
INFORMATION AND CONTROL 60, 109-137 (1984)

Process Algebra for Synchronous Communication

J. A. BERGSTRA AND J. W . KLOP

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Within the context of an algebraic theory of processes, an equational
specification of process cooperation is provided. Four cases are considered: free
merge or interleaving, merging with communication, merging with mutual exclusion
of tight regions, and synchronous process cooperation. The rewrite system behind
the communication algebra is shown to be confluent and terminating (modulo its
permutative reductions). Further, some relationships are shown to hold between the
four concepts of merging. © 1984 Academic Press, Inc.

0. INTRODUCTION

O. 1. General Motivation: Process Algebra

Our aim is to contribute to the theory of concurrency, along the lines of

an algebraic approach. The importance of a proper understanding of the

basic issues concerning the behaviour of concurrent systems or processes,

such as communication, is nowadays evident, and various formats have been

proposed as a framework for concurrency. Without claiming historical

precision, it seems safe to say that the proper development of an algebra of

processes starts with the work of Milner (see his introductory work, (Milner,

1980)) in the form of his calculus of communicating systems (CCS). Milner

states his aim in (Milner, 1983) in his own words: " In a definitive calculus

there should be as few operators or combinators as possible, each of which

embodies some distinct and intuitive idea, and which together give

completely general expressive power." Milner (1983) proposes SCCS

(synchronous CCS) based on four fundamental operators, and remarks:

"These four operators obey (as we show) several algebraic identities. It is not

too much to hope that a class of these identities may be isolated as axioms

of an algebraic ' concurrency" theory, analogous (say) to rings or vector

spaces." These two quotations denote precisely the general motivation

underlying also the present paper.

0.2. Aims of the Present Paper

More specifically, in this paper we propose an algebra of processes based

on elementary actions and on the operators + (alternative composition or

109
0019-9958/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

110 BERGSTRA AND KLOP

choice), • (sequential composition or product) and]] (parallel composition or

merge). It turns out that in order to obtain an algebraically more satisfactory

set of axioms, much is gained with our introduction of an auxiliary operator

U_ (left-merge) which drastically simplifies computations and has some

desirable "metamathematical" consequences (finite axiomatisability if the

alphabet of elementary actions is finite; greater suitability for term rewriting

analysis) and moreover enhances the expressive power (more processes

definable). Using these operators we have a framework for processes whose

parallel execution is simply by interleaving ("free" merge): this is the axiom

system PA in Table II in Section 1. The axiom system ACP presented below

in Table III is devised to cover also processes that can communicate, by

sharing of actions. To this end a constant 6 for deadlock (or failure) is

introduced, another opera tor :] (communication merge), and finally, an

operator c~ n for "encapsulation" of a process. Also this system, ACP for

algebra of communicating processes, is a finite axiomatisation of its intended

models (which we call process algebras).

Clearly there is a strong relation of the system ACP below to the system

CCS of Milner. In Milner (1980) some process domains are discussed which

can be seen as models of ACP. Determining the precise relationship is a

matter of detailed investigation. In advance to that, one might say that ACP

is an alternative formulation of CCS, at least of a part of CCS. (In this

paper we do not discuss the so-called "v-steps," or silent steps, obtained by

abstraction from "internal" steps.) Notably, several of the ACP operators

differ from those in CCS:

(i) multiplication • is general (not only prefix multiplication),

(ii) NIL is absent in ACP,

(iii) c5, H, and] are not present in CCS.

The merge operator [I is the same as in CCS, though it is differently (namely,

finitely) axiomatised. In ACP we have no explicit relabeling operators as in

CCS, or "morphisms" as they are called in Milner (1983), except the encap-

sulation operators @~/which play the role of "restriction" in CCS and SCCS.

Also in ACP we have no v-steps (silent steps) and not the well-known v-

laws (in Milner, 1980) for them; they can be added consistently, and even

conservatively, to ACP. The resulting axiom system ACP~ is studied in

Bergstra and Klop (1984b). In general, ACP does not address the

complicated problem of "hiding" or abstraction in processes.

The choices of these operators can be seen as design decisions; of course

the basic insights into the algebraic nature of communicating processes are

already stated in Milner's book (Milner, 1980). Some of these design

decisions are motivated by our wish to optimize the facility of doing

calculations; some others to enhance the expressive power of the system. For

PROCESS ALGEBRA FOR COMMUNICATION l 1 1

instance, having general multiplication available enables one to give a

specification of the process behaviour of stack in finitely many equations

which can be proved to be impossible with prefix multiplication (see Bergstra

and Klop, 1984a).

An explicit concern in the choice of the axiom systems has been an

attempt to modularize the problems. Thus PA is only about interleaving or

as we prefer to call it, free merge, that is, without communication; ACP

moreover treats communication; AMP treats the merge of processes with the

restriction of mutual exclusion of tight regions; and ACP~ treats abstraction.

(See also our Remark 6.5 concerning terminology.)

Apart from the general motivation to use the system ACP for specification

and verification of processes, we have been concerned in subsequent work

with the detailed investigation of several of the models of ACP, as well as

mathematical properties of this axiom system itself. Also some extensions of

ACP were studied. This brings us to stating the aim of this paper: it is the

first of our series of papers consisting of the present one and (Bergstra and

Klop, 1983a, b; 1984a-d) on process algebra, meant first to present the

system ACP and second to establish some of its basic mathematical

properties (notably consistency of the axioms and a normal form theorem for

process expressions). In the concluding remarks we elaborate on some

applications which have been realised in these subsequent papers.

Though our central interest in this paper is for the "general purpose

system" ACP, we have also formulated some other "special purpose" axiom

systems: AMP for merging with mutual exclusion of tight regions; ACMP, a

join of ACP and AMP; and ASP for synchronous process cooperation.

Some relationships between these systems are shown, e.g., an interpretation

of ASP in ACMP and an "implementation" of AMP and ASP in ACP.

O. 3. R elated Approaches

Since this is not a survey paper and since there are several approaches

related to the present one, it is not possible to discuss them while doing them

justice or giving a complete view. Yet we want to mention the following lines

of investigation. Closest to the present work (and its subsequent work in

(Bergstra and Klop, loc. cit.) is Milner's CCS, which was above briefly

compared with the axioms below. Interestingly, Milner has proposed in

(Milner, 1983) a system SCCS which supersedes CCS and which has as

fundamental notion: synchronous process cooperation. It is argued that

asynchronous process cooperation (as in CCS and ACP) is a subcase in

some sense of the former one. The terminology synchronous versus

asynchronous is used in a different sense by different authors; see

Remark 6.5. Again, it would be very useful and interesting to determine the

643/60/1-3-8

112 BERGSTRA AND KLOP

precise mathematical relationships between those systems for synchrony and

asynchrony; a start has been made in Milner (1983).

Milner's work has been continued and extended in Hennessy and Plotkin

(1980) and a series of papers by Hennessy (1981-1983) in which a detailed

and extensive investigation is carried out often using operational preorders as

a means of establishing completeness results of various proof systems.

Completeness here is w.r.t, the semantical notions of observational

equivalence and/or versions of bisimulation. Hennessy (1982a, 1983) also

studies the differentiations of + according to whether a choice is made by the

process itself or by its environment. Further, the work of Hennessy and

Milner obtains several results in terms of modal characterisations of obser-

vational equivalence (Hennessy, 1983; Hennessy and Milner, 1980, 1983).

(See also Graf and Sifakis, 1984; and Brookes and Rounds, 1983.)

Milne (1982a, b), presents the "dot calculus": here is concurrent

composition. The dot calculus uses prefix multiplication as in the work of

Milner and Hennessy (called "guarding" by Milne), operators +, Q for

choice (by environment resp. internal), A for deadlock as well as successful

termination. In contrast to CCS as in (Milner, 1980), the dot calculus

supports not only binary communication but n-ary communication. (The

latter is also present in subsequent work of Milner and Hennessy; and also in

ACP.) The dot calculus presents algebraic laws for its operators; for • these

are rather different than the ones for the corresponding parallel composition

operators in CCS and ACP.

In our view there is a noteworthy methodological difference between the

approaches as mentioned above and the present one. Namely, it has been an

explicit concern of ours to state first a system of axioms for communicating

processes (of course, based on some a priori considerations of what features

communicating processes should certainly have) and next study its models;

the analogy with the axiomatic method in, say, group theory or the theory of

vector spaces is clear. For instance, one can study a model of ACP

containing only "finitely branching" processes; or one might be interested in

processes which admit infinite branchings (in the sense of +); or, one may

study the process algebra of regular processes, i.e., processes with finitely

many "states" (cf. Milner, 1982; Bergstra and Klop, 1984a). Also, one may

build process algebras based on the fundamental and fruitful notion of

bisimulation (introduced by Park (1981), as is done in, e.g., Milner

(1982, 1983); or one may consider process algebras obtained by the purely

algebraic construction of taking a projective limit (of process algebras

consisting of finitely deep processes). This list could be extended to some

dozens of interesting process algebras, all embodying different possible

aspects of processes. To the best of our knowledge, an explicit adherence to
this axiomatic methodology at which we are aiming, is not yet fully

represented in related approaches to the understanding of concurrency.

PROCESS ALGEBRA FOR COMMUNICATION 1 13

As some other related approaches which are less algebraical in spirit than

the aforementioned (CCS, SCCS, dot calculus, ACP) and which have a

more denotational style we mention the work of De Bakker and Zucker

(1982a, b). They have studied several process domains as solutions of

domain equations, using topological techniques and concepts such as

metrical completion, compactness. In fact, their domain of "uniform"

processes and a question thereabout (see De Bakker and Zucker, 1982a)

were our incentive to formulate PA as in Table II below. The processes of

De Bakker and Zucker include several programming concepts which are not

discussed in ACP. In De Bakker et al. (1983) the central issue of LT (linear

time) versus BT (branching time), which determines the essential difference

between trace sets and processes, has been studied• Denotational models for

communicating processes as in Hoare's CSP (see Hoare, 1978; 1980) have

also been discussed from a uniform point of view in Olderog and Hoare

(1983). For work discussing aspects of CCS and CSP, as well as

connections between these two, we refer to Brookes (1983). Other work on

concurrency in the denotational style includes Back and Mannila (1982a, b),

Pratt (1982), and Staples and Nguyen (1983)• Finally, Winskel (1983a, b)

discusses communication formats in languages such as CCS, CSP.

1. PRELIMINARIES: PROCESSES WITH ALTERNATIVE

AND SEQUENTIAL COMPOSITION

Let A be a f ini te collection (alphabet) of atomic actions a, b, e (We

insist on a finite alphabet to safeguard the algebraic nature of the present

work; specifically we wish to avoid here infinite sums whose algebraic

specification is much less obvious than that of finite sums.)

Finite processes are generated from the atomic processes in A using the

two "basic" operations:

+: alternative composition (choice),

• : sequential composition (produet).

The following equational laws will hold for finite processes• (See Table I

where BPA stands for basic process algebra.) Here x , y , z vary over

processes• Often x . y is written as xy. The initial term algebra of these

equations is (A~o, +, "). The elements of this algebra will be called "basic

terms," i.e., terms modulo A1-5.

The main source of process algebra in this style is Milner (1980). Exactly

the above processes occur as finite uniform processes in De Bakker and

Zucker (1982a, b). After adding an extra equation: x (y + z) = xy + xz , one

obtains a version of trace theory as described in Rein (1983)•

114 BERGSTRA AND KLOP

TABLE I

BPA

x + y = y + x A1

x + (y + z) = (x +y) + z 12

x + x = x A3

(x + y) . z = x . z + y . z A4

(x . y) . z = x . (y . z) A5

For n>/ 1 we have the approximation map n , :A ,o~A , , ,, inductively

described by

~n(X -~ y) ~--- ~n(X) ~- 7~.(y)

7rn(a) = a

~1(ax) = a

7z.+ l (a x) = azr,(x) .

Interestingly, if A n - = {Tr,(p) l p ~ A } then (A,, +~, .,) is another model of

BPA. Here the operations + , and "n are defined by

x +.y=- ~.(x + y)

and likewise for product.

Infinite processes can be obtained as a projective limit, called A ~, of the

structures A n. Technically this means that A ~ is the set of all sequences

P = (Pl ,PE,P3) with Pi E Ai and Pi = 7ri(Pi+ 1)- Such sequences are called

projective sequences. The operations + and • on A co are defined component-

wise:

(P + q), =- (p) , + (q),,

(P " q), = 7rn((p)n " (q),),

where (p) , is the nth component of p. Thus we obtain the process algebra

(A °~, +, .). On A °° a metric exists:

d(p, q) = 0

._~. 2 - n

if p = q,

with n minimal such that (p) , 4: (q). if p ¢ q.

(A ~°, d) is a complete metric space, in fact it is the metric completion of

(A,o, d). The operations + and • are continuous. (A oo, d) was introduced in

De Bakker & Zucker (1982a). Milner (1982) uses charts modulo

bisimulation (from Park, i98i) to obtain infinite processes from finite ones.

PROCESS ALGEBRA FOR COMMUNICATION 115

(i)

(ii)

(iii)

(Sect. 4)

(iv)

Working with trace sets under the extra assumption x (y + z) = xy + xz, this

metric occurs in Nivat (1979). In De Bakker et al. (1983) the connections

between (A ~, d) and its corresponding trace space are investigated.

The processes discussed so far are provided with a bare minimum of

structure. The crux of the algebraic method lies in algebraically defining new

operators over the given process domains that will correspond to important

process composition principles. We will describe operators corresponding to

the following composition principles:

f ree merge (Sect. 2)

merging with communication (Sect. 3)

merging processes with mutual exclusion f o r tight regions

merging with communication and mutual exclusion f o r tight

regions (Sect. 5)

(v) merging with synchronous cooperation (Sect. 6).

2. FREE MERGE: THE AXIOM SYSTEM PA

The result of merging processes p and q is p II q. For algebraic reasons

(finite axiomatisability and ease of computation) an auxiliary operation ~_

(left-merge) is used. The process p ~_ q stands for the result of merging p and

q but with the constraint that the first step must be one from p. Both

operations [I and ~ are specified on (Ao~, +, .) by Eqs. M1-M4 of the axiom

system PA in Table II. We call the set of axioms A1-A5 (i.e., BPA) together

with M1-M4: PA. This axiom system describes the interleaving of processes

without communication, or as we prefer to call it, the f ree merge of

processes. In Table II X,y,z vary over all processes (i.e., elements of an

TABLE II

PA

x + y = y + x A1
x+ (y +z) = (x+y) +z A2
x + x = x A3
(x + y) z = xz + yz A4
(xy) z = x(sz) A5

x l l y = x L y ÷ y L x M1
aU x = a x M2
axL y=a(x[] y) M3
(x + y) L z = x U _ z + y k z M4

116 BERGSTRA AND KLOP

algebra satisfying PA), while a is a variable over A. (This means that M2,

M3 are axiom schemes, having finitely many axioms as instances.)

Again the operations are extended to A ~° co6rdinate-wise:

(Pl ,Pz,...) II (ql, q2,...) = (n~(p~ II qa), 7r2(P2]l qz),...)

and likewise for ~. We omit the proof that these are indeed projective

sequences, i.e., that

7r,(nn+ l(P,+ l II q,+ l)) = 7~,(p, II q,),

and likewise for k . It also follows that II and 1_ are continuous w.r.t, the

metric d.

3. MERGING WITH COMMUNICATION: THE AXIOM SYSTEM ACP

In order to describe communication we will need a distinguished symbol

6 ~ A, describing deadlock or failure. It is subject to the axioms x + 6---x

and 6x = 6 (A6, A7 in Table III); 6 can be seen intuitively as the "action"

by which a process acknowledges that it is stagnating.

Now, starting with (A~o,+, .) plus a communication function • l" :

A × A -~ A which describes the effect of sharing (simultaneously executing)

two atomic actions, three operations H, L, and t are defined on A o). Here I,

the communication merge, extends the given communication function. The

operators I[and L coincide with the analogous operators defined in Section 2

if the effect of a communication a] b is always 6 (i.e,, no two atomic actions

communicate).

For the communication function we require commutativity, associativity,

and 6]a = 6 for all a CA (resp. C1, C2, C3 in Table III). The actions c for

which there exists an action e' such that c le'4= 6 are called subatomic or

communication actions.

Furthermore,]1, k , and I are specified by the axioms CM1-CM9 in

Table III. (See next page.) Table III contains the axiom system ACP, for

algebra of communicating processes. Here the subset H___ A is a parameter

of c~n, the encapsulation operator. Its function is to encapsulate a process p

w.r.t. H, that is, c~H(p) cannot communicate with its environment via

communication actions in H. In Table III, a and b range over the alphabet A.

Note that in general ~ H (x [l y) 4 = ~ (x) l l ~ l (y) . Thus ~/~ is a

homomorphism on (A,o, + , . , 6), the initial algebra of axioms A1-A7, but

not on (A,,, + , . , II, L, I, 6).

An important observation concerning the difference between processes and

trace sets is exhibited in the following example. Let A ----- {a, c 1, e2, c, 6} and

PROCESS ALGEBRA FOR COMMUNICATION

TABLE III

ACP

x + y = y + x A1
x + (y +z) = (x + y) + z A2
x + x = x A3
(x + y) z = xz + yz A4
(xy) z = x (y z) A5

x + ~ = x A6
fix = ~ A7

a] b = b] a C1
(alb) l c = a [(b L c) C2

~] a = ~ C3

xlI y = x L L y + yLL x + x l y CM1
a [1_ x = ax CM2

(ax) [L y = a(x l[Y) CM3
(x + y) L _ z = x [~ z + y [_ z CM4
(ax) I b = (a I b) x CM5
a [(bx) = (a [b) x CM6

(ax) l (by) = (a I b)(x I[Y) CM7
(x + y) l z = x l z + y l z CM8
x[(y + z) = x l y + x l z CM9

c3u(a) = a ifa ~ H D1
c3u(a) = c~ ifa E H D2

?H(x + y) = ?,,(x) + an(y) D3
~u(xy) = c3~,(x) . c~u(y) D4

117

let C l l C 2 = c. All o ther c o m m u n i c a t i o n s resul t in 3. Now, wri t ing c~ for

C31cl,cz I, we have

~?(a(c, + c2)II Cl) = a c and ~?((acl -Jr- ac2)I1 c l) = a c + acS,

so the second process a c 1 + ac2 has a d e a d l o c k poss ib l i ty in some contex t

where the first one, a (c 1 + cz), has not.

A s before II, II, I, and c3 n can be ex tended to con t inuous ope ra t i ons on

(A ° ° , d) .

This f o r m a l i s m inc ludes bo th message pass ing and sYnchronisa t ion . In

Mi lner (1980) and De Bakke r & Z u c k e r (1982a, b) s y n c h r o n i s a t i o n is

mo de l ed by having a I b = r whenever a I b =/= c5, T denot ing a s i lent move. (In

this pape r we will not cons ider z-steps.)

1 18 BERGSTRA AND KLOP

3.1. Remark. A comparison with some operators in related work:

(i) Milne (1982a) employs an operator A with the axiom x + A = x,

as our A6. However, A denotes there not only deadlock but also successful

termination. The same is the case for Milner's constant NIL in (Milner,

1980). On the other hand, 6 as in Table III corresponds precisely to the

"empty" process O in the domain of uniform processes of De Bakker and

Zucker (1982a, b). There a process ends (in a terminating branch) either in a

stop process P0 (successfully) or in O (deadlock).

(ii) Requirements on communication similar to C1-C3 are found in

Hennessy (1981), except that 6 is absent there but a unit element 1 is

present; i.e., (.4, 1, 1) is an abelian monoid. See also Milner (1983), who has

similar postulates, viz. (A, [) is an abelian semigroup; he also works with

(A, [, 1, -) as a commutative group.

(iii) In Hennessy and Plotkin (1980) a definition corresponding to the

equation CM 1: x I[Y = x H y + y H x + x l Y occurs.

(iv) In Hennessy (1981a) an auxiliary operator ? is used which is

related to our auxiliary operators H and] as follows:

x ? y = x L y + x] y .

Then one has

x [1 y = x T y + y ~ x ;

also ~ is linear in its left component:

(x + y) T z = x T z + y y z .

(This follows by axioms CM4, CM8 in Table III.) The operator 7 does not

seem to yield a finite axiomatisation, however. Of course in the absence of

communication, i.e., x l Y = 6, so that ACP "reduces to" PA, the operators 7

and U_ coincide.

3.2. ACP seems to provide a concise formulation of the algebraic

essence of communication. Therefore we review its structure in detail here.

We will show that the new operators are indeed well defined by A6, A7,

CM1-CM9, D1-D4 over A1-A5 + C1-C3. To this end we will rearrange

ACP into a TRS (term rewrite system) which is shown to be confluent and

strongly terminating modulo the permutative reductions A1, A2. As a conse-

quence we find that each term built from A by + , . , H, H,/ , c3n can be proved

equal to a unique term in Ao~ in ACP.

Finally we prove that I] is associative, as well as several other useful iden-

tities in Theorem 3.3.

P R O C E S S A L G E B R A F O R C O M M U N I C A T I O N 119

For technical reasons we associate to each a ~ A a unary operator a*

which acts as follows:

a * x = a .x .

(That is, we consider the restriction to prefix-multiplication as in Milner

(1980, 1982, 1983). For finite processes, as we will consider in the following

analysis, general multiplication and prefix-multiplication are equivalent.

Working with prefix-multiplication frees us from considering the permutative

axiom A5, which is bothersome in a term rewriting analysis, in Table III.)

On the term system generated by A, + , . , II, [1_, l, a* (a CA) , c~n we

introduce two norms 1.1 and]I'll. Here intuitively I SI computes an upper

bound for the path lengths in S and [[SI[computes an upper bound of the

number of (nontrivial) summands in which S decomposes. (See Table IV.)

Now consider the following term rewrite system RACP (which will only

be needed for the proof of Theorem3.3) in Table V below. Here in

R C M 5 ' - R C M 7 the symbol ca, b denotes the atom a[b CA. The axioms

C 1-C3 of ACP translate into the commutativity and associativity of c and

c~.a = c~ for all a ~ A.

In the following theorem, =R denotes convertibility in RACP (i.e., the

equivalence relation generated by -~).

3.3. THEOREM.

(i) ACP ~-

(ii) ACP ~-

(iii) ACP ~-

Jr, tL_,

(iv)

(v)

(vi)

(vii)

For all ACP-terms without variables:

S = T<=~ S = R T

S = S ' f o r some S' not containing]l, ~, 1, ~H

S ' = S " "~ A I - A 7 ~- S' = S" for S' , S" not eontaining

s . (r . v)=R (s . r) . u

RACP is weakly confluent, working modulo A1, A2.

RACP is strongly terminating, modulo A1, A2.

RACP is confluent (has the Chureh-Rosser property).

T A B L E IV

lal = 1 Ilarl = 1
la*xl = 1 + Ixl Ila*xPI = 1

I x. Y[= Ixl +lYl IIx" Yll = Ilxl[
Ix +Yl = max(lxl, I yl) [Ix+ylI=lfx[l+IlypI
]x ly]= lx l+]y[- - 1]lx[y[[=[lxl].[[yl[
]x[_y[= [x[+[y[][x[ky[[=[IxH
Lx II Yl = Ixl + l y[IIx II yll = rlxll + II yll + Hxll. [P ylr
IO~(x) l = [x l [I ~..,,(x)lr = [PxPl

120 BERGSTRA AND KLOP

TABLE V

RACP

x + y ~ y + x RA1
x + (y + z)-~ (x + y) + z RA2

(x + y)+ z ~ x + (y + z) RA2'
x + x ~ x RA3

(x + y) • z ~ x . z + y • z RA4

a • x ~ a*x RAY
(a'x) . y ~ a*(x . y) RA5

x + ~ x RA6
6*x ~ ~ RA7

x[] y ~ x ~ y + y k x + x [y RCM1

a U_ x ~ a * x RCM2

(a'x) L Y---' a*(x I] Y) RCM3
(x+y)ll z ~ x L z + y l L z RCM4

a Ibsen , b RCM5'
(a*x)] b--, C*bX RCM5
a]b*x~c*bx RCM6

(a*x) l (b*Y) ~ c*,b(x I1 Y) RCMV
(x + y) lz ~ x l z + y]z RCM8
x] (y + z) ~ x l y + x [z RCM9

On(a) -* a ifa ~ H RD1
8n(a) ~ ~ ifa E H RD2
8/~(x +y) ~ 8H(x) + 8H(y) RD3

8u(x . y) ~ 8H(X) • ?u(y) RD3
8u(x. y) ~ 8u(x) • 8u(y) RD4
8u(a*x) -~ a*8~(x) ifa ~ H RDI '

8H(a*x)-~ 6*SH(X) ira ~ H R D 2 '

Proof . We start with (vi) and we in t roduce the auxi l iary no t ion of the

mult iset of direct subterms D S (T) of a term T:

D S (a) = 0

D S (a * x) = D S (x)

D S (x + y) = D S (x) CA D S (y)

D S (x [] y) = {x [] y} CA D S (x) CA D S (y) (here [] i s . ,]l, I I , or l)

D S (S n (x)) = D S (x) .

Here O denotes the mult ise t un ion . Let [S] be the m a p p i n g f rom terms to

co × co defined by

[s]=(ISl, llSIl .

PROCESS ALGEBRA FOR COMMUNICATION 121

This mapping is extended to multisets over terms, thus producing multisets

over e) × co:

Iv] = {IS] ps~ v}.

On eo × co there is the lexicographic well-ordering < which indujzes a well-

ordering ~ on finite multisets over co × ~o. We now observe that along a

reduction path

To~o r, 7' , r2 W ' " '

we have

and

[DS(T~)] > [DS(T~+,)]

[DS(TO] = [DS(T~+ 1)]

if R i is not RA1, RA2, RA2',

if R i is RA1, RA2, or RA2'.

From this observation strong termination of RACP modulo A1 and A2

follows.

Instead of a proof of the observation we provide two characteristic

examples.

(1) a • x ~ a * x . Then:

IDS(a. x)] = [a . x] C~ [DS(x)I and lDS(a*x) = [DS(x)].

Now [a • x] majorizes each element of [DS(x)] because

[sl ~ [DS(x)] ~ pSJ < Ixl ~ ISl < la . xl.

Hence [DS(a. x)] > [DS(a*x)].

(2) xdly--,x~_y+y[[x + x] y . Then:

[DS(x IlY)] = [x IlY] ~ [DS(x)] C_3 [DS(y)]

and

[DS(x [[_ y + y ~_ x + x l Y)] = [x [[_ y] 0 [DS(x)] Ca [DS(y)]

CJ [y L x] © [DS(x)] CO [~S(y)]

CO [x]y] C) [DS(x)] C) [DS(y)].

Again Ix [I Y] majorizes all of [x [[_ y], [y U_ x], [x l Y], lOS(x)], [OS(y)], the
first three in width and the second two in depth.

An alternative proof of termination can be given by ranking all

122 BERGSTRA AND KLOP

occurrences of [I, 1[_, [by the [.I-norm of the term of which they are the

leading operator. Using this extended set of operators a recursive path

ordering can be found which is decreasing in all rewrite steps except the first

three (RA1, RA2, RA2'). See Dershowitz (1982). A proof along this line

has been given in Bergstra and Klop (1984b).

Proof of (v). RACP is weakly confluent modulo ~, the congruence

generated by A1 and A2. (We are here working in congruence classes and

reductions have the form [S] ~ - IS'] whenever S--S ' .) This is a

matter of some 400 straightforward verifications. (Of course left to the

reader as an exercise.)

Proof of (vii). Working modulo ,-~ RACP is strongly terminating in view

of (vi). Now combining (v) and (vi) and using Newman's lemma (see Klop,

1980, Lemma5.7.(1); or Huet, 1980, where more information about

reduction modulo equivalence can be found), we find that RACP is confluent

modulo ~ and consequently it is confluent because the reductions generating

are symmetric.

Proof of (ii). This follows immediately from (vi).

Proof of (iv). First one proves the associativity of • for terms not

containing I[, [[-, [, c~H using induction on the structure of S. The result then

immediately folows using (ii).

Proof of (i). S = g T ~ A C P ~ S = T is immediate. For the other

direction one uses (iv).

Proof of (iii). If ACP ~- S' = S" then by (i) S' =R S" and by (vii) for

some S ' : S ' --- S"' and S" --- S " (here --0 is the transitive reflexive closure

of ~). Now because S' and S" are free of II, II, 1, c~H we see that

S' --- S" ~ S" is just a proof in A1,..., A7.

3.4. THEOREM.

(1)

(2)

(3)

(4)

(5)

(6)

The following identities hold in (Ao~, +,., II, L, I, c~H):

xty=ylx

xlly=yllx
x l (y l z) : (x l y) [z

(x L y) [k z = x l l (yll z)

xl(yll z)=(xly) l l z

x I] (y II z) -- (x II y)II z.

Proof. All proofs use induction on the structure of x,y, x written as a

term over (A, +, -), which is justified by Theorem 3.3 (ii). We write

PROCESS ALGEBRA FOR COMMUNICATION 123

x = Y" a~xi + ~ a j
i j

Y = Z b k Y k + Z b [
k 1

Z=VCmZm+ZC;.__
m l l

(1) and (2) are proved in a simultaneous induction:

x]y = ~ (a i I bk)(Xi II Yk) + Z (ai I b[) x i

+ Z (aj p bk)yk +~. (aj [b/)

= y' (b~ I a,)(yk II x,) + Z (b; I a,) x,

+ ~ (bk[aj)Yk + ~ (b; [a j)=Ylx .

Here we use C1 and the induction hypothesis for x i H Yk =Yk [] Xi"

(2) x [l y = x k y + y L x + x l y = y L x + x L . v + y l x = y H x . The
proof of (3),..., (6) is also done using one simultaneous induction.

(3) Write x = x' + x", where x' -- Y~ aix i and x" = ~ aj . Likewise

y = y ' + y " a n d z = z ' + z " . T h e n

x[(y l z) : x ' l (y ' [z ')+ x '] (y"]z ')+ x ' l (y ' [z")

+ x' I (y" I z ")+x" r (y ' Iz ')+ x" I (y" Iz')

+ x" [(y ' [z") + x " l (y "]z").

Now

x' l (y' [z') = X (ai P (bk [cm))(xi II (Yk II gm))

= V ' ((ai I b~)lcm)((xi Pl Y~)II Zm)

= (x' [y') [z'.

Here we used C2 and the induction hypothesis for (6). The other summands

of x[(y [z) are treated similarly. Hence x] (y I z) = (x I y) [z.

(4)

(x L y) L z = atx~ + ~ aj

=(~va_.ai(xil]y)+X~aj'y)[l_z

124

(5)

BERGSTRA AND I~LOP

= ~ a,((x, tl Y)II z) + Y'aj(y II z)

= ~ ai(xi II (Y II z)) + ~ aj(y II ~)

= (~ a,x, + ~ afi) L (y ll z)

= x k (Y II z).

Let x = x ' + x " and y = y ' + y " as in the proof of (3). Then

(induction hypothesis on (6))

Now

x'l(y'L z)=

xl (yL z)=x' l(y ' L z)+ x'i(y" k z)

+ x" I (y' kz)+x" l (y" Lz) .

(~_.a,xi) i (~.~_~bk(ykliz))

(a, I b~<)(x, II (Y~ II ~)) = . L . .

= S ~ (a, [bk)((x , II y~)II z) A.,,.a

=(x ' ly ')kz .

(induction hypothesis on (6))

The other three summands are treated similarly. Hence x I (y[L z) =

(x l y)L ~.

(6) Write Ax(y, z) = x N (y II z) and Bx(y, z) = (y I z) L x. Then:

x II (y II z) = x L (y II z) + (y I[z) L x + x l (y II z)

=Ax(y,z)+(yll z) ll x + (z L y) L x

+ (y t z) L x + x l (y l l z) + x t (z L y) + x l (y l z)

=Ax(y,z) +y k (z I]x) + z k (y I]x) +Bx(y,z)

+ (x] y)L z + (xlz)[L_y + x] (y[z)

=Ax(y,z) + Ay(z,x) + Az(y,x) + ~x(y, z)

+ Bz(y, x) + By(x, z) + x] (YlZ). (,)

PROCESS ALGEBRA FOR COMMUNICATION 125

Also

(x II y) z = ~ II (x II y) = z II (y II x)

= Az(y, x) + A y(x, z) + Ax(Y, z) + Bz(y, x)

+ ~x(y, z) + B,,(~, x) + z I (y l x)

= AAy, ~) + AAx, ~) + Az(y, x) + Bx(y, z)

+ B~(z, x) + Bz(y, x) + (xl Y) Iz,

which equals (,) using the commutativity of the A's and B's and the

induction hypothesis on (xl y)!z.

3.5. Remark. The identity (4) in Theorem 3.3 also holds for the operator

7 in Hennessy (1981a) (discussed above in Remark 3.1(iv)); indeed this

identity (x 7Y) 7 z = x 7 (Y II z) occurs in (Hennessy, 1981a). Note that the

identity follows from Theorem 3.4 and the definition of Y, that is

x T y = x ~ _ y + x l y , as follows:

(x yy) y z - - (x ~ y) yz + (xf y) yz

= (x k y) g z + (x L y) I ~ + (xly)ll ~ + (x l y) l z

(Theorem 3.4)

(CM9) = x ~ _ (y l l z) + x I (z L y) + x I(y[[z) + x I (yIz)

= x L (y t l z) + x l (z k y + y k ~ + y l z) (CM1)

= x k (y l lz)+ x I (y l l z)=xT(y l l z) .

3.6. Remark. Note that Theorem 3.4 (2), (4), (5) hold afort iori for the

initial algebra of PA in Table II, since PA is the specialisation of ACP where

communication is absent (x l y = ~).

4. MERGING WITH MUTUAL EXCLUSION OF TIGHT REGIONS: AMP

4.1. The Tight Region Operator

In the framework of ACP as introduced above, one can treat process

cooperation where processes have tight regions which are to be executed

without any interruption. This is substantially more complicated (see

Remark 4.2.3 below) than the following more direct way: Table VI contains

an axiom system AMP for processes with tight regions without

communication. It is an extension of the axiom system PA for free merge in

Table II: the additions in the signature consist of an unary operator x ~-~ x,

126 BERGSTRA AND KLOP

the tight region operator (in the literature x is also denoted as (x)), and an

inverse operator 0 which removes the constraints of tight regions. Intuitively,

the underlined parts in a process expression (the tight regions) are to be

executed in a cooperation as a single atomic step--that is, no interruption by

an action from a parallel process is possible. Indeed we have as an

immediate consequence of axioms CRM1 and M1 in Table Vh

4.1 .1 . PROPOSITION. ~ 11 _F = X - y + . . y - =X'.

Note that in general x kl Y v~ _x [I _Y. A prooftheoretical analysis of AMP can

be given analogous to the one in Section 3 for ACP, resulting in

4.1.2. THEOREM. (i) Using the axioms M1-M4, TR1-TR3, TRM1,

TRM2, F1-F4 as rewrite rules from left to right, every closed term T in the

signature of AMP can be proved equal to a unique basic term T' (i.e., a term

built from + , . only and modulo A1-A5) .

(ii) AMP is a conservative extension of PA. Hence AMP is consistent.

Writing n(T) for the unique basic term T' as in Theorem 4.1.2(i), it is easy

to assign the ("intuitively" correct) semantics ~/AMp(T) in (-4o,, + , ") to a

closed AMP-term T:

~ M s (T) : ~n(fb(T))~,

where ~ ~ is the semantics of basic terms in (Ao), +, •); E.g.,

~'AMV(a~ b II cd) = abed + edab.

TABLE VI

AMP

x + y = y + x

(x + y) + ~ = x + (y + ~)

X + X = X

(x + y) z = xz + yz

(xy) z : x(yz)

xll y = xll_ y + y~_x

a~ x ~ a x

ax~_y = a(x JI y)

(x + y) L z = x L z + y i l z

a ~ a

x + y =_x +_y

x = x

A1

A2

A3

A4

A5

M1

M2 _x k y = _ x .y

M3 _x .y l]_ z = _x(y I] z)

M4

TR1 O(a) = a

TR2 q~(x + y) =- O(x) + O(Y)

TR3 0(_x) = ¢(x)

O(x.y) = 0(x) . 0(Y)

TRM 1

TRM2

F1

F2

F3

F4

PROCESS ALGEBRA FOR COMMUNICATION 127

4.2. Tight Multiplication

A shortcoming in expressive power of the tight region operator in AMP is

that it does not allow us to specify a process a . (b. x + e . y) with the

restriction that only after the first step a and before the subprocess bx + ey

no interruption by a parallel process is possible. Therefore we consider a

binary operator : ("tight" multiplication) with the interpretation that x :y is

like x . y but with the proviso that in a merge, no step from a parallel

process can be interleaved between x and y. Then a: (b. x + c . y) is the

process intended above. Table VII contains an axiom system AMP(:) which

is an extension of AMP by this new operator and corresponding axioms.

The axiom system AMP(:) is redundant when only f inite processes are

considered: then _ can be eliminated in favor of " :" (but not, as just

remarked, reversely), and also for finite processes some of the axioms in

AMP(:) can be proved inductively from the other, e.g., TR3.

The operator " :" has distinct advantages above "_ ": apart from its

greater expressive power, it is more suitable for a treatment of infinite

processes, both via projective sequences (as used above) and via bisimulation

(not considered here).

A prooftheoretical analysis can be given analogous to the one in Section 3

for ACP and yielding a result analogous to Theorem 4.1.2. Likewise each

closed AMP(0-term T has an obvious semantics J/AMP(:)(T) in (Ao,, +, "),

similar to the case of AMP. (We will drop the subscript AMP(:) sometimes.)

TABLE VII

AMP(:)

x + y = y + x A1

(x + y)+ z = x + (y + z) A2

x + x = x A3

(x + y) . z = x ' z + y • z A4

(x . y) . z = x . (y.z) A5

x]] y = x L y + y L x M1

a k y = a y M2

ax Ly = a(x !l y) M3
(x + y) ~_ z = x ~ z +yl~_ z M4

a ~ a

x + / =_x+_y

X~_X

x . y = x : y

x : y = x : y

(x + y) : z = x :z + y :z

(x : y) : z = x : (y : z)
(x : y) . ~ = x : C y . z)
(x. y) : z = x . (y:z)

(a : x) L y = a : (x L y)

TRa 0(~)="
TR20(x+Y)=O(x)+O(Y)
TR3 0(_x) = O(x)
TR4 O(x.y)= 0(x). 0(Y)
TR5 0(x :y)=O(x). 0(Y)

AT1

AT2

AT3

AT4

TRM

F1

F2

F3

F4

F5

643/60/1-3-9

128 BERGSTRA AND KLOP

EXAMPLE. ~¢'(a : b IIe : d) =abcd + edab.

Note that J~" is a homomorphism w.r.t. + and . , but not w.r.t. [I. As before

we have by a simple inductive proof:

4.2. i. THEOREM. For all x, y, z in the initial algebra of AMP(:) we have:

(i) (x~_y)~ z = x [[_ (y l { z)

(ii) (x }l y) }l z = x ll (y]l z).

4.2.2. Remark. Note that the axioms in Table VI for :AMP:

x ~_ y = xy (TRM1)

xy k z = _x(y II z) (TRM2)

and their immediate consequence

x II y = xy + y x (Proposition 4.1.1)

can now be proved in AMP(:) from the axiom

(a : x) [1_ Y = a : (xU_ y) (TRM)

for finite closed terms (using an induction on term formation).

4.2.3. Remark. AMP(:) can be "implemented" by ACP in the following

sense. Let P, Q, R be closed AMP(:)-terms (the general case involving terms

P1,... ,P, is similarly treated). Then we have in (Ao,, +, .,d), the initial

algebra of A1-AT:

~g'AMP(:)(P H Q II R) . ~ = ~ACP(~n(e i I1 ~ ' II Rt II C)'t), (:~)

where ~d/a~v(:), defined above, yields the semantics in (A~o, + , . , 3) of the

AMP(:)-term P ll Q [IR and ~Zhc v is the semantics of the AeP-term

cgH(-P' II Q' II ~R'II C)" in that algebra. Here the terms P ' , Q', ~ ' , and C are
defined as follows:

(i) _P results from P by replacing every substring a: by a. , whereg is

a new atom; e.g. a 1 : (a 2 • a 3 + a 4 : as) yields a 1 • (a2 • a 3 q-~a4 • a s) - Likewise
for Q, R.

(ii) _P', Q', B ' are copies of ~P, Q, R obtained by renaming such that

their alphabets are pairwise disjoint. Say P ' contains only actions a i, aj; Q'

contains only actions _bk, bl; and/~ ' only g~, e,.

(iii) The control process C has alphabet {a,g, fl, L/, 7,7} and is recur-
sively defined by

PROCESS ALGEBRA FOR COMMUNICATION 129

C = C~ + C a + Cy

C ~ = a . C + g . C~

C~=~. C +~. C~

C~= y. C +_7 • Cy.

(iv) The communication function to be used in evaluating the merges

in the RHS of (*) is given by

0

a I_a; = a , ? , a I a j = a i ,

and likewise for fl, 7. All other communications equal 3. H contains all

communication actions a, a,..., a i , ay,....

Further, a n (" ') " in the RHS of (*) denotes a suitable renaming of c~u(...)

into the original alphabets of P, Q, R.

Finaly, the presence of c~ in the LHS of (,) is due to the fact that C has no

finite branches.

5. MERGING WITH COMMUNICATION AND MUTUAL EXCLUSION

OF TIGHT REGIONS: A C M P

The facilities of merge with communication (ACP) and merge with mutual

exclusion of tight regions (AMP(:)) can be joined in a smooth way. (This is

not self-evident; e.g., it seems not clear at all how to join tight multiplication

as in AMP(:) with r-steps.)

The result of this join is the axiom system ACMP in Table VIII. The left

column contains ACP with a slight alteration for convenience: CM5* is

added (cf. Tables III and VIII) which saves us some axioms. The right

column consists of the axioms in AMP(:) (see Table VII) for the operators :,

_, and gt, where the axiom

(a :x) L y = a : (x U_y) TRM

is now "extended" to

(a : x) L y = a : (x ~ _ y + x l y) CTRM1.

The axiom C T R M I can be understood as follows: The process (a :x) [l_y

has a double commitment: [L insists that the first step in the cooperation

between a : x and y is taken from a : x and : insists that after performing a, a

step from x must follow without interruption. This double restraint is

respected in a : (x [I_Y +x lY) . After a, the required step from x may be an

"autonomous" step of x, as in x [I_Y, or a simultaneous step in x and y, as in

130 BERGSTRA AND KLOP

x ly. (Note that when communication is absent, i.e., x [y = 3, CTRM1

specializes to TRM.) Moreover axiom AT5 is new and so are

CTRM2-CTRM4 which specify : versus [.

By means of a tedious prooftheoretic analysis analogous to the one for

ACP one can prove consistency of ACMP and that ACMP is a conservative

extension of both ACP and AMP(:). Also associativity of II holds for

ACMP; intuitively this can be seen via a graph representation of closed

ACMP-terms as in Example 5.1.

It turns out that the combination of asynchronous cooperation as in ACP

with "tight" multiplication as in AMP(:) is able to give an interpretation of

synchronous cooperation. This will be stated more precisely in the next

section where a direct axiomatisation of synchronous cooperation is given.

5.1. EXAMPLE. a : b [] e : d = a : b l l c : d + c : d [L _ a : b + a : b [c : d

= a : (bc : d + b [c : d) + e : (da : b + d l a : b) + (a l c) : (b [d) = a : (be : d

TABLE VIII

A C M P

x + y = y + x A1 (x + y) : z = x : z + y : z AT1

(x + y) + z = x + (y + z) A2 (x : y) : z = x : (y : z) AT2

x + x = x A3 (x :y) • z = x : (y . z) AT3

(x + y) z = x z + y z A4 (x . y) : z = x . (y : z) AT4

(xy)z=x ' (yz) A5 ~ : x = ~ AT5

x + ~ = x A6

~ x = 6 A7 (a:x)ll y = a : (x L y + x [y) CTRM1

(a :x) l (b :y) = (alb) : (x I y) CTRM2

(a : x) I (by) = (a I b) : (x ~_ y + x I Y) CTRM3

(a :x) ib= (a 1 b) :x CTRM4

a l b = b l a C1

(alb) l c = a l (b [e) C2

a l f i = f i C3

x I l y = x U _ y + y L x + y l x CM1 a = a TR1

a[l_x=ay CM2 x + y =_x+_y TR2

ax [~ y = a(x II Y) CM3 _x = x TR3

(x+y) l k z = x L y + y L z CM4 x . y = _ x : y TR4

x I y = y l x C M 5 * x :y =_x :y TR5

a lby = (a]b)y CM6

ax lby=(a lb) (x l l y) CM7 ¢ i (a) = a F1

(x +y) l z = x l z +y[z CM8 (J(x +y)=(~(x)+O(y) F2

O(x) = O(x) F3

~H(a)=aifaC£H D1 O(x'Y)=O(x) • O(Y) F4

~ l (a) = 6 i f a ~ H D2 O(x:y)=O(x).(J(y) F5

~,~(x + y) = ~,,(x) + ~,,(y) m
OH(x. y) = O~(x) • ~H(Y) D4

a

(a)

PROCESS ALGEBRA FOR COMMUNICATION

b

~ 1 d d b

> 0 a c
b

b d

(b)

FIGURE 1

131

+ (b l c) : d) + c : (da : b + (d l a) : b) + (a l c) : (b l d). There is a simple

graphical method for evaluating such expressions, as suggested by Fig. la.

(This is moreover relevant since it enables us to define simple graph models

for ACMP; we will not do so here.) In the figure black nodes indicate tight

multiplication. After "unraveling" shared subgraphs we arrive at the correct

evaluation of a : b][e : d, as in Fig. lb. (For the merge][in PA and ACP

there are analogous ways: merging two process graphs in the PA sense

consists of taking the full cartesian product graph; in ACP diagonal edges

for the results of communication have to be added. See Bergstra and Klop,

1983a).

6. SYNCHRONOUS COOPERATION: ASP

We will briefly comment in this section on the distinction between

asynchronously versus synchronously cooperating processes (in the sense of

Milner 1983); ACP, just as CCS, describes the asynchronous cooperation of

processes. The axiom system ASP in Table IX describes synchronous

cooperation of processes, in the sense that the cooperation of processes

PI,... ,Pn, notation P1 I P21 "" I Pn, proceeds by taking in each of the Pi

simultaneously steps on the (imaginary) pulses of a global clock.

Formally, the relation of ASP to ACP is clear; it originates by leaving out

the results of the free merge, that is, in axiom CM1 of ACP

xHy=xU_y+yll x+xly,

the first two summands are discarded (so that [[is in effect [, the

communication merge).

132 B E R G S T R A A N D KLOP

TABLE IX

ASP

x + y = y + x A1
(x + y)+ z = x + (y + z) A2
x + x = x A3
(x + y) z = xz + yz A4
(xy) z = x(yz) A5
x + f = x A6
6x=6 A7

a l b = b l a C1
(alb) lc =al (bit) C2
a l6=b C3

(x + y) l z = x l z + y l z SM1
xl (y + z) = x l y + x[z SM2
axlby = (a] b)(xl y) SM3
a]by= (alb)y SM4
ax] b = (a I b) x SM5

ASP bears a strong resemblance to Milner's SCCS (Milner, 1983) (see

also Hennessy (1981); the most notable difference is 6 which does part of the

work done in SCCS by restriction operators. (In SCCS "incompatibility" of

atoms a, b cannot be expressed, so that certain superfluous subprocesses of a

cooperation must be pruned away after the evaluation of the cooperation by

a restriction operator. In ASP this incompatibility is stated as a [b = 6.)

Another notable difference is that SCCS admits also infinite sums.

Milner (1983) gives an ingenuous implementation of asynchronous

processes (as in CCS) in terms of SCCS, via some "delay-operators" and

argues that synchronous cooperation is a more fundamental notion than

asynchronous cooperation. However, the reverse position can be argued too,

since many synchronous processes can be implemented in ACP (see

Remark 6.3).

Synchronous cooperation as axiomatised by ASP can be interpreted in

ACMP, as the next theorem states (the routine proof is omitted).

6.1. THEOREM. L e t x, y be basic terms. Then x] y evaluates in ASP to

the same basic term as O(_x l y_) in ACMP.

Phrased differently, Theorem 6.1 says that in the algebra

~ - = (A, + , . , :, II, lk, I, I* ,_ , 0, ~,~, ~)

PROCESS ALGEBRA FOR COMMUNICATION 133

which has as reducts

(A,+, .,)*, ~),

the initial algebra of ASP, and

(A, +, . , 11, L, I, : ,_, 0, ~. , a),

the initial algebra of ACMP, we have

d ~ x l * y = O (x l y _) .

6.2, EXAMPLE. 0(ab 1 ~) = 0(a : h I e : d) = O((a I e) : (b d)) = (a I

c)(b l d) = ab 1" cal.

6.3. Remark. Another possibility, only slightly less direct than the inter-

pretation in ACMP above, is to "implement" ASP in ACP as follows. Let

PII"" IP, be a closed ASP-term; the P~ are basic. Let A~c_A be the set of

actions occurring in Pi (i= 1,..., n), and H=A~ U ... U A , .
Suppose that H does not contain results of H-communications:

H N (H I H U H I H I H C) "..) = 0 .

(Here H IH= {e{ ~a, b ~ H a I b = e}, etc.) Then

~gAsP(P, I " "]P.)= JfAcp(CqH(P, II "'" II P.)),

where ~ s ~ , ~-fAce denote the semantics of ASP-, ACP-terms in the

respective initial algebras.

6.4. EXAMPLE. In ASP: abled= (ale)(bld). Suppose a l e,

{a, b, e, d} = H, then also in ACP:

~u(ab I] ed) = ?~(ab ~_ ed) + ~H(ed ~_ ab) + ~H(ab [ed)

= ~g(a(b [[cd) + e~l(e(d II ab)) + ~H((a I C)(C }1 d))

: ~ + a + (a I e)(b I d) = (a l e)(bld) .

b l d ~

6.5. Remark. Asynehronous communication. There does not seem to be

a consensus as regards the use of the terms "synchronous" vs.

"asynchronous." The terminology that we have adopted and used in the

preceding pages, distinguishes "cooperation" from "communication" and is

stated more explicitly as follows:

(i) ASP, SCCS have synchronous cooperation and synchronous com-

munication;

134 BERGSTRA AND KLOP

(ii) ACP, CCS have asynchronous cooperation and synchronous com-

munication.

(iii) ACMP combines synchronous and asynchronous cooperation

and has synchronous communication.

A third format, not considered above but used in some programming

languages, is "asynchronous cooperation with asynchronous

communication." Here the communication is asynchronous in the sense that,

e.g., a process P sends a message c! to a process Q such that P can proceed

while the message c! to Q is "on the way."

7. CONCLUDING REMARKS

We have introduced axiom systems as in the enclosed part of Fig. 2. Here

each heavy arrow denotes a conservative extension, the arrow from ASP to

ACMP denotes an "interpretation" and the dashed arrows denote an

"implementation" (in the vague sense of a less direct interpretation).

For the main axiom system ACP basic properties such as consistency and

an elimination theorem have been proved. For the other systems similar

results follow by a similar proof. It is claimed that ACP and the other axiom

systems codify central concepts in concurrency: free merge, merge with

communication by action sharing, merge with mutual exclusion of tight

regions, synchronous vs. asynchronous process cooperation. Also some of

these concepts are shown to be related as indicated in the diagram in Fig. 2.

Clearly, as we discussed in the Introduction, this work is strongly related

to other algebraic approaches of concurrency. In this paper we did not study

the effect of adding mechanisms for recursive definitions, such as /L-

expressions (cf. Milner, 1982), or systems of recursion equations as in

Bergstra and Klop, 1984a). For each of the systems such an addition is

possible; for BPA, PA, and ACP the relative expressive power, after adding

recursion facilities, is studied in (Bergstra and Klop, 1984a). For instance,

BPA ~ PA) ACP

ASP

,) ACP~) ACP~+ rules

FIGURE 2

PROCESS ALGEBRA FOR COMMUNICATION 135

one can show that the process B recursively defined by B = (aa' + bb') U_ B

over PA cannot be recursively defined over BPA, i.e., without merge or left-

merge. (B is the behaviour of a "bag" over a data domain consisting of two

elements.)

Also not touched in this paper is the problem of abstraction ("hiding"). In

(Bergstra and Klop, 1984b) an extension ACP~ (see Fig. 2) of ACP has been

defined and studied, which basically consists of ACP plus Milner's r-laws, in

order to deal with abstraction of internal steps. An application of ACP

yielding such internal steps, is given in (Bergstra and Klop, 1983a), where

the operational semantics of data flow networks is defined in terms of ACP.

Further applications of ACP include finite specifications of the behaviours of

processes like stack, bag, and queue, as well as algebraic verifications such

as that the juxtaposition of two bags is again equivalent to a bag--after
abstraction from internal steps. In (Bergstra and Klop 1983b) a connection

between processes and abstract data types is investigated, with the purpose

of providing the means of validating some process specifications against their

abstract data types specifications.

In (Bergstra and Klop, 1984c) a simple version of the alternating bit

protocol is proved correct in the framework of ACP, plus some extra rules,

using only algebraic calculations.

There exists a rich model theory for ACP. In this paper we have only

mentioned (apart from the obvious initial algebras) the projective limit

algebra. A fruitful concept for building process algebras is the notion of

bisimulation (see Park, 1981) between process graphs. Process algebras

obtained in this way are defined and studied in (Bergstra and Klop, 1984b).

We would like to mention that K. Ripken pointed out a serious error

regarding terminology in an earlier version of this paper. In particular we

incorrectly used "critical region" instead of "tight region"--the difference

being that critical regions allow interleavings by other actions provided these

are not themselves contained in a critical region.

RECEIVED: September 1, 1983; ACCEPTED: March 7, 1984

REFERENCES

BACK, R. J. R., AND MANNILA, H. (1982a), A refinement of Kahn's semantics to handle

nondeterminism and communication, in ACM Conf. on Principles of Distributed
Computing, Ottawa.

BACK, R. J. R., AND MANNILA, H. (1982b), "On the Suitability of Trace Semantics for

Modular Proofs of Communicating Processes," Dept. of Computer Science, University of
Helsinki.

DE BAKKER, J. W., AND ZUCKER, J. I. (1982a), Denotational semantics of concurrency, in

"Proc. 14th ACM Sympos. on Theory of Computing," 153-158.

DE BAKKER, J. W., AND ZUCKER, J. L (1982b), Processes and the denotational semantics of

concurrency, Inform. Control 54, No. 1/2, 70-120.

136 BERGSTRA AND KLOP

DE BAKKER, J. W., BERGSTRA, J. A., KLOP, J. W., AND MEYER, J.-J. CH. (1983), Linear time

and branching time semantics for recursion with merge, in "Proc. 10th Int. Colloq.
Automat. Lang. & Programming, Barcelona" (J. Diaz, Ed.), Lecture Notes in Computer

Science No. 154, 39-51, Springer-Verlag, New York/Berlin; expanded version, Theoret.

Comput. Sci., in press.

BERGSTRA, J. A. AND KLOP, J. W. (1983a), "A Process Algebra for the Operational

Semantics of Static Data Flow Networks," Report IW222/83, Mathernatisch Centrum,

Amsterdam.
BERGSTRA, J. A. AND KLOP, J. W. (1983b), "An Algebraic Specification Method for

Processes over a Finite Action Set," Report IW 232/83, Mathematisch Centrum,

Amsterdam.

BERGSTRA, J. A. AND KLOP, J. W. (1984a), The algebra of recursively defined processes and

the algebra of regular processes, in "Proc. l lth Int. Colloq. Automat. Lang. &

Programming, Antwerpen " (J. Paredaens, Ed.), Lecture Notes in Computer Science
No. 172, 82-94, Springer-Verlag, New York/Berlin.

BERGSTRA, J. A. AND KLOP, J. W. (1984b), "Algebra of Communicating Processes with

Abstraction," Report CS-R8403, Centrum voor Wiskunde en Informatica, Amsterdam.

BERGSTRA, J. A. AND KLOP, J. W. (1984c), "Verification of an Alternating Bit Protocol by

Means of Process Algebra," Report CS-R8404, Centrum voor Wiskunde en Informatica,

Amsterdam.

BERGSTRA, J. A. AND KLOP, J. W. (1984d), "Fair FIFO Queues Satisfy an Algebraic

Criterion for Protocol Correctness," Report CS-R8405, Centrum voor Wiskunde en Infor-

matica, Amsterdam.

BROOKES, S. D. (1983), On the relationship of CCS and CSP, in "Proc. 10th Int. Colloq.

Automat. Lang. & Programming, Barcelona" (J. Diaz, Ed.), Lecture Notes in Computer

Science No. 154, 83-96, Springer-Verlag, New York/Berlin.

BROOKES, S. D. AND ROUNDS, W. C. (1983), Behavioural equivalence relations induced by

programming logics, in "Proc. 10th Int. Colloq. Automat. Lang. & Programming,

Barcelona" (J. Diaz, Ed.), 97-108, Lecture Notes in Computer Science, Springer-Verlag,

New York/Berlin.

DERSHOWITZ, N. (1982), Orderings for term-rewriting systems, Theoret. Comput. Sci. 17,

279-301.

GRAE, S. AND SIFAKIS, J. (1984), A modal characterization of observational congruence on

finite terms of CCS, in "Proc. l lth Int. Colloq. Automat. Lang. & Programming,

Antwerpen" (J. Paredaens, Ed.), Lecture Notes in Computer Science No. 172, 222-234,

Springer-Verlag, New York/Berlin.

HENNESSY, M. (1981a), "On the Relationship Between Time and Interleaving," Univ. of

Edinburgh.

HENNESSY, M. (1981b), A term model for synchronous processes, Inform. Control 51, 58-75.

HENNESSY, M. (1982a), "Synchronous and Asynchronous Experiments on Processes," Report

CSR-125-82, Univ. of Edinburgh.
HENNESSY, M. (1982b), "Axiomatising Finite Delay Operators," Report CSR-124-82, Univ.

of Edinburgh.
HENNESSY, M. (1983), "A model for Nondeterministic Machines," CSR-135-83, Univ. of

Edinburgh.
HENNESSY, M. AND MILNER, R. (1980), On observing nondeterminism and concurrency, in

"Proc. 7th Int. Colloq. Automat. Lang. & Programming," 299-309, Lecture Notes in
Computer Science No. 85, Springer-Verlag, New York/Berlin.

HENNESSY, M. AND MILNER, R. (1983), "Algebraic Laws for Nondeterminism and
Concurrency," Report CSR-133-83, Univ. of Edinburgh; J. Assoc. Comput. Mach., in

press.
HENNESSY, M. AND DE NICOLA, R, (1982), "Testing Equivalences for Processes," Report

CSR-123-82, Univ. of Edinburgh.

PROCESS ALGEBRA FOR COMMUNICATION 137

HENNESSY, M. AND PLOTKIN, G. (1980), A term model for CCS, in "Proc. 9th Mathematical

Foundations of Computer Science" (P. Dembiflski, Ed.), Lecture Notes in Computer

Science No. 88, Springer Verlag, New York/Berlin.

HOARE, C. A. R. (1978), Communicating sequential processes, Comm. ACM 21 666-677.

HOARE, C. A. R. (1980), A model for communicating sequential processes, in, "On the
Construction of Programs" (R. M. McKeag and A. M. McNaghton, Eds.), pp. 229-243,

Cambridge Univ, Press, London/New York.
HOARE, C., BROOKES, S., AND ROSCOE, W. (1981), "A Theory of Communicating Sequential

Processes," J. Assoc. Comput. Mach. 31, No. 3, 560-599.
HUET, G. (1980), Confluent reductions: Abstract properties and applications to term rewriting

systems, J. Assoc. Comput. Mach. 27, No. 4, 797-821.
KLOP, J. W. (1980), "Combinatory Reduction Systems," Mathematical Centre Tracts

No. 127, Mathematisch Centrum, Amsterdam.
MILNE, G. (1982a), Abstraction and nondeterminism in concurrent systems, 3rd International

Conference on Distributed Systems, Florida, Oct. 1982, IEEE. p. 358-364.

MILNE, G. (1982b), "CIRCAL: A Calculus for Circuit Description," INTEGRATION, the

VLSI journal 1 (1983), 121-160.
MILNE~ G. AND MILNER, R. (1979), Concurrent processes and their syntax, J. Assoc. Comput.

Mach. 26, No. 2, 302-321.

MILNER, R. (1980), "A Calculus of Communicating Systems," Lecture Notes in Computer

Science No. 92, Springer Verlag, New York/Berlin.
MILNER, R. (1984), A complete inference system for a class of regular behaviours, .1. Comput.

and Syst. Sci. 28 439-466.

MILNER, R. (1983), Calculi for synchror~y and asynchrony, Theoret. Comput. Sci. 25 (1983),
p. 267-310.

NIVAT, M. (1979), Infinite words, infinite trees, infinite computations, in "Foundations of
Computer Science III.2" (J. W. de Bakker and J. van Leeuwen, Eds.), pp. 3-52,

Mathematical Centre Tracts No. 109, Mathematisch Centrum, Amsterdam.

NIVAT, M. (1980), Synchronization of concurrent processes, in "Formal Language Theory"

(R. V. Book, Ed.), pp. 429-454, Academic Press, New York.

OLDEROG, E.R. AND HOARE, C. A. R. (1983), Specification-oriented semantics for

communicating processes, in "Proc. 10th Int. Colloq. Automat. Lang. & Programming,

Barcelona," 561-572, Lecture Notes in Computer Science No. 154, Springer-Verlag New

York/Berlin; expanded version, Technical Monograph PRG-37, Oxford Univ. Comput.
Lab., February 1984.

PARK, D. M. R. (1981), Concurrency and automata on infinite sequences, in "Proc. 5th GI

(Gesellschaft f/Jr Informatik) Conference, Lecture Notes in Computer Science No. 104,
Springer-Verlag, New York/Berlin.

PRATT, V. R. (1982), On the composition of processes, in "Proc. 9th ACM Sympos. on Prin-
ciples of Programming Languagues," pp. 213-223.

REM, M. (1983), Partially ordered computations, with applications to VLSI design, in "Proc.

4th Advanced Course on Foundations of Computer Science, Part 2" (J. W. de Bakker and

J. van Leeuwen, Eds.), 1-44, Mathematical Centre Tracts No. 159, Mathematisch
Centrum, Amsterdam.

STAPLES, J. AND NGUYEN, V. L. (1983), "A Fixpoint Semantics for Nondeterrninistic Data
Flow," Report No. 48, Dept. of Comput. Sci., Univ. of Queensland, Australia.

WINSKEL, G. (1983a), Event structure semantics for CCS and related languages, in "Proc. Int.

Colloq. Automat. Lang. & Programming, 561-576, Lecture Notes in Computer Science
No. 140, Springer-Verlag, New York/Berlin.

WINSKEL, G. (1983b), Synchronisation trees, in "Proc. 10th Int. Colloq. Automat. Lang. &

Programming, Barcelona" (J. Diaz, Ed.), 695-711, Lecture Notes in Computer Science
No. 154, Springer-Verlag, New York/Berlin.

