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Abstract—This paper points out the need in modern operating system kernels for a process authentication mechanism, where a

process of a user-level application proves its identity to the kernel. Process authentication is different from process identification.

Identification is a way to describe a principal; PIDs or process names are identifiers for processes in an OS environment. However, the

information such as process names or executable paths that is conventionally used by OS to identify a process is not reliable. As a

result, malware may impersonate other processes, thus violating system assurance. We propose a lightweight secure application

authentication framework in which user-level applications are required to present proofs at runtime to be authenticated to the kernel. To

demonstrate the application of process authentication, we develop a system call monitoring framework for preventing unauthorized use

or access of system resources. It verifies the identity of processes before completing the requested system calls. We implement and

evaluate a prototype of our monitoring architecture in Linux. The results from our extensive performance evaluation show that our

prototype incurs reasonably low overhead, indicating the feasibility of our approach for cryptographically authenticating applications

and their processes in the operating system.

Index Terms—Operating system security, process authentication, secret application credential, system call monitoring
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1 INTRODUCTION

TYPICAL operating system kernels enforce minimal re-
strictions on the applications permitted to execute,

resulting in the ability of malicious programs to abuse
system resources. Malware running as stand-alone pro-
cesses, once installed, may freely execute privileges
provided to the user account running the process.

A well-known approach to protecting systems from
malicious activities is through the deployment of mandatory
access control (MAC). Such systems provide the kernel with
access monitoring mechanisms as well as policy specifica-
tion platforms. The user decides on the policies and the
various access rights on system resources. Existing MAC
systems such as SELinux [2], grsecurity [3], and AppArmor
[4] enable the user (or the system administrator) to express
detailed and powerful policies. They can be implemented
using the Linux Security Modules [5] to monitor access to
selected system resources, and apply the specified policies to
the corresponding processes.

The above security solutions belong to the category of
authorization. However, authorization mechanisms alone
are not sufficient for achieving system assurance. Our thesis
in this paper is to argue and demonstrate that the kernel
must also have secured mechanisms for authenticating
processes where the identity of a process can be proved.

User authentication through techniques such as password
or public-key cryptosystem is common in multiuser system
or network environments. Many user authentication tech-
niques exist in the literature. Yet, process authentication,
i.e., how to prove a process is indeed what it claims to be,
has not been reported.

Process authentication is different and independent from
process identification and requires stronger properties, for
example, unforgeability and antireplay. In contrast, identi-
fication is a way to describe a principal. Process IDs and
process names are identifiers for processes in an OS
environment. Typically, these process identifiers are gener-
ated by the system after examining the executable file
names and installation paths of processes. This examination
of executable file names and installation paths is the
simplest form of process authentication. These simple
authentication procedures are insecure against existential
forgery attacks by malicious software, which we explain in
details in Table 1. AppArmor (based on the Linux Security
Modules) recognizes processes through the application’s
installation path, based on which access rights are enforced.
However, process authentication based on the installation
path is weak. Without secure process authentication,
malware may impersonate legitimate applications and
abuse system resources, thus violating system assurance.

We point out secure process authentication as the missing
link in achieving system security. Our work addresses
how to authenticate processes at runtime and bind them to
appropriate application identities. We demonstrate that
process authentication is a crucial step to prevent malicious
processes from accessing and abusing system resources. In
our solution, which is referred to as Authenticated Application
(A2), applications with registered credentials can authenti-
cate to the (trusted) kernel. The kernel can cryptographically
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verify the identity of applications. We point out the
differences between process authentication and user authen-
tication. Our description of the unique security and system
engineering requirements for designing a process authenti-
cation solution is general. It is useful beyond our specific
secret key-based mechanism proposed. We present the
design of a modified challenge-response protocol to securely
authenticate applications by the kernel. Such an application
authentication mechanism complements to aforementioned
process authorization solutions.

Our process authentication mechanism has important
applications in preventing system access from being abused
by malware. It can be either used alone in the OS as shown
in this paper, or integrates with existing system authoriza-
tion solutions such as SELinux [2] to support fine-grained
process-level access control. In this paper, we demonstrate
its practical application in preventing unauthorized system
calls. We design and implement a system call monitoring
tool in Linux that intercepts system calls made by the
running processes and verifies application identities prior
to granting the requests. Our implementation prototype
consists of two Linux kernel modules to securely authenti-
cate applications and to verify their identities at the time of
their requests for system call execution. Our implementa-
tion requires minimal modifications to legacy applications
with nearly no modification to the kernel. Our evaluation
results indicate the feasibility of our system call monitoring
approach without a significant performance penalty.

Because of the complexity of the operating system’s tasks
in managing a large number of diverse applications,
ensuring the authenticity of the basic operating data is
important. With modern attack models, system information
whose security is usually taken for granted needs to be
reexamined and reevaluated. The cryptographic prove-
nance verification work in [6] points out the need for the
kernel to ensure the authenticity of origins of data flows
that are consumed by the system. Recent assured digital
signing work in [7] describes methods for the integrity
protection and authenticity verification of a signing agent
on a host for creating digital signatures. It points out the
differences between a human signer and a program signer
and the system challenges associated with realizing a

trustworthy program signer. Their solution extends the
attestation service of the hardware trust platform module
(TPM). Our work demonstrates another case of hardening
the system by reexamining the fundamental process
identification mechanism.

The contribution of our work is not only the specific
A2 solution presented, but also the systematic discussion on
the requirements and challenges of process authentication
in OS environments. Even though user authentication of
various flavors is well understood, process authentication
requires careful system security design and engineering as a
process is less autonomous compared to human.

2 MODEL AND OVERVIEW

We give the models and definitions used in our work. We
discuss the design choices and general requirements for
process authentication.

2.1 Motivations

We motivate our work through discussing and distinguish-
ing related concepts.

Process identification versus process authentication. A
process identifier may be the process ID, process name,
and so on. In the context of our A2 work, we define
process identification as a naming convention to describe
a process. Process authentication, on the other hand, is for
a process to prove its identity to the operating system. It
needs to prevent identity spoofing. There is no process
authentication mechanism in the systems security litera-
ture, even though almost all access control solutions for
OS make access decisions based on whom the processes
are. In these systems, installation paths may be used to
distinguish among processes. However, such a simple
mechanism is weak.

Application authentication versus process authentication. The
authentication of applications is realized through the
authentication of processes of that application. By process
authentication, we refer to that the process of an application
needs to prove the application’s identity. We use the terms
application authentication and process authentication inter-
changeably in this paper.
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One-time authentication versus runtime authentication status.
One-time authentication refers to the authentication of a
process, which can be done at its creation. The authentica-
tion status of a process needs to be recorded and
maintained by the system. At runtime, when the process
makes requests to access system resources (e.g., system
call requests), the authentication status can be queried and
used for deciding whether or not to grant the request. A2
supports both mechanisms.

2.2 Types of Credentials

An important part of our contribution is the systematization
of the security requirements and components of a general
process authentication framework. The discussion on these
issues is fragmented in the current literature. We summar-
ize them below and in Table 1:

. Labels are given to binaries in SELinux as their
extended attributes.1 These labels may serve as
application credentials. Yet, additional extension to
SELinux needs to be made to ensure the uniqueness
and integrity of labels (e.g., to prevent unauthorized
relabeling or label inheritance).

. Keyed hash such as HMAC is another way to
instantiate application credential. Hash-based ap-
proaches have been used for code integrity in the
context of trusted computing [8] or buffer overflow
prevention [9]. For example, in runtime execution
monitor (REM) [9], the HMAC hash value is
computed for a small block of instructions. The
collection of HMAC values is appended to the
program. The hash values need to be recomputed
at the time of verification. Execution of malicious
code without the proper HMAC is flagged.

. In Table 1, application signing refers to the following
approach. The kernel is given a public and private
key pair. It uses the private key to sign the hash
value of the code of a valid application, which
generates a credential for the app containing the
digital signature from the kernel. At verification, the
hash value of the code is recomputed first, and then
the signature is verified against the public key by the
kernel. The advantage of this approach compared to
A2 is that the credentials are not secret and are easy
to manage. On the other hand, the private key of the
kernel needs to be kept secret. Similar to the keyed
hash above, the hash values need to be recomputed
at the time of verification.

A complete application authentication framework needs
three components: credential generation, process authentica-
tion, and runtime monitoring. Our contribution on the
runtime monitoring (in Section 3.4), including efficiently
managing the status of authenticated, is useful independent
of the specific credential type.

2.3 Security Models

Security goals and assumptions. Our security goal is to ensure
the system assurance, which is to verify that a system
enforces a desired set of security goals [10], more
specifically, to ensure that the operating system correctly

authenticates processes of applications at the runtime and
malware cannot impersonate the identities of legitimate
processes. Malware may abuse system calls for conducting
malicious network activities, for example, botnet command
and control [11], data exfiltration [12], fetching executables
[13], and spyware eavesdropping [14].

Our basic trusted components are the kernel code, kernel
data structure (e.g., PIDs), and kernel’s memory region. The
kernel’s code is trustworthy and does not contain any
malicious code. The confidentiality and integrity of the
kernel’s memory are preserved. (Such a trust can be partly
established using existing techniques such as the trusted
platform module [15], [16] at boot time, assuming the
exclusion of hardware attacks.)

Attack model. Stealthy malicious code on the system may
attempt to run itself as a stand-alone user-level process.
Malware may be downloaded to the victim computer
through a crafted malicious webpage (e.g., drive-by down-
load). Malware stores and attempts to execute at the user
space. Malware may attempt to impersonate other (legit-
imate) applications, for example, by spoofing the names of
other processes. Thus, process names alone are not reliable
for distinguishing processes. Malicious code running within
the boundary of a legitimate process (through code injection,
or a malicious browser script or extension) is out of the scope
of our attack model (see also the discussion in Section 4).

2.4 Application Credential and Its Requirements

We define secret application credential (SAC) in A2 and
explain the requirements for realizing a specific credential
scheme in the operating system environment.

Definition 1. A secret application credential is a unique secret
information issued to a trustworthy application by the
operating system. SAC is used for processes of the application
to prove their identities to the OS kernel during the
authentication procedure.

There are various approaches to instantiate secret
application credentials, but they need to satisfy the
following requirements:

. Uniqueness. For one executable, there is no more than
one secret application credential. If the executable is
reinstalled on the file system, its SAC is updated.

. Secrecy. SACs shall not be available to unauthorized
userland processes.

. Unforgeability. Valid SAC cannot be forged.

. Antireplay. Replaying a legitimate SAC to the kernel
will be caught.

. Binding. A SAC needs to uniquely binds to all the
processes of a single executable.

. Status checking. The authentication status of a process
needs to be recorded. This status information can be
queried before granting the runtime access rights of
a process.

2.5 Operations for Process Authentication

The authentication operation requires userland processes to
demonstrate the possession and knowledge of kernel-issued
application credentials. Processes without valid credentials
are restricted from accessing system resources (e.g., making
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system calls) and considered potentially malicious. This
mechanism provides a secure sandbox that isolates malware
from system resources. We describe the general operations
needed for process authentication solutions, including
CREDENTIAL GENERATION, PROCESS AUTHENTICATION,
and RUNTIME MONITORING:

1. CREDENTIAL GENERATION. This is a one-time
operation run by the kernel to issue the secret
application credential to a (trusted) application. This
operation may be performed at the time of applica-
tion installation.

Determining whether an application should be
given a credential is a classification procedure, which
is independent of our focus on process authentica-
tion. A classifier analyzing the trustworthiness of the
executable code can be deployed for this purpose to
complement A2, for example, using the static
programming analysis tools [17], [18].

2. PROCESS AUTHENTICATION. This is a protocol run
by the kernel and a process for the process to
authenticate itself to the kernel. The authentication is
through the process proving the possession of the
required SAC value.

3. RUNTIME MONITORING. The kernel monitors the
execution of processes so that processes that have
not been properly authenticated are caught. A
system administrator may also choose to enforce
fine-grained access control policies at the process
level (e.g., specifying what system calls can be
performed by applications), which can be integrated
with this operation.

Fig. 1 shows the A2 components and operations and how
A2 may be integrated with existing security mechanisms. A
process does not inherit its authentication status from its
parent process in our model. Next, we describe details of
our design.

3 AUTHENTICATED APPLICATION SYSTEM

Our Authenticated Application design enables the authen-
tication of applications. It consists of three main compo-
nents: Credential Registrar, Authenticator, and Service Access
Monitor (SAM). (We implement the Authenticator and SAM
as Linux kernel modules without modifying the kernel). We
describe the functions of our components in the following,
and describe in details how each of three operations
CREDENTIAL GENERATION, PROCESS AUTHENTICATION,
and RUNTIME MONITORING are realized.

Credential Registrar is for generating a credential for the
application and registering the application with the kernel.

Authenticator is for authenticating a process when it
first starts.

Service Access Monitor is for verifying the authentication
status of a process at runtime, i.e., whether the process has
been successfully authenticated by the Authenticator.

There are two important lists in A2, the credential list
and the status list. The credential list is the registrar’s copy
of the all the current valid credentials generated for
registered applications. The status list is the Authentica-
tor’s record of the currently running processes that have
been successfully authenticated.

3.1 Credential Generation and Storage

The kernel, more specifically the credential registrar,
generates the secret credentials for legitimate applications.
In A2, the registration operation for trustworthy applica-
tions can be done any time between the time of installation
and the time of first execution. The registrar and the
application each maintain a copy of the credential. The
credential is no longer valid if the application is removed,
reinstalled, or modified; and a new credential needs to
be issued. There are many algorithms to instantiate the
credential value. A simple method is to use a secret value
of sufficient length as the SAC value that is generated by a
pseudorandom number generator controlled by the kernel.
The random values should be hard to guess.

A key problem in credential storage is how to protect the
secrecy of application credentials that is stored by the
application. (Kernel side of credential storage is assumed to
be secure in our model.) To address that problem, we
introduce a protection mechanism referred to as the code
capsule. The application’s copy of the secret credential is
stored along with the application’s code capsule (e.g.,
appending to the end of the executable). We define the code
capsule as follows:

Definition 2. A code capsule is a piece of executable code along
with a secret application credential that is unique and
verifiable by the kernel. A code capsule is not read or write
accessible by any user process except by necessary kernel
helper processes.

Code capsules serve two major purposes. One purpose is
to protect the secret application credential from being
revealed to unauthorized processes through the file system.
The other purpose is to bind a credential with the executable
file, which is later used to verify the identities of the running
processes by the kernel. Code capsules are accessible and
maintained by a kernel helper, namely the credential
registrar. When the application is executed, the credential
is not loaded into the memory.

The Registrar runs a registration function as defined
below.

Definition 3. The registration function � : E; s! Cs where E

is a string containing the executable code and s is the secret
application credential generated by the credential Registrar.
The function � produces the string Cs ¼ Eks, which is
a code capsule protected by the kernel. k represents string
concatenation.

We describe the steps for a credential Registrar to
generate an application credential next. Applications with
the credentials issued by the Registrar are referred to by us
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as the registered applications. For malicious applications
that bypass this registration phase, they cannot succeed in
the authentication next due to the lack of valid registered
credentials. Denote the current credential list maintained by
the Registrar by L. The list consists of (name, credential)
pairs of registered applications. The list needs to be kept
confidential with restricted read and write access:

1. The Registrar runs an external checking mechanism
(e.g., a classification method [17]) to verify that the
application with name app.name is trustworthy.

2. If the external verification fails (indicating that the
application may be malicious), reports it and halts.
Otherwise, the Registrar generates a random value
of required length n as the new credential s, and
generates a code capsule Cs using the function
�ðE; sÞ. The Registrar writes Cs to the file system.

3. The Registrar appends the tuple (app.name, s) to
the credential list L.

4. When the application is uninstalled, the Registrar is
notified and deletes the entry (p.name, s) from the
credential list L.

The credential generation operation is fully compatible
with legacy applications and does not require any custo-
mization. Large applications may consist of several execu-
table files. We register each executable file that may create
at least one independent process with a unique credential.
The purpose of having a unique s for each executable is to
be able to correctly identify each running process and bind
it to its executable code. The registrar may also need to
ensure that the application has not been previously issued a
credential, for example, by checking whether a credential
already exists at the end of its executable.

The trusted registrar itself can be given a credential (e.g.,
manually installed by the system administrator). It can
engage in the authentication procedure with the kernel as a
regular process once it starts every time. The detailed
process authentication protocol via challenge and response
is next.

Our work on protecting secret credentials on the disk
may bear some resemblance to existing code integrity work
(e.g., [8], [9]) or rootkit detection solutions (e.g., [19]). For
example, the solution in [19] controls the access to specific
regions of the disk under the assumption of an already
compromised system. As we aim for the protection of a
short secret application credential as opposed to general
kernel and user level code or data, the solution that we
adopt is more specific and lightweight. Because goals of
these pieces of work significantly differ, none of the existing
solutions provides a satisfying solution for the application
authentication problem as A2 does.

3.2 Process Authentication

The process authentication protocol is to authenticate
individual processes based on the credentials of the
corresponding applications. We first discuss several design
choices for realizing process authentication, and justify our
approach next. One simple design choice is that the kernel
directly accesses the application’s credential and verifies its
identity provided that the credential is stored in a
predefined location. However, this method does not

provide the security level that is needed to establish a

strong identification. The location of the credential can be

either defined in memory or the file system. Defining the

credential in the memory imposes additional risk to stealing

the credential as well as causing complexity of maintaining

the credential location. An alternative design is to isolate all

credentials in a restricted storage. The kernel retrieves the

credential of corresponding process at the authentication

time. However, this design is clearly inadequate because it

does not bind a running process to the corresponding

credential file at the runtime.
In order for a process to prove its identity to the kernel

using the application’s secret credential, our approach is for

the process and the kernel to engage in a challenge-and-

response protocol. The challenge-and-response concept is

common in network security. We tailor it for the operating

system environment. The main steps are summarized below

and the details are presented in Section 3.3. 1) The kernel

sends a random nonce to the application process. 2) The

process produces the hash-based message authentication

code (HMAC) with the nonce and the secret credential and

returns the hash value to the kernel. 3) The kernel

recomputes the HMAC and compares it to the value

submitted by the process. We describe the three technical

challenges and our approaches for addressing them next:

. One technical challenge is the implementation of an
efficient and reliable communication channel be-
tween the process and the kernel. Our authentica-
tion protocol is executed on a socket file between
the process and the kernel. This method is realized
using a memory-based socket or shared memory,
for example, /proc file system [20]. The advantage
of using the shared memory is that it is conveni-
ently accessible by kernel device drivers and is
under the complete control of the kernel. More
details on the implementation can be found in
Section 5. Throughout A2 design, this communica-
tion method via shared memory with restrictions is
used for all communications between user and
kernel space processes.

. Another technical challenge is that because the
authentication protocol requires additional opera-
tions by processes, one needs to avoid having to
modify and customize existing applications. We
design and implement a piece of middleware that
assists processes with the authentication operations.
As a result, A2 is completely compatible with
existing applications for process authentication.
More details are given in Section 4.1.

. The third technical issue is how to minimize the
authentication overhead while ensuring the runtime
system assurance (e.g., at the system call level of
granularity). Requiring the process to authenticate
itself at every request of system call incurs excessive
runtime overhead. We choose to perform the
authentication at the time of process creation. We
have a lightweight mechanism to maintain the
authenticated status of a process during all subse-
quent requests, which is conceptually similar to
session IDs in the web.
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3.3 Authentication Protocol

The authentication protocol is run between the Authenti-
cator and a process at the time of process creation. The
description below requires the application to be customized
to follow our protocol. We eliminate this requirement in
Section 4.1 for compatibility. The goal of A2 authentication
protocol is twofold: 1) to securely authenticate running
processes and 2) to record and maintain the authentication
status of processes. The authentication status information is
stored as a kernel data structure by the Authenticator,
which is referred to as the status list. It is shared with the
Service Access Monitor at runtime for SAM to determine
the legitimacy of processes submitting system requests in
Section 3.4.

Let A represent the Authenticator module. We denote the
A’s credential list by L. It is a list of (app-name, app-cred)
pairs, where app-name is an application name, and app-

cred is its corresponding application credential generated
by A. The Authenticator (and no one else) can submit
queries to the Registrar in the form of query(app-name),
which takes as the input an application name and returns its
corresponding credential on L. A maintains a status list T
consisting of process IDs of successfully authenticated
running processes. The list T is made readable by the
Service Access module (SAM). Let p be a user process;
p.pid is p’s process identification; and p.name is p’s
application name. We denote p’s copy of its secret
credential (stored in the code capsule) by p.cred. Let
auth-request(p.app) is the function used by p to send
an authentication request to A. Let HMAC be a secure hash-
based message authentication code function:

1. p: Sends auth-request(p.name) to A, i.e., the
application claiming to be p.name requests to be
authenticated.

2. A: Does the following.

a. p.cred’  query(p.name), that is, queries
the Registrar with p.nameto retrieve its creden-
tial p.cred’ on the credential list L. If the
returned p.cred’ is null i.e., the application
does not have a registered credential, reports p

as suspicious.
b. Generates a random nonce and sends it to p. A

also sets a timer t for the string to expire if there
is no future response from p. The time frame to
expire t is short (e.g., in milliseconds).

3. p: Computes h HMAC(nonce, p.pid p.cred),
where p.cred is p’s secret credential obtained from
its code capsule. h is sent to the Authenticator A.

4. A: If the delay associated with the received HMAC
exceeds the required threshold t, the authentication
request is discarded and the authentication of p fails.

A computes h0  HMAC(nonce, p.pid p.

cred0). If h ¼¼ h0, then the authentication is

successful. Otherwise, it fails.
A checks to see whether p.pid 2 T. If yes, reports

p as suspicious. Otherwise, A appends p.pid to

the list T.
5. When p terminates, A is notified, deletes p.pid from

the status list T.

The ability for an application to succeed in the authenti-
cation protocol depends on its knowledge of the required
secret application credential. For example, if a process
claims to be the Mozilla Firefox browser (i.e., with p.name

being Mozilla Firefox), then it needs to prove its knowledge
of the registered credential value of that application. The
security of our protocol is thoroughly analyzed in Section 4.
Our security guarantee is hinged on the confidentiality of
the application credentials, both the copy on the credential
list and the application’s copy in the code capsule. The PID
that is used as an identifier for querying the status list
belongs to kernel data, which is assumed to be trustworthy
and unforgeable in our security model.

3.4 Runtime Verification of Authentication Status

At runtime, whenever a process makes a request for
accessing system resources through system calls, the Service
Access Monitor intercepts the request and verifies the
authentication status of the process, i.e., whether the process
has successfully passed the authentication. This verification
is accomplished by SAM through looking up the process’s
PID on the status list of the Authenticator, and verifies the
PID’s existence on the list. Our experiments show that this
runtime verification of authentication status of processes is
lightweight. PID is used an identifier for looking up the
status list. Because of our assumption on kernel’s code and
data integrity, PID values used for this runtime verification
are trustworthy, specifically unforgeable.

Our authentication system can be conveniently integrated
with existing policy-based access control systems for strong
system assurance. SAM can also be integrated with a policy
specification language to benefit from existingwork in policy
specification such as [21] that uses an abstracted logical
language to specify SELinux policies and Polymer [22], a
runtime policy specification framework.

4 DISCUSSION

In this section, we first present our solution for solving the
compatibility issue in the authentication protocol. Then, we
analyze in details the security guarantees that A2 provides,
as well as justify the integrity of A2 components themselves.

4.1 Compatibility Mode for Legacy Applications

Our process authentication protocol described as in
Section 3.3 requires the modification of legacy applications
to support the interaction with the Authenticator, raising a
compatibility issue. We deign a middleware to perform the
authentication on behalf of the application. The credential
generation operation is unchanged. We authenticate legacy
applications using a helper program referred to as the
Verifier. The Verifier has the read access to the credential list
L maintained by the registrar, but not the write access:

1. To authenticate a newly started process p with
process name p.name, process ID p.pid, and the
path to the code capsule p.path (all obtained from
the kernel), the Authenticator checks if the process
has already been verified by looking its p.pid up in
the status list T. If p.pid 62 T, the Authenticator
sends to the Verifier (p.path, p.name).
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2. The Verifier reads p.path to retrieve the applica-
tion’s copy of the credential at the end of its code
capsule. This credential is denoted by p.cred. It
throws an error if the credential cannot be found.

3. The Verifier looks up the credential list T by p.name

to retrieve the corresponding credential, which is
denoted by p.cred’. It throws an error if p.cred’
is null.

4. The Verifier checks if p.cred’ == p.cred.2 If yes,
then the authentication succeeds; otherwise, fails.
The Verifier notifies the Authenticator with the
authentication result.

5. The Authenticator updates the status list with
p.pid.

The Verifier’s main task is to access the code capsule of
the application on behalf of the application. The security
guarantee of the authentication protocol using the Verifier
is equivalent to the one without it (discussed next). In our
A2 prototype, the Verifier is implemented as a user-space
application. It has a shared memory region with the
Authenticator to exchange verification messages.

The Verifier is equipped with a manually installed
credential, so that it can be authenticated as a boot-
strapping procedure. When the Verifier’s process starts,
the Authenticator authenticates its identity to prevent
identity spoofing. Fig. 2 shows the workflow of A2 in this
compatibility mode.

4.2 Security Guarantees

The security of A2 relies on the confidentiality of the
application credentials. Thus, we analyze our security
guarantees by discussing the confidentiality of the applica-
tion credentials and the integrity of A2 components.

Unforgeability of credentials. Forging existing secret
credentials (that appear on the credential list) by attackers
is computationally hard, as long as a strong pseudorandom
number generator is used to generate the credential.
Besides existential forgery, a malware process using a
self-generated arbitrary value as its credential cannot
successfully pass the authentication because that self-
generated credential is not registered with the kernel and
does not appear on the credential list.

Confidentiality of code capsules and credential list. To protect
the secret credential from being revealed to other applica-
tions, A2 restricts the read access to applications’ binaries,

namely code capsules (where the application’s copy of
credential is stored). Malware may attempt to steal a
credential from application’s or A2 components’ memory
at runtime, which is prevented by the standard process
memory isolation mechanism of the system.

Similarly, A2 restricts the access to the credential list
(owned by registrar) by other processes, thus ensuring its
confidentiality. More specifically, only the registrar and the
verifier have the direct access, and the Authenticator can
(indirectly) query the list.

Resistance to replay attacks. Malware may attempt to
intercept the challenge-and-response communication be-
tween the Authenticator and a process during the authenti-
cation protocol. Because the proc file is only readable by
A2 components, messages exchanged cannot be intercepted
preventing replay. (This read restriction is enforced in
kernel by A2.)

Integrity of A2 components and data. A2 components span
both the kernel space and the user space. The kernel-level
components include the Authenticator and Service Access
Module. Because of our assumption on the kernel integrity,
these two components are trustworthy. In contrast, there is
no assumption on the integrity of the user-level Registrar
and Verifier, which may be targets of malware tampering
and spoofing.

For antispoofing, A2 requires these two programs
(namely the Registrar and Verifier) to authenticate to the
Authenticator through our A2’s authentication protocol as
they start. The authentication procedure slightly differs from
the one described in Section 3.3 in that 1) their credentials
are manually generated, and 2) the kernel’s copies of their
credentials are hardcoded in the Authenticator, as opposed
to be stored on the credential list. For antitampering, A2
forbids the write access to the code capsules of the Registrar
and Verifier by other userland processes.

A2 data include the credential list, status list, as well as
the intermediate communication messages in the authenti-
cation protocols via (proc file based) shared memory. We
have discussed the confidentiality of the credential list,
which is a user-space file. The status list is a kernel data
structure in the memory. Its integrity and confidentiality are
preserved under our kernel integrity assumption.

The shared memory approach is used for all the
communication between the kernel modules and user-level
processes, including: 1) the authentication protocolmessages
between the Authenticator and the requesting process,
2) credential queries between the Authenticator and the
Registrar, and 3) authentication status update between the
Authenticator and the Verifier. A2 secures the confidentiality
and integrity of the shared memory-based communication
channels by preventing the read and write access to the
shared memory by other nonrelated user-level processes.

In summary, the A2 solution guarantees that the
operating system correctly authenticates processes of
applications at the runtime and malware cannot imperso-
nate the identities of legitimate processes, thus satisfying
our security goal specified in Section 2.

4.3 Extensions and Limitations

Updates. Handling updates and new installation in A2 is
convenient and requires limited user effort. Our policy

174 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Fig. 2. Workflow of A2 in compatibility mode.

2. Instead of the direct comparison of the two copies of credentials, an
equivalent-yet-less-straightforward approach is for the Verifier to engage in
the authentication protocol of Section 3.3 with the Authenticator (on behalf
of the application process).



considers each installation of an application as a new entity
that needs a new credential. An upgrade in Linux desktop
systems may be upgrading a resource file, patching the
application with additional libraries or modification of
existing libraries, and providing a modified binary. Updates
may trigger A2 to generate separate credentials for the
resources, or regenerate a new credential for the main
application. The user needs to authorize credential updates.
In recent Linux systems, software updates already require
user permissions. These permissions can also serve as the
user authorization for credential updates.

Dynamic linked libraries (DLL). Validating dynamically
loaded libraries is not performed during the authentication
of the main application. When invoked, the library itself can
be separately authenticated in A2, which requires the
library to acquire its own credential. The library’s credential
is examined before loading.

Linux shared libraries (such as libc.so) are loaded by
the dynamic linker (ld.so). For authenticating libraries,
there are two design choices. The first is that prior to
loading a specific library, the dynamic linker itself
interacts with the verifier to request for authentication.
The second design choice is to monitor the dynamic loader
and enforce authentication on all files opened and loaded
by the dynamic linker. The second design choice maintains
the compatibility with the current dynamic loader and can
integrate as an additional functionality in the process
monitor. For the two approaches described above, one
needs to perform the library authentication at the time of
loading the library into the memory. Thus, there is no
additional overhead per system call.

Limitations. A2 is capable of identifying interpreted
programs running as stand-alone processes. For instance,
a Java executable runs as a separate process. The program
can be given a unique credential at registration. Each
program can authenticate itself independently using our
framework. Other interpreted languages such as JavaScript,
Adobe Action Script, and Word document macros are out of
our security model because the program runs in a container
process as opposed to a separate process ID. For a similar
reason, the detection of malicious code injected into
(vulnerable) authenticated processes—as opposed to run-
ning as a stand-alone process—is out of the scope of A2’s
attack model.

The security of A2 partly depends on the accuracy of the
classification analysis. Classifying the trustworthiness of a
program is challenging, and its inaccuracy may allow
malware to obtain a legitimate secret application credential.
In practice, multiple complementary static and dynamic
analysis and monitoring tools have to be used to improve
the accuracy of classification.

Extensions. Although attacks that cause control flow
hijacking are out of our model, they may be detected by
extending the current methods:

. Direct detection. There exist control flow integrity
tools and methods (e.g., StackGuard [23], address
space layout randomization) to prevent the control
flow hijacking exploits. A recent good survey can be
found [24]. These solutions can be used together
with A2 on a system.

. Detection of effects. Control flow hijacking is used by
attackers to reach their goals:

- The hijacking goal may be to access or modify
credential information without proper author-
ization. Boot-time integrity checking (e.g., TPM-
based solutions [25]) can be integrated with A2
to detect unexpected modification in the cre-
dential data on disks.

- The attack goal may also be to launch new
processes to complete attack tasks, for example,
eavesdropping, command and control, or send-
ing attack traffic. Together with the boot-time
integrity checking, A2 can detect the creation of
such unauthorized new processes, as they
would not have the proper credentials.

5 IMPLEMENTATION

We have developed a prototype of the A2 framework in C
in Linux (3.2.0-36), including the implementation of the
credential registrar, the Authenticator, the Service Access
Module, and the verifier:

. The Authenticator and SAM are kernel device
drivers loaded at boot time.

. The credential registrar and the verifier are imple-
mented as kernel helper programs that run in the
user mode for efficiency and compatibility consid-
erations. We avoid the unnecessary context switches
to register an application, and can use standard user-
level libraries.

As a bootstraping procedure, we require the
registrar and the verifier to authenticate themselves
to the kernel (namely the Authenticator) with
their respective secret credentials at the time of the
process creation.

Credential list. Each secret credential is a 128-bit random
value generated by the AES key generation algorithm
during the CREDENTIAL GENERATION operation by the
registrar. We describe how the credential list can be
accessed by each of the A2 components:

. The registrar can read and write to the credential list,
which is a file. The verifier can read the file as well.
No other processes can access that file. This
restriction is realized as monitoring the open system
call requests to the file. This system call monitoring
is performed by SAM.

. Because Linux kernel components do not access file
system directly, in our prototype the Authenticator
and SAM do not have the direct read access to the
file storing the credential list. They need to commu-
nicate with the registrar to retrieve a credential via
the proc file mechanism.

As a bootstraping procedure, the registrar authenticates
itself to the kernel Authenticator with its own credential.
The registrar’s credential is appended to its executable file,
as specified in A2. In our prototype, this credential is hard-
coded into A2 kernel modules.

The verifier process is similarly authenticated. Both the
credential registrar and the verifier are stored in code
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capsules that are protected by the kernel. The trusted
credential registrar has access to application executables to
respond to the kernel’s requests. These requests are sent to
the verifier process through the /proc file system. We also
secure the communication channel by restricting the open

system call to all other processes.
Authenticator. To carry out the authentication protocol,

the Authenticator communicates with the user space
applications using the /proc file system, which is a
memory-based file system controlled by the kernel. A
protocol file is created by the Authenticator in the /proc

file system. We support two functions for reading and
writing operations to the protocol file in /proc file system.
The read_protocol_file function is executed when the
user reads the file. For writing to the challenge file, we
define the function write_protocol_file. In this func-
tion, our module reads the data that is written by the user-
level process. The Authenticator module uses the Linux
kernel Cryptographic API [26] to perform the HMAC
operations using a number of supported hashing algo-
rithms. Our implementation of the Authenticator can accept
multiple requests from multiple processes using the same /

proc protocol file. For each process, only one request is
served at a time.

Status list and Service Access Monitor. Service Access
Monitor and the Authenticator communicate via a shared
data structure in the memory that holds the status list, i.e., a
list of PIDs of successfully authenticated running processes.
This data structure is maintained by the Authenticator and
visible to SAM (but no other processes). To verify a process’
identity, SAM searches through the status list.

We implement the status list as a sequential dynamic
array. In our experiments, under a normal use, the number of
running processes was under 100. As it is shown in the
evaluations, searching the status list did not have a
significant overhead in a normal usage.However, to improve
the overhead, one can implement the list as a red-black tree (a
special type of balanced binary search tree [27]) that has a
search complexity of O(log n), where n is the size of the status
list in the memory.

To avoid the need to modify the kernel, SAM uses the
kprobe API to hook into system calls and monitor process
activities. Although the probes introduce extra overhead,
the produced overhead does not cause considerable
latencies to applications’ functionality, limited by an
average of three times more overhead.

To provide a more efficient alternative realization of
SAM, we modified the Linux kernel to implement a faster
system call tracing method. In this implementation, we
modify kernel’s entry assembly code to perform the
verification of identities before the system call takes place.
As the kernel prepares for jumping to the address of the
requested system call, we place a jump to the address of our
kernel function that implements SAM. We store all the
necessary information before the jump and send the system
call number and the process information to SAM’s kernel
function. The system call may be allowed or disallowed
according to the value returned from our kernel function.
After the return, we check the return value and either jump
to the desired system call function or execute an exit code to
user mode.

6 PERFORMANCE EVALUATION

The strong security guarantees provided by our A2 frame-
work require additional computational and management
overheads in the operating system. To assess the efficiency
of our framework, we answer the following questions in
our experiments:

. HowdoesA2 impact the overall systemperformance?

. What is the performance penalty caused by A2?

. What is the process creation performance?

Overview and setup.We conducted extensive performance
evaluations using various system benchmark suites. An
overall measurement of A2’s performance is calculated
using UnixBench,3 and, Phoronix test suite.4 To measure the
performance of critical system functions, such as I/O and
system calls, we use lmbench [28] and UnixBench system
benchmark suites.

Our experiments reveal efficient performance of A2 in
various system operations. The highest performance down-
grade is in open system calls (with A2 being about two
times slower than the generic stock Linux). Our overall
performance measurements, process creation, and general
I/O operations show reasonably fast performance of A2.

Our experiments executed directly on a physical Intel
Core Duo 2 machine with two cores of 2.99 Mhz speed and
3 GB of RAM. The kernel version on the testing machine
was Linux 3.2.0-36. At the time of each test, there was no
user interaction with the machine except for execution of
the benchmark programs. All benchmark results show an
average of several iterations.

We tested the system’s performance twice for each
experiment. First, we experimented with the stock generic
Linux kernel (referred to as generic in Figs. 3, 4, 5, 6, and
Table 2) installed on the machine. Second, we tested the
system with all A2 modules loaded. Also, we developed a
daemon to simulate the authentication, by sending authen-
tication requests to the kernel and performing the authenti-
cation protocol, in the intervals of 60 seconds during the
course of each experiment.
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Fig. 3. UnixBench benchmark operations and results. The values are
calculated according to a base score method. For each kernel (A2 and
the generic Linux kernel) two sets of experiments are performed: single
and two parallel copies, one for each core.

3. http://code.google.com/p/byte-unixbench/.
4. http://www.phoronix-test-suite.com/.



Overall system performance. For an overall measurement of
A2’s performance, we used UnixBench and two benchmarks
from Phoronix test suite, that is PHP compile, and Apache
throughput. UnixBench performs various system level tests
and calculates an overall performance index relative to a
base score, referred to as the BYTE index. A higher value of
the BYTE index indicates a relatively better performance.

Fig. 3 shows the results form UnixBench tests. The
overall performance penalty with a single processor is
0.977 percent. For two parallel executions, the perfor-
mance downgrade of 1.534 percent. Our tests with PHP
compile and Apache throughput show an efficient overall
performance of A2. As described in Table 2, PHP compile
time had a downgrade of 0.91 percent under A2, and
Apache’s requests per second downgraded 1.65 percent
when using A2.

I/O and system call performance. UnixBench and lmbench
perform extensive I/O and system call performance
measurements. The benchmarks involve continuous calls
to a system function and measuring the total processing
time. For UnixBench results (see Fig. 4), we show the
benchmark scores, whereas for lmbench results (see Fig. 5)
we show the actual processing time.

The file copy operations in UnixBench had an average
decrease of 1.55 percent in performance with maximum

decrease of 2.161 percent. lmbench measures calls to open

followed by a close, as depicted in Fig. 5. These calls had
the most downgrade of about 235 percent in A2. This major
downgrade is mainly due to various checks that we perform
at the open system call to make sure proper access rights on
protected regions that contain application credentials (e.g.,
checking access to code capsules). Other I/O operations
such as select on file descriptors, select on TCP file
descriptors, and sockets demonstrated statistical ties be-
tween A2 and the generic kernel.

In our prototype, the system call checking has two
levels: level-I checking to see if the call is monitored and
level-II checking to see if the authentication is needed.
Every system call invocation is intercepted for the level-I
checking. For the purpose of system assurance, only select
system calls performing security critical functions go
through the level-II checking. The support for additional
critical system calls such as sys_socketcall may be
included in the future.

Process creation performance. We directly monitor calls to
fork and execve for monitoring process creations and
activities by all processes to enforce our mandatory
authentication protocol. Our monitoring involves a check
to see if the process requires authentication. Thus, expect
modest performance penalties by A2. To measure process
creation, we used lmbench (Fig. 6) and UnixBench (Fig. 3)
process creation benchmarks.

The results from lmbench show an average performance
downgrade of 2.1627 percent when using A2 modules and
a maximum downgrade of 2.949 percent for the fork,
execve, and shell execution results. UnixBench measures
process creation with fork with a performance downgrade
of 0.686 percent in the single execution experiment and a
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Fig. 4. UnixBench benchmark file copy with various sizes. The file copy
is slightly affected by our permissions checking in A2 with an average
downgrade of 1.55 percent.

Fig. 5. lmbench benchmark operations and results. The values show
time to execute the operation in microseconds. Most operations perform
efficiently and do not suffer major performance downgrades. The
performance downgrade in open/close is due to our permission checking
before granting a file descriptor in the open system call.

Fig. 6. lmbench process creation results. The values show time to
execute the operation in microseconds. The results show process
creation using fork without running external code, process creation with
a call to execve, and process creation with running shell scripts.

TABLE 2
Comparison of PHP Compile Time (in Seconds) and
Apache Throughput (in Requests/Seconds) (Using
Phoronix Test Suite) in A2 versus the Generic Linux



performance downgrade of 0.701 percent in the parallel
execution experiment. The corresponding experiment in
lmbench (calls only to fork) has a similar performance
downgrade of about 1 percent.

7 RELATED WORK

Existing work on protecting system’s integrity is studied in
the form of program integrity measurement techniques [29],
[30], [31], information flow integrity [32], mandatory access
control [2], [4], virtual machine monitors (VMM) [33], [34],
and application sandbox [35], [36], [37].

The Integrity Measurement Architecture (IMA) is a
mechanism to provide attestations about the integrity of
the kernel and the running programs for a trusted remote
verifier [31]. In this architecture, the kernel maintains an
aggregation of user programs’ and files’ checksums (i.e.,
the hash of the file’s contents) in the memory. The integrity
of the list in the kernel’s memory is maintained using TPM.
The checksums of user programs’ are communicated to the
remote party to perform the necessary verification. In [30],
a similar approach is taken to apply IMA on mobile
operating systems.

The work in [31] is enhanced by PRIMA [32] to take
advantage of information flow integrity for verifying and
controlling user programs’ inputs. Specifically, PRIMA
forces the flow from a low integrity program to a higher
integrity program to pass through a filter.

ReDAS approaches the problem by providing attestation
of dynamic program features to remote parties [29]. In the
proposed methods, the integrity of the kernel is assumed to
be established based on TPM. Then, the kernel keeps track
of dynamic program features by a static analysis of the
program binary. For instance, ReDAS makes sure that the
return address of a function points to the instruction
following the call instruction.

In contrast with remote program attestation methods, A2
does not require a remote verification for program and
system integrity. However, remote verification can be used
in conjunction with A2, for example, when verifying the
integrity of a system running in an untrusted cloud.

Mandatory access control systems specify fine-grained
policies for the installed applications. These policies are
typically administered by a power user (such as the root

user in UNIX-based systems) to control the behavior of the
applications. A well-known MAC system is SELinux [2].
SELinux assigns applications to domains and tags execu-
table files with their appropriate domain information. At
runtime, SELinux monitors the access by all processes and
enforces the predefined access policies by binding the
process to an appropriate domain and deciding on the
right policies. An alternative to SELinux, grsecurity [38]
provides sophisticated memory protection mechanisms
such as enforcing read-only memory pages.

Policy-based systems such as SELinux are found to be
difficult to use by end users [39], and lack a general
application authentication mechanism. In A2, we provide
the first process authentication mechanism. It is indepen-
dent of a particular user identity and does not rely on
dynamic features such as a process ID, yet (in its core
functionality) does not depend on complex policy specifica-
tion systems.

In [40], [41], the authors propose the use of message
authentication code in monitoring system calls. By using an

automated method binary rewriting, all the system calls
functions calls are modified to include a message authenti-
cation code as extra arguments. The message authentication

code is generated using a key that is available to the kernel.
At runtime, the kernel uses the key to verify the code
against the actual system call made by the application to

detect possible modifications to the application’s behavior.
The presented work is limited to providing identities (the

HMAC) to individual function calls to system calls in an
application. Thus, it does not provide an identity to the
application itself.

System call monitoring is an ongoing research toward

protection against malware [42] mostly focused on the use
of virtual machine monitors to monitor system calls [33],

[34]. We do not implement the components of A2 within a
VMM to avoid the semantic gap introduced. This semantic
gap prevents A2 from close monitoring of the process

activities as well as proper identification of the processes.
Furthermore, a VMM may be used in A2 to ensure the
integrity of the kernel itself.

Application sandbox is a mechanism to allow execution
of untrusted code on protected hosts. Recent sandbox
proposals include Vx32 [35], UserFS [36], and BLADE [37].

Application sandbox methods are useful for our A2 frame-
work. Systems such as UserFS that allow temporary secure
execution of an untrusted code can be coupled with A2 to

perform the necessary application checking and classifica-
tion before registering the application as a legitimate

application.

8 CONCLUSIONS AND FUTURE WORK

Our work is the first to formally design application and
process authentication in the operating environments. We

have demonstrated its feasibility by presenting our
architecture, implementation, and evaluation of a proto-

type Linux system supporting process authentication. We
explained how process authentication can isolate mal-
icious processes and, thus, prevent them from abusing

and accessing system resources. The authentication model
of A2 is highly portable and can be made compatible
with legacy applications without any customization. Our

evaluation results indicate that the overhead of perform-
ing process authentication at the system call level is

acceptable.
A secure system needs multiple layers and components

of protections. Achieving strong software assurance (i.e.,
ensuring the trustworthiness of code) is difficult if not

impossible. Thus, we believe that our work on preventing
untrusted code from running is equally valuable. Future

work of ours will be focused on porting our A2 design to
Android operating system for mobile devices to support the
authentication of apps. Such a solution will significantly

improve the system assurance of Android devices that may
be targets of malicious and stealthy apps. We also plan to
make A2 compatible with SELinux by extending and

generalizing SELinux modules.
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