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PLUS= MINUS* 

Je mehr 

die Sonne scheint 

desto mehr 

Wasser verdunstet 

Wolken erscheinen 

und die Sonne 

- scheint weniger 

Je weniger 

die Sonne scheint 

desto weniger 

Wasser verdunstet 
Wolken werden weniger 

und die Sonne 

- scheint mehr. 

da capo 

Beruhige dich 

<las meiste was geschieht 

geschieht ohne dich. 

Joseph Albers 
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378 EDITED BY H. ZIRIN ET AL. 

1. Introduction and Summary 

H. ZIRIN 

Big Bear Solar Observatory, California Institute of Technology 

The solar constant has long been a fundamental quantity in astrophysics, but as 

with many fundamental quantities, interest in its exact value or its variation has 

not been great over the last decade. This was particularly due to the fact that most 

models of stars indicated that their luminosity should be quite constant, varying 

only over nuclear burning times of hundreds of millions of years. Thus, after the 

pioneering work of Abbott, it has been more a subject of interest for atmospheric 

scientists who needed to know the exact inputs to the Earth's atmosphere. 

In recent years however, the celebrated problem of the missing solar neutrinos 

has brought into question our theories of stellar structure, and we have begun to 

think about the solar constant again. Further, current stellar models would have 

the Sun increasing its luminosity by about 25 % in the last three billion years, 

whereas evidence from the paleoclimate record suggests that the solar const~nt 

has been either similar or perhaps even hotter in the past (except for possible 

blanketing effects in the earth's atmosphere). Thus there is an important as

trophysical basis for looking for solar constant variation, both by direct measure

ment and paleoclimate evidence. 

In the meantime, technology has advanced and we can now measure the solar 

constant with far more accuracy than Abbott could. Observation from outside the 

atmosphere can normalize ground measurements (and also give the energy 

absorbed by the atmosphere). 

On another side, modelling of the Earth's atmosphere is approaching the point 

at which the exact value of the solar constant and possible changes become 

somewhat more critical inputs, so it makes a little more sense today to ask an 

atmospheric scientist how the atmosphere would change if the solar constant 

changed by a few percent. Thus the time is propitious to study and measure the 

solar constant. 

In the fall of 1974 the Atmospheric Sciences Panel of the NSF endorsed the 

idea of an interdisciplinary workshop on the subject of the solar constant, and I 

was given the job of arranging it, armed with a grant to help bring people 

together. It appeared that the best results could be obtained by focusing the 

interest of many disciplines which have an interest in the total radiation from the 

Sun, all the way from atmospheric sciences to stellar astronomy. A distinguished 

group of participants was thus recruited from various disciplines, and they came 

together at the Big Bear Solar Observatory for three days of exchange of ideas. 

The meeting was most successful; at least we all got to learn something about 

other people's fields, and it was clear that each field had something important to 

contribute to the problem. These contributions will be evident from the proceed

ings which follow. In order to produce rapid dissemination, rapporteurs were 

appointed who have produced the proceedings, armed with tapes and their own 

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1976SoPh...46..377Z


1
9
7
6
S
o
P
h
.
.
.
4
6
.
.
3
7
7
Z

PROCEEDINGS OF THE WORKSHOP: THE SOLAR CONSTANT ANO THE EARTH'S ATMOSPHERE 379 

notes. We have only summarized the discussion. In addition, we have appended 

copies of all those papers presented which were contributed by the authors.* This 

format enabled the rapporteurs to produce their reports without seriously impair

ing their scientific activity, and should give a good idea to the reader of the many 

different pieces of information which were assembled. 

Because even this partial description takes 40 pages, I summarize here some of 

the important points made. 

Standard solar models predict a lower solar constant in the past, 75% of the 

present, 4 x 109 years ago and a virtually constant value over short time scales 

(107 years). However, the lack of observed neutrinos predicted by this model 

suggests that we do not really understand the interior of the Sun, which means 

that we cannot rule out solar constant variations on the basis of the theory of 

stellar interiors. Measurement of the planets, the old Smithsonian measurements, 

and other data suggest that the Sun cannot have varied more than a few percent 

over the past hundred years, but some of the measurements even suggest small 

variation of the order of a percent. On the other hand, in the important near 

ultraviolet region, there is evidence for some variation in the 2700-3100 A region 

and up to 50% variation below 1600 A., dependent on solar activity. 

Present radiometers are capable of measuring the solar constant to an accuracy 

of a few tenths of a percent, and good values are available for the last solar 

maximum of 1969, but no measurements have been made since 1969. The best 

measurements of that period agree within one or two percent with Abbott's 

measurement, again confirming that there has not been a sizeable variation since 

1900. 

The paleoclimate data suggests that the Sun cannot have varied by more than 

5% in the last hundred million years, but there is fragmentary new data suggest

ing the temperature may have been 25% higher 3 x 109 years ago. Unless there 

was some sharp change in the greenhouse effect, this brings into question current 

views of stellar evolution, at least as they apply to the Sun. The paleoclimate data 

do show variations of smaller amplitude continually occurring, with some 

periodicities. The fact that some of these appear to agree with long-term variation 

of the Earth's orbital parameters which essentially change the solar constant on a 

seasonal basis (because of the varying distance of the Earth from the Sun) shows 

that even short-term solar constant variation can be important. Unfortunately, 

many of these require measurement over very long periods of time, but at least 

the 11 year solar cycle period is feasible to follow. There is evidence that some of 

the shorter term variations (over periods of 2500 and 400 years) might be 

connected with variations in the solar cycle amplitude with that period, as 

evidenced by historical and tree-ring data. 

* In the present report, we have appended only a list of the titles and authors of the contributed 

papers for which manuscripts were received. Complete copies of these papers are contained in the long 

version of Big Bear Solar Observatory Report No. 0149, which can be obtained from H. Zirin or from 

the Atmospheric-Sciences Section, National Science Foundation, Washington, D.C. 20550. 
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380 EDITED BY H. ZIRIN ET AL. 

So we were left with intriguing possibilities. The possibility of small scale 

variations, as raised by the planetary and spacecraft measurements of the solar 

constant and some of Abbott's data, makes high accuracy measurements over a solar 

cycle important. The fact that there is good evidence for variation in the spectral 

range producing ozone makes such measurements doubly important. And the 

possibility of longer term variation points up the importance of good absolute 

measurements which may be repeated by our descendants. Some felt frustrated 

that the best instrumentation was not being employed on the current spacecraft 

measurements, that the cavity radiometers, which make possible absolute meas

urement were only used on the Mariners in 1966 for engineering purposes and 

have not been used at all since 1969, and that if we could only get busy on 

applying these new instruments we might get some short-term results. Dr Suomi 

pointed out that the time to plant a flower that blooms in a hundred years is now. 

So far as circulation modelling is concerned, and the analysis and prediction of 

effects of solar constant changes, the models are not as good as we would like 

them. In addition to the solar constant, we also need data on the heat balance 

(i.e., the irradiance minus the albedo) and the spectrum variation, particularly in 

the ultraviolet. It also is clear that it is important to get a comparison of 

measurements of the solar constant outside the atmosphere and at the Earth's 

surface to determine just what energy the atmosphere is absorbing and where. 

At the end of the meeting, the group decided to preserve their interdisciplinary 

contacts, maintain the mailing list, and perhaps meet again at the next sunspot 

minimum. At the suggestion of Professor Suomi, a short statement was put 

together (there was not enough time to work it out to the satisfaction of everyone, 

but the statement which follows appeared to satisfy most, if not all, the people in 

the group). 

This meeting would not have been possible without the strong support of Fred 

White, Frank Eden, Bob Manka, and Gene Bierly of the National Science 

Foundation, the participation of Elske Smith and David Murcray in the Organiz

ing Committee, as well as Joan Walter for the brunt of the organizational 

problems, and the advice of numerous others on the structure of the workshop. 

We all were grateful for the fine hospitality of the Big Bear Solar Observatory 

staff under the direction of Eugene Longbrake and including in particular Alberta 

Altman, Jack Klemroth, Peter Kupferman, and numerous other friends. The 

report was produced by the various rapporteurs listed, with Ron Moore taking 

particular responsibility. This program was supported by Grant DES75-16101 of 

the National Science Foundation. 

2. Statement of the Solar Constant Workshop 

The interdisciplinary workshop on the solar 'constant' and the Earth's climate 

agrees that there is evidence that climate change in the past on scales of a few 

years to eons could be due to changes in solar irradiance. Such changes would be 
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of great significance to our understanding of the physics of the Sun and future 

climate change. Accurate measurements of the solar constant with long-term 

continuity and stability are of the greatest importance; the time to plant a flower 

that blooms in a hundred years is now. We therefore recommend that a continu

ous long-term program (essentially a modern continuation of the discontinued 

Smithsonian program) of solar constant measurement, coordinated from space 

and the ground, be instituted. We believe that instruments capable of such 

measurements presently exist, with absolute accuracy of 0.25% and stability 

0.1%. 

3. Rapporteurs' Summary for each Session 

3.1. SESSION A: THE SOLAR BACKGROUND 

Chairman: Harold Zirin; Rapporteurs: Peter Foukal and William Adams 

The meeting opened with a talk by Roger Ulrich discussing first the observational 

limits to solar luminosity variations. From direct measurements of the solar , 

constant in the past 50 years, paleontological evidence, and the observed scatter 

in the luminosity of main sequence stars in clusters, he concluded that the Sun 

may have varied by as much as 10%, but not as much as 20% over the past 106 

years. Time scales for the Sun are as follows: a few days for the surface, 10,00Q, 

years for thermal response of the convective zone, 2 x 106 years for the core 

(photon duffusion time). Nuclear burning time is 1010 years for H, 105-107 years 

for He3 and C12
. Ulrich pointed out that standard solar models predict a lower 

solar constant in the past, 7 5 % of the present 4 x 109 years ago; specifically they 

would predict flux levels which would be too low to allow liquid water on Earth at 

an epoch when paleontological records strongly suggest that liquid water was 

present. The same solar models also predict a neutrino flux which is much higher 

than the upper limit now being set by the Brookhaven experiment carried out by 

Davis. Taken together, such discrepancies between solar model calculations and 

observational evidence indicate a basic lack of understanding of how solar energy 

is in fact generated. He went on to discuss conceivable means of escaping the 

dilemma, through models with high mixing, possibly non-radiative energy trans

port, or incorporating the effect of magnetic field on the efficiency of convection. 

Discussion centered on how well established the results of neutrino measure

ments actually were and on the question of how large the past changes in solar 

constant actually could be, within the constraints set by paleo-climatological data 

over the last 109 years. 

The second talk, by Jack Eddy, centered on the various methods of inferring 

solar constant behavior over the last 500 years from indirect <;>r 'proxy' solar 

data. He discussed in some detail the levels of reliability of such solar activity 

records as coronal appearance during eclipse, incidence of aurorae, sunspot 

numbers, etc., many of which date back for only a few solar 11 year cycles. 

Several lines of evidence from such historical records show a significant decrease 
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in solar activity between roughly 1630-1710, an epoch which coincided with the 

middle of the so-called 'mini-ice-age' which occurred in Europe between about 

1450 and 1850. 

After a discussion of the theological and psychological influences which may 

have affected the accuracy of such reporting of solar activity in the past (and in 

the present), the meeting continued with a talk by Peter Foukal. 

He suggested that observations of the solar constant variation over the last 50 

years show little evidence for a real (non-atmospheric) variation above the 0.2 

percent level. He pointed out that this level of variation is in fact of the order of 

magnitude expected from the change in fractional area of the solar disc covered 

by the spots and faculae during the solar 11 year cycle.* It is important that even 

such a low fractional variation of the total solar constant leads to more direct and 

more energetically plausible coupling with the terrestrial climate than the ob

served variation of flux below 1500 A at about the 10 percent level. 

He outlined some work presently in progress to look for direct evidence of the 

active region contribution to solar variation in the visible and near-infrared. 

The discussion continued with G. W. Lockwood's presentation of results 

obtained at Lowell Observatory from measurements of variation in the light 

reflected from Titan, Uranus and Neptune. Since 1972, he has been using a new 

narrow band photometric system improved over the original UBV system used at 

Lowell by Johnson and Iriarte. He finds surprisingly large changes, greater than 2 

percent ±0.5 percent over about a 1 year period in the brightness of these solar 

system objects, with the largest amplitude of change measured from Titan, and 

progressively smaller amplitude changes in Uranus, Neptune. Since the accuracy 

of the measurements increases for the fainter planets, he finds evidence that the 

intensity fluctuation decreases with distance from the Sun. Lockwood also pre

sented a re-analysis of the older UBV measurements made at Lowell observatory 

removing individual planet variation, and he finds that they show a significant 2 

percent variation over the period of a solar cycle. 

J. B. Oke of Caltech discussed absolute measurements of stellar radiation. He 

pointed out that the main object of absolute stellar photometry was to establish 

an accurate measurement of the star's spectral energy distribution, rather than its 

accurate absolute flux, since the latter could not be determined with great 

accuracy due to uncertainty in the star's distance. He suggested a scheme for 

tying the absolute calibration of Vega to that of the Sun through comparison of 

the star with solar light reflected from a satellite of accurately known albedo, to 

overcome the difficulty due to difference in magnitude between the star and the 

Sun. 

Oke also discussed an intriguing approach to the measurement of variations in 

the luminosity of stars similar to the Sun in spectral type and age. He suggested 

observations of close visual double star systems consisting of stars similar to the 

* See also E. v. P. Smith and D. M. Gottlieb, 'Solar Flux and its Variations', Space Sci. Rev. 16, 771, 

1975. 
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Sun. Relative photometry of such close systems, he estimated, could yield a 

~elative accuracy of about 0.01 percent. 

An extended discussion followed, with mention of other measurements relevant 

to determining changes in solar luminous output, such as the use of equivalent 

widths of temperature sensitive lines, and the time variation of solar limb 

darkening. The significance of Hill's results on the oscillating figure of the Sun was 

discussed. along with his suggestion that the solar photosphere might be sup

ported partly by a flux of acoustic waves from lower layers. 

The focus of the meeting then turned to presentation of results on the EUV 

variability of the Sun. G. Brueckner reported typical enhancement of about 20% 

of plage relative to quiet Sun in the wavelength range 1750-2100 A., with 

!ncreases of about a factor six for a line such as Lya. He attempted to calibrate 

the solar EUV intensity variation against an index of solar activity, such as the 

Can K-line, but with little success. He pointed out that differences in EUV 

intensity measured over the same wavelength interval at the same time by Solrad 

and OS0-5 differ typically by up to 40%. This large discrepancy in the satellite 

measurements made it very difficult to define the true EUV variability. It was also 

suggested that the Ca 11 K-line saturates too easily to be a good index of 

¢hromospheric activity over the wide dynamic range required by such a correla

tion. 

Discussion centered on the possible effects of the EUV radiation around 

1900 A. on the ozone concentration in the upper atmosphere. 

Further information on the variation of the solar EUV radiation was presented 

by Donald Heath. He showed that the amplitude of recurrent 27-day EUV 

variation decreased from around 50% in a passband including Lya and the region 

1350-1600 A. toward longer wavelengths with a much smaller, but significant, 

variation measured in the -2750-3150 A. bandpass. He pointed out that the data 

showed a general correlation in phase but not in magnitude with the occurrence of 

active regions, with evidence for active longitudes which persist over time scales of 

years. There was also some indication that a 27-day EUV variation may be 

caused by fluctuations in solar EUV emission not associated with identified active 

regions. 

M. P. Thekaekara described the history and difficulties of absolute measure

ments of the solar constant and spectral irradiance since the l~st century. He 

pointed out that the scatter between careful measurements of the absolute 

spectral fluxes by different groups was hardly s,urprising since fundamental 

radiometric lamp standards were generally not reliable to better than 10 percent 

accuracy. 

· The session drew to a close with a request by W. Wagner for inputs t<? the design 

of a solar constant measuring experiment under consideration for the space 

~huttle. The last presentation was by Adrienne Timothy describing opportunities 

to carry out observations relevant to the solar terrestrial relationship with 

instruments on the solar maximum payload. 
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3.2 SESSION B; THE CLIMATE RECORD BACKGROUND 

Chairman: James Hays; Rapporteurs: J. Murray Mitchell and Gordon Hurford 

James Hays introduced the session with a comprehensive review of the principal 

features of the earth's climatic history in the past million years (Figure B-1). 

In the past million years, variations of 0 18 /0 16 isotope ratios in fossil plankton 

(from deep-sea cores) have occurred with the clear suggestion of a periodic or 

quasi-periodic change of order 100 000 years in time scale. These variations are 

interpreted as reflecting changes in total continental ice-sheet volume, up to 3 

times the present-day Antarctic/Greenland ice volume, of order 5 x 1016m3
. 

In the last 120 000 years the earth passed through a relatively brief period of 

extreme interglacial warmth (about 10 000 years in duration) into a long interval 
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Fig. B-1. Principal features of the Earth's climatic history in the past million years. 

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1976SoPh...46..377Z


1
9
7
6
S
o
P
h
.
.
.
4
6
.
.
3
7
7
Z

PROCEEDINGS OF THE WORKSHOP: THE SOLAR CONSTANT AND THE EARTH'S ATMOSPHERE 385 

of irregularly more and more glacial conditions which culminated in the relatively 

sudden onset (about 10 000 years ago) of the present interglacial. Between the 

two interglacials, about 100 000 years apart, variations of ice-sheet volume, sea 

level, and general temperature levels (up to l0°C in mid-latitudes) appear to have 

occurred with characteristic periods of variation of about 20 000 years. 

Since the onset of the present interglacial, lesser variations of climate have 

occurred, dominated by a sequence of minor glacial advances and retreats at 

intervals of 2000 to 3000 years. The last of these minor glacial episodes, known as 

the 'Little Ice Age', occurred generally from the 15th to the 19th centuries, with 

minimum temperature levels about 1°C cooler than now, at least in Europe. In 

the past 100 years, meteorological records indicate that the world underwent a 

relatively small variation of temperature, of amplitude about 0.5°C, with lowest 

temperatures in the 1880's and highest in the 1940's. A cooling trend has been 

dominant in many parts of the world, especially in the arctic and sub-arctic, since 

the 1940's. 

In the climatic variations of the past million years, a tendency toward periodic 

or quasi-periodic behavior is seen with periods near 100 000 years, 20 000 years, 

and (in the postglacial period) about 2500 years. The first two of these may be 

related to Earth-orbital changes; the origin of the neoglacial cycle of about 2500 

years, however, is entirely obscure. 

Murray Mitchell then summarized his views on the overall problem of climatic 

change. He remarked that the historical popularity of ascribing climatic change to 

solar variability seems to have arisen through a fixation on 'visible' external 

environmental changes, in the absence of any real insight into the capacity for 

climate to vary through internal change mechanisms. The latter insight, in turn, is 

just now becoming a realistic goal through climate modeling experiments capable 

of dealing with the climate system in something approaching its full complexity. 

The extent to which solar variability may account for climatic variability, on 

various possible time scales, is not at all obvious from present knowledge of either 

the Sun or the Earth's climate system. Solar constant changes are but one of 

several possible ways in which solar effects on climate could arise. Other pos

sibilities include solar UV effects on ozone amount (which can then alter the 

effective solar constant vis-a-vis the lower atmosphere through changes of ozone 

absorption of visible radiation), and solar activity effects on the atmospheric 

electric field (as suggested by evidence of solar modulation of thunderstorm 

activity). 

A wide variety of causal factors may be involved in climatic change, of which 

potential solar variability is just one factor (Figure B-2). Mitchell presented an 

estimated variance spectrum of climatic change on all time scales from 10-4 years 

to 109 years (Figure B-3). This indicates a 'lumpiness' of the spectrum on various 

time scales, including those mentioned by Hays near 100 000 years, 20 000 years, 

and 2500 years. The spectrum may be quite flat in the range 1 to 100 years, an 

interval of time scales of special interest in connection with climate prediction. 
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Fig. B-2. Causal factors involved in climatic change. 

Potential origins of climatic change were presented by Mitchell (Figure B-4), 

again as a function of time scale of the change. These were indicated in two 

groups: internal stochastic forcing mechansims, and external deterministic forcing 

by a number of environmental factors such as possible solar variability on the 

scale of the 11-year, 22-year, and longer sunspot cycles. Mitchell stressed the 

tentative nature of this analysis but suggested that the fraction of total variance of 

climatic changes accounted for by solar variability is likely to be small, on most, if 

not all, time scales. To the extent solar variability may be predictable, however, 

its impact on climate is most important to understand as providing a handle on 

climatic prediction. 

Suomi commented that Mitchell's appraisal struck him as very pessimistic with 

regard to climate predictability. Robinson said he felt it was rather optimistic! 

Several participants mentioned the possible solar influence on regional climatic 

changes. Heath wondered about the cyclic variation in the solar modulation of 

galactic cosmic rays, as a mechanism for giving rise to solar/climate relationships 

through ozone and/or atmospheric electric field changes. 

Valmore LaMarche outlined some of the evidence for longer-period climatic 

variations of an oscillatory nature, and discussed the possibility of a connection 
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between solar variation and climate on several time scales. Analysis of the 

0
18

/0
16 

isotope stratigraphy in the Camp Century (Greenland) ice core, and of 

other 'proxy' climatic series, has led to suggestions of climatic variations with 

periods near 2500 years and 400 years. The 2500-year period is evident in 

records of alpine glaciation from several parts of the world, during the past 10 000 

to 15 000 years. It also tends to be reflected in tree-ring data from the White 

Mountains of California, which are responsive to temperature and rainfall. Other 

periodic variations of climate have been claimed by various authors with periods 

near 1300, 180, and 80 years. 

Studies of C
14

/C12 isotope ratios in tree wood have revealed clear evidence of 

variations of atmospheric C14 in the past 7000 years. A major long-term compo

nent of the C
14 

variations is attributable to long-term changes of the terrestrial 

magnetic field, which have modulated the flux of galactic cosmic rays responsible 

for C
14 

production in the upper atmosphere. Residuals in the C14 data appear to 

reflect a weak 11-year sunspot cycle component, with a lag of a few years after 

sunspot number variations consistent with theory if heliomagnetic changes accom

panying solar activity are involved. Comparison of the C14 record with historical 

temperature variations reveals a rather consistent relationship, with low solar 

activity (and high C
14 

production rate) associated with low global temperature 
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levels, and vice versa. The Little Ice Age, for example, was a period of high C14 

levels in the atmosphere, and of low solar activity. 

LaMarche concluded by emphasizing the need for caution in interpreting C14 

variations as a reliable indicator of solar activity, and in accepting all apparent 

periodic variations of climate at face value. 

Elske Smith noted the possibility of cosmic ray events associated with super

novas, such as might have followed the Crab Nebula supernova of 1054 A.D. It is 

not clear, however, whether such events could be detected in the C14 record, nor 

indeed whether the cosmic rays from the Crab Nebula (if any) would yet have 

arrived in the solar system. 

Glen Shaw recalled that some evidence of increases in microparticle content of 

polar ice, at intervals or order 2500 years, had been noted in the studies of 

Lonnie Thompson at Ohio State. 

Samuel Epstein then explained how isotopic variations (of both oxygen and 

hydrogen) can be used as reliable indicators of paleoclimatic temperature varia

tions. He described how isotopic enrichment of both 0 18 and D in precipitation 

can arise (relative to their concentrations in sea water) and noted that, in foram 

carbonates, 0 18 enrichment (relative to sea water) is a function only of tempera

ture in the habitat of the (living) forams, which can then be recovered from 

deep-sea sediment analysis. 

Epstein presented data on the deuterium isotope variations found in tree-wood 

cellulose from White Mountain (California) Bristlecone Pine, from 1000 A.D. to 

the present. This is a reliable measure of paleoclimatic temperatures because D in 

cellulose is not exchangeable. A power spectrum of the Bristlecone Pine D 

variations revealed a rather prominent peak at 22 years, and another peak of 

order 500 years in period. A similar analysis of pinus silvestri from Loch Affric in 

Scotland also showed a modest spectral peak near 22 years, as well as (also 

modest) peaks near 16 and 11 years. Further 0 18 data were presented for ice 

cores from Greenland and Antarctica, which could be calibrated rather precisely 

in terms of paleoclimatic temperatures. 

Epstein showed some 0 18 analyses of Jurassic Belemnites, which reveal sea

sonal variations of temperature comparable to those of today in various parts of 

the world, and of both benthonic and planktonic foram records from the tropical 

oceans spanning the past 80 million years. The latter indicate that ocean surface 

temperatures decreased from about 24°C to about l8°C in the past 80 million 

years, whereas the ocean bottom temperatures decreased from about 13°C to near 

0°C in the same time period. He concluded by showing analyses on marine cherts 

(Si02 (OH)x) which indicate systematic decreases of paleotemperature in past 

aeons of the Earth's history on the basis of measurements of both D and 0 18 in 

the cherts. Further analysis of this kind is planned which may shed light on the 

evolutionary thermal history of the Earth, and help to establish limits on the 

variability of the solar constant on the longest time scales of interest in solar 

physics. 
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3.3 SESSION C: MEASURING THE SOLAR CONSTANT 

Chairman: Keith Pierce; Rapporteurs: 0. R. White and Barry LaBonte 

Dr D. Labs began a review of solar constant measurements by noting that 

attempts to measure the solar constant go back at least to Father Angelo Secchi 

who tried the measurement in Rome in 1866 and decided the 'surface tempera

ture' was (5 338 519+273) K! Modern solar constant measurements may be 

classified as ACTINOMETRIC (broad-band, non-selective receiver) or SPEC

TRAL (measured as a function of wavelength and then integrated). Actinometric 

instruments employed in the past include the Abbott water-flow pyrheliometer, 

Angstrom pyrheliometer, Multichannel filter radiometer of the Drummond type, 

Cone radiometer, the Hy-Cal normal incidence pyrheliometer, Active-cavity 

radiometers, and the temperature control flux monitor. 

He pointed out that one cannot use Bouger's law of atmospheric extinction in 

broad-band, actinometric measurements of the solar constant because individual 

treatment of each wavelength is required. Since the early 1960's attempts have 

been made to measure the solar constant by the actinometric method from 

outside the Earth's atmosphere in aircraft, ballons, rockets, and satellites. At 

aircraft altitudes of 10 to 12 km one is above 99% of the water, and 20% of the 

mass of the atmosphere as a whole. At balloon altitudes most (but not all) of the 

0 3 is below the platform, although corrections are required for residual absorbers 

and scatterers still overhead. 

Spectral intensity measurements may be made from lower altitudes, such as 

mountain tops with accurate correction for atmospheric extinction. These correc

tions are made by extrapolation to zero air mass, where signal in a narrow spectral 

band is plotted against airmass during a day's observation. Under good condi

tions, the extraterrestrial intensity (in the infrared in bands between principal 

atmospheric absorption features) can be determined by this method to 0.5%. In 

any case, when the measurements are done carefully from good stations (such as 

the Jungfraujoch) and when care is selected in choosing the day of observation, 

extinction is not a serious handicap to the measurement of the solar intensities, in 

Dr Labs' opinion. 

Dr Labs feels that the ideal platform for the measurement of the solar constant 

would be a man-controlled platform above the atmosphere, with inflight calibra

tion, on a manned vehicle such as SP ACELAB. 

Dr Thekaekara commented on the curious fact that the measurements by 

different observers of the solar constant at any one epoch always seem to cluster 

in close agreement, even though the 'agreed upon' value seems to change from 

time to time. He speculated that this may be psychological. Dr Frohlich described 

the International Pyrheliometer Scale (IPS) as an arbitrary compromise calibra

tion of two scales which gave different readings for the solar constant. These were 

the Smithsonian (Abbott) scale and the Angstrom scale; they differed by about 

3.5%. In 1956 a compromise scale was adopted which lay about halfway between 

these values. 
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Dr Heath asked how corrections are made (in ground-based measurement of 

the solar constant) for variable ozone amounts and for variable turbidity. Answer: 

One avoids the spectral regions of strong absorption.* Similarly, one avoids the 

problems of turbidity by making observations only on clear days when the 

turbidity is very low. 

Dr Neckel spoke on the accuracy of solar radiation measurements and the need 

for consistency of all radiation data. 

He began by explaining that there are two basic systems of solar radiation data, 

different in their method of observation and in their customary uses. The first, 

concerning the solar constant and spectral irradiance, is taken from platforms 

above the earth and is used as NASA standards and by the American Society for 

Testing Materials. The second system is based on observations taken from 

mountaintop stations, as by Labs and Neckel, and is more commonly used by 

astronomers. The solar constant integral obtained in the two methods agree 

closely: the NASA value is 1.94 calories cm-2 min-1, the Labs and Neckel value 

1.95 calories cm-2 min- 1
. However, the differences in spectral irradiance become 

significant and can amount to as much as 10 or 20%. Dr Neckel summarized 

several points in comparing the relative advantages of the two methods: 

(1) The NASA value comes from aircraft measurement at an altitude of 12 km; 

the Labs and Neckel data from mountaintops from 3 to 4 km. The apparent 

advantage of the higher altitude for aircraft is offset by the facts that the aircraft 

flies through changing atmospheric conditions due to its rapid ground speed 

during a measurement and that restricted time prevents accurate determination of 

instantaneous extinction. Also the aircraft window restricts the spectral band. 

(2) The ground based measurement is made by a method of relative 

photometry (Sun vs. std) which enjoys the same advantages as relative star 

photometry in which accuracies of ± 1 % can be achieved. The accuracy of the 

mountaintop measurements of solar radiation is thus in principle capable of ± 1 % 

accuracy. 

(3) Measurements of the spectral distribution of solar radiation from 

mountaintops do a better job of matching theoretical models of the photosphere 

as well as the colours of Sun and G2V stars than do measurements from aircraft, 

according to Dr Neckel. (The terminus technicus 'colour' is used in astrophysics 

for quoting the ratio of broad band flux- (irradiance-) values observed in two 

different wavelength regions in a logarithmic scale: 

colour 'B - V' = 2.5 log[f I(A)V(A) dA/ f l(A)B(A) dA]. 

where B(A) and V(A) ==transmission of filters defining the passbands 'B' and 'V'.) 

* (a) No observations for A< 0.33 µm because of strong ozone absorption (neither from ground nor 

from an altitude of about 12 km). 
(b) In the region 0.5::::::; A::::::; 0. 7 µm the ozone absorption can be determmed from the Bouger-line 

(see for example D. Labs and H. Neckel: Z. Astrophys. 65, 133 (1967), Figures 3, 4, 5). 
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(4) Mountaintop measurements typically look at the center of the solar disk, 

rather than at the whole Sun, as do the aircraft measurements. Dr Neckel pointed 

out that it is a simple matter to correct a central-disk measurement to a 

whole-disk value. The accuracy of .radiance standards, which is known to be 

significantly better than that of standards of irradiance, was demonstrated in 

slides. 

A question was raised about the benefit of demonstrating agreement with 

theoretical models of the photosphere since these change so rapidly and since our 

understanding of the photosphere is far from complete. In answer, Dr Neckel 

pointed out that all recent model continua in the relevant regions do not in fact 

differ significantly. Dr Hall questioned the matching of the Labs and Neckel data 

on the infrared end; Dr Neckel acknowledged that the infrared irradiance could 

be somewhat less accurate; they utilize the Pierce limb-darkening data. Dr Hall 

noted that more recent measurements on the near infrared show the older 

limb-darkening data may be as much as 2% to 5% in error.* 
In the next talk, errors inherent in ground-based observations of the solar 

spectral irradiance were described by Glenn Shaw. In particular he stressed that 

the Langley extinction curves of photometer output versus air mass may be 

influenced by non-linear effects of water absorption and diffuse aerosol scattering. 

Pollutants and airmass change may produce temporal variations in optical depth. 

Atmospheric effects can be removed to the 0.1 % level by more accurate theoreti

cal treatments, and by measurements of atmospheric parameters simultaneous 

with solar constant observations. 

The opinion expressed during the discussion that these effects were too small to 

be significant was countered by emphasizing that we are interested in greater 

accuracy in variations of the solar irradiance, even though one percent may suffice 

for the absolute values. Such factors as the stratospheric dust veil and the 

necessity to observe to large airmass values imply that these effects cannot be 

dismissed out of hand. 

G. Robinson discussed the issue that the meteorologist requires solar spectral 

irradiance, rather than the integrated irradiance. Especially necessary are the 

values in the wavelength bands where the radiation is absorbed at Earth, such as 

the wavelengths bands of H 20 and ozone. The absolute spectral irradiance need 

only be accurate to ~ 2 % , but discrepancies between astrophysical and mete

orological values are as large as 5% in the infrared H 20 bands. Further, ob

served values of the solar illuminance vary by 15%, possibly due to the Chappuis 

band. 

Discussion of the H 2 0 band problem centered on possible errors in the band 

profiles, and the inter-band opacity; both are certainly important at the 0.1 % but 

not the 5 % level. The issue of the illuminance was not further resolved. 

Dr C. Frohlich presented a critical review of measurements of the solar 

constant carried out over the last decade. As a result of an analysis of the 

* N.B.: These possible errors concern the radiation near the limb, the corresponding corrections for 

the ratio of mean to central intensity (F/ n would be much smaller ( ~ 1 % ). 
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TABLE C-I 

Summary of revised direct measurements of solar constant.(Accuracies are only given for 

the SI instruments, because of the difficulty to estimate an accuracy for representation of 

IPS.) 

Value mW cm-2 
Main reason for 

Author SI IPS Correction adjustment 

Kondratyev, 133.6 -1.2% Interpretation of 
Nikolski results 

Duncan, 134.0 -0.7% Calibration 
Webb 

Kruger 137.2±2.7 +1.0% Interpretation of 

results 

Calculation of cavity 

absorptance 
Murcray 134.7 +0.7% Calibration 
Kendal 137.3±1.1 +0.2% Calculation of cavity 

absorptance 

Willson 136.6±0.8 0.0% No adjustment 
Plamondon 136.1±1.8 +0.6% Calculation of cavity 

absorptance 
Mean: 136.8 134.1 
Difference: 2.0% 

instrumental, calibration and reduction errors Frohlich arrived at revised values 

for several published values (see Table C-I). He showed that several good 

measurements give 136.8 ± 0.27 mW/cm2
• The good agreement of these well

calibrated measurements suggests that this result is reliable. The difference 

between the revised determinations based on the SI and the IPS (International 

Pyrheliometric Scale) is 2%, which corresponds to a discrepancy between the IPS, 

which is essentially arbitrary, and measurement by absolute instruments such as 

the cavity radiometer. 

Frohlich pointed out the importance of calibrating the reflectance of the actual 

cavity particularly because Parson's Black, used on some radiometers, shows 

significant retroreflectance; 3M black does not show this but it, too, must be 

calibrated. Parson's has different properties if sprayed or brushed. Robinson said 

Parson's Black had been introduced in response to his request for a grey paint. 

The reliability and consistency of different types of instruments was discussed 

by several persons. Thekaekara pointed out that Angstrom pyrheliometers de

grade in space, while Willson cited the unreliability of Hy-cal instruments for 

solar constant measurements since they are not absolute. Active cavity radiome

ters appear to be the most reliable currently available. 

R. C. Willson discussed the development of the JPL series of cavity radiometers 

based on variants of the P ACRAD instrument developed by Kendall. Before 

describing his own radiometers he mentioned Plamondon's transducer cavity 

measurements of the solar constant made from Mariners 6 and 7 over a time span 

of 1.8 years. Both radiometers showed steady temporal degradation, due to 
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stressing of a platinum resistor; after correction for degradation, a steady signal 

was found, with short-term variations, possibly real, of 0.2%. These data were felt 

to be important and worth reduction. 

The active cavity radiometers developed by Kendall and by Willson are devices 

of high stability capable of measuring the solar absolute irradiance with an 

accuracy ±0.5 mW cm-2
• Comparison with the International Pyrheliometric Scale 

(1956) indicates that the IPS standard is 2.2% too low. These instruments have 

been flown on two balloons for the purpose of measuring the solar constant in 

1968 and 1969. The values obtained are, respectively, 137.0 and 136.6 mW/cm2 

with an estimated absolute uncertainty of ±0.5%. Further improvement to an 

absolute accuracy of 0.1 % seems technically feasible at the present time. 

In the general discussion of this approach it was pointed out that such 

radiometers have no inherent spectral limitations when used without entrance 

windows. Questions on the influence of interplanetary dust and atmospheric 

absorption in the JPL solar constant measurements were asked. The zodiacal light 

contribution is probably at the 10-9 level and is, thus, undetectable. Corrections 

for gaseous absorption in the upper atmosphere were made. Ozone appears to be 

the major contributor with some variation in time. 

Following on the original 1951 measurements on Mt. Lemmon, Dunkelman 

plans to reinstitute his measurement program at the new Lunar and Planetary 

Laboratory site in the Catalina mountains near Tucson. The type of instrumenta

tion is a double monochromator fed by a diffuse source illuminated either by the 

Sun or a tungsten reference lamp. The main objective of the program is measure- /_ 

ment of the solar spectral irradiance and study of the atmospheric extinction due 

to ozone. Spectral regions near the ozone cutoff below 3300 A and in the 

Chappius band (5000 A to 7000 A) of ozone are of particular importance. The 

previous experiments showed the typical problems with the time variation in the 

air mass corrections. Dunkelman indicated that he may use a calibrated detector 

to avoid the use of a standard lamp. 

J. Kendall described his P ACRAD cavity radiometer. Important features 

include matching of the hot and cold junction time constants and correction for 

the temperature sensitivity of the wire wraps. Measurement of the Stefan

Boltzman constant demonstrates absolute radiometer accuracy of 0.3%. Six 

aircraft observation runs give a solar constant of 137.3 mW/cm
2

, with no detecta

ble variation over a 3 week period. The radiometer has also been used with an 

external occulting disk to measure the solar aureole. 

A question was raised as to the true precision of the Stefan-Boltzman measure

ment, since the temperature scale is itself uncertain. 

3.4 SESSION D: WHAT HAPPENS TO THE ATMOSPHERE? 

Chairman: J. Murray Mitchell; Rapporteurs: G. Robinson and Ron Moore 

The chairman, J. Murray Mitchell opened the session by noting that the purpose of 

this session was to discuss what solar variations, if any, might do to the atmos-
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phere, and what would be the resulting effects on the weather and climate. He 

pointed out that the study of this question is mainly by climate 'models'. 

In the first talk, Haurwitz discussed the Rand 'black cloud' experiment with the 

Mintz-Arakawa GCM in which the solar constant was decreased by 6.5 percent. 

The major model constraint is fixed sea surface temperature. Three 60-day runs 

were made. 

(i) Control experiment with solar constant 2 Langley/min. 

(ii) 'Black cloud' - solar constant reduced by 6.5 percent, other conditions as 

control. 

(iii) Control experiment with solar constant 2 Langley/min but random pertur

bation of initial temperatures. 

Reduction of solar constant led to reduced temperatures from about 45°S to 

45°N. At higher latitudes the differences between the three runs were not 

systematic. Wind velocities also showed a substantial decrease in low latitudes. 

Equilibrium was not reached in 60 days. 

In response to Haurwitz's talk, Quirk commented that a similar reduced-solar

constant experiment with 2-week runs with the Goddard model showed no 

obvious effect on weather patterns (e.g. storm tracks). 

In the second talk, Sellers explained "th€ nature and some of the implications of 

the radiation-balance type global models introduced by Budyko and himself. The 

first type simulates the annual mean zonal heat budget by an equation of form 

where 

Q/1- ai)-Ii = LlFj, ~ = -K(LlT0 /Ll Y) 

Qi is the solar input in zone j 

ai the zonal mean albedo 

Ii the output terrestrial radiation 

11~ the divergence of advective heat flux 

T 0 the surface temperature 

K an 'eddy diffusion coefficient' type transport parameter, which could 

be K(T0) 

Ll T0 / Ll Y latitudinal gradient of surface temperature 

With all terms expressed as f(T0 ) the equation is of form Ll(T0 ) = f( Q). Major 

results found with this model are: 

(1) For a given solar constant Q there are three possible distributions of T0 

(climate): 

(a) The present climate 

(b) A completely ice-covered Earth 

(c) An intermediate state with ice to around 30°-40° latitude. 

(2) The decrease from the present Q required to produce an ice age depends 

on parameterization, but is 2 to 5 percent. 

(3) Once the ice-covered Earth condition is achieved a 30-40 percent increase 

of solar constant is required for change. There is then a transition to a completely 

ice-free regime. 

( 4) The model is fairly insensitive to changes of K. If K is increased with fixed 
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solar constant 

(a) the ice edge moves poleward, 

(b) but so does the critical latitude at which an ice advance induced by 

decreasing solar constant becomes irreversible without further solar constant 

decrease, 

(c) the model becomes more sensitive to a change in solar constant. 

Sellers then described an even simpler model in which the equation is inte

grated over the globe: 

~ 
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41 
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S is the solar constant 
I the mean outward flux of terrestrial radiation 
I= f ( T0 , n) where n = cloud cover 
a is the global mean albedo = </> ( n, t, r, a 0 ) 

where t, r are atmosphere transmittance and reflectance, and a 0 the surface 

albedo. 

This is solved for the solar constant S, which produces the climate characterized 

by T0 , n, t, r, and a0 , a 0 itself being a function of snow cover and, therefore, of T 0 . 

A set of solutions for different I functions was exhibited. (See Figure D-1). The 
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Fig. D-1. Relations between the solar constant, the Earth's surface temperature T0 , and the 

percentage of ice cover for Sellers' global-averaged models. 
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global-average model leads to the same major conclusions as the zonal-average 

model. 

Someone asked if a jump from a partially ice-covered Earth to a completely 

ice-covered Earth would occur at the point when it began to snow in the tropics, 

which would drastically increase the average albedo of the Earth. Sellers pointed 

out that such effects weren't contained in his model. This is because parameters 

such as the average albedo are smooth, rather slowly varying functions of the 

surface temperature T0 • 

Another point of discussion was the probably large effect of clouds. Sellers had 

simply assumed a constant 50 percent cloud cover in his model, and he pointed 

out that the dependence of cloud cover on surface temperature or on the solar 

constant was just not known. It was suggested that it would be interesting to 

experiment with the model making different plausible assumptions about the 

dependence of cloud cover on T0 or S. It was also suggested that some idea of the 

relation between T0 and cloud cover might be gained from satellite data on zonal 

cloud cover. Sellers responded that such local or zonal correlations between 

surface temperature and cloud cover might be essentially different than the 

dependence between global averages of T0 and cloud cover. 

A question was raised as to the physical reality of the part of the S - T 0 curve 

where T0 decreases with increasing S. Sellers pointed out that dynamic models 

have been found to be unstable in this region, which indicates that the actual 

climate would always be such that T0 would increase with S. 

Epstein commented that the observed isotopic composition of the polar ice 

shows that the tropics to pole temperature difference has always been substantial. 

One cannot make the ocean too cold as an ice age builds up - surface temperature 

has probably not been as low as l0°C for evaporating regions in the tropics. 

In the third talk, Suomi reported some of the conclusions of the recent GARP 

Symposium in Stockholm on requirements for climate modeling. Observations 

required fall into three classes - firstly, detailed observations required to improve 

parameterization of sub-grid-scale processes; secondly, control observations re

quired for verification of model performance - these must be global and on a wide 

range of time scales; and thirdly, observation of external parameters. In the first 

class were included observations of the modification of radiation by the atmos

phere, in the second class observations of the global radiation budget, in the third 

class observations of solar input and of any changes in the solar spectrum. 

The Stockholm statement called for observation of both solar irradiance and 

the net flux of solar radiation at the top of the atmosphere with an accuracy of 

;2 W/m2
• Suomi's comment- no way. Accuracy of 10 percent was suggested for 

solar spectral irradiance. In reply to questions (Brueckner) Suomi indicated that 

this was the order of accuracy which could significantly affect the energy balance 

in the present rather crude climate models. 

Suomi proceeded to comment on some problems of satellite measurement of 

Earth radiation budget. The requirement is for net input/output of radiation as a 
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function of latitude, at a height about 30 km. There is a spatial resolution problem 

and a sampling problem, the latter particularly serious for solar radiation because 

of the diurnal variation both of the solar radiation and of cloud mass. Sampling at 

a 6-hr interval means about 10 percent error in reflected solar radiation, 1-2 

percent error in terrestrial radiation. 

Suomi believes that we could now measure the solar constant from satellites 

with good long-term stability and accuracy of a few tenths of one percent. He 

suggested a resolution recommending early start of such measurements. 

In discussion Smith regretted the absence of experts on the atmospheres of 

other planets and was assured that these objects were receiving the attention of 

terrestrial climate modelers. Quirk suggested the possibility of a one-time meas

urement of the solar constant to 0.1 percent followed by a surface-based monitor

ing program. Brueckner returned to the question of the accuracy of observation 

required in the far UV. General consensus was that much higher accuracy than 10 

percent was almost certainly needed to understand mesosphere and high stratos

phere photochemistry. 

The fourth talk was given by Kaplan. He first addressed Brueckner's question 

on need for detail at ,.\ < 2000 A. He considered that high accuracy in very great 

detail is needed for some photochemical problems, particularly 0 2 dissociation, 

e.g., resolution L1A = 1 A or better in the Sch~mann-Runge band. Atmospheric 

transmission in this region also requires detailed study; e.g., of resonance 

scattering and non-LTE line intensities. 

Kaplan then presented material on an experiment with the NCAR/GCM which 

illustrates a significant difference in the dynamics developing in two runs which 

differ only in the degree of sophistication of the treatment of the radiation terms. 

Ozone was not included in this experiment and Kaplan put forward qualitative 

arguments suggesting that its inclusion would increase the discrepancy with the 

real atmosphere for the standard model and decrease it for the more sophisticated 

model. He considered that 0 3 might provide a positive feedback destablilizing 

mechanism in the upper tropical troposphere. 

Foukal asked what would be the relative importance of 0 3 and H 20 in the 

dynamics of the atmosphere for a change in the solar constant. Both Kaplan and 

Quirk said that their models suggested that the two effects would be comparable. 

However, neither Kaplan's model nor Quirk's model takes stratospheric dynamics 

into account adequately. 

In the fifth talk, Leith described some aspects of the climate program at NCAR. 

There has been development of Sellers-type models and studies of their proper

ties. These confirmed the properties described by Sellers earlier in the session. 

Leith stressed that the models were of an equilibrium state and did not address 

the question of the rate of approach to equilibrium. This rate would be controlled 

by properties of the atmosphere and, particularly, of the ocean. The time constant 

might be of order 1000 years. 

Leith then discussed the contribution of General Circulation Models (GCM's) 
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to climate research. GCM's are concerned with the evolution of detailed states of 

the atmosphere, and in addition to prohibitive economics there are physical, 

mathematical, and statistical problems connected with longterm simulation by 

GCM's. They throw some light on the real life problem of defining climatic 

change - how to detect a 'real' change, perhaps one connected with variation of an 

external parameter (e.g., the solar constant) from the 'noise' of the day-to-day 

weather fluctuations - the detail considered by the GCM's. A required parameter 

is the standard deviation of a time average of a meteorological variable in terms 

of the standard deviation of the individual values of the variable (the time average 

being a typical climatic variable). Leith commented that time averaging is a very 

inefficient filter of the day-to-day fluctuations. It has been found very difficult to 

get significant 'climate change' in mid-latitude perturbation experiments with the 

model. A small perturbation will lead to different 'weather' after about a week, 

but no change of 'climate'. 

Leith offered as an alternative and more promising approach the study of 

statistics of the present atmosphere, particularly time-lagged correlations R ( T ), in 

the hope of establishing the utility of analogies with classical statistical mechanics. 

He spoke of the fluctuation dissipation theorem which relates the recovery from 

perturbation of a system near equilibrium to the natural fluctuations, specifically 

to R(T) in a conceptually simple equation. However, for a multivariate system a 

matrix equation is required, and Leith casually mentioned 1000 degrees of 

freedom. 

In the discussion following Leith's talk, it was pointed out that the statistical 

approach suggested by Leith for predicting the response of the atmosphere to an 

'applied force' (e.g. a change in the solar constant, or increased dust due to a 

volcanic eruption) would only work if the correlation R ( T) of the present 

atmosphere converges. It was also noted that if anything analogous to the 

fluctuation dissipation theorem holds in the atmosphere, then linear regression for 

forecasting models should be the most adequate attainable for long-range and 

climate forecasting. Experience with these to date is not encouraging. 

The remainder of the afternoon became mostly a discussion of available data on 

solar radiation at the surface and, secondly, of what to do and how to do it, 

regarding measurement of the solar constant preliminary to Session E on Wed

nesday morning. 

Hanson called attention to Kimball's compilation of direct solar intensity 

measurements ca. 1880-1920. There is no comparable record of scattered radia

tion. He discussed the standardizing history of the U.S.-based measurements, 

presuming a transition from Smithsonian 1913 to IPS 1956 at the beginning of 

1959, and then described the NOAA Global Monitoring for Climatic Change 

program and plans. 

Thekaekara pointed out that the NWS records of direct solar intensity show 

that recent values appear to be about 6 percent lower than those of 1950-54, 

probably due mostly to the change of scale in 1959 mentioned by Hanson. 
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(SEMIS) Solar Max. 

Mission/ 
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Solar Constant and Spectral TBD xx 0.5% p Faraday Labs 
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Thekaekara also presented a table listing various planned or proposed NASA 

projects connected with measuring solar radiation. (See Table D-1). 

In the general discussion of what should be done, the consensus seemed to be: 

(i) A cavity radiometer should be put in space as soon as possible, even though 

the degradation problem is not yet solved. 

(i) Measure spectral irradiance over the largest possible range, with priority to 

the high energy region. 

(iii) Measure spectral irradiance with increased absolute accuracy in the far 

UV. 

(iv) Observations from space should be supplemented by ground-based obser

vations. A chief function of observations from space should be the calibration of 

the (longer-term and much less expensive) ground-based measurements. 

In the last talk of Session D, Wilcox discussed a correlation between weather 

phenomena and sector structure in the solar wind. There appears to be about a 10 

percent decrease in the area of low pressure troughs in the northern hemisphere 

when a sector boundary moves past the Earth in the winter. Wilcox emphasized 

that the sector boundary should be considered mainly as a time marker rather 

than as necessarily the direct cause of the correlation. For example, the cause 

might be due in part to UV radiation from the Sun which also correlates with 

sector boundaries. 

In the discussion after the talk, Wilcox stated that low-latitude coronal holes 

also correlate with sector structure. He also mentioned that there appears to be a 

22-year drought cycle in the Western Plains States. 

3.5. SESSION E: SUMMARY AND GENERAL DISCUSSION OF FUTURE OBSERVATIONAL 

PROGRAMS 

Chairman: 0. R. White; Rapporteurs: G. Chapman and Ron Moore 

In the first talk, J. D. Hays reviewed paleoclimatic variations and gave his 

opinions on the plausibility of these variations being caused by changes in the 

solar constant. He began by stressing the very long term uniformity of the climate 

implied by the strong geological evidence that there has been life on the Earth 

over the past 2-3 billion years. This indicates that the Barth was never completely 

frozen over. The models of Sellers and Budyko then imply that over the past 2-3 

billion years the solar constant hasn't been more than about 5 percent less than it 

is now. For these reasons, Hays' strongest opinion was that there is a direct 

conflict between geological evidence and the theoretical evolution of the Sun 

which calls for about a 20 percent increase in the solar constant over the same 

time span. 

In the last billion years there have been three relatively short ( ,._ 10 million 

years) periods of glacial ice separated by much longer periods ( ,._300 million 

years) of very little ice. The last of the three glacial periods includes the present. 

Hays' second opinion was that the three abnormal cold periods were probably not 
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due to changes in the solar constant. He put forward positioning of continents at 

the poles by continental drift, changes in sea level and volcanic activity as more 

likely causes of such glacial periods. 

Hay's third opinion was that the climate changes most plausibly connected with 

changes in the solar constant have time scales shorter than about 2500 years. 

Possible characteristic time scales are 2500, 400, 180, 80 and 22 years. He felt 

that changes of time scale 105 years were more likely due to changes in the 

eccentricity of the Earth's orbit rather than changes in the solar constant. 

In the discussion following Hays' talk, Robinson pointed out that Hays' 

conclusion that the solar constant could not have been 5 percent less than at 

present during the past 2-3 billion years was based on the models of Sellers and 

Budyko which in turn are based on the present atmosphere. Sellers felt that the 

decrease in the solar constant of 5 or 10 percent (before the planet is ice covered) 

allowed by the climate models and the 20 percent decrease implied by stellar 

models may not be different enough to indicate a definite conflict between stellar 

evolution models and the geological evidence for life. Hall pointed out that even 

though Hays' arguments implied the solar constant could not have been much less 

than it is now, the same evidence does not rule out larger (> 5 % ) past increases in 

the solar constant. 

Hays and others emphasized that the 'normal' climate is that between the 

shorter cold periods, one of which we are now in. Another point brought out was 

that the advance and retreat of glacial ice during one of these cold periods may be 

controlled or paced by the changes in eccentricity of the Earth's orbit. It was also 

pointed out that the internal heat of the Earth probably does not affect climate 

except through volcanism. Smith mentioned that the past history of the Moon and 

its orbit may have influenced climate. 

In the second talk, Eddy summarized the constraints placed on the variability of 

the solar constant by the observational evidence discussed during the conference. 

He listed the following observational results for limits on the variability. 

(1) Abbott's data between about 1920 and 1950 suggest a variability of about 

±0.1 % . There are problems with these data such as the fact that .rather large 

areas of sky were observed along with the solar disk, and the fact that atmosphere 

cut off the observed radiation shortward of 3000 A and longward on 2.3 µ (5 or 

6% of the total radiation). 

(2) The summary of total irradiance measurements in the 1960's compiled by 

Labs and N eckel indicates a limit on the variability of about ± 1 % . 

(3) Balloon measurements by Kondratyev and Nikolsky suggest a possible 

variation' of ±1 % in 1967. 

(4) Lowell Observatory observations of the planets over the past 25 years allow 

a variation of ±0.5%. 

(5) JPL spacecraft measurements possibly show 0.2% changes over an 18 

month period in 1967-69. 

Eddy therefore concluded that we can only say that the solar constant probably 

has not varied by more than ± 1 % in the last 50 years. 

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1976SoPh...46..377Z


1
9
7
6
S
o
P
h
.
.
.
4
6
.
.
3
7
7
Z

PROCEEDINGS OF THE WORKSHOP: THE SOLAR CONSTANT AND THE EARTH'S ATMOSPHERE 403 

The following ideas were contributed in discussion during and after Eddy's talk. 

Brueckner made a plea that more careful and detailed calculations should be 

made of the modification of the solar spectrum by sunspots and plages from 

existing data on their spectra. Heath expressed his feeling that there may be a 

variation of solar radiation connected with the 11-year or 22-year magnetic cycle 

other than the radiation from sunspots and plages. Mitchell pointed out that 0.1 % 

is the level at which variation in the solar constant becomes important in models 

of the weather and climate. 

In the third talk, 0. R. White reviewed the vertical temperature structure of the 

solar atmosphere, pointing out which parts of the solar spectrum are formed in 

each layer and the basic physical mechanisms operating in each layer. His main 

points were (1) that the temperature minimum layer above the photosphere is 

definitely modified (heated) in the magnetic active regions on the Sun, (2) that 

both the UV around 2000 A and the IR around 100 µ are formed in the tem

perature minimum and (3) that the radiation in both of these wavelength regions 

is important in the energy balance and dynamics of the Earth's atmosphere. 

In discussion following White's talk, Foukal, Quirk and Kaplan all emphasized 

that it is not known whether absorption of IR and UV by ozone or absorption of 

IR by water vapor is more important in the dynamics of the atmosphere. Roosen 

warned that it is not completely established that the bulk of the ozone is produced 

through photoionization absorption of UV in the atmosphere in the equatorial 

regions; bombardment by energetic particles in the polar regions may also 

produce a significant amount. 

Next, a short talk was given by G. Brueckner on rocket and space observations 

of the solar UV around 1900 A taken during the period 1968 to 197 5. H~ 

concluded that there can be a variation in this flux of about 6% over a solar 

rotation and that there was less than 20% variation over the past solar cycle. He 

also reported that NRL has the capability of measuring the Schumann-Runge 

ozone absorption band and its variation with height in the atmosphere. 

Another short presentation was given by G. Chapman of a new scheme, devised 

by Prag and Chapman of the Aerospace Corporation, for measuring the solar 

constant by a satellite. The key part of the scheme is the simultaneous measure

ment of the photon momentum and energy flux. 

White, with the aid of several members of the audience, then listed the 

observational programs which will bear on the solar constant problem for the next 

few to several years. 

(1) OSO-I, to be launched in June 1975, will study the 2300-1100 A region 

and will have calibration rocket flights. 

(2) In October 1979, the Solar Maximum Mission (SMM) satellite will hope

fully be flown. 

(3) Between OSO-I and SMM there will be the Aeronomy-Explorer satellite, 

the Nimbus satellite, the Solrad-Hi satellite (Nov. 75) and various NRL rockets. 

Nimbus will have a radiometer, but not an absolute instrument, and Solrad-Hi 

and the rockets will measure the solar spectrum below 2000 A. 
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(4) During 1975-76 KPNO will .measure the solar spectrum in the yellow and 

blue, and in particular will be studying line depths. KPNO will also work in the 

10-15 µregion. 

(5) -GSFC will have radiometers at Mt Laguna, California and at Mt South 

Baldy, New Mexico. The intent is to measure changes in the solar flux, not the 

absolute flux. 

(6) BBSO and JPL plan to collaborate in radiometer measurements. (Willson 

said that his radiometer with a spectrometer would cost about $K 10.) 

(7) JPL plans radiometer measurements on balloon flights, 4/year beginning in 

fall of 197 5 and continuing for one year. 
/ 

(8) NOAA will measure the solar intensity at the ground using 5 view radiome

ters at four stations. 

Zirin then read a proposed 'statement of the Solar Constant Workshop' to be 

sent to the GARP Committee, and the purpose, content and wording of the 

statement were discussed. 

The remainder of the session consisted of a discussion of the support and 

operation of a long-term solar constant measuring and monitoring program. The 

main point to come out of this discussion was that solar constant measuring 

programs should be carried out for a minimum of 11 years, but that there is little 

chance of long-term funding from the government. Peacock stated that NSF 

would not support long-term observations just for the sake of data collecting; a 

strong personality would have to be running the program and be interested in 

analyzing the data. Roosen and Robinson concurred that a strong personality 

would be necessary even to carry out a long-term program. Peacock suggested a 

collaboration of spacecraft mission funding by NASA, ground-based instrument 

funding by NSF and long-term observation funding by NOAA. Timothy en

visioned rather short-term funding by NASA mainly for space observations to 

calibrate ground-based observations. It was also agreed that the sampling rate 

during even a long-term program should be daily for both solar constant and 

spectral irradiance measurements. Finally it was emphasized that these measure

ments should be started as soon as possible. 

Appendix I. Program 

SESSION A. THE SOLAR BACKGROUND 

Chairman: Harold Zirin (California Institute of Technology) 

Rapporteurs: Peter Foukal and William Adams 

*1. Roger Ulrich (University of California, Los Angeles): 'Solar Neutrinos and 

Variations in the Solar Luminosity' 

*2. Jack Eddy (High Altitude Observatory): 'The Last 500 Years of the Sun' 

* An asterisk indicates contributed papers for which manuscripts were received (all included in BBSO 

No. 0149). 

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1976SoPh...46..377Z


1
9
7
6
S
o
P
h
.
.
.
4
6
.
.
3
7
7
Z

PROCEEDINGS OF THE WORKSHOP: THE SOLAR CONSTANT AND THE EARTH'S ATMOSPHERE 405 

*3. Peter Foukal (Harvard College Observatory): 'The Contribution of Active 

Regions to Solar Variation in the Visible and Near Infrared' 

*4. G. W. Lockwood (Lowell Observatory): 'Evidence for Solar Variability from 

Photometry of Planets and Satellites' 

5. J. B. Oke (California Institute of Technology): 'Absolute Measurements of 

Stellar Radiation: Can They be Tied to the Sun? 

*6. G. E. Brueckner, J.-D. F. Bartoe, 0. Kjeldseth Moe, and M. E. van Hoosier 

(Naval Research Laboratory): 'Absolute Solar Intensities 1750 A-2100 A 

and Their Variations With Solar Activity' 

7. Donald Heath (NASA/Goddard Space Flight Center): 'Space Observations 

of the Variability of Solar Irradiance' 

*8. M. P. Thekaekara (NASA/Goddard Space Flight Center): 'The Total and 

Spectral Solar Irradiance and its Possible Variations' 

9. Adrienne Timothy (NASA Headquarters): 'What Can the Solar Maximum 

Mission Do?' 

SESSION B. THE CLIMATE RECORD BACKGROUND 

Chairman: James Hays (Lamont Doherty Geological Observatory) 

Rapporteurs: J. Murray Mitchell and Gordon Hurford 

1. J. Murray Mitchell (NOAA Environmental Data Service) 'Problems of the 

Climate and Solar Variations' 

*2. V. C. LaMarche (Laboratory of Tree Ring Research): 'Notes on Postglacial 

Climatic Changes and Possible Evidence for Long-Period Variations in the 

Solar Constant' 

3. S. Epstein (California Institute of Technology): 'Measurement of Historic 

and Paleoclimate by Isotope Techniques' 

4. James Hays (Lamont Doherty Geological Observatory): 'Summary of 

Paleoclimate Cycles and General Discussion' 

SESSION C. MEASURING THE SOLAR CONSTANT 

Chairman: Keith Pierce (Kitt Peak National Observatory) 

Rapporteurs: 0. R. White and Barry LaBonte 

*1. D. Labs (Landessternwarte Heidelberg-Konigstuhl Observatory): 'The Solar 

Constant and Its Measurement (From an Astrophysicist's View)' 

*2. H. Neckel (Hamburger Sternwarte Observatory): 'On the Accuracy of Solar 

Radiation Measurements and the Need for Consistency of all Radiation 

Data' 

*3. Glenn Shaw (University of Alaska - Geophysical Institute): 'Solar Spectral 

Irradiance -The Role of Earth-Based Measurements' 
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*4. G. Robinson (Center for the Environment and Man): 'Estimates of Solar 

Irradiance in the Region of Atmospheric Absorption Bands' 

*5. C. Frohlich and R. W. Brusa (World Radiation Center, Davos): 'Measure

ment of the Solar Constant: A Critical Review' 

*6. R. C. Willson (Jet Propulsion Laboratory): 'JPL Absolute Radiometry and 

Solar Constant Measurements' 

*7. L. Dunkelman (NASA/GSFC): 'Solar Spectral lrradiance and 

Atmospheric Extinction A.3000 A to ,.\ 7000 A: Mt Lemmon, Arizona Meas

urements in 1951 and Plans for Period 1975-76' 

*8. J. Kendall (Jet Propulsion Laboratory): 'Measurements of Stefan-Boltzmann 

Constant, Circumsolar Irradiance, & the Solar Constant Made with PAC

RAD Radiometer' 

SESSION D. WHAT HAPPENS TO THE ATMOSPHERE? 

Chairman: J. Murray Mitchell (NOAA) 

Rapporteurs: G. Robinson and Ron Moore 

*1. F. Haurwitz (RAND Corportion): 'The Effect of Reducing the Solar Con

stant in a Climate Model' 

*2. W. D. Sellers (University of Arizona): 'The Effect of Solar Constant 

Variation on Climate Modelling 

*3. L. Kaplan (University of Chicago): 'Weather and Ozone, and the Solar 

Ultraviolet' 

4. V. Suomi (University of Wisconsin): 'Heat Balance Problems' 

*5. C. Leith (NCAR): 'Climate and General Circulation Studies at NCAR' 

*6. J. M. Wilcox, L. Svalgaard, and P. H. Scherrer (Stanford): 'Sector Structure 

and Weather Phenomena' 

SESSION E. SUMMARY AND GENERAL DISCUSSION OF FUTURE OBSERVATIONAL PROGRAMS 

Chairman: 0. R. White (HAO) 

Rapporteurs: G. Chapman and Ron Moore 

1. J. Hays (Lamont Doherty Geological Observatory): 'Summary of Paleo

climatic Variations and Their Possible Causes' 

2. J. Eddy (High Altitude Observatory): 'Summary of the Possible Variability 

in the Solar Constant Allowed by the Observations' 

*3. 0. White (High Altitude Observatory): 'Comments on the Solar Spectrum 

and the possible Origins of its Variab~lity' 
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4. G. Brueckner (Naval Research Laboratory): 'Observations of the Solar UV 

Around 1900 A Over the Past Solar Cycle' 

5. G. Chapman (Aerospace Corporation): 'A New Scheme for Measuring the 

Solar Constant' 

6. Future Observational Programs. 

Appendix II. List of Participants at Solar Constant Workshop 

Adams, Willian M., Solar Astronomy Department, California Institute of Tech

nology, Pasadena, Calif. 91125 

Brueckper, Guenther E., E. 0. Hulbert Center for Space Research, Naval 

Research Laboratory, Washington, D.C. 20375 

Chapman, Gary A., Aerospace Corporation, P.O. Box 92957, Los Angeles, Calif. 

90009 

De Luisi, John, National Center for Atmospheric Research, Box 3000, Boulder, 

Colo. 80302 

Dunkelman, L., Laboratory for Optical Astronomy, NASA/Goddard Space Flight 

Center, Greenbelt, Md 20771 

Eddy, John A., High Altitude Observatory, Boulder, Colo. 80302 

Epstein, Samuel, Geological and Planetary Sciences Department, California 

Institute of Technology, Pasadena, Calif. 91125 

Foukal, Peter, Harvard College Observatory, 60 Garden Str~t, Cambridge, 

Mass. 02138 

Frohlich, Claus, Physikalisch-Meteorologisches Observatorium, Davos Welt

strahlungszentrum, CH-7270 Davos Platz, Oberwiesstrasse 4, Switzerland 

Hall, Donald N., Kitt Peak National Observatory, P.O. Box 26732, Tucson, Ariz. 

85725 

Hanson, Kirby, ERL/NOAA, Boulder, Colo. 80302 

Haurwitz, Frank, Physical Sciences Department, Climate Dynamics Program, The 

Rand Corporation, 1700 Main Street, Santa Monica, Calif. 90406 

Hays, James D., Lamont Doherty Geological Observatory, Palisades, N.Y. 10964 

Heath, Donald F., NASA/Goddard Space Flight Center, Greenbelt, Md 20771 

Hurford, Gordon J., Solar Astronomy Department, California Institute of Tech-

nology, Pasadena, Calif. 91125 

Kaplan, Lewis D., Department of Geophysical Sciences, University of Chicago, 

5734 S. Ellis Avenue, Chicago, Ill. 60637 

Kendall, Sr., James M., Jet Propulsion Laboratory, 4800 Oak Grove Drive, 

Pasadena, Calif. 91103 

Kjeldseth Moe, Olav, Naval Research Laboratory, code 7142 M, Washington, D.C. 
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