed

two-dimensional tables.
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Saturated Model

The saturated model given at the beginning of this section fits the three-

dimensional table perfectly. While this model is not needed to determine

expected frequencies, it is often useful for characterizing the interactions

in a three-way table.

Muhiplicative Form of the Loglinear Model

Taking the anti-logcirithm of both sides of the loglinear model yields a

multiphcative model for the cell frequency F,jjfc. The equation becomes

Fijk = /?oA(i)/?2(j)/?3(i)/?12(ii)/?13(»i)^23(ii)/?123(»;i).

The beta parameters axe sometimes useful for characterizing the variation

in the table. The beta parameters are defined by

/?o = e^ /?i(o = e'^^<^ /?2(;) = e^^0), /?3(i) = e^'^")

,

/?i2(ii) = e'^"^^^)
, /?i3(»ik) = e^-<"')

, /?230*) = e^"^^'')

,

/?i23(,i*) = e^"^('^*>.

Hierarchical Models

The above collection of models does not include all possible variants using

the parcimeters specified by the saturated model. Such models as

In Fijk = M + /il(t) + /i20) + /il2(.j) + /^23(ijfc) + /il3(.ifc)

8Lnd

In Fijk = + + /i20) + H3{k) + /il23(.jfc)

have not been considered. In order to maintain the practice of defining

higher order terms using deviations of lower order terms, the hierarchy

principle is followed. This principle requires that, if a given term is fitted,

all lower order terms involving those variables must also be included. The
main difficulty with non-hierarchical models is the interpretation of the

fitted pairameters. An additional problem, however, is that the iterative

proportional fitting procedure cannot be used to fit the model without

some transformation of the model being carried out first.
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Notation for Loglinear Models

To simplify the notation for the remainder of this chapter, the various

models in the hierarchical system will be denoted by symbols such as [1],

[23] and [134]. Only the symbols for the highest order interaction for each

variable will be used. All lower order terms containing that variable are

automatically included in the hierarchical system. The model [12], [234],

for instance, implies that the terms [23], [24] and [34] are also present, while

the parameters corresponding to [13] and [14] are not present.

Model Selection

Given a three-dimensional table of observed cell frequencies riijk, a ve^iety

of models in the hierarchical system can be fitted by replacing Fijk by Eijk

in the above formulae for the loglinear model pzirameters. The expression

for Eijk depends on the model being fitted. The various formulae for Eijk

for the various models have been outhned above. The goodness of fit of a

particulzir model can be judged using the goodness of fit statistics

and L^. A probabiUty level of 0.15 to 0.25 is usuaUy required to confirm

that the model adequately represents the interactions in the table. In

practice seek to fit the simplest model while maintaining a reasonable

fit.

In addition to the overall measure of goodness of fit, the likelihood ra-

tio statistic has the advantage that it can be used to compaure nested

models in the hierarchical system. Let and denote two likelihood chi-

square statistics for two alternative models and assume that model 2 is the

Icirger model which contains all the parameters of model 1. The conditional

likelihood chi-square statistic L2.1 = (Lf — L^) can be used to determine

whether model 2 is superior to model 1. Under the null hypothesis that

model 1 is equally as good as model 2, the statistic L2.1 is asymptoticzdly a

distribution with degrees of freedom equal to the difference (d.f. model 1

- d.f. model 2). An example of such a test might involve a comparison of

the model [13] [2] to the model [12] [13] [23]. The null hypothesis would be

that the terms [12] and [23] are superfluous.

Summary of Loglinear Model Fitting Procedure

The system of fitting loglinear models for the purpose of explaining inter-

action in a multidimensional contingency table can be demonstrated by the

diagram in Figure 1.
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Figure 1. System for Fitting and Using Loglinear Models

Product Multinomial Sampling

In product multinomieJ sampling, certain meirginals are held fixed. In

the three dimensional table we consider the two cases corresponding to

the fixing of the marginals for one or two of the three variables. If the

margincds are fixed for the first variable, then the loglinecir model must

contain the term This will ensure that the fitted marginals are

equal to the observed marginals n,„ . Similarly, if the marginals for both

variables 1 and 2 are fixed, then the model must contain the parameters

A*2(j) and /ii2(»i)- In this case the fitted marginals E,j, and Eij.

are equivalent to the sample marginals n,.., n,j, and n,j..

In product multinomial sampling some of the variables can be viewed as

response variables, while the remainder can be viewed as fixed or controlled.

The control variables have the fixed marginals, while the marginals for the

response variables are viewed as an outcome of the sampling process. The
weighted least squares approach assumes product multinomial sampling.

28



Example

For the example presented in Table 2, the entire set of loghnear models were

fitted using the maximum Ukelihood estimators Eij^. Table 3 sununarizes

the goodness of fit statistics for the various models. The first row is the

independence model which permits all three marginals to vary but contains

no interaction.

Rows 2, 3 and 4 show the results for the fitting of the three possible

partial independence models. In row 2 the model [2], [13] allows variables 1

£ind 3 to be related, but both are assumed to be independent of variable 2.

Similarly, in row 3 variables 2 and 3 sure independent of 1, and in row 4

variables 1 and 2 are independent of variable 3.

Table 3. Smnnuiry of Goodness of Fit Statistics for System of Hierarchical Models

[2] = seatbelt usage, [l] = driver condition, [3] = injury level

Model dX Likelihood Prob Pearson Prob

1. [1], [2], [3] 10 940.02 0.0000 1057.47 0.0000

2. [2], [13] 7 444.85 0.0000 372.21 0.0000

3. [1]. [23] 7 877.16 0.0000 967.92 0.0000

4. [3], [12] 9 542.50 0.0000 682.37 0.0000

5. [12], [23] 6 479.69 0.0000 610.75 0.0000

6. [13], [23] 4 382.02 0.0000 317.32 0.0000

7. [13], [12] 6 47.34 0.0000 44.51 0.0000

8. [12], [13], [23] 3 5.02 0.1705 5.02 0.1705

The three conditioned independence models axe shown in rows 5, 6 and 7.

In row 5 the model [12], [23] requires that 1 and 3 be independent at each

level of variable 2. Similarly, in row 6 variables 1 and 2 are independent

at each level of 3, and in row 7 variables 2 and 3 are independent at each

level of 1. The no three-way interaction model is fitted in the last row. In

this model all two-way interactions among the three variables are assumed

to explsiin all the interactions in the table.

An examination of the goodness of fit statistics reveals that the no

three-way interaction model can be used to explain the interactions among
the three variables. The fitted parameters for this model sire summarized

in Table 4. The ratios of the logUneax model parameter estimates to their

standard error are also shown in this table for selected psirameters. Plots of

the values of the parameter estimates are shown in Figure 2. The loghnear

model is given by

log Fijk = /i + + /i2(i) + /^3(Jb) + /^12(ii) + /il3(t*) + A*230fc)-
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From the fitted parameters in Table 4 the logarithm of the geometric

mean of the expected frequencies is 6.002. The driver condition effects

indicate that the normal condition is much more frequent than the "been

drinking^ condition. The seatbelt usage effects indicate that many more

drivers were not wearing seatbelts than were wearing them. The injury level

parameters indicate that the large majority of drivers were not injured and

that very few drivers sustained major or fatal injuries.

Table 4. Fitted Parameta^ for No Three-Way Interaction Loglinear Model

Overall Mean m = 6.002

Driver Condition Effects = 1-212 mi(2) = -1-212 (-53.906)

Seatbelt Usage Effects ^2(1) = -1.119 A2(2) = 1-119 (43.938)

Injury Level Effects

M3(i) = 2.626 A3<2) = 0.071 m3(3) = -0.376 m3(4) = -2322
^ ' (97.270) ^ ' (2.152) ' (-10.315) (-32.387)

Driver Condition - Seatbelt Usage Interaction

Mi2(ii) = 0.234 Al2(l2) = -0.234 mi2(21) = -0.234 Al2(22) = 0.234
^ ' (17.147) ^ ' ^ ' ^ '

Driver Condition - Injury Level Interaction

Mi3(ii) = 0.392 Ai3(i2) = 0.006 Mi3(i3) = -0.061 /ii3(i4) = -0337
(19.698) ^ (0.219) ' (-2.249) (-5.578)

Al3(21) = -0.392 M13(22) = -0.006 M13(23) = 0.061 Al3(24) = 0.337

Seatbelt Usage - Injxiry Level Interaction

A23(ll) = 0.085 ^23(12) = 0.013
I.

(3.714) (0.490)

M23(21) = -0.085 A23(22) = -0.013 ^23(23) = 0.069 M23(24) = 0.029

A23(ll) = 0.085 A23(12) = 0.013 ^23(13) = -0.069 M23(14) = -0.029
(3.714) (0.490) (-2.286) (-0.465)

The interaction effects in Table 4 suggest that normal condition drivers

were more hkely to be weaxing seatbelts than drivers who had been drink-

ing. The driver condition-injury level interactions indicate that, in com-

pairison to drivers who had been drinking, a larger proportion of drivers in

the normal category had no injury and a smaller proportion of the normal

category drivers were in the major or fatal injury category. For the min-

imal and minor injury categories, the interaction terms were quite weak.

The interaction between driver injury level and driver condition therefore

seems to affect only the two extremes of the injury level range. The seatbelt

usage-injury level interaction appears to be relatively weak. There is some
tendency, however, for seatbelt users to be over-represented in the no-injury

category and under-represented in the minor injury category. The minimal

injury category cind the major/fatal category show only shght interactions

with seatbelt usage.

31



In conclusion, we could say that a large majority of drivers appeared
normal, had not been wearing seatbelts, and were not injured. For drivers

wearing seatbelts, there were proportionately fewer who sustained an in-

jury and proportionately more were in normad condition than for non-

seatbelt users. Among those who had been drinking, proportionately more
sustained a minor or major/fatal injury than among those who appeared

normal.

A comparison of the observed frequencies to the expected frequencies

under the no three-way interaction fitted model is shown in Table 5. The
expected frequencies are shown in round brackets under the correspond-

ing observed frequencies. The fit seems to be excellent with only minor
differences in the minimal and minor categories for drivers who had been

drinking and were wearing seatbelts. The values of the standardized resid-

uals are shown in square brackets for each cell. The largest standardized

residuals occurred in the minimal and minor categories for drivers who had
been drinking. These residuals, however, were quite small indicating £in ex-

cellent fit. In these two cells the frequencies are relatively small cind hence

the prediction errors are proportionately larger.

Table 5. Comparison of Observed and Expected Frequencies

Driver Injury Level

Driver Seatbelt

Condition Usage None Minimal Minor Major/Fatal

Yes 12500 604 344 38

(12497.0) (613.3) (337.8) (37.9)

[0.0] [-0.4] [0.3] [0.0]

Normal
No 61971 3519 2272 237

(61974.0) (3509.7) (2278.2) (237.1)

[0.0] [0.2] [-0.1] [0.0]

Yes 313 43 15 4

(316.0) (33.7) (21.2) (4.1)

[-0.2] [1.6] [-1.3] [-0.1]

Been Drinking

No 3992 481 370 66

(3989.0) (490.3) (363.8) (65.9)

[0.0] [-0.4] [0.3] [0.0]

The fitted parameters in Table 4 were converted to multiplicative pa-

rameters and are summarized in Table 6. The multiplicative form of the

fitted model is given by the equation

Fijk = ^0/?l(»)^2(i)/?3(*)/?12(»j)A3(»jk)/?23(i*).
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Table 6. Mviltiplicative Parameters for No Three-Way Interaction Model

Geometric Mean /? = 404.362

Driver Condition Effects = 3.361 ^(2) == 0.298

Seatbdt Usage Effects /^(i) = 0-237 42(2) == 3.061

Injviry Level Effects

/33(i) = 13.824 Pz{2) = 1-074 0^3) = 0.687 ^(4) == 0.098

Driver Condition - Seatbelt Usage Interaction

/0i2(u) = 1.263 /!i2(i2) = 0.792 012(21) = 0.T92 ^12(22) = 1.263

Driver Condition - Injury Levd Intei^tion

)3i3(ii) = 1.481 ^3(12) = 1.006 /3i3(i3) = 0.941 ^3(14) = 0.714

4i3(2l) = 0.675 /3i3(22) = 0.994 )3i3(23) = 1.063 y3l3(24) = 1.401

Seatbelt Usage - Injviry Level Interaction

/323(li) = 1.088 /323(i2) = 1.013 /323(13) = 0.934 /323(14) = 0.971

/323(21) = 0.919 /323(22) = 0.987 Aj3(23) = 1-071 /323(24) = 1.030

Three-way Interaction

When a saturated model is required in order to obtain a good fit for a

three-way table, the three-way interaction /ii23(tjjb) is said to be signifi-

cant. The presence of such an interaction indicates that each of the three

two-way interactions cannot be assumed to be constant over the vairious

levels of the third. As zin example, consider the two-way interaction fin^ij)-

This parameter measures the interaction between variables 1 and 2 and is

estimated using the marginal table obtained after summing over the sub-

script k. The two-way interaction /ii2(»i) therefore represents an average

relationship between vciriables 1 and 2 sununed over the categories of the

third variable. The fact that /i 123(1; fc) is non zero indicates that the inter-

action between variables 1 and 2 varies over the levels of variable 3.

Example

To provide an example interpretation for three-way interaction parauneters,

the estimates /ii23(»jjb) for the data in Table 2 are shown in Table 7. The
largest parameter estimate of 0.086 for the category normal, seatbelt yes,

and minor injury allows us to conclude the following:
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(1) The proportion of individuals who sustained a minor injury while weeir-

ing seatbelts was greater for normal condition drivers than for drivers

who had been drinking. In other words, the interaction between seat-

belt usage and injury level is not independent of driver condition.

(2) The proportion of individuals who sustained a minor injury while in

normal condition was greater for those wearing seatbelts than for those

not wearing seatbelts. Thus the interaction between driver condition

and injury level depends on seatbelt usage.

(3) The proportion of individuals who wore seatbelts while in normal con-

dition was greater for those who sustained a minor injury than for

those who sustained a minimal injury. The interaction between seat-

belt usage and driver condition varies with the injury level.

T£jDle 7. Threeway Interaction Terms from Saturated Model

Condition Usage None Minimal Minor Major

Normal YES -0.{X)7 -0.080 +0.086 0.000

NO +0.007 +0.080 -0.086 0.000

Been Drinking YES +0.007 +0.080 -0.086 0.000

NO -0.007 -0.080 +0.086 0.000

2. Logistic Regression

In the multiple linear regression model the dependent variable Y is always

assumed to have an interval scale. The explanatory variables in x, however,

can be either interval scaled or categorical. If the dependent variable is

categorical, a logistic regression model can be used. The discussion here is

restricted to the case of a dichotomous dependent variable.

Tht Point Binomial

We assume that individuals or objects can be classified into one of two

mutually exclusive categories Aot B, and that the probabilities associated

with these two categories are p and (1 — p) respectively. As an example,

the categories A and B might represent the events that a business firm will

or will not go bankrupt in the next yecir.
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We define the dummy icindom variable Y to indicate the two categories

by letting Y = 1 for category A and V = 0 for category B. The probability

density for Y is therefore given by

/(y I p) = P»'(i
-?)('->-)

which is the density of a point binominal.

Probability as a Function of Other Variables

To continue the example of business firms and bankruptcy, we assume that

the probability of bankruptcy depends on a measure of finsuicicd health D,

where D is a, linear function given by D = Po + ^iX and where X is

a measure of a company's abihty to repay its debts, such as debt-equity

ratio. In other words the probability of bankruptcy is a function of D and

will be denoted by p{D). For an individual firm i with debt-equity ratio x,-,

di = /?o + PiXi and the probabihty density for yi is given by

f{yi\pW) = \p(diT[i-p{di)f'-''^.

For a random sample of n firms we observe {di,d2, . . . ,dn), and the joint

density for (yi , y2, yn) is given by

f(yuy2y . .
. , yn I

p{di),p{d2), . . .,p{dn))

...[pK)Mi-pK)](^-s'-)

»=i

Note here that the parameters /3o and f3i are assumed to be constant across

the complete sample.

The Logit Function

To be able to relate the value y of the response variable Y to the \a\ue d of

the variable D, a more specific assumption about the form of the function

p(d) is required. The logistic regression model assumes that p{d) is given
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Logistic Regression With c Explanatory Variables

The logistic regression model can be extended to include c explanatory
c

variables. In this case it is assumed that p = p{D) where £> = /?o4- J2Pj-^3
i=i

is a Unear function of c explanatory Vciriables. Thus for the bankruptcy

example we assume that there are a total of c variables that are related to

the probability of bankruptcy.

The logit of p is given by

c

]n\p/il-p)] = D = l3o + '^/3jXj

i=i

which has the form of a multiple regression model. The estimation of the

parameters /?o,/?i, • • • ,/?c is usually obtained using maximum likehhood,

which must be determined using Newton-Raphson procedures.

Inference for the Dichotomous Logistic Regression Model

The dichotomous logistic regression model assumes that the logit func-

tion ln[p/(l — p)] can be modelled as a linear function of a set of ex-
c

plaiiatory variables Po -j- Y^Xj^j. Given a random sample of observations
J=i

(y,-, x,i ,
Xj2, . .

. , a^ic), i = 1, 2, . .
. ,

n, the maximum likelihood estimator of

the coefficient can be obtained as outlined. In comparison to the multiple

linear regression model, the coefficients in this case must be interpreted

differently. A marginal one unit increase in Xj brings about an increase

in ln[p/(l — p)] of the amount pj. The magnitude of the increase in p,

however, depends on the initial value of p.

Comparing Nested Models

Inferences regarding the coefficients in the logistic regression model can be

made by comparing models and sub models using a likelihood ratio test.

To compare a full model with c explanatory variables plus an intercept to

a reduced model with (c — q) explanatory variables plus intercept, the

logarithm of the likelihood ratio yields the statistic — 2[ln Lq — In L], which

has a distribution with q degrees of freedom if the q deleted variables

are superfluous. L is the likelihood function for the full model, while Lq is

the likelihood function for the reduced model. The reader may recall that

this approach was also used for loglinear models in the three-dimensional

contingency table discussed above.
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Figure 3. Shape of Logistic Distribution Functions

by the distribution function for a logistic density G{d). Hence = G{cl),

-GO < d < oo. The shape of G((f) is illustrated in Figure 3.

The equation for p{d) is given by

K<f) = e''/(l + e''),

which is the logistic distribution function. The shape of p(d) for the logis-

tic is quite similar to the shape for a normal distribution function. As we
outline next, the logistic transformation lends itself to a useful explicit func-

tional relationship between p{d) and d. The standardized logistic density

is given by

/H = e-/(l + e-)2

and the mean and variance of this density are 0 and ir^/Z respectively. The
standard normal and standardized logistic distribution yield very similar

shaped densities and distribution functions. Like the standard normal den-

sity, the standardized logistic density has a median and mode of zero and a

skewness of zero. The kurtosis of the logistic density is 4.2 which indicates

fatter tzuls than the normal which has a kurtosis of 3. The standardized

logistic distribution with w* = wl^fn^-jz has shghtly heavier tails than the

standard normal distribution.

An important advaintage of the logistic distribution in this context is that

the logit transformation ln[p/(l — p)] has the form

Therefore, if d is assumed to be a linear function of x, d = or-f the logit

has the fzunihar linear model form. This logit model is usually referred as

the logistic regression model.



Goodness of Fit

A pseudo measure of goodness of fit is given by

= 1-lnI/lni;

where Lq denotes the likeUhood function value when all variables are ex-

cluded except the constant term /Sq. Thus the sample value of Lq is the

value of L evaluated using the sample proportion for the majcimum likeli-

hood estimator of p. This measures the proportion of uncertainty in the

data that is explained by the model. If the full model is a perfect indicator,

then L = 1, InL = 0, 2ind R"^ = 1, If the reduced model yields the same
likelihood as the full model, then In L = In Lq and = 0. In this case the

explanatory variables contribute nothing to the likelihood.

An alternative measure of goodness of fit is given by

Rl = {L""-Lf'")/{l-Lf'-').

Hosmer-Lemeshow Goodness of Fii Test

Since a large majority of the observations (r/j
, iCji ,

i,-2, • • •
> ^ie) » = 1 , 2, . .

.
, n

are unique in the sense that in general no two observations yield identical

values on all variables, the fitted model cannot be evaluated using the

goodness of fit tests introduced for the contingency table. A goodness of

fit test, known as Hosmer-Lemeshow, divides the range of p [0, 1] into s

mutually exclusive categories, and then a comparison of the observed and

predicted frequencies be carried out using a statistic. The categories

can be determined by ranking the np values and then dividing them into s

equed groups or by dividing the range of p into s equal intervals.

We denote the actual frequency in group j by oj, the predicted fre-

quency by Tij , and the average value of p in group j by pj . The statistic

jP^^^Ov is approximately x^ with [s — 2) degrees of freedom if the
j=i ^jPj\^ Pj)

fitted logistic regression model is correct.

Example — Bivariaie Relationships

To provide examples for the discussion of qualitative response regression

models the data sununarized in Table 8 will be used. The data represents a

sample of 100 observations on married women selected from the Michigan

Panel Study of Income Dynamics. The variables THISYR and LASTYR
are indicator variables for whether the wife worked (=1) or did not work
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(=0) in the current year and the previous year respectively. The variables

CHILD 1, CHILD2, and BLACK are dummy variables indicating whether

the wife has children under 2 (CHILDl), children between age 2 and age 6

(CHILD2) or is BLACK respectively. Finally the three variables AGE,
EDUC and HUBINC are measures of the years of age and years of education

of the wife ajid the income of the husband, respectively. The variables

THISYR and LASTYR will be used as response variables and the remaining

variables wiU be used as explanatory variables.

To examine the bivaxiate relationships between THISYR £ind LASTYR
and each of the six explanatory variables, single variable logistic regression

models were estimated. The results are summarized in Table 9.

To iUustrate the information contained in Table 9, we shsdl examine

in detail the results for the interval seeded V2iriable HUBINC and for the

categorical variable CHILDl. For the variable HUBINC the fitted logistic

regression model in the case of THISYR has the equation

ln[p/(l - p)] = 1.6001 - 0.0675 HUBINC

where p is the probabihty that the wife will choose to work THISYR. The
log of the hkehhood ratio for the model is given by In Li = —56.982 while

the log of the likeUhood ratio with HUBINC omitted is InLo = -59.295.

The likehhood ratio statistic is therefore — 2[ln Lq — In Li] = 4.62 which

has a p-value of 0.0315 for a 1 d.f. x^- The fitted equation indicates that

as HUBINC decreases the value of p increases. From Table 8 the range of

HUBINC is 0 to 54.3 and hence the value of the logit varies from +1.6001

to —2.0652. The range of values for p is therefore given by

p = exp[+1.6001]/(l + exp[+1.6001]) = 0.83

and

p = exp[-2.0652]/(l + exp[-2.0652]) = 0.11.

For the categorical variables CHILDl, CHILD2 and BLACK, dummy
variable coding was used with CHILDl = 1, CHILD2 = 1 and BLACK = 1

indicating the presence of a child under 2, a child of age 2-6 and an indi-

vidual of the black race. For the variable CHILDl the fitted model is given

by

ln[p/(l - p)] = 1.1272 - 2.7366 CHILDl.

The probeibihty that the woman chooses to work therefore varies from p =
exp[1.1272]/(l4-exp[1.1272]) = 0.76 for CHILDl = 0 top = exp[-1.6094)/

(1 + exp[-1.6094]) = 0.17 for CHILDl = 1. The significance of the co-

efficient of CHILDl is obtained from -2[lnLo - InLi] = -2[-59.295 -
(-55.006)] = 8.58 which has a p-value of 0.0034 for a 1 d.f. x^-
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Table 8. Pull Time Work Outside the Home for Married Women

OBS LAb 1 YK InloYn, CrllLDl L>n.lLD2 rJLAUis. EiUUL/

1 0 0 0 0 0 4^40 12 42

2 0 0 0 1 0 13.648 12 31

3 1 1 0 1 1 4.973 10 38

4 0 1 0 0 0 8.427 12 46

5 0 1 0 0 0 18.320 18 46

6 0 1 0 1 1 7.680 10 29

7 1 1 0 1 0 5.612 12 25

8 0 0 0 1 0 13.554 12 32

9 0 0 0 0 5.329 12 26

10 1 0 0 0 10.511 12 29

11 1 0 0 0 10.486 12 34

12 1 0 0 0 14.071 16 38

13 1 0 0 0 9.024 12 32

14 1 0 1 0 14.329 12 36

15 1 1 0 0 5.118 18 28

16 1 0 0 1 3.044 12 37

17 1 0 0 1 2.640 7 38

18 1 0 0 1 2.050 7 43

19 0 0 1 1 6.750 12 23

20 0 0 0 0 3J383 12 24

21 1 0 0 0 6.630 12 40

22 1 0 0 0 7.000 12 46

23 1 0 0 0 8.815 12 42

24 1 0 0 0 3.450 12 46

25 0 0 0 0 12.031 12 42

26 1 0 0 1 6.144 12 31

27 0 0 0 1 0 11.513 12 39

28 0 1 0 1 0 12.167 12 46

29 0 0 1 0 0 9.968 16 28

30 0 0 1 0 0 5.888 12 23

31 1 1 0 0 0 10.232 12 32

32 1 1 0 0 0 8.017 12 40

33 1 1 0 0 0 11.686 12 45

34 1 0 0 1 0 28.363 12 31

35 1 1 0 0 1 4343 7 46

36 1 1 0 0 0 10.554 12 38

37 1 1 0 1 0 2.484 10 29

38 0 0 0 0 0 5.672 12 44

39 1 1 0 0 1 13.319 18 31

40 1 1 0 0 1 7.678 18 35

41 1 1 0 0 0 7.162 12 24

42 0 0 0 0 0 7.804 12 34

43 0 1 0 1 0 13.648 16 28

44 0 0 0 1 0 9.311 12 27

45 1 1 0 0 0 27.938 12 46

46 1 1 0 0 6.704 12 27

47 1 1 0 0 0 7.711 12 32

48 1 1 0 0 0 8.576 16 38

49 0 1 0 1 0 7.223 16 26

50 0 0 1 0 0 11.259 16 31
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Table 8. Pull Time Work Outside the Home for Married Women (continued)

OBS LASTYR THISYR CHILDl CHILD2 BLACK HUBINC EDUC AGE

51 0 0 0 1 0 26.063 12 30

52 0 0 0 11.776 12 42

53 I I 0 0 0 12.793 18 46

54 I I 0 0 0 11.080 12 44

55 I I 0 0 0 7.074 12 31

56 I I 0 1 0 6.679 12 36

57 I 0 0 0 15.868 12 45

58 I I 0 0 0 7.972 16 42

59 1 0 1 0.000 12 29

60 I I 0 0 0 3.030 10 43

61 I I 0 0 0 2.970 16 27

62 I I 0 0 0 9J305 12 40

63 0 0 0 8.125 12 30

64 0 1 1 13.033 10 29

65 I I 0 0 1 0.000 12 39

66 I I 0 1 1 2.781 12 30

67 I I 0 0 1 3.010 12 35

68 0 0 0 26.056 12 40

69 0 0 0 5.795 12 46

70 I I 0 1 0 0.000 12 36

71 I I 0 1 0 2.639 12 28

72 I I 0 0 0 9.087 12 24

73 I 0 0 0 12.312 12 34

74 I 0 0 0 7.325 12 33

75 I 0 0 0 3.517 10 26

76 I 0 0 0 17.140 12 35

77 I I 0 0 0 24.054 12 40

78 1 I 0 0 1 6.144 12 42

79 I 0 0 1 13.211 12 34

80 1 0 0 0 9.309 12 45

81 1 1 0 0 0 3.135 10 40

82 1 1 0 0 0 2.935 10 45

83 I 0 0 0 9.607 12 41

84 I 0 0 0 10.629 12 44

85 0 0 0 8.207 12 24

86 0 0 0 9.772 12 42

87 0 0 0 8.955 12 46

88 0 0 0 6.204 10 46

89 0 0 0 1 9.378 12 32

90 0 0 0 0 54.281 12 45

91 1 0 1 0 7.525 12 31

92 0 1 0 0 11.504 12 32

93 0 0 0 0 5.763 12 42

94 0 0 1 0 5.683 12 32

95 0 0 0 0 10.937 12 40

96 1 0 0 0 9.361 12 45

97 0 0 0 1 0 6.342 12 35

98 1 0 0 0 0 7.160 10 31

99 1 0 0 1 0 7.788 12 31

100 1 1 0 0 1 2.402 10 25
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An exsunination of Table 9 reveals that the most important variables

in predicting whether a woman will choose to work THISYR are AGE,
HUBINC and CHILDl. The coefficients of these variables indicate that p
tends to be larger if AGE is large, HUBINC is small, CHILDl = 0 and if

CHILD2 = 0. For the variable LASTYR the most significant explanatory

variables are HUBINC, CHILDl and CHILD2. The coefficients in these

three models indicate that p increases with decreasing HUBINC, and that

p is larger if CHILDl = 0 and if CHILD2 = 0.

Example - Logistic Regression With Multiple Explanatory Variables

To determine how the explanatory variables together predict p, a logistic

regression model was fitted using all six explanatory variables. The fitted

models for THISYR and LASTYR are given by

THISYR

b[p/(l -p)] = - 6.0624 - 0.1079 HUBINC + 0.4777 EDUC
(0.0472) (0.0040) (0.0148)

+ 0.0773 AGE + 1.5451 BLACK
(0.0765) (0.0708)

- 4.5179 CHILDl - 1.1238 CHILD2,
(0.0003) (0.0621)

LASTYR
]n\p/(l -p)] = + 6.3641 - 0.0799 HUBINC - 0.0911 EDUC

(0.0076) (0.0257) (0.4638)

- 0.0870 AGE - 0.0879 BLACK
(0.0423) (0.8937)

- 3.6948 CHILDl - 1.6928 CHILD2.
(0.0008) (0.0057)

The fitted logistic regression model for THISYR indicates that at the

maigin the probabiUty that a woman will choose to work increases with

decreases in HUBINC, but decreases with decreases in AGE and EDUC.
For the dummy variables, a woman of the black race is more likely to work,

while if children are present the woman is less likely to work. For the

variable LASTYR the variables HUBINC, CHILDl and CHILD2 have the

SBLme impact as in the case of THISYR while the remaining variables are

insignificant.

The log likelihoods for the two models are —44.044 and —53.314 for

THISYR and LASTYR respectively. Excluding all six variables yields log

likelihoods of -59.295 and —64.745. The likelihood ratio statistics for

the significance of all six variables are given by —2[—59.295 — (—44.044)] =
30.502 and -2[-64.745- (-53.314)] = 22.862 which have j>-values of 0.000

and 0.001 when compared to a distribution with 6 d.f. The pseudo
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values are given by [1 - 44.044/59.295] = 0.26 and [1 - 53.314/64.745] =
0.18, respectively. The Hosmer-Lemeshow P values are 0.05 and 0.46

for the variables THISYR and LASTYR respectively.

The FiUed Model and Classification

The fitted logistic regression model can be used to obtain the value of p,- for
r

each observation by determining the value of ln[p,/(l — p,)] = /?o+ Pj^ij
i=i

and then solving for p,-. The value of pi is given by pi = e^^/{\ + e*^).

Assume that the observation is placed in the category y = 0 if p,- < 0.50,

and otherwise the observation is placed in the category Y = 1. A prediction

success matrix or confusion matrix in this case can be constructed as shown

below.

Pi < 0.50

p > 0.50

IVue Category

y = 0 y = 1

"00 "01

'^10 nil
n = (noo + "01 + "io"ii)

This table shows the distribution of the predictions for each of the two

categories. The proportion of correctly classified observations is given by

("00 + "ii)/"- The logistic regression model therefore provides a discrimi-

nant function which can be used to classify unknowns.

Example

It is of interest to examine the abilities of the two fitted models to pre-

dict the values of THISYR and LASTYR. If no explanatory variables

are included in the model, the probabilities based on the observations are

p[THISYR = 1] = 0.72 and p[LASTYR = 1] = 0.65. Prediction success

tables based on these probabilities are therefore given by

Predicted

THISYR
0 1

THISYR

8 20

20 52

28 72

Predicted

LASTYR
0 1

LASTYR
12 23

23 42

35 65
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We would therefore expect to predict correctly 60% of the values ofTHISYR
and 54% of the values of LASTYR. An equal priors model would only be

expected to predict 50% correctly.

To determine the predictions based on the fitted logistic models, values of

p were determined for both models for all 100 observations. If p < 0.50 for

a particular individual, then that individual was placed in the *not work'

category; otherwise the individual was placed in the 'work* category. The
prediction success tables are shown below.

Predicted

THISYR
Predicted

LASTYR

THISYR
0 1

LASTYR
0 1

0 13 15 28 0 14 21

1 5 67 72 1 8 57

18 82 22 78

35

65

For the variable THISYR the use of the fitted logistic regression model

results in a correct classification for 80% of the cases, while for the variable

LASTYR, use of the fitted model results in a correct classification for 71%.

The increases in % correctly classified as a result of the fitted logistic re-

gression model are 20% and 17% respectively. In other words, in the case

of THISYR an additional 20 of the 100 cases were correctly classified, while

for LASTYR an additionsd 17 of the 100 cases were correctly classified.
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STATISTICAL GRAPHICS

Marion Herbut

Alberta E^nviromnental Centre

Vegreville, Alberta

Introduction

The use of SAS/Graphl to produce regression analysis plots and plots with standard

deviation/standard error bars is demonstrated. Examples are given for enhancing graphical

output, manipulating data, and transferring gpraphical output to other graphics, word processing

and desktop publishing software for further modification.

SAS/Graph regression analysis plots

The ability of SAS/Graph to analyze data statistically and manage large data sets simplifies

regression analysis. The GPLOT procedure is used to plot Y against X variables. The regression

analysis is specified in the SYMBOL statement with the interpolation option (I=optiony IsRL

requests a linear regression and IaRL0 would set the intercept to zero.

The regression equations can be linear(RL), quadratic (RQ) or cubic (RC). Confidence limits can

be added to the regression line by further specification in the I=option . IsRLCLI99 requests a linear

regression with hnes representing 99-percent confidence limits on individual predicted values.

I=RLCLM90 requests the same smalysis, but with 90-percent confidence Umits on the mean

predicted values.

The following example produces a regression analysis plot with system defaults.

1 SAS Institute, Inc. SAS/Graph Guide for personal computers. Version 6 edition. Cary, N.C.:

SAS Institute, Inc., 1987. 500 pp.
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GOPTIONS DEVICE=VGA16;

DATA LEAVES;

INPUT X Y;

CARDS;

.1267 11.33

.1067 8.00

.1067 8.67

.1867 14.00

.1733 12.00

.1500 13.00

.0867 6.67

.2850 22.00

.0400 3.33

SYMBOL I«RLCLM90;

PROC GPLOT;

PLOT Y*X;

RUN;

This plot can be enhanced by supplying specific values for various options. For example, title and

axes labels can be added using different text fonts and heights, the X and Y axis increments can be

modified, and data point symbols can be added.

GOPTIONS DEVICE=VGA16 GUNIT=CM HTEXT=.8 FTEXT=DUPLEX;

TITLE RLCLMSO';

AXISl LABEL=(A=90 Percentage of plant strata infested')

MINOR=NONE

ORDER=0TO25BY5;

AXIS2 LABEL=('Number / plant stratum )

MINOR=NONE

ORDER=0 TO .3 BY .05;

SYMBOL V=CIRCLE I-RLCLM90 H=.5 L=l;

PROC GPLOT DATA=LEAVES;

PLOT Y*X / VAXIS=AXIS1 HAXIS=AXIS2 FRAME;

RUN;
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Text height and font are specified in the GOPTIONS statement and remain in effect until

specified otherwise or until the session is terminated. Output can be further controlled by

specifying options within TITLE, FOOTNOTE, NOTE, AXIS, LEGEND, PATTERN and

SYMBOL statements.

The SAS/Graph manual documents in detail the many options available to enhance graphics

output text and design.

SAS/G^ph standard deviation/standard error bar plots

As with regression, the I=oDtion in the SYMBOL statement is used with the GPLOT procedure to

add standard deviation/standard error bars to the data plotted. I»STD is used when multiple Y

values occur for each level of X, and it is desired to join the mean Y value with (±) 1, 2, or 3

standard deviations for each X. I^STDM computes the standard error. laSTDlJT computes 1

standard deviation, the means are connected from bar to bar (J), and tops and bottoms are added to

each bar (T). Further options are available for the interpolation values (I=Qption) .
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In the next example I-STDMJT requests standard error bars (default value of 2) with means

connected from bar to bar and tops and bottoms added to each bar. This program also illustrates

some data manipulation to overlay two lines on one plot. The original data set is subset into two

data sets, the variable to be plotted renamed imiquely for each isolate, and finally the two data sets

are merged again into one. The example also demonstrates how the output can be controlled

separately within the TITLE, SYMBOL and AXIS statements.

Example:

GOPTIONS DEVICE=VGA16 GUNIT=CM;

DATA M; SET F2.SAIN;

IF CHEMICAL= 'M';

RENAME PERCENT=PERCENTM;

DATA N; SET F2.SAIN;

IF CHEMICAL= N';

RENAME PERCENT=PERCENTN;

DATA PLOT; SET M N;

TITLE F=DUPLEX H=l Effects of metalaxyl on growth of sainfoin';

SYMBOLl I-STDMJT V=NONE W=2 L=l C=B;

SYMB0L2 I-STDMJT V=NONE W=2 L=l C=B;

PROG GPLOT;

AXISl VALUE=(H=.9 F=DUPLEX)

ORDER=OT01BY.l

WIDTH=2 MINOR=NONE

LABEL=(A=90 H=.9 F=DUPLEX Percent);

AXIS2 VALUE=(H=.9 F=DUPLEX)

ORDERS 0 1 2 3 7 8 12 13 16 18

WIDTH=2 0FFSET=(.5CM)

LABEL=(H=.9 F=DUPLEX Isolate );

PLOT (PERCENTM PERCENTN)* ISOLATE / OVERLAY

VAXIS=AXIS1 HAXIS=AXIS2;

RUN;
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Effects of metalaxyl on growth of sainfoin

1.0h t

isolate

If the data set already has standard deviation/standard error values, some data manipulation is

necessary to create a plot with error bars. Multiple values ofY for each value ofX will have to be

created. Data set STD contains the variables ISOLATE, CHEMICAL, MEAN and STD. The

following SAS DATA step can be used to reshape the data:

DATA NEWSTD;

SET STD;

PERCENT=MEAN+STD; OUTPUT;

PERCENT=MEAN; OUTPUT;

PERCENT=MEAN-STD; OUTPUT;

DROP MEAN STD;

RUN;

In the DATA step, the original data set (STD) is read in. Three values for PERCENT are created

for each ISOLATE: the original mean, the mean plus the standard deviation and the mean minus

the standard deviation.
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Again the I=option in the SYMBOL statement is used with the GPLOT procedure to add error bars to

the plot. I«HILO is used in this case since the mean and standard deviation are already known.

Similar options are available as are for I«STD.

Transferring graphics

Frequently it is necessary to incorporate SAS/Graph output within a document, or the output

requires further modification. If so, this can be facilitated by correct device driver selection in

SAS/Graph.

The graphics within this document were incorporated using WordPerfect®. The output from

SAS/Graph was sent to a file in Hewlett-Packard® Graphics Language (HPGL) format and then

placed in WordPerfect®. HPGL is WordPerfect's® recommended export format for SAS/Graph.

To create the HPGL file, the GOPTIONS statement was used to select the HP7475 plotter driver in

SAS/Graph and to direct the output to a file instead of the default serial port:

GOPTIONS DEVICE=HP7475 GACCESS='SASGASTD>hpexport.plf;

Using PageMaker® (the desktop publishing software demonstrated in the workshop), the most

suitable SAS/Graph export format for placing graphics was found to be Encapsulated Postscript

(EPS). With other export formats some detail is lost, the scale is altered, and there is a 64K file size

limit. With EPS there is no loss of detail, the scale is retained even when reduced considerably,

Aid there is no file size limit so complex graphics are not restricted. However, EPS graphics

appear as a shaded box on the monitor because EPS is a language readable only by a postscript

printer, and a postscript printer is required to print the docximent. Placing, sizing and moving

graphics in PageMaker® is very simple and versatile, accomplished with mouse click and drag

routines, and annotations can be added easily around and within the shaded graphics box.

SAS/Graph output can also be exported to other graphics software such as Harvard Graphics® and

Lotus® Freelance for further modification. The preferred export format in this case would be

Computer Graphics Metafile (CGM). SAS/Graph has a number ofCGM drivers specific the

software to which one is exporting. Depending on the graphics software, once imported, the

SAS/Graph output can now be edited and annotated. Each graphics software may have different
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size limits on the CGM file that it can import. In Harvard Graphics®, the metafile can be no larger

than 32K, but with Zenographics Mirage™ you are limited only by the memory capacity of your

system.

With the various options available for SAS/Graph export, the GREPLAY procedure is useful for

storing graphics in a device independent catalog and replaying them later with the appropriate

device driver required by the destination software.

Summary

The integration of statistical analysis and graphics in SAS/Graph along with its data

management capacity makes it a powerful tool for statistical graphics.

Regression analysis plots and plots with standard deviation/standard error bars are requested in

the SYMBOL statement with the interpolation option (I=optiQn) in GPLOT.

SAS/Graph has many options available for enhancing graphical output design and text. If further

modification is required, careful selection of the many device drivers available in SAS/Graph

can ensure that graphics are transferred correctly to the destination software.
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ADISCUSSION OF DISCRIMINANT ANALYSIS USING DYSTOCIA IN BEEF HEIFERS
J. A. Basarab, BeefManagement Specialist

Beef Cattle and Sheep Branch, Animal Industry Division

Alberta Agriculture, Edmonton, Alberta

Abstract

Classification of subjects into two or more groups on the basis of one or more numeric

measurements has long posed a problem to researchers. The most commonly used approach has

been to apply consecutive numbers to the groups, treat them as the dependent variable and then

subject the dependent variable and independent variables to multiple regression analysis. This

approach assumes that the group variable is continuous, or at least that there is some numeric

interval between the groups. How this numbering is applied can dramatically affect conclusions.

In addition, the results from the multiple regression analysis lack clarity. The analysis does not

classify subjects into groups, but merely identifies variables which significantly affect the

dependent variable. Discriminant analysis, on the other hand, does not assume numeric

continuity among groups and classifies subjects into discrete groups on the basis of a battery of

measurements. Discriminant analysis using the SAS procedures will be discussed with calving

difficulty in beef heifers as the example.
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APPLICATION OF TEDE REPEATED MEASURES ANOVA INAGRICULTURE

L^ Goonewardene

Research Analyst, Beef Cattle and Sheep Branch

Alberta Agriculture

Edmonton, Alberta

Introduction

In the agricultural sciences it is often of interesl^necessary to collect multiple observations on the

same samphng unit. If the example is a plot of land and samples are taken from equal sized

strips or sub plots which are randomized, the design is called a split plot. The common notation

is to call the larger plot the 'main plot' and the randomized units on which measurements are

made the 'sub or split' plots. The split plot is a very efficient design in soil/plant experiments due

to its ability to use space. Furthermore, compared with a factorial design, where plot sizes for the

different combination of main effects are equal, the split plot can sub-divide the main plot into

many levels of splits and still maintain all of the interactions among main effects.

Often times, multiple measurements are taken on each main plot at different times and such a

design is called a split plot in time. The design can remain a 'true' split plot provided the time at

which samples are taken is randomly assigned to plots, but when the sampling unit is an animal

or individual, time often becomes fixed. Thus, where levels of the sub or split plot are fixed (i.e.

not assigned randomly) it is called a repeated measures design (Pendergast and Littel 1988).

The objective of the Workshop/Paper was to work through the analysis of a split plot and repeated

measures design using the SAS^ system and compare the univariate and multivariate analyses.

HieSpUtPlot

The spHt plot analysis is a univariate type where there is only a single dependent variable (Y)

and many independents (X^). The example used is hypothetical, where 12 animals have been

subject to two treatments F & C and an enzyme labelled as G6P sampled at four periods (time)

designated as 1,2,3 & 4.
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SAS CODE

DATA SPLIT;

INPUT ANIMAL TREAT $ PERIOD G6P;

CARDS;

1 F 1 14

1 F 2 12

1 F 3 16

1 F 4 11

2 F 1 12

2 F 2 16

12 C 1 21

12 C 2 22

The SAS code shown above is the usual format for entering data designed for a split plot type of

analysis (in columns). However, if the data is entered for a multivariate (repeated) measures

analysis of variance in rows, then some modification is needed to get it into a split plot format.

For example, if the data were read in as G6P1 to denote G6P at Period 1, G6P2 to denote G6P at

period 2 , and so on, a DROP statement and four OUTPUT statements would be needed as shown

below to get the data into shape (ie. a row to column conversion) for analysis.

SAS Code

DATA SPLITl;

INPUT ANIMAL TREAT $ G6P1 G6P2 G6P3 G6P4;

DROP G6P1 - G6P4;

PERIOD = 1; G6P = G6P1; OUTPUT;

PERIOD = 2; G6P - G6P2; OUTPUT;

PERIOD = 3; G6P = G6P3; OUTPUT;

PERIOD = 4; G6P = G6P4; OUTPUT;

CARDS;
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Once the data are in columns, either PROG ANOVA or PROG GLM can be invoked. If the data

are balanced, either procedure may be used, but if the data has missing values, it is

recommended that PROG GLM; be used and least squares estimates obtained.

SAS Code

PROG GLM;

GLASSES TREAT ANIMAL PERIOD;

MODEL G6P = TREAT ANIMAL(TREAT) PERIOD

TREAT * PERI0D/SS3;

TEST H = TREAT E = ANIMAL(TREAT)/ETYPE = 3 HTYPE = 3;

MEANS TREAT/E = ANIMAL(TREAT) ETYPE = 3 SNK;

LSMEANS TREAT/E = ANIMAL(TREAT) ETYPE = 3 STDERR;

MEANS PERIOD TREAT * PERIOD/ETYPE = 3 SNK;

LSMEANS PERIOD TREAT * PERIOD/ETYPE = 3 STDERR;

RUN;

The above program should generate SAS output which shows the 'split plot type' analysis of

variance in two parts, commonly called the analysis above and below the split. The variation

associated with TREAT is usually considered as being above the split or main plot , whereas

PERIOD and interaction of PERIOD and TREAT are considered below the split or sub plot. The

SAS System by default tests all main effects such as TREAT with the residual mean square

(error mean square) as the Model is fixed and only the residual or error term is random.

However, in a split plot, the correct error term (based on expected mean squares) for testing

TREA.T is ANIMAL(TREAT) and this should be specified in the program using a TEST

Statement. It is also necessary to specify the error term for the calculation of the standard error

in the LSMEANS Statement A type III sums of squares is used in all cases.
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The SAS output (modified) will look somewhat like this:

Table 1 SAS Printout From a Typical Split Plot Design

DEPENDENT VARIABLE G6P

SOURCE DF SS MS F VALUE PR>F R-SQ C.V.

MODEL 17 789.5 46.6 13.05 0.0001 0.88 11.3

ERROR 30 106.7 3.5 ROOT MSE G6P MEAN

CORR TOTAL 47 896.3 1.8 16.6

SOURCE DF TYPE III SS F VALUE PR>F Comment*

TREAT 1 500.5 140.6 0.0001 Above the split*

ANIMAL(TREAT) 10 268.0 7.5 0.001 (incorrect)

PERIOD 3 8.2 0.77 0.51 Below the split*

TREAT*PERIOD 3 12.7 1.19 0.32 (correct)

TEST OF HYPOTHESIS USING TYPE III MS FOR ANIMAL(TREAT)

TREAT 1 500.5 18.6 0.001 Above the split*

(correct)

* Will not appear in SAS output.

As you may notice, the terms below the split i.e. PERIOD TREAT*PERIOD are correctly tested

and the F and P values are accurate as the appropriate error term has been used for testing.

However, above the split the analyst should only use the F value of 18.6 and P>F of 0.001 as the

TEST statement has now directed the program to use the appropriate error term

ANIMAL(TREAT) for testing. Thus, it could be seen that TREAT effects are significant

P=0.001, whereas PERIOD and TREAT*PERIOD is not significant P>0.05. In addition, the

program will generate means with a Student Newman Keuls' comparison, least squares meains

and standard errors, for TREAT, PERIOD and TREAT*PERIOD, as they have been specified by

the MEANS and LSMEANS statements.
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The Repeated Measures analysis

The Repeated Measures analysis is a univariate and multivariate ANOVA and assumes that:

at least one factor consists of multiple measurements taken on the same subject; repeated

measures are independent across subjects; and assumes a normal multivariate distribution

with a common covariance matrix. A multivariate normal distribution for data and residuals

could be checked out by processing the data through PROC UNIVARIATE and testing for

normality. A common or symmetrical covariance matrix is assumed when there is compound

symmetry, correlation between all pairs in the matrix are similar and equal. This is called

auto correlation. There is, however, a trend in animal data where partial correlations are

higher when time intervals are closer together and correlations decrease as time intervals

widen.

SAS Code

DATA RPTD;

INPUT ANIMAL TREAT $G6P1 G6P2 G6P3 G6P4;

CARDS;

1 F 14 12 16 11

2 F 12 16 19 20

3 F 12 15 12 11

11 C 18 17 16 20

12 C 23 26 21 22

Note: The data appears in rows rather than columns.

PROC PRINT;

TITLE REPEATED MEASURES ANOVA';

RUN;

PROC GLM DATA = RPTD;

CLASS TREAT;

MODEL G6P1 G6P2 G6P3 G6P4 = TREAT;

REPEATED PERIOD 4 C0NTRAST(1)/SH0RT PRINTM

PRINTE SUMMARY;

RUN;
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To perform both the univariate repeated measures and multivariate analyses in a single

procedure the MODEL statement is set up with multiple dependent variables (G€P1 - G6P4) to

reflect the between animal design and the REPEATED statement links the between and within

subject effects ie. eflFects above and below the split. The resulting SAS print out will provide

univariate analyses of variance within each period and since this example has 4 periods there

will be 4, one Way ANOVA'S, the Repeated Measures ANOVA with tests of hypothesis for between

and within subject factors.

Table 2 SA.S Print out TANQVA onlv) from a Repeated Measures ANOVA

REPEATED MEASURES ANOVA

GLM PROCEDURE

TESTS OF HYPOTHESES FOR BETWEEN SUBJECTS EFFECTS - Above the Split*

SOURCE DF TYPE III SS MS F VALUE PR>F

TREAT 1 500.5 500.5 18.6 0.001 ADJUSTED PR>F

ERROR 10 268.0 26.8 G-G H-F

PERIOD 3 8.2 2.7 0.77 0.51 0.48 0.51 Below*

PERIOD*TREAT 3 12.7 4.2 1.19 0.32 0.32 0.32 the

ERROR(PERIOD) 30 106.7 3.5 split

G-G EPSILON = 0.73

H--F EPSILON = 1.04

* These comments will not appear in the SAS output.

A comparison with the values in table 1 shows that the mean squares, F values and P>F are

identical. Therefore, the same ANOVA table with effects above and below the split are obtainable

either through a split plot or repeated measures analysis.

There is one rather serious limitation using the REPEATED statement. Although both the split

plot and repeated measures can derive Means for TREAT and PERIOD it is often of interest to
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obtain Means for the TREAT*PERIOD interaction. If the differences between the treatments are

the same across periods, then the interaction between TREAT and PERIOD will not be

significant. However, if this interaction is significant (P<0.05) it is necessary to know when the

difference(s) occur. Unfortunately, the TREAT*PERIOD interaction means cannot be obtained

in a repeated measures analysis (using a REPEATED statement) and thus one may have to

revert to a split plot type of analysis to obtain interaction means. The repeated measures

analysis provides partial correlation coefficients among the repeated measurements

(G6P1-G6P4); table 3. One could use this to see if auto correlation exists in the matrix. There is

often a tendency for the correlation to decrease as the time interval widens, which often results in

the violation of the H-F/sphericity condition (to be discussed later).

The PRINTM option prints the transformation matrices that define the contrasts, while the

PRINTE option instructs the SAS System to print the error sums of squares and cross products

matrix associated with the repeated measurements G6P1 to G6P4, as well as the sphericity tests

for each transformed variable that are orthogonal. The short option prints the multivariate test

criteria and associated F tests in a condensed form. (See SAS-Users Guide version 5 Ed or

SAS/STAT 6.03 for details).

Table 3 Partial correlation coefficients from the error SS & CP matrix

in a reneated measures analysis (modified)

PARTIAL CORRE. COEFF. FROM THE ERROR SS & CP MATRIX/PROB.lRl

DF=9 G6P1 G6P2 G6P3 G6P4

G6P1 1.0 0.71 0.60 0.45

G6P2 0.71 1.0 0.66 0.55

G6P3 0.60 0.66 1.0 0.79

G6P4 0.45 0.55 0.79 1.0

The univariate repeated measures = standard split plot analysis provided certain conditions are

met. The first is of compound symmetry ie. when correlations between all pairs of repeated

variables is equal. This condition is sometimes stronger than required and is called the Huynh -

Feldt (H-F) condition in SAS. The H-F condition is met only if all possible pairs of repeated

measurements have equal variances. The second requirement is of sphericity ie. where any set

of orthogonal contrasts have equal variances and zero covariance. The validity of H-F can be
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determined by a Chi-Square test based on Mauchly's sphericity test for Othogonal contrasts

(Mauchley 1940, Pendergast and Littel 1988). If the sphericity test fails, the H-F condition is not

valid. Inclusion of the PRINTE option generates a Chi-square value for Mauchley's sphericity

criterion. If the X2 value has a probability <0.05 one would reject the null hypothesis of sphericity

and conclude that the H-F and sphericity criteria are violated. If this be the case the univariate

analysis of variance is not correct for the within subject effects of PERIOD and

TREAT*PERIOD. If on the other hand the sphericity criterion is not violated, (acceptance of ho)

then a split plot type of analysis can be performed, and TREAT*PERIOD means compared by the

usual procedures.

In our example, Mauchley's sphericity for orthogonal contrasts was P=0.47, thus accepting the

null hjrpothesis of sphericity. As such, all univariate F tests are valid, and there is no need to use

the multivariate or adjusted G-G, H-F tests.

Univariate and Multivariate Tests

In addition, the SAS program provides multivariate F tests for PERIOD and TREAT*PERIOD

interaction (Table 4). The multivariate tests do not require the H-F condition or sphericity to

hold and can be used to test period (time) and interaction effects in the split. The SAS System

provides Wilk's Lambda, Pillai's Trace, Holelling-Lawley Trace & Roy's Maximum Root tests

(all multivariate tests). The exact F tests and P>F value is usually given. In our example the P

values are 0.72 for PERIOD and 0.19 for TREAT*PERIOD interaction respectively, which are

not significant. Furthermore, in our example, H-F and sphericity is not violated and the

univariate F test probabilities for PERIOD and TREAT*PERIOD are 0.51 and 0.32 respectively,

all "Being non-significant. It could thus be concluded that the univariate F tests are therefore

valid for the within subject or below the split effects in our example.

There are times, however, when the multivariate and univariate F tests do not match, especially

if sphericity H-F condition is violated. When this occurs, one can either accept the multivariate

F test (which usually lacks power) or use the a4justed F tests, Greenhouse-Geisser (G-G) or

Huynh-Feldt (H-F) tests. These two tests are slightly more conservative than the exact

univariate F tests. If the univariate F test is used under conditions where the H-F condition is

violated, the test is too liberal for the within subject effects (PERIOD & TREAT*PERIOD), and

therefore one may encounter a Type I error, i.e. rejection of the null hypothesis when in fact it is
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true.

Table 4 Multivariate tests for period and period X treatment interaction

(Modified)

REPEATED MEASURES ANOVA

GLM PROCEDURE

H = TYPE III SS & CP MATRK FOR PERIOD:

PERIOD.N REPRESENTS THE CONTRAST BETWEEN THE NTH LEVEL OF

PERIOD AND THE 1ST

DF=1 PERI0D.2 PERI0D.3 PERI0D.4

PERI0D.2 4.08 4.66 8.16

PERI0D.3 4.66 5.33 9.33

PERI0D.4 8.16 9.33 16.33

MANOVA TEST CRITERIA AND EXACT F STATISTICS FOR THE HYPOTHESIS OF

NO PERIOD EFFECT. H = TYPE III SS & CP MATRIX FOR; PERIOD

E = ERROR SS & CP MATRIX

S = IM = 0.5 N = 3

STATISTIC VALUE F NUM DF DEN DF PR>F

WILKS* LAMBDA 0.85 0.45 3 8 0.72
PILLAI'S TRACE 0.14 0.45 3 8 0.72
HOTELLING-LAWLEY TRACE 0.16 0.45 3 8 0.72
ROY'S GREATEST ROOT 0.16 0.45 3 8 0.72

MANOVA TEST CRITERIA FOR EXACT F STATISTICS FOR THE HYPOTHESIS OF

NO PERIOD*TREAT EFFECT H = TYPE III SS & CP MATRIX FOR TREAT*PERIOD
E = ERROR SS & CP MATRIX

PR>F
STATISTIC VALUE F NUM DF DEN DF

WILKS' LAMBDA 0.56 2.01 3 8 0.19
PILLAI'S TRACE 0.43 2.01 3 8 0.19
HOTELLING-LAWLEY TRACE 0.75 2.01 3 8 0.19
ROY'S GREATEST ROOT 0.75 2.01 3 8 0.19
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In the SAS System, both the G-G and H-F estimates of Box's E are available through PROC

ANOVA and PROC GLM, providing the Probabilities are calculated on the adjusted degrees of

freedom. Violation of the H-F condition does not affect the between subject (TREAT) effect

The repeated measures ANOVA usually handles balanced data and any animal/subject which

does not have a complete set of data (repeated measurements) is not included in the analysis.

However Milliken and Johnson (1983) and Pareja (1990) provide details of the procedure and SAS

code to handle unbalanced data. Often time, the sphericity condition can be violated by having a

large number of repeated measurements on the same animal. Some restriction on the number of

repeated measurements may be helpful in conforming to sphericity criteria.

In conclusion, experiments where repeated measurements are taken on the same subject, can be

analysed either as a imivariate (repeated or split plot) or multivariate (MANOVA) type. If

H-F/Sphericity is not violated, the univariate approach can be used. Analysis of the repeated

measures design as a split plot in time is particularly useful as interaction means for within

subject effects can be computed. Furthermore, a split plot in time will handle unbalanced

designs and generate least squares estimates, provided PROC GLM is used. If, on the other

hand, the H-F condition is in question, either a Multivariate approach (Wilk's Lambda) or

adjusted Univariate (G-G & H-F) tests should be used. It is recommended that Univariate tests

be used when appropriate, as it is more powerful than the Multivariate tests. All these conditions

are, however, only applicable to the within subject (below the split) effects.

Acknowledgements

I wish to acknowledge the use of the paper "Repeated Measures using the SAS System" by Jane F.

Pendergast and Ramon C. Littel, appearing in the 13th Annual SUGI Proceedings, as many

ideas for this paper were taken from it.

Bfl)Iiography

Greenhouse, W.S. and Geisser, S. 1959. On methods in the analysis of profile data.

Psychometrica 24: 95-112.

63



Huynh, H. and Feldt, L.S. 1970. Conditions iinder which mean square rations in repeated

measurements designs have exact F-distributions. J. Am. Stat. Assn. 65: 1582-1589.

Huynh, H. and Feldt, L.S. 1976. Estimation of the box correlation for degrees of freedom from

sample data in the randomized block and split plot designs. J. Educ. Stat. 1: 69-82.

Mauchly, J.W. 1940. Significance test for sphericity of a normal n-variate distribution. The

Annals of Math. Statistics 11: 204-209.

Milliken, G.A. and Johnson, D.E. 1984. Analysis of messy data, VI: Designed experiments.

Belmont CA. Lifetime Learning Publications.

Olson, C.L. 1976. On choosing a test statistic in multivariate analysis of variance. Psych. Bull.

83: 579-586.

Pareja, G.D. 1990. Comparison of different procedures to analyse an unbalanced repeated

measures design. 15th Annual SUGI Proceedings, p. 1278- 1282.

Pendergast, J. and Littel, R. 1988. Repeated measures analysis with the SAS^ System. 13th SUGI

Proceedings, p. 1205-1211.

SAS Institute Inc. 1985. SAS User's Guide: Statistics Version 5 Ed., Cary, N.C. SAS Institute Inc.

SAS^nstitute Inc. 1985. SAS/STAT guide for personal computers. V. 6 Ed. Cary, N.C. SAS

Institute Inc.

64



STATISTICAL ISSUES IN INSECT POPULATION RESEARCH

G. Bruce Schaalje

Agriculture Canada Research Station

Lethbridge, Alberta

Introduction

Research involving insect populations as the experimental units presents the statistician with

many interesting challenges. In this paper I discuss some of the characteristics of insect

populations that must be taken into consideration when designing experiments and analysing

data, and review some of the statistical methods that have been devised for work with insect

populations.

Characteristics ofInsect Populations

Insects are Small

While this statement is obvious, its implications for statistical work are important. One of the

biggest challenges in insect population research is in estimating the size of insect populations, but

because insects are small they are hard to find, count, and identify completely as to species, sex,

and growth stage. Furthermore, their size often renders them fragile and vulnerable to

microenvironmental conditions. As a result, the estimation of population size usually involves

shortcut methods such as incomplete counts, indirect assessments, lures, mechanical collection

devices (Southwood 1978), and data aggregated over growth stages, sexes, or species (Brillinger et

al. 1980). Most of these methods require complicated statistical models to obtain estimates and

standard errors, and for calibrating collection devices (Mcdonald and Manly 1989). Data from

theselnethods are often subject to large unexplained fluctuations and lots of variability.

Insects are Poikilothermic

Insect development and activity is dependent on temperature, and thus temperatures must be

recorded in experiments involving population change. This limits the use of "replication in

time" in experiments using natural populations (particularly if they are univoltine), and often

necessitates the incorporation of mathematical models for the relationship between temperature

and development into statistical analyses (Curry and Feldman 1987).
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Insects are Not Stationary

Insects migrate in and out of the study area during the course of any experiment (Kuno 1991), and

often change their location in plants at different times of day. This movement has to be taken into

account either in the design stage of the experiments, for example by using buffer areas around the

populations and sampling at specific times of the day, or in the analysis stage by adjusting

mathematically for migration. This may necessitate the collection of covariates to indicate

various aspects of migration.

The Spatial Distribution of Insects is Usually Not Random

The spatial distribution of insects is generally aggregated to some degree (Taylor 1984) so that

simple models for sampling or population size estimation based on the Poisson distribution

usually do not give good results (Taylor 1987). Also, insect distributions on agricultural fields

usually display edge effects which must be taken into account in designing experiments.

The Appropriate Spatial Unit for Sampling may not be Obvious

The degree of aggregation of an insect population may be an artifact of the quadrat size used to

sample the population and hence may have little meaning unless the quadrat size is "natural" in

some sense. A standard area or volume may not be appropriate because of varying numbers of

plants, refugia, etc. (Regniere et al. 1989). A lot of thought has to be put into the choice of a sampling

unit.

Insects Populations have an Age Structure

This has to be kept in mind in insect population research because the various growth stages of an

insecThave unique physiologies, behaviour,catchabilities, survivorship, etc. The different growth

stages will react to treatments differently and thus the age structure of the population has to be

either controlled in the experiment or observed and adjusted for mathematically (Schaalje et al.

1989).

Insects Develop Fast

As a result of this, experiments on insect populations usually have to involve repeated

measurements, pretreatment assessments of the populations, and control populations. Often

apparent treatment effects have to be adjusted for population changes (mortality, reproduction,

development) that would have occurred naturally during the experiment (Abbott 1925).
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The Population Structure. Habitat, and Treatments Effects are Dynamic

All three of these components of an insect population experiment have independent dynamics

which may interact in complicated ways. The analysis and interpretation of data from these

experiments often have to be based on a detailed population model as well as models for the

environment and the treatment (Schaalje et al. 1989).

Statistical Metbods for Insect Population Researdi

Sampling Methods

Many techniques of finite population sampling are important in estimating the size of insect

populations. Stratified sampling, double sampling, and multistage cluster sampling (Southwood

1978) are all useful in sampling insect populations.

Binomial sampling (Schaalje et al. 1991, Nyrop and Binns 1991) by which population density is

estimated using presence-absence data from a random sample of units is very important in

sampling small, highly aggregated insects. Measurement error models (Fuller 1987) are

necessary in getting unbiased prediction equations for binomial sampling, and for calculating

appropriate estimates of the standard error of prediction.

Sequential sampling (Nyrop and Binns 1991, Kuno 1991) has been applied extensively to pest

management applications so that as few samples as possible can be taken to determine whether the

population has reached an economic threshold.

Mart"->ecapture methods in which the population is assumed to be open to migration, and which

involve multiple releases but a single recapture, have recently been found to be useful in

estimating the population size and survival for certain species of insects (Bumham 1989, Lysyk

andAxtell 1986).

McDonald and Manly (1989) discuss how biased sampling procedures arise in insect population

sampling and suggest methods for their calibration. Finally, ratios often arise when using data

from sampling devices to estimate population size, and Buonaccorsi and Liebhold (1989) discuss

the unbiased estimation of such ratios.
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Spatial Analysis

Various statistical models for the spatial distribution of insects (Southwood 1978) have been

suggested and used, most notably the negative binomial distribution. In addition, indices of

aggregation have been developed and discussed (Hurlbert 1990). General models for the

relationship between the mean and the variance of populations for a given species (Taylor 1984,

Iwao 1976, Kuno 1991) are useful in characterizing insect species and predicting their spatial

distribution at a given density. Binns (1986) discusses the relationship between Taylor's variance-

mean model and the negative binomial distribution. The relatively new field of geostatistics has

been applied to insect populations to provide the ability to predict population densities at any

particular location in a field (Schotzko and O'Keeffe 1989), and on a larger scale geographical

information systems are providing similar capabilities (Johnson 1989).

Stage-Freouencv and Related Demographic Analvses

Several methods have been developed for estimating stage-specific development times, mortality

rates, and reproductive rates of insects fi-om a sequence of cross-sectional samples of insect

populations (Manly 1989). These methods differ as to the type of data collected (non-overlapping

cohorts, multiple cohorts, etc.), the type of information desired, and the assumptions of the models

upon which the methods are based. In addition, "key-factor analysis" (Varley and Gradwell 1960,

Manly 1989) provides a method for analysing stage-fi-equency data collected over several

generations and determining the relative contribution to population dynamics of mortality in the

various growth stages. Finally, Carey (1989) discusses how traditional demographic methods can

be applied to the study of insect population dynamics.

Stochastic Modelling of Population Dynamics

Much statistical analysis of insect population data involves fitting a stochastic model of population

dynamics to the data. Brillinger et al. (1980) developed a stochastic difference equation to model

aggregate insect data and investigate density-dependent mortality. Blough (1989) used time

series methodology in connection with a difference equation model in his analysis of insect

population changes due to a pesticide. Dennis (1989) discussed the use of stochastic differential

equation models for insect populations. Schaalje and van der Vaart (1989) reviewed stage-specific

population models which allow for variability in developmental rates, and Schaalje et al. (1989)

applied such a model to the analysis of field data on a population sprayed with a pesticide. Curry

and Feldman (1987) discuss several issues and strategies important in modelling and analysing

insect populations.
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EXPERIMENTAL DESIGN: BASIS FOR SOUND RESEARCH METHODS
L. Zack Florence

Animal Sciences Division, Biometrics Section

Alberta Environmental Centre

Vegreville, Alberta TOB 4L0

InlzDdviction

Well-planned experiments increasingly form the basis for cost effective research. Few people

today would argue that budgeting time and money does not largely dictate whether an experiment

will be attempted. For those using humans or other animals as experimental subjects, the care,

welfare and ethical use of research subjects is the first consideration: choosing sample sizes takes

on a new meaning and has drawn renewed attention to power analysis during project planning

( Mann et al. 1991).

Most of us encountered our first meaningful experimental design experience at work or in

graduate school. This was also our first introduction to planning research in committee. It

brings back some questionably fond memories for many of us and will be left at that. The point to

be made here is that few people do research alone; most of us must work in an environment where,

in order to meet our project objectives, we must help other scientists meet theirs. This paper will

discuss a few of the topics that must be considered when planning a co-operative experiment. It

will be assumed that even ifyou are not involved in the committee approach to doing research that

you are at least in contact with a statistician or someone in whom you may confide (a person(s)

who helps choose the proper model and the appropriate design, and makes inferences based upon

the results of analyses). This paper is a short discussion of the process; several good texts such as

Box et al. (1978), Cox (1958) and Anderson and McLean (1974) may be consulted for more in-depth

discussions and underlying theory. The one mistake all of us hope to avoid when planning

experiments is what A.W. Kimball (Kimball 1957, cited by Box et al) called, "error of the third

kind", that is, obtaining the right answer to the wrong problem.
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Ordered List of Steps in Planning an Experiment

Anderson and McLean (1974) prepared a list of 12 steps that should be followed when planning an

experiment. I have added my comments and examples to their list (as follows). When moving

through the list, keep in mind that it is implied that a statistician is involved in this process from

the beginning.

1. Reco^ition that a problem exists

- The problem is usually, but not always, apparent and, if a group or committee is involved,

it is important to have consensus.

2. Formulation of the oroblem.

- Uninhibited discussion among participants in a group situation is healthy. If it is not a

group project, it is wise to seek the experience of others in the same area of research. In

either case, a collaborative effort will make it easier to come to a decision about the most

likely problems or subject areas requiring research effort. Do not be surprised if it takes

more effort than you expected to identify the objectives of an experiment.

3. Agreeing on factors and levels to be used in the experiment

- In step 2, you identified a probable cause(s), and you are now ready to identify treatments

or factors (independent variables) that you can vary (levels) and measure (dependent

variables such as response, jaeld or product ). Continuous independent treatment factors

will require different assumptions than discrete discontinuous ones.

4. Specifying the variables to be measured.

- Quantitative responses by dependent variables are usually more apparent than are

qualitative ones; the latter responses, are not metric and are at best ordinal. The

decision to use one or the other is very important.

5. Definition of the inference space for the problem

- This decision determines how far you may legitimately extend the results of the

study; for example, if an experiment is bounded by 20 and 60 degrees C, you are limited to

this space and the inferences are bound by choosing the proper error terms when fitting the

model.

6. Random selection of the experimental units

- The experimental unit is the material, area, time, plot, pot or whatever, which will

receive the treatment. In animal experiments, the experimental unit may be a pen of
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animals, with the same randomly assigned treatment applied to all animals in the

pen.

- The experimental unit should be representative of the inference space, that is, growth

trials done in a greenhouse may have little relationship to the field environment.

- The number of experimental units determines the standard error or precision which

will be associated with the inferences you wish to make from your results; keeping the

standard error low may require blocking (e.g., spatially, temporally, by treatment) to

avoid systematic bias.

7. Assignment of treatments to the experimental units

- Each experimental unit (plot, cow, beaker, petri plate) should have equal chance of

receiving each treatment.

- Randomization (of error) is the basis for the design of the experiment, for example, in a

randomized complete block, split-plot experiment, main plots are randomized within

blocks, and sub-plots are randomized within main plots, within blocks.

8. Outline of the analvsis corresponding to the design before the data are taken

- Quoting form Anderson and McLean (1974) pp. 87-88: "At this point, the statistician must

write down the mathematical model that has evolved as a result of the committee activity

in the preceding sections. This mathematical model will give rise to the ANOVA table.

The ANOVA table will now consist of the degrees of fireedom and the expected mean

squares for each of the specific factors...". The point made here is that the design and the

model to which data are to be fit go hand-in-hand, and the tests of interest are determined

before the experiment is done. This point is discussed further in the following section.

9. Collection of the data

- Too many experiments begin here!

- Quality control and quality assurance are paramount at this stage; several people may be

collecting data during the course of a project and someone should be in charge of regularly

validating data and collection methods.

- Data forms should be simple and straightforward— have a trial run to make sure

everyone understands how the forms are to be used.

10. Analvsis of the data

- In this step you should plot means and individual data in scatterplots, calculate

descriptive statistics and use statistical packages which will test for normality and

produce normal probability plots.

- Ask yourself: Are parametric assumptions met, that is, are variances equal; are
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variances independent of the means; are transformations needed?

- Ifyou have decided upon the correct model during the design, applying the correct

analysis should be fsdrly straightforward because you have previously decided how

the data are to be analyzed and which tests are appropriate. Beware! Unless you specify

otherwise, all statistical software packages assume all effects in your model are fixed .

This assumption can lead to spurious conclusions regarding tests for significance.

11. Conclusions

- Once again, if this is a group, interdisciplinary effort, you will likely need to get together

and discuss the results of the analyses. Experience suggests that this can be a very

valuable exercise: many times, leaving interpretation of results to one person may lead to

error, and worthwhile information may be overlooked.

12. Implementation

- Time now for a "management" decision: do you alter a manufacturing process based

upon the results, publish the results or wait until additional study is completed; can you

implement a technology transfer program to agricultural producers based on your study's

conclusion? The ease with which these decisions can be made will be contingent upon

how closely you have adhered to a process like the one discussed here.

- If an experiment has been based on prototypes or bench techniques, it will be time to think

of applying what you have learned to "scale up", which for example, to a crop scientist

means doing field trials to determine how well greenhouse or lab experiments fit the real

world.

From Design to Model to Analysis

Ideally^ the statistical model to which we hope to fit the data should have been determined by the

time you have reached step number 8. This is not always the case and too often the very close

linkage between the experimental design and the model, and how data will be analyzed and

average differences tested, are not realized. A simple illustration can serve to demonstrate the

associations.

Let us assume you have identified two experimental factors, a and which you wish to vary

(Figure 1). Treatments composed of factorial combinations of the levels (i, j, respectively ) of a

and p are randomly assigned to experimental units, which are arranged in a completely

randomized design. You want to measure the response (Y) due to main effects of a and p and their
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FIGURE 1. Two factor (a, P), full factorial experiment showing changes

among expected mean squares (EMS) conditional upon assumptions about a

and p.

The Model

=u + ai + pj + apq + £(ij)k

If the Experiment calls for both a and p factors to be fbced:

Source EMS

ai a2+pne(a)

pj a2 +an0(p)

apij a2+ne(ap)

e(ij)k cj2

If the Experiment calls for both a and P to be random:

Source EMS

ai a2 + n c^a'^ + bn a2(^

p j
a2 + n a2(xp + an G2p

apij a2 + na2(xp

e(ij)k

If^e Experiment calls for a to be Random and p fixed:

Source EMS

ai a2 + bn c^q^

pj a2 + n a^Q,^ + an0(P)

apij a2 + na2(xp

e(ij)k
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interaction, o^. How these effects in your model are to be tested for significance depends upon the

expected mean squares [EMS; see Anderson and McLean (1974) for a description of the EMS

algorithm].

Referring to Figure 1, assume you decide that factors a and j3 are "fixed",that is
, you wish to set

each factor's levels at prescribed values and these explicitly define the extent to which you may

make inferences within the design space. Recall that number 10 stated that all commercial,

statistical software makes the assumption that all effects in a model are fixed. The EMS reflect

this assumption in Figure 1: to do an F-test of each term in the fixed model, each mean square

estimate should be divided by the mean square error , e. Note that each effect attributed to a and p

can then be uniquely estimated by this ratio of effect to error.

Note, however, if during the planning of our experiment we wished to make inferences not to a

very limited number of explicit levels (and fixed contributions of a and P to the overall mean

effects), but to a broader, more universal variation in all a and P (called a random effects model).

The EMS would take on a different look( note that fixed treatment effects,9, are now replaced by c^,

denoting variance effect). Now there are two error terms we must use to test for treatment effects.

The op interaction is used as the error term to test main effects (a and P) because it shares the same

EMS components, except for that contributed only by the a or p treatment effect. The random error

mean square,e, is now used only to test the significance of the aP interaction.

In the third, and final combination, called a "mixed" model, there are two factors, one fixed and

one random (Figure 1). After calculating the EMS, we are able to see that the random error, e, can

be used to estimate the effect of a and the oP interaction, but the oP interaction is appropriate to test

the efleit due to p.

Obviously, from this simple illustration, decisions need to be made up-front as to how well the

design and model conform and whether our research objective(s) can be met by the appropriate

tests of terms in the model. In addition to the source already mentioned, a good explanation of

these topics can be found in Snedecor and Cochran(1967, ch. 12).
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Summary

This paper has provided a simple schematic ouUine of 12 steps that ought to be considered during

the design and analysis of an experiment. If more effort is expended in the early states of a

research project, the later stages — defining the model, fitting the response data, testing for

treatment effects, and publicly presenting the results — can be done with greater confidence.
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PARAMETRIC ASSXJMPTIONS

Bob Hardin

Department ofAnimal Science

University ofAlberta, Edmonton, Alberta

Abstract

Statistical hypothesis testing of the linear model is based on assumptions that the data are

normally distributed. In many situations, both in teaching and the real world, this is simply

assumed to be true. A problem is how to incorporate into a graduate biometrics course the routine

testing of these assumptions. The approach presently being incorporated into the course is the

computation of residuals from the predicted linear model and the use of these residuals in the

computation of sample statistics and normal probability plots. The GLM, UNIVARIATE and

RANK procedures of SAS will be used to perform the computations. Examples will be presented to

illustrate the approach.

78



STATISTICAL PROBLEMS IN COMPLIANCE ASSESSMENT

Albert J. Liem

Air and Waste Management Branch

Alberta Environmental Centre

Vegreville, Alberta

Introduction

This note is a condensed description of a paper already published elsewhere (Liem and Wilson

1991). Problem definition is emphasized, but details of the solution have been omitted, with the hope

of not compromising accuracy or clarity for sake of brevity. The purpose of presenting this note is

to introduce the subject the reader, who may find it either useful in other applications or at least

academically interesting.

Description ofthe problem

The problem is quantifying the confidence of proving that regulatory compliance, given by the

following equation, is met:

y, < y. (1)

where yr is the measured value of the regulated parameter and yc is the compliance level. Many

regulatory standards can be expressed as above, and assessing compliance is not a trivial problem

when:

*the accuracy and precision of the method for measuring y, Qierein referred to as

variability) are not known, and

'''some or all the reported values are expressed as less than detection limits or

nondetectable.i

Such is the case with the results ofmany incinerator test bums, as shown in Table I.

^A further complicating factor is when the detection limit is not unique, but can be varied by

adopting different sampling or sample processing strategies, and hence it can be made as close as

possible to the compliance level; see original paper.
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In all the cases shown, the reported values are lower than the compliance levels. Is it valid to

interpret such evidence as a definitive proof that compliance is met? Our contention is NO. The

difference between the reported values and the compliance levels and the variability of yr should

both be taken into account. Intuitively, one expects that the larger the difference and the smaller

the variability, the more assured one is that compliance is actually met.

Consider the accompanying results of a surrogate spiking program that was implemented to

address the issue of variability. In the process of measuring yr, the 'analyst' was given certain

quantities (unknown to the analyst) of surrogates and requested to report those quantities. The

recovery', defined as ratio of the reported to the actual values, ranged fi-om 10% to 300%. Thus, on

the assumption that the surrogates and the regulated compounds are similar, the actual values of yr

could be as high as ten times the reported values shown in Table I. Surely in Case C one cannot be

very sure' that compliance is met; but, one can be 'more sure' that compliance is met in Case B.

As previously stated, the problem is, therefore, how to quantify the confidence of concluding that

compliance is met. It is a statistical problem.

Table I. Sample Incinerator Test Bum Results*

Case y. y.

A 2.6 46

4J, 43

as 44

B <44 3S1

<26 no

<2l 419

C <14 26

<21 52

<22 44

* Actual results from the Alberta Special Waste Treatment Centre (ASWTC) near Swan Hills.

Both values are expressed in mg/h of emissions of regulated compounds.

Note that it would be conceptually erroneous to use the results in Case A for computing confidence

intervals, fi-om which statistical inferences regarding compliance being met are drawn. One

simple reason is that the bias or the accuracy of the method is not known from those results alone.

Incidentally, that approach could not be used when nondetectable results are obtained, as in Cases
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B and C.

Solution

Outline

There are three elements in the solution:

* Obtaining the variability of the method for measuring y,.: In the case of incinerator test

bums, this can be indirectly obtained from a surrogate spiking program. Other cases may

require different schemes. The premise is that the surrogates and the regelated

parameters are, in terms of variability, identical.

Treatment of nondetectable results: From the point of view of the 'regulator', to whom

compliance must be proven, nondetectable results can be assigned the detection limit

values. Thus, a 'conservative' approach is used.

* Statistical analysis: The premise is that measurement results are distributional. That

is, given a value of the regulated parameter, repeated measurement results can be

described by a probability density function. The Bayesian approach for hjrpothesis testing

can then be used.

The implementation of a surrogate spiking program or other programs can be quite involved and

hence will not be described here. The only aspect that will be described is the statistical analysis,

starting from the point where the variability of the measurements of yr has been obtained.

Statistical Analysis

Bayes' theorem. Compliance assessment can be formulated as hypothesis testing. The first

hypothesis is Hi:y>yc - compliance is violated - and the second is the alternative H2:y<yc -

compliance is met - where y is the actual value of the regulated parameter.

Given that a value of yr is obtained (or a series of values of yrk, where subscript k represents the kth

measurement), what are the probabilities of Hi and H2 being true? Bayes' theorem is:

P[HJy^ « P\yJH]iP[Hji >u (2)

where * P[Hj] is the a priori probability of Hj being true, the degree of belief in Hj beforfi the

evidence is gathered,

* P[y,yHj], referred to as a conditional probability, is the probability of obtaining yr if

indeed Hj is true,

* P[Hj/yr] is the a posteriori probability of Hj being true, the revised degree of belief in Hj
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after the evidence is gathered.

The degree of belief in a hypothesis is revised by the evidence gathered and quantitatively

modified in proportion to the probability of that evidence being obtained if indeed the hypothesis is

true. This revision can be continually updated in a series of measurements, where the a posteriori

probability of one set of measurements is used as the a priori value for the next.

The proportionahty constant in Eq. (2) can be eliminated by noting that Hi and H2 are

complementary, or by using the concept of odds R, defined by the ratio of the two probabilities. Eq.

(2), written in terms of odds, becomes:

R[C/y;i = R\yJC\R[C] (3)

where C denotes compliance being met, that is, R[Cl=P[H2]/P[Hi] and the conditional and a

posteriori odds are similarly defined.

Two inputs are thus required. The first is the a priori odds of compliance being met. A value of one,

expressing no prior knowledge whether compliance is more or less likely to be met, seems a

reasonable value. The second is the conditional probability, which requires statistical models or

assumptions and as described below.

Assumptions. The following assumptions are needed, but the actual 'models' or equations used

can be changed to suit the situation:

(1) Probability density fiinction of obtaining yr given that the actual value is y. A simple

function is log-normal, with constant variance:

= (4)

where 2 is the variance (derived firom surrogate spiking results) and the upper case Y

denotes log-transformed values.

(2) The density function of the a priori probability or odds. The simplest function is a

constant density.

Computation of conditional probability. Consider the conditional probability of obtaining y^. under

Hi, that is compliance is not met, or y>yc. This can be readily computed for the 'models' used in the

above assumptions. It is simply the integral of Eq. (4) with respect to Y, from Y=Yc to Y=».

^y^J ' Jexp-^^^^^dY (5)
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It can verified that

P\yJH{\ = *(^^) = (Zp (6)

o

where (Zy) is the 'tail area' of the standard normal distribution (zero mean and unit variance) to

the left ofZr=(Yr-Yc)/

.

A posteriori odds of compliance being met. In a series of measurements the degree of belief is

continually updated as more evidence is gathered. Thus at the end ofM sets of measurements, the

odds of compliance being met is:

RJ-<^/yrM^ = (ft ^it^ ^'^

where the conditional odds in the j^h measurement is:

As discussed previously, Ri[C]=l is a reasonable value, the values of
, Yc and Yr are obtained from

the surrogate spiking and test bum results, can be found from statistical tables and hence the

final a posteriori odds of compliance being met can be readily computed.

Results and Discussion

The method was applied to a series of test bums conducted at the ASWTC. A complete presentation

would be too lengthy since there were 'complications', such as the presence of two emission

sources. The condition for compliance can no longer be expressed as given in Eq. (1), but is in the

following form:

where subscript s denotes the s^^ emission source, NS is the number of emission sources and g is the

weighting factor for emission source s.

For simplicity, therefore, only selected cases will be presented, and the data 'variability' will be

qualitatively expressed by the range of surrogate recovery values in each emission source. The

results are shown in Table II.
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Table II. Summary of Results

Case Variability,^
' Test

Results*

K

Conditional

Odds
A posteriori

Odds

MS CT

A 83-120 71-140 18 >2 10^ >8 10"

10 >2 10^

•

3.6 2000

B 34-290 36-275 8* 2.9 36

15* 3.3

20* 3.7

C 77-130 30-330 1.8* 1.3 2.7

2.5* 1.5

2.0* 1.4

L 54-185 50-200 0.9 0.9 1

0.4 0.4

3.2 2.7

Notes: t Range of sunogaie recovery vtlues, MS and CT »re the two emurion jources; t Results axe erpressed u ratio of

compliance level to reponed value, thus values of <1 correspond to evidence of compliance being vioUted, • denotes nondeteciable

results; The conditional odds are for each set of measurements, and the a posteriori odds are for aU seu.

The following interesting features can be noted:

*In Case A, the evidence of compliance being met is so overwhelming that a loss of one set

of data would not really matter. There is no need to prejudge and nullify the whole effort,

the remaining evidence may still be sufficiently convincing.

*Case B shows that even if the performance of the 'analyst' was less than desirable, the

results for the purpose of proving compliance may still be satisfactory (the a posteriori

probability of compliance being met is 97%). The explanation is the reported values were

much lower than the compliance levels.

*Case C shows that (i) even nondetectable results do not provide a convincing proof of

compliance (a posteriori probability of 70% as compared to the a priori value of 50%), and

(ii) when the reported values are close to the compliance levels, it is necessary to have

small data variability.

'"Case D shows that evidence against compliance (kr<l) can also be included. By

coincidence, the a posteriori and the a priori odds are identical.
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ConcludingRemarks

The method that has been developed quantifies what is intuitively expected. Data quality should

not be judged by itself, but by the intended use. What is acceptable in one case may not be so in

another case. The Bayesian approach can deal with nondetectable results in a logical manner

and, in the author's opinion, it produces results that can be readily understood.

Incinerator test bums represent only one example of compliance assessment, which in many

cases can be formulated as Eq. (1), or more generally, as Eq. (9). Different means of obtaining

variability and different statistical models may be needed, but the same approach can be used in

other similar cases.

Reference

Liem, A.J. and M.A. Wilson, "A quantitative method for evaluating incinerator test

bum results", /. Air Waste Manage. Assoc., Vol 41, No. 1, Jan. 1991: 47-55.
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ENVIRONMENTAL CHEMICAL ANALYSIS

L Johnson and Y. Kumar
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Vegreville, Alberta

Abstract

Pollutants from many point sources are complex mixtures of chemical compounds. Correlation of

pollutants in environmental samples with point sources can be difficult as the relative amounts of

chemical compounds in the mixtures may be altered through evaporation, chemical and biological

degradation. The multivariate analysis based procedure presented here is specifically directed to

the analysis of polychlorinated biphenyls (PCBs) although it may be applied to many other

analytes.

A multivariate analysis based procedure for identification and quantification of complex

mixtures of (PCBs) as in industrial and environmental samples is presented. There are 209

individual PCB compounds (congeners). Aroclors, industrial preparations of PCBs, are complex

mixtures, comprising of as many as 60 separate congeners. Analysis of PCB samples by capillary

gas chromatography results in complex chromatograms with many peaks. Identification and

quantification of PCBs as Aroclors becomes difficult when more than one Aroclor are present.

Identification and quantification can be further compHcated by chemical or biological

degradation which changes the relative amounts of congeners present.

This method uses a cahbration solution of 36 individual PCB congeners. Authentic Aroclors and

samples are analyzed using this caUbration mixtures. Multivariate analysis of these results is

used to identify and quantify PCBs in the samples as Aroclors. The use of operators to describe

PCB degradation is also discussed.
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RESPONSE SURFACE ANALYSIS

Robert B. Heimann

Materials Section

Alberta Research Council

Edmonton, Alberta

Hie experimental environment

According to Tukey [1], industrial experiments can be classified by their depth of intellectual

investment as (i) confirmation experiments, (ii) exploration experiments, and (iii) fiindamental

or "stroke-of-genius" experiments. A second way of classification is based on the distance of their

objectives fi*om the real world, i.e. firom the market [2]. Finally, the continuity of factors provides a

third classification. If the factors are continuous variables^ and controllable at preset levels, then

the response surface methodology is the method of choice. If
,
however, many factors are orderable

but not measurable, i.e. at discrete levels , the response surface analysis becomes less useful and

should be replaced by nested or spHt-plot designs [3].

Every experiment attempts to approximate the real world but must avoid by a set of simplifying

assumptions the complex interactions occurring in real systems. There are, in principle, two

ways to accomplish this: the "classical" experimental strategy that varies one parameter at a time

but attempts to keep all others constant, and the statistical experimental strategy that varies

parameters simultaneously to obtain a maximum of information with a minimum of

experiments. The classical experimental strategy yields accurate results but requires many

experiments. It gives, however, misleading conclusions to problems that have synergistic

parameter interactions, and also fails to elucidate the "structure" of a system. Table 1 compares

these strategies [4].

this paper, the terms "variable", "parameter" and "factor" will be used

s imultaneous ly.
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Table 1: Two Viewpoints of the "Real Woiid"

CLASSICAL STATISTICAL

Number of runs many
complex
absent
smal 1

few
s imple

present
large(+)

Response
Synergi sm

Error
Strategy
Thought pattern

one-f actor-at-a
vert leal

-time factorial
lateral [5]

(+) Bias errors can be considered by blocking and randomization; random

errors can be accounted for by replication of experiments.

The evolution of the experimental environment usually starts with a screening

(Plackett-Burman) design [6] with many independent (up to 40) variables. It yields a crude

prediction of the ranking of importance of parameters through a first-order polynomial model.

The experimenters should list and investigate all possible parameters they can think of but should

refrain from skipping some because of "folklore", laboratory gossip, or preferences and hunches.

"Be bold but don't be stupid!" [4]. The tremendous reduction in the number of required

experiments, however, will be offset by the failure to detect synergistic interactions between

parameters. On the other hand, an advantage of the screening designs is that they can

accommodate a mix of continuous and discrete parameters.

With the independent parameters (up to eight) identified to influence the response of the dependent

parameters), "limited response surface" experiments should be run such as fiill two-level

factorials, or even a fractional three-level (Box-Behnken) design [7] that jrields higher quality

predictions by allowing interpolation within the experimental space by a second-order polynomial

model. Such a model determines non-linear behaviour, i.e. the curvature of the response surface,

and thus permits the estimation of synergistic parameter interactions.

The polynomial models approximate the "true" response surface only in the necessarily narrow

region of the investigated parameter space. Thus, any extrapolation beyond the proven validity of

the predictions is dangerous and may lead to useless or even nonsensical results. To avoid this.

88



eventually a theoretical model has to be built [8] that yields the exact mathematical response

surface, usually by the application of first-order differential equations.

EXAMPLE 1: FRACTIONAL TWO-LEVEL FACTOMAL DESIGN 28-4

In this example, the thickness of 88WC12Co alloy coatings should be optimized. These

wear-resistant coatings are being applied to carbon steel surfaces by plasma spray technology [9].

The parameters selected for the fractional two-level factorial screening design are shown in

Table 2, the randomized design is shown in Table 3.

Table 2: Parameters and Parameter Levels forExample Design

Variable X. %" Type of Variable

Plasma Arc Current 700 amps 900 amps Continuous
Argon Gas Pressure ^-^^ ^-^^ Continuous
Helium Gas Pressure X^ 0.34 MPa 1.36 MPa Continuous
Powder Gas Pressure X^ 0.34 MPa 0.68 MPa Continuous
Powder Feed Rate X^ low (0.5) high (2) Discrete
Powder Grain Size Xg (-Ab*b)n (-75-t-45)M Continuous
Number of Passes X^ 20 30 Continuous
Spray Distance Xg 25 cm 45 cm Continuous

Table 3: Randomized Fractional Two-Level Factorial Design

Run # X(l) X(2) X(3) X(4) X(5) X(6) X(7) X(8) Response Y a

(m) (m)

1 700 0.,34 0,.34 0,.68 2 Coarse 20 45 118 79
2 900 0.,34 0..34 0,.34 0.5 Coarse 30 45 16 8

3 700 1,,36 0,.34 0,.34 2 Fine 30 45 203 111
4 900 1.,36 0..34 0,.68 0.5 Fine 20 45 57 25
5 700 0,,34 1,.36 0,.68 0.5 F ine 30 45 82 35
6 900 0,.34 1,.36 0,.34 2 Fine 20 45 138 87
7 700 1,.36 1,.36 0,.34 0.5 Coarse 20 45 30 12
8 900 1,.36 1,.36 0,.68 2 Coarse 30 45 82 44

9 900 1,.36 1,.36 0,.34 0.5 Fine 30 25 7 4
10 700 1,.36 1..36 0,.68 2 Fine 20 25 108 104
11 900 0,.34 1,.36 0,.68 0.5 Coarse 20 25 65 30
12 700 0,.34 1,.36 0,.34 2 Coarse 30 25 16 10
13 900 1..36 0,.34 0,.34 2 Coarse 20 25 26 21
14 700 1,.36 0,.34 0,.68 0.5 Coarse 30 25 9 12
15 900 0,.34 0,.34 0,.68 2 Fine 30 25 30 13
16 700 0,.34 0,.34 0,.34 0.5 Fine 20 25 22 19



This 28-4 fractional factorial design is a 1/16 replicate of a fiill 2^ factorial. It has a resolution IV [8]

and is able to estimate the eight main effects Xj clear of composite two-factor interactions Ei (Table

6). The effects of higher-order interactions can usually be safely neglected. Composite effects of

the sum of four two-factor interactions, however, can be estimated from the unassigned factors. If

no interactions exist, the effects of unassigned factors can be used to estimate the experimental

error, i.e. the minimum significant factor effect. The arrangement of the parameter levels in the

design matrix follows Yates's standard order.

Tables 4 and 5 show the numerical evaluation of the results. First, the sum S(+) of all responses on

the "+"-level is calculated. Then the sum S(-) of all responses on the "-"-level is calculated. The

factor effect is the difference D of the two sums, divided by the number of "+" signs in each

column. The coefficient C of the parameter in the response equation is the factor effect divided by

two. The factor significance is checked against the minimum factor significance, FE(min) =

s(FE) * t(a,df), where s(FE) = (1/n SE^)^, t(a,df) is the Student t-value for a confidence level a of a

double-sided significance test and df degrees of freedom. All absolute factor effects larger than

FE(min) are considered to be significant.

Table 4: Computing ofMain Factor Effects

Run# Main X(l) X(2) X(3) X(4) X(5) X(6) X(7) X(8) Y

1 + + + 118

2 16

3 + + + + 203
4 + + + 57

5 + 82

6 •f 138
7 + + + + 30

8 + "f + + + + + 82

9 + f 7

10 + + + + 108

11 + + + + 65

12 + + •f 16

13 f + + 26

14 + «f 9

15 + + •f 30

16 22

!(*) 1009 421 522 528 551 721 362 445 726

0 588 487 481 458 288 647 564 283

H 1009 1009 1009 1009 1009 1009 1009 1009 1009
A 1009 -167 35 47 93 433 -285 -119 443
Effect 63 -21 4 6

t—

1

54 -36 -15 55

C 32 -11 2 3 6 27 -18 -8 28
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I^le 5: Computing ofComposite Two-fector Interactions

Run# E(l) E(2) E(3) E(4) E(5) E(6) E(7) Y

1

1 •f - 118
o
L + 16

+ + + 203
4 + + - - + 57
c + — + - - 82
c0 •f + - — + 138

7 _ _ _ f _ 30

8 + 82

9 _ _ _ + _ 7

10 + + 108

11 + + 65

12 + 16

13 + + 26

14 + + 9

15 + + 30

16 + + + 22

410 644 505 419 604 413 448
599 365 504 590 405 596 561

IZ 1009 1009 1009 1009 1009 1009 1009

A -189 279 1 -171 199 -183 -113

Effect -24 35 0 -21 25 -23 -14
r -12 18 0 U -U -7
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The pattern of the "+" and "-" levels again corresponds to Yates's standard order. Note, that the

second half of the main effect design matrix is the mirror image of the first half, and that the two

halves of the composite two-factor interaction design matrix are identical. The confounding

pattern of the composite two-factor interactions Ej is shown in Table 6.

Table 6: ConfiHinding Pattern ofComposite Two-£Eu;tor Interactions

E(l)

E{2)

E(3)
E(4)
E(5)
E(6)
E{7)

E. = X3X, 12 •f 37 48 56
13 •f 27 58 + 36
14 •f 28 36 57

15 + 38 + 26 47
16 •f 78 •¥ 34 •f 25
17 "f 23 * 68 45
18 •f 24 •f 35 + 67

From Table 5 the minimum factor effect, FE(min) can be calculated as follows.

a(FE) = (1/n 11^)'^^ = (3592/7)'/^ = 22.6 [1]
FE(min) = a(FE) * t(a=0.90,df=7) = 22.6 * 1.895 = 43. [2]

Thus, all factor effects whose absolute values are larger than 43 are significant at a confidence

level of 90%. From Table 4 it follows that X5 (powder feed rate) and Xg (spray distance) are the only

significant main factor effects. This holds true even when the confidence level is increased to

95%. In this case, the minimum factor effect is FE(min) = 22.6 * 2.36 = 53. There are no significant

composite two-factor interactions (Table 5). Both main factor effects have positive signs, i.e. the

thickness of the coating increases with increasing powder feed rate and increasing spray

distance. Short spray distances lead to overheating of the alloy powder thus causing thermal

decomposition and reaction of the tungsten carbide with the cobalt matrix. This will eventually

result in brittle phases, loss of carbon, and higher coating porosities [10].

The response polynomial of the thickness of plasma sprayed 88WCl2Co alloy coatings can be

roughly (zero-order approximation) expressed by the equation

d [m] = 32 + 27 Xg ^ 28 Xg. [3]
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EXAMPLE 2: FULL TWO-LEVEL FACTORLVL DESIGN 2*

The estimation of radioactive source terms for the safety analysis of a nuclear fuel waste

repository involves laboratory leaching experiments to determine the durability of used UO2 fuel

and fuel recycle waste glass under conditions relevant to the disposal of these highly radioactive

materials deep in a granitic pluton of the Canadian Shield [11]. Table 7 shows the nine parameters

selected for leaching in two different groundwaters of used UO2 fuel and a borosilicate glass

containing 90-Sr, 137-Cs and several actinides such as 239-Pu, 241-Am and 244-Cm. In this

example, only the responses of the amount of hydrogen formed by radiolysis of the groundwater

and of the normalized mass loss of strontium will be examined.

Table 7: Parameters and Parameter Levels for Example Design

Variable X. Type

Waste Form Glass UOj fuel Discrete
CEC of Clay X2 160 meq/kg 1350 meq/kg Continuous
Ionic Strength of

Groundwater X3 10~ mol/L 1.4 mol/L Continuous
Surface Area/

_^ ^

Volume Ratio X^ 12 m~ 120 m~ Continuous

Metal X^ Ti-grade 12 Constant
Rock Xg Granite Constant
Pi-essure X^ 10 MPa Constant
Temperature Xg 200 C Constant
Time Xg 6 months Constant

The geometrical representation of such a 2* design is a 4D-hypercube as shown in Figure 1. The

four selected variables are the four axes of this hypercube.

With the technique executed in detail in the previous example, the factor effects and the coefBcients

of the response equations were calculated. The amount of hydrogen formed during g-radiolysis of
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I (HE) I

FIGURE 1: 4D-Hypercube as a geometrical representation of a 2* design.

Co«ffldemx10« RMidualt(y-9)x10<

FIGURE 2: Empirical cumulative distribution of the coefficients of a first-

order polynomial for the amount of hydrogen in volt developed by

7-radiolysis of groundwater (left).

FIGURE 3: Empirical cumulative distribution of the residuals (amount of

hydrogen) (right).
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the groundwater can be described by the polynomial

[H,] * lo' = 27 . 19 X, . 8 X, . 8 X,X, - 4 X, (1n VoU). [«

The amount of hydrogen formed is a strong positive function of the activity of the waste form, Xi,

and the ratio of the surface area of the solid to the volume of the solution, X4. It is negatively

correlated with the ionic strengths of the groundwater, X3. There is also a rather strong two-factor

interaction X1X4. Figure 2 shows the empirical cumulative distribution of the 15 calculated

coefficients of the first-order polynomial on a probability net. If all the coefficients would

randomly fluctuate in a Gaussian fashion around a statistical mean value than the distribution

would follow exactly a straight line. Deviations from this line signify non-random factor effects,

in this case Xi ,X3 and X4. With the response equation shown above the residuals were calculated

and also plotted on a probability net (Figure 3). The figure indicates a reasonable qualitative fit of

the assumed model to the true response surface.

The normalized mass loss of 90-Sr is shown in Figure 4 in a 4D-hypercube. The four axes of the

hypercube are the selected parameters Xi to X4 (see Figure 1). The inner cube contains the data

obtained by leaching of used fuel, the outer cube contains the data obtained by leaching of fuel

recycle waste glass. The complex response equation is

' = 42

* 15 x;x, uXXj [Hg/rn']. ' " " '
'^

£5]

NML(Sr)*10 = 42 - 32 X,^- 17 X^^-JZ X, .
J6 X,Xj . 21 X.X^

The empirical cumulative distributions of the residuals for NMIXSr), and NMIXCs), are shown in

Figure 5.

It was suspected that all two-factor interactions but X2X3 are merely perturbations of the parameters

X2, X3 and X4. The interaction of the cation exchange capacity of the clays, and the ionic strength of

the groundwaters, however, determines the pH of the solution. With this, a table of factor

assignment can by produced (Table 8).
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FIGURE 5: Empirical cumulative distribution of tht residuals of the normalized

mass losses of 90-Sr and 137-C$.

FIGURE 6: Anscombe-Tukey-plots of residuals vs. linear (top) and parabo

(bottom) normalized mass loss of 90-Sr.
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Table & Order, Signs and Assignment of Factors, and Hieir Effect

on the Normalized Mass Loss ofStrontium-90

Factor Sign Assignntent Effect

Waste Form

Ionic Strength

Perturbation of Xj

Perturbation of X^

Perturbation of Xj

SA/V ratio

pH

Fuel shows smaller
NML(Sr) than glass
Increasing I

decreases NHL(Sr)

Increasing SA/V
decreases NHL(Sr)
Increasing pH

increases NML(Sr)

The three-factor interaction X1X2X3 = X4X5 is suspiciously large thus suggesting the involvement

in the leaching process of corrosion products due to interaction of the SA/V ratio and the type of

metal.

The plot of the residuals vs. the response Y (Figure 6, top), also called Anscombe-Tukey plot, shows

three straight lines instead of the random distribution of data points above and below the zero line

as required for a good lit of the data to the model. This suggests a Y-data transformation to achieve

better fit to the model.

Indeed, several data transformations increase the regression coefficient (coefficient of

determination)! from 0.928 for Y (linear) to 0.960 for Y'^^ to 0.963 for Y'^^, considering the seven

parameters identified above. Figure 6 (bottom) shows random scatter of the data points for the Y^^

transformation. This could mean that the true response surface has a parabolic or cubic character.

However, the selected experimental design does not allow for non-linear parameters to determine

the curvature of the response surface. A different model must be built, and additional experiments

must be run.

1 R2=SSREG/SST0T; SSREG = Sum of squares of regression, i.e. fraction of the total scatter of the

original observations that is accounted for by the selected effects. SSTOT = Total sum of squares of

deviation of the observations about their mean.
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EXAMPLE 3: THREE-LEVEL FRACTIONAL FACTORLVL (BOX-BEHNKEN) DESIGN

This example deals with the dissolution of a simulated borosilicate-based nuclear waste glass in

the presence of three different clays and three different groundwaters [12]. Three parameters were

varied at three levels (Table 9). This is the minimum number of levels for each parameter to

estimate non-linear responses. Designs with more than three levels yield higher quality

predictions such as the five-level central composite [13] or the Box-Wilson [14] designs but require

many more experiments. A Box-Behnken design is a subset of a full three-level factorial, 33-f that

uses 13 of the 27 points of the full factorial plus 2 extra replicates at the centre. There are 5 more

points than the minimum 10 points required to estimate the 10 parameters of the second-order

polynomial (3 hnear, 3 quadratic, 3 two-factor interactions, 1 three-factor interaction). Thus the

design provides 5 degrees of freedom for error. Geometrically the Box-Behnken design can be

described by an edge-centred cube with three centre points (Figure 7).

Table 9: Parameters and Parameter Levels for Example Box-Behnken Design ^

Variable "0"

Cation Exchange
Capacity of Clay,X, 160 meq/kg 490 meq/kg 1360 meq/kg

^ or 820 meq/kg($)

Ionic Strength of lO' mol/L 0.013 mol/L 0.07 rool/L

Groundwater, X2

Ratio Clay to

Groundwater, X3 0.01 kg/L 0.05 kg/L 0.10 kg/L

($) The level was split between Ca-montmor i 1 lonite (CEC=

1360 meq/kg), and Na-montmori 1 lonite (CEC=820 meq/kg).

Figure 7 shows the experimental results. Responses measured were the specific mass loss of the

glass, the mass of dissolved silicon, the mass of dissolved boron, all in kg/m^, as well as the final

pH of the leach solution measured at room temperature. The right-hand plane of the Box-Behnken

design cube shows both the results of sub-design A (using Ca-montmorillonite) and B (using Na-

montmorillonite). Figure 8 shows the calculated response surfaces of the specific mass losses of

the glass as the function of the coded levels of the cation exchange capacity,Xi and the ratio
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[Si] X 10 3

FIGURE 7: Box-Behnken design cube with experimental results of normalized mass
loss of boron (1st quadrant), pH (2nd quadrant), normalized mass loss

of silicon (3rd quadrant) and specific mass loss of the glass
(4th quadrant) for sub-designs A and B (see text).

X, -1.0 (Granitic groundwater) X, 1.0 (Star>dard Canadian Shield

Saline Solution)

FIGURE 8: Response surfaces of specific mass losses of the glass as a function
of the cation exchange capacity of the clay. X. and the ratio clay/
groundwater, for constant ionic strengths of the groundwater, X
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clay/groundwater,Xa at constant ionic strengths of the groundwater (left column: granitic

groundwater, 1=10-^ mol/L; right column: saline solution, 1=0.07 mol/L; top row: Sub-design A

with Ca-montmorillonite at "+" level; bottom row: Sub-design B with Na-montmorillonite at "+"

level). The specific mass loss of the glass in kg/m2 is given by

Am * 10^ = 12.7 * 3.2 - 1.3 X3 * 2.5 X^Xj - 2.1 X^Xj - 1.4 X^Xj. [6]

From Figure 8 it appears that the use of Na-montmorillonite as buffer material to isolate the

nuclear fuel waste containers from groundwater is preferable over the use of Ca-montmorillonite.

The latter interacts strongly with groundwater, and produces exceptionally low pH values that

promote the attack of the waste glass as shown by the high specific mass losses of the glass in

contact with Ca-montmorillonite (Figures 8a and 8c). The interaction of clay and groundwater

can also be seen in Figure 9. Whereas Ca-montmorillonite produces pH-values of 3 in granitic

groundwater (X2 = -1) and even lower values in saline solution (X2 = +1) (Figure 9a), the

Na-montmorillonite produces pH-values of 9 in granitic groundwater and around 7 in saline

solution (Figure 9b).

Figure 10 shows the probability plot of the coefficients of the response equation of the normalized

mass loss of silicon from the glass. It can be seen that the three linear parameters Xi, X2 and X3 do

not fit the Gaussian straight line thus indicating significant parameter effects. Indeed, the linear

response equation yields

NML(Si) * 10^ = 5.5 * 4.0 X^ - 1.3 X2 - 1.4 X3 [kg/m^]. [7]

On the other hand, the normalized mass loss of boron follows a parabolic rate law:

NML(B) * 10' = 13 * 61 X,^ * 39 X, - 13 X^X^ [kg/m]. [8]

Figure 11 shows the contour lines that indicate a trough with negative slope with increasing ionic

strength of the groundwater due to the negative coefficient of the two-factor interaction parameter

X1X2. The parabolic contours are due to the strong contribution of the quadratic Xi parameter.

Figure 12 shows the probability plot of the coefficients of the second-order response equation of the

normalized mass loss of boron. The linear and quadratic coefficients of parameter Xi due not fit

the Gaussian line thus indicating effects significantly different from experimental noise. A

simple variance test confirms that the fitted response surface was estimated with sufficient
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FIGURE 9: Development of pH for sub-designs A (top) and B (bottom) as a

function of the cation exchange capacity of the clay, X, and the

ionic strengths of the groundwater. X^.
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FIGURE 10: Empirical cumulative distribution of the coefficients of the

second-order polynomial for the normalized mess loss of silicon.
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FIGURE 11: Contour lines (isopleths) of the normalized mass loss of boron
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99

^90
I

50

o 10
o

Boron

5?

mm

•

A
i JL.. 1 1 1 1

—

1. 1

-80 -40 0 >40

Coafficientsx 10*

-80

FIGURE 12: Empirical cumulative distribution of the coefficients of the

second-order polynomial for the normalized mass loss of boron
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precision using the equation V(Y) = p*a2/n, where p = number of parameters fitted, a2 = estimate of

error variance of the replicated centre point, and n = number of experiments. Accordingly, V(Y) =

(3X5.33*10-5)/15 = 1.066*10-s, and a = 1.032*10-6. Figure 11 shows that the fitted Y data range

approximately from 20*10-6 to 120*10-6. Thus we have failed to show any substantial lack of fit.

The predicted change ofY is indeed 97 times the standard error of Y.

Ck>nclusion

The response sunace methodology is a convenient and easy tool to estimate how a particular

response is affected by a given set of independent variables over some specific region of interest.

Furthermore, it allows to determine those values of input variables at which a particular response

is maximized or minimized , and gives also information on the character of the response surface

close to the extremum.

One should always try, if time and resources permit, to develop the full experimental strategy by

proceeding from screening (Plackett-Burman design or fractional two-level factorial) to "limited

response surface" analysis (full two-level factorial) to "response surface" analysis per se

(Box-Behnken design or other three-level factorials) to "exact model" building.

Many aspects of the response surface methodology could not be dealt with in this context such as

orthogonal blocking, detailed analysis of variance, and canonical analysis. These subjects are

described in more detail in numerous textbooks, for example in Box, Hunter and Hunter [7].

It should be emphasized again that the methodology described in this article is just a convenient

tool, not gospel. Common sense, critical judgement, even Ockham's rasor and the "KISS" strategy

have to be applied at all stages of the analysis to yield meaningful results.
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SAS STATISTICAL APPLICATIONS

Serge Dupids

Software Suppcrt

Alberta Public Works, Supplies and Services

Introduction

SAS (Statistical Analysis System) is a comprehensive package designed for data analysis. It

includes a programming language for reading and manipulating data of almost any form and a

number of procedures designed for analysing and displaying the data.

SAS offers an integrated approach to building systems by replacing several software packages for

editing, database functions, programming, reporting and graphics into a single system. Although

this paper deals primarily with statistics, SAS should be considered as an complete system. Add-

ons to the base product include:

SAS/FSP Interactive facility for data entry.retrieval.

SAS/GRAPH Business graphics(Pie^ar charts). Scientific graphics (contouring, mapping, 3D

modelling).

SAS/AF Application facility to create menus and turnkey applications.

SAS/OR Operations research, decision support.project management. Includes Gantt charts,

Critical path Analysis

SAS/STAT Wide range of statistical procedure for analysis and modelling such as ANOVA,

Regression, Chi-square, survival analysis and others.

SAS/ETS Econometric8,financial planning, time series modelling including ARIMA,

forecasting time series, cross spectral analysis.

SAS/IML Interactive matrix programming language similar to APL which can be used for

regression.

SAS/QC Quality control software including SHEWHART and several experimental

design macros.
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SAS is available on mainframes, minis and PCs on several operating systems including VAX,

UNIX, MVS, and PC-DOS and Macintosh so that analyses and data can be readily shared among

scientists, worldwide. The version for PC's is leased to Alberta Grovemment Departments and

Agencies through a master license at Public Works, Supplies and Services (PWSS). The Base

product is leased from $90/year with add-ons from $40/year. The cost includes support and

upgrades, but not manuals.

Manuals

All SAS/PC users should obtain the LANGUAGE guide (# P5856. $19.95US) and PROCEDURES

guide (# P5856, $16.95US). For specific applications, the following listed in the reference section

may also be reqiiired.

A master index of all documentation is highly recommended (publication# 56000). Many

manuals can be ordered from PWSS (charged to mainframe account), others from SAS directly

(DPO direct to SAS). A free semi-annual catalog of all publications is available from SAS. The

address to order directly is:

SAS (Canada)

225 Duncan Mills Road, Suite 300

North York, Ontario

M3B3K9

Phone (416) 443-9811 Fax: (416) 443-1269

Hardware Required

SAS/PC will require a PC/AT class computer or better such as IBM PS-2/Model 60-80 and

COMPAQ 286/386. A 386 machine is recommended for future upgrades of SAS/PC under

Windows. Expanded memory is not normally required but will be very useful. A math

co-processor will he useful for complex statistical or graphical applications. With the addition of

an IRMA or similar card for communication, SAS/PC programs can be executed on a mainframe

where large data files can be processed. Be prepared to allocate 10 to 30 megabytes for storage on the

PC. This could be stored on a Local Area Network (LAN) server as SAS/PC operates under many

LANs such as NOVELL, IBM, Banyan-Vines and others.
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Training

SAS has a steep learning cxirve, but fortunately, users do not need to understand the whole system to

be able to effectively analyse their data. It is highly recommended that users take the tutorial

provided with the installation diskettes to get familiar with windows, functions keys and basic

syntax of the SAS language.

This basic training can be enhanced with other computer based tutorials available from Software

Support, classroom courses and seminars which are held several times a year. The software also

includes several help screens and fill the blanks menus which can be activated by function keys

(Fl=help) or by typing MENU on the command line. For those wanting an automated system,

SAS/Assist and SAS/AF can be used to build turnkey systems requiring little knowledge of SAS by

its users.

Each product also has its own set of sample programs, complete with data and ready to run. The

index is listed in files called *.BLS. For example, the INDEXSTT.BLS file contains names of

sample programs in the SAS/STAT guide. To run any of these programs, you need to invoke SAS

and INCLUDE the program name, for example, ANOVAEX is included with the command:

command===> INCLUDE 'ANOVAEX.SAS'

The program is ready to use by pressing the execute (flO) key.

A partial list of samples for SAS/STAT:

ANOVAEX Documentation Examples from PROC ANOVA

TTESTEX Documentation Examples from PROC TTEST

CATKAPPA KAPPA STATISTIC COMPUTATION

FREQTREN TREND TEST USING PROC FREQ

CLUSTER CLUSTER ANALYSIS OF MAMMALS' TEETH DATA

FASTCLUS USING MACROS TO ANALYZE ARTIFICLU. FIVE-GROUP

DEXOC Macros for Central Composite Designs

DEXPB Macros for Plackett-Burman Designs

PLANEX Documentation Examples from PROC PLAN

CANDISC CANONICAL DISCRIMINANT ANALYSES OF CARS DATA

CANDPOLY POLYNOMLAL CANONICAL DISCRIMINANT ANALYSIS

DISCKERN KERNEL DISCRIMINANT ANALYSES OF IRIS DATA

INTDISC EXAMPLE FROM INTRO TO SAS DISCRIMINANT PROCS
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STEPDISC STEPWISE DISCRIMINANT ANALYSES OF CARS DATA

Gettizi«rData into SAS

There are several method of entering data into SAS:

- Internal to the programs, using the INPUT and CARDS statements. This is acceptable

when analysing small amounts of data.

- External to SAS, in DOS 'flat files'. These can be of any format and size, read with

FILENAME and INPUT statement.

- In Dbase II, III ,111+ or Dbase IV files which can be converted very simply by using the

DBF procedure.

- In LOTUS 1-2-3 files pre-converted to DIF or to printed to a PRN file and then read with

an INPUT statement.

- Using SAS/FSP for entering the data. This will also do quality control on data entry and

allow a screen to be any input form. This method is preferred for large numbers of

variables or where data entry is critical. A specific tutorial is available for learning

SAS/FSP.

ASanqile Session with SAS/PC

This is a sample program which reads data from a CARDS list and does a simple means

calculation.
= OUTPUT—
Cominand==>

=LOG—
Comnanda

||»PROGRAM=«'
Command=»>

00001 data

;

00002 input X y;
00003 cards

;

00004 1 3

00005 3 5

00006 4 8

00007
00008 PROC MEANS; run;

(Press FIO to execute the program)
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The output is displayed on the output screen. To access it, press f5 and view the output:

= OUTPUT =========================^=======^^

Coiiunand==>
N Obs Variable Minimum Maximum Mean Std Dev

3 X 1.00000 4.00000 2.666 1.527
3 X 3.00000 8.00000 5.333 2.516

=LOG
Cominand==>

=PROGRAM=
Cominand==>

00001
00002
00003

Function Keys

Pressing F2 will display current keys assignment. The most useful function keys are:

Fl- help

F2- keys

F5- Jump to next window

F7- Zoom window to full screen

F9- Recall program

FIO - END / Execute program

Many other function keys are assigned and all are user definable.

ComnuuDid Line

There is a command line on every window. The most common commands are:

Command=s> X Shell to DOS (exit to return)

Commands=> Include 'Xdosfile' Read a DOS file to window

Command=s> File Adosfile' Write a DOS file to disk

eg to printer: FILE '\lptl'

Command==> BYE Finish SAS Session
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Cominand==> MENU Call procedure menu

Statistical Products

The base package includes very limited statistical procedures for descriptive statistics

(mean,median, modes etc.). More complex statistical procedures can be found in SAS/STAT,

SAS/ETS, SAS/IML and SAS/QC.

SAS/STAT Product

REGRESSION PROCEDURES:

CATMOD Analyses data in continency tables

Least square fit for simple, multiple, polynomial and weighted regression

Fits parametric models to failure data (survival analysis)

Non linear regression, such as Gauss-Newton

For ill condition data using the Gentleman-Givens method Use

colinearity diagnostics of REG to determine if ORTHOREG is

needed.

Linear regression with method selection from nine options such as

backward, forward, stepwise, r-square

Builds response surface models

Obtains linear and nonlinear transformations of variables using

alternating least squares to fit data to linear regression canonical

regression and anova models

GLM

UFEREG

NUN
ORTHOREG

REG

RSREG

TRANSREG

ANALYSIS QF VARIANCE;

ANOVA Includes multivariate anova and repeated measures anova with several

comparison tests. DO NOT use for unbalanced data, use GLM instead

CATMOD Fits linear models for categorical data

GLM Regression, analysis of covariance, repeated measures analysis,

multivariate anova, hypothesis tests, test of means

NESTED Anova and analysis of covariance on nested random models

NPARIWAY Non-parametric one-way of rank scores

PLAN Constructs designs and randomizes plans for nested and crossed
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TTEST

VARCOMP

experiments

Compare means of two groups

Estimate of variance components for random or mixed models

rATEOORICAL ANALYSIS:

CATMOD Fits linear models to functions of categorical data

FREQ Builds tables or continency tables with chi-squares, Fishers' test

MTTT.TTVARIATE ANALYSIS:

PRINCOMP Principal component analysis, output component scores

FACTOR Principal component and common factor analysis with rotations

CANCORR Canonical correlation analysis

DISCRIMINANT ANALYSIS:

DISCRIM Compute discriminant functions, including non-parametric

methods

CANDISC Canonical analysis to find linear combinations of quantitative

variables

STEPDISC Forward, backward or stepwise selection

CLUSTERING PROCEDURES;

CLUSTER Hierarchical clustering using 11 methods applied to coordinate or

distance data

FASTCLUS Finds disjoint clusters using k-means (up to 100,000 observations)

VARCLUS Hierarchical and disjoint clustering by oblique multiple group

component analysis

TREE Draws tree diagrams (dendrograms or phenograms)

The following may be used prior to clustering:

ACECLUS Estimate of pooled within cluster covariance matrix

PRINCOMP Principal component analysis

STANDARD Standardizes variables to specified mean and variance
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CORING PROrFPTrRES:

STANDARD Standardizes variables to specified mean and variance

RANK Ranks numeric variables from high to low

SCORE Constructs new variables that are linear combination of old

variables according to a scoring dataset (used with PROC FACTOR)

STTRVTVAL ANALYSIS:

This is used for data that measure length of time to occurrence of an event, for example

mean time before failure, or length of time a person stays on the job.

LIFEREG Fits parametric accelerated failure time or regression models

LIFETEST Computes nonparametric estimate of survival distribution

OTHER SAS/STAT PROCEDURES

CORRESP Simple and multiple correspondence analyses. Reads a continency or Burt

table or creates these tables from raw data. Also named Appropriate

scaling, reciprocal averaging.

PRINQUAL Obtains linear and nonlinear transformations of variables using

alternate least squares.

PROBIT Maximum likelihood estimates of regression parameters and

threshold response rate for biological assay quantal response data

CALIS Covariance analysis of linear structural equations

LOGISTIC Fits linear logistic regression models for binary or ordinal data

SAS/ETTS (Eoonometric and time series) PRODUCT

SAS/ETS has a number of statistical procedures for analying time series. This includes:

Econometric models for market analysis or macro economics

Corporate financial modelling including planning equations

Physical models for mechanics, hydraulic and hydrologic models

Biological models to simulate living systems

- Ecological models to represent systems in nature.

ARIMA Autoregressive integrated moving average process(Box-Jenkins)

AUTOREG Regression allowing serially correlated error
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FORECAST Forecast series using trend-adjusted autoregressive or exponentially smoothing

models

PDLREG Multiple regression with polynomial distributed lag

SPECTRA Computes periodograms, smoothed spectral density estimates, white noise tests

STATSPACE Autocorrelation of stationary vector time series by state space models

Xll Seasonally adjusts quarterly or monthly time series

A Sample Time Series Application

The following is a sample program to extrapolate a time series using the FORECAST procedure.

data a

;

input month year date :monyy.
crude coal;

format date monyy.

;

label crude=' CRUDE PETROLEUM';
cards

;

1 1965 JAN65 24.09 40.015
2 1965 FEB65 21.86 37.862
3 1965 MAR65 24.38 42.816
4 1965 APR65 23.68 41.862

...more data lines...
11 1972 NOV72 28.28 56.297
12 1972 DEC72 28.94 44.904

proc forecast data=a out=b outest=c
trend=2 outactual outlstep outlimit interval=month lead=15;
id date;
var crude coal;

proc print data=c;
, title 'The Estimates from PROC FORECAST';

The output dataset:

The Estimates from PROC FORECAST

OBS _TYPE_ DATE CRUDE COAL

1 N DEC72 96 96
2 SIGMA DEC72 0.7967232 6. 3485238
3 CONSTANT DEC72 24 .349114 42.934934
4 LINEAR DEC72 0.0612253 0.0728315
5 AROl DEC7 2 0. 6101027
6 AR02 DEC7 2

7 AR03 DEC7 2

8 AR04 DEC72
9 AR05 DEC72

10 AR06 DEC72
11 AR07 DEC72 0.2069177
12 AR08 DEC72
13 AR09 DEC72
14 ARIO DEC72
15 ARll DEC72 -0. 197647
16 AR12 DEC7 2 0.5571647
17 AR13 DEC72 -0.498052
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The CRUDE variable has several autoregressive terms, there is an indication of seasonality as

shown by the significance of the terms around AR12.

The output dataset can also be plotted with actual data, forecast and confidence limits:

proc gplot data=b;
symboll i=join c=red L=l r=l
symbol2 i=join c=green L=2 r=l
syTnbol3 i=join c=cyan L=3 r=l
symbol4 i=join c=yellow I>=4 r=l
symbols i=join c=Blue Lr=5 r=l
plot crude*date=_type_;
title 'Plot of Crude Oil Use';

run;

Plot of Crude Oil Use

35-

21

SEP62 JUN65 MAR68 0EC70 SEP73 JUN76

DATE

Type of Observation ACTUAL FORECAST— i — U3f) ^

114



SAS/QC (Quality Control)

SAS/QC is an add-on package to SAS/PC designed for statistical quality control and experimental

design. There are several applications for the product in manufacturing and laboratory. It

features several graphics and analytical procedures such as:

CAPABILITY Process capability analysis (including histograms with Gamma,

Weibull and lognormal distribution)

CUSUM Cumulative sum control charts

FACTEX Orthogonal fractional factorial analysis

MACONTROL Moving average control charts

OPTEX Finding of optimal design

SHEWHART Shewhart charts (MEAN X AND Range charts)

ADX Macros for design and analysis of experiments (menu driven)

ISHIKAWA Cause and effect diagrams

A sample use for PROC SHEWHART

The following was taken from the sample library. It tests and plots means and standard

deviation.

data lengstat;
input day mean std n;
informat day date?. ;

format day dates. ;

label day -'Date of Sample Collection'
mean"' Average Length'
std »• Standard Deviation of Length'
n "'Subgroup Sample Size';

cards

;

02JAN86 115.39 5. 67 20
03JAN86 113.68 2. 96 20
04JAN86 114.69 5. 45 20
. - - more da'ta lines
19JAN86 115.51 5. 25 20
20JAN86 113.63 3. 17 20
data lengstat;

set lengstat;
rename mean«lengthx /* subgroup mean */

std -lengths /* subgroup std. */
n =lengthn; /* subgroup sample size */

proc shewhart history»lengstat graphics;
xschart length*day» • *

•

;
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SAS/flC Uiflt

The charts show that this process is not in statistical control since the standard deviation (bottom)

of the measurement exceeds the upper control limit.

SAS/IML (matrix pmyramwiiig)

The interactive matrix language allows more direct programming and array processing. It can

be used for statistical applications such as:

- Correlation

- Solving non-linear equations

116



- Regression

- Alpha factor analysis

- Categorical linear models

- Response surface analysis

- Logistic and Probit regression

- Linear programming

- And many other applications

SAS/IML can be used to replace the APL language without use of a special keyboard. It has the

advantage of being interactive, unlike the DATA step. Data read in matrices can be converted to

SAS datasets and SAS datasets can be converted to matrices.

Correlation example with IML

The following program, taken from the sample library supplied with SAS/IML shows the use of

matrix language for a simple correlation.

PROC IML;
/* CORRELATION */
START CORR;

N=NROW(X)

;

/* DIMENSION OF X */
SUM=X[+,]; /* COLUMN SUMS BY REDUCING ROWS */
XPX=X^*X-SUM^*SUM/N; /* CROSSPRODUCTS */
S=DIAG(1/SQRT(VECDIAG(XPX) ) ) ; /* SCALING MATRIX*/
CORR=S*XPX*S; /* CORRELATION MATRIX*/
PRINT "Correlation Matrix" , ,CORR[ROWNAME=NM COLNAME=NM]

;

FINISH;
/ * STANDARDI ZATION */
START STD;

MEAN=X[+, ]/N; /* MEANS FOR COLUMNS */
X=X-REPEAT(MEAN,N, 1)

;

/* CENTER X TO MEAN ZERO */
SS=.X[##, ] ; /* SUM OF SQUARES FOR COLUMNS */
STD»SQRT(SS/(N-1) )

;

/* STANDARD DEVIATION ESTIMATE*/
X=X*DIAG(1/STD)

;

/* SCALING TO STD DEV 1 */
PRINT /'Standardized Data" , , X[COLNAME=NM]

;

FINISH;
/* SAMPLE RUN */
X » { 1 2 2,

2 2 1,
4 2 1,
0 4 1,

24 1 0,
1 3 8 ) ;

NM-{AGE WEIGHT HEIGHT);
RUN CORR;
RUN STD;
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Two matrices are produced: a Correlation matrix and a Standardized data matrix:

Correlation Matrix

CORK AGE WEIGHT HEIGHT
AGE 1 -0.717102 -0.436558
WEIGHT -0.717102 1 0.3508232
HEIGHT -0.436558 0.3508232 1

Standardized Data

X AGE WEIGHT HEIGHT
-0.490116 -0.322749 0.2264554
-0.272287 -0.322749 -0.452911
-0.163372 -0.322749 -0.452911
-0.59903 1.6137431 -0.452911

2.0149206 -1.290994 -0.792594
-0.490116 0.6454972 1.924871

SAS/IML also contains a number of routines for displaying data which give a greater amount of

control over graphs than with SAS/Graph alone.

Summary

SAS has a complete set of tools for the statistical analysis of any source of data. The challenge is

knowing which procedure to use under specific conditions. Since it will almost always produce an

output, a good understanding of statistics is required for interpretation.

The system has a steep learning curve for those wanting to use SAS in its raw form but it can be

'packaged' as an automated system with the use of menus and sample programs.
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Appendix A

Program
Thursday, October 21, 1990

TIME
LOCATION
0900-0915

AUD
0915-1000

AUD

1000-1030

1030-1115

AUD

1115-1200

AUD

1200-1300

TIME
LOCATION

1300-1400

LMR

CR

BDR

BDR

1400-1500

CR

LMR

BDR

BDR

1500-1515

1515-1615

BDR

TOPIC

Opening Remarks

Applying Statistics to Practical Problems
Milton Weiss

BREAK
Time Series Analysis

Victor Adamowicz

Multivariate Methods
Dave Jobson

LUNCH-ARC (Catered)

GROUP TOPIC

A Statistical Graphics

B Discriminant Analysis

C Sampling Insect Populations

D Sampling Insect Populations

A Repeated Measures ANOVA

B Statistical Graphics

C Discriminant Analysis

D Discriminant Analysis

BREAK

A Sampling Insect Populations
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Appendix A-continued

TIME
LOCATION
0900-0950

AUD
0950-1015

1015-1100

AUD

1100^1130

AUD

1130-1200

AUD

1200-1300

TIME
LOCATION

1300-1400

CR

CR

AUD

AUD

1400-1500

AUD

AUD

CR

CR

1500-1515

Auditorium

Program
Friday, October 22, 1990

TOPIC

Experimental Design
Zack Florence

BREAK

Parametric Assumptions
Robert "Bob" Hardin

Statistical Problems in Compliance Assessment
Albert Liem

Environmental Chemical Analysis

Ian Johnson and Yogesh Kumar

LUNCH-ARC (Catered)

GROUP TOPIC

A Response Surface Analysis

B Response Surface Analysis

C SAS Applications

D SAS Applications

A SAS Applications

B SAS Applications

C Response Surface Analysis

D Response Surface Analysis

WRAP-UP

LEGEND
AUD= Auditorium
LMR= Library Meeting Room, Main Floor

BDR= Board Room
CR= Conference Room
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TIME
LOCATION

BDR

LMR

CR

1615-1715

CR

BDR

BDR

LMR

Appendix A-continued

GROUP TOPIC

Sampling Insect Populations

Statistical Graphics

Repeated Measures ANOVA

Discriminant Analysis

Repeated Measures ANOVA

Repeated Measures ANOVA

Statistical Graphics

1900 (7:00 PM)
BUFFET (Optional)

Terrace Inn, 4440-Calgary Trail Northbound

LEGEND
AUD= Auditorium
LMR= Library Meeting Room, Main Floor

BDR= Board Room
CR= Conference Room
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