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Process Algebra for Synchronous Communication 

J. A.  BERGSTRA AND J. W .  KLOP 

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands 

Within the context of an algebraic theory of processes, an equational 
specification of process cooperation is provided. Four cases are considered: free 
merge or interleaving, merging with communication, merging with mutual exclusion 
of tight regions, and synchronous process cooperation. The rewrite system behind 
the communication algebra is shown to be confluent and terminating (modulo its 
permutative reductions). Further, some relationships are shown to hold between the 
four concepts of merging. © 1984 Academic Press, Inc. 

0. INTRODUCTION 

O. 1. General Motivation: Process Algebra 

Our aim is to contribute to the theory of  concurrency, along the lines of  

an algebraic approach. The importance of a proper understanding of  the 

basic issues concerning the behaviour of  concurrent systems or processes, 

such as communication,  is nowadays evident, and various formats have been 

proposed as a framework for concurrency. Without claiming historical 

precision, it seems safe to say that the proper development of  an algebra of 

processes starts with the work of  Milner (see his introductory work, (Milner, 

1980)) in the form of his calculus of  communicating systems (CCS). Milner 

states his aim in (Milner, 1983) in his own words: " In  a definitive calculus 

there should be as few operators or combinators as possible, each of  which 

embodies some distinct and intuitive idea, and which together give 

completely general expressive power." Milner (1983) proposes SCCS 

(synchronous CCS) based on four fundamental operators, and remarks: 

"These four operators obey (as we show) several algebraic identities. It is not 

too much to hope that a class of  these identities may be isolated as axioms 

of  an algebraic ' concurrency"  theory, analogous (say) to rings or vector 

spaces." These two quotations denote precisely the general motivation 

underlying also the present paper. 

0.2. Aims of  the Present Paper 

More specifically, in this paper we propose an algebra of  processes based 

on elementary actions and on the operators + (alternative composition or 
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choice), • (sequential composition or product) and ]] (parallel composition or 

merge). It turns out that in order to obtain an algebraically more satisfactory 

set of axioms, much is gained with our introduction of an auxiliary operator 

U_ (left-merge) which drastically simplifies computations and has some 

desirable "metamathematical" consequences (finite axiomatisability if the 

alphabet of elementary actions is finite; greater suitability for term rewriting 

analysis) and moreover enhances the expressive power (more processes 

definable). Using these operators we have a framework for processes whose 

parallel execution is simply by interleaving ("free" merge): this is the axiom 

system PA in Table II in Section 1. The axiom system ACP presented below 

in Table III is devised to cover also processes that can communicate, by 

sharing of actions. To this end a constant 6 for deadlock (or failure) is 

introduced, another opera tor : ]  (communication merge), and finally, an 

operator c~ n for "encapsulation" of a process. Also this system, ACP for 

algebra of communicating processes, is a finite axiomatisation of its intended 

models (which we call process algebras). 

Clearly there is a strong relation of the system ACP below to the system 

CCS of Milner. In Milner (1980) some process domains are discussed which 

can be seen as models of ACP. Determining the precise relationship is a 

matter of detailed investigation. In advance to that, one might say that ACP 

is an alternative formulation of CCS, at least of a part of CCS. (In this 

paper we do not discuss the so-called "v-steps," or silent steps, obtained by 

abstraction from "internal" steps.) Notably, several of the ACP operators 

differ from those in CCS: 

(i) multiplication • is general (not only prefix multiplication), 

(ii) NIL is absent in ACP, 

(iii) c5, H, and ] are not present in CCS. 

The merge operator [I is the same as in CCS, though it is differently (namely, 

finitely) axiomatised. In ACP we have no explicit relabeling operators as in 

CCS, or "morphisms" as they are called in Milner (1983), except the encap- 

sulation operators @~/which play the role of "restriction" in CCS and SCCS. 

Also in ACP we have no v-steps (silent steps) and not the well-known v- 

laws (in Milner, 1980) for them; they can be added consistently, and even 

conservatively, to ACP. The resulting axiom system ACP~ is studied in 

Bergstra and Klop (1984b). In general, ACP does not address the 

complicated problem of "hiding" or abstraction in processes. 

The choices of these operators can be seen as design decisions; of course 

the basic insights into the algebraic nature of communicating processes are 

already stated in Milner's book (Milner, 1980). Some of these design 

decisions are motivated by our wish to optimize the facility of doing 

calculations; some others to enhance the expressive power of the system. For 
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instance, having general multiplication available enables one to give a 

specification of the process behaviour of stack in finitely many equations 

which can be proved to be impossible with prefix multiplication (see Bergstra 

and Klop, 1984a). 

An explicit concern in the choice of the axiom systems has been an 

attempt to modularize the problems. Thus PA is only about interleaving or 

as we prefer to call it, free merge, that is, without communication; ACP 

moreover treats communication; AMP treats the merge of processes with the 

restriction of mutual exclusion of tight regions; and ACP~ treats abstraction. 

(See also our Remark 6.5 concerning terminology.) 

Apart from the general motivation to use the system ACP for specification 

and verification of processes, we have been concerned in subsequent work 

with the detailed investigation of several of the models of ACP, as well as 

mathematical properties of this axiom system itself. Also some extensions of 

ACP were studied. This brings us to stating the aim of this paper: it is the 

first of our series of papers consisting of the present one and (Bergstra and 

Klop, 1983a, b; 1984a-d) on process algebra, meant first to present the 

system ACP and second to establish some of its basic mathematical 

properties (notably consistency of the axioms and a normal form theorem for 

process expressions). In the concluding remarks we elaborate on some 

applications which have been realised in these subsequent papers. 

Though our central interest in this paper is for the "general purpose 

system" ACP, we have also formulated some other "special purpose" axiom 

systems: AMP for merging with mutual exclusion of tight regions; ACMP, a 

join of ACP and AMP; and ASP for synchronous process cooperation. 

Some relationships between these systems are shown, e.g., an interpretation 

of ASP in ACMP and an "implementation" of AMP and ASP in ACP. 

O. 3. R elated Approaches 

Since this is not a survey paper and since there are several approaches 

related to the present one, it is not possible to discuss them while doing them 

justice or giving a complete view. Yet we want to mention the following lines 

of investigation. Closest to the present work (and its subsequent work in 

(Bergstra and Klop, loc. cit.) is Milner's CCS, which was above briefly 

compared with the axioms below. Interestingly, Milner has proposed in 

(Milner, 1983) a system SCCS which supersedes CCS and which has as 

fundamental notion: synchronous process cooperation. It is argued that 

asynchronous process cooperation (as in CCS and ACP) is a subcase in 

some sense of the former one. The terminology synchronous versus 

asynchronous is used in a different sense by different authors; see 

Remark 6.5. Again, it would be very useful and interesting to determine the 
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precise mathematical relationships between those systems for synchrony and 

asynchrony; a start has been made in Milner (1983). 

Milner's work has been continued and extended in Hennessy and Plotkin 

(1980) and a series of papers by Hennessy (1981-1983) in which a detailed 

and extensive investigation is carried out often using operational preorders as 

a means of establishing completeness results of various proof systems. 

Completeness here is w.r.t, the semantical notions of observational 

equivalence and/or versions of bisimulation. Hennessy (1982a, 1983) also 

studies the differentiations of + according to whether a choice is made by the 

process itself or by its environment. Further, the work of Hennessy and 

Milner obtains several results in terms of modal characterisations of obser- 

vational equivalence (Hennessy, 1983; Hennessy and Milner, 1980, 1983). 

(See also Graf and Sifakis, 1984; and Brookes and Rounds, 1983.) 

Milne (1982a, b), presents the "dot calculus": here is concurrent 

composition. The dot calculus uses prefix multiplication as in the work of 

Milner and Hennessy (called "guarding" by Milne), operators +, Q for 

choice (by environment resp. internal), A for deadlock as well as successful 

termination. In contrast to CCS as in (Milner, 1980), the dot calculus 

supports not only binary communication but n-ary communication. (The 

latter is also present in subsequent work of Milner and Hennessy; and also in 

ACP.) The dot calculus presents algebraic laws for its operators; for • these 

are rather different than the ones for the corresponding parallel composition 

operators in CCS and ACP. 

In our view there is a noteworthy methodological difference between the 

approaches as mentioned above and the present one. Namely, it has been an 

explicit concern of ours to state first a system of axioms for communicating 

processes (of course, based on some a priori considerations of what features 

communicating processes should certainly have) and next study its models; 

the analogy with the axiomatic method in, say, group theory or the theory of 

vector spaces is clear. For instance, one can study a model of ACP 

containing only "finitely branching" processes; or one might be interested in 

processes which admit infinite branchings (in the sense of +); or, one may 

study the process algebra of regular processes, i.e., processes with finitely 

many "states" (cf. Milner, 1982; Bergstra and Klop, 1984a). Also, one may 

build process algebras based on the fundamental and fruitful notion of 

bisimulation (introduced by Park (1981), as is done in, e.g., Milner 

(1982, 1983); or one may consider process algebras obtained by the purely 

algebraic construction of taking a projective limit (of process algebras 

consisting of finitely deep processes). This list could be extended to some 

dozens of interesting process algebras, all embodying different possible 

aspects of processes. To the best of our knowledge, an explicit adherence to 
this axiomatic methodology at which we are aiming, is not yet fully 

represented in related approaches to the understanding of concurrency. 
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As some other related approaches which are less algebraical in spirit than 

the aforementioned (CCS, SCCS, dot calculus, ACP) and which have a 

more denotational style we mention the work of De Bakker and Zucker 

(1982a, b). They have studied several process domains as solutions of 

domain equations, using topological techniques and concepts such as 

metrical completion, compactness. In fact, their domain of "uniform" 

processes and a question thereabout (see De Bakker and Zucker, 1982a) 

were our incentive to formulate PA as in Table II below. The processes of 

De Bakker and Zucker include several programming concepts which are not 

discussed in ACP. In De Bakker et al. (1983) the central issue of LT (linear 

time) versus BT (branching time), which determines the essential difference 

between trace sets and processes, has been studied• Denotational models for 

communicating processes as in Hoare's CSP (see Hoare, 1978; 1980) have 

also been discussed from a uniform point of view in Olderog and Hoare 

(1983). For work discussing aspects of CCS and CSP, as well as 

connections between these two, we refer to Brookes (1983). Other work on 

concurrency in the denotational style includes Back and Mannila (1982a, b), 

Pratt (1982), and Staples and Nguyen (1983)• Finally, Winskel (1983a, b) 

discusses communication formats in languages such as CCS, CSP. 

1. PRELIMINARIES: PROCESSES WITH ALTERNATIVE 

AND SEQUENTIAL COMPOSITION 

Let A be a f ini te  collection (alphabet) of atomic actions a, b, e ..... (We 

insist on a finite alphabet to safeguard the algebraic nature of the present 

work; specifically we wish to avoid here infinite sums whose algebraic 

specification is much less obvious than that of finite sums.) 

Finite processes are generated from the atomic processes in A using the 

two "basic" operations: 

+:  alternative composition (choice), 

• : sequential composition (produet).  

The following equational laws will hold for finite processes• (See Table I 

where BPA stands for basic process algebra.) Here x , y , z  vary over 

processes• Often x . y  is written as xy. The initial term algebra of these 

equations is (A~o, +, "). The elements of this algebra will be called "basic 

terms," i.e., terms modulo A1-5. 

The main source of process algebra in this style is Milner (1980). Exactly 

the above processes occur as finite uniform processes in De Bakker and 

Zucker (1982a, b). After adding an extra equation: x ( y  + z)  = xy  + xz ,  one 

obtains a version of trace theory as described in Rein (1983)• 
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TABLE I 

BPA 

x + y = y + x  A1 

x + (y + z ) =  (x +y)  + z  12 

x + x = x  A3 

(x + y)  . z = x .  z + y .  z A4 

( x . y ) . z = x . ( y . z )  A5 

For n>/  1 we have the approximation map n , :A ,o~A , ,  ,, inductively 

described by 

~n(X -~ y)  ~--- ~n(X) ~- 7~.(y) 

7rn(a ) = a 

~1(ax )  = a 

7z.+ l ( a x )  = azr,(x) .  

Interestingly, if A n - =  {Tr,(p) l p ~ A  } then (A,,  +~, .,) is another model of  

BPA. Here the operations + ,  and "n are defined by 

x +.y=- ~.(x + y) 

and likewise for product. 

Infinite processes can be obtained as a projective limit, called A ~, of  the 

structures A n. Technically this means that A ~ is the set of  all sequences 

P = (Pl ,PE,P3 .... ) with Pi E Ai and Pi = 7ri(Pi+ 1)- Such sequences are called 

projective sequences. The operations + and • on A co are defined component- 

wise: 

(P + q), =- (p) ,  + (q),, 

(P " q), = 7rn((p)n " (q),), 

where (p) ,  is the nth component  of  p. Thus we obtain the process algebra 

(A °~, +, .). On A °° a metric exists: 

d(p,  q) = 0 

._~. 2 - n  

if p = q, 

with n minimal such that (p) ,  4: (q). if p ¢ q. 

(A ~°, d) is a complete metric space, in fact it is the metric completion of  

(A,o, d). The operations + and • are continuous. (A oo, d) was introduced in 

De Bakker & Zucker (1982a). Milner (1982) uses charts modulo 

bisimulation (from Park, i98i  ) to obtain infinite processes from finite ones. 
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(i) 

(ii) 

(iii) 

(Sect. 4) 

(iv) 

Working with trace sets under the extra assumption x ( y  + z)  = xy  + xz, this 

metric occurs in Nivat (1979). In De Bakker et al. (1983) the connections 

between (A ~, d) and its corresponding trace space are investigated. 

The processes discussed so far are provided with a bare minimum of 

structure. The crux of the algebraic method lies in algebraically defining new 

operators over the given process domains that will correspond to important 

process composition principles. We will describe operators corresponding to 

the following composition principles: 

f ree  merge (Sect. 2) 

merging with communication (Sect. 3) 

merging processes with mutual exclusion f o r  tight regions 

merging with communication and mutual exclusion f o r  tight 

regions (Sect. 5) 

(v) merging with synchronous cooperation (Sect. 6). 

2. FREE MERGE: THE AXIOM SYSTEM PA 

The result of merging processes p and q is p II q. For algebraic reasons 

(finite axiomatisability and ease of computation) an auxiliary operation ~_ 

(left-merge) is used. The process p ~_ q stands for the result of merging p and 

q but with the constraint that the first step must be one from p. Both 

operations [I and ~ are specified on (Ao~, +, .) by Eqs. M1-M4 of the axiom 

system PA in Table II. We call the set of axioms A1-A5 (i.e., BPA) together 

with M1-M4: PA. This axiom system describes the interleaving of processes 

without communication, or as we prefer to call it, the f ree  merge of 

processes. In Table II X,y,z vary over all processes (i.e., elements of an 

TABLE II 

PA 

x + y = y + x  A1 
x+ (y +z) = (x+y) +z A2 
x + x = x  A3 
(x + y) z = xz + yz A4 
(xy) z = x(sz) A5 

x l l y = x L y ÷ y L x  M1 
aU x = a x  M2 
axL y=a(x[] y) M3 
(x + y ) L z = x U _ z + y k z  M4 
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algebra satisfying PA), while a is a variable over A. (This means that M2, 

M3 are axiom schemes, having finitely many axioms as instances.) 

Again the operations are extended to A ~° co6rdinate-wise: 

(Pl ,Pz,...) II (ql, q2,...) = (n~(p~ II qa), 7r2(P2 ]l qz),...) 

and likewise for ~.  We omit the proof that these are indeed projective 

sequences, i.e., that 

7r,(nn+ l(P,+ l II q,+ l)) = 7~,(p, II q,), 

and likewise for k .  It also follows that II and 1_ are continuous w.r.t, the 

metric d. 

3. MERGING WITH COMMUNICATION: THE AXIOM SYSTEM ACP 

In order to describe communication we will need a distinguished symbol 

6 ~ A, describing deadlock or failure. It is subject to the axioms x + 6---x 

and 6x = 6 (A6, A7 in Table III); 6 can be seen intuitively as the "action" 

by which a process acknowledges that it is stagnating. 

Now, starting with (A~o,+, .) plus a communication function • l" : 

A × A -~ A which describes the effect of sharing (simultaneously executing) 

two atomic actions, three operations H, L, and t are defined on A o). Here I, 

the communication merge, extends the given communication function. The 

operators I[ and L coincide with the analogous operators defined in Section 2 

if the effect of a communication a ] b is always 6 (i.e,, no two atomic actions 

communicate). 

For the communication function we require commutativity, associativity, 

and 6]a  = 6 for all a CA (resp. C1, C2, C3 in Table III). The actions c for 

which there exists an action e' such that c le'4= 6 are called subatomic or 

communication actions. 

Furthermore, ]1, k ,  and I are specified by the axioms CM1-CM9 in 

Table III. (See next page.) Table III contains the axiom system ACP, for 

algebra of communicating processes. Here the subset H___ A is a parameter 

of c~n, the encapsulation operator. Its function is to encapsulate a process p 

w.r.t. H, that is, c~H(p) cannot communicate with its environment via 

communication actions in H. In Table III, a and b range over the alphabet A. 

Note that in general ~ H ( x [ l y ) 4 = ~ ( x ) l l ~ l ( y ) .  Thus ~/~ is a 

homomorphism on (A,o, + , . ,  6), the initial algebra of axioms A1-A7, but 

not on (A,,, + , . ,  II, L, I, 6). 

An important observation concerning the difference between processes and 

trace sets is exhibited in the following example. Let A ----- {a, c 1, e2, c, 6} and 
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TABLE III 

ACP 

x + y = y + x  A1 
x +  (y +z )  = (x + y ) + z  A2 
x + x = x  A3 
(x + y) z = xz  + yz  A4 
(xy) z = x ( y z )  A5 

x + ~ = x  A6 
fix = ~ A7 

a ] b = b ] a  C1 
(alb)  l c = a [ ( b L c )  C2 

~ ] a = ~  C3 

xlI y = x L L  y + yLL x + x l  y CM1 
a [1_ x = ax CM2 

(ax) [L y = a(x l[ Y) CM3 
(x + y) L _ z = x [ ~ z  + y [ _ z  CM4 
(ax) I b = (a I b) x CM5 
a [ (bx) = (a [ b) x CM6 

(ax) l (by) = (a I b)(x I[ Y) CM7 
(x + y ) l z =  x l z  + y l z  CM8 
x[ ( y +  z ) = x l y +  x l z  CM9 

c3u(a ) = a ifa ~ H D1 
c3u(a ) = c~ ifa E H D2 

?H(x + y) = ?,,(x) + an(y  ) D3 
~u(xy) = c3~,(x) . c~u(y ) D4 

117 

let C l l C 2  = c. All  o ther  c o m m u n i c a t i o n s  resul t  in 3. Now,  wri t ing c~ for  

C31cl,cz I, we have  

~?(a(c, + c2)II Cl) = a c  and ~?((acl -Jr- ac2)I1 c l )  = a c  + acS, 

so the second  process  a c  1 + ac2 has  a d e a d l o c k  poss ib l i ty  in some  contex t  

where  the first  one,  a ( c  1 + cz), has  not.  

A s  before  II, II, I, and c3 n can  be ex tended  to con t inuous  ope ra t i ons  on 

( A ° ° , d ) .  

This  f o r m a l i s m  inc ludes  bo th  message  pass ing  and sYnchronisa t ion .  In 

Mi lner  (1980)  and De  Bakke r  & Z u c k e r  (1982a,  b)  s y n c h r o n i s a t i o n  is 

mo de l ed  by  having  a I b = r whenever  a I b =/= c5, T denot ing  a s i lent  move.  (In 

this  pape r  we will  not  cons ider  z-steps.)  
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3.1. Remark. A comparison with some operators in related work: 

(i) Milne (1982a) employs an operator A with the axiom x + A = x, 

as our A6. However, A denotes there not only deadlock but also successful 

termination. The same is the case for Milner's constant NIL in (Milner, 

1980). On the other hand, 6 as in Table III  corresponds precisely to the 

"empty" process O in the domain of uniform processes of De Bakker and 

Zucker (1982a, b). There a process ends (in a terminating branch) either in a 

stop process P0 (successfully) or in O (deadlock). 

(ii) Requirements on communication similar to C1-C3 are found in 

Hennessy (1981), except that 6 is absent there but a unit element 1 is 

present; i.e., (.4, 1, 1) is an abelian monoid. See also Milner (1983), who has 

similar postulates, viz. (A, [) is an abelian semigroup; he also works with 

(A, [, 1, - )  as a commutative group. 

(iii) In Hennessy and Plotkin (1980) a definition corresponding to the 

equation CM 1: x I[ Y = x H y + y H x + x l Y occurs. 

(iv) In Hennessy (1981a) an auxiliary operator ? is used which is 

related to our auxiliary operators H and ] as follows: 

x ? y = x L y + x ] y .  

Then one has 

x [1 y = x T y  + y ~ x ;  

also ~ is linear in its left component: 

(x + y) T z = x T z  + y y z .  

(This follows by axioms CM4, CM8 in Table III.) The operator 7 does not 

seem to yield a finite axiomatisation, however. Of course in the absence of 

communication, i.e., x l Y = 6, so that ACP "reduces to" PA, the operators 7 

and U_ coincide. 

3.2. ACP seems to provide a concise formulation of the algebraic 

essence of communication. Therefore we review its structure in detail here. 

We will show that the new operators are indeed well defined by A6, A7, 

CM1-CM9,  D1-D4  over A1-A5 + C1-C3. To this end we will rearrange 

ACP into a TRS (term rewrite system) which is shown to be confluent and 

strongly terminating modulo the permutative reductions A1, A2. As a conse- 

quence we find that each term built from A by + , . ,  H, H,/ ,  c3n can be proved 

equal to a unique term in Ao~ in ACP. 

Finally we prove that I] is associative, as well as several other useful iden- 

tities in Theorem 3.3. 
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For technical reasons we associate to each a ~ A a unary operator a*  

which acts as follows: 

a * x = a  .x .  

(That is, we consider the restriction to prefix-multiplication as in Milner 

(1980, 1982, 1983). For finite processes, as we will consider in the following 

analysis, general multiplication and prefix-multiplication are equivalent. 

Working with prefix-multiplication frees us from considering the permutative 

axiom A5, which is bothersome in a term rewriting analysis, in Table III.) 

On the term system generated by A, + , . ,  II, [1_, l, a*  (a CA) ,  c~n we 

introduce two norms 1.1 and ]I'll. Here intuitively I SI computes an upper 

bound for the path lengths in S and [[SI[ computes an upper bound of  the 

number of (nontrivial) summands in which S decomposes. (See Table IV.) 

Now consider the following term rewrite system RACP (which will only 

be needed for the proof  of Theorem3.3)  in Table V below. Here in 

R C M 5 ' - R C M 7  the symbol ca, b denotes the atom a[b CA.  The axioms 

C 1-C3 of ACP translate into the commutativity and associativity of c and 

c~.a = c~ for all a ~ A. 

In the following theorem, =R denotes convertibility in RACP (i.e., the 

equivalence relation generated by -~). 

3.3. THEOREM. 

(i) ACP ~- 

(ii) ACP ~- 

(iii) ACP ~- 

Jr, tL_, 

(iv) 

(v) 

(vi) 

(vii) 

For all ACP-terms without variables: 

S =  T<=~ S =  R T 

S = S ' f o r  some S'  not containing ]l, ~,  1, ~H 

S '  = S "  "~ A I - A 7  ~- S'  = S" for S' ,  S" not eontaining 

s .  (r .  v)=R (s .  r) .  u 

RACP is weakly confluent, working modulo A1, A2. 

RACP is strongly terminating, modulo A1, A2. 

RACP is confluent (has the Chureh-Rosser property). 

T A B L E  IV 

lal = 1 Ilarl = 1 
la*xl = 1 + Ixl Ila*xPI = 1 

I x.  Y[ = Ixl +lYl IIx" Yll = Ilxl[ 
Ix +Yl = max(lxl, I yl) [Ix+ylI=lfx[l+IlypI 
]x ly ]= lx l+]y[ - -  1 ]lx[y[[=[lxl].[[yl[ 
]x[_y[ = [x[ +[y[ ][x[ky[[ =[IxH 
Lx II Yl = Ixl + l y[ IIx II yll = rlxll + II yll + Hxll. [P ylr 
IO~(x) l  = [x l  [I ~..,,(x)lr = [PxPl 
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TABLE V 

RACP 

x + y ~ y + x  RA1 
x +  (y + z)-~ (x + y) + z RA2 

(x + y )+  z ~ x  + (y + z) RA2' 
x + x ~ x RA3 

(x + y) • z ~ x .  z + y • z RA4 

a • x ~  a*x RAY 
(a'x) . y ~ a*(x . y) RA5 

x + ~ x  RA6 
6*x ~ ~ RA7 

x[] y ~ x ~ y + y k x + x [ y  RCM1 

a U_ x ~ a * x  RCM2 

(a'x) L Y---' a*(x I] Y) RCM3 
(x+y)ll z ~ x L z + y l L z  RCM4 

a Ibsen ,  b RCM5' 
(a*x) ] b--, C*bX RCM5 
a ]b*x~c*bx  RCM6 

(a*x) l (b*Y) ~ c*,b(x I1 Y) RCMV 
(x + y) lz ~ x l z  + y]z  RCM8 
x] ( y + z ) ~ x l y + x [ z  RCM9 

On(a ) -* a ifa ~ H RD1 
8n(a ) ~ ~ ifa E H RD2 
8/~(x +y)  ~ 8H(x ) + 8H(y ) RD3 

8u(x . y ) ~  8H(X ) • ?u(y ) RD3 
8u(x. y) ~ 8u(x ) • 8u(y ) RD4 
8u(a*x) -~ a*8~(x) ifa ~ H RDI '  

8H(a*x)-~ 6*SH(X) ira ~ H R D 2 '  

Proof .  We start  with (vi) and  we in t roduce  the auxi l iary  no t ion  of  the 

mult iset  of  direct  subterms D S ( T )  of a term T: 

D S ( a )  = 0 

D S ( a * x )  = D S ( x )  

D S ( x  + y )  = D S ( x )  CA D S ( y )  

D S ( x  [] y ) =  {x [] y}  CA D S ( x )  CA D S ( y )  (here [] i s . ,  ]l, I I ,  or l) 

D S ( S n ( x ) )  = D S ( x ) .  

Here O denotes  the mult ise t  un ion .  Let [S] be the m a p p i n g  f rom terms to 

co × co defined by 

[s]=(ISl, llSIl . 
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This mapping is extended to multisets over terms, thus producing multisets 

over e) × co: 

Iv] = {IS] ps~ v}. 

On eo × co there is the lexicographic well-ordering < which indujzes a well- 

ordering ~ on finite multisets over co × ~o. We now observe that along a 

reduction path 

To~o r, 7' ,  r2 W ' " '  

we have 

and 

[DS(T~)] > [DS(T~+,)] 

[DS(TO] = [DS(T~+ 1)] 

if R i is not RA1, RA2, RA2',  

if R i is RA1, RA2, or RA2'. 

From this observation strong termination of RACP modulo A1 and A2 

follows. 

Instead of a proof of the observation we provide two characteristic 

examples. 

(1) a • x ~ a * x .  Then: 

IDS(a. x)] = [a .  x] C~ [DS(x)I and lDS(a*x) = [DS(x)]. 

Now [a • x] majorizes each element of [DS(x)] because 

[sl  ~ [DS(x)] ~ pSJ < Ixl ~ ISl < la . xl. 

Hence [DS(a. x)] > [DS(a*x)]. 

(2) xdly--,x~_y+y[[ x + x ] y .  Then: 

[DS(x IlY)] = [x IlY] ~ [DS(x)] C_3 [DS(y)] 

and 

[DS(x [[_ y + y ~_ x + x l Y)] = [x [[_ y] 0 [DS(x)] Ca [DS(y)] 

CJ [y L x ] ©  [DS(x)] CO [~S(y)] 

CO [x ]y] C) [DS(x)] C) [DS(y)]. 

Again Ix [I Y] majorizes all of [x [[_ y], [y U_ x], [x l Y], lOS(x)], [OS(y)], the 
first three in width and the second two in depth. 

An alternative proof of termination can be given by ranking all 
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occurrences of [I, 1[_, [ by the [.I-norm of the term of which they are the 

leading operator. Using this extended set of operators a recursive path 

ordering can be found which is decreasing in all rewrite steps except the first 

three (RA1, RA2, RA2'). See Dershowitz (1982). A proof along this line 

has been given in Bergstra and Klop (1984b). 

Proof of (v). RACP is weakly confluent modulo ~, the congruence 

generated by A1 and A2. (We are here working in congruence classes and 

reductions have the form [S] ~ - IS'] whenever S--S ' . )  This is a 

matter of some 400 straightforward verifications. (Of course left to the 

reader as an exercise.) 

Proof of (vii). Working modulo ,-~ RACP is strongly terminating in view 

of (vi). Now combining (v) and (vi) and using Newman's lemma (see Klop, 

1980, Lemma5.7.(1); or Huet, 1980, where more information about 

reduction modulo equivalence can be found), we find that RACP is confluent 

modulo ~ and consequently it is confluent because the reductions generating 

are symmetric. 

Proof of (ii). This follows immediately from (vi). 

Proof of (iv). First one proves the associativity of • for terms not 

containing I[, [[-, [, c~H using induction on the structure of S. The result then 

immediately folows using (ii). 

Proof of (i). S = g  T ~ A C P  ~ S =  T is immediate. For the other 

direction one uses (iv). 

Proof of (iii). If ACP ~- S' = S" then by (i) S'  =R S" and by (vii) for 

some S ' :  S '  --- S"' and S" --- S "  (here --0 is the transitive reflexive closure 

of ~). Now because S' and S" are free of II, II, 1, c~H we see that 

S' --- S" ~ S" is just a proof in A1,..., A7. 

3.4. THEOREM. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

The following identities hold in (Ao~, +,., II, L, I, c~H): 

xty=ylx 

xlly=yllx 
x l ( y l z ) : ( x l y ) [ z  

( x L y ) [ k z = x l l  (yll z) 

xl(yll  z)=(xly) l l  z 

x I] (y II z) -- (x II y)II z. 

Proof. All proofs use induction on the structure of x,y, x written as a 

term over (A, +, -), which is justified by Theorem 3.3 (ii). We write 
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x = Y" a~xi + ~ a j 
i j 

Y = Z b k Y k + Z b [  
k 1 

Z=VCmZm+ZC;.__ 
m l l  

(1) and (2) are proved in a simultaneous induction: 

x ]y = ~ (a i I bk)(Xi II Yk) + Z (ai I b[) x i 

+ Z  (aj p bk)yk +~.  (aj [b/) 

= y' (b~ I a,)(yk II x,) + Z (b; I a,) x, 

+ ~ (bk[aj)Yk + ~ (b; [a j )=Ylx .  

Here we use C1 and the induction hypothesis for x i H Yk =Yk [] Xi" 

(2) x [ l y = x k y + y L x + x l y = y L x + x L . v + y l x = y H x .  The 
proof of (3),..., (6) is also done using one simultaneous induction. 

(3) Write x = x' + x", where x'  -- Y~ aix i and x" = ~ aj .  Likewise 

y = y ' + y "  a n d z = z ' + z " . T h e n  

x[ ( y l z ) : x ' l ( y '  [z ' )+ x ' ] ( y"  ]z ' )+ x ' l ( y '  [z") 

+ x' I (y" I z " )+x" r (y '  Iz ' )+ x" I (y" Iz') 

+ x" [ (y '  [z") + x " l ( y "  ]z"). 

Now 

x' l (y' [ z') = X (ai P (bk [ cm))(xi II (Yk II gm)) 

= V '  ((ai I b~)lcm)((xi Pl Y~)II Zm) 

= (x' [y') [ z'. 

Here we used C2 and the induction hypothesis for (6). The other summands 

of x[ (y [z) are treated similarly. Hence x] (y I z) = (x I y) [ z. 

(4) 

(x L y) L z = atx~ + ~ aj 

=(~va_.ai(xil]y)+X~aj'y)[l_z 



124 

(5) 
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= ~ a,((x, tl Y)II z) + Y'aj(y II z) 

= ~ ai(xi II (Y II z)) + ~ aj(y II ~) 

= ( ~  a,x, + ~ afi ) L (y ll z) 

= x k (Y II z). 

Let x = x '  + x "  and y = y '  + y "  as in the proof of (3). Then 

(induction hypothesis on (6)) 

Now 

x'l(y'L z)= 

xl (yL z)=x' l(y '  L z)+ x'i(y" k z) 

+ x" I (y'  kz)+x" l (y"  Lz) .  

(~_.a,xi) i (~.~_~bk(ykliz)) 

(a, I b~<)(x, II (Y~ II ~)) = . L . .  

= S ~ (a, [bk)((x , II y~)II z) A.,,.a 

=(x ' ly ' )kz .  

(induction hypothesis on (6)) 

The other three summands are treated similarly. Hence x I (y[L z ) =  

(x l y )L  ~. 

(6) Write Ax(y, z) = x N (y II z) and Bx(y, z) = (y I z) L x. Then: 

x II (y II z) = x L (y II z) + (y I[ z) L x + x l (y II z) 

=Ax(y,z)+(yll  z) ll x + ( z L y ) L x  

+ ( y t z ) L x + x l ( y l l  z ) + x  t ( z L y ) + x l ( y l z )  

=Ax(y,z) +y k (z I]x) + z k (y I]x) +Bx(y,z) 

+ (x] y )L  z + (xlz)[L_y + x] (y[z) 

=Ax(y,z) + Ay(z,x) + Az(y,x) + ~x(y, z) 

+ Bz(y, x) + By(x, z) + x] (YlZ). (,)  
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Also 

(x II y) z = ~ II (x II y) = z II (y II x) 

= Az(y, x) + A y(x, z) + Ax(Y, z) + Bz(y, x) 

+ ~x(y, z) + B,,(~, x) + z I ( y l x )  

= AAy, ~) + AAx, ~) + Az(y, x) + Bx(y, z) 

+ B~(z, x) + Bz(y, x) + (xl Y) Iz, 

which equals ( , )  using the commutativity of the A's and B's and the 

induction hypothesis on (xl y)!z. 

3.5. Remark. The identity (4) in Theorem 3.3 also holds for the operator 

7 in Hennessy (1981a) (discussed above in Remark 3.1(iv)); indeed this 

identity (x 7Y) 7 z = x 7 (Y II z) occurs in (Hennessy, 1981a). Note that the 

identity follows from Theorem 3.4 and the definition of Y, that is 

x T y = x ~ _ y + x l y ,  as follows: 

(x yy) y z - -  (x ~ y )  yz + (xf y) yz 

= (x k y )  g z + ( x L y ) I ~  + (xly)ll ~ + ( x l y ) l z  

(Theorem 3.4) 

(CM9) = x ~ _ ( y l l z ) + x  I ( z L y ) + x  I(y[[ z ) + x  I (yIz)  

= x L ( y t l z ) + x l ( z k y + y k ~ + y l z )  (CM1) 

= x k  (y l lz )+ x I ( y l l z )=xT(y l l z ) .  

3.6. Remark. Note that Theorem 3.4 (2), (4), (5) hold afort iori  for the 

initial algebra of PA in Table II, since PA is the specialisation of ACP where 

communication is absent (x l y = ~). 

4. MERGING WITH MUTUAL EXCLUSION OF TIGHT REGIONS: AMP 

4.1. The Tight Region Operator 

In the framework of ACP as introduced above, one can treat process 

cooperation where processes have tight regions which are to be executed 

without any interruption. This is substantially more complicated (see 

Remark 4.2.3 below) than the following more direct way: Table VI contains 

an axiom system AMP for processes with tight regions without 

communication. It is an extension of the axiom system PA for free merge in 

Table II: the additions in the signature consist of an unary operator x ~-~ x, 
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the tight region operator (in the literature x is also denoted as (x)), and an 

inverse operator 0 which removes the constraints of tight regions. Intuitively, 

the underlined parts in a process expression (the tight regions) are to be 

executed in a cooperation as a single atomic step--that is, no interruption by 

an action from a parallel process is possible. Indeed we have as an 

immediate consequence of axioms CRM1 and M1 in Table Vh 

4.1 .1 .  PROPOSITION. ~ 11 _F = X -  y + . . y -  =X'. 

Note that in general x kl Y v~ _x [I _Y. A prooftheoretical analysis of AMP can 

be given analogous to the one in Section 3 for ACP, resulting in 

4.1.2. THEOREM. ( i )  Using the axioms M1-M4,  TR1-TR3,  TRM1, 

TRM2, F1-F4 as rewrite rules from left to right, every closed term T in the 

signature of AMP can be proved equal to a unique basic term T' (i.e., a term 

built from + , .  only and modulo A1-A5) .  

(ii) AMP is a conservative extension of PA. Hence AMP is consistent. 

Writing n(T) for the unique basic term T' as in Theorem 4.1.2(i), it is easy 

to assign the ("intuitively" correct) semantics ~/AMp(T) in (-4o,, + ,  ") to a 

closed AMP-term T: 

~ M s ( T )  : ~n(fb(T))~, 

where ~ ~ is the semantics of basic terms in (Ao), +, • ); E.g., 

~'AMV(a~ b II cd)  = abed + edab. 

TABLE VI 

AMP 

x + y = y + x  

( x + y ) + ~ = x + ( y + ~ )  

X + X = X  

(x + y ) z = xz + yz 

(xy) z : x(yz )  

xll y =  xll_ y + y~_x  

a~ x ~ a x  

ax~_y = a(x JI y) 

( x + y )  L z = x L z + y i l  z 

a ~ a  

x + y  =_x +_y 

x = x  

A1 

A2 

A3 

A4 

A5 

M1 

M2 _x k y = _ x  .y  

M3 _x .y  l]_ z = _x(y I] z) 

M4 

TR1 O(a) = a 

TR2 q~(x + y) =- O(x) + O(Y) 

TR3 0(_x) = ¢(x) 

O(x.y)  = 0(x) .  0(Y) 

TRM 1 

TRM2 

F1 

F2 

F3 

F4 
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4.2. Tight Multiplication 

A shortcoming in expressive power of the tight region operator in AMP is 

that it does not allow us to specify a process a .  (b.  x +  e .  y) with the 

restriction that only after the first step a and before the subprocess bx + ey 

no interruption by a parallel process is possible. Therefore we consider a 

binary operator : ("tight" multiplication) with the interpretation that x :y is 

like x . y  but with the proviso that in a merge, no step from a parallel 

process can be interleaved between x and y. Then a: (b.  x + c .  y) is the 

process intended above. Table VII contains an axiom system AMP(:) which 

is an extension of AMP by this new operator and corresponding axioms. 

The axiom system AMP(:) is redundant when only f inite processes are 

considered: then . . . .  _ can be eliminated in favor of " :"  (but not, as just 

remarked, reversely), and also for finite processes some of the axioms in 

AMP(:) can be proved inductively from the other, e.g., TR3. 

The operator " :"  has distinct advantages above "_  ": apart from its 

greater expressive power, it is more suitable for a treatment of infinite 

processes, both via projective sequences (as used above) and via bisimulation 

(not considered here). 

A prooftheoretical analysis can be given analogous to the one in Section 3 

for ACP and yielding a result analogous to Theorem 4.1.2. Likewise each 

closed AMP(0-term T has an obvious semantics J/AMP(:)(T) in (Ao,, +, "), 

similar to the case of AMP. (We will drop the subscript AMP(:) sometimes.) 

TABLE VII 

AMP(:) 

x + y = y + x  A1 

(x + y )+  z = x  + ( y +  z) A2 

x + x = x  A3 

(x + y )  . z = x  ' z + y  • z A4 

( x . y ) . z = x .  (y.z)  A5 

x ] ] y = x L y  + y L  x M1 

a k y = a y  M2 

ax Ly  = a(x !l y) M3 
(x + y )  ~_ z = x ~  z +yl~_ z M4 

a ~ a  

x + /  =_x+_y 

X~_X 

x . y = x : y  

x : y = x : y  

(x + y) : z = x  :z + y :z 

( x : y ) : z = x : ( y : z )  
( x : y ) . ~ = x : C y . z )  
(x. y ) : z = x .  (y:z) 

(a : x ) L y = a : ( x L y )  

TRa 0(~)=" 
TR20(x+Y)=O(x)+O(Y) 
TR3 0(_x) = O(x) 
TR4 O(x.y)= 0(x). 0(Y) 
TR5 0(x :y)=O(x). 0(Y) 

AT1 

AT2 

AT3 

AT4 

TRM 

F1 

F2 

F3 

F4 

F5 

643/60/1-3-9 
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EXAMPLE. ~¢'(a : b IIe : d) =abcd  + edab. 

Note that J~" is a homomorphism w.r.t. + and . ,  but not w.r.t. [I. As before 

we have by a simple inductive proof: 

4.2. i. THEOREM. For all x, y, z in the initial algebra of AMP(:) we have: 

(i) (x~_y)~ z = x [ [ _ ( y l { z  ) 

(ii) (x }l y)  }l z = x ll (y  ]l z). 

4.2.2. Remark. Note that the axioms in Table VI for :AMP: 

x ~_ y = xy (TRM1) 

xy k z = _x(y II z) (TRM2) 

and their immediate consequence 

x II y = xy + y x  (Proposition 4.1.1) 

can now be proved in AMP(:) from the axiom 

(a : x) [1_ Y = a : (xU_ y) (TRM) 

for finite closed terms (using an induction on term formation). 

4.2.3. Remark. AMP(:) can be "implemented" by ACP in the following 

sense. Let P, Q, R be closed AMP(:)-terms (the general case involving terms 

P1,... ,P, is similarly treated). Then we have in (Ao,, +, .,d), the initial 

algebra of A1-AT: 

~g'AMP(:)( P H Q II R) .  ~ = ~ACP(~n(e  i I1 ~ '  II Rt  II C)'t), (:~) 

where ~d/a~v(:), defined above, yields the semantics in (A~o, + , . ,  3) of the 

AMP(:)-term P ll Q [IR and ~Zhc v is the semantics of the AeP-term 

cgH(-P' II Q' II ~R'II C)" in that algebra. Here the terms P ' ,  Q', ~ ' ,  and C are 
defined as follows: 

(i) _P results from P by replacing every substring a: by a. ,  whereg is 

a new atom; e.g. a 1 : (a 2 • a 3 + a 4 : as) yields a 1 • (a2 • a 3 q-~a4 • a s ) -  Likewise 
for Q, R. 

(ii) _P', Q', B '  are copies of ~P, Q, R obtained by renaming such that 

their alphabets are pairwise disjoint. Say P '  contains only actions a i, aj; Q' 

contains only actions _bk, bl; and/~ '  only g~, e,. 

(iii) The control process C has alphabet {a,g, fl, L/, 7,7} and is recur- 
sively defined by 
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C = C~ + C a + Cy 

C ~ = a .  C + g .  C~ 

C~=~. C +~. C~ 

C~= y.  C +_7 • Cy. 

(iv) The communication function to be used in evaluating the merges 

in the RHS of (*) is given by 

0 

a I_a; = a , ? ,  a I a j  = a i , 

and likewise for fl, 7. All other communications equal 3. H contains all 

communication actions a, a,..., a i ,  ay,.... 

Further, a n ( " ' ) "  in the RHS of (*) denotes a suitable renaming of c~u(... ) 

into the original alphabets of P, Q, R. 

Finaly, the presence of c~ in the LHS of ( , )  is due to the fact that C has no 

finite branches. 

5. MERGING WITH COMMUNICATION AND MUTUAL EXCLUSION 

OF TIGHT REGIONS: A C M P  

The facilities of merge with communication (ACP) and merge with mutual 

exclusion of tight regions (AMP(:)) can be joined in a smooth way. (This is 

not self-evident; e.g., it seems not clear at all how to join tight multiplication 

as in AMP(:)  with r-steps.) 

The result of this join is the axiom system ACMP in Table VIII. The left 

column contains ACP with a slight alteration for convenience: CM5* is 

added (cf. Tables III  and VIII) which saves us some axioms. The right 

column consists of the axioms in AMP(:) (see Table VII) for the operators :, 

_, and gt, where the axiom 

(a :x)  L y = a  : (x U_y) TRM 

is now "extended" to 

( a : x ) L y = a : ( x ~ _ y + x l y )  CTRM1. 

The axiom C T R M I  can be understood as follows: The process (a :x)  [l_y 

has a double commitment: [L insists that the first step in the cooperation 

between a : x and y is taken from a : x and : insists that after performing a, a 

step from x must follow without interruption. This double restraint is 

respected in a : (x [I_Y +x lY) .  After a, the required step from x may be an 

"autonomous" step of x, as in x [I_Y, or a simultaneous step in x and y, as in 
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x ly. (Note that when communication is absent, i.e., x [ y =  3, CTRM1 

specializes to TRM.) Moreover axiom AT5 is new and so are 

CTRM2-CTRM4 which specify : versus [. 

By means of a tedious prooftheoretic analysis analogous to the one for 

ACP one can prove consistency of ACMP and that ACMP is a conservative 

extension of both ACP and AMP(:). Also associativity of  II holds for 

ACMP; intuitively this can be seen via a graph representation of closed 

ACMP-terms as in Example 5.1. 

It turns out that the combination of asynchronous cooperation as in ACP 

with "tight" multiplication as in AMP(:)  is able to give an interpretation of 

synchronous cooperation. This will be stated more precisely in the next 

section where a direct axiomatisation of synchronous cooperation is given. 

5.1. EXAMPLE. a : b [ ] e : d = a : b l l c : d + c : d [ L _ a : b + a : b [ c : d  

= a  : (bc : d + b  [ c : d)  + e : (da : b + d  l a  : b ) + ( a  l c) : (b [ d ) = a  : (be : d 

TABLE VIII 

A C M P  

x + y = y + x  A1 ( x + y ) : z = x : z + y : z  AT1 

( x + y ) + z = x + ( y + z )  A2 ( x : y ) : z = x : ( y : z )  AT2 

x + x = x  A3 (x :y)  • z = x  : (y . z) AT3 

( x + y ) z = x z + y z  A4 ( x . y ) : z = x . ( y : z )  AT4 

(xy)z=x ' (yz)  A5 ~ : x = ~  AT5 

x + ~ = x  A6 

~ x = 6  A7 (a:x)ll y = a : ( x L y + x [ y )  CTRM1 

(a :x)  l (b :y)  = (alb) : (x I y) CTRM2 

(a : x) I (by) = (a I b) : (x ~_ y + x I Y) CTRM3 

(a :x) ib= (a 1 b) :x CTRM4 

a l b = b l a  C1 

(alb) l c = a l ( b [ e )  C2 

a l f i = f i  C3 

x I l y = x U _ y + y L x + y l x  CM1 a = a  TR1 

a[l_x=ay CM2 x + y  =_x+_y TR2 

ax [~ y = a(x II Y) CM3 _x = x TR3 

(x+y)  l k z = x L y + y L z  CM4 x . y = _ x : y  TR4 

x I y = y l x  C M 5 * x  :y =_x :y  TR5 

a lby = (a ]b)y CM6 

ax lby=(a lb) (x l l y )  CM7 ¢ i ( a ) = a  F1 

(x +y) l z = x l z  +y[z  CM8 (J(x +y)=(~(x)+O(y) F2 

O(x) = O(x) F3 

~H(a)=aifaC£H D1 O(x'Y)=O(x) • O(Y) F4 

~ l ( a ) = 6 i f a ~ H  D2 O(x:y)=O(x).(J(y) F5 

~,~(x + y )  = ~,,(x) + ~,,(y) m 
OH(x. y) = O~(x) • ~H(Y) D4 
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+ ( b l c ) : d ) + c  : (da : b +  ( d l a )  : b ) +  ( a l c )  : (b l d). There is a simple 

graphical method for evaluating such expressions, as suggested by Fig. la. 

(This is moreover relevant since it enables us to define simple graph models 

for ACMP; we will not do so here.) In the figure black nodes indicate tight 

multiplication. After "unraveling" shared subgraphs we arrive at the correct 

evaluation of a : b ][ e : d, as in Fig. lb. (For the merge ][ in PA and ACP 

there are analogous ways: merging two process graphs in the PA sense 

consists of taking the full cartesian product graph; in ACP diagonal edges 

for the results of communication have to be added. See Bergstra and Klop, 

1983a). 

6. SYNCHRONOUS COOPERATION: ASP 

We will briefly comment in this section on the distinction between 

asynchronously versus synchronously cooperating processes (in the sense of 

Milner 1983); ACP, just as CCS, describes the asynchronous cooperation of 

processes. The axiom system ASP in Table IX describes synchronous 

cooperation of processes, in the sense that the cooperation of processes 

PI,... ,Pn, notation P1 I P21 "" I Pn, proceeds by taking in each of the Pi 

simultaneously steps on the (imaginary) pulses of a global clock. 

Formally, the relation of ASP to ACP is clear; it originates by leaving out 

the results of the free merge, that is, in axiom CM1 of ACP 

xHy=xU_y+yll x+xly, 

the first two summands are discarded (so that [[ is in effect [, the 

communication merge). 
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TABLE IX 

ASP 

x + y = y + x  A1 
(x + y)+ z = x  + (y + z) A2 
x + x = x  A3 
(x + y) z = xz + yz A4 
(xy) z = x(yz) A5 
x + f = x  A6 
6x=6 A7 

a l b = b l a  C1 
(alb) lc =al (bit) C2 
a l6=b  C3 

(x + y) l z = x l z  + y l z  SM1 
xl (y + z ) = x l y  + x[z  SM2 
axlby = (a ] b)(xl y) SM3 
a]by= (alb)y  SM4 
ax] b = (a I b) x SM5 

ASP bears a strong resemblance to Milner's SCCS (Milner, 1983) (see 

also Hennessy (1981); the most notable difference is 6 which does part of the 

work done in SCCS by restriction operators. (In SCCS "incompatibility" of 

atoms a, b cannot be expressed, so that certain superfluous subprocesses of a 

cooperation must be pruned away after the evaluation of the cooperation by 

a restriction operator. In ASP this incompatibility is stated as a [ b  = 6.) 

Another notable difference is that SCCS admits also infinite sums. 

Milner (1983) gives an ingenuous implementation of asynchronous 

processes (as in CCS) in terms of SCCS, via some "delay-operators" and 

argues that synchronous cooperation is a more fundamental notion than 

asynchronous cooperation. However, the reverse position can be argued too, 

since many synchronous processes can be implemented in ACP (see 

Remark 6.3). 

Synchronous cooperation as axiomatised by ASP can be interpreted in 

ACMP, as the next theorem states (the routine proof is omitted). 

6.1. THEOREM. L e t  x,  y be basic terms. Then x ] y evaluates in ASP to 

the same  basic term as O(_x l y_ ) in ACMP. 

Phrased differently, Theorem 6.1 says that in the algebra 

~ - =  (A, + , . ,  :, II, lk, I, I* ,_ ,  0, ~,~, ~) 
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which has as reducts 

(A,+, .,)*, ~), 

the initial algebra of ASP, and 

(A, +, . ,  11, L, I, : ,_, 0, ~. ,  a), 

the initial algebra of ACMP, we have 

d ~ x l * y = O ( x l y _ ) .  

6.2, EXAMPLE. 0(ab 1 ~ )  = 0(a : h I e : d)  = O((a I e) : (b d))  = (a I 

c)(b l d ) = ab 1" cal. 

6.3. Remark. Another possibility, only slightly less direct than the inter- 

pretation in ACMP above, is to "implement" ASP in ACP as follows. Let 

PII""  IP, be a closed ASP-term; the P~ are basic. Let A~c_A be the set of 

actions occurring in Pi ( i=  1,..., n), and H=A~ U ... U A , .  
Suppose that H does not contain results of H-communications: 

H N ( H I H U H I H I H C )  ".. ) = 0 .  

(Here H IH= {e{ ~a, b ~  H a I b = e}, etc.) Then 

~gAsP( P, I " "  ]P.)= JfAcp(CqH( P, II "'" II P.)), 

where ~ s ~ ,  ~-fAce denote the semantics of ASP-, ACP-terms in the 

respective initial algebras. 

6.4. EXAMPLE. In ASP: abled= (ale)(bld). Suppose a l e, 

{a, b, e, d} = H, then also in ACP: 

~u( ab I] ed) = ?~(ab ~_ ed) + ~H(ed ~_ ab) + ~H(ab [ed) 

= ~g(a(b [[ cd) + e~l(e(d II ab)) + ~H((a I C)(C }1 d)) 

: ~ + a + (a I e)(b I d) = (a l e)(bld) .  

b l d ~  

6.5. Remark. Asynehronous communication. There does not seem to be 

a consensus as regards the use of the terms "synchronous" vs. 

"asynchronous." The terminology that we have adopted and used in the 

preceding pages, distinguishes "cooperation" from "communication" and is 

stated more explicitly as follows: 

(i) ASP, SCCS have synchronous cooperation and synchronous com- 

munication; 
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(ii) ACP, CCS have asynchronous cooperation and synchronous com- 

munication. 

(iii) ACMP combines synchronous and asynchronous cooperation 

and has synchronous communication. 

A third format, not considered above but used in some programming 

languages, is "asynchronous cooperation with asynchronous 

communication." Here the communication is asynchronous in the sense that, 

e.g., a process P sends a message c! to a process Q such that P can proceed 

while the message c! to Q is "on the way." 

7. CONCLUDING REMARKS 

We have introduced axiom systems as in the enclosed part of Fig. 2. Here 

each heavy arrow denotes a conservative extension, the arrow from ASP to 

ACMP denotes an "interpretation" and the dashed arrows denote an 

"implementation" (in the vague sense of a less direct interpretation). 

For the main axiom system ACP basic properties such as consistency and 

an elimination theorem have been proved. For the other systems similar 

results follow by a similar proof. It is claimed that ACP and the other axiom 

systems codify central concepts in concurrency: free merge, merge with 

communication by action sharing, merge with mutual exclusion of tight 

regions, synchronous vs. asynchronous process cooperation. Also some of 

these concepts are shown to be related as indicated in the diagram in Fig. 2. 

Clearly, as we discussed in the Introduction, this work is strongly related 

to other algebraic approaches of concurrency. In this paper we did not study 

the effect of adding mechanisms for recursive definitions, such as /L- 

expressions (cf. Milner, 1982), or systems of recursion equations as in 

Bergstra and Klop, 1984a). For each of the systems such an addition is 

possible; for BPA, PA, and ACP the relative expressive power, after adding 

recursion facilities, is studied in (Bergstra and Klop, 1984a). For instance, 

BPA ~ PA ) ACP 

ASP 

,) ACP~ ) ACP~+ rules 

FIGURE 2 
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one can show that the process B recursively defined by B = (aa' + bb') U_ B 

over PA cannot be recursively defined over BPA, i.e., without merge or left- 

merge. (B is the behaviour of a "bag" over a data domain consisting of two 

elements.) 

Also not touched in this paper is the problem of abstraction ("hiding"). In 

(Bergstra and Klop, 1984b) an extension ACP~ (see Fig. 2) of ACP has been 

defined and studied, which basically consists of ACP plus Milner's r-laws, in 

order to deal with abstraction of internal steps. An application of ACP 

yielding such internal steps, is given in (Bergstra and Klop, 1983a), where 

the operational semantics of data flow networks is defined in terms of ACP. 

Further applications of ACP include finite specifications of the behaviours of 

processes like stack, bag, and queue, as well as algebraic verifications such 

as that the juxtaposition of two bags is again equivalent to a bag--after 
abstraction from internal steps. In (Bergstra and Klop 1983b) a connection 

between processes and abstract data types is investigated, with the purpose 

of providing the means of validating some process specifications against their 

abstract data types specifications. 

In (Bergstra and Klop, 1984c) a simple version of the alternating bit 

protocol is proved correct in the framework of ACP, plus some extra rules, 

using only algebraic calculations. 

There exists a rich model theory for ACP. In this paper we have only 

mentioned (apart from the obvious initial algebras) the projective limit 

algebra. A fruitful concept for building process algebras is the notion of 

bisimulation (see Park, 1981) between process graphs. Process algebras 

obtained in this way are defined and studied in (Bergstra and Klop, 1984b). 

We would like to mention that K. Ripken pointed out a serious error 

regarding terminology in an earlier version of this paper. In particular we 

incorrectly used "critical region" instead of "tight region"--the difference 

being that critical regions allow interleavings by other actions provided these 

are not themselves contained in a critical region. 

RECEIVED: September 1, 1983; ACCEPTED: March 7, 1984 

REFERENCES 

BACK, R. J. R., AND MANNILA, H. (1982a), A refinement of Kahn's semantics to handle 

nondeterminism and communication, in ACM Conf. on Principles of Distributed 
Computing, Ottawa. 

BACK, R. J. R., AND MANNILA, H. (1982b), "On the Suitability of Trace Semantics for 

Modular Proofs of Communicating Processes," Dept. of Computer Science, University of 
Helsinki. 

DE BAKKER, J. W., AND ZUCKER, J. I. (1982a), Denotational semantics of concurrency, in 

"Proc. 14th ACM Sympos. on Theory of Computing," 153-158. 

DE BAKKER, J. W., AND ZUCKER, J. L (1982b), Processes and the denotational semantics of 

concurrency, Inform. Control 54, No. 1/2, 70-120. 



136 BERGSTRA AND KLOP 

DE BAKKER, J. W., BERGSTRA, J. A., KLOP, J. W., AND MEYER, J.-J. CH. (1983), Linear time 

and branching time semantics for recursion with merge, in "Proc. 10th Int. Colloq. 
Automat. Lang. & Programming, Barcelona" (J. Diaz, Ed.), Lecture Notes in Computer 

Science No. 154, 39-51, Springer-Verlag, New York/Berlin; expanded version, Theoret. 

Comput. Sci., in press. 

BERGSTRA, J. A. AND KLOP, J. W. (1983a), "A Process Algebra for the Operational 

Semantics of Static Data Flow Networks," Report IW222/83, Mathernatisch Centrum, 

Amsterdam. 
BERGSTRA, J. A. AND KLOP, J. W. (1983b), "An Algebraic Specification Method for 

Processes over a Finite Action Set," Report IW 232/83, Mathematisch Centrum, 

Amsterdam. 

BERGSTRA, J. A. AND KLOP, J. W. (1984a), The algebra of recursively defined processes and 

the algebra of regular processes, in "Proc. l lth Int. Colloq. Automat. Lang. & 

Programming, Antwerpen " (J. Paredaens, Ed.), Lecture Notes in Computer Science 
No. 172, 82-94, Springer-Verlag, New York/Berlin. 

BERGSTRA, J. A. AND KLOP, J. W. (1984b), "Algebra of Communicating Processes with 

Abstraction," Report CS-R8403, Centrum voor Wiskunde en Informatica, Amsterdam. 

BERGSTRA, J. A. AND KLOP, J. W. (1984c), "Verification of an Alternating Bit Protocol by 

Means of Process Algebra," Report CS-R8404, Centrum voor Wiskunde en Informatica, 

Amsterdam. 

BERGSTRA, J. A. AND KLOP, J. W. (1984d), "Fair FIFO Queues Satisfy an Algebraic 

Criterion for Protocol Correctness," Report CS-R8405, Centrum voor Wiskunde en Infor- 

matica, Amsterdam. 

BROOKES, S. D. (1983), On the relationship of CCS and CSP, in "Proc. 10th Int. Colloq. 

Automat. Lang. & Programming, Barcelona" (J. Diaz, Ed.), Lecture Notes in Computer 

Science No. 154, 83-96, Springer-Verlag, New York/Berlin. 

BROOKES, S. D. AND ROUNDS, W. C. (1983), Behavioural equivalence relations induced by 

programming logics, in "Proc. 10th Int. Colloq. Automat. Lang. & Programming, 

Barcelona" (J. Diaz, Ed.), 97-108, Lecture Notes in Computer Science, Springer-Verlag, 

New York/Berlin. 

DERSHOWITZ, N. (1982), Orderings for term-rewriting systems, Theoret. Comput. Sci. 17, 

279-301. 

GRAE, S. AND SIFAKIS, J. (1984), A modal characterization of observational congruence on 

finite terms of CCS, in "Proc. l lth Int. Colloq. Automat. Lang. & Programming, 

Antwerpen" (J. Paredaens, Ed.), Lecture Notes in Computer Science No. 172, 222-234, 

Springer-Verlag, New York/Berlin. 

HENNESSY, M. (1981a), "On the Relationship Between Time and Interleaving," Univ. of 

Edinburgh. 

HENNESSY, M. (1981b), A term model for synchronous processes, Inform. Control 51, 58-75. 

HENNESSY, M. (1982a), "Synchronous and Asynchronous Experiments on Processes," Report 

CSR-125-82, Univ. of Edinburgh. 
HENNESSY, M. (1982b), "Axiomatising Finite Delay Operators," Report CSR-124-82, Univ. 

of Edinburgh. 
HENNESSY, M. (1983), "A model for Nondeterministic Machines," CSR-135-83, Univ. of 

Edinburgh. 
HENNESSY, M. AND MILNER, R. (1980), On observing nondeterminism and concurrency, in 

"Proc. 7th Int. Colloq. Automat. Lang. & Programming," 299-309, Lecture Notes in 
Computer Science No. 85, Springer-Verlag, New York/Berlin. 

HENNESSY, M. AND MILNER, R. (1983), "Algebraic Laws for Nondeterminism and 
Concurrency," Report CSR-133-83, Univ. of Edinburgh; J. Assoc. Comput. Mach., in 

press. 
HENNESSY, M. AND DE NICOLA, R, (1982), "Testing Equivalences for Processes," Report 

CSR-123-82, Univ. of Edinburgh. 



PROCESS ALGEBRA FOR COMMUNICATION 137 

HENNESSY, M. AND PLOTKIN, G. (1980), A term model for CCS, in "Proc. 9th Mathematical 

Foundations of Computer Science" (P. Dembiflski, Ed.), Lecture Notes in Computer 

Science No. 88, Springer Verlag, New York/Berlin. 

HOARE, C. A. R. (1978), Communicating sequential processes, Comm. ACM 21 666-677. 

HOARE, C. A. R. (1980), A model for communicating sequential processes, in, "On the 
Construction of Programs" (R. M. McKeag and A. M. McNaghton, Eds.), pp. 229-243, 

Cambridge Univ, Press, London/New York. 
HOARE, C., BROOKES, S., AND ROSCOE, W. (1981), "A Theory of Communicating Sequential 

Processes," J. Assoc. Comput. Mach. 31, No. 3, 560-599. 
HUET, G. (1980), Confluent reductions: Abstract properties and applications to term rewriting 

systems, J. Assoc. Comput. Mach. 27, No. 4, 797-821. 
KLOP, J. W. (1980), "Combinatory Reduction Systems," Mathematical Centre Tracts 

No. 127, Mathematisch Centrum, Amsterdam. 
MILNE, G. (1982a), Abstraction and nondeterminism in concurrent systems, 3rd International 

Conference on Distributed Systems, Florida, Oct. 1982, IEEE. p. 358-364. 

MILNE, G. (1982b), "CIRCAL: A Calculus for Circuit Description," INTEGRATION, the 

VLSI journal 1 (1983), 121-160. 
MILNE~ G. AND MILNER, R. (1979), Concurrent processes and their syntax, J. Assoc. Comput. 

Mach. 26, No. 2, 302-321. 

MILNER, R. (1980), "A Calculus of Communicating Systems," Lecture Notes in Computer 

Science No. 92, Springer Verlag, New York/Berlin. 
MILNER, R. (1984), A complete inference system for a class of regular behaviours, .1. Comput. 

and Syst. Sci. 28 439-466. 

MILNER, R. (1983), Calculi for synchror~y and asynchrony, Theoret. Comput. Sci. 25 (1983), 
p. 267-310. 

NIVAT, M. (1979), Infinite words, infinite trees, infinite computations, in "Foundations of 
Computer Science III.2" (J. W. de Bakker and J. van Leeuwen, Eds.), pp. 3-52, 

Mathematical Centre Tracts No. 109, Mathematisch Centrum, Amsterdam. 

NIVAT, M. (1980), Synchronization of concurrent processes, in "Formal Language Theory" 

(R. V. Book, Ed.), pp. 429-454, Academic Press, New York. 

OLDEROG, E.R. AND HOARE, C. A. R. (1983), Specification-oriented semantics for 

communicating processes, in "Proc. 10th Int. Colloq. Automat. Lang. & Programming, 

Barcelona," 561-572, Lecture Notes in Computer Science No. 154, Springer-Verlag New 

York/Berlin; expanded version, Technical Monograph PRG-37, Oxford Univ. Comput. 
Lab., February 1984. 

PARK, D. M. R. (1981), Concurrency and automata on infinite sequences, in "Proc. 5th GI 

(Gesellschaft f/Jr Informatik) Conference, Lecture Notes in Computer Science No. 104, 
Springer-Verlag, New York/Berlin. 

PRATT, V. R. (1982), On the composition of processes, in "Proc. 9th ACM Sympos. on Prin- 
ciples of Programming Languagues," pp. 213-223. 

REM, M. (1983), Partially ordered computations, with applications to VLSI design, in "Proc. 

4th Advanced Course on Foundations of Computer Science, Part 2" (J. W. de Bakker and 

J. van Leeuwen, Eds.), 1-44, Mathematical Centre Tracts No. 159, Mathematisch 
Centrum, Amsterdam. 

STAPLES, J. AND NGUYEN, V. L. (1983), "A Fixpoint Semantics for Nondeterrninistic Data 
Flow," Report No. 48, Dept. of Comput. Sci., Univ. of Queensland, Australia. 

WINSKEL, G. (1983a), Event structure semantics for CCS and related languages, in "Proc. Int. 

Colloq. Automat. Lang. & Programming, 561-576, Lecture Notes in Computer Science 
No. 140, Springer-Verlag, New York/Berlin. 

WINSKEL, G. (1983b), Synchronisation trees, in "Proc. 10th Int. Colloq. Automat. Lang. & 

Programming, Barcelona" (J. Diaz, Ed.), 695-711, Lecture Notes in Computer Science 
No. 154, Springer-Verlag, New York/Berlin. 


