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One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic

devices. Despite decades of research, the state of the art is dramatically behind the

expectations. To shed light on this issue, in June, 2013 the first international workshop on

Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces

(MI; PMI) was convened, hosted by the International Conference on Rehabilitation

Robotics. The keyword PMI has been selected to denote human–machine interfaces

targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered

from the PNS in a non-invasive way, that is, from the surface of the residuum.The workshop

was intended to provide an overview of the state of the art and future perspectives of such

interfaces; this paper represents is a collection of opinions expressed by each and every

researcher/group involved in it.
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INTRODUCTION AND MOTIVATION

The first international workshop on Present and future of non-

invasive PNS–Machine Interfaces took place in June, 2013 in Seattle,

USA, hosted by the 13th International Conference on Rehabilita-

tion Robotics (ICORR). The keyword peripheral nervous system

(PNS)–Machine Interface (MI; PMI from now on) was chosen to

denote one of the hottest topics in the rehabilitation robotics com-

munity, namely the interpretation of biological signals extracted

non-invasively from the PNS, with the intent to equip an indi-

vidual with disability to reliably, dexterously, and naturally

control a robotic artifact gifted with many degrees of freedom

(DOFs).

In the paradigmatic case, surface electromyography (sEMG)

is used as the main source of signals, and the complexity of

modern upper-limb prostheses (self-powered mechanical shoul-

ders, elbows, wrists, hands, and fingers) represents a formidable

challenge and an ideal benchmark for the PMI dealing with the

problem. sEMG has been in use since the 1960s to proportionally

control single-DOFs hand grippers since it involves neither surgery

nor hospitalization, its signal remains rich in information even

decades after an amputation, and it provides clearer signals than

brain–computer interfaces based upon, e.g., electroencephalog-

raphy. The application of machine learning to sEMG has been

proposed since the 1960s as a means of converting electrical

activation signals to useful control signal for arm and hand

prostheses; nevertheless, the state of the art of control is still

poor.

Literally dozens of different approaches have been applied to

sEMG to decode an amputee’s intentions, but none has as yet

made it to the clinics: as a PMI, sEMG has revealed to be unreliable,

badly conditioned, subject to change with time, fatigue, and sweat.

No valid alternatives to sEMG are used in the clinics, whereas

dexterous prosthetic artifacts are now appearing on the market,

demanding ever better control by the patient.

The workshop revolved around four “themes” or “questions,”

with the aim of shedding at least a partial light on some of them:
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(1) what is wrong with sEMG? why do clinicians not use it?

(2) how can sEMG be better used?

(3) what alternative, radically new solutions are available, if any?

(4) what are the benefits of sharing control between the human

subject and the prosthesis?

Ten invited talks were given at the workshop, in which each

research group gave a broad overview of its activities and offered

its point of view on one of the above topics. This paper collects

the opinions appeared in the workshop.

The remainder of the paper is organized according to the four

above questions; an overview of the talks, as well as a presentation

of the workshop and of the PNS–MI workgroup, can be found at

the URI pnsinterfaces.wordpress.com.

WHAT IS WRONG WITH EMG? WHY DO CLINICIANS NOT

USE IT?

Merkur Alimusaj, Levi Hargrove, Todd Kuiken, and Rüdiger Rupp.

WHAT IS WRONG WITH IT?

The benefit and acceptance of myoelectric prostheses are influ-

enced by a number of reasons: weight, noise, cosmetic appearance,

battery duration, price, and expense of servicing. State-of-the-art

mechatronic devices (prosthetic hands, wrists, elbows, etc.) aim

to increase the number of motorized DOFs available. To make

full use of these multifunctional prosthetic systems an appropriate

user interface must be implemented. Several research groups are

working in the field of sEMG pattern recognition, trying to create

a more robust prosthetic control by adding predictors into control

schemes. Although a lot of work has been done, only marginal

progress has been made in the clinically available solutions for

prosthetic control. A bigger effort is therefore needed to address

the prosthesis user’s needs within multidisciplinary projects. This

leads to the necessity of putting the user at the center of the research

and shaping research to target clinical relevant outcomes.

THE GRAND GOAL: TOTAL RESTORATION

Loss of a hand or an arm due to an amputation dramatically

decreases the quality of life. The amputee has not only lost her/his

grasping functions, but also an important communication tool.

Not only amputees, but also patients with congenital deformities

are prosthetic users and should therefore be addressed. Since the

human hand/arm has more than 20 DOFs, the idea of a complete

substitution by a prosthesis represents a highly ambitious goal.

The dexterity of current prosthetic effectors is not yet anywhere

near that of the human upper limb. The lack of functional-

ity and intuitive control increases by the level of amputation –

most dramatically at the level of shoulder disarticulation or four-

quarter amputation; in such cases the usage and acceptance of

currently available upper extremity prostheses is dramatically low

(Peerdeman et al., 2011; Østlie et al., 2012), mainly due to the

lack of sensory signals to deal with, and with the weight imbal-

ance caused by the harness and the devices themselves. Figure 1

shows the typical harness implanted on a patient of shoulder

disarticulation.

The replacement of a human hand by means of a prosthe-

sis already poses a number of challenges from the mechatronic

point of view. However, the control issue might be even harder

FIGURE 1 | A myoelectric prosthesis implanted after shoulder

disarticulation (A) 2-DOFs self-powered hand, wrist, and elbow, plus

non-motorized mechanical shoulder with electrical fixation (B).

(Peerdeman et al., 2011). This leads to the conclusion that an

increased number of DOFs of prosthetic components is only the

first step in improving these systems. Limitations in articulated

control become even more apparent in the case of multi-fingered

prosthetic hands, which are still controlled by a conventional

two-sEMG-electrode configuration. Such prostheses are operated

via a non−physiological and non−intuitive series of muscle co-

contractions. This control strategy results in a rather slow transfer

of the user’s intentions to an action by the prosthesis and needs a

relevant training period assisted by highly educated experts. The

limitation of the control interface does not allow for full exploita-

tion of the mechanical dexterity of current multi-fingered hands.

Taking into account that this control strategy is also used in higher

amputation levels like transhumeral amputations or shoulder dis-

articulations, it is obvious that the mental effort and workload

of a user exponentially increases with level of impairment. The

user needs to control at least three independent components

(hand, wrist, and elbow) and co-contractions are needed to switch

between operation of each component. Simultaneous and pro-

portional activation of all DOFs or components is, at the time of

writing, still a dream.

STATE OF THE ART

Targeted muscle reinnervation (TMR) transfers the residual motor

branches of arm nerves to alternative muscle sites (Kuiken, 2006),

while sensory nerves are surgically reconstructed in shoulder dis-

articulated patients at the skin near the neck for tactile feedback. If

TMR is successful, it projects the muscles of the hand to chest mus-

cles, thereby increasing the number of sites available for recording

specific sEMG signals for prosthetic control. Currently, data from

up to six sEMG electrodes are considered without the need for any

sEMG pattern recognition algorithms. Using pattern recognition

methods in combination with TMR, prosthesis with a more intu-

itive and robust control were developed and applied in patients
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(Kuiken et al., 2009). TMR is now a procedure that is performed

clinically at institutions around the world.

TMR was developed primarily to create independent EMG

control sites for proximal level upper-limb amputees. TMR is

also suitable for other amputations levels. For example, analy-

sis of high-density surface EMG signals shows that information

corresponding to intrinsic hand-muscles may be decoded using

pattern recognition (Zhou et al., 2007). Our clinical observation is

that TMR amputees can control multiple hand grasps easier and

more reliably than transradial amputees supporting the applica-

tion of TMR to this population (Li et al., 2010). We have also

shown that TMR has applications for lower-limb amputees using

powered prostheses. It improves control during ambulation and

allows the amputees to independently reposition their knee or

ankle to prepare for difficult transfers (Hargrove et al., 2013b).

Finally, there is compelling data to suggest that TMR is an excel-

lent treatment for neuroma pain and likely prevents neuroma

formation. After nerve transection in an amputation, the prox-

imal nerve attempts regeneration with significant sprouting at the

nerve stump terminus (Zhang and Fischer, 2002). If the nerve is

unable to reconnect to a target, sprouting may progress to form

a neuroma: a dense, poorly organized mass of neurons in con-

nective tissue (Song et al., 2006). In TMR, the amputated nerve is

sutured to the motor point of a nerve that previously innervated

the TMR target muscle. In a rabbit model, transferring brachial

plexus nerves to denervated muscle reduced axonal sprouting by

over 50% and reduced neuroma size (Kim et al., 2012; Ko et al.,

2013). In a retrospective review of TMR patients with preopera-

tively painful neuromas, 14 of 15 patients had complete resolution

of their pain, and the remaining patient had a significant reduc-

tion in neuroma pain (Ko et al., 2013), such that he could wear a

prosthesis.

Simultaneous and proportional control of more DOFs has

highest priority in research and clinical routine (Jiang et al.,

2012a). According to this schema, patients are able to control,

e.g., wrist and hand motion without the need of learning artifi-

cial co-contraction sEMG patterns to switch between the control

of prosthetic components. With an increasing number of EMG

signals, the control becomes more intuitive and robust, even with

the use of non-invasive sEMG electrodes (Hargrove et al., 2013a).

Nevertheless, prosthetic control via sEMG is inherently influenced

by different disturbances such as, e.g., muscular fatigue, signal

degradation due to sweating, inadequate positioning of the socket,

stump volume fluctuation, and cognitive effort. This leads to high

variations in the user’s ability to ensure a safe and stable prosthetic

control in particular over several hours. Incorrect operation of the

prosthesis raises the level of frustration and herewith the tendency

of rejection of the device.

In addition to the developments in pattern recognition and

surgical intervention, relevant effort has been spent on the

improvement of motion prediction (Pilarski et al., 2013b), i.e.,

analysis of sEMG patterns to predict the arm kinematics. An incor-

poration of predictors into prosthetic control schemes could lead

to a reduction of latency in prosthetic action. Implementing a

robust method within the control algorithm for prediction of the

user’s intention shall improve the“speed”of control, the functional

outcome and the user’s satisfaction with the device.

CHALLENGES FOR THE CLINICIANS

One of the major limitations of current devices is the lack of

feedback to the user about forces or position of the prosthe-

sis. To achieve an intuitive and reliable control, feedback must

be provided (Dhillon and Horch, 2005). Feedback will sup-

port the embodiment of the whole device consisting of the

prosthetic socket and the components of the prosthesis itself

(Figure 2).

Most of the research in the field on advanced prostheses is cur-

rently carried out in robotics/electrical engineering laboratories.

Like in other fields of assistive technology, the introduction of an

iterative user-centered design is needed to establish a close link

between researchers, clinical experts, professional, and end-users.

The feedback of end users on the usability of complex prosthe-

ses developed by engineers and robotic specialists would help to

come up with devices that match the user needs and capabilities;

clinical evidence shows that the high variability in the population

of amputees needs individual solutions, not only at the level of

mechatronic components but also for the socket, the control sys-

tems, and the training. Prosthetic fitting is always dependent on

the patient’s needs and individual anatomy which all should be

addressed by including clinical aspects in the development process

of novel devices.

Future work should target the integration of additional and/or

novel sensors and sEMG arrays (Youn and Kim, 2010; Cooper et al.,

2014) within the prosthetic socket. Embedded sEMG sensors in the

socket could also lead to more robust control. Invasive, minimally

invasive, and non-invasive methods should be targeted. Further-

more, electrocutaneous or vibrotactile stimulation as a feedback

system for the first contact to an object, for slip detection, and of

the grasp force, could lead to better embodiment of the prosthesis

(Peerdeman et al., 2011).

FIGURE 2 | Closed-loop prosthetic control: including appropriate

feedback for an increased embodiment.
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HOW CAN sEMG BE BETTER USED?

Barbara Caputo, Kevin Englehart, Arjan Gijsberts, Patrick M.

Pilarski, and Eric Scheme.

OVERVIEW

In light of the observed limitations to conventional myoelectric

control, a number of approaches have been developed to more

effectively process and use existing myoelectric control informa-

tion. In particular, enhanced pattern recognition and other forms

of machine intelligence have been recently deployed to increase the

robustness, adaptability, and situational awareness of myoelectric

control systems and other human–machine interfaces (Figure 3).

As a whole, the studies reviewed in this section suggest that, by

increasing the decision making and information processing capac-

ity of sEMG control technologies, it may soon be possible to

surpass many of the existing barriers to their use in a clinical

setting.

ENHANCING THE ROBUSTNESS OF PATTERN-RECOGNITION-BASED

MYOELECTRIC CONTROL

Pattern-recognition-based myoelectric control has been discussed

in the research literature for decades (Parker et al., 2006; Oskoei,

2007) but has only very recently been deployed commercially. Con-

sequently, recent work has focused on identifying the reasons that

have inhibited its successful transition into clinical practice. Var-

ious arguments have been made; however, most have pointed to

concerns about clinical robustness (Scheme and Englehart, 2011).

Transitioning away from conventional laboratory testing poses sig-

nificant challenges as many confounding factors are introduced

during clinical use. It has been proposed that increases in sig-

nal variability during functional tasks contribute to degradation

in repeatability, and as a result, overall performance. Hargrove

et al. (2006) showed deterioration of performance due to elec-

trode shift, but suggested that it could be minimized by pooling

data from shifted electrodes during training. Young et al. (2011)

found similar results relating to electrode size, spacing, and ori-

entation. Scheme et al. (2010, 2011) showed the negative effect of

changes in residual limb position. Since then, several groups have

reiterated these results, concluding that the inclusion of multiple

limb positions during training can minimize these effects (Fougner

et al., 2011; Geng et al., 2012; Jiang et al., 2012b). Lorrain et al.

(2011) investigated the importance of the training set when testing

with dynamically varying data. Similarly, Scheme and Englehart

(2013a) examined the consequence of using proportional control

concurrently with pattern recognition on classification accuracy.

Both groups found that training with dynamically varying data

helped to drastically improve the robustness of the control scheme.

Each of these studies indicated a need for a more compre-

hensive representation of the usage case during training. This

suggests that the common approach to classification validation in

the literature (constrained, moderate intensity contractions) yields

only a sparse population of the discriminatory feature space. This

sparsity, typically combined with highly repeatable experimental

conditions, has led to the observation that the selection of classifier

has a minimal effect on the overall system performance (Hargrove

et al., 2007). Incorporation of multiple sources of variability dur-

ing training data collection, however, can be burdensome on the

users and clinicians. As more of these factors are identified, this

may become a prohibitively intensive approach. Ultimately, it is

not reasonable to represent all possible variations during training,

inevitably resulting in patterns being elicited during functional use

that were unaccounted for during training.

Another criticism of pattern-recognition-based approaches has

been a perceived lack of visibility into its inner workings (Lock

et al., 2011). Some groups are working to improve understand-

ing of the training process (Powell and Thakor, 2013), but the

basic premise of pattern recognition is unchanged. The assump-

tion that a user will only elicit patterns associated with one of n

motions is predisposed to fail as more challenging usage scenarios

are introduced and more sources of variability are added. Instead,

the myoelectric control task may more naturally lend itself to a

detection problem, where the presence of a known/desired signal

is not guaranteed. This subtle difference in philosophy accom-

modates the notion that observed active myoelectric signals may

FIGURE 3 | Robustness, adaptability, and situational awareness (sensorimotor knowledge) as three complementary machine intelligence pursuits to

enhance the expected clinical effectiveness of conventional and emerging myoelectric control systems.
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not result from an intention to activate the prosthesis – current

pattern-recognition-based systems, however, do not consider this

scenario; rather, the assumption is made that all active contrac-

tions originate from a desire to activate the prosthesis, resulting in

inadvertent movement of the device during aberrant, accidental,

or stabilization contractions. Further complicating the matter is

the discrete nature of pattern classification, which gives no indica-

tion that patterns are changing until an error actually occurs. This

greatly limits the ability to anticipate changes in the system and to

measure the influence of confounding factors.

Recently, an extension of the commonly used linear discrimi-

nant classifier (LDA) was introduced that converted its nonlinear

probability outputs into usable confidence scores (Scheme et al.,

2013). These confidence scores, bounded between 0 and 1, were

used to represent the certainty that a given decision was correct.

It has been suggested that inadvertent activation of a device is

one of the leading causes of frustration during clinical testing of

pattern recognition systems (Hargrove et al., 2010). Assuming no

other result such as dropping or crushing an object being held,

a user must – at minimum – correct such an error by eliciting a

compensatory antagonist motion. Drawing on inspiration from

biometrics, Scheme et al. (2013) only actuated motion when the

corresponding confidence was above a minimum threshold. Oth-

erwise, the decision was rejected and overwritten with an inactive

or no movement decision. The introduction of this rejection option

complicates the offline quantification of performance because

the effect of the tradeoff between false activations and excessive

rejection is unclear. Instead, using a real-time Fitts’ law style vir-

tual target achievement test (Scheme and Englehart, 2013b), a

significant improvement was seen in throughput, path efficiency,

overshoot, stopping distance, and completion rate. This approach

demonstrated the potential for using confidence based rejection

to improve performance and robustness by accounting for situa-

tions that might fall outside of the naïve assumptions of standard

offline classification.

While their work (Scheme and Englehart, 2013a) focused on

the realizable improvement through the use of a rejection scheme,

it also established a framework for using a classifier’s probabilistic

outputs for something more than a discrete class decision. It is

clear that the treatment of pattern-recognition-based myoelectric

control as a standalone classification task is insufficient. These

recent advances suggest that significant gains in robustness may

result from a greater emphasis on its use as part of a complete

dynamic control system.

LEARNING TO ADAPTIVELY CONTROL DEXTEROUS PNS–MI DEVICES

One of the main goals of the biorobotics community is to develop

hardware and software tools for providing amputees with dexter-

ous, easy to control prosthetic hands. Still, as of today we live a

dichotomy between the hardware and software capabilities of such

devices. While today’s hardware for robotic hands has reached

impressive levels, control over a satisfactory range of hand pos-

tures and forces is still coarse. Progress in the field has often been

slowed down by the lack of public data collections. Until 2012,

only a limited set of data for hand prosthetics was available. Mostly,

such proprietary databases contained up to 10 different grasping

actions, static hand postures or fingers and wrist movements.

Recently, the first version of the NinaPro database

(www.idiap.ch/project/ninapro, Atzori et al., 2012) was introduced

to the community. This public dataset provides kinematic and

sEMG signals from 52 finger, hand, and wrist movements. As

such, it supports experiments at a far larger scale than previously

used data, challenging machine learning researchers in terms of

classification accuracy, dexterity and life-long learning control of

PNS–MIs.

Besides dexterity, the problem of hand prosthetic control

involves the training time needed by a user to alleviate the incon-

sistencies between the desired and performed movements. This

process can take up to several days and it is generally perceived as

very tiring, sometimes painful. As a consequence, amputees often

give up and settle eventually for a cosmetic hand. This issue calls

for machine learning techniques able to boost the learning pro-

cess of each user. Adaptive methods (Chattopadhyay et al., 2011;

Matsubara et al., 2011; Tommasi et al., 2013), i.e., methods able to

exploit knowledge gathered from previous experience to accelerate

learning by a new subject—are suitable for this task. Indeed, the

experience gained over several source subjects can be leveraged to

reduce the training time of a new target user. In this way the learn-

ing process does not start every time from scratch, but it reduces

to a faster refinement of prior knowledge.

One general issue pointed out by previous work is the time-

and user-dependent nature of the sEMG signals (Sensinger et al.,

2009; Matsubara et al., 2011). The first is mainly due to fatigue

or electrode displacement, while causes of the second are the

personal quantity of sub-cutaneous fat, skin impedance, and dif-

ferences in muscle synergies. Variations among the probability

distribution of sEMG signals across different subjects make the

experience gained on one person not naively re-usable (Castellini

et al., 2009). When designing a prosthetic hand, this problem

induces a strong limitation: each user needs a long training

time before being able to fully exploit the prosthesis. Adaptive

learning methods focus on transferring information between a

source and a target domain despite the existence of a distribution

mismatch among them (Ben-David et al., 2010; Pan and Yang,

2010). Thus the knowledge originally acquired on the source

can be re-used for the target with a benefit that is as more

evident as the target training available data is scarce. This fits

perfectly with the problem of prosthetics hand control. Consider

the ideal case where an amputee wears his new prosthetic hand

for the first time and becomes proficient in using it after only

few basic exercises. This would dramatically reduce the number

of cumbersome training sessions and make the user much more

comfortable, leading to a drastic reduction in functional prosthe-

sis abandonment. To reach this goal, the prosthetic hand should

be endowed with an adaptive system that is already informed

about the possible basic hand movements and refines this source

knowledge through few signals collected from the specific target

user.

Still, adaptive techniques have been applied only marginally

on this problem. In Matsubara et al. (2011), the authors suggest

extracting from the sEMG data a user-independent component

that can be transferred across subjects. The source and target

data coming from different persons can also be combined together

after re-weighting as proposed by Chattopadhyay et al. (2011). In
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Tommasi et al. (2013), the transfer process is formulated as a max-

margin learning method and relies on pre-trained models. All

these algorithms have been tested on proprietary data of limited

dimension, with respect to the number of subject and the num-

ber of hand postures considered. Thus, it is not clear how their

performance compares against each other, nor how they would

perform on the more realistic scenario of larger numbers of sub-

jects and postures. Even more unclear is how the several algorithms

proposed so far in the machine learning literature for adaptive

learning would perform in the PNS–MI devices domain, and what

specific characteristics such algorithms must provide in order to

enable natural and stable control of non-invasive prostheses over

extensive periods of time.

LEARNING AND USING SITUATIONAL KNOWLEDGE IN THE CONTROL

OF PNS–MI DEVICES

The intuitive sEMG control of multiple actuators and the robust

unsupervised adaptation of devices to changes encountered dur-

ing deployed operation remain important challenges for users of

prostheses and other robotic rehabilitation devices. As discussed

above, recent advances in machine intelligence and pattern recog-

nition are helping to alleviate some of these challenges by opening

up a wealth of improved control options for the users of sEMG-

based prostheses (e.g., Sensinger et al., 2009; Micera et al., 2010;

Scheme and Englehart, 2011, 2013b; Tommasi et al., 2013). One

emerging area of potential benefit is that of real-time machine

learning, wherein prediction and control information is learned

during ongoing operation of a robotic PMI device (Pilarski et al.,

2013a). This sub-section therefore discusses work-to-date and

future perspectives on the use of real-time sensorimotor knowl-

edge acquisition as a strategy to gain more functionality from both

existing and emerging sEMG control solutions.

A key point underpinning work on real-time machine learning

for PMI control is that contextual or situational awareness (knowl-

edge in the form of temporally extended predictions) is important

for improving and adapting myoelectric control systems (Pilarski

et al., 2013a). This viewpoint is not surprising – in human action

selection and decision making, situational information at both

a low level (instantaneous information from sensory organs and

afferent never fibers) and high level (e.g., cortical activity relating

to location, emotional state, or long-term memory) is known to

be integrated in multiple, complementary ways to modulate and

enable action (Redish, 2013). In particular, knowledge encoded by

learned predictions in the cerebellum can be influential in effect-

ing timely and appropriate actions (Linden, 2003), and adaptable

predictions made by the central nervous system seem to play an

important role in human motor learning (Wolpert et al., 2001;

Flanagan et al., 2003). Real-time machine learning of predictions

and contextual information may be one way to provide the same

kind of situation-appropriate modulation to sEMG controllers

and other PMI devices (Figure 4).

A good starting point for situational or contextual awareness is

the anticipation of human and robot dynamics, namely, predic-

tions about changes in the stream of sensorimotor data flowing

between the human, their device, and the device’s control sys-

tem. As described in several recent studies, temporally extended

prediction learning and anticipation can be made possible during

the ongoing use of a human–prosthesis interface via techniques

from reinforcement learning (Pilarski et al., 2012, 2013a; Edwards

et al., 2013), namely the use of nexting with general value func-

tions (Modayil et al., 2014). As described by Modayil et al. (2014),

robot systems can now learn thousands of accurate predictions

in a computationally efficient way from a single stream of data,

in perpetuity, with learning and predicting occurring many times

per second. Studies using computational nexting showed the abil-

ity to predict and anticipate the future position, motion, sEMG

input signals, and contact forces of a myoelectrically controlled

robotic limb (Pilarski et al., 2013a), to anticipate the control func-

tions desired by a user (Pilarski et al., 2012), and also to predict

the timing of a user’s control behavior (Edwards et al., 2013). This

move towards more knowledgeable controllers supports and res-

onates with non-real-time PMI prediction learning work, e.g., the

FIGURE 4 | An abstract representation of the use of situational

awareness (knowledge) to supplement myoelectric control. In

conventional myoelectric control, state information in the form of

sEMG features is provided to the controller (A). Learned,

prediction-based knowledge regarding the context (or contexts) of

use can be used to modulate the parameters and the state-action

mapping of a controller in a situation- and user-appropriate

way (B).
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sEMG-driven predictions of upper-arm joint trajectories demon-

strated by Pulliam et al. (2011). Creating systems that acquire

and maintain predictive temporally extended knowledge regarding

human–machine interaction has been shown to be both possible

and potentially virtuous.

To be of benefit, situational sensorimotor knowledge must not

only be learned in real time, but also deployed in real time to

supplement the existing information available to a PMI device.

As depicted in Figure 5, learned temporally extended predictions

can be used to modify the internal parameters of conventional or

pattern-recognition-based controllers during their ongoing use.

Possible examples include using situational, user-specific predic-

tions to dynamically re-order control options, change controller

gains, or adapt thresholds and filters such that they are matched

to a user’s immediate needs and physical condition. As suggested

by Pilarski et al. (2012) and Edwards et al. (2013), a clear instance

of this approach is the use of task- and user-specific predictions to

optimize the control interface of a switching-based limb controller

– e.g., dynamically change how co-contractions are interpreted to

cycle through the numerous grip patterns of a dexterous hand

prosthesis or sequentially controlled actuators of a robot limb.

Once learned through active use, facts (predictions) about user

preferences and past activity can be applied to rank-order control

options in real time such that the correct options are made avail-

able to the user at the correct time (dynamic or adaptive switching,

Pilarski et al., 2012).

Learned predictions may also be fed into controllers as addi-

tional state information (e.g., predictive representations of state;

Littman et al., 2002). As depicted in Figure 6, this approach allows

the flexible coupling of prediction learning with control, provid-

ing additional and perpetually up-to-date state information to a

conventional or learned controller. Alternatively, predictions may

be directly mapped in some way to predetermined movements,

as is suggested to occur via the cerebellum and Pavlovian action

selection in the brain (Linden, 2003; Redish, 2013). As one exam-

ple, learned predictive state information has been shown to enable

FIGURE 5 | Learned predictions can be used to adjust the control

parameters of both conventional and emerging PMI controllers.

Examples include using situational predictions to dynamically re-order

control options, change controller gains, or adapt thresholds and filters

such that they are matched to a user’s immediate needs.

FIGURE 6 | Real-time machine learning provides up-to-date predictive

state information to a control system. Temporally extended predictions

can serve as supplementary state information to improve control

performance, or may be directly mapped to a set or subset of the available

control functions.

the simultaneous, anticipatory actuation of a supplementary wrist

actuator during the myoelectric operation of other robot joints

(Pilarski et al., 2013b).

In summary, learning and using situational sensorimotor

knowledge appears to be a promising area for enhancing assistive

devices, and there are preliminary results to show unsupervised

adaptation, facilitation of simultaneous multi-joint control, and

streamlining of interfaces that use switching. Using a real-time

learning approach, predictions, and thus control behavior, can

adapt during ongoing use without the need to explicitly redesign or

retrain a controller. Real-time machine learning of predictions and

anticipations may therefore present a way to preserve consistency

in a control interface while at the same time allowing the control

system to adapt quickly to things that are challenging (or impossi-

ble) for a designer to model prior to deployment. Continued work

is this area will enable a move toward more advanced, persistent

machine intelligence in PMIs and other assistive technologies.

WHAT ALTERNATIVE, RADICALLY NEW SOLUTIONS ARE

AVAILABLE, IF ANY?

Claudio Castellini, William Craelius, and Michael Wininger.

OVERVIEW

Attempts to use sEMG signals for volitional control of advanced

prostheses have not met with universal success, due in part to

the fact that each central command propagates via variable trans-

mission pathways to diverse muscles lying both superficially and

deep, that act both synergistically and antagonistically, and in part

to the fact that sEMG is labile to environmental factors endemic

to the socket, i.e., moisture. The mechanical actions of the end-

effectors, however, are better surrogates for volitions, since they

embody trajectory, speed, and force directly, and are insensitive to

upstream variability (Wininger et al., 2008; Yungher et al., 2011),

and obviate the need for detection of neuroelectrical signals. Here

we review two novel approaches for controlling a prosthesis based
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on measurement of the end-product of neural signaling, muscle

activation.

ULTRASOUND IMAGING

In the quest for novel peripheral interfaces, recently (Castellini

and Passig, 2011; Zhou and Zheng, 2012; Guo et al., 2013; Sierra

González and Castellini, 2013) medical ultrasound (US) imaging

has proved its effectiveness as a means of detecting in real-time the

position and force configuration of the human hand and wrist.

Simple image processing techniques are applied to live ultrasound

images gathered using standard medical ultrasonography devices.

In the first case, the results have been used to control a simple,

one-DOF wrist prosthesis, whereas in the second, anatomically

irrespective features have been employed to reconstruct a sub-

ject’s desired metacarpo-phalangeal angles and fingertip forces.

The reported accuracy results are in both cases comparable or

superior to those obtained by sEMG, at the price of lower weara-

bility and higher sensitivity to arm/hand displacement during the

prediction.

In Sierra González and Castellini (2013) it is further shown

that, in order to overcome at least the second drawback, a

slightly more complex data gathering procedure could be used.

As the learning/training procedure is extremely fast and simple,

a wider sampling of the input space can potentially account for

the inevitable movements of the subject’s arm and forearm. This

seems a much simpler way than, e.g., to build a detailed model

of the musculoskeletal structure, whose parameters should be

assessed on a case-by-case basis given the inevitable inter-subject

anatomical difference. Additionally, the learning system, based

upon linear regression, is able to interpolate intermediate values

from extreme values: it suffices to train on minimal and maximal

forces/positions. This makes the approach realistic for usage with

amputees.

All in all, from these results it seems that US has a future in the

midterm run, but not as a direct competitor to sEMG. The main

drawback remains the necessity of carrying the ultrasound trans-

ducer and the machine along; as it stands at the time of writing, the

current technology forbids the complete miniaturization of such

a device. Nevertheless, smaller and cheaper ultrasonographers are

being built and marketed by the main manufacturers basically

every year. On the other hand, more immediate applications are

those in which the immensely richer information gathered from

US imaging would really help. Firstly, wherever it is not strictly

necessary to miniaturize the machine, although fine control is

required; for instance, aboard a robotic wheelchair, or to control a

robotic setup in the domotic framework (reaching, grasping, carry-

ing). In such cases, related to patients with highly reduced mobility,

US imaging could help, in that extremely tiny musculoskeletal

changes could be fully detected and interpreted.

Secondly, US imaging could be used in a hospital as a day-

care therapy for rehabilitation. Since every hospital in the Western

world has nowadays access to ultrasound imaging (and the pro-

posed approaches are irrespective of the characteristics of each

single machine), it is imaginable to have muscle- and nerve-

impaired patients, e.g., stroke and ALS patents, amputees, etc.,

attend periodic meetings to work out virtual-reality rehabilita-

tion tasks. For instance, a virtual piano-playing application or

the imitation of a visual model moving its arms and hands. The

therapy could be finely tuned to each single patient. This therapy

could be seen as a follow-up to mirror therapy (Ramachandran

et al., 1995).

In both cases, and in particular if and when US-based control is

required for a somewhat longer time than what is usually enforced

in standard US examinations, it will be necessary to first investigate

the effects of continuous ultrasound beams on the human tissues.

US imaging is so far deemed harmless, but more testing in harder

conditions is very likely to be required. Summing up, the usage

of US imaging as a peripheral human–machine interface is being

explored and is a promising alternative or complement to more

portable – but less accurate – PMIs.

TOPOGRAPHIC FORCE MAPPING

Signatures of the soft-tissue (i.e., mechanical) response of an

upper-limb amputee can be represented as forces exerted by the

entire residuum against the prosthetic socket. Volitions are thus

encoded as topographic force maps (TFMs) that can be reg-

istered via a variety of pressure sensor arrays (Abboudi et al.,

1999; Craelius, 2002; Yungher et al., 2011). Like ultrasound, this

approach is not dependent on precise anatomical placement, and

measures soft tissue response to neural activation.

Topographic force maps registers the 3D volume changes of the

residuum are registered as a dynamic map of muscle recruitment.

This measurement is made via force-sensitive resistors (FSRs),

which change resistance according to force application normal

to its sensor face. The FSR sensor comprises a resistive element

printed onto a thin, flexible polymer, with a sensing head dimen-

sion as low as 5 mm diameter (3 mm active area). While the FSR

material is not waterproof, the FSR’s manufacturer (Interlink, CA,

USA) is ideally suited for placement within a waterproof enclosure.

Previous work with the FSRs in prosthetic sensing have placed

them in a variety of arrangements: embedded in silicone or fab-

ric, in direct- and indirect contact with the skin. In studies with

generic sensor placement, the TFM technique shows high accu-

racy in predicting the basic movement parameters associated with

isometric grasp, both in free- and targeted tasks (Wininger et al.,

2008); this suggests feasible implementation as an off-the-shelf

technology with self-application (donning and doffing). In clin-

ical application of TFM, the sensors are more likely to be placed

with an eye to capturing muscle activations at their most pro-

nounced locations, i.e., bony prominences. In studies with custom

sensor placement, outward pressures of the forelimb have shown

high fidelity to basic grasp types and finger individuation (Craelius

et al., 1999; Curcie et al., 2001; Phillips and Craelius, 2005). TFM-

derived systems can be integrated into rehabilitation and training

programs for retraining the upper-limb (Kuttuva et al., 2005; Kim

et al., 2010; Yungher and Craelius, 2012).

Topographic force maps produce fast and accurate control over

several independent DOFs by upper-limb amputees (Abboudi

et al., 1999; Wininger et al., 2008; Yungher et al., 2011). Advan-

tages of TFM over sEMG control include (1) better reliability due

to inherently more reliable signals, (2) a resolution that is not

dependent precision of sensor placement, allowing for convenient

donning and doffing of the socket, (3) insensitivity to sweating,

and (4) biomimetic, intuitive control. TFM-derived systems can be
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integrated into rehabilitation and training programs for retraining

the upper-limb (Kuttuva et al., 2005; Kim et al., 2010; Yungher and

Craelius, 2012). Recent work has extended the TFM paradigm to

lower limb musculatures, showing high fidelity to basic parameters

of the gait cycle in healthy ambulators (Yungher et al., 2011).

The practicality of TFM, and its limitations in terms of num-

ber of DOFs, and applicability to types of amputation, remains to

be proven, since it has only been a laboratory technique thus far.

Whether and to what extent this constrains the utility of TFM –

and whether sEMG or any other detection modality has a greater

likelihood of capturing these subtleties – remains to be seen: it

may be that the enhanced stability of the TFM signal reduces the

caprice as multifunction hands and wrists become more widely

accessible (Scheme and Englehart, 2011). Clearly, TFM is limited

by the dynamic mechanical environment within the socket, and

in a way that other detection paradigms (including EMG and US)

would not be. TFM has been studied only in “mature” residual

limbs and primarily in patients with limb loss due to traumatic

injury. In this way, TFM has been case-tested primarily in situ-

ations where there is relative stability in the residual limb shape

and volume (Sanders and Fatone, 2011). In the future, testing

TFM longitudinally and in patients with vascular disease would

allow for important insight into how TFM performs across the

stages of the recovery from amputation and in patients with poten-

tially less stable volumetric change. However, we note that TFM

does mitigate the issues associated with loss of signal baseline in

re-application (i.e., it must be re-calibrated in doffing and re-

donning), and classifiers built on the TFM calibration are likely to

lose accuracy over time as the volumetric properties change within

the residuum.

Topographic force map has not yet been tested in scenarios

where grasp volition is to be decoded throughout a heavy lift-

ing task. The socket and residuum are not rigidly connected,

so placing a heavy weight in the prosthetic hand would shift

the weight distribution across the surface of the limb, and

would unload some sensors while increasing load on other sen-

sors. This presents a unique signal decoding challenge not faced

in EMG or US, and presents a need for further development

in TFM.

WHAT ARE THE BENEFITS OF SHARING CONTROL BETWEEN

THE HUMAN SUBJECT AND THE PROSTHESIS?

Arash Ajoudani, Panagiotis Artemiadis, Antonio Bicchi, Strahinja

Dosen, Dario Farina, Sasha Blue Godfrey, Mark Ison, Marko

Marković.

SEMI-AUTONOMOUS CONTROL OF UPPER-LIMB PROSTHESES

Recently, the prosthetic devices have evolved greatly, significantly

growing in complexity from simple, single DOF grippers to highly

dexterous systems providing individual finger control. However,

the actual potential of these systems still remains largely under-

utilized in daily life applications, as the current state-of-the-art

PMIs cannot accommodate the emerging complexity of the sys-

tem control. Conventionally, the development of PMIs has been

driven mostly by the advances in the acquisition and processing

of myoelectric signals, with the classical master–slave myocontrol

being the most common command interface. In this traditional

control setup, the prosthetic device (slave) “listens” for the mus-

cle activity and then translates the user (master) intentions into

actions. Here, we advocate a different approach that is based on

developing systems which are capable of autonomous decisions

making and independent, automatic operation, while at the same

time sensing the environment and communicating with the user

via a range of feedback interfaces.

In its general form (Figure 7), such a system comprises:

(1) a processing unit (PU ; e.g., high-performance computing

FIGURE 7 | Conceptual design of the semi-autonomous control of

prostheses. The basic idea is to enhance the artificial controller (processing

unit) with an extra source of information (sensing interface) so that the

system can operate automatically and autonomously, while the user has

supervisory and corrective role. The main features of the system are

automatic operation, bidirectional communication, semi-autonomous, and

closed-loop control (see text for details). The flow of commands, sensor data,

and feedback information are represented using blue, red, and green lines.
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device) implementing control algorithms; (2) a sensing inter-

face (e.g., cameras, inertial sensors) providing information for

the autonomous decision making; (3) a feedback interface (e.g.,

vibrato- and/or electro-tactile stimulator, augmented reality dis-

play) communicating the state of the system to the user; (4) an

upper limb prosthesis (e.g., a dexterous hand); and (5) a user com-

mand interface (e.g., myoelectric channels) providing high- and

low-level manual control. The key features of the system are: auto-

matic operation, bidirectional communication, semi-autonomous,

and closed-loop control. Using a simple command interface, the

user triggers the system operation. The PU acquires and ana-

lyzes the data from the sensing interface and then, independently

from the user, commands the prosthesis to perform autonomous

actions, such as, pre-shaping and orienting the hand to perform

the grasp. Simultaneously, the PU uses the feedback interface to

communicate the control decisions (e.g., selected preshape and

orientation) as well as the current state of the prosthetic device

(e.g., grasping force) to the user, thereby closing the control loop.

The user can exploit this information to supervise the system

operation and, when needed, take over the control to fine tune

and/or correct online the automatic decisions of the artificial con-

troller (bidirectional communication). Therefore, the control is

shared between the user and the artificial controller, where the

latter effectively shields the former from the low level execution

details and thereby significantly decreases his/her cognitive burden

(semi-autonomous control).

Representative examples of the above concepts have been pre-

sented in (Dosen et al., 2010; Dosen and Popović, 2011; Marković

et al., 2013). In the prototype system for the control of grasping

of a dexterous prosthetic hand, the user wears special glasses with

embedded stereo cameras and an augmented-reality (AR) display.

The glasses operate like a see-through interface, i.e., the cam-

eras record the scene in front of the user, which is then projected

stereoscopically to the display. The user triggers the operation of

the semi-autonomous controller via a simple two-channel myo-

electric interface. The system operation is organized as a state

machine comprising several phases (Figure 8): (1) object targeting:

the user looks at the object he/she would like to grasp. The com-

puter vision is used to segment the scene and identify the targeted

object. The system acknowledges the successful identification to

the user by covering the object with a transparent overlay (i.e.,

AR feedback of the controller decision); (2) automatic hand pre-

shaping : the user triggers the system indicating the intention to

grasp the selected object. The controller determines the properties

of the target object (shape and size), and based on this infor-

mation, employs cognitive like processing (rule base) to decide

grasp type and size suitable for the object. The hand is automati-

cally preshaped and AR feedback communicates the selected grasp

parameters to the user. The grasp type is shown as a visual icon in

the peripheral visual field while the aperture size is depicted in the

form of a virtual box placed next to the target object, where the

size of the box corresponds to the amount of the hand opening;

(3) user corrections the user evaluates the outcome of the auto-

matic control (i.e., selected grasp type and size) by consulting the

AR feedback and if needed adjusts the prosthesis preshape by issu-

ing simple sEMG commands (bidirectional communication); (4)

object manipulation: once the preshape is adjusted, the user issues

the command for the prosthesis closing. The system was success-

fully evaluated in an experiment with 13 healthy subjects operating

a prosthesis mounted on the forearm using a custom made splint

FIGURE 8 | Example operation of a prototype system

implementing semi-autonomous control of grasping in a

dexterous prosthetic hand. The user wears augmented reality

glasses equipped with a stereo camera pair and a stereoscopic

“see-through” display. From top to bottom, the snapshots depict: (1)

object targeting phase with augmented reality (AR) feedback about

object selection, (2) automatic hand preshaping phase with AR

feedback on the selected grasp type and aperture size, and (3)

object manipulation phase. The panels on the right depict what the

user actually sees through the glasses.
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(Marković et al., 2013). The full dexterity of the hand was utilized,

i.e., the system controlled hand preshape by driving all available

actuators to implement four grasp types and continuous range of

aperture sizes.

The developed system is an illustrative example of how an

artificial controller can be enriched with an additional, non-

conventional information source (stereo camera pair), and a

high level processing (cognitive-like reasoning) to achieve fully

automatic control of the functions that are conventionally the

responsibility of the user (e.g., hand pre-shaping; Jiang et al.,

2012a). In this scheme, which is a form of the shared user-

prosthesis control (see next section), the user is able to “release”

predefined“motor programs”performing relatively complex func-

tions, instead of continuously monitoring and controlling each

step during the task execution. This substantially simplifies the

myoelectric interface, which only needs to implement a simple

triggering mechanism and also reduces the burden from the user.

The presented control concept scales smoothly with the system

complexity. For example, in the case of an entire upper limb

prosthesis, the computer vision interface could be supplemented

with inertial sensors tracking the prosthesis orientation in space.

This could be used both to pre-shape the hand and to navigate

the arm to reach and grasp the selected target object. Put dif-

ferently, the complex “pre-shape and reach program” could be

triggered via a simple myoelectric command. Finally, closing the

loop through AR feedback has many potential advantages. Com-

pared to the“classical”methods of tactile stimulation, AR feedback

can utilize a much higher bandwidth of the visual communication

channel.

The ultimate goal of this research is to make grasping and reach-

ing using a complex dexterous hand and/or arm prostheses into a

straightforward, routine activity, which corresponds to how these

functions are performed in a daily life by able-bodied persons.

Ideally, the subject would decide on the functional goal, and then

he/she would simply trigger the system. The artificial controller

takes over and autonomously implements all the low level details of

the task execution. When delicate manipulation is necessary, how-

ever, the system allows the subject to assume a complete control

of the system and fully focus on the task execution.

SHARED USER-PROSTHESIS CONTROL

One approach to simplifying myoelectric interfaces is to share

the burden of control between the hardware, software, and user.

Many basic myoelectric devices make use of simple, proportional

control but only allow one grasp with limited functionality. More

complex systems require a different approach to control: current

anthropomorphic hands require users to switch between postures

in sequence before actually commanding the grasp, thus placing

the burden almost entirely on the user. Pattern recognition and

machine learning techniques, as are found in the literature (Naidu

et al., 2008), in contrast, place that burden almost entirely on the

software, which can require long training sessions and may limit

the flexibility of the controller. By sharing control between the

user and the device, one can achieve more malleable and intuitive

control of complex systems. With the Pisa/IIT SoftHand (Figure 9;

Catalano et al., 2014), we use a combined control strategy that

takes advantage of the brain’s own means of simplifying hand

FIGURE 9 |The Pisa/IIT SoftHand and the forearm adapter used to test

the device on control subjects.

movements to create an anthropomorphic hand with an intuitive

control architecture.

The SoftHand design incorporates the motor control princi-

ple of synergies (Bernstein, 1967). With synergies, the brain is

thought to command multiple DOFs, or joints, simultaneously

in a coordinated pattern. Through principal component analy-

sis (PCA; Santello et al., 1998) a mathematical representation of

these synergies was developed and in turn used as the basis for a

mechanical design (Bicchi et al., 2011). This design strategy was

combined with principles from under-actuation (Birglen et al.,

2008) to enable a soft robotics approach encode the movement

pattern of the first PCA synergy. A single motor is thus used to

pull a tendon that runs through the fingers and thumb. Because

of the flexibility afforded by using a soft robotics approach, the

SoftHand closes with a natural, human movement pattern that

automatically molds around the object in contact. Additionally,

the SoftHand fingers are designed to bend in virtually any direc-

tion in the event of a collision and then spring back to their original

position, to avoid damage to the environment, hand, or human

user.

Previous work on teleoperation of a robotic arm resulted in

a shared control scheme dubbed teleimpedance (Ajoudani et al.,

2011). This scheme uses sEMG to measure cocontraction levels of

antagonist pairs to estimate joint stiffness. The goal was to increase

transparency and intuitiveness of control by imbuing the robotic

arm with human-guided stiffness modulation in addition to tra-

ditional position control. The teleimpedance algorithm developed

for robotic tele-operation was modified and transferred to the

SoftHand. Because the SoftHand contains only one motor, only

one antagonist pair of muscles is needed to control the hand. To

maximize the intuitiveness of the controller, the main external

finger flexors and extensors were chosen as the controlling mus-

cle pair, the M. flexor digitorum superficialis and the M. extensor
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digitorum communis, respectively. For higher level amputees, an

alternative pair can be used, such as the biceps and triceps.

Establishing a complete biomechanical model of the forearm

muscles to accurately map the sEMG signals of the sampled

muscles to joint stiffness is impractical and likely invasive in an

amputee population. For the SoftHand, two modified hyperbolic

tangents were used in place of such a biomechanical model, one

each to map the desired position and stiffness of the hand. To

establish the parameters of the hyperbolic tangents, a brief cali-

bration procedure is used in which the user repeatedly opens and

closes the hand naturally (for position mapping) and at various

self-selected levels of cocontraction (for stiffness mapping). In

preliminary testing with five intact control subjects, normalized

root-mean-square error rates of 17.6 and 13.4% were calculated

for each synergy, respectively. Ultimately, parameter identification

for these models in amputees is likely possible through various

training methods such as mirror-box, teacher imitation, or mental

imagery (Castellini et al., 2009).

The teleimpedance controller described above was tested along-

side stiff and compliant fixed-stiffness controllers with five intact

subjects. Subjects were asked to grasp and lift objects of various

size and weight off a table repeatedly; success rate and sEMG

were recorded throughout the experiment. Interaction forces pro-

duced while using the teleimpedance controller were intermediate

to those produced with the stiff and compliant fixed-stiffness

controllers (Figure 10) and an intermediate ramp-up time was

required to reach these forces (data not shown). The adaptability

of the teleimpedance controller produced more favorable interac-

tions with everyday objects: the stiff controller often resulted in

object deformation when used to grasp more compliant objects,

whereas grasps with the compliant controller were likely to slip

despite adequate molding around the object. Another method

to share control is to close the loop by providing feedback to

the user. Because the human hand is capable of perceiving a

variety of signals from temperature to surface texture to pres-

sure, etc., in providing feedback to assist control, it is difficult

to reproduce the full range of the hand’s sensory information.

In preliminary testing, we have focused on feeding back grasp

force to the user via vibrotactile motors (Godfrey et al., 2013).

We have also explored mechanotactile force feedback and vibro-

tactile surface feedback. While still preliminary, feedback seems

to enhance the user experience with the SoftHand and possi-

bly limit fatigue effects, which is often a concern with prosthetic

devices.

Results suggest the teleimpedance controller is a useful mecha-

nism, potentially in combination with force feedback, to share the

control burden. Ultimately, the proportion of the control the user

and software/hardware are responsible for can shift to accommo-

date differing levels of needs and abilities. For example, for highly

skilled users with the need for a greater variety of postures, more

synergies can be incorporated, requiring a switching or selection

from the user. Conversely, for users with minimal muscle control

or limited musculature, the proportional force and teleimpedance

control currently employed can be simplified to a simple on/off

switch requiring only minimal signal from one muscle wherein

the controller controls both the speed and stiffness of the

hand.

FIGURE 10 | Average interaction torques (in mNm units) by controller

type (Ajoudani et al., 2014).

HUMAN-EMBEDDED CONTROLLERS FOR PROSTHETIC DEVICES

With the desire for simultaneous and proportional control of mul-

tiple DOF prosthetic devices, recent research has stressed reducing

the burden on users through intuitive controls that mimic human

intentions (Figure 11A). However, placing the full burden on soft-

ware prediction currently leads to more user frustration due to

the aforementioned intensive training sets and limited prediction

accuracy placing upper-bound constraints on user performance

(Lorrain et al., 2011; Scheme and Englehart, 2013a). Alternatively,

recent works have supported a shift in myoelectric control appli-

cations towards human-embedded controllers learned through

interaction with a constant mapping function associating sEMG

inputs with control outputs (Antuvan et al., 2014). Mussa-Ivaldi

et al. (2011) propose that the human motor system is capable

of learning novel inverse mappings relating the effect of motor

commands on control outputs while interacting with myoelectric

interfaces. This learning has been modeled and verified in the pres-

ence of closed-loop feedback (Radhakrishnan et al., 2008; Chase

et al., 2009; Héliot et al., 2010), allowing users to perform tasks

simply by learning controls in a given task space (Mosier et al.,

2005; Liu and Scheidt, 2008; Liu et al., 2011; Pistohl et al., 2013).

In this approach, the motor system adapts to the decoder, using

knowledge of the inverse mapping to produce desired outputs, as

depicted in Figure 11B.

Such controllers naturally integrate simultaneous and propor-

tional controls through predefined mapping functions associating

sEMG input with control outputs, and provide real-time learning

that is difficult to achieve using pattern recognition techniques.

This learning is prevalent for both intuitive (e.g., outputs roughly

corresponding to limb motions) and non-intuitive (e.g., ran-

dom mappings) mapping functions (Radhakrishnan et al., 2008;

Antuvan et al., 2014). Although non-intuitive mappings are asso-

ciated with a steeper learning curve, Antuvan et al. (2014) show

they also incur higher learning rates capable of producing better

performance over time compared to intuitive mappings, indi-

cating that intuitive control schemes are not essential given the

presence of feedback.
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FIGURE 11 | General models of myoelectric interface interaction.

(A) Interfaces with trained decoders. A decoder is trained to map sEMG

signals (m) to human arm motion (y). Once trained, the decoder is used in

real-time to estimate arm motion (y′) and map it to output (z) for an interface.

(B) Interfaces utilizing motor learning. The brain adjusts the neural commands

based on the interface output (z) by learning the inverse model of the decoder.

Recent work (Ison et al., 2014) has shown that users not only

learn the mapping function relating sEMG with control outputs

(Figure 11), but train their motor system to develop unique muscle

synergies associated with the full system dynamics of the myoelec-

tric device (Figure 12). Nazarpour et al. (2012) analyzed motor

learning in the context of muscle synergies, which represent spe-

cific cross-muscle activation patterns used to achieve a behavioral

goal (D’Avella et al., 2006). They set up a visual interface with

common center to reach out tasks using cursor position control

via pairs of biomechanically independent muscles. By examining

user reactions to virtual perturbations in cursor position, they

show that users obtain flexible control through the formation of

dynamic, task-dependent muscle synergies.

Ison et al. (2014) recently analyzed long-term trends in human

motor learning through interaction with similar visual interfaces

incorporating human-embedded myoelectric controls. The work

reveals the natural emergence of a new muscle synergy space as

the user identifies the novel system dynamics of the interface

(Figure 12). The system dynamics include not only the map-

ping function, but also disturbances from electrode placement

and shift, limb position, and unique movement patterns, resulting

in a robust control of the full task space. The developed synergies

have common population-wide components, and their continu-

ous refinement correlates with a long-term learning component

that increases both performance and control efficiency over time

during consistent, repeated use. Moreover, it is found that these

synergies are maintained after periods of non-use, allowing sub-

jects to retain a significant amount of performance on familiar

tasks and generalize upon the introduction of new tasks within

the same control space. The user then has freedom to increase

control efficiency simply by interacting with the device to adap-

tively identify the system dynamics relating neural activity to the

given, novel task space. The ability to retain and refine unique

synergies and utilize them to generalize control to the entire task

FIGURE 12 | Embedded brain control for myoelectric interfaces. The brain learns a model of the plant to be controlled (system dynamics identification) by

comparing neural commands and output (z) of the interface. New synergies are developed through controller design based on the system identified, which are

then utilized while adjusting neural commands.
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space supports the use of synergy development, not necessarily

user-specific trained decoders, for efficient myoelectric control of

robots designed for long term use.

Although these studies have only evaluated learning through

visual interfaces, Pistohl et al. (2013) demonstrates the natural

extension of human-embedded control to robotic devices. In addi-

tion, Ison et al. (2014) find that motor learning incurred using

one interface translates to better initial performance with differ-

ent interfaces utilizing the same mapping function, likely due to

the use of the same previously developed muscle synergies.

Both studies suggest that users can be trained to control a

multiple DOF myoelectric prosthetic device with minimal frus-

tration, simply by interacting with the specific mapping function.

In the case of amputees, especially TMR patients (Kuiken, 2006),

there is opportunity to train the user to develop new synergies

from residual muscles in order to achieve efficient control of a

prosthetic device, robust to degradations currently plaguing pat-

tern recognition methods. Thus, a shift in research focus toward

human-embedded control potentially provides a novel and prac-

tical way to achieve user-friendly and robust myoelectric control

of prosthetic devices.

LESSONS LEARNED AND DISCUSSION

There is clearly no definite answer to any of the questions posed

as the motivation for the workshop, but the opinions expressed in

this paper are at least indicating a direction in which to go. Here

is a list of recommendations for the future research in PMIs.

APPROACH THE CLINICS

Research in PMIs is still essentially a matter of the academic

community of rehabilitation robotics and machine learning; this

means that the level of practical involvement of the scientists in

the clinical environment is inadequate. The research focusses too

much on the mathematics and the mechatronics and tends to

neglect the final target, that is the patient. The clinicians involved

in conceiving, designing, and fitting the prostheses and instructing

the patients are still highly unsatisfied with the tools they get; this

calls for a major change in the research perspective, which must

be transferred on the field, namely, the hospital, or even at home,

since the beginning.

A further theme which was not treated in the workshop is that

of providing real-time feedback to the patient. So far, this branch

of the PNS–MI topic, i.e., the feedback path, seems much less

explored than its feedback counterpart. Nevertheless, the feed-

back path would definitely improve the feeling of embodiment,

therefore strengthening the “reciprocal learning” effect, and over-

all enhancing the control. Subsequent editions of the workshop

will take this issue into account.

IMPROVE RELIABILITY

The tendency of machine–learning-based myoelectric control

schemas to output unstable control signals is still a major issue,

mostly caused by the inherent instability of biological signals.

There are several suggestions to counter this problem. First and

foremost, in the machine learning community there is still a dan-

gerous tendency to claim that approach A is better than approach

B on the basis that A achieves a better classification rate, whereas

most of the times the classification rate is evaluated using the

same dataset gathered offline (Wagstaff, 2012), an idiosyncrasy

denoted as“abstract versus concrete performance measures.” Con-

crete measures of performance involve tasks performed by the user

in real life, e.g., how often a grasping action failed, how long it took

to reach a target, etc.; these measures should become the gold stan-

dard. The community recommends that algorithms be first tested

on standard benchmarks (which are still mostly unavailable) and

then definitely tried in a clinical setup.

Secondly, machine–learning-based control is still, by and large,

discrete and sequential, meaning that one DOF can be controlled

on–off at each point in time (classification); as opposed to this,

simultaneous and proportional control should be enforced. In this

schema, one real-valued control signal is simultaneously available

for each of the DOFs of the mechanical artifact. Each control signal

should be independently controlled by the patient, possibly in the

natural way (i.e., by “desiring” so), and short training should be

enforced by devising a way to combine the single DOF activations

into more complex patterns. It is clearly unacceptable to have the

subject show the system, e.g., each and every grasping pattern.

Thirdly, novel PMIs should be used to improve the intent detec-

tion enforced by sEMG. There are indications that ultrasound

imaging and topographic force mapping are viable approaches;

computer vision for the estimation of the action to be taken, the

development of new muscular synergies and the delegation of

grasping to a lower-level closed-loop control are also interesting

paths ahead.

LACK OF EMBODIMENT

Most amputees will not feel that the prosthesis is their own hand,

notwithstanding the well-known properties of adaptation shown

by the human brain. This is due to at least two factors: lack of dex-

terity of the prosthetic devices (no prosthetic hand on the market

allows for, e.g., force control of single fingers, let alone manipu-

lation) and lack of feedback to the subject, let alone the need to

improve the control, shorten the reaction times, and miniaturize

the systems to be onboard. Ownership and immersion, the feeling

of self with respect to the device, is in fact the ultimate goal.
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vision and augmented reality closed loop control of grasping in hand prostheses.

J. Neural Eng. 11:046001. doi: 10.1088/1741-2560/11/4/046001

Matsubara, T., Hyon, S.-H., and Morimoto, J. (2011). “Learning and adap-

tation of a stylistic myoelectric interface: EMG-based robotic control with

individual user differences,” in Proceedings of IEEE International Conference

on Robotics and Biomimetics (ROBIO), (Karon Beach, Phuket: IEEE). doi:

10.1109/ROBIO.2011.6181317

Micera, S., Carpaneto, J., Raspopovic, S. (2010). Control of hand prosthe-

ses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68. doi:

10.1109/RBME.2010.2085429

Modayil, J., White, A., and Sutton, R. S. (2014). Multi-timescale nex-

ting in a reinforcement learning robot. Adapt. Behav. 22, 146–160. doi:

10.1177/1059712313511648

Mosier, K. M., Scheidt, R. A., Acosta, S., and Mussa-Ivaldi, F. A. (2005). Remapping

hand movements in a novel geometrical environment. J. Neurophysiol. 94, 4362–

4372. doi: 10.1152/jn.00380.2005

Mussa-Ivaldi, F. A., Casadio, M., Danziger, Z. C., Mosier, K. M., and Scheidt, R. A.

(2011). Sensory motor remapping of space in human–machine interfaces. Prog.

Brain Res. 191:45. doi: 10.1016/B978-0-444-53752-2.00014-X

Naidu, D., Chen, C., Perez, A., and Schoen, M. (2008). “Control strategies for

smart prosthetic hand technology: an overview,” in Proceedings of 30th Annual

International Conference of the IEEE EMBS (Vancouver, BC: IEEE), 4314–4317.

doi: 10.1109/IEMBS.2008.4650164

Nazarpour, K., Barnard, A., and Jackson, A. (2012). Flexible cortical con-

trol of task-specific muscle synergies. J. Neurosci. 32, 12349–12360. doi:

10.1523/JNEUROSCI.5481-11.2012

Oskoei, M. (2007). Myoelectric control systems – a survey. Biomed. Signal Process.

Control 2, 275–294. doi: 10.1016/j.bspc.2007.07.009

Østlie, K., Lesjø, I. M., Franklin, R. J., Garfelt, B., Skjeldal, O. H., and Magnus, P.

(2012). Prosthesis use in adult acquired major upper-limb amputees: patterns

of wear, prosthetic skills and the actual use of prostheses in activities of daily

life. Disabil. Rehabil. Assist. Technol. 7, 479–493. doi: 10.3109/17483107.2011.

653296

Pan, S. J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.

Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191

Parker, P., Englehart, K., and Hudgins, B. (2006). Myoelectric signal processing for

control of powered limb prostheses. J. Electromyogr. Kinesiol. 16, 541–548. doi:

10.1016/j.jelekin.2006.08.006

Peerdeman, B., Boere, D., Witteveen, H., in’t Veld, R. H., Hermens, H., Stramigioli,

S., et al. (2011). Myoelectric forearm prostheses: state of the art from a user-

centered perspective. J. Rehabil. Res. Dev. 48, 719–737. doi: 10.1682/JRRD.2010.

08.0161

Phillips, S. L., and Craelius, W. (2005). Residual kinetic imaging: a versatile inter-

face for prosthetic control. Robotica 23, 277–282. doi: 10.1017/S02635747040

01298

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., and Sutton, R. S. (2012).

“Dynamic switching and real-time machine learning for improved human control

of assistive biomedical robots,” in Proceedings of 4th IEEE International Conference

on Biomedical Robotics and Biomechatronics (BioRob) (Rome: IEEE), 296–302. doi:

10.1109/BioRob.2012.6290309

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., Chan, K. M., Hebert, J. S., et al.

(2013a). Adaptive artificial limbs: a real-time approach to prediction and antici-

pation. IEEE Robot. Autom. Mag. 20, 53–64. doi: 10.1109/MRA.2012.2229948

Pilarski, P. M., Dick, T. B., and Sutton, R. S. (2013b). “Real-time prediction learning

for the simultaneous actuation of multiple prosthetic joints,” in Proceedings of

IEEE International Conference on Rehabilitation Robotics (Seattle, WA), 1–8.

Pistohl, T., Cipriani, C., Jackson, A., and Nazarpour, K. (2013). Abstract and pro-

portional myoelectric control for multi-fingered hand prostheses. Ann. Biomed.

Eng. 41, 2687–2698. doi: 10.1007/s10439-013-0876-5

Powell, M., and Thakor, N. (2013). A training strategy for learning pattern

recognition control for myoelectric prostheses. J. Prosth. Orth. 25, 30–41. doi:

10.1097/JPO.0b013e31827af7c1

Pulliam, C., Lambrecht, J., and Kirsch, R. F. (2011). Electromyogram-based neural

network control of transhumeral prostheses. J. Rehabil. Res. Dev. 48, 739–754.

doi: 10.1682/JRRD.2010.12.0237

Radhakrishnan, S. M., Baker, S. N., and Jackson, A. (2008). Learning

a novel myoelectric-controlled interface task. J. Neurophysiol. 1:47. doi:

10.1152/jn.90614.2008

Ramachandran, V. S., Rogers-Ramachandran, D., and Cobb, S. (1995). Touching

the phantom limb. Nature 377, 489–490. doi: 10.1038/377489a0

Redish, A. D. (2013). The Mind Within the Brain: How We Make Decisions and How

those Decisions Go Wrong. New York: Oxford University Press.

Sanders, J. E., and Fatone, S. (2011). Residual limb volume change: systematic

review of measurement and management. J. Rehabil. Res. Dev. 48, 949–986. doi:

10.1682/JRRD.2010.09.0189

Santello, M., Flanders, M., and Soechting, J. (1998). Postural hand synergies for tool

use. J. Neurosci. 18, 10105–10115.

Scheme, E., Biron, K., and Englehart, K. (2011). “Improving myoelectric pattern

recognition positional robustness using advanced training protocols,” in Proceed-

ings of 32nd Annual International Conference of the IEEE-EMBS (Boston, MA:

IEEE). doi: 10.1109/IEMBS.2011.6091196

Scheme, E., and Englehart, K. (2011). Electromyogram pattern recognition for

control of powered upper-limb prostheses: state of the art and challenges

for clinical use. J. Rehabil. Res. Dev. 48, 643–660. doi: 10.1682/JRRD.2010.

09.0177

Scheme, E., and Englehart, K. (2013a). Training strategies for mitigating the effect of

proportional on classification in pattern recognition based myoelectric control.

J. Prosthet. Orthot. 25, 76–83. doi: 10.1097/JPO.0b013e318289950b

Scheme, E., and Englehart, K. (2013b). Validation of a selective ensemble-

based classification scheme for myoelectric control using a three dimensional

Fitts’ Law Test. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 616–623. doi:

10.1109/TNSRE.2012.2226189

Scheme, E., Fougner, A., Stavdahl, O., Chan, A., and Englehart, K. (2010). “Examin-

ing the adverse effects of limb position on pattern recognition based myoelectric

control,” in Proceedings of 32nd Annual International Conference of IEEE Engi-

neering in Medicine and Biology (Buenos Aires: IEEE). doi: 10.1109/IEMBS.2010.

5627638

Scheme, E., Hudgins, B., and Englehart, K. (2013) Confidence based rejection for

improved pattern recognition myoelectric control. IEEE Trans. Biomed. Eng. 60,

1563–1570. doi: 10.1109/TBME.2013.2238939

Sensinger, J. W., Lock, B. A., and Kuiken, T. A. (2009). Adaptive pattern

recognition of myoelectric signals: exploration of conceptual framework and

practical algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 270–278. doi:

10.1109/TNSRE.2009.2023282

Sierra González, D., and Castellini, C. (2013). A realistic implementation of ultra-

sound imaging as a human–machine interface for upper-limb amputees. Front.

Neurorobot. 7:17. doi: 10.3389/fnbot.2013.00017

Song, C., Zhang, F., Zhang, Z., Mustain, W. C., Chen, M. B., Chen, T., et al. (2006).

Neuroma-in-continuity model in rabbits. Ann. Plast. Surg. 57, 317–322. doi:

10.1097/01.sap.0000221512.06129.d3

Tommasi, T., Orabona, F., Castellini, C., and Caputo, B. (2013). Improving control

of dexterous hand prostheses using adaptive learning. IEEE Trans. Robot. 29,

207–219. doi: 10.1109/TRO.2012.2226386

Wagstaff, K. (2012). “Machine learning that matters,” in Proceedings of 29th

International Conference on Machine Learning.

Wininger, M., Kim, N.-H., and Craelius, W. (2008). Pressure signature of

forearm as predictor of grip force. J. Rehabil. Res. Dev. 45, 883–892. doi:

10.1682/JRRD.2007.11.0187

Wolpert, D. M., Ghahramani, Z., and Flanagan, J. R. (2001). Perspectives and

problems in motor learning. Trends Cogn. Sci. 5, 487–494. doi: 10.1016/S1364-

6613(00)01773-3

Youn, W., and Kim, J. (2010). Estimation of elbow flexion force during isometric

muscle contraction from mechanomyography and electromyography. Biol. Eng.

Comput. 48:1159. doi: 10.1007/s11517-010-0641-y

Frontiers in Neurorobotics www.frontiersin.org August 2014 | Volume 8 | Article 22 | 16

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neurorobotics/archive


Castellini et al. First workshop: Peripheral Machine Interfaces

Young, A., Hargrove, L., and Kuiken, T. (2011) The effects of electrode size and

orientation on the sensitivity of myoelectric pattern recognition systems to elec-

trode shift. IEEE Trans. Biomed. Eng. 58, 2537–2543. doi: 10.1109/TBME.2011.

2159216

Yungher, D., and Craelius, W. (2012). Improving fine motor func-

tion after brain injury using gesture recognition biofeedback. Dis-

abil. Rehabil Assist. Technol. 7, 464–468. doi: 10.3109/17483107.2011.

650782

Yungher, D., Wininger, M., Baar, W., Craelius, W., and Threlkeld, A. (2011).

Surface muscle pressure as a means of active and passive behavior of mus-

cles during gait. Med. Eng. Phys. 33, 464–471. doi: 10.1016/j.medengphy.2010.

11.012

Zhang, F., and Fischer, K. A. (2002). End-to-side neurorrhaphy. Microsurgery 22,

122–127. doi: 10.1002/micr.21736

Zhou, G., and Zheng, Y. P. (2012). Human motion analysis with ultrasound

and sonomyography. Conf. Proc. IEEE Med. Biol. Soc. 2012, 6479–6482. doi:

10.1109/EMBC.2012.6347478

Zhou, P., Lowery, M. M., Englehart, K. B., Huang, H., Li, G., Hargrove, L., et al.

(2007). Decoding a new neural–machine interface for control of artificial limbs.

J. Neurophysiol. 98, 2974–2982. doi: 10.1152/jn.00178.2007

Conflict of Interest Statement: The authors declare that the research was conducted

in the absence of any commercial or financial relationships that could be construed

as a potential conflict of interest.

Received: 26 February 2014; accepted: 28 July 2014; published online: 15 August 2014.

Citation: Castellini C, Artemiadis P, Wininger M, Ajoudani A, Alimusaj M, Bicchi

A, Caputo B, Craelius W, Dosen S, Englehart K, Farina D, Gijsberts A, Godfrey SB,
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