
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Process Algebra with Guards. Combining Hoare Logic and Process Algebra

Groote, J.F.; Ponse, A.

Publication date
1994

Published in
Formal Aspects of Computing

Link to publication

Citation for published version (APA):
Groote, J. F., & Ponse, A. (1994). Process Algebra with Guards. Combining Hoare Logic and
Process Algebra. Formal Aspects of Computing, 6, 115-164.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:27 Aug 2022

https://dare.uva.nl/personal/pure/en/publications/process-algebra-with-guards-combining-hoare-logic-and-process-algebra(46b2e893-ad27-4f8f-b99e-ae8052cd5502).html

Formal Aspects of Computing (1994) 6:115 164
@ 1994 BCS Formal Aspects

of Computing

Process Algebra with Guards: Combining
Hoare Logic with Process Algebra

Jan Friso Groote ?1 and Alban Ponse w

t University of Utrecht, Department of Philosophy, Utrecht, The Netherlands
w University of Amsterdam, Faculty of Mathematics and Computer Science, Amsterdam,
The Netherlands

Keywords: Process Algebra; Hoare Logic; Guards; Structural/ed Operational
Semantics; Bisimulation; Completeness; Partial Correctness; Conditionals

Abstract. We extend process algebra with guards, comparable to the guards in
guarded commands or conditions in common programming constructs such as 'if

then - else - fi' and 'while - do - od'.

The extended language is provided with an operational semantics based on
transitions between pairs of a process and a (data-)state. The data-states are given
by a data environment that also defines in which data-states guards hold and
how atomic actions (non-deterministically) transform these states. The operational
semantics is studied modulo strong bisimulation equivalence. For basic process
algebra (without operators for parallelism) we present a small axiom system
that is complete with respect to a general class of data environments. Given a
particular data environment 5 P we add three axioms to this system, which is
then again complete, provided weakest preconditions are expressible and 5 p is
sufficiently deterministic.

Then we study process algebra with parallelism and guards. A two phase-
calculus is provided that makes it possible to prove identities between parallel
processes. Also this calculus is complete. In the last section we show that partial
correctness formulas can easily be expressed in this setting. We use process
algebra with guards to prove the soundness of a Hoare logic for linear processes
by translating proofs in Hoare logic into proofs in process algebra.

1 Supported by ESPRIT Basic Research Action no. 3006 (CONCUR) and by RACE project no.
1046 (SPECS).
2 Supported by RACE project no. 1046 (SPECS).
Correspondence and offprint requests to: Alban Ponse, University of Amsterdam, Faculty of Math-
ematics and Computer Science, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands. Email:
alban@fwi.uva.nl.

116 J. K Groote and A. Ponse

1. Introduction

Hoare logic has been introduced in 1969 to prove correctness of programs
[Hoa69]. Since then it has been applied to many problems, and it has been
thoroughly studied (see [Apt81, Apt84] for an overview). In Hoare logic a program
is considered to be a state transformer; the initial state is transformed to a final
state. The correctness of a program is expressed by pre- and post-conditions.

More recently processes, ,where a process is the behaviour of a system, have
attracted attention. This has led to several process calculi (CCS [Mil80, Mi189],
CSP [Hoa85], ACP [BeK84a, BaW90] and Meije [AuB84]). In these calculi
correctness is often expressed by equations saying that a specification and an
implementation are equivalent in some sense. These equivalences are mainly
based on observations: two processes are equivalent if some observer cannot
distinguish between the two. A classification of process equivalences has been
described in [Gla90, Gla93].

It seems a natural and useful question how Hoare logic and process algebra
can be integrated. In this paper we provide an answer in two steps. First we
extend process algebra with guards. Depending on the state, a guard can either
be transparent such that it can be passed, or it can block and prevent subsequent
processes from being executed. Typical for our approach is that a guard i t s e l f

represents a process. With this construct we can easily express the guarded
commands of Dijkstra [Dij76] and the guards occurring in several languages
such as LOTOS [ISO87] and CRL [SPE90]. A nice property of the guards in our
framework is that they constitute a Boolean algebra.

Using guards a partial correctness formula

{c~} p (fl}

with a, fi guards and p representing some process can be expressed by the algebraic

equation

c~ p = ct p fl

saying that if process p starts in a state where the guard ~ holds, then it follows
that the guard fl holds when p terminates. As far as we know such equations
modelling partial correctness formulas were first given by Manes and Arbib
[MaA86].

We provide process terms (with guards) with an operational semantics involving
state transformations. This semantics is based on transitions between configura-
tions (p, s) where p is a process term and s is the state. To avoid confusion between
'state' and 'configuration' (also often called state in process algebra) we conse-
quently use the term data-state instead of 'state'. We assume that data-states are
given by some data environment that also prescribes in which data-states guards
hold and how atomic actions (non-deterministically) transform data-states.

We study the operational semantics modulo strong bisimulation equivalence
[Par81] and we come up with several axiomatisations. In the case of Basic
Process Algebra (BPA) with the standard operators + (choice)and �9 (sequential
composition), termination constants (6, e) and guards we present two axiom
systems, BPA 4 and BPAG(SP). The system BPA4G is complete for finite processes
with respect to a general class of data environments. It contains three simple and
one somewhat more involved axiom besides the nine that are standard for BPA

Process Algebra with Guards 117

with termination constants. The axioms of BPA 4 enable us to derive general facts
about processes with guards that do not depend on a particular data environment.

The axiom system BPAG(5 r applies when one wants to prove equivalences
between processes for a particular data environment 5 P. This axiom system
is defined only if weakest preconditions are expressible and 5 p is sufficiently
deterministic. It contains the axioms of BPA 4 together with three new axiom
schemes that depend on 5 ~. As an example we use BPAG(5 ~) to prove the
correctness of a well-known small program in a completely algebraic manner.

Parallel operators fit easily in the process algebra framework. In Hoare logic,
however, parallelism turns out to be rather intricate; proof rules for parallel
operators are often substantial [OwG76, Lam80, Sti88]. tn our setup we cannot
completely avoid the difficulties caused by parallel operators in Hoare logic, but
we can deal with them in a simple algebraic way. We introduce a new set of
axioms, called ACPa that enables us to rewrite every process term to a term
without parallel operators. Then using BPA 4 or BPAG(5 p) we can verify the
equivalences we are interested in. We apply these techniques to an example.

In the last section of this paper we show that process algebra with guards
can indeed be used to verify partial correctness formulas, even in a setting with
parallelism. Furthermore we apply BPAG(5 ~) to show soundness of a Hoare logic
for process algebra with linear processes [Pon91]. The proof uses a canonical
translation of proofs in Hoare logic into proofs in process algebra.

2. Basic Process Algebra with Guards

In this section we extend the basic theory BPA (Basic Process Algebra, see e.g.
[BeK84b, BaW90]) with guards. These guards are comparable to those in the
guarded commands of Dijkstra [Dij76], or to the conditions in programming
constructs as if - then - else - fi and while - do - od. We call this extension BPA6
(BPA with Guards).

2.1. Signature and Axioms

The theory of BPAG has two parameters: a set of atomic actions and a set of
atomic guards. Atomic actions represent the basic activities that processes can
perform, such as reading input, incrementing counters and so forth. Guards
represent constructs that (relative to a structure defining their interpretation) are
either transparent such that they can be passed, or block and prevent subsequent
processes from being executed.

Let A be a set of atomic actions with typical elements a, b,. . . For each atomic
action a the signature of BPA~, denoted as Z(BPAG), contains an identically
named constant a. Let Ga~ be a set of atomic guards disjoint with A, and also
disjoint with {6, e}. We extend Gat to the set G of basic guards with typical
elements ~b, ~p where basic guards are defined by the following syntax:

~b : :=6 l e l ~ (a b ~ E G a t .

In particular the process algebra constants 6 and e are considered as basic guards:
6 is the guard that always blocks, and e is the guard that can always be passed.
Furthermore -1 is the negation operator on basic guards. For each basic guard
q~ the signature Z(BPAG) contains a constant q~. We also have the binary infix

118 J.F. Groote and A. Ponse

constants:

binary operators :

a for any atomic action a E A
q~ for any basic guard q~ E G
+ alternative composition (sum)

sequential composition (product)

Fig. 1. The signature 2(BPAG).

operators + (alternative composition) and �9 (sequential composition) available.
We summarise the signature IS(BPA~) in Fig. 1.

Example 2.1. The addition of guards to process algebra brings it far closer to
existing specification and programming languages. This can be seen by modelling
an imperative language in process algebra with guards. The actions of process
algebra represent assignments, which have the form

[x := t],

where t is some expression and x is a variable. In order to describe the semantics
of these assignments we must use some kind of store for the value of x. Generally,
this is represented by a valuation that maps variables to values. In sequential
programming languages this valuation is part of the 'state' of a program. As the
word 'state' is also commonly used in process algebra with a close but different

meaning, we systematically use the word 'data-state'.
The data-state can influence the course of action of a program or process.

Guards are used to describe this. They block for some, and are transparent for
other data states. In the setting of this example, guards have the form:

(t = .)

with the interpretation that (t = u) holds in some valuation iff t and u represent
the same value. Now the conditional programming construct

i f t = u t h e n x := t else sk ip fi

can be translated into a process term in the language of BPAo by

(t = u) - Ix : = t] + = u) . c

where e is the special guard (process) that always holds.
In this paper we introduce several axiom systems for reasoning on an algebraic

level about the behaviour of process terms containing guards. A typical example
of this type of reasoning is expressed by the law

X ' ~ X

(where x ranges over process terms) saying that the always successful guard can
be omitted in sequential composition. This law implies that the process term
above equals (t = u) �9 Ix := t] + ~(t = u). For another example consider the law

ct.(x + y)=c~, x + ~ . y

where c~ ranges over guards. This second law expresses that the moment of
evaluation of a guard and the moment of choice are interchangeable. []

Remark 2.2. The special constants ~ and e are already well-known in process
algebra: c5 (inaction or deadlock) represents the process that cannot perform any

Process AlgebrawithGuards 119

activity and prevents subsequent processes from being executed; e denotes a
process that can do nothing but terminate and is called the empty process (see

e.g. Baeten and Weijland [BaW90]). []

Throughout this text let V = {x , y , z , . . . } be a set of variables. Process terms,
or shortly terms, over Z(BPAG) are constructed from the variables in V and

the elements of Z(BPAG). In terms the function symbol - is generally left out,
and brackets are omitted according to the convention that �9 binds stronger than
+. The symbol -= is used to denote syntactic equivalence (modulo associativity)
between terms. Finally, letters t, t: range over open terms and p, q, r , . . . over

closed terms.

In the sequel results are often proved by reasoning on the structure of process
terms. In order to give some general definitions, let the symbol Z range over all

signatures we consider in this paper. Any such signature Z always extends the

signature Z(BPA6) defined above. Terms over % are constructed in the usual way
and may contain variables from V. We define two elementary notions:

Definition 2.3. Let F(Z) denote some axiom system defined over a signature E
and let t, t' be terms over E.

1. t and t ~ are provably equal in F(Z), notation

F (2) ~ t = t '

iff there exists a proof of t = t' using the axioms of F(Z) and the usual
inference rules for equality (stating that ' = ' is a congruence relation),

2. t is a (provable) summand of t' in F(%), notation

F(Z) ~- t ~ t'

iff F(Z) ~- t + t' = t'. We write t' _ t for t _ t'. The relation ~ is called
summand inclusion. []

In proofs we adopt the convention to write t = t: instead of F(Z) ~- t = t' and
t =fi t: instead of F(Y) V- t = t: and a similar convention with respect to summand
inclusion.

The axioms presented in Fig. 2 constitute the axiom system BPA 4. In this

figure q~ ranges over G and a over A. These axioms describe the basic identities
between terms over Z(BPA~). The operator § is commutative, associative and
idempotent (A1 - A3). The operator - right-distributes over + and is associative

(A4, A5). Note that left distributivity o f . over § is absent. Furthermore 6 behaves
as the neutral element for § and e as the neutral element for �9 (A6 - A9). The
axioms A1 - A9 form the system BPA6c as described in e.g. [BaW90].

The axioms G1 - G3 are new in process algebra and describe the expected
identities between guards. G1 and G2 express that a basic guard always behaves
dually to its negation: q~ holds in a data-state s iff ~q~ does not and vice versa.

The axiom G3 states that + does not change the interpretation of a basic guard
q~. It does not matter whether the choice is exercised before or after the evaluation
of 4). Notice the BPA6:derivability for the 6 and e-instances of G3. The last new
axiom G4 can be explained as follows: the process a(f)x + ~43Y), where a is an
atomic action, behaves either like ax or ay, depending on the data-state resulting
from the execution of a. As a consequence its behaviour is a summand of ax § ay.
The a in this axiom may not be replaced by a larger process term. I f it is for
instance replaced by the term a - b then after a has happened, it is in general

120 J .F. Groote and A. Ponse

(A1) x + y = y + x (G1)
(A2) x + (y + z) = (x + y) + z (G2)
(A3) x § (G3)
(A4) (x + y) z = x z + y z

(A5) (xy)z = x (y z)

(A6) x + ` 5 = x
(A7) `sx = 5̀ (G4)
(A8) ex = x

(A9) xe = x

(o . -~4) = ,5
q~+-~+=~
~b(x + y) = qSx + qSy

a((gx + -~OY) ~ ax + ay

Fig. 2. The axioms of BPA 4 where q5 E G and a E A.

possible to execute b and either arrive in a data-state where ~b holds, or arrive
in a data-state where -~b holds (b can affect the data-state in a nondeterministic
manner). Neither abx nor aby covers this behaviour. Hence ab(4)x + -~OY) need
not be a summand of a b x + a b y . The axiom G4 is not derivable from the first three
'guard'-axioms. The superscript 4 in BPA 4 expresses that there are four axioms
referring to guards. We do not alwalrs consider all guard axioms. In particular
the system BPA 3, containing all BPA~-axioms except G4 plays an important role
in this paper.

Example 2.4. We illustrate the use of the BPA3-axioms by showing that if for two

terms t and t' over Z(BPA6) we have BPA 3 F- t + t' = `5, then also BPA 3 F- t = 5̀ :

BPA 3 F- t = t + 6 (by A6)
= t + t + t ' (by assumption)
= t + t ' (byA3)

= 6 (by assumption). []

We now give a result expressing some useful properties of basic guards, in which
the axiom G4 is not used. Note clause (v), which expresses that the sequential
composition is commutative for basic guards.

Lemma 2.5. L e t 49, ~P c G. The fo l lowing ident i t ies are der ivable in BPA 3"

(i) ~ a = ~,

(ii) -~e = 6,

(iii) ~ (o = (o,

(iv) 4) ~ 4) = ~,
(v) 4w =w4.

P r o o f In the proofs of (i) and (ii) the axiom G3 is also not used.

(i) - ~ = (5 + 7 6 (ii) ~e = e ' ~ e

In the proof of (iv) we use t + t' = 6 ==> t = 6 (see Example 2.4). In (v)
we use -~b~b = `5, which is a direct consequence of (iii) and (iv).

Process Algebra with Guards

(iii) -,--,4) = (4) + ~4))~-~4) (iv)

= 4) - ~ - , 4) + ~

= 4) ~ 4) + 4) - ~ 4)
= 4)(~74) + -,4))
= 4).

(v) 4)t; = 4)~(4) + ~4))
= 4)~4) + 4) ~ 4)

= 4)~;4) + -~4)~;4)

= (4) + -~4))~4)
= ~4) .

6 = 4 7 r
= r + - , ~) - , 4

= 4 (w~4 + -~w-4)

121

[]

Up till now we only defined 'atomic' and 'basic' guards.

Definition 2.6. A guard ~ over Z(BPAG) has the following syntax

~ : : = ~ + c ~ l ~ ' ~ l 4) ~ G.
[]

Let the symbols e, fl,. . , range over guards. On guards the operators + and �9
correspond to the Boolean operators V and A, respectively. Let 4), ~p c G, then
the guard 4) + ~p holds in a data-state s whenever 4) or ~p holds in s. The guard
4)~p holds in s iff both 4) and ~p hold in s. In order to have the Boolean operator
--, on guards, we introduce the abbreviat ions

7(c~fl) for -~e + ~fl,
-~(a + fl) for -~c~-~fl.

It is not hard to prove that all identities on basic guards that are derivable in
BPA 3 (or BPA4), are derivable in BPA 3 (BPA 4, respectively) for all guards:

Theorem 2.7. L e t ~ be a g u a r d over E(BPAG), then the f o l l o w i n g iden t i t i es are
der ivab le in BPA 3 (cf. G1 - G 3) :

(i) ~ . ~ = ~ ,
(ii) o~ + --,c~ = e,

(iii) ~(x + y) = c~ " x + ~ " y.

T h e f o l l o w i n g i d e n t i t y is der ivab le in BPA 4 (cs G 4) :

(iv) a(~ . x + ~c~ . y) _ ax + ay

where a E A. []

Moreover, restricting the signature Z(BPAG) to terms without atomic actions,
the axiom system BPA~ constitutes a Boolean algebra. According to [Sio64],
the following five equations form an equational basis for a Boolean algebra

(Gat,-t-,',-~):

(81) ./~ = / ~
(82) .(/~ + ~,) = ./~ + c~
(83) ~ +/~--./~ =
(84) .(/~ + -./~) =
(85) ~ + (,8 + ~) = / ~ + -4~.

The only equation here that does not immediately follow from BPA 3 is B5:

122

+ (/~ + ~/~)
= ~ - + - e

= ~ + (~ + - ~)

= (~ + ~) + ~

e

= /~ + ~/~.

J. F. Groote and A. Ponse

2.2. Operational Semantics and Soundness

In process algebra closed process terms are often related to (labelled) transition
systems, modelling their possible behaviour.

Definition 2.8. A labelled transition system d is a tuple IS~r ~d, Sd) where

�9 Sd is a set of states,

�9 Ad is a set of labels,

�9 ~d--- S~ x Ad x S~r is the transition relation, and

�9 s e c S~r is the initial state.

Elements (s, a, t) c ~o4 are generally written as s a > t. []

Contrary to the traditional approach in process algebra, we provide an operational
semantics that is based on data-state transformations and the interpretation of

guards. The operational meaning of a process term is defined by a transition
system, where the states of the transition system are configurations, i.e. pairs of a
process term and a data-state.

We adopt an abstract view and assume that data-states are given by a set S.

Atomic actions are considered as non-deterministic data-state transformers. This
is modelled by a function effect that, given some atomic action a and a data-state

s, returns the data-states which may result from the execution of a in s (see also
[BKT85, BaB88]; in [BaB88] the state operator is introduced which provides an
alternative way to handle processes operating on data-states). We demand that

the function effect never returns the empty set, ensuring that an atomic action can
always be executed. We use guards to prevent actions from happening in certain
data-states. Finally the interpretation of guards is given by a predicate test that
determines whether an atomic guard holds in some data-state.

Definition 2.9. A data environment 5 e over a set A of atomic actions and a set Gat
of atomic guards is a triple (S, effect, test) where

�9 S is a non-empty set of data-states,

�9 effect : S x A -+ 2 s \ {~} defines the data-state transformations associated with
atomic actions,

�9 test ~_ Gat • S defines the interpretation of atomic guards. []

Observe that the function effect possibly introduces non-determinism in data-state
transformations. Whenever test((o,s) holds, this denotes that in data-state s the
atomic guard q~ may be passed. In this case we say that ~b holds in s. In order to
interpret basic guards, we extend the predicate test in the obvious way.

Definition 2.111. Let (S, effect, test) be some data environment. We extend the
domain of test to G x S as follows:

�9 For all s c S: test(e,s) holds and test(6,s) does not hold,

Process AlgebrawithGuards 123

a E A (a,s) a> (e,s') i f s ' Eeffect(a,s)

c~ E G (O,s) "/' (5, s) if test(4),s)

+
(x, s) - -~ (x', s') (y, s) ~ (y', s I)

(x + y, s) a, (x', s') (x + y, s) ", (y', s')

(X,S) ~ (Xt, S t) (X,S) ' /) (X',S t) (y,s) a> (yt Stt)

(xy, s) ~-> (x'y, s 1) a r ~/ (xy, s) ~ (y', s')

Fig. 3. Transition rules for E(BPAG) (a E A/, q~ c G).

�9 For all s E S and q5 c G: test(~4),s) holds iff test(O,s) does not hold. []

Let 5 P = (S, effect, test) be some data environment over A and Gat. We give an
operational semantics in the style of Plotkin [Plo81]. The behaviour of a process
p with some initial data-state s c S starts in the configuration (p, s):

Definition 2.11. Let E be some signature and S a set of data-states. A configuration
(p, s) over (Z, S) is a pair containing a closed term p over Z and a data-state s ~ S.
The set of all configurations over (Z, S) is denoted by C(Y~, S). []

Let ~/~ A be a special symbol which we use to represent successful termination,
and

A / de--=f A U {,~f}.

The rules in Fig. 3, where the label a ranges over A / a n d q5 over G, determine
the transition relation ~(BPA~),S~ that contains exactly all derivable transitions
between the configurations over (E(BPAG), S). The idea is that for a 6 A, the
transition (p,s) a~ (p,,s I) expresses that by executing a, the process p in data-
state s can evolve into p' in data-state s'. In this case we have s' 6 effect(a, s) and
the configuration (p~, d) represents what remains to be executed. The transition
(p, s) ~L~ (p~, s') expresses that the process p in data-state s can terminate suc-
cessfully. A basic guard ~b can terminate successfully in data-state s if test(O,s)
holds, which is denoted by the transition (qS, s) --~ (6, s) in Fig. 3. The configura-
tion (6, s) has no outgoing transitions, which expresses that no further activity is
possible ('inaction' or 'deadlock').

In the case of BPAa we define

d:~(p, S) de f (C (Z (B P A 6) , S) , A / , "''+Y.(BPA6),S~ , (P, S)).

Example 2.12. Consider the data environment ({so, sa, s2,s3},effect, test) and the
following partially depicted transition system d((oa+b~p + ~c, so) where the initial
state is marked with a little arrow:

124 J. E Groote and A. Ponse

(~,sl)

(6,sl)

~ blp + ~c, so)

~(Ip, S2) (1/), $3)

(6, S3)

The (implicit) information about the function effect and the predicate test present
in this transition system tells us that in this data environment apparently

effect(a, so) -- {sl} and effect(b, so) = {s2,s3}
test(O, so), test(-~, So), test(~p, s2) and test(~, $3). []

Consider the following (partially depicted) transition systems ~r + ae, s) and
d (a , s) over some data environment satisfying effect(a, s) = {s'}.

~ (a + ae, s) (a, s)

(c, s') (~, s') (~, s')

/ 4 ,/
~i6,s') (6,s')

Observe that the transition system d (a + ae, s) is shaped as two transition
systems for d (a , s). With respect to operational behaviour it does not matter
whether the a-summand or the ae-summand is executed. Therefore we would
like to consider both transition systems as equivalent. This can be achieved by
identifying bisimilar configurations (see [Par81]), as bisimilarity is the coarsest
equivalence that respects the operational characteristics of a transition system
[Vaa89]. Following the traditional approach in semantics based on data-state
transformations, processes with different data-states in their configurations are
not considered as equivalent (see e.g. [Man74]). Therefore we adapt the standard
notion of bisimilarity in the following way:

Definition 2.13. Let 2 be a signature, ~ a data environment with data-state space
S and >~,s~ a transition relation over C(2, S).

�9 A binary relation R ___ C(Z, S) x C(Z, S) is an 2P-bisimulation iff R satisfies the
transfer property, i.e. for all (p, s), (q, s) E C(Z, S) with (p, s)R(q, s):

1. Whenever (p, s) __% ~,so (p', s') for some a and (p', s'), then, for some q',
also (q, s) - ~ ~,so (q', s') and (p', s')R(q', s'),

Process Algebra with Guards 125

2. Conversely, whenever (q, s) a, ~,Y (q,, s') for some a and (q', s'), then, for
some p', also (p, s) a, ~,~ (p,, s') and (p', s')R(q', s').

�9 A configuration (p,s) E C(Z,S) is 5o-bisimilar with a configuration (q,s') E
C(Y~, S), notation

(p, s) --'~s~(q, s')

iff s = s' and there is an 5o-bisimulation containing the pair ((p, s), (q, s')) (note
the equality of the data-states!).

�9 A transition system d (p , s) = (C(Z, S) , A / , - - ~ y , (p,s)) is 5o-bisimilar with

a transition system deC(q, s') = (C(Z, S), A/,-- .y~,~, (q, s')), notation

d (p , s) --~-~d(q, s')

iff (p, s) _~-~(q, s').

�9 Two closed terms p, q over 2; are 5o-bisimilar, notation

p -~-~ q

iff d (p , s) _*~s~d(q, s) for all s E S. []

We introduced the symbol _~=~s ~ instead of the more consistent symbol ~ y~,~ to
avoid lengthy notation. We take care that Z is known from the context when we
use _'~s~. Note that the symbol _+~s~ is also overloaded in another way. It denotes
either a relation between configurations, between transition systems or between
closed terms.

Lemma 2.14. For any data environment 5 ~ the relation ~_s~ between closed terms
over Z(BPAG) is a congruence with respect to the operators o f Z(BPA~).

Proof Standard. []

Moreover, it is not hard to prove that BPAG is a sound axiom system with respect
to 5o-bisimulation equivalence for any data environment 5 ~

Theorem 2.15. Let p, q be closed terms over 2(BPAG). I f BPA6 ~ p = q then
p ~_s~q For any data environment 5 ~

Proof The relation _+~s~ between the closed terms over Z(BPAG) is a congruence
and hence respects the inference rules for equality. We have to show that all
axioms are valid. As an example we prove this for G4.

Assume that 5O = (S, effect, test), a c A, 4) c G and p, q are closed process

terms over Z(BPA~). We have to show (ap + aq + a((ap + ~(oq), s) ~_s ~ (ap + aq, s)
for all s E S. We define the relation R as follows:

R de f Id U {((ap + aq + a((op + =(oq), s), (ap + aq, s))] s c S}

U {((e(qbp+ =~oq),s),(ep, s)) l s E S and test(alp, s)}
U {((e(qbp + -~d?q), s), (eq, s)) I s E S and test(~c~, s)}

where Id is the identity relation on C(Z(BPAG), S). In the standard way it follows
that R is an 5o-bisimulation satisfying

(ap + aq + a(Op + --,(oq), s)R(ap + aq, s)

for all s E S. []

126 J. E Groote and A. Ponse

2.3. Completeness

In this section we show that the axiom system BPA 4 is complete in the following
general sense. Let p, q be closed terms over E(BPAG). If for all data environments

we have p _ ~ q, then BPA 4 ~- p = q. So completeness says that the axioms

of BPA~ are sufficiently strong to prove all identities between closed terms over
E(BPA~) that are valid in all data environments, and that ~-bisimilarity between
terms that cannot be proved in this way depends on the particular ingredients of
~ . If for example the atomic guard ~b holds in all the data-states of some data
environment 50, we have ~b _~:'s~e. Of course we cannot derive BPA 4 F- ~b = e, as
~b is not interpreted as e in all possible data environments. Proving identities that
are dependent on a particular data environment is the topic of the next section.
Some of the results proved in this section concern the axiom system BPA~ (the

system containing all axioms of BPA~, except G4). These can be reused in the
completeness theorems on parallel processes in section 4.

All completeness results in this paper are proved according to the following
strategy: define classes of basic terms such that

1. Any closed term can be proved equal to a unique basic term, and

2. If two basic terms are not provably equal (i.e., syntactically different), then
one can find a data environment in which they are not bisimilar.

We introduce reference sets in order to define suitable basic terms.

Definition 2.16. (Reference)

1. Let p be a closed term over E(BPAG). By Ref(p) we denote the set of atomic
guards to which p makes reference :

Ref(p) def {~b E Gat [~b o c c u r s (possibly negated) in p}.

2. Any non-empty, finite subset of Gat is called a reference set. We use symbols
R, R1, R2 to denote reference sets. For technical convenience we assume
that the elements in reference sets are ordered.

3. Let R = {~b0,..., ~b~} be some (ordered) reference set. A 'sequential' expression
~0" " �9 ~Pn is called a complete guard sequence over R iff for i = 0, . . . , n we have
that either ~Pi -- ~bi or ~Pi -= ~bi. Such sequences are abbreviated by symbols

~, ~ and we write R c~ for the set of all complete guard sequences over R.

[]

We demonstrate two properties of reference sets by a simple observation and a

lemma. Let R be some reference set. First observe that if ~, ~5 E R c~ then

B P a 3 ~ _ ~ . ~ = { ~ if ~ _---- t),
otherwise.

This observation holds because R is ordered: if {4~,~} is an unordered reference

set, we have by Lemma 2.5. for instance BPA 3 ~- (~b~)(~p~b) -- ~b~.
In order to denote terms in a convenient way we further use the Z-notation:

let I be some finite index set, then

aef{ 6 i f I = 0 ,

ieI ti = tio + " " +ti~ if I = {i0,..-,in}.

Process Algebra with Guards 127

Note that due to the axioms A1 and A2 the actual enumeration of the terms t i j

does not matter.

The following lemma establishes a second useful property.

Lemma 2.17. For any t over Z(BPA6) and reference set R we have

BPA~ I - t = Z ~t.

r co

P r o o f By induction on the cardinality of R:

R : {r In this case t = et = (r + ~r = 4t + ~ r = ~eRCo Ct.

R = {40 4k+1}. Let R1 de__r R -- {40}. First applying the induction hypothesis
we derive

t - - Z ~
~)ER~ ~

= (40 + 740)" ~ q,t
~peR~ ~

= 4o ~ ~t+ 74o Z ~t
fpeR~ ~ q)eR~ ~

: Z r + ~ ~4o~,t
(peR~ ~ gpER~ ~

~ t .
~)ER co

[]

Using reference sets, we introduce the following two classes of basic terms over
Z(BPAa).

Definition 2.18. Let R be some reference set.

1. A closed term p is called G-basic over R iff

P = Z ~q$
r co

where for each ~ c R c~ the term q~ is an A-basic term over R.

2. A closed term q is called A-basic over R iff

q = Z aiPi [+e]
i d

where for each i E I it holds that ai E A and the term Pi is a G-basic term
over R. The notation [+e] means that the occurrence of the summand e is
optional. []

We show that any closed term over E(BPAG) is provably equal to a G-basic term
over some reference set. The proof is split up in two parts. First, any closed term

128 J. E Groote and A. Ponse

can be proved equal to one that is in 'prefix normal form' (defined below), then
we show that any term in prefix normal form is provably equal to a G-basic term.

Definition 2.19. A closed term p over Z(BPAG) is in prefix normal form over

Z(BPA6) iff

p : : = 6] e l q b p l - ~ O p l a p l p + p

with q5 C Gat and a E A. []

The following lemma states that it is sufficient to consider terms that are in prefix
normal form over Z(BPAG).

Lemma 2.20. I f p is a closed term over E(BPAG), then there is a term p~ in prefix

normal form over Z(BPAc) such that BPA 3 ~- p = p'.

Proof By induction on the structure of closed terms. []

Lemma 2.21. I f p is a closed term over Z(BPAG) and R some reference set satisfying

R ~ Ref(p), then there is a G-basic term p' over R such that BPA 3 f- p = p'.

Proof By Lemma 2.20. we may assume that p is in prefix normal form over
Z(BPA6). We apply induction on the structure of such normal forms:

p = 6 or p -= e. By Lemma 2.17. we have

= E ~6 and e = E ~e, respectively,

~)ER co ()ER ~o

for any reference set R.

p _= qbq. Let R ~_ Ref(p), then R ~_ Ref(q). By the induction hypothesis we have

q : E (bq~
~ER co

with all the terms q~ A-basic over R. Let for each ~ E R c~

{ qr _ q~ if q~ occurs in ~,

6 otherwise,

then

E
~cR co

is a G-basic term over R that is provably equal to p.

p ~ ~bq. Likewise.

p = aq. Let R ~ Ref(p), then R ~ Ref(q). By the induction hypothesis we have

q = E ~q$
~)@R co

with all the terms q~ A-basic over R. By Lemma 2.17 we have a = }--~,cRco ~a

and we can take

E ~ a ' E ~q~
~ c R ~~ ~ c R ~~

Process Algebra with Guards 129

which clearly is a G-basic term over R provably equal to p.

p - q + r. Let R ~_ Ref(p) , then R ~_ Re f (q) and R ~_ Ref(r) . By the induction
hypothesis we have

q = Z ~q~ and r = Z ~q;
~RCO ~Rco

r A-basic over R. Hence with all the terms q~, q~

q + r = Z ~(q$ + q;)"
~cR co

Observe that the sum of two A-basic terms over R is provably equal to an
A-basic term over R: change to one index-set or remove a 6-summand and

replace double occurrences of e-summands. So for each ~ E R ~~ there is an
,, ~ r, Hence A-basic term q~ over R such that q~ + q = q~.

4)%
~ c R co

is a G-basic term over R provably equal to p. []

The syntax of an A-basic term is sufficiently strict to derive information about its
(syntactic) structure from its operational behaviour. This information is formu-
lated with help of the following syntactic relation on terms:

Definition 2.22. Let tl, t2 be terms over Z. We call tx a syntactic summand of t2,
notation t~ r-- t2, iff

1. tl ~ t + t' for any t, t' over Z, and

2. t~ ---= t2, or there are t, t' over ~ such that t2 = t § t ~ and tl E t or q _E t'.

[]

So e.g. x(y § y) § z § z has x(y + y) and z as its only syntactic summands and
(x + y)z has no other syntactic summand than itself.

Lemma 2.23. L e t 5 # = (S, effect, test), and R be some reference set. For any

A-basic term q over R the fol lowing propert ies hoM:

1. I f 3 s ~ S such that (q,s) ,./~ (r,s'), then e E_ q,

2. I f 3 s ~ S such that (q, s) ~ (r, s') (a c A), then there is a G-basic term p over
R such that ap r- q and ep =- r.

Proo f By using representations of the form

Z aiPi [+e]
icI

and applying induction on the cardinality of I. []

We also need the following result, which is in fact a generalisation of the axiom
G4.

Lemma 2.24. (Saturation) L e t R be some reference set. For any a E A, terms

to t , over Z(BPA6) and funct ion f : R c~ ~ {to,..., tn} we have

130 J. E Groote and A. Ponse

/I

BPA; Z a Z S(t
i=0 ~cRco

Proof. By induction on the cardinali ty of R.

R = {qS}. Then

a" Z ~p " f (~) = a(~otj + ~C~tk)
~)cR co

for some j ,k E {0, . . . ,n}. By the ax iom G4 (atj + ark ~_ a(~)tj + ~4)tk)) we

derive
n

E a t i ~_ a. E ~" f(~)"
i=0 ~pcRco

R = {~bo,..., ~bk+l}. Let f : R c~ ~ {to t~} be given, and R1 d=ef R -- {qSo}. Take
gi :R~O ~ {to , t~} (i = 1,2) such that

g1(~5) a____ef f(~bo~) and ge(~) d ef f(=~bo~b).

First applying the induct ion hypothesis two times and then the ax iom G4 we

derive

E ati

i=0

~,eR 7

- - a(Z ~0~' gl(~) +
q, en~ ~

= a ' Z

~ER co

a. ~ ~. gl(Cp) + a. ~ ~. g2(Cp)

~ER~ ~ ~ER~ ~

a(o Z + g2I l)
fpER~ ~

F_, -r " g2(Cp))
~eRCl ~

[]

The two previous results give us the means to prove a key l emma stating that
whenever two G-basic terms over some reference set R do not obey certain
provable characteristics, then we can find a da ta envi ronment 5t such that

p ~b~q. Such a da ta env i ronment is then defined in terms of R.

Definition 2.25. Let R be some reference set. We define the da ta envi ronment

5P(R) = (R c~ effect, test) by

a E A ~ effect(a, (o) deZ R c~

~b E Gat ~ test((o, ~) iff q~ occurs in ~, or if 4) ~ R. []

The idea is that 5P(R) is sufficiently discriminating to distinguish any two G-basic
terms over R tha t are not p rovab ly equal. We define the depth of a closed te rm
over E(BPA6) as the maximal n u m b e r of consecutive a tomic actions that can be
performed. I t plays a role as a criterion for induct ion in proofs.

Definition 2.26. The dept h of a closed te rm p over Z(BPAG), writ ten as [p[, is some
element o f N, defined inductively as follows (q~ E G and a E A):

Process Algebra with Guards 131

Iq~l ~f o,
lal %f 1,

IPql ~f Ipl + Iql,
Ip -F ql dGf max(lp], Iql). []

Lemma 2.27. Le t Pl, P2 be G-basic terms over some reference set R. I f there is a

syntactic s u m m a n d r o f pj such that for any A-basic term q' over R we have

BPA 4 F - q l = q ' ---> e q ' G P 2 ,

then (pl, ~) r s~(R)(p2, ~).

Proof. Apply induction on Ipal + Ip21. The case Ipll + Ip21 = 0 is trivial, so let

IPal+ IP21 > 0. By definition P2 has a syntactic summand ~q2 and by assumption
ql @ q2. At least one of the following should hold:

1. e U _ q l a n d e g q 2 ,

2. e _ q 2 a n d e ~ q l ,

3. ar r- ql and ar ~ q2 for some a E A and G-basic term r over R,

4. ar U_ q2 and a r r ql for some a E A and G-basic term r over R.

If not, then ql ~ q2 by 1 and 3, and q2 ~ ql by 2 and 4, so ql = q2, contradicting

the assumption.

In cases 1 and 2 we have that for one of (Pl, ~), (p2, (b) there is a derivable
@transition, whereas by Lemma 2.23. this is not the case for the other (for

e r q2 ~ e ~= q2)- Hence (pl, ~) @ Y(R)(P2, ~). We only prove case 3 (the last
case can be dealt with in a similar fashion):

either q2 has no syntactic summand of the form dr'. Now (Pl, ~) @ Y(R)(P2, ~),

for (Pl, r has an a-transition, whereas (P2, ~) has no such transition by

Lemma 2.23;

or q2 has n + 1 syntactic summands starting with a, say aro, . . . ,arn with ro rn

G-basic terms over R. Now there is ~St~ C_ r such that for all A-basic terms t t

over R we have

t~ = t t ===~ Vi E {0,.. . ,n} ~t ' ~ ri

If this were not the case, then there would be a function f : R c~ ~ {r0 rn}

such that for any syntactic summand ~bt45 of r there is a t~ satisfying t45 = t~

and ~bt; r- f((b). Using 'saturation' (see Lemma 2.24.) we derive

i=o

a r i a Z
~)cR co

()~R co

= a z
~ER co

= dr.

~. ~ = ~)

132 J. E Groote and A. Ponse

We conclude ar ~_ q2, which is a contradiction in this case. By the in-
duction hypothesis we have for i = 0 n that (r ,~) @ S~(R)(ri,~b). Now

(Pl, r a~ (er, gp) is a derivable transition that can only be mimicked from

(P2,r by a transition (P2,~) a, (eri, gp) for some i. As (er, fp) ~_ SO(R)(r, fp)

and (eri, ~p) ~- S~(R)(ri, (P) it follows that (Pb ~) @ 9*(R)(P2, ~). []

With this key lemma on the specific data environment 5P(R), the main result of
this section follows easily.

Theorem 2.28. (Completeness) Le t rb r2 be d o s e d terms over Z(BPA6). I f rl ~-~r2
for all data environments 5f, then BPA 4 F- rl = r2.

Proof We prove the theorem by contraposition. Suppose rl ~ r2. We have to find
a data environment 5 ~ such that rl @~r2.

According to Lemma 2.21 there are G-basic terms Pl,P2 over some reference
set R D_ Ref (r l) U Ref(r2) such that BPA 4 ~- ri = Pi (i = 1,2). By soundness (see

Theorem 2.15) we have ri ~ -~ Pi for all 5 p. Because BPA 4 ~ pl = p2, either

pl has a syntactic summand ~q such that for any A-basic term q' over R we

have BPA 4 F- q = q' ==~ Cq' ~ P2, or vice versa: if this were not the case, then

Pa = ~eRCO ()q~ = ~$eR~o ()q~ = P2. This means that the previous Lemma 2.27

can be applied, and hence (Pl, r @ S~(R)(P2, r As -'~s~ is an equivalence relation

we conclude (rl, r @ S~(R)(r2, r and therefore rl @ S~(Rir2, which finishes our
proof. []

2.4. Specifying Processes Recursively

We extend our process language with a mechanism that enables us to specify
infinite processes by recursive equations.

Definition 2.29. A recursive specification E = {x = tx Ix c VE} over a signature
Z is a set of equations where V~ is a (possibly infinite) set of (indexed) variables
and tx a term over Z such that its variables (if any) are in VE. []

A solution of a recursive specification E = {x = tx Ix E V~} is an interpretation
of the variables in VE as processes, such that the equations of E are satisfied. For
instance the recursive specification {x -- x} has any process as a solution for x

and {x = ax} has the infinite process "a ~ as a solution for x. We introduce the
following syntactical restriction on recursive specifications.

Definition 2.30. Let t be a term over a signature Z. An occurrence of a variable
x in t is guarded iff t has a subterm of the form a- M with a c A U {6}, and this
x occurs in M. Let E = {x = t~ ix EVe} be a recursive specification over Y~. We
say that E is a guarded specification iff all occurrences of variables in the terms
t~ are guarded. []

The property "guarded" of a recursive specification has nothing to do with the
"guards" that form the main subject of this paper. It is however established
terminology, and therefore we respect it. Now the signature ZREC, in which we
are interested, is defined by:

Definition 2.31. The signature ZREC is obtained by extending Z in the following
way: for each guarded specification E = {x = t~ i x ~ V~} over Z a set of

Process Algebra with Guards 133

(REC) < x l E > = < t x] E >

E(x)
(RSP)

p~ = < x l E >

if x = tx E E and E guarded

if x c VE and E guarded

Fig. 4. Axioms for guarded recursive specifications.

constants { < x l E > [x E V~} is added, where the construct < x l E > denotes the
x-component of a solution of E. []

We introduce some more notations: let E = {x = tx Ix c VE} be a guarded
specification over E, and t some term over EREC. Then < t i E > denotes the term
in which each occurrence of a variable x c VE in t is replaced by < x [E >,
e.g. <aax[{x = ax}> denotes the term a a < x l { x = ax}>. If we assume that
the variables in recursive specifications are chosen uniquely, there is no need to
repeat E in each occurrence of <x [E> . Variables reserved in this way are called
formal variables and denoted by capital letters. We adopt the convention that
< x l E > can be abbreviated by X once E is declared. As an example consider
the guarded recursive specification {x = ax}: the closed term aaX abbreviates
aa<x L { x = ax } >.

For the new E-constants of the form < x I E > there are two axioms in
Fig. 4. In these axioms the letter E ranges over guarded specifications. The
axiom REC states that the constant < x I E > (x ~ VE) is a solution for the
x-component of E, so expresses that each guarded recursive specification has
at least one solution for each of its (bounded) variables. The conditional axiom
RSP (Recursive Specification Principle) expresses that E has at most one solution
for each of its variables: whenever we can find processes px (x c VE) satisfying
the equations of E, notation E(i~x), then px = < x l E > . This axiom was first
formulated in [BeK86] and the format adopted here stems from [vGV89]. Finally,
a convention is to denote a particular recursive specification right away by all its
REC instances (see the following example).

ExampLe 2.32. Consider the guarded specifications E = {x = ax} and E' = {y =
ayb} over 2(BPAG). So by the convention just introduced, E can be represented
by X = aX and E r by Y = aYb. With REC and RSP (and the congruence
properties of =) we prove BPA 4 + REC + RSP F- X = Y in the following way:

Xb Rz=c aXb RSP Xb = X , (1)

and secondly

RSP
Xb R~=C aXb (1)= aXbb ~ Xb = Y.

Hence BPA 4 + REC § RSP F- X = Y. []

In order to associate transition systems with closed terms over Gp, EC by guarded
specifications, we define in the case of E = {x = tx L x E V~} being a guarded
recursive specification over some signature G the general transition rule in Fig. 5.
Observe that this rule immediately implies the soundness of REC.

In the case of Z(BPAG)REC we define:

~ (p , S) def (C(E(BPAG)REC, S) , A / , ------~Z(BPAG)RI~C,5 o , (p, S)).

134 J.F. Groote and A. Ponse

(<tx I E>,s) a, (y,s')
recursion if x = tx E E

(<xlE>,s) a, (y,s')

Hg. 5. Transition rule for guarded recursive specifications (a E A/).

We state without proof that BPA 4 + REC + RSP is sound (the interested reader

is referred to [BaW90]).

Theorem 2.33. Let p, q be closed terms over Z(BPA6)REC. I f B P A e + R E C + R S P t-

p = q, then p ~_s~q for any data environment 5P. []

Note that RSP is not valid in the case of unguarded recursion: the unguarded

recursive specification {x = x} would otherwise lead to provable equality between

all terms over Z(BPAG)REC.

Example 2.34. We conclude this section by an example in the style of the in-
troductory one on the if - then - else - fi construct with which we started out:
given an atomic action [x := x + t] and an atomic g u a r d / x = t) (where t ranges

over integer expressions possibly containing program variable x), consider the

program

while x ~ t do [x := x + t] od.

This program can be recursively specified over Z(BPAa)REC by

X where X = ~(x = t) . [x := x + t] . X + (x = t)

or equivalently by

Y . (x = t) w h e r e Y = ~ (x = t) . [x : = x + t] . Y + e

(as BPA6 + REC + RSP t- X = Y �9 (x = t)). The idea is that data-states are

integer valuations in this case, and indeed X terminates in a data-state where

(x = t) holds, and performs [x := x + t] otherwise. []

3. B P A with Guards in a Specific D a t a Environment

Up until now we have studied basic process algebra with guards with respect
to the general class of data environments. But often one wants to consider
a data environment that is already determined, for instance in the case where
atomic actions are assignments and guards are Boolean expressions. Therefore we
now investigate bisimulation semantics for basic process algebra with guards in a
specific data environment. For any data environment satisfying some expressibility
constraints we present a complete axiomatisation by adding some new axioms to

4 the system BPA G. Finally, we show by an example how we can prove the (partial)
correctness of a small imperative program in process algebra.

3.1. Axioms and Weakest Preconditions

Let A be a set of atomic actions and Gat a set of atomic guards. In this section
we fix a data environment 5~ = (S, effect, test I over A and Gat. Now the axiom

Process A l g e b r a w i t h G u a r d s 135

(A1) x + y = y § (G1)
(A2) x + (y + z) = (x + y) + z (G2)

(A3) x + x = x (G3)
(A4) (x + y)z = xz + yz (G4)
(A5) (xy)z = x (y z)

(A6) x + 6 = x (SI)
(A7) 6x = 6
(AS) ex = x (WPC1)
(A9) xe = x (WPC2)

4). 9(o = 6

4) + 7 0 = ~
r + y) = 4)x + 4)y
a(4)x + -~4)y) ~_ ax + ay

4) 0 ' " 4)n =
i fgs E S 3i < n . test(-~4)i,s)

wp(a, 4))a4) = wp(a, 4))a
~ w p(a, 4))a~4) = -~w p(a, 4))a

Fig. 6. The axioms of BPA6(Se) where qS, ~bi E G and a E A.

system BPA 4 need not be complete. Assume for instance that two basic guards
4) and lp both satisfy test(4), s) .*=* testOp, s) for all s E S, i.e. 4) and ~p behave
the same in all data-states. Obviously we have that 4) _~s~p, but this cannot be
shown using BPA 4 because in general 4) @s~p. For another example, assume that
the process a, starting in a data-state where 4) holds, always ends in a data-state
where ~ holds. In this case 4)a _~s~ 4)a~p. Again this cannot be proved in BPA 4.

In Fig. 6 we present the axiom system BPAG(SP) by which we can prove these
identities. It contains the axioms of BPA 4 and three new axioms depending on
5p (this explains the 5~ in BPA~(5~)).

The axiom SI (Sequence is Inaction) expresses that if a sequence of basic
guards fails in each data-state, then it equals 6. Note that SI implies G1. The
equivalence 4) ~ ~p mentioned above implies that 4)~p = 6 and ~4)q~ = 6 are
in this case instances of SI. We can prove BPA6(5 P) F- 4) = ~p as follows:

4) = 4) (~+- -~)

= 4)~ + 4) ~

= 4)~o
= 4)~ + -~4)~

= (4) + ~4))~
1~.

In the axioms WPC1 and WPC2 (Weakest Preconditions under some Constraints)
the expression wp(a, 4)) represents the basic guard that is the weakes t precondi-
tion of an atomic action a and an atomic guard 4). Weakest preconditions are
semantically defined as follows:

Definition 3.1. Let A be a set of atomic actions, Gat a set of atomic guards and
5 ~ = (S, effect, test) be a data environment over A and Go~. A weakes t precondition
of an atomic action a E A and an atomic guard 4) E Got is a basic guard ~p E G
satisfying for all s c S"

testOp, s) iff Vs' E S (s' E effect(a,s) ~ test (4), s')).

If ~ is a weakest precondition of a and 4), it is denoted by wp(a, 4)). Weakest
preconditions are expressible with respect to A, Got and 5 P iff there is a weakest
precondition in G of any a c A and 4) E Gat. []

In the remainder of this section we assume that weakest preconditions are
expressible with respect to 5 ~. The axioms WPC1 and SI can be used to prove that
4)a -- 4)a~o (see above). In this case, in all data-states where wp(a, ~) holds, 4) holds

136 J.F. Groote and A. Ponse

as well. So we have the axioms O.-~wp(a, tp) = ~ (SI) and wp(a,~p)a = wp(a,~)atp
(WPC1). We derive:

Oa = (~(wp(a,~p) + -~wp(a,~p))a
= dpwp(a, ~p)a
= dpwp(a,~)a~
= (awp(a, ~p)atp + O-~wp(a, ~p)mp

= Oalp.

The expressibility of weakest preconditions is not yet sufficient to give an ax-

iomatic characterisation of their properties. For this we also need a constraint on

the non-determinism possibly caused by the function effect that we call sufficient
determinism.

Definition 3.2. Let A be a set of atomic actions and Gat a set of atomic guards
and let 5 p = (S, effect, test) be a data environment over A and Gat. We say that

5 p is sufficiently deterministic iff for all a E A and q5 c Gat:

Vs, s',s" E S (s',s" E effect(a,s) ~ (test(dp, s') ~=~ test(O,s"))). []

Remark that a data environment with a deterministic function effect is sufficiently
deterministic. Now if 5 ~ is also sufficiently deterministic, then the axioms WPC1

and WPC2 characterise (the properties of) weakest conditions in an algebraic

way: WPC1 expresses that wp(a, O) is a precondition of a and ~b, and WPC2 states
that wp(a, O) is the weakest precondition of a and qS. The following lemma states
that the soundness of BPA6(5 p) implies sufficient determinism.

Lemma 3.3. Let 5 P be some data environment over a set A o f atomic actions and
a set Gat o f atomic guards. I f weakest preconditions are expressible and BPAG(Se)
is sound, then 50 is sufticiently deterministic.

Proof Suppose 5 e is not sufficiently deterministic. So there are a E A, q5 E Gat
and s E S such that we can find s', s 'r ~ S with

1. {sr, s "} c_ effect(a,s), and

2. test(4,s') holds and test(O,s") does not hold.

We derive

a = wp(a, O)a + ~wp(a, (a)a

= wp(a, d?)agp + ~wp(a, O)a-~49

but obviously (a,s) ~s~ (wp(a, O)aq~ + ~wp(a, c~)a-~O,s), which contradicts the
supposition. []

Remark 3.4. Weakest preconditions can be extended to guards as follows (adopt-
ing the use of ~ on guards as defined in 3.1):

wp(a, ~) abbreviates ~wp(a, ~)
wp(a, ~ + ~) abbreviates wp(a, ~) + wp(a, ~)
wp(a ,~) abbreviates wp(a,~) . wp(a, fl).

Weakest preconditions of guards behave as expected: they satisfy the axiom
schemes w P C 1 and WPC2 of BPAa(5~ i.e. we have:

BPAa(5 ~) ~- wp(a, ~)a~ = wp(a, ~)a

for any a ~ A and guard ~ over G. We show this in case ~ ~_ ~/~ :

Process Algebra with Guards 137

WPC1 " ~wp(a, fl)a~fl = ~wp(a, fi)a (from WPC2)
WPC2 �9 -~-~wp(a, f l) a ~ f i = ~ w p (a , fl)a (from WPC1). []

We conclude the introduction of BPA6(5 ~) with some small observations. First
observe that BPAG(5 ~) is not meaningful if weakest preconditions cannot be
expressed in 5 ~ (we cannot even read its axioms). Furthermore note that the
axiom SI cannot be replaced by the simpler axiom

q5 = ~v if Vs E S (test(r .: :. testOp, s)).

If e.g. q5 holds in data-states so, sl and ~p only holds in so, then ~b~v _~s~ ~p, but
qS~p = ~p cannot be derived with the scheme above. Finally, note that the axiom
G4 (i.e., a(4)x + ~OY) c_ ax + ay) is derivable:

BPAG(5 ~ t- ax + ay = (wp(a, (a) § -~wp(a, ~)))(ax + ay)
~_ wp(a, 4))ax + ~wp(a, 4))ay
= wp(a, (~)ac~x + ~wp(a, (o)a-~c~y

= wp(a, (~)a4(Ox + ~OY) + =wp(a, 4))a~4)(Ox + ~4)Y)
= wp(a, (a)a(4)x + ~c~y) + wp(a, ~Oia((ox + --'OY)
= (wp(a, O) + -~wp(a, c~))a(4)x + --,c~y)
= a(~bx + -~c~y).

3.2. Soundness and Completeness

In the following let 5 ~ be a data environment over A and Gat such that weakest
preconditions are expressible and 5f is sufficiently deterministic. As stated in
Lemma 2.14., the relation _~ j is a congruence. We state without proof that
BPAG(5 P) + REC § RSP is sound with respect to 5 ~ (see Theorem 2.33., and it is
easy to check that the 'new' axioms are sound).

Theorem 3.5. (Soundness) Let 5e be a data environment such that weakest
preconditions are expressible and that is sufficiently deterministic. Let p, q be
closed terms over E(BPAG)R~C. I f BPAG(5 p) + REC + RSP ~ p = q, then p ~_~q.

[]

We show that the axiom system BPA6(5 P) completely axiomatises bisimulation
equivalence in 5p, i.e. the relation _~s~, between the closed terms over E(BPA6).
In order to do so we use some results of section 2, though we do not need the
concepts of A-basic and G-basic terms over 2(BPAG). The reason for this is that
weakest preconditions allow us to manipulate closed terms over E(BPAG) in such
a way that any basic guard different from 6, e can occur only at 'head level'.
This makes it possible to use a much simpler type of basic terms in proving
completeness. We first illustrate what kind of manipulation we mean. As an
example consider the term a-~Oc(b + e). We derive

a-~c~e(b + e) = wp(a, (~)a--,4)e(b + e) + -~wp(a, 4))a-~(oc(b + e)

= wp(a, O)a(o~4)c(b + e) + ~wp(a, (a)ac(b + e)

= wp(a, (~)a6 + -,wp(a, (o)ac(b + e)

with all basic guards different from 6, e at head level. Using the possibility to push
basic guards to head level as illustrated above, it suffices to define the following
simpler syntactic class of basic terms.

138 J.F. Groote and A. Ponse

Definition 3.6. A term p over E(BPAc) is called basic over some reference set R
iff the following conditions hold:

1. A1,A2 }- p = E r

CER co

2. For all r E R c~ the term q~ is a term in atomic prefix normal form over

E(BPAG):

p : : = c ~] e l a p] p + p

where a E A. []

In the following two lemmas we show that for any closed term p over Z(BPAG)
there exists a basic term pr (over some reference set) satisfying

BPAG(Se) ~- p = p'.

Hence we may restrict our attention to basic terms in proving completeness,
and exploit their syntactic structure. Particularly, if two basic terms p, q are not

provably equal, then there is a data-state s such that (p, s) ~b~(q, s).

Lemma 3.7. L e t a C A and R be some reference set. For any term t over Z(BPAG)
i t holds that

BPAa(5 e) t- t = E wp(a ,~) , t.

~cR co

Proo f By induction on the cardinality of R. []

Lemma 3.8. (Basic f o r m) I f p is a closed term over Z(BPA6), then there is a basic

term p' over some reference set R such that BPAo(~) ~- p = p'.

Proo f By Lemma 2.20. we may assume that p is a term in prefix normal form
over Z(BPAG) and we apply induction on the structure of p:

p -= 6 or p -= e. By Lemma 2.17. we have

f i = E ~ and e = E ~e, respectively,

~R~o ~Rco

for any reference set R.

p = q~q. By the induction hypothesis there is a reference set R such that

q = E ~q~
~cR co

with all the terms q~ in atomic prefix normal form over E(BPAG). Let R1 d ef

{r U R. By Lemma 2.17. we have

~bq = E ~3r E Cq,~
q2ERel ~ ~cRco

E = ffP'qcp

where for all ~ E R~ ~

Process Algebra with Guards

' { q~ q~ --

Furthermore

~eR~ ~

is clearly a basic term over R1.

p -- ~q~q. Likewise.

if q5 occurs in ~b and ~ occurs in ~3,

otherwise.

139

p -- aq. By the induction hypothesis there is a reference set R such that

q : Z
~)cR co

with all the terms q~ in atomic prefix normal form over t2(BPAG). We derive

aq = a" ~-~ ~qc;
~ c R co

= ~_~ wp(a,~)'a" ~ ~qq, (by Lemma 3.7.)

~)eRco gpeR c~

= ~ wp(a,~)).a.~)q~ (~ 3 ~ ~ ~ . ~ b = ~)

~)ER co

= ~ wp(a,~))'a q$
~)cR co

Let wp(a, R) de=f {Ref(wp(a, q~)) ~b E R}. Note that wp(a, R) may be empty (for
instance in case R = {~b} and wp(a, ~b) = e). Let

R1 d__ef {~b} U wp(a, R)

for some arbitrary q5 c Gat. Obviously R1 is a reference set, and we derive

aq = ~_, wp(a,~))'a'q?~
~CR co

= S f p " ~ a'q?o
~PeR~ ~ {~ERCOl&wp(a,~))=~V~@wp(a,())=fp}

with the latter term basic over R1.

p - q + r. By the induction hypothesis there are reference sets R1, R2 such that

q = ~ t)qf and r = ~ 0r 0

~R~ ~ O~R~O

with all the terms qcp, r 0 in atomic prefix normal form over Z(BPAa). Let

R de=f R1 U 112. By Lemma 2.17. we have

q = ~ ~q; and r = ~ ~r; .

140 J. F. G r o o t e a n d A. Ponse

r r l where for all ~ E R c~ the terms q~, & are defined as follows:

!
q& - q~, provided ~ occurs in ~,

l r& -- r0, provided 0 occurs in ~.

We derive

q + r = E ~(q; + r;)
~CR co

and clearly the right hand side term is basic over R. []

The syntax of a basic term is sufficiently strict to derive information about its
(syntactic) structure from its operational behaviour. As announced before, we
show that if two basic terms over some reference set R do not obey certain
provable characteristics, then we can find a data-state s E S such that the
associated transition systems with initial data-state s are not 5&bisimilar. The
proof of this fact is quite easy compared to the proof of the related Lemma 2.27.

Lemma 3.9. Le t Pl, P2 be basic terms over some reference set R. It" there is ~ ~ R ~~

such that

1. BPAG(5 ~) ~c ~ = r

2. ~qi& E_ Pi (i = 1,2),

1 2 3. BPA 3 ~- q& = qa'

then 3s c S ((pl,s) @s~(p2, s)).

Proof Assume that ~ satisfies the conditions of the lemma. So by 1 we can find

some s ~ S such that (~,s) 4/, (6,s).
Now suppose (Pl, s) _'~s ~ (P2, s) by some 5e-bisimulation B. Adding the tuple

((q;, s), (q~, s)) to B would by condition 2 result in an 5&bisimulation establishing

(q~, s) _~s~ (q~, s). We show that for all terms ql, q2 in atomic prefix normal form

that

3s E S ((qbs) -*~(q2, s)) ~ BPA 3 ~- ql = q2

contradicting condition 3 of the lemma, and therefore the supposition.
Assume (ql, s) _'~s~ (q2, s), we show that BPA 3 ~- ql = q2 by proving that any

syntactic summand (see Definition 2.22.) of ql is provably equal to a syntactic
summand of q2 and vice versa. We apply induction on Iqll + Iq2l (see Definition
2.26.). The case [qll + Iq21 = 0 is trivial, so assume Iqxl + Iq21 > 0. By symmetry it
suffices to show that if t E_ ql for some term t, then we can find a term t' such
that BPA 3 F- t = t' and t' U q2.

Suppose ar E_ ql. For any s' c effect(a,s) we have (ql,s) a, (er, s!). By
assumption (q2,s) a~ (r',s') for some term r', satisfying (er, s') ~-s~ (r',s'). By
a simple argument (cf. Lemma 2.23.) there exists a term r" in atomic prefix
normal form such that er" =- r' and ar" E p'. So (er, s') ~_s ~ (er",s'), and thus
(r, s') +-+_:e(r", s'). By the induction hypothesis r = r", and hence ar = ar".

In case e _ ql, we can show in the same way that e E_ q2. []

Connecting all the results proved so far, we can prove the completeness of
BPAG(5 P) in a simple way.

Process Algebra with Guards 141

Theorem 3.10. (Completeness) Le t ~ be a data environment such that weakest
preconditions are expressible and that is sufficiently deterministic. Le t rbr2 be
closed terms over E(BPA6). I f q ~_s~ r2, then BPAc(5 P) F rl = r2.

Proof We prove the theorem by contraposition. Suppose rl @ r2. We have to show
rl @~ r2. According to Lemma 3.8 there are basic terms ' ' Pl, P2 over reference sets
R1,R2, respectively, such that ri = Pl (i = 1,2). By Lemma 2.17. we can find basic

terms pl,P2 over R = R1 u R2 such that Pi = P'i, and hence ri = Pi (i = 1, 2).

By soundness (see Theorem 3.5.) we have that ri _~->s~ Pi. Because Pa :/: P2, there

must be ~ 6 R c~ satisfying the conditions of the previous Lemma 3.9., i.e., there
is some s E S such that (Pl, s) @3, (p2, s). As _'~:~ is an equivalence relation, we
conclude (rl, s) @y(r2, s), which finishes our proof. []

3.3. An E x a m p l e : T h e P r o c e s s S W A P

Process algebra with guards can be used to express and prove partial correctness
formulas in Hoare logic. In section 5 we elaborate on this idea. Here a simple
example that is often used as an illustration of Hoare logic is presented and its
correctness is shown.

First we transform BPAo(5 P) into a small programming language with Boolean
guards and assignments (cf. the setting of the examples on if - then - else - fi

and while - do - od in the previous section). Our language has the signature of
E(BPAG) and we have some set ~ = {x, y } of data variables. Atomic actions
have the form:

[X : = t]

with x E Y- a variable ranging over the set E of integers and t an integer expres-
sion. We assume that some interpretation [[.] from closed integer expressions to
integers is given. Atomic guards have the form

(t = u)

where t and u are both integer expressions.
The components of the data environment 5e = (S, effect, test) are straightfor-

ward to define:

S = ;g~

i.e. the set of mappings from :U to the integers. We write p, ~ for data-states in
S, and we assume that the domain "U of these mappings is extended to integer
expressions in the standard way. The function effect is defined by:

effect([x := t],p) = {p[[[p(t)]]/x]}

where p[n/x] is as the mapping p, except that x is mapped to n. We define the
predicate test by:

test((t = u), p) .*==> (~_p(t)]] = [[p(u)~).

Note that the effect function is deterministic, so 5" is certainly sufficiently deter-
ministic. Weakest preconditions can easily be expressed:

wp([x : = t], (u = v)) = (u [t / x] = v [t / x]) .

142 J .F. Groote and A. Ponse

The axiom SI cannot be formulated so easily, partly because we have not yet
defined integer expressions very precisely. For this example we only need'

(t = u) ' - ~ (t ' = u') = 6 and -lit = u). (t' = u') =

if Vp 6 S [[p(t)~ = [[p(t')~ and [[p(u)ll = [[p(u')l].

In this language we can express the following tiny program S W A P that
exchanges the initial values of x and y without using any other variables.

S W A P = [x : = x + y] . L v : = x - y] [x : = x - y] .

The correctness of this program can be expressed by the following equation:

(x = n) . (y = m) . S W A P = (x = n) . (y = m) " S W A P . (x = m) . (y = n).

This equation says that if S W A P is executed in an initial data-state where x = n
and y = m, then after termination of S W A P it must hold, i.e. it can be derived,
that x = m and y = n. So S W A P indeed exchanges the values of x and y.

The correctness of S W A P can be proved as follows"

i x =- h i . (y = m) . S W A P

sd ((x + y) - y = n) . ((x + y) - ((x + y) - y) = rn). S W A P

WPC1,SI
= (x = n) - <y = m) - {x : = x + y] . (x - - y = n) . (x - - (x - - y) -= m) .

[y := x - y] - I x := x - y]

WPC1
= (x = ~>. (7 = m>. [x := x + 7 1 (x = ~>- <7 = m>.

Lv := x - 7]" (7 = ~>' (x - y = m) . [x := x - 7]

WPC1
= (x = n) . (y = rn) . S W A P . (x = m) . (y = n).

Note that we have used the identities

<x = n> -- <(x + 7) - y = ~)

and

(x = m) = ((x + y) - ((x + y) - y) = m) .

We show below how the first one is derived:

X ~ n) = < x = n > . c

= (x = n>. (((x + y) - y = n> + 9 ((x + y) - y = ~))

= (x = ~>. ((x + y) - y = ~> + <x = n>. ~ < (x + y) - y = ~>

= <x = . > . <(x + y) - y = ~> + a

= <x = n>. ((x + y) - y = .> + -~<x = . > . <(x + y) - y = n>

= ((x = ~> + -~(x = n>)- ((x + y) - y = n>

= e ' ((x + y) - - y = n)

= <(x + y) - y = ,,>

4. Parallel Processes with Guards

In this section Basic Process Algebra with guards is extended with operators for
parallelism. We give Plotkin-style rules to express the operational behaviour of
these operators and show that 5<bisimilarity is not a congruence any longer. We
deal with this problem by introducing another bisimulation equivalence, called

Process Algebra with Guards 143

constants:

unary operators:
binary operators:

a for any atomic action a E A
4) for any basic guard ~b E G

~n encapsulation, for any H ~ A
+ alternative composition (sum)

sequential composition (product)
I[parallel composition (merge)

II left-merge
I communication-merge

Fig. 7. The signature Z(ACPG).

global 5:-bisimulation equivalence which is finer than 5:-bisimilarity. Global 50-
bisimulation equivalence is a congruence, but it is not so natural. Moreover, the
axioms WPC1, WPC2 and G4 are not valid anymore in global 5:-bisimulation.

We present the axiom system ACPG which is based on ACP (the Algebra of
Communicating Processes [BeK84a]). ACPG is sound for global 5:-bisimilarity,
and for finite processes also complete. This axiom system enables us to prove
Y-bisimulation equivalence between processes: using ACPG every closed process
term can be proved equivalent to one without parallel operators, and then BPA 4
or BPAG(5 e) can be used to prove 5:-bisimilarity. This section is concluded with
an example in which the correctness of a parallel process is proved in this way.

4.1. Axioms and a Two-Phase Calculus

We extend the language of 2(BPAG) to a concurrent one, suitable to describe the
behaviour of parallel, communicating processes. Communication is modelled by
a communication function 7 : A x A ~ A6 that is commutative and associative.
If 7(a, b) is 3, then a and b cannot communicate, and if 7(a, b) = c, then c is the
atomic action resulting from the communication between a and b.

Concurrency is described by three operators, the merge II, the left-merge I[_
and the communication-merge I.

p 11 q represents the parallel execution of p and q. It starts when one of its
components starts, and terminates if both of them do.

p]]__q is as p II q, but under the assumption that the first action that is performed
comes from p (it may be the case that the behaviour of p starts with the
evaluation of a guard).

p [q is as p 11 q, but the first action is a communication between p and q.

We present encapsulation operators 0~ (for any H _c A) that block atomic actions
in H by renaming them into 3. Encapsulation is used to enforce communication
between processes. The signature 2(ACPG) is summarised in Fig. 7.
For the terms over Z(ACPG) we have the axioms given in Fig. 8, where a, b E A,
H ~ A and q5 c G (note that the axiom a((ox + -~dpy) ~_ ax + ay (G4) is absent).
Most of these axioms are standard for ACP (see [BeK84a]), and, apart from G1,
G2 and G3, only the axioms EM10, E M l l and DO are new. The axiom EM10
(EMll) expresses that a basic guard q5 in qSx [Jy (~bx [y, respectively) also may
prevent that y happens.

144 J.F. Groote and A. Ponse

(A1) x + y = y + x
(A2) x + (y + z) = (x + y) + z
(A3) x + x = x

(A4) (x + y)z = xz + yz
(A5) (xy)z = x(yz)
(A6) x + a = x

(A7) fix = 8
(A8) ex = x

(A9) xe = x

(CF) a l b = ? (a , b)

(G1) qS. --,q5 = 6
(G2) q ~ + ~ q S = e
(G3) ~b(x + y) = qSx + ~by

(EM1) x l l y = x [[_ y + y l l x + x l y (EM10) ~bxHy=~b(x[l_y)

(EM2) ell_x = 6 (EMIl) ~bx I Y = 4 (x l y)

(EM3) a x U y = a (x ll y)

(EM4) (x + y) ILz = x ILz + y ILz

(EM5) x l y = y l x (DO) 0H(~b)=~b
(EM6) e [e = e (D1) a H (a) = a i f a q ~ H
(EM7) e t a x = 6 (D2) 0 F / (a) = 6 i f a E H

(EM8) ax I by = (a I b)(x tl Y) (D3) On(x + y) = OR(x) + O~I(y)
(EM9) (x + y) l z = x l z + y L z (D4) OH(Xy)=OH(X)aH(y)

Fig. 8. The axioms of ACPG where q5 E G, a, b E A and H _c A.

Using ACPG any closed term over E(ACP6) can be proved equal to one
without merge operators, i.e. a closed term over E(BPAG).

Theorem 4.1. (Elimination) Le t p be a dosed term over E(ACP6). There is a
dosed term q over Z(BPAG) such that ACP6 ~- p = q.

Proof By induction on the structure of terms. []

The axiom systems ACPG and BPA 4 or BPA3(5 P) cannot be combined in bisim-
ulation semantics; if G4 is added to ACP6 we can derive the following:

ACPG + 6 4 ~- a(b II d) + a(c II d) + d(ab + ac) (1)

= (ab + ac) II d
G4
= (ab + ac + a((ob + -~(oc)) II d

~- a(4abd + ~(ocd + d(4b + -~q~e)). (2)

So, in (2) it can be the case that after an a step 4~ holds, and we arrive in a state
where we can do a b or a d step. Performing the d step can bring us in a state
were -~q5 holds, so the only possible step left is a c step. This situation cannot be
mimicked in (1). Therefore, every term with (2) as a summand is not bisimilar to
(1) for any reasonable form of bisimulation. So ACP~ + G4 is not sound in any
bisimulation semantics. (Note that the data environment in this example can be
sufficiently deterministic.)

Because we still want to derive 5P-bisimilarity between closed terms containing
merge operators, we introduce a two-phase calculus that does not have these
problems. Derivability in this calculus is denoted by b2.

Process Algebra with Guards 145

Definition 4.2 (A two-phase calculus [-2). Let Pl, P2 be closed terms over
E(ACPa)P, EC. We write

ACP 4 ~-2 Pl = p2

iff there are closed terms ql, q2 over Z(BPAG)REC such that

ACPG b- Pi = qi (i = 1, 2) and BPA 4 t- ql = q2.

Furthermore, we write

ACP~(5~) F-a Pl = P2

iff there are closed terms ql, q2 over E(BPAa)REC such that

ACPG ~- Pi = qi (i = 1, 2) and BPAG(5 p) F- ql = q2.

We sometimes put REC + RSP in front of F-2 which means that we may use

REC and RSP in proving Pi = qi (i = 1, 2) and ql ----= q2. []

4.2. Operational Semantics and Soundness

Let ~ = (S, effect, test) be some data environment over a set A of atomic actions
and a set Gat of atomic guards. The transition rules in Fig. 9 and the transition
rule for guarded recursive specifications (see Fig. 5) determine the transition
relation >Z(ACP~/REC,~ over E(ACPG)REC. Remark that these rules formalise the
informal description of the new operators given earlier, and that all rules given
for Z(BPA6) in Fig. 3 are included. Let p be a closed term over Z(ACPG)REC. For
any s C S the transition system ~r s) is defined as

~ ' (p , S) d ef (C(E(ACPG)REc, S) , A / , -------*Z(ACPG)r~EC,5~ , (p, S)).

We first show by an example that the notion of 'J-bisimilarity' as defined in 2.13
for the configurations over Y~(ACPG)REC gives in general no congruence relation
between the closed terms over 2(ACP~)REc.

Example 4.3. Consider the data environment ({so, sl }, effect, test) in which

�9 Vs E S (effect(a,s) = {so}) for some a ~ A;

�9 Vs ~ S (effect(b,s) = {Sl}) for some b 6 A;

�9 test(c~,so) and not test(f) ,sl) for some ~b E G.

In this case we have a6 ~_s~a~(o but not a6 If b ~_s~a~O II b, for the transition
system d (a ~ 0 I[b, s0) has an execution path

(a~q5 [Ib, so) a, (6~ff) II b~f),so) b, (e--,~b II e, Sl) ,/, (6 I /6 ,s l)

that is not present in d (a 6 II b, So). []

We define a different bisimulation equivalence, called global 5r that is
a congruence for the merge operators. The idea behind a global 5~ is
that a context p [[(.) around a process q can change the data-state of q at any time
and global 5P-bisimulation equivalence must be resistant against such changes.
So, a configuration (Pb s) is related to a configuration (P2, s) if (Pl, s) a ~ (qx, s')
implies (P2, s) a ~ (q2, d) and, as the environment may change s I, the process ql
is related to q2 in any data-state:

146 J. E Groote and A. Ponse

a E A (a,s) a , (e,s') i f s' E effect(a,s)

~b E G (q~,s) , / , (6,s) if test(~b,s)

"JC (X, S) "-~ (X', S t) (y, S) a, (fit, St)

(x + y, s) ~, (x', s') (x + y, s) ~ (y', s')

(x, s) ~ (x', s')
(xy, s) --% (x'y, s') if a :/= ~/

(X,S) ~ (X',S t) (y,s) a> (y,,st,)

(xy, S) --% (y', S")

(x, s) - -~ (x', s') (y, s) ~ (y', s')
II (x [I y, s) ~ (x' II y,s') if a @ x/ (x I1 y, s) a, (X N yt, S') if a :~ ~/

(X, S) a, (X', S') (y, S) b> (y,, Sit) if 7(a, b) 5~ 6, a, b :fi , j

(x [I y,s) ~ (x' II y ' , s ') and s" c effect(7(a, b), s)

(x,s) 4, (x',s') (y,s) ./, (y',s')

(x II y,s) 4, (x' II y',s')

(X,S) a, (X',S t)

]2 (X LY, S) a , (X' I] Y, st) if a @ ~/

(X,S) a , (X',S t) (y,s) b> (y,,s,,)

(x ty , s) ~t.~b~ (x' II Y', s")
if 7(a,b)7~ ~, a,b@x/,
and s" E effect(7(a, b), s)

(x,s) ,/, (x',s') (y,s) -,/, (y',s')

(x [y, s) -4-* (x' [I y', s')

(X,S) a) (X t,S t)
0R if a ~ H _~ A

(~H(X),S) a) (~H(X,),S t)

Fig. 9. Transition rules for ACPG (a, b ~ A/, H _c A).

Definition 4.4. Let Z be a signature, ~ a data environment with data-state space
S and ~so a transition relation over C(E, S).

�9 A binary relation R ~ C(Z, S) x C(E, S) is a global 2f-bisimulation iff R satisfies
the following (global) version of the transfer property: for all (p,s),(q,s) E
C(Z, S) with (p, s)R(q, s):

Process Algebra with Guards 147

1. Whenever (p, s) a > s~ (P', s') for some a and (p', s'), then, for some q', also
(q, s) a, s~ (q', s') and Vs" E S ((p', s")R(q t, s")),

2. Conversely, whenever (q,s) ~ so (q', s') for some a and (qt, st), then, for
some p', also (p, s) so (pt, s t) and Vs tt c S ((pt, stt)R(qt, s")).

�9 A configuration (p,s) c C(Z,S) is globally S-bisimilar to a configuration
(q, s') c C(2, S), notat ion

(p, s) _e~so(q, s t)

iff s = s t and there is a global 5P-bisimulation containing ((p, s), (q, st)).

�9 A transition system d (p , s) = (C(Z, S) ,A / , ~so, (p, s)) is globally 5P-bisimilar
with a transition system d (q , s') = (C(Z, S) ,A / , ~s~, (q, st)), notat ion

d(p, s) ~_s%4(q, s t)

iff (p, s) e2~(q, s').

�9 Two closed terms p, q over Z are globally 5P-bisimilar, notat ion

p _ e ~ q

iff d (p , s) e~sod(q, s) for all s c S. []

By definition of global ~-bisimilar i ty we have for any two closed terms p, q over

Z(ACPG)REC

p e:~_so q ~ p ~s~ q.

It is not difficult to see that for any data environment 50 the relation _~s~ is an
equivalence relation over the closed terms over Z(ACP~)REC.

Our goal, i.e. global 5P-bisimilarity being a congruence relation, has been
achieved:

Lemma 4.5. For any data environment 5P the relation ~_so is a congruence with
respect to the operators os

Proof We only prove the lemma for the merge operator. Let 5 P = (S, effect, test)
and assume that p _'~s~ p/ and q _~so qt. So for all s ~ S we have global 5 P-
bisimulations R~ and R~ such that (p,s)Rp(pt, s) and (q,s)RSq(qt, s). We have to

show (p 11 q,s) ~_s~(p I 11 qt, s) for all s c S. Fix so c S, and let Rp d_ef UscsR~ and

Rq de=f UsesR~. We define a relation R as follows:

e a___ef {((r 11 u,s),(r' 11 u',s))[(r,s)Rp(rt, s), (u,s)Rq(ut, s)}

We have (p l! q, so)R(p' II q', so) and we show that R is a global 5P-bisimulation.
Suppose

(r II u,s)R(r' 11 ut, s) and (r [[u,s) a , (v II w, st).

We systematically check which application of the transition rules may have led
to this transition:

(r, s) - ~ (v, s'), u -= w and a :p x/" Because r, s)Rp(r t, s) and Rp is a global 5 #-
bisimulation, there is a v' such that (r', s) (0, (v', s') and
Vs"((v, st')Rp(v', s")). We derive (r t [I u', s) a , (vt [1 d , st). As
Vs"((r', stt)Rp(v t, sit)) and Vs'((u, s't)R~(u t, s')), we have

Vst'((v I] u, s')R(v t [1 d , s ')) by definition of R.

148 J.F. Groote and A. Ponse

(u, s) --~ (w, s:), r --= v and a @ x/" Likewise.

(r,s) b> (v,s"), (u ,s) - -% (w,s"), a = y(b,c) and s' E effect(a,s). In a sim-
ilar way as above we can find v' and w' satisfying (r ' , s) b ~ (v',s") and
(u', s) ---% (w', s ') , and hence (r' t[u', s) % (v' H w', s'). As
Vs"((v, s")Rp(v', s')) and Vs'((w, s")Rq(w', s")), we conclude
Vs"((v l] w, sr')R(v ' 11 w',s")).

(r,s) ,/, (v,s'), (u,s) ~ (w,s') and a = x/" Likewise. []

Theorem 4.6. (Soundness) Le t p, q be closed terms over E(ACPa)REc. IfACPG +
REC + RSP F- p = q, then p ~_s: q for any data environment 5 ~

Proof All the axioms of ACP~, REC and RSP are sound and _e~s: is a
congruence. As an example we prove the soundness of the axiom EM1. Let
J = (S, effect, test) be a data environment over A and Gat and let p, q be closed
over E(ACPG)REC. Consider the relation

e ~ / d U { ((p l [q , s) , (p [l q + q l l p + p l q , s)) l s E S }

where Id is the identity relation on C(E(ACPc)p.Ec, S).~'~It is not difficult to see
that R is a global 5o-bisimulation satisfying (p [[q)R(p][q + q [[_p + p t q). []

With this result we immediately obtain the soundness of two-phase derivability.

Corollary 4.7. (Soundness) Le t p, q be closed terms over Z(ACP6)R~c.

I. I f A C P 4 + REC + RSP ~2 P = q, then p ~_s: q for any data environment 5 ~

2. Le t 50 be a data environment such that weakest preconditions are expressible
and that is sufficiently deterministic. I f ACPa(SO) + REC + RSP ~-2 P = q,
then p ~_~ q.

4.3. Completeness

We show that the axiom system ACPG completely axiomatises global 5~ -
similarity in all data environments for the closed terms over Z(ACPG). From
Theorem 4.1. and Lemma 2.21., it follows that we can restrict our attention to
the G-basic and A-basic terms over E(BPAG) defined in section 2. Due to the fact
that global 5:-bisimilarity is a finer equivalence than ordinary 5o-bisimilarity, we
are able to prove the related version of Lemma 2.27. in a simple way.

Note that the results from section 2 that are used here, are all proved using
BPA~.

Lemma 4.8. I f pl,p2 are G-basic terms over some reference set R and ACPG

Pl = P2, then there is a data-state ~ in 5:(R) such that (Pl, ~1 @ s~ ~).

Proof By induction on IPll +]P2[. The case IPll + IP2[= 0 is trivial, so assume
IPll + IP21 > 0. Ifpa @ P2, then Pl 7~ P2 or P2 ~ Pl. Assume pl ~ p2, so there is an

A-basic term ql over R such that ~ql ~- Pl and ~ql 7~ P2 (otherwise just sum up
all syntactic summands of pl and conclude Pl ~ p2).

By definition p2 has a syntactic summand ~q2, but ql ~ q2 (otherwise ~ql _~

~q2 -~ p2). One of the following holds:

1. e___ql a n d e ~ q 2 ,

Process Algebra with Guards 149

2. ar Z_ ql and ar ~ q2 for some a E A and G-basic term r.

(If all syntactic summands of qa would be provable summands of q2, then ql ~ q2.)

In the first case we have (pbqS) ' / , whereas by Lemma 2.23. (p2,~) has no

such transition, so (Pb ~) ~s~(p2, ~). We evaluate case 2:

either q2 has no syntactic summands starting with a. Now (Pl, ~) ~ y(R)(P2, ~),

for (Pl, ~) has an a-transition, whereas (p2, ~) has no such transition by
Lemma 2.23;

or q2 has n + 1 syntactic summands starting with a, say aro, . . . ,arn. It holds that
r i @ r for all i = 0 , . . . , n (otherwise ar = ari ~_ q2 for some i). By the induction
hypothesis (r, gpi) ~ s~(R)(ri,~Pi) for a data-state ~i ~ 5P(R). By Lemma 2.23

we have for all i , j = 0 n (p l , ~) - ~ (er,~Si) and (P2,~) a, (erj, gpi).

Suppose (Pb~) ~ s~(R)(P2,~), then by definition of global 5P-bisimilarity

(er,~i) ~ ~(R)(erj,~)i) for all i , j , and hence

But this was contradictory in case i = j.

The case P2 7~ Pl can be treated likewise. []

By this lemma, the previous completeness results and Theorem 4.1. we obtain the
following results.

Corollary 4.9. (Completeness) Le t rl, r2 be closed terms over E(ACP6).

i. I f rl ~_5 ~ r2 for all data env ironments 50, then ACPG F- rl = r2.

2. I f rl ~_s~ r2 for all data env ironments 5 e, then ACP 4 t-2 ra = r2.

3. Le t 50 be a data env i ronment such that weakest precondi t ions are expressible

and that is sufficiently deterministic. I f rl ~-5 ~ r2, then ACPG(Y) ['-2 rl = r2.

4.4. An Example! A Parallel Predicate Checker

In this section we illustrate the techniques that we introduced up till now by an
example. Let f _~ 2g be some predicate, e.g. the set of all primes. Now, given some
number n, we want to calculate the smallest m > n such that f (m) . Assume we
have two devices P1 and P2 that can calculate for some given number k whether
f (k) holds. In Fig. 10 we depict a system that enables us to calculate m using both
Pa and P2. A Generator/Collector G generates numbers n, n + 1, n + 2 sends
them to P1 or P2, and collects their answers. Furthermore G selects the smallest
number satisfying f from the answers and presents it to the environment.

To describe this situation, we extend the example of section 3.3 with the
atomic actions (i = 1, 2):

150

Generator/Collector G

Fig. 10. The parallel predicate checker Q.

J. E Groote and A. Ponse

P1 f-checker

P2 f-checker

s(!x)

r (?x3

Sok(!xi)

rok(?y)

Snotok

rnotok

Cnotok

w(!x), w([y)

send value of x,

read a value for xi,

send the value xi for which the evaluation of f (x i)
was a success,

read a value for y for which f (y) succeeded,

indicate that an evaluation of f was not successful,

read that an evaluation of f has failed,

a communication between rnotok and Snotok,

write value of x, y to environment.

These atomic actions communicate according to the following scheme:

)~(S(!x),r(?xi)) = 7(r(?Xi), S(!X)) = [X i : = X],

y(Sok([Xi), rok(?y)) = ?(rok(?y), Sok(!xi)) = [y := xi],
7(S.o~ok, r.otok) = 7(r.o~ok, S.otok) = C~o~ok.

All new atomic actions do not change the data-state, i.e. for each new atomic
action a:

effect(a, p) = {p}.

Probably, one would expect that for instance effect(r(?y), p) = {p[new value~y]}
as r(?y) reads a new value for y. But this need not be so: the value of y is only
changed if a communication takes place.

Add new atomic guards (f(t)) for any integer expression t to the setting of
section 3.3. These guards have their obvious interpretation: tes t (i f (t)) ,p) holds
iff f(][p(t)]]) holds.

The parallel predicate checker Q can now be specified by:

G = [x := n] s(!x) [x := x + 1] s(!x) G1
Gl = rnowk[X : = x + l] s (! x) G l + r o k (? y) G 2
G2 = -~(x -= y) w(y) + (x = y)(rok(?y) w(y) + rnotok w(x))

Pi = r(9 .x i)P[-[- e

P/ = (f(xi))Sok([Xi) + =(f(xi)) S~otok Pi + e

Q = 3H(G I[(P1 II P2))

with H = {r(?xi),rok(?y),rnotok, S(!X),Sog(!xi),Sno~ok l i = 1,2}.

Process Algebra with Guards 151

The parallel predicate checker Q is correct if directly before the execution of
an atomic action w(x) or w(y), x respectively y represents the smallest number
m _> n such that f(m). We introduce new atomic guards (a(t, u)) for integer
expressions t, u to express this formally:

test((a(t,u)),p) ~ [[p(t)]] < [[p(u)]] A (A -'f(J))"

n < j < [[p(u)]]
j 5 A [[p(t)]]

Now Q is correct if

ACP6(5 e) + REC + RSP [-2 Q = Qt (3)

where Q' is defined by:

Q' = ~H(G' II (P1 II P2))

with H, P1 and P2 as above, and G' is defined by (the difference between G and
G' is underlined):

G' = [x := n] s(!x) [x := x + l] s(!x) G~

G] = rnotok[X := x + 1]s(!x)G' 1 +rok(?y)G' 2
G i = ~ (x = y) �9 {e(y,y)){f(y)) " w (y) +

(x = y)(rok(Ty) �9 (c~(y, y)) (f (y)) �9 w(y) +

r•otok " (o~(x, x)) (f (x)) " w(x)).

This expresses that Q is correct if we can show that directly before a value, say
x, is output via gate w, then f holds for x, and f does not hold for all values
from n to up to x (i.e. e(x, x)). Note that c~ is unnecessarily complex to state the
correctness of Q. But this formulation is useful in the 'second phase' of the proof
of (3).

This proof is given by first expanding Q and Q' to merge-free forms (the 'first
phase' of the proof of (3)). With ACPo we derive:

Q ~n(G1]l (e l II P2))
[x := n]([xl := x] [x := x + 1] [x2 := x] . ~H(G1 II (P~ II P~)) +

[X 2 := X] [X := X q'- 1] [X 1 := X]" ~H(G1 II (P~ II P~)))

OH(G1

0H(G2

~H(G2

(e~ II e;))
~(f(xl))Cnotok [x := x + 11 [x 1 := x]-~H(G1 11 (P~ 11 P~)) -~-
~(f(x2))C,~otok [X := X + 1] [X 2 := X]" c~n(G1 [1 (P~ 11 P;)) +

(f(xl)) [y := xl] OH(G2 l[P~) +
(f(x2)) [y := x2] ~H(G2 II P;)

P9
~(x = y) w(y) +

(x = y)((f(x2)) [y := x21 w(y) + ~(f(x2)) Cnotok W(X))

P;)
- - - , (x = y) w(y) -t-

(x = y)((f (x l)) [y := xl] w(y) + ~(f(xl)) Cnotok w(x)).

152 J. E Groote and A. Ponse

Now replacing - 8H(G1 II (P1 II P2)) by R,
- both ~3H(G1 1[(P~ 1[P;)) and 8H(G1 11 (P; II P~)) by R1

(note that #H(G1 [1 (P~ H P~)) EM~,5 8H(GI [1 (P{ 1[P~))),

- OH(G2 t] P~) by R2, and
- Ou(G2 I[P;) by R3

yields the recursive specification of a process R over Z(ACPG)REC (and indeed
over Z(BPAG)REC !) such that

ACPG + REC + RSP F- Q = R. (4)

Let the process R' be defined like R, except that w(x) is replaced by
(e(x, x)) (f(x)) w(x) and w(y) by (e(y, y)) if(y)} w(y). It can be proved in a similar
way that

ACPo + REC + RSP I- Q' = R'. (5)

This concludes the 'first phase' results of our proof.

In order to show that

BPAG(SQ + REC + RSP I-- R = R'

(the 'second phase' result needed) the following instances of SI, WPC1 and WPC2
are needed in addition to those given in section 3.3. Let F be some function on
integer expressions. ',

~o Cnotok ~0 = ~o C,~otok for all qb c G,
- ,<t = t> = a ,

<t = u > - , < u = t> = a,

(t = u) (u = v) -~(t = v) = a ,

(tl -= Ul) " " (tk -= Uk) -~(F(tl tk) = F(ul uk)) = 6,
(t + 1 = u) (t = u) = 8,

-~(f(t)) (c~(t,u)) ~ (e (u ,u + 1)) = fi,
~ (f (t)) (e(u, t))~(e(u, t + 1)) = 6,
(~(t , u - 1)) (t = u) = a.

Note that these identities are valid. Let

dem-f ~(XI=X2)((~(X1,X2))(X=X2)-~-(~(X2, X1))(X=X1)).

It is easy to show that

R , f i R 1 , @ = Xl)<f(x l)) f l R2 , (y = x2)<f(x2))[l R3

and

R t, flR~, <y =x1)(f(x1))flRI2, (y = x 2) (f (x 2)) f l R ;

are solutions for T, T1, T2 and T3, respectively, in the following specification:

Process Algebra with Guards 153

T = [x := n]([Xl := x] Ix := x-t- 1] [x2 := x]" T 1 -I-

[X2 := X] [X := X + 1] [Xl :-~- X]" T 1)

T~ fl (-'(f(Xl))Cnotok [X := X "1- 1] [Xl := X]" T1 -4-
-'(f(x2))Cnowk [X := X "b 1] [X2 := X]" T1 +

(/(Xl)) [y := Xl] T2 +
(f(x2)) [y := x2] T3

T2 (y = xl) (f (x l)) f l (-~(x = y) w(y) +
(x = y)((f(x2)) [y := x21 w(y) +

-'{/(x2)) Cnotok w(x)))

T3 = (y = x2)(f(x2))fl(-~(x = y)w (y) -4-
(x = y)((f (x l)) [y := Xl] w(y) -]-

-~(f(x1)) Cnotok W(X)))

and thus BPA~(5 p) + REC + RSP ~- R = R'. Using (4) and (5) above it follows
that

ACP~(5~) + REC + RSP [--2 Q -~- Q'

as was to be proved.

5. Partial Correctness and Hoare Logic

In this section we show that we can capture Hoare logic for process terms [Pon91]
in the algebraic framework developed thus far. We consider partial correctness
formulas of the form {~} p {fl}, where p is a closed term over Z(ACPa)REC and
c~, fl are guards over Z(ACPG). It turns out that the validity of partial correctness
formulas can be elegantly expressed with 5P-bisimulation equivalence: {a} p {fi} is
valid in 5 p iff ep _~-~ c~pfl. We further show a soundness result for a Hoare logic
for linear processes over 2(BPAG)R~C by translating proofs in Hoare logic into
process algebra proofs.

5.1. Hoare Logic for Process Terms

Hoare logic is meant for proving the correctness of programs that transform some
input into some output. Proof systems are mostly given in a natural deduction
format (see e.g. [Da183] for 'natural deduction') and are parameterised with

1. A class of programs, and

2. A language of assertions to express correctness properties of programs (usually
some first-order language with equality).

In general a partial correctness formula has the syntax

(pre} P {post}

where pre, pos t are assertions and P is a program. The intuitive meaning of
{pre} P {post} is that whenever the assertion pre holds before the execution of P
and P terminates, then the assertion pos t holds after the execution of P.

154 J.F. Groote and A. Ponse

Given a set A of atomic actions and a set G~t of atomic guards, we here
consider the guards over 2(ACPG) as a language of assertions, and we take the
closed terms over Z(ACPG)R~c as the class of programs.

With respect to data-state transformations there are hardly any constraints
on the way we provide process terms with an (operational) semantics. Therefore
this instantiation is on a rather abstract level, and is suitable to express many
programming primitives and constructs (cf. the examples in sections 2, 3.3. and
4.4.). We only require that data environments that are sufficiently deterministic
and that weakest preconditions are expressible. These restrictions often occur in
some related form in the study of Hoare logic (cf. [Bak80, Apt81]).

5.2. Partial Correctness Formulas and Bisimulation

We now present formal definitions for the interpretation of partial correctness
formulas and assertions in any data environment. The main work is already
done in section 4, where the operational semantics for the closed terms over
2(ACPa)REC was defined. Let 5p = IS, effect, test) be some data environment. In
this section we use the transition relation ~(ACPG)~c,S~ as defined in section 4.2.
which is here simply written as ~.

The interpretation of basic guards is such that a basic guard q5 holds in s E S
iff

(~,s) ,/, (~,s).

We define the interpretation of our assertions in 5 p using @transitions.

Definition 5.1. Let c~ be an assertion and 5 ~ = (S, effect, test) some data environ-
ment.

1. The assertion e holds in s E S, notation 5 P ~ e[s], iff (e,s) ~ (6,s).

2. The assertion c~ is valid in 5 P, notation 5 P ~ c~, iff Vs E S (5 ~ ~ c~[s]). []

In order to define the interpretation of partial correctness formulas, we introduce
sequences of transitions. Let A* be the set of finite strings over A, with typical
elements a, o-/,.., and 2 denoting the empty string. We define for all a c A*
relations % and ~ that describe sequences of transitions:

�9 (x, s) ~,, (x, s)

(x, s) % (x', s') (x', s') ~ (x 'I, s")
�9 (x, S) %, (x", s") (a E Ax/)

Now the interpretation of a partial correctness formula in 5 ~ is defined as follows:

Definition 5.2. A partial correctness formula {e} p {/~} is valid in Y , notation
5 ~ ~ {e} p {fl}, iff for all s E S and all a ~ A* :

5 P ~ c~[s] and (p,s) ~'.(, (p',s') ~ 5 P ~ fl[s']. []

We show that for any partial correctness formula {c~}p{/?} it holds that 5 f ~ {a}p{/~}

iff ap _~s~ ep/?. This alternative characterisation of validity of partial correctness
formulas gives us the means to use process algebra for proving partial correctness
formulas.

Lemma 5.3. (Decomposition) Le t 5P = (S, effect, test) be some data environment.

Process AlgebrawithGuards 155

For any closed term p over Z(ACP~)REc, guard ~ over Z(ACP~) and a E (AU{ x/})*
the following properties hold:

I. I f (~p,s) % (p',s') and a ~ 2, then (c~,s) ,/, (6,s) and (p,s) % (p',s').

2. I f (p~,s) ~ (p',s'), then (p,s) ~4~ (p',s') and (~,s') ,/~ (6,s').

Proof By induction on the length of a (first proving some intermediate properties
of sequences of non-terminating transitions). []

Lemma 5.4. Let p be a dosed term over Z(ACP6)REc, c~ some guard over Z(ACPG)
and 5e = (S, effect, test) a data environment. Then the following statements are
equivalent:

1. For all s E S and ~ E A* it holds that

(p,s) ~4, (p', s') ~ (~, s') ,/, (~,s'),

2. p ~_~pc~.

Proof First observe that if (p,s) ,/~ (p~,s'), then p' - ~ and d - s.

1 ~ 2. Fix some s c S and take

R a_ef {((~, s,), (6, s,)) I s' e S}
U {((r,s'),(re, d)) t (p , s) ~ (r,s') for some a C A*}.

Note that (p, s)R(pcr s). We show that R is an ~-bisimulation. For pairs
((5, d), (6, s')) it is trivial to check the transfer property. Assume (q, s')R(qe, s').

�9 Suppose (q, d) a > (q,, s') with a c A. We derive (qcq s') a > (q,e, s ') and by
definition of R also (q', s')R(q'cr s').

�9 Suppose (q,s') ,/> (5,s'), so (p,s) ~,L (5,s') for some a. By assumption we
have (c~, d) ~2~ (5, d) and derive (qcq d) ~ (6, d). By definition
(&s')R(&s').

�9 Suppose (q~,s') a> (q' ,s ') with a E A. By 'decomposition' it follows that
q' -= q"~ and (q, s') a > (q,, s'). By definition (q', s')R(q', s').

�9 Suppose (q~,s') ,/> (6,s'). It follows that (q,s') - ~ (6,s') and
(~,s') ~/> (&s'). By definition (6,s')R((~,s').

2 ~ 1. Suppose (p, s) ~ (p', s') for some a E A*. By assumption then also
(pcr s) %t> (p', s'), and by decomposition we have (~, s') ~L~ (6, s'). []

Now we can easily prove the following characterisation of the 5P-validity of
partial correctness formulas in terms of 5P-bisimilarity.

Theorem 5.5. Let p be a closed term over Z(ACP~)REo ~, fi guards over Z(ACPG)
and 50 = (S, effect, test) a data environment. Then

Proof

Suppose 5~ M {cq p {fi}. By the previous lemma it is sufficient to show
that if (ap, s) ~ (p',s'), then (fl, s') ,/, (6,s'). So let (ap, s) r (p',s'). By
'decomposition' we have (e,s) ~ (p',s) and (p,s) %~, (pr, s'). By 5 ~ ~ {a}p{fl}
this implies (fl, s') -'2-> (p~, s').

Suppose 5 P g= {a} p {fi}, so for some s E S and a E A* :

156 J, F. Groote and A. Ponse

(c~,s) ,./, (6, s) and (p,s) ~'g> (p',s') and 5 P ~ B[s'].

We derive (ep, s) ~4, (p', s') and by th e assumption of 5~ we have
(epfi, s) ~ (p',d). By decomposition this implies that (fi, J) ,/~ (6,s'), which
contradicts the supposition.

5.3. A Proof System for Deriving Partial Correctness Formulas

In this section we present a proof system H in a natural deduction format for
deriving partial correctness formulas over Z(BPA6)REC (cf. [Pongl]). The proof
system H is displayed in Fig. 11. Notice that the rules of H refer to terms over
Z(BPAo)REC that need not be closed. Let F be a set of assertions and partial
correctness formulas. We write F F-~/{~} t {fi} iff we can derive {cq t {fl} in H using
elements of F as axioms.

�9 The axiom scheme H1 introduces partial correctness formulas over atomic
actions. It only makes sense if weakest preconditions are expressible, and it
is only valid in data environments that are sufficiently deterministic. Weakest
preconditions are defined in Definition 3.1. and Remark 3.4.

�9 The axiom scheme H2 introduces partial correctness formulas over basic
guards.

�9 Rules H3 and H4 express how the operators + and �9 may be introduced in
partial correctness formulas.

�9 Rule H5, consequence, is a standard proof rule in Hoare logic. The intended
interpretation of an expression c~ --. fi is as expected: 6,' ~ (c~ ~ fl)[s] iff

~ ~[s] ~ ~ ~/3 Is].

�9 Rule H6, an instance of Scott's induction rule (see e.g. [Bak80, AptS1]), is
suitable to derive partial correctness formulas with recursive terms over
Z(BPAG)REc. This rule allows cancellation of hypotheses, indicated by the
square brackets in its premises: let E = {x = tx Ix E Ve} be a guarded

recursive specification and ex, fix (x c Ve) be guards. If for all y E VE we can
derive (indicated by the dots in the rule) {ey} ty {fly} from a set of hypotheses
Fy containing no other partial correctness formulas with free variables in VE
than those in {{~x}X{/?x} [x ~ Ve}, then for any z EVE the partial correctness
formula {ez} < z [E > {fiz} can be derived from

x~V~

5.4. Soundness of the Proof System

In this section we prove a soundness result for H with respect to a data envi-
ronment 5p = (S, effect, test) over A and G such that weakest preconditions are
expressible and 5 p is sufficiently deterministic. Let Trs~ be the set of assertions
that are true (valid) in 5C We prove that

Tr~F-H{cqp{fi} ~ 5 P~{e}p{f l}

provided that recursive specifications have a finite number of equations and are
linear (cf. linear context free grammars [HoU79]):

Process Algebra with Guards 157

(H1)

(H2)

(H3)

(H4)

(H5)

(H6)

{wp(a,e)} a {cq if a E A

{~}q~{~.~b} i f q S E G

{~} t {/~} {cq t' {/~}

{~} t + t' {/~}

{a) t {c(} {c(} t' {fi)

{~} t . t' {fl}

c~ ---, ~' { r t {/~'} 3' - - ' /~

For E = {x = tx [x E V~} a guarded recursive specification:

[{{~x} x {~}1 x e v~}]

{C~y} ty {fly} for all y EVE
z E V ~

{~z} <zlE> {fl~}

Fig. 11. The proof system H (a c A, q~ E G).

Definition 5.6. A process term t over E(BPA6) is called linear over V' ~ V iff

t : : = P l x [pt[t p l t + t

where p is a closed term over Z(BPAc) and x E V'. A recursive specification
E = {x = tx Ix EVE} is linear iff the terms tx are linear over VE. []

In [Pon91] only processes definable by regular recursion were considered in the
context of H6. This class is strictly contained in the class of processes definable
by guarded, linear recursion.

By Lemma 5.4. and the soundness of BPA~(Se) + REC + RSP, the soundness
of H follows from the statement

Tr~e ~-H {c~} p {fi} ~ BPAo(5 a) + REC + RSP ~- ~p = ~pfi.

In the rest of this section we prove this statement by translating/-/-derivations in
a canonical way to proofs in process algebra.

We first show tha t / - / i s sound for the (recursion-free) terms over Z(BPA~).

Lemma 5.7. (Soundness of H for recursion-free terms) Let p be a dosed term over
Z(BPAG) and ~, fl guards over Z(BPA~). Then

Try ~-H {~} P {fl} ~ BPA6(5 ~) t- c~p = c~pfl.

Proof By induction on the length of derivations. The soundness of H1 - H4 is
straightforward. We only show that rule H5 (consequence) is sound (we need not
consider rule H6, as this rule introduces recursively defined processes). Rule H5
contains expressions of the form c~ ~ fl with the interpretation 5e b (c~ ~ fl)[s]

158 J.F. Groote and A. Ponse

iff 5 ~ ~ ~[s] ==> 5 ~ M f i N . I t is easy to show that such expressions can be

algebraically character ised as follows:

~ -+ fl E T r y .'. ".. BPAG(SQF-c~ - f i=cc

Assume

T r y }-H {0{'} p {fit} and ~ --+ ~', fl' -+ f i e Try .

By induction we can prove c~'p = c(pfi', ee ' = c~ and fi'fi = fl' in BPAG(o~). We
derive

c~p = ~c~'p

= c~c(pfl '

= ~ ' p f l ' f i

= ~c(pfl
= o~pfi

as was to be shown. []

Using this fact we can prove a general result concerning linear terms that connects

H-der ivabi l i ty f rom T r y to provable equality in BPAG(5 0 .

L e m m a 5.8. L e t t (x b . . . , xn) be a term over Z(BPAG) a n d c~, fl, ~i, fli be guards

over E(BPAG) s = 1 n. I s Xn) is l inear over { x l , . . . , x , } , a n d

T r y , {{0~i} xi {fli}] i = 1 , . . . , n} ~-U {~} t(Xl , Xn) {fl},

then

I. BPAG(~) ~- c~" t(CqXl gnXn) = c~" t(x1 Xn),

2. BPAG(5 ~ F- c~" t(Xlfil xnfi~) = ~ " t (x l f i b . . . , Xnfi~) " fl.

Proof. By induction on the length of the derivat ion of

Trse, {{cq} xi {fli} [i = 1 , . . . , n} ~-H {cq t (x l , . . . , Xn) {fl}.

The cases in which one of H1 - H3 is applied last are straightforward. We give a
p roo f for the cases in which H4 or H5 is applied last (note that by definition of

linearity rule H6 of H again need not be considered):

As for H4. Because all terms in the p roo f are linear, we m a y assume tha t
t (x l , . . . , Xn) =- p" u (x l , . . . , Xn) or t (xl Xn) =- u (x l , . . . , Xn)" p, with p a closed
te rm over 2(BPAo). Let t (x b . . . , x ,) -- p . U(Xl , . . . , x ,) and

t r y , {{~i} xi {fl~} I i = 1 n}

{cq p {c~'} {c(} U(Xl ,x~) {fl)

{cq p . U(Xl x .) {fl}

Apparen t ly T r y I-H {cqp {c(}, so we have by L e m m a 5.7 that BPAG(SQ ~- ap =
c~p~'. We derive

Process Algebra wi th G u a r d s 159

1. 0~p �9 u (0 q X l , . . . , ~ n X n) = ~p~t. U(~IX1 ~nXn)

IH ~p~,. U(X1,...,Xn)

= ~p "U(Xb.. . ,X~).

2. ~p " u (x l f l l xnf l ,) = ~ p ~ " u (x l f l l , . . . , x n f l ,)

1H ~po~t . U(Xl f l l Xnfln) . fl

= ~ p ' u (x l f l l , . . . , X , f l n) ' f l .

The case in which t(xl ,x~) - u (x l , . . . , x ~) ' p with p a closed te rm over
Z(BPAG) can be proved likewise.

As for H5. Assume

Trs~, {{~i} xi {fli}] i = 1 , n}

--+ ~' {r t (x l , . . . , x ,) {fl'} fl' -+ fl

{~} t(xl Xn) {fl}

By induct ion we have BPAo(~) -de r iva t ions of ~e' = e and fl'fl = fl'. We
derive

1. ~ " t (OqXl ,O~nXn) = o~o(" t (OqXl O~nXn)
IH
= ~ r

= ~ ' t (X l , . . . , X n) .

2. ~ " t (X l f l l ,Xnf ln) = ~C(" t (X l f l l , . . . , X n f l n)
IH
= ~ r , x . f l n) . f l ,

= ~ ' ' t (X l f l l , . . . , X n f l n) ' f i t f i
IH
= 0{0{ I . t (X l f l l , . . . , Xnfln)"

= ~ " t (X l f i l X n f i n) ' f l .

[]

This result can be used to show the soundness of the p r o o f system H for the
following subset o f terms over E(BPAG)e, EC.

Theorem 5.9. (Soundness o f H) Le t p be a closed term over Z(BPAG)REC in which
all occurrences o f the form < x l E > refer to a (guarded) recursive specitication E

over Z(BPAG) that is linear and contains only l~nitely m a n y equations. L e t ~,fl

be guards over Z(BPAG). Then

Trs, kH {Cq p {fi} ~ BPAG(5 e) + R E C + RSP F- ~p = ctpfl

==~ ~p _~s o c~pfl

r ~ ~ {~) p {fl}.

Proo f By Theorems 3.5. and 5.5. we only have to prove the first implication. We
apply induct ion on the length of H-der ivat ions . The p r o o f of the soundness of
H1 - H5 is s t ra ight forward (cf. the p r o o f of L e m m a 5.7.). We only give a p r o o f
of the soundness of H6. Let E = {xi = ti(xl ,x~)] i = 1 ,n} be a guarded
linear recursive specification and assume

Trs% {{0q} xi {fii} t i = 1 n}]-H {~j} t j (X1 Xn) {flj}

for j = 1 , . . . , n. So we have an H-der iva t ion of the premises of rule H6. We have
to show

160 J . F . G r o o t e a n d A. Ponse

BPAG(5:) + REC + RSP F c~jX] = e j X j f l j

for j = 1 , . . . ,n (recall that Xj abbreviates < x j [E > , the constant representing
a solution for the jth equation of E). In order to do so we use the recursive
specifications

g ' = {Yi = ~i " t i (Y l , . . . , y n) l i = 1 , . . . , n }

E" = {zi -= ~i " t i (Z l f l l , z , f ln) l i = 1,. . . ,n}

and show for any j E {1,.. . , n} that

1. , : x : = Y:,

2. z j & = z : .

3. z : = v j .

As a consequence we can derive

BPA~(b ~ + REC + RSP F e]X: = Y: = Z j = Z j f l j = e j X j f l j

as has to be shown. So we are left to prove 1,2 and 3. Observe that E', E" are
guarded linear recursive specifications, so we may use both RSP and the previous
Lemma 5.8.

As for 1. We first show that e j X j -- Y: for all j e { 1, . . . , n}. We derive

o; jXj RE C O;j " t j (X 1 , . . . , X n) 5.8__1 o~j " t j (g l X 1 , . . . , o~nXn).

So 0{1X1,...,0~nX n are solutions of Y l , . . . , Y ~ in E'. With RSP we conclude
e j X j = Yj for j = 1,. . . , n.

As for 2. We show that Zj f l j = Z j for all j E {1,.. . , n}. We derive

Z j f l j REC ~j " t j (Z l f l l , ' " ' Z n f l n) " flJ

5.8--2 o:j " t j (Z l f l l , . . . , Z n f l n)

= t j ((z l f i l) f l l , . . . , (z . f l ,) f i .) .

So Z l f i l , . . . , Z , f l n are solutions of z x , . . . , z , in E". With RSP we conclude
Zj f i j = Z j for all j E { 1 n}.

As for 3. We show (using 2) Z j = Yj for all j c {1,.. . , n} as follows:

Z j RE C o~j " t j (Z l f l l , . . . , Z n f l n) 2 ogj " t j (Z l , Z n) .

So Z b . . . , Z~ are solutions of Yb. . . , Y, in E'. With RSP we conclude Z j = Yj

for all j E {1 n}. []

6. Conclusions

In this paper we use an operational semantics for process algebra that combines
behavioural and (data-)state based aspects. Typical is the introduction of guards,
i.e., predicates over data-states, as a special kind of processes. Thus a one-sorted
framework is obtained, based on two sets of special constants: atomic actions and
(the closure under -7 of) atomic guards. This allows for a relatively simple type of
complete axiomatisations, both with respect to a preferred data-state environment

Process Algebra with Guards 161

and for a class of such environments. Furthermore this framework is suitable to
reason about infinite processes defined by (guarded) recursive equations�9 Finally,

as shown in the previous section, it is possible to deal with the essentials of Hoare
Logic for partial correctness in our set-up�9

We only know of one other approach in process or programming formalisms
that involves guards in a one-sorted way, developed by Manes and Arbib: in
[MaA86] guards and functions modelling programs are combined in a partially
additive category. (Here the subset of "guard morphisms" forms a Boolean
algebra�9

In the following the present work is related to some well-known other ap-
proaches, mixing Boolean expressions and behavioural constructs in a two-sorted

way.

First we make a short comparison with "Process Algebra with Signals and
Conditions" of Baeten and Bergstra [BaB90]. Given a Boolean algebra IB, the
authors discuss three well-known operators that relate IB and the sort of processes
under consideration, say P. The first operator is the conditional :

. < .1 :> . : ~ x]B x ~ - - ~

that stems from Hoare et al. [HHJ87], where p <~ b t> q should be read as if b then
p e l s e q ft. Next there is the guarded command:

�9 :---~. : IBx lP - -* IP

where the expression b : ~ p is to be read as if b then p fi, and which cannot be
defined (axiomatically) without the 6, for

f a l s e : ~ x = 6 .

Finally guards are introduced as unary operators:

{ . } :

with the same meaning as described in this paper�9 These 'guards' also presuppose
the existence of the e constant, as

{ t r u e } = e.

From a methodological point of view, of these three operators the conditional is
regarded as basic in [BaB90] for its (axiomatic) definition does not presuppose
any of the special process algebra constants 6 or e. This argument is not preserved
in our set-up, as 6 and e represent in "Process Algebra with Guards" just the
minimal generators for any Boolean subalgebra to be included. We finally remark
that Baeten and Bergstra use 21 axioms to define conditionals and guarded
commands over the BPA fragment.

In the paper "Laws of Programming" of Hoare et al. [HHJ87] 'programs'
are constructed from assignments with operators for sequential composition,
conditionals and nondeterminism. The operators are described in an equational
style, just as in [BaB90] and as in the present paper. There is a unit program
S K I P that behaves like our e and a program A B O R T that is reminiscent to our
6, but that behaves according to Murphy's Law: " i f it can go wrong, it will", in
our notation:

x + A B O R T = A B O R T

x . A B O R T = A B O R T . x : A B O R T .

162 J. E Groote and A. Ponse

This latter program A B O R T makes a comparison with our approach more
difficult. In [HHJ87] there are about 30 laws for a fragment comparable to BPA
with guards.

In Dijkstra [Dij76, Apt84] a class of programs is introduced, which contains
the following " i f - fi construct":

i f e l ~ & [] e 2 - + S 2 [] . . . []e.--+S~fi

with el, e2 Boolean guards and &, $2 programs. The intuitive meaning of
this construct is to choose nondeterministically a guard ei that holds and to
execute the program Si. In the case that none of the ei hold, the whole construct
deadlocks. The translation of this construct into process algebra with guards
would then be:

i (rel "1 �9 rSl ' l -[- re2"1 �9 rs21 @ . . . @ re2 �9 r s ")

with i some (internal) action and r.~ denoting the translation. The role of the
action i is to ensure deadlock if the construct is placed in a '% context" and
none of the guards holds. It is in this case assumed that i does not transform any
data-state. A more precise modelling of this language can be given by replacing
i with the constant z (silent step) from process algebra [BaW90], for example
relating if false---> S fi to z (5 �9 rS~)(= z ' 6).

In [Hen91] Hennessy presents a language and proof system for communicating
processes with value-passing. Here also Boolean guards are incorporated in the
form of conditionals. There is a completeness result based on the rewriting of
terms to guard-free ones (note that this demands a fixed "Boolean expression"
semantics).

A bit of a drawback in all these related approaches is the number of axioms
and rules necessary to relate Boolean expressions to behavioural constructs (this
number may in some cases even increase if completeness results are to be
proved), whereas we only need a small number. Of course a general advantage
of the 'conditional' or if - then - else - fi construct is that it is well-known and
established, and therefore probably intuitively more appealing than our guards.
Nevertheless we hope to have argued that for analytical purposes, guards as
introduced here constitute a simpler and more fundamental approach.

Acknowledgement

We thank Jos Baeten, Jan Bergstra, Frank de Boer, Tony Hoare, Catuscia
Palamidessi, Frits Vaandrager, Chris Verhoef, Fer-Jan de Vries and the refer-
ees for their constructive and helpful comments.

References

[AuB84]

[Apt8t]

[Apt84]

[Bak80]

Austry, D. and Boudol, G.: Alg~bre de processus et synchronisations. Theoretical
Computer Science, 30(1):91 131, 1984.
Apt, K.R.: Ten years of Hoare's logic: a survey - Part I. ACM Transactions on
Programming Languages and Systems, 3(4):431-483, 1981.
Apt, K.R.: Ten years of Hoare's logic: a survey - Part II; Nondeterminism. Theoretical
Computer Science, 28:83 109, 1984.
de Bakker, J.W. :. Mathematical theory o f program correctness. Prentice Hall International,
1980.

Process Algebra with Guards 163

[BaB88]

[BaB90]

[BvG87]

[BeK84a]

[BeK84b]

[BeK86]

[BKT85]

[BaW90]

[Da183]
[Dij76]

[Gla90]

[Gla93]

[vGV89]

[Hen91]

[HHJ87]

[Hoa69]

[Hoa85]
[HoU79]

[ISO871

[LamB0]

[MaA86]

[Man74]
[Mil80]

[Mi189]
[OwG76]

[Par81]

Baeten, J.C.M. and Bergstra, J.A.: Global renaming operators in concrete process
algebra. Information and Computation, 78(3):205-245, 1988.
Baeten, J.C.M. and Bergstra, J.A.: Process algebra with signals and conditions. In
M. Broy, editor, Programming and Mathematical Methods, Proceedings Summer School
Marktoberdorf 1991, PLATO ASI Series F88, pages 273-323, Springer-Verlag, 1991.
Baeten, J.C.M. and van Glabbeek, R.J.: Merge and termination in process algebra. In
K.V. Nori, editor, Proceedings 7 th Conference on Foundations of Software Technology and
Theoretical Computer Science, Pune, India, volume 287 of Lecture Notes in Computer
Science, pages 153-172. Springer-Verlag, 1987.
Bergstra, J.A. and Klop, J.W.: The algebra of recursively defined processes and the alge-
bra of regular processes. In J. Paredaens, editor, Proceedings 11 th ICALP, Antwerp,
volume 172 of Lecture Notes in Computer Science, pages 82-95. Springer-Verlag,
1984.
Bergstra, J.A. and Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Computation, 60(1/3):109-137, 1984.
Bergstra, J.A. and Klop, J.W.: Verification of an alternating bit protocol by means
of process algebra. In W. Bibel and K.R Jantke, editors, Math. Methods of Spec.
and Synthesis of Software Systems '85, Math. Research 31, pages 9-23, Berlin, 1986.
Akademie-Verlag. First appeared as: Report CS-R8404, CWI, Amsterdam, 1984.
Bergstra, J.A. Klop, J.W. and Tucker, J.V.: Process algebra with asynchronous communi-
cation mechanisms. In S.D. Brookes, A.W. Roscoe, and G. Winskel, editors, Seminar on
Concurrency, volume 197 of Lecture Notes in Computer Science, pages 76-95. Springer-
Verlag, 1985.
Baeten, J.C.M. and Weijland, W.R: Process algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.
van Dalen, D.: Logic and Structure. Springer-Verlag, 1983.
Dijkstra, E.W.: A Discipline of Programming. Prentice Hall International, Englewood
Cliffs, 1976.
van Glabbeek, R.J. : The linear time - branching time spectrum. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes
in Computer Science, pages 278-297. Springer-Verlag, 1990.
van Glabbeek, R.J.: The linear time - branching time spectrum II (the semantics of
sequential systems with silent moves). In E. Best, editor, Proceedings CONCUR 93,
Hildesheim, Lecture Notes in Computer Science, Springer-Verlag, to appear.
van Glabbeek, R.J. and Vaandrager, F.W.: Modular specifications in process algebra

- with curious queues (extended abstract). In M. Wirsing and J.A. Bergstra, editors,
Algebraic Methods: Theory, Tools and Applications, Workshop Passau 1987, volume 394
of Lecture Notes in Computer Science, pages 465-506. Springer-Verlag, 1989.
Hennessy, M. : A proof system for communicating processes with value-passing. Formal
Aspects of Computing, 3:346-366, 1991.
Hoare, C.A.R., Hayes, I.J., Jifeng, He., Morgan, C.C., Roscoe, A.W., Sanders, J.W.,
Sorensen, I.H., Spivey, J.M. and Sufrin, B.A.: Laws of programming. Communications
of the ACM, 30(8):672-686, August 1987.
Hoare, C.A.R. : An axiomatic basis for computer programming. Communications of the
ACM, 12(10), October 1969.
Hoare, C.A.R. : Communicating Sequential Processes. Prentice Hall International, 1985.
Hopcroft, J.E. and Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.
ISO. Information processing systems - open systems interconnection - LO TOS - a formal
description technique based on the temporal ordering of observational behaviour, 1987.
ISO/TC97/SC21/N DIS8807.
Lamport, L.: The 'Hoare logic' of concurrent programs. Acta lnformatica, 14:21-37,
1980.
Manes, E.G. and Arbib, M.A. : Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer-Verlag, 1986.
Manna, Z. : Mathematical Theory of Computation. McGraw-Hill Book Co., 1974.
Milner, R.: A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.
Milner, R.: Communication and concurrency. Prentice Hall International, 1989.
Owicki, S. and Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatica, pages 319 340, 1976.
Park, D.M.R.: Concurrency and automata on infinite sequences. In R Deussen, editor,

164 J.F. Groote and A. Ponse

[Plo81]

[Pou91]

[Sio64]

[SPE90]

[Sti88]

[Vaa89]

5 th GI Conference, volume 104 of Lecture Notes in Computer Science, pages 167-183.
Springer-Verlag, 1981.
Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.
Ponse, A.: Process expressions and Hoare's logic. Information and Computation,
95(2):192-217, 1991.
Sioson, F.M.: Equational bases of Boolean algebras. Journal of Symbolic Logic,
29(3):115-124, September 1964.
SPECS-Semantics and Analysis. Definition of MR and CRL Version 2.1. Specification
and Programming Environment for Communicating Software (SPECS), RACE Ref:
1046, Report 46/SPE/WP5/DS/A/O17/bl, December 1990.
Stifling, C.: A generalization of Owicki-Gries's Hoare logic for a concurrent while-
language. Theoretical Computer Science, 58:34-359, 1988.
Vaandrager, F.W.: Specificatie en verificatie van communicatieprotocollen met procesal-
gebra. Dept. of Computer Science, University of Amsterdam, 1989. Lecture notes, in
Dutch.

Received October 1991

Accepted in revised form December 1992 by J. Parrow

