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Abstract. More than 30 % of Europe’s land surface is made

up of karst exposures. In some countries, water from karst

aquifers constitutes almost half of the drinking water sup-

ply. Hydrological simulation models can predict the large-

scale impact of future environmental change on hydrological

variables. However, the information needed to obtain model

parameters is not available everywhere and regionalisation

methods have to be applied. The responsive behaviour of

hydrological systems can be quantified by individual met-

rics, so-called system signatures. This study explores their

value for distinguishing the dominant processes and proper-

ties of five different karst systems in Europe and the Mid-

dle East. By defining ten system signatures derived from

hydrodynamic and hydrochemical observations, a process-

based karst model is applied to the five karst systems. In

a stepwise model evaluation strategy, optimum parameters

and their sensitivity are identified using automatic calibra-

tion and global variance-based sensitivity analysis. System

signatures and sensitive parameters serve as proxies for dom-

inant processes, and optimised parameters are used to de-

termine system properties. By sensitivity analysis, the set

of system signatures was able to distinguish the karst sys-

tems from one another by providing separate information

about dominant soil, epikarst, and fast and slow groundwa-

ter flow processes. Comparing sensitive parameters to the

system signatures revealed that annual discharge can serve

as a proxy for the recharge area, that the slopes of the high

flow parts of the flow duration curves correlate with the fast

flow storage constant, and that the dampening of the isotopic

signal of the rain as well as the medium flow parts of the flow

duration curves have a non-linear relation to the distribution

of groundwater storage constants that represent the variabil-

ity of groundwater flow dynamics. Our approach enabled us

to identify dominant processes of the different systems and

provided directions for future large-scale simulation of karst

areas to predict the impact of future change on karst water

resources.

1 Introduction

Almost one third of Europe’s land surface is composed of

karst exposures (Williams and Ford, 2006). In some coun-

tries up to 50 % of drinking water is obtained from karst

aquifers (Zwahlen, 2003). Projected trends of increasing

temperatures and decreasing precipitation (Christensen et

al., 2007) may affect water security in karst water regions

(e.g. Butscher and Huggenberger, 2009). Hydrological simu-

lation models are necessary to predict the large-scale impact

of future environmental change on hydrological variables
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Table 1. General characteristics of the study sites.

Austrian site Israeli site 1/2 Palestinian site Spanish site Swiss site

Altitude difference [m] 550 2700 700 700 200

Soil coverage Complete Partial Partial Partial Complete

Mean annual 1800 870 690 820 950

precipitation [mm]

Mean temperature [◦C] 7.2 13–18 18 13.5 10.8

Dominating geology Norian Jurassic Eocene Jurassic Oxfordian

Hauptdolomit limestone limestone limestone limestone

Climate (Köppen Humid Hot-summer Hot-summer Hot-summer Humid

classification) continental Mediterranean Mediterranean Mediterranean continental

Mean annual discharge 0.31 298∗ 6.2 26.1 0.04

[Mio. m3]

∗ Combined discharge of both springs.

(Wagener, 2007). The strong subsurface heterogeneity of

karstified rocks (Bakalowicz, 2005) means that the hydro-

logical behaviour of karst systems can be very distinct from

other hydrological systems (Goldscheider and Drew, 2007).

Therefore, hydrological models containing an adequate rep-

resentation of specific karst hydrological processes have to

be applied.

Process-based karst models can be separated into lumped

and distributed modelling approaches. Distributed ap-

proaches discretise the entire karst system in two- or three-

dimensional elements and provide spatial information about

groundwater levels in each element. Many similar reviews

concerning different subtypes and applications can be found

in the literature (Ford and Williams, 2007; Goldscheider and

Drew, 2007; Kovacs, 2003; Sauter et al., 2006; etc.). Since

parameterisation requires spatial information on karst sys-

tem properties, distributed approaches were either applied

at well-explored test sites (e.g. Doummar et al., 2012; Birk

et al., 2005; Hill et al., 2010) or for theoretical calcula-

tions to understand the general behaviour of karst hydrol-

ogy (e.g. Reimann et al., 2011; Birk et al., 2006). Lumped

approaches do not require spatial information about system

properties. They consider physical processes by a set of equa-

tions that transfer input to output at the scale of the entire

karst system (Hartmann et al., 2012a). In preceding stud-

ies, conceptual modelling approaches considered karst pro-

cesses such as separate conduit and matrix systems (Fleury

et al., 2009; Geyer et al., 2008; Maloszewski et al., 2002),

storage and recharge concentration in the soil and epikarst

(Hartmann et al., 2012c; Tritz et al., 2011), allogenic con-

tribution by sinking streams (Le Moine et al., 2008; Bailly-

Comte et al., 2012) or discharge by various springs (Rimmer

and Salingar, 2006; Charlier et al., 2012).

Because of their integrating structure, the parameters of

lumped process-based approaches describe the representa-

tive properties of the system and are therefore difficult to

measure. For that reason, they are usually derived by calibrat-

ing the model with time series of discharge observations at

the karst spring (Moussu et al., 2011). In order to avoid over-

parameterisation (Perrin et al., 2001; Beven, 2006), most of

the lumped modelling studies mentioned above used rather

simple model structures and omitted some karst processes

deemed not important at their respective study sites. Due to

their simplicity, these models are difficult to transfer to other

sites. Even though research has recently made much progress

in this field (Anderson and Goulden, 2011; Carrillo et al.,

2011; Harman and Sivapalan, 2009; Oudin et al., 2010), this

is one of the reasons why studies addressing the transfer of

karst models to ungauged basins are rarely found.

In this study, a realistic process-based karst model is cali-

brated using ten hydrodynamic and hydrochemical karst sys-

tem signatures, i.e. metrics that express a system’s response

behaviour and storage characteristics (Wagener et al., 2007),

to five study sites around Europe and the Middle East. A

stepwise model analysis is used to identify optimum parame-

ters and parameter sensitivity. Assuming that the model ade-

quately represents the karst systems, the sensitiveness of pa-

rameters that control the different process dynamics in the

model can serve as a proxy for dominant natural processes

and optimised parameters as approximations of system prop-

erties. We use this analysis (1) to explore the information

content of the different karst system signatures concerning

different karst processes and properties, and (2) to establish

relations between parameter values and system signatures.

2 Study sites

We consider five karst systems in Europe and the Middle East

(Fig. 1). They are located in different climatic regions and

cover a range of scales of approximately 0.1 to 500 km2. Ta-

ble 1 summarises their general characteristics. The systems

are drained by one or several karst springs. The Austrian site
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Fig. 1. (a) Location and (b)–(f) maps of the study sites in Europe and the Middle East.

(Fig. 1c) is dominated by Norian dolomite (Hauptdolomit),

partly overlain by plattenkalk and Jurassic/Cretaceous lime-

stone and marls (Kralik et al., 2009; Kralik and Keimel,

2003). The Israeli site (Fig. 1f) consists of two major karst

springs that drain a Jurassic limestone aquifer with thick-

nesses of more than 2000 m. Preceding studies (Hartmann

et al., 2013b; Rimmer and Salingar, 2006) showed that, for

the purpose of system signature modelling, the groundwa-

ter systems of the two springs are not directly connected to

each other. For that reason, they are regarded separately in

this study (referred to by Israeli site 1 and 2). The Pales-

tinian site (Fig. 1e) is a large karst spring draining an Eocene

calcareous rock aquifer in a semi-karstified area (Ghanem,

2005; Hartmann et al., 2012b). The Spanish site (Fig. 1d)

consists of a main spring and an overflow spring that drain

a karst aquifer composed of Jurassic limestones and dolo-

stones with a variable thickness that can exceed 500 m. The

base of the aquifer is constituted by Triassic clays and evap-

orites (Barberá and Andreo, 2011). The Swiss site (Fig. 1b) is

a small karst spring located on a karst plateau of Swiss Tab-

ular Jura. Its aquifer consists mainly of Oxfordian limestone

with a thickness of 40–70 m (Butscher and Huggenberger,

2008).

3 Methodology

3.1 Available data

Table 2 summarises all available data. At the Palestinian site

information is limited to monthly discharge measurements.

A complete record of discharge and hydrochemical param-

eters exists for the Spanish study site. For Switzerland the

daily discharge record shows a gap of 4 yr. For all sites, ex-

cept for Palestine, hydrochemical parameters are mostly in

a weekly to monthly resolution. At the Israeli sites the time

when the δ18O samples were taken falls outside the time span

of the discharge record. The way these data could still be in-

cluded in the analysis will be elaborated on in the following

subsections.

3.2 Karst system signatures

For a complete description of the karst systems’ character-

istics. we define ten system signatures that describe a wide

range of aspects of their combined hydrodynamic and hy-

drochemical behaviour. Table 3 provides the description of

the karst-specific system signatures and equations for their

calculation. To consider the hydrodynamics, we separate the

flow duration curves of the springs (FDCs, Fig. 2a) into the

slopes of high flows (exceedance probabilities 0.0 to 0.1),

www.hydrol-earth-syst-sci.net/17/3305/2013/ Hydrol. Earth Syst. Sci., 17, 3305–3321, 2013
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Table 2. Available data for the analysis.

Study sites

Austria Israel 1/2 Palestine Spain Switzerland

Time span 2002–2005 1989–1999 1989–1999 2007–2010 2004–2010

Discharge Daily Daily Monthly Daily Daily (with a

4 yr gap)

δ18O Irregular Irregular – Weekly to 2 weekly

monthly

NO3 Weekly Weekly to – Weekly to 2 weekly

monthly monthly

SO4 Weekly Daily to – Weekly to 2 weekly

weekly monthly

Fig. 2. Different hydrological and hydrochemical aspects of the system behaviour of the study sites: (a) flow duration curves, (b) autocor-

relation of discharge, (c) cross-correlation of discharge and NO3, (d) correlation of discharge and SO4, (e) ratios of variability (standard

deviations) in observed δ18O in discharge (Q) and precipitation (P ), and (f ) annual amounts of discharge.

median flows (0.1 to 0.9) and low flows (0.9 to 1.0). In addi-

tion, we consider the autocorrelation of discharge time series

(Fig. 2b), which is classically used to determine the memory

effect of karst systems (Mangin, 1984). It already proved it-

self to contribute more data to the calibration of karst models

(Moussu et al., 2011). Similar to Laroque et al. (1998), we

use cross-correlation to characterise the delayed response of

NO3 compared to discharge (Fig. 2c). A linear regression in

the log-log space describes the correlation of SO4 and dis-

charge (Fig. 2d), whereby the regression slope addresses its

dynamics and its offset is related to the SO4 mass balance.

Information inherent in the δ18O signal is expressed by the

ratio of its variability in discharge and precipitation (Fig. 2e).

Water balance and inter-annual memory of the systems are

considered by the annual discharges (Fig. 2f) and the stream-

flow elasticity (Sawicz et al., 2011). Since these measures

provide time-independent descriptions of the karst systems’

characteristics, it is possible to include data that were col-

lected during different time periods than the discharge (such

as δ18O for the Israeli site).

3.3 The karst model

In this study we use the process-based VarKarst model in-

troduced by Hartmann et al. (2013a). It consists of subrou-

tines representing the soil, the epikarst, and the groundwa-

ter system. The variability of system properties is expressed

by distribution functions that consider the variability of

soil and epikarst storage capacities, epikarst hydrodynamics,

Hydrol. Earth Syst. Sci., 17, 3305–3321, 2013 www.hydrol-earth-syst-sci.net/17/3305/2013/



A. Hartmann et al.: Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics 3309

Table 3. Karst-specific system signatures, their equations and description (cov: covariance, var: variance, std: standard deviation, P(Xy):

exceedance probability of variable X at the probability interval y, N : number of time steps, log10: decadal logarithm, dX: inter-annual

change of annual variable X).

Signature Equation Description

High flows SHF =
cov[P (Q1−0.9), log10(Q1−0.9)]

var[log10(Q1−0.9)]
Characterises fast flow paths

Medium flows SMF =
cov[P (Q0.9−0.1), log10(Q0.9−0.1)]

var[log10(Q0.9−0.1)]
Characterises medium flow variability

Low flows SLF =
cov[P (Q0.1−0), log10(Q0.1−0)]

var[log10(Q0.1−0)]
Characterises slow flow paths

Q autocorrelation RQ,100 =
rQ,100

rQ,0
Characterises the memory effect of

with rQ,100 = 1
N

N−100
∑

i=0

(

Qi − Q
)

·
(

Qi+100 − Q
)

the system after 100 days

δ18O variability Vδ18O =
std

(

δ18OQ

)

std
(

δ18OP

) Characterises residence time variability

Q–NO3 cross- LNO3
= k

(

rNO3,k
= max

(

rNO3,k

))

Characterises the fast transport from

correlation with rNO3,k
= 1

N

N−k
∑

i=0

(

Qi − Q
)

·

(

cNO3,i+k
− cNO3

)

soil/epikarst

Q–SO4 regression SSO4
=

cov[log10(Q), log10(SO4)]
var[log10(Q)]

Characterises the dynamics of matrix-

slope conduit interactions

Q–SO4 regression BSO4
= log10 (SO4) − SSO4

· log10(Q) Characterises the SO4 mass balance

offset

Annual water BQ =
∑

Q Characterises the mean recharge

balance area

Streamflow EQ = median
(

dQ
dP

· P

Q

)

Characterises the inter-annual

elasticity memory effect of the system

recharge separation (diffuse/concentrated) and groundwater

hydrodynamics (Fig. 3). Similar to other models that con-

sider variability (Hartmann et al., 2012c; Moore, 2007), the

Pareto function is used to attribute the variable system prop-

erties to a set of N = 15 model compartments. The inclu-

sion of spatial information makes the VarKarst model a hy-

brid model between lumped and distributed modelling ap-

proaches. With such structure it is much more elaborate than

classical lumped models (e.g. Fleury et al., 2007; Geyer et al.,

2008), but it still has a relatively low number of parameters.

A list of all model parameters is provided in Table 4, and a

full description of the VarKarst model is provided in the Ap-

pendix. Hartmann et al. (2013a) showed that compared to a

classical reservoir model, the VarKarst model provided supe-

rior multi-objective performance when hydrochemical infor-

mation was considered. It was able to consider a time vari-

ant recharge area and gave more stable predictions when a

split-sample test (Klemeš, 1986) was performed for valida-

tion. Snowmelt routines were set on top of the model for the

Austrian and Swiss site. They are based on the snow rou-

tine of the HBV model (Lindström et al., 1997). A detailed

Fig. 3. Sketch of model structure adopted from Hartmann et

al. (2013a) illustrating the relevant processes and connections (light

blue indicates the unsaturated part of the groundwater aquifer).

www.hydrol-earth-syst-sci.net/17/3305/2013/ Hydrol. Earth Syst. Sci., 17, 3305–3321, 2013
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Table 4. Parameters of the VarKarst model, their descriptions, units and calibration ranges for the different study sites.

Parameter Description Unit
Ranges

Lower Upper

A

Recharge area Austria km2 0 10

Recharge area Switzerland km2 0 10

Recharge area Spain km2 20 60

Recharge area Palestine km2 20 50

Recharge area Israel 1 km2 50 400

Recharge area Israel 2 km2 50 400

Vmean,S Mean soil storage capacity mm 0 250

Vmean,E Mean epikarst storage capacity mm 0 500

aSE Soil/epikarst depth variability constant – 0.1 6

Kmean,E Epikarst mean storage constant d 1 50

afsep Recharge separation variability constant – 0.1 6

Vcrit,OF Critical volume to activate overflow spring mm 10 104

KC Conduit storage constant d 1 20

aGW Distribution of groundwater storage constants – 0.1 6

GeoSO4
Equilibrium concentration of SO4 in matrix mg L−1 1 105

aGeo Equilibrium concentration variability constant – 0.1 6

description of the routine and the selection of the parameters

for the Austrian site are provided in Parajka et al. (2007) and

Hartmann et al. (2012a). The parameters for the Swiss site

were adopted from Schulla (1997), who modelled snowmelt

at a nearby site.

3.4 Model calibration and sensitivity analysis

The model was applied using a modified version of a model

evaluation strategy presented by Hartmann et al. (2013b).

Our analysis consists of three stages: (1) evaluation of model

performance with respect to system signatures, (2) evaluation

of parameter identifiability using sensitivity analysis, and

(3) combination of the results of stages (1) and (2) to estab-

lish relations between sensitive calibrated model parameters

and system signatures. Stage 1 will show whether the model

has enough degrees of freedom to reproduce the karst system

characteristics that are expressed by the system signatures.

The model is calibrated on each single signature individu-

ally by comparing modelled and observed signatures and us-

ing automatic calibration by the Shuffled Complex Evolution

Metropolis algorithm (Vrugt et al., 2003). That way, 10 × 6

optimum parameter sets are found for each of the ten signa-

tures and the six study sites. If one of the modelled signatures

deviates more than 30 % from the observed signature, this

signature will not be used for the further analysis. Stage 2

evaluates the information provided by each signature. Sobol

sensitivity analysis (Saltelli et al., 2008) is used to evaluate

the sensitivity of the model parameters concerning the differ-

ent signatures. This allows distinguishing informative sensi-

tive) parameters from non-informative (insensitive) parame-

ters. Sobol sensitivity analysis decomposes the model output

variance concerning a certain signature into relative contribu-

tions from individual parameters and their interactions (van

Werkhoven et al., 2008; Saltelli et al., 2008):

D =
∑

i

Di +
∑

i<j

Dij +
∑

i<j<k

Dijk + D12...m, (1)

where D is the total output variance, Di the model output

variance due to parameter i, and Dij the output variance

due to interactions of parameter i and parameter j . Dijk and

D12...m describe the interactions of three or more parame-

ters; m is the total number of parameters. Information about

parameter sensitivity is provided by the total contribution of

a parameter to the model output variance 2T (also referred

to as total sensitivity):

2T,i = 1 −
D/∈i

D
, (2)

where 2T,i is a sensitivity index that represents the single

effect of parameter i plus its interactions with the model out-

put variance and D/∈i the model output variance produced by

all model parameters except for parameter i. The contribu-

tion of individual parameters to the model output variance

is described by the sensitivity index 2F (also referred to as

first-order sensitivity):

2F,i =
Di

D
, (3)

where 2F,I represents the contribution of an individual pa-

rameter i to the model output variance D. Due to their def-

initions in Eqs. (2) and (3), 2T and 2F range from 0 to 1.

The difference between 2T and 2F represents the parameter

interactions. Similar to Hartmann et al. (2013b), we consider

Hydrol. Earth Syst. Sci., 17, 3305–3321, 2013 www.hydrol-earth-syst-sci.net/17/3305/2013/
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Table 5. Observed karst system signatures obtained by the signature equations provided in Table 3.

Agreement of signature Unit
Study site

Austria Israel 1 Israel 2 Palestine Spain Switzerland

SHF [L s−1] −4.23 −0.37 −2.71 −2.36 −1.18 −4.54

SMF [L s−1] −1.13 −0.32 −0.83 −0.57 −2.26 −0.78

SLF [L s−1] −3.48 −1.58 −1.71 −3.1 −1.83 −0.98

RQ,100 [−] 0.41 0.97 0.79 n.a. 0.26 0.6

Vδ18O [−] 0.31 0.07 0.06 n.a. 0.18 0.07

LNO3
[d] 6 94 94 n.a. 40 80

SSO4
[mg s L−2] −0.13 −0.11 −1.04 n.a. −0.22 −0.09

BSO4
[mg L−1] 0.55 1.35 4.87 n.a. 1.58 1.03

BQ [Mio. m3] 0.93 2405.1 566.18 62.18 78.21 0.08

EQ [−] 0.32 0.35 1.22 1.04 1.65 n.a.

parameters as sensitive if they are equal to or larger than 0.2

and 0.1 for 2T and 2F, respectively. In stage 3, the calibrated

values of sensitive parameters concerning 2F are compared

with values of the system signatures. Doing so for all five

study sites, relations between parameters and signatures can

be revealed. The parameter interactions 2T − 2F are hereby

used as a proxy of the uncertainty of sensitive parameters. If

parameter interactions are large, the calibrated value of a pa-

rameter may still vary when interacting parameters change,

and its relation to the system signatures might be biased. The

VarKarst model was already evaluated by multi-variate cali-

bration in Hartmann et al. (2013a). Therefore we do not per-

form a multi-objective calibration during this analysis. Since

we only consider sensitive parameters during stage 2 and 3,

an interpretation of their values is possible without the prob-

lem of equifinality (Beven, 2006).

3.5 Identification of dominant processes and karst

system properties

Preceding studies already showed ways to separate different

processes, usually along the course of an iterative or step-

wise calibration (Fleury et al., 2009; Hogue et al., 2006;

Jukic and Denic-Jukic, 2009). In this study we use sensi-

tivity analysis on different signatures to explore separately

different processes in the karst systems. Similar to Carrillo et

al. (2011) we assume that the model is an acceptable repre-

sentation of the hydrological system. Thus, dominant pro-

cesses can be identified by considering 2T for the differ-

ent signatures and parameters that control the different pro-

cess dynamics in the model. That way soil storage behaviour

(mean soil storage capacity Vmean,S and its distribution aSE),

epikarst storage and dynamics (mean epikarst storage capac-

ity Vmean,E, its distribution aSE, and its mean storage con-

stant Kmean,E), recharge dynamics (distribution of diffuse

and concentrated recharge afsep), fast (conduit storage con-

stant KC and the critical volume to activate overflow springs

Vcrit,OF) and slow groundwater flow dynamics (distribution

of groundwater storage constants aGW), and water balance

(A) can be explored. In addition the dissolution dynamics

of SO4 can be revealed (geogenic contributions GeoSO4
and

their distribution aGeo). Depending on the hydrodynamic or

hydrochemical aspect of the system behaviour they consider,

the system signatures and the parameter sensitivity concern-

ing them will reveal different processes for the different sites.

All of them together will provide an overall description of the

dominant processes of the karst system with the current data

availability.

3.6 Relations between system signatures and system

properties

Assuming again that the model is an acceptable represen-

tation of the hydrological system, the parameters of the

VarKarst model can be regarded as proxies of system proper-

ties. All calibrated parameters that have high first-order sen-

sitivity 2F can be attributed to the system signatures they

were derived from. When we compare pairs of parameter

values and system signatures for all study sites, relationships

can be established. If the correlation is large enough, these

relations can be used to obtain model parameters and hence

system properties simply by knowing the value of the respec-

tive system signature.

4 Results

4.1 Model performance and parameter sensitivity

Table 5 provides the values of all system signatures for the

different study sites. The test of performance in evaluation

stage 1 showed that the model is able to reproduce almost all

of them (Table 6). Some small deviations occurred for RQ,100

at Israel 1 and SSO4
at Israel 2. For Vδ18O, the Swiss and the

Israeli 2 sites show stronger deviations. While ∼ 20 % of de-

viation for the Swiss site was regarded as still acceptable,

Vδ18O was discarded for the Israeli 2 site for the following

www.hydrol-earth-syst-sci.net/17/3305/2013/ Hydrol. Earth Syst. Sci., 17, 3305–3321, 2013



3312 A. Hartmann et al.: Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics

Table 6. Agreement of modelled with observed signatures (Table 5) in model evaluation stage 1.

Deviation from signature [%]
Study site

Austria Israel 1 Palestine Israel 2 Spain Switzerland

SHF 0 0 0 0 0 0

SMF 0 0 0 0 0 0

SLF 0 0 0 0 0 0

RQ,100 0 −0.12 n.a. 0 0 0

Vδ18O 0 0 n.a. 78.84 0 22.56

LNO3
0 0 n.a. 0 0 0

SSO4
0 0 n.a. −4.21 0 0

BSO4
0 0 n.a. 0 0 0

BQ 0 0 0 0 0 0

EQ 0 0 0 0 0 n.a.

Fig. 4. 2T of model parameters concerning the system signatures for all study sites (all parameters with 2T < 0.2 are considered not sensitive

and have been removed).

analysis; 80 % of deviation clearly indicated deficiencies in

the performance of the model in simulating the δ18O vari-

ability, which would strongly bias the proceeding analysis.

In stage 2 of the evaluation, the total sensitivity index 2T

concerning all available and not discarded signatures (Fig. 4)

shows that similar patterns of sensitive parameters for all

sites could be found among some of the signatures: the high

flows SHF and the autocorrelation of discharges RQ,100 show

always high sensitivity indices for the parameters represent-

ing the fast groundwater dynamics (conduits system KC and

overflow spring Vcrit,OF). In addition, Vcrit,OF always has a

high sensitivity index for the streamflow elasticity EQ. The

distribution coefficients of soil and epikarst storages aSE and

the distribution of groundwater storage constants aGW show

always high sensitivity indices for low flows SLF, the Q–NO3

cross-correlation LNO3
and the δ18O variability Vδ18O. aGW

always has a high sensitivity index for the medium flows

SMF. For all sites, the recharge area A shows a high sensi-

tivity index for the water balance BQ. The regression offset

BSO4
and slope SSO4

of the Q–SO4 relationship produced

high sensitivity indices for the geogenic contribution GeoSO4

and its variability aGEO.

Differences of 2T among the sites were found for the soil

storage capacity (Vmean,S) that is high either for the Q–NO3

cross-correlation LNO3
(Swiss and Spanish sites) or the EQ

(Austrian and Palestinian sites). In addition to SLF and Vδ18O,

aSE also has a high 2T for SMF and RQ,100 (Swiss site) and

EQ (Austrian, Palestinian and Israeli 2 sites). The epikarst
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Fig. 5. Relationships between calibrated parameters with 2F ≥ 0.1 and system signatures; dot sizes indicate parameter interactions 2T − 2F:

the smaller the dot, the larger the interactions, the higher the uncertainty of the parameter location (rLin and rSR are linear correlation

coefficient and the Spearman rank correlation coefficient, respectively; p values are only calculated for the linear correlations).

storage capacity Vmean,E shows always a high value of the

sensitivity index for LNO3
, but only for the Swiss, Span-

ish and Israeli sites; the same is true for epikarst constant

Kmean,E (only sensitive to LNO3
at Swiss and Israeli 1sites).

The distribution of recharge dynamics afsep has high sensitiv-

ity indices either for LNO3
(Swiss and Israeli sites), the dis-

charge autocorrelations RQ,100 (Spanish site) or EQ (Spanish

and Israeli 2 sites). The conduit system storage constants KC

show high 2T for SMF for the Austrian, Swiss and Spanish

sites, while Vcrit,OF has a high sensitivity for RQ,100 (all sites

except the Austrian site), for BQ (Spanish, Palestinian and

Israeli sites) and LNO3
(Swiss site). The Spanish site is the

only place where aGW has a low 2T for SSO4
and RQ,100.

Only at the Israeli sites it has a high value for BSO4
, and only

at the Austrian site, 2T is also high for SHF.

4.2 Relation between system signatures and calibrated

parameters

In stage 3 of the evaluation, only parameters with a high

first-order sensitivity index 2F (≥ 0.1) were considered and

related to the system signatures they were obtained from

(Fig. 5). In order to recognise a relation to their system sig-

natures, only sets with more than three pairs of high 2F pa-

rameters and system signatures were included in the analysis.

From ten relationships, six showed correlation. The conduit

storage constants KC are clearly correlated to the high flows

SHF, the distribution of groundwater storage constants aGW

to the medium flows SMF and the δ18O variability Vδ18O. In

addition, geogenic contributions GeoSO4
were correlated to

the offset of the Q–SO4 relationship BSO4
, the distribution

of geogenic SO4 contributions aGeo to the slope of the Q–

SO4 relationship SSO4
, and the recharge area A to the wa-

ter balance BQ. For SHF, SSO4
, BSO4

and BQ, the relations

were linear (expressed by linear correlation coefficients rLin,

Fig. 5); for SMF and Vδ18O they were non-linear (expressed

by the Spearman rank coefficient of correlation rSR, Fig. 5).

5 Discussion

5.1 Model performance and process sensitivity

The test of performance in stage 1 of our analysis showed

whether the VarKarst model is flexible enough to reproduce

the observations expressed by the different system signatures

at the different sites (Wagener et al., 2001). Except for the

δ18O variability Vδ18O, the model performed well (Table 6).

The deficiencies for Vδ18O occurred at the site with a very

strong dampening effect of the isotopic signal of the rain (Is-

raeli 2 site, Table 5). The discrepancy between observed and

modelled Vδ18O may result from differences in the temporal

resolution of observation and simulations. While the model

provides daily values, the observations for the two sites are in

a 2-weekly or even larger resolution (Table 2). Another rea-

son could be the timing of sampling. Due to the coarse sam-

pling resolution, parts of the isotopic variability caused by

short rainfall discharge events might have been lost. Hence,

errors in the representation of δ18O information may be the

most probable cause for the model failure. Therefore, instead
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of discarding the whole model (as in Hartmann et al., 2013b),

only Vδ18O was not considered in the further analysis of the

Israeli 2 study site. For the Swiss site, ∼ 22.6 % of deviation

was regarded as still acceptable.

Similar to van Werkhoven et al. (2009), the results of stage

2 of the evaluation showed that a large number of the system

signatures provided information about the same processes for

all sites: the fast groundwater dynamics (KC and Vcrit,OF)

were described by the high flows and the memory effects of

the karst systems (SHF and RQ,100). Low flows, the inter-

play of discharge and NO3, as well as the dampening of the

atmospheric δ18O signal (SLF, LNO3
and Vδ18O), provide in-

formation about the distributions of epikarst and soil storage

capacities (aSE). The same signatures plus the medium flows

(SMF) describe the distribution of groundwater storage con-

stants (aGW). The recharge area (A) is described by the water

balance (BQ) and the SO4 dissolution dynamics (GeoSO4
and

aGeo) by the interplay of discharge and SO4 (SSO4
and BSO4

).

The selection of the system signatures was done by com-

bining well-known metrics to describe hydrological (karst)

systems and by trial and error. The final large number of

sensitive parameters at all sites at stage 2 indicated that the

ten signatures that we elected for this study provide in total

enough information to describe the different karst systems,

even though a wide range of other system signatures would

have been available (Yadav et al., 2007). The simultaneous

sensitivity of the same parameters to different signatures also

indicates that there is an overlapping of information content

(i.e. some of the signatures are correlated). In addition, test-

ing the stability of the system signatures by a split-sample

test showed that LNO3
and, for some sites, also the slopes of

the flow duration curves varied when only a part of the avail-

able data was used for their calculation (see Supplement).

Reasons for that are the coverage of extraordinary wet years

and the resolution and length of the observation time series.

5.2 System signatures and dominant processes

Since in stage 2 only the total sensitivity of parameters 2T

was considered, parameter interactions (Saltelli et al., 2008)

prohibit a direct quantification of dominant processes by pa-

rameter values. However, it allowed determining the critical

processes for the different system signatures and how they

change among the sites. Stage 1, test of performance, showed

that the model is able to reproduce almost all of the observed

signatures (Tables 5 and 6). Using the calibrated parameters,

it is therefore possible to distinguish responsive from less

dynamic systems. Combining this information with the rela-

tions between critical processes and system signatures from

stage 2, we can identify the dominant processes at the differ-

ent systems and attribute them to the signatures.

Steep slopes at the high flows SHF of the flow duration

curves are found for the Austrian, Swiss, Palestine and Is-

raeli 2 sites (Fig. 2a); at the Spanish and the Israeli 1 sites

SHF flows are rather low. The high sensitivity of the KC for all

sites (Fig. 4) indicates that the conduit system dynamics are

the dominant process controlling the high flow behaviour of

all springs. Even though the activation threshold for overflow

springs Vcrit,OF is sensitive for all springs, it does not mean

that there are overflow springs at all the systems. Field stud-

ies showed that overflow springs can be found at the Spanish

site (Barberá and Andreo, 2011) and Austrian site (Kralik et

al., 2009). For the Spanish site, the low SHF would indicate

the dominance of the overflow spring on the high flow be-

haviour, but for the Austrian site the overflow behaviour is

less pronounced. Indeed preceding studies (Hartmann et al.,

2012a) showed that other processes have also a significant

control on its discharge behaviour.

For all sites, the distribution of groundwater storage con-

stants aGW is sensitive for medium flows SMF (Fig. 4). That

means that, under medium conditions, the hydrodynamic

behaviour of all springs is controlled by the variability of

aquifer characteristics, such as aquifer geometry, topography

and hydraulic properties. For the Austrian, Swiss and Span-

ish sites, SMF is also sensitive on KC indicating that fast flow

processes also contribute to their median flow behaviour. The

slope of medium flows SMF is steepest for the Spanish site

indicating high hydraulic conductivities. These may be due

to the high degree of karstification and the large number

of wells in the surroundings that facilitated the drainage of

groundwater and resulted in a seemingly more dynamic be-

haviour of the spring (Barberá and Andreo, 2011).

The slope of the low flows SLF is steepest for Austria and

Palestine (Fig. 2a). Again, the distribution of groundwater

storage constants aGW controls the flow behaviour. At the

Palestine sites an inclination of the bedding plane towards

the spring may be the reason for the fast drainage (Ghanem,

1999), while at the Austrian site a dipping of the bedrock

stratigraphy towards south-east in the deeper parts of the

aquifer results in a preferential flow towards south-east, away

from the spring outlet during low flow conditions (Kralik

and Keimel, 2003). In terms of autocorrelation of discharges

RQ,100, the Spanish spring shows the lowest memory. Pa-

rameter sensitivity indicates that the reason for that is the

above-mentioned dominance of fast groundwater flow pro-

cesses (KC and Vcrit,OF). The Israeli site has the springs with

the largest memory. For them, the distribution of groundwa-

ter storage constants aGW (i.e. also the contribution of slowly

reacting parts of the aquifer) is important. Since the num-

bers we obtained for RQ,100 are also influenced by the cli-

matic variability, they cannot be used directly to understand

our karst systems (Jeannin and Sauter, 1998). However, their

relation to model processes can be used to infer about the

system dynamics that control RQ,100.

Except for the Austrian site, all systems that were not

discarded in stage 1 of the evaluation (test of performance)

show a rather strong dampening of the climatic isotope signal

Vδ18O. This is contradictory to the results obtained by the sig-

natures concerning the discharge time series (SHF, SMF, SLF

and RQ,100). A reason for that may be found in the resolution
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of the different sources of information, or in the exchange be-

tween mobile and stagnant groundwater (e.g. Małoszewski

and Zuber, 1985) that is not considered by the model. This

may explain why the model failed for the Israeli 2 site at

stage 1 of the calibration. NO3 observations have a higher

resolution than δ18O. In addition, the model did not show any

problems reproducing the interplay of discharge and NO3

concentration LNO3
during the test of performance in stage 1.

LNO3
shows rather short lag times between discharge and

NO3 peaks for the Austrian sites, while all the other sys-

tems react much more slowly. For all sites, sensitivity in-

dicates that all processes from the surface to the ground-

water are relevant for the NO3 transport through the karst

systems. This is no surprise, since NO3 originates from the

surface, either by natural deposition or by anthropogenic ori-

gin, and travels through the whole karst system (Perrin et al.,

2007). Even though much of the system showed large values

for LNO3
, fast groundwater flow remains a dominant process

for its transport, which was also shown by Mahler and Gar-

ner (2009). In addition to the groundwater dynamics, LNO3

clearly shows the importance of soil and epikarst processes

(Fig. 4), which was already stated by preceding field studies

(e.g. Aquilina et al., 2006; Williams, 1983). However, since

the test of stability of the LNO3
signature showed that it is the

most instable signature, these indications have to be consid-

ered with care (see Supplement).

Steep slopes of the Q–SO4 relation SSO4
are most pro-

nounced at the Israeli 2 site but also abundant at the Span-

ish site. At both sites this goes along with a higher offset of

the Q–SO4 relation BSO4
compared to the other sites. Field

studies showed that large sources of SO4 are abundant at the

Israeli 2 site (Brielmann, 2008) and the Spanish site (Barberá

and Andreo, 2011). Evaporites are a common source of SO4

in karst systems, and are mostly dissolved from the lower

permeability parts of the karst systems (Ford and Williams,

2007). For that reason, in addition to the parameters that con-

trol the dissolution of SO4 in the model (GeoSO4
and aGeo),

the distribution of groundwater storage constants aGW has

also an important impact on the SO4 dynamics.

The test of performance was also successful for the total

water balances BQ, and its values coincide well with annual

water balances provided in Table 1. The sensitivity analysis

showed that for all sites the most important control on BQ

was the recharge area A (Fig. 4), which was already shown

in preceding studies (Hartmann et al., 2013a). In addition,

the sensitivity analysis indicated that the abundance of over-

flow springs has an influence on water balance, too (which

is plausible since the discharge of overflow springs is not in-

cluded in the observations). At the Palestinian site, also soil

properties (Vmean,S and aSE) have an impact BQ indicating

that actual evaporation, which is controlled by the soil depth,

plays another important role for water balance.

Finally stream flow elasticity EQ is > 1 for Spain and Is-

rael 2, while it is < 1 for Austria and Israel 1. A stream-

flow elasticity EQ larger than 1 at the Spanish and Israeli 2

sites indicates a high climate sensitivity (Sankarasubrama-

nian et al., 2001). This agrees with the findings of Hartmann

et al. (2013a), who found that at the Spanish site observed

annual discharge strongly depends on climatic conditions. At

the Israeli sites, several studies (e.g. Hartmann et al., 2012a;

Rimmer and Salingar, 2006) showed that the Israeli 2 system

was more responsive to climatic variability than the Israeli 1

system. EQ can be regarded as an indicator for the stabil-

ity of flow due to changes in precipitation (Sawicz et al.,

2011). Sensitivity analysis shows that at our karst systems

this stability is controlled by the soil and epikarst (Vmean,S,

Vmean,E, aSE or Kmean,E) dynamics or by the recharge dy-

namics (afsep).

5.3 Calibrated parameters versus system properties

and model realism

Sensitive parameters that individually contribute to the

model output variance could be identified using the first-

order sensitivity index of the model parameters 2F. Assum-

ing that the model structure represents the real system and

parameter interactions 2T − 2F are small, these parameters

can serve as proxies of system properties (Carrillo et al.,

2011). The parameters identified that way were overflow

spring threshold Vcrit,OF, the conduit storage constant KC,

the distribution of groundwater storage constants aGW, the

geogenic contribution GeoSO4
, their variability aGeo and the

recharge area A (Fig. 5). The most obvious among them are

the relationships that concern the water and solute balances:

BQ and A (rLin = 0.99 in a log-log scale), the slope of the Q–

SO4 relationship SSO4
and aGeo (rLin = 0.996), and the offset

of the Q–SO4 relationship BSO4
and GeoSO4

(rLin = 0.97).

BQ and A indicate that disregarding effects of evaporation,

the recharge area of all considered systems can be derived

directly from their mean annual discharge. For the SO4 bal-

ance the correlation indicates that for all considered systems,

SO4 mass balance is not dependent on atmospheric input

of SO4. Thus, BSO4
and SSO4

give an estimate of if and

how water gets in contact with evaporites in the system (see

Ford and Williams, 2007, dissolution of gypsum and anhy-

drite). Relations between high flows SHF and KC (rLin = 0.9),

medium flows SMF and aGW (rSR = 1.0), and the δ18O vari-

ability Vδ18O and aGW (rSR = 0.8) describe the slow and fast

discharge dynamics. Recession analysis is often used to de-

rive the parameters of the slow groundwater system of hydro-

logical models (e.g. Fleury et al., 2007). Our results indicate

that the slopes of the flow duration curve during high flows

may be used in a same way for the peak flows. Large val-

ues of aGW result in very slow groundwater flow dynamics

(see Appendix). Accordingly, the established relations show

that high values of aGW go along with flat slopes of the

flow duration curves for medium flows and dampened iso-

topic signals. Kovacs et al. (2005) showed that storage con-

stants such as KC can be related to hydraulic properties of a

karst system. With our new findings, not only mean hydraulic
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conductivities, but also their distribution aGW may be ap-

proximated when SHF and SMF or Vδ18O are known.

Having indications that correlations between system sig-

natures and system properties exist, the question arises

whether it is possible to transfer system signatures to un-

gauged karst systems by climatic and topographic informa-

tion. When we compared the values of the ten system sig-

natures with the climatic and topography descriptors pre-

sented in Table 1, we could not find any significant corre-

lations (see Table 7 and Supplement). Hence, the available

information was not complete enough to allow a regional-

isation of system signatures and, therefore, a model appli-

cation in ungauged karst basins. However, high uncertainty

goes also along with direct regionalisation of model param-

eters (Wagener and Wheater, 2006) and the measurement of

karst system properties in the field (Goldscheider and Drew,

2007). The relations between model parameters and system

signatures found in this study encourage following the idea of

the approach further to regionalise system signatures instead

of model parameters. That way ungauged karst systems can

be described without the uncertainties that go along in trans-

ferring the parameters of a chosen model. System signatures

are easily available, since they often include commonly avail-

able data like flow chart characteristics or regionalised flood

or low flow indices (Zhang et al., 2008). There are also more

possibilities to define new system signatures: for instance,

Long and Mahler (2013) suggest using metrics describing

the shape of impulse-response functions to characterise and

distinguish karst systems. Yadav et al. (2007) propose more

than 20 descriptors derived from topography, climate obser-

vations and landscape properties which can be used to re-

gionalise system signatures. Unfortunately, due to the usu-

ally unknown size and location of the subsurface catchment

of karst systems, most of these metrics could not be used

in this study. But especially for karst systems, information

about general geological properties and degree of karstifica-

tion may also be quantified, using for instance descriptors

of initial porosity, fractures and age of the karst system that

can be derived from modelling studies (e.g. Bloomfield et al.,

2005; Hubinger and Birk, 2011) or age dating of stalactites

(e.g. Vaks et al., 2003; White, 2007).

A main assumption of this approach was an adequate sys-

tem representation by the model. For this assumption to be

correct, certain flexibility in the model is necessary given that

the considered karst systems vary in scales, climates, surface

and subsurface properties (Table 1). Hartmann et al. (2013a)

showed that the VarKarst model includes such flexibility en-

abling it to consider different aspects of the karst systems’

behaviour. Unlike Carrillo et al. (2011) we use automatic cal-

ibration and sensitivity analysis on each of the ten signatures

and use only parameters with a high sensitivity for interpre-

tation. That way, parameter identification is more objective

(Hartmann et al., 2012a). In addition, by a large number of

hydrochemical signatures we included more information to

improve system understanding (Bishop et al., 2004; Weiler

and McDonnell, 2005).

6 Conclusions

The main scope of this study was to identify differences

between dominant processes and system properties for five

karst systems of varying size and in different climatic regions

in Europe and the Middle East. Using a set of ten hydro-

dynamic and hydrochemical system signatures in a process-

based karst model, their importance for relating them with

karst system properties was explored. During a stepwise

analysis the models were calibrated and the parameter sensi-

tivity concerning the signatures was investigated. It was pos-

sible to show that sensitivity analysis can be used to identify

and distinguish processes for different karst systems. More-

over, relations were found between signatures concerning

water and solute balances, and model parameters that express

the recharge area and geogenic contributions of hydrochem-

ical compounds (Table 7). It was possible to relate hydrody-

namic and hydrochemical karst system signatures to model

parameters that represent different properties of the karst sys-

tems. The inclusion of hydrochemical information was cru-

cial during all stages of the analysis. While hydrodynamic

signatures majorly provided information about the ground-

water dynamics, NO3 described the behaviour of soil and

epikarst processes and SO4 further contributed to the charac-

terisation of the groundwater flow dynamics. Similarly, hy-

drochemical information contributed to establish relations

between climatic and topographic descriptors and system

signatures (Table 7).

The stepwise analysis with a process-based karst model in-

cluding automatic calibration and Sobol sensitivity analysis

offered new directions in comparing the process dynamics

and properties of karst systems. It allowed (1) investigating

the information content of the different hydrodynamic and

hydrochemical karst system signatures, (2) explaining the

dominant processes that are responsible for the different sys-

tem signatures at the different karst systems, and (3) estab-

lishing relations between system signatures and system prop-

erties. Even though the number of these relations was still

too small to facilitate a regionalisation of system signatures

and model parameters, this study encourages investing more

time in the exploration of alternative ways to define system

signatures and descriptors of the karst systems. Hereby, de-

scriptors of general geological properties and degree of kars-

tification (e.g. Bloomfield et al., 2005; Hubinger and Birk,

2011) provide a very promising direction.
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Table 7. Summary of correlations between system signatures and model parameters, and between system signatures and climatic and topo-

graphic descriptors.

Signature
Correlation to parameters Correlation to parameters to climatic and topographic

descriptors

Name rLin/rSR Type p value Name rLin/rSR Type p value

SHF KC 0.95 linear 0.003 – – – –

SMF aGW 1 non-linear – – – – –

RQ,100 – – – – Altitude difference 0.81 linear 0.09

Vδ18O aGW 0.8 non-linear – Mean annual 0.85/0.78 linear/linear 0.07/0.12

precipitation/

temperature

LNO3
– – – – Mean annual 0.78/0.79 linear/linear 0.12/0.12

precipitation/

temperature

SSO4
aGeo 0.996 linear 0.0003 – – – –

BSO4
GeoSO4

0.97 linear 0.005 – – – –

BQ A 0.99 linear 0.0001 Altitude difference 0.78 linear 0.07

Appendix A

Distribution functions of the variable parameters in the

VarKarst model

To express the variability of soil depths in the VarKarst

model, a mean soil depth Vmean,S [mm] and a distribution co-

efficient aSE [−] are defined. The soil storage capacity VS,i

[mm] for every model compartment i is calculated by

VS,i = Vmax,S ·

(

i

N

)aSE

(A1)

with Vmax,S [mm] as the maximum soil storage capacity.

Vmax,S is derived from Vmean,S by assuming that Vmean,S rep-

resents the soil and epikarst depths at the compartment i1/2,

which is the compartment where the volumes on the left

equal the volumes on the right:

i1/2
∫

0

Vmax,S

(

x
N

)aSE dx =

N
∫

0

Vmax,S ( x
N )

aSE dx

2
; Vmean,S = Vmax,S

(

i1/2

N

)aSE

m

Vmax,S = Vmean,S · 2

(

aSE
aSE+1

)

.

(A2)

By the same distribution coefficient aSE, the epikarst stor-

age distribution is found by the mean epikarst depth Vmean,E

[mm]:

VE,i = Vmax,E ·

(

i

N

)aSE

(A3)

Vmax,E = Vmean,E · 2

(

aSE
aSE+1

)

. (A4)

At time step t , actual evapotranspiration from each soil com-

partment Eact,i is calculated by

Eact,i(t) = Epot(t) ·
min

[

VSoil,i(t) + P(t) + QSurface,i(t), VS,i

]

VS,i
(A5)

with Qsurface,i [mm] as the surface inflow originating from

compartment i − 1 (see Eq. 13). Epikarst recharge REpi,i

[mm] is found as

REpi,i(t) = max
[

VSoil,i(t) + P(t) + QSurface,i(t) − Eact,i(t) − VS,i, 0
]

. (A6)

Epikarst storage coefficients KE,i [d] control the epikarst

hydrodynamics:

QEpi,i(t) =
min

[

VEpi,i(t) + REpi,i(t) + QSurface,i(t), VE,i

]

KE,i
· 1t (A7)

KE,i = Kmax,E ·

(

N − i + 1

N

)aSE

, (A8)

where Kmax,E is derived by a mean epikarst storage coeffi-

cient Kmean,E. It is found by assuming that Kmean,E repre-

sents the epikarst storage constant, whose average multiplied

by the number of compartments N equals the area below the

Pareto function with the variability constant aSE:

N · Kmean,E =
N
∫

0

Kmax,E

(

x
N

)aSE dx

m

Kmax,E = Kmean,E · (aSE + 1) .

(A9)

The same distribution coefficient aSE is used again. Surface

flow to the next model compartment QSurf,i+1 [mm] is pro-

duced by

QSurf,i+1(t) = max
[

VEpi,i(t) + REpi,i(t) − VE,i, 0
]

. (A10)

Using a variable separation factor fC,i [−], outflow from ev-

ery epikarst compartment is separated into diffuse (Rdiff,i

[mm]) and concentrated groundwater recharge (Rconc,i

[mm]) by
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Rconc,i(t) = fC,i · QEpi,i(t) (A11)

Rdiff,i(t) =
(

1 − fC,i

)

· QEpi,i(t) (A12)

fC,i =

(

i

N

)afsep

(A13)

with afsep [−] as the distribution coefficient of the recharge

separation factor. Diffuse recharge reaches the groundwater

compartment below, while concentrated recharge is routed to

the conduit system (compartment i = N ). The hydrodynamics

of the matrix (compartments i = 1 . . . N − 1) are calculated

by variable groundwater storage coefficients KGW,i [d]:

QGW,i(t) =
VGW,i(t) + Rdiff,i(t)

KGW,i
. (A14)

KGW,i is found by

KGW,i = KC ·

(

N − i + 1

N

)−aGW

. (A15)

The concentrated discharge from the conduit system origi-

nates from compartment N :

QGW,N (t) =

min

[

VGW,N (t) +
N
∑

i=1

Rconc,i(t), Vcrit,OF

]

KC
,(A16)

where KC is the conduit storage coefficient. With the

recharge area A, the discharge of the main spring Qmain

[L s−1] is calculated by

Qmain(t) =
A

N
·

N
∑

i=1

QGW,i(t). (A17)

Discharge of the overflow spring Qover [L s−1] is found by

Qover(t) = A · max

[

VGW,N (t) +

N
∑

i=1

Rconc,i(t) − Vcrit,OF, 0

]

. (A18)

Solute transport follows the assumption of complete mixing

for every model compartment. Again, a variability constant

aGeo is defined to express the variability of SO4 availability

in the matrix. Equilibrium concentrations in the single com-

partments are found by

GeoSO4,i
= Geomax,SO4

·

(

N − i + 1

N

)aGeo

. (A19)

Geomax,SO4
is derived from GeoSO4

[mg L−1] by

Geomax,SO4
= GeoSO4

· (aGeo + 1) . (A20)

Table 4 provides a summary of all model parameters.

Supplementary material related to this article is

available online at: http://www.hydrol-earth-syst-sci.net/

17/3305/2013/hess-17-3305-2013-supplement.pdf.
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