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Abstract

The temperature of refrigerated products along the cold chain must be kept within pre-defined limits to ensure 
adequate safety levels and high product quality. Because temperature largely influences microbial activities, the 
continuous monitoring of the time-temperature history over the distribution process usually allows for the adequate 
control of the product quality along both short- and medium-distance distribution routes. Time-Temperature 
Indicators (TTI) are composed of temperature measurements taken at various time intervals and are used to feed 
analytic models that monitor the impacts of temperature on product quality. Process Capability Indices (PCI), however, 
are calculated using TTI series to evaluate whether the thermal characteristics of the process are within the specified 
range. In this application, a refrigerated food delivery route is investigated using a simulated annealing algorithm that 
considers alternative delivery schemes. The objective of this investigation is to minimize the distance traveled while 
maintaining the vehicle temperature within the prescribed capability level.
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1. Introduction

Lifestyle changes over the past decades led to 
increasing consumption of refrigerated and frozen 
foods, which are easier and quicker to prepare than 
the traditional types of similar products. In order 
to ensure product quality and health safety, the 
control of temperature throughout the cold chain 
is necessary. In fact, a number of factors affect the 
maintenance of quality and the incidence of losses 
in fresh food products, such as the temperature at 
which the product is held during handling, storage, 
transport, and distribution, the use of controlled 
or modified atmospheres during storage or transit, 
chemical treatments for the control of decay or 
physiological disorders, heat treatments for decay 
control, packaging and handling systems, etc. (James 
& James, 2010). But, since temperature largely 
determines the rate of microbial activity, which is the 
main cause of spoilage of most fresh food products 

(Borch & Arinder, 2002), continuous monitoring of 
the full time temperature history usually allows for an 
adequate control of the process along the short and 
medium distance distribution routes (Simpson et al., 
2012; Flick et al., 2012). The quality of these products 
might change rapidly because they are submitted to 
a variety of risks during transport and storage that 
are responsible for material quality losses. Metabolic 
activities generally increase as storing temperatures 
are elevated. On the other hand, short interruptions 
in the control of the cold chain may result quick 
deterioration of product quality (Jedermann et al., 
2009). Hence, the required temperature range should 
be maintained from production to consumption.

In addition, along short or medium distance 
delivery runs, the chilled or frozen product can 
be subjected to many door openings, where there 
is heat ingress directly from outside air and from 
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personnel entering to select and remove product 
(James et al., 2006; Pereira et al., 2010). Frequent 
door openings can also lead to increased evaporator 
frosting, resulting in a reduction of the evaporator’s 
performance and an increase in the need for defrosts, 
particularly in humid weather conditions (Estrada-
Flores & Eddy, 2006). Additionally, the design of 
the vehicle refrigeration system has to allow for 
extensive variation in load distribution, which is a 
function of different delivery rounds, days of the 
week and the removal of product during a delivery 
run (James et al., 2006).

A number of papers on refrigerated food 
transport address TTI - t ime-temperature 
evaluation along the cold chain (Gigiel et al., 1998; 
Giannakourou & Taoukis, 2003; Smolander et al., 
2004; Giannakourou et al., 2005; Estrada-Flores & 
Eddy, 2006; Sahin et al., 2007; Pereira et al., 2010). 
For short and medium distance product delivery, 
as in the case of this work, it suffices to observe 
that the temperature of the product is maintained 
within pre-established limits. This condition is, in 
fact, adopted in a number of studies reported in the 
literature and based on TTI. One simple type of TTI 
application involves the registration of temperature 
measurements along a pre-defined time horizon 
and the subsequent analysis of this historical data 
to get the corresponding probabilistic temperature 
distribution, its average and standard deviation, 
unexpected temperature rises and drops, and other 
elements which occur along the transport, storage, 
and distribution processes.

Process Capability Indices (PCI), on the other 
hand, can yield easily computed coefficients 
measured with dimensionless functions on TTI 
parameters and specifications. (Chang et al., 2002; 
Barriga et al., 2003; Bulba & Ho, 2004; Mingoti & 
Glória, 2008; Chang, 2009; Gonçalez & Werner, 2009, 
Mingoti et al., 2011). This kind of PCI application 
helps to reveal undesired thermal conditions that 
may impair the compliance of product quality 
requirements along the supply chain.

This paper reports a Time–Temperature Indicator 
(TTI) analysis of a distribution of refrigerated food 
products along a route containing a number of 
retail customers with different demand levels. The 
paper analyses alternative vehicle routing strategies 
intended to minimize travel cost, but at same time 
keeping thermal PCI performance indicators within 
the required levels. It is shown that the standard 
TSP (Travelling Salesman Problem) approach, used 
to solve classical routing problems where vehicle 
travel distance or time is minimized, usually leads 
to temperature restriction violations. Thus, instead 
of using a classical method to get the optimized 

TSP vehicle routing sequence, such as the largely 
employed 2-opt and 3-opt improvement heuristics 
(Syslo et al., 2006), other solving algorithms, apart 
from the TSP, can be employed as, for example, the 
Simulated Annealing (SA) meta-heuristic (Breedam, 
1995; Mauri & Lorena, 2009; Leung et al., 2013). In 
this paper, a SA algorithm was specifically developed 
to optimize the routing problem.

2.  Related works and research 
contribution

A number of papers on refrigerated food transport 
address time-temperature evaluation along the cold 
chain process (Gigiel et al., 1998; Giannakourou et al., 
2005; Estrada-Flores & Eddy, 2006; Pereira et al., 
2010; Simpson et al., 2012). TTI data for such studies 
are usually gathered in field surveys (Pereira et al., 
2010), in performance laboratory tests (Moureh & 
Derens, 2000; Tso et al., 2002; Estrada-Flores & 
Eddy, 2006; Jedermann et al., 2009), or with the help 
of computer based simulations (Gigiel et al., 1998; 
Food Refrigeration & Process Engineering Research 
Centre, 2000). Considering the objectives of this 
study, which involves a practical logistics application, 
the thermal laboratory testing alternative would 
allow for the gathering of more reliable technical 
data but would not include important in-the-field 
behavioural characteristics and information. Besides, 
the analytical methodology presented in this work is 
essentially intended to be used in the planning phase 
of the process, which only requires a simpler data 
approximation. Field tests to gather TTI data, on the 
other hand, could only be considered under rigid 
technological and operational control, a condition 
hard to achieve presently in developing countries like 
Brazil (Pereira et al., 2010). Thus, the third alternative 
was chosen for this work, and the CoolVan simulation 
software was used to gather TTI data (Section 3).

Vehicle routing problems in the distribution of 
perishable food were previously analysed by Tarantilis 
& Kiranoudis (2002), Hsu et al. (2007), Azi et al. 
(2007), Oswald & Stirn (2008), Chen et al. (2009), 
and Amorim et al. (2012). Tarantilis & Kiranoudis 
(2002) developed an algorithm to optimize the 
distribution of fresh meat formulated as a multi-
depot vehicle routing problem carrying the product 
to butchers’ shops located in an area of the city of 
Athens, Greece. Product temperature variation along 
the delivering process was not explicitly analysed in 
the paper, implying that thermal behaviour was not 
critical under the conditions involved in their work. 
Thus, Tarantilis & Kiranoudis (2002) paper can be 
regarded as a typical application of a classical multi-
depot vehicle routing problem (VRP).
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route, searching for the minimum travel distance 
configuration, but at same time respecting a lower 
bound value for the chosen quality index.

3. TTI data obtained via CoolVan 

simulation

One of the most systematic attempts to predict 
the temperature of refrigerated food during multi-
drop deliveries has been the CoolVan research 
programme. The CoolVan software was developed 
by the Food Refrigeration and Process Engineering 
Research Centre, at the University of Bristol, UK 
(Gigiel et al., 1998; Food Refrigeration & Process 
Engineering Research Centre, 2000). The software 
contains a mathematical model that predicts food 
temperatures inside a refrigerated delivery vehicle, 
analysing the temperature changes that take place 
during a delivery journey, as well as the energy used 
by the refrigeration equipment. The model is solved 
using an implicit finite difference method. It starts 
with the given initial conditions and proceeds to 
the end of the journey with variable time steps. The 
heart of the CoolVan program is the temperature 
of air inside the vehicle. The internal air exchanges 
heat with the outside environment by the movement 
of air into and out of the truck, while the doors are 
either opened or closed.

The usual food distribution scheme starts with 
the vehicle being loaded at the distributor’s depot 
and travelling to a series of retail outlets, where the 
individual lots are discharged in sequence. Often, 
the vehicle has a large number of servicing stops 
in a journey when the doors are opened and food 
is removed. Sometimes, food which has passed its 
shelf-life date, together with empty trays, return 
from the retail shops to the distributor. Vehicle 
data are fed into the CoolVan program: the thermal 
properties of the insulation system, the year of the 
van manufacture, the ageing rate which depends 
on the vehicle maintenance characteristics, etc. 
Then, the program calculates the reduced thermal 
properties of the vehicle insulation. The mathematical 
structure of the program also allows for different 
external heat transfer coefficients to be entered 
for each side of the vehicle. Solar radiation onto 
each surface of the van is modelled separately. The 
infiltration of outside air into the van is dependent 
on the van structure, the degree of maintenance 
and the speed of the vehicle. These effects were 
measured empirically in several vans, allowing for 
the fitting of appropriate equations and parameters 
into the model. Presently, the CoolVan software is 
not available commercially, but its developers kindly 

Hsu et al. (2007), Oswald & Stirn (2008), 
Chen et al. (2009), and Amorim et al. (2012) regarded 
the vehicle routing problem of perishable products 
with a different quality assurance criterion. Instead of 
TTI control, as in this paper, these authors considered 
a time-sensitive spoilage rate of the product. 
Particularly Hsu et al. (2007) defined an interesting 
spoilage evaluation procedure in which, as time goes 
by along the vehicle visiting sequence, the estimated 
fraction of spoiled product increases. It is assumed 
that the spoilage of food has not yet begun at the 
distribution centre, when the product has been 
loaded into the vehicle. The spoilage rate increases 
at a certain level when the truck door is opened for 
discharge. Spoilage is also observed at a different rate 
when the vehicle travels from one customer to the 
next. Oswald & Stirn (2008) adopted a similar, but 
simpler quality criterion, in which product quality 
(fresh vegetables) is based on market acceptance: 
one has 100% quality when the product can be sold 
entirely at the current market price and the quality 
drops to 0% when the product loses completely its 
commercial value.

In the literature, no work was encountered 
in which TTI data were used in association with 
a mathematical vehicle routing model involving 
perishable products. A research contribution of this 
work has been the integration, into a same modelling 
framework, the TTI data analysis, associated with 
a process capability index evaluation, and using a 
SA meta-heuristic to optimize the vehicle routing 
sequence, but keeping the thermal performance 
indicators within the required levels. In addition, 
a computer framework analysis was specifically 
developed to solve the problem, involving a 
combination of methods divided in four steps:

•	 First,	the	CoolVan	software	was	used	to	simulate	the	
thermal characteristics of the basic routing schemes, 
one of them representing the TSP formulation.

•	Next,	 taking	 the	 CoolVan	 simulation	 results,	 the	
operating stages that compose the TTI evolution 
along the distribution journey (line-haul linking 
the depot to the district and vice-versa, cargo 
discharging at the retailers’ premises, and local 
vehicle travel) were analysed individually in order 
to define mathematical functions that relate 
temperature to the explaining variables.

•	 Third,	a	computer	program,	specially	developed	to	
estimate TTI values step by step along each routing 
sequence, calculates the corresponding process 
capability index. This index allows the comparison 
of the thermal performance of each alternative 
delivery sequence.

•	 Finally,	a	 simulated	annealing	algorithm	 (Section	
5) was developed to analyse each candidate 
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4.1. Capability indices C
p
, C

pk
, C

pm
 and C

pmk
 

for normally distributed data

Usually, capability indices are employed to relate 
the process parameters to engineering specifications 
that may include unilateral or bilateral tolerances, 
with or without a target value (nominal value). The 
resulting indices are dimensionless and provide a 
common, easily understood way for quantifying 
the performance of a process. In this application, 
the monitored variable is the temperature θ inside 
the vehicle along a typical distribution journey of 
refrigerated food products, with mean µ and standard 
deviation σ. These are unknown elements and are 
estimated by µ̂ and σ̂ respectively. In this case there 
are two-sided specification limits for θ, respectively 
the upper value USL and the lower value LSL. Four 
capability indices are commonly used for variables 
normally distributed: C

p
, C

pk
, C

pm
 and C

pmk 
(Gonçalez 

& Werner, 2009). The C
p
 index is defined as

6 ˆ
p

USL LSL
C

σ
−

=  (1)

Clearly, the aim of process control is to make 
C

p
 as large as possible. The adoption of the C

p
 

index presupposes that the variable θ is normally 
distributed and that the mean µ̂ is equal to the 
specified target value T. The coefficient C

p
 is defined 

as the ratio of the allowable tolerance spread and the 
actual spread of the data. Table 1 indicates quality 
status as a function of C

p
 values, according to Kaya 

& Kahraman (2010).

The six-sigma coverage represents the spread of 
99.73% of the data in normally distributed processes. 
In practice, there are cases in which the process is 
not centred on the target value T, i.e µ ≠ T. To avoid 
such drawback, the index C

pk
 is defined

ˆ ˆ
 ,

3 ˆ
 

3ˆpk

USL LSL
C min

σ σ
µ µ− − =  

 
 (2)

The quality conditions indicated in Table 1 for 
C

p
 are also valid for C

pk
 values. On the other hand, 

when the distribution of θ is normal and the mean  

offered to ran some configurations to serve as a data 
basis for this application.

4. Process capability indices in thermal 

performance analysis

A process capability index is a numerical element 
that compares the characteristics of a production 
or servicing process to engineering specifications. 
A value of such an index equal or larger than a 
pre-established level indicates that the current 
process is capable of producing results that, in 
all likelihood, will meet or exceed the pre-defined 
requirements. A capability index of this sort is 
convenient because it reduces complex information 
about the quality of the process to a single number 
(Pearn & Lin, 2004; Anis, 2008; Wu et al., 2009; 
Gonçalez & Werner, 2009). A former application of 
the PCI methodology in the thermal evaluation of 
the transport of refrigerated products is described in 
Estrada-Flores & Eddy (2006).

The starting point of the process capability 
analysis is the definition of a few measurable 
properties which can give a significant insight into 
the quality of the output of the process under 
consideration. For that, one has to associate a 
specification interval, that is, an upper specification 
limit (USL) and a lower specification limit (LSL), to 
each of the measurements of interest. Of course, 
some measurement values might be out of the 
specification limits. Thus, the capability analysis 
problem consists in the estimation of a statistical 
model for the process in order to be able to predict 
the number of points falling out of the specification 
limits, and therefore giving a measure of the process 
capability (Bittanti et al., 1998).

Process capability indices (PCI) are frequently 
used as an integral part of the statistical control of 
system quality and productivity. The relationship 
between the actual process performance and the 
specification limits or tolerance may be quantified 
using appropriate PCI. They are statistically designed 
to provide common and easily computed coefficients 
measured with a dimensionless function of its 
parameters and specifications. In our application, 
the analysis of the temperature variability inside 
a refrigerated vehicle is performed by means of 
TTI data series collected along typical distribution 
journeys. Since temperature largely determines the 
rate of microbial activity, continuous monitoring of 
the full temperature history usually allows for the 
adequate control of the process along short and 
medium distance situations.

Table 1. Quality status and C
p
 values.

Quality status C
p
 range

Super excellent C
p
 ≥ 2.00

Excellent 1.67 ≤ C
p
 < 2.00

Satisfactory 1.33 ≤ C
p
 < 1.67

Capable 1.00 ≤ C
p
 < 1.33

Inadequate 0.67 ≤ C
p
 < 1.00

Poor C
p
 < 0.67

Source: Kaya & Kahraman (2010).
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families of frequency curves to select an adequate 
probability distribution to that objective. The method 
of moments is a known approach to the problem of 
estimating the parameters from a family of frequency 
curves (Bittanti et al., 1998; Elderton & Johnson, 
1969). It is based on the following: given a family of 
probability distributions which depends on a number 
of parameters, one can manage to derive close form 
expressions for the first moments, by applying the 
operators

( , ) 1, 2, ,,  if id n

+∞

−∞

= …∫ θ ϕ θ θ  (6)

to the probability density function f (θ, ϕ) of θ, 
where ϕ ∈ Rn is the vector of unknown parameters. 
Then, by equating such parametric expressions to the 
numerical estimates of the moments obtained from 
the data, one has a set of n equations which can be 
solved for the n unknown parameters. For common 
families of distributions, the number of parameters 
is not very large. Thus, it is usually possible to solve 
the equations analytically and obtain transformations 
with the estimated moments as inputs, and the values 
of the parameters as outputs (Bittanti et al., 1998).

The Pearson system of curves is defined as 
the set of functions f (θ) satisfying the following 
differential equation (Bittanti et al., 1998; Elderton 
& Johnson, 1969):

( )
2

0 1 2

 ( )( )

  

a fdf

d b b b

θ θθ
θ θ θ

−
=

+ +  (7)

where a, b
0, 
b

1 
and b

2 
are four real parameters. Among 

the solutions of (7), curves of different kinds can be 
found, like, for example, bell-shaped, J-shaped or 
U-shaped distributions. The solution of (7) varies 
according to the roots of the second order polynomial 
(Elderton & Johnson, 1969):

2
0 1 2 0b b bθ θ+ + =  (8)

As proposed by Pearson, the various forms or 
curve types can be classified according to the value 
of the so-called critical element K:

2
1

0 24 

b
K

b b
=  (9)

which ranges from –∞ to +∞ and is related to 
the location of the roots of polynomial (8) in the 
complex plane.

Another form to express K is (Bittanti et al., 1998)

( )
2

1 2

2 1 2 1

 ( 3)

4 4 3  (2 3 6)
K

β β
β β β β

+
=

− − −  
(10)

where

µ̂ is centred on the target value T, one has C
p 
= C

pk
. 

In addition, the index C
pm

 explicitly considers the 
distance between the mean and the target value T 
(Gonçalez & Werner, 2009):

2 26 ˆ ( ˆ )
pm

USL LSL
C

Tσ µ

−
=

+ −
 (3)

To obtain a capability index more sensitive 
than C

pk 
and C

pm
, with regard to departures of the 

process mean µ̂ from the target value T, another 
third generation of capability index C

pmk
 has been 

introduced (Gonçalez & Werner, 2009; Chang, 2009):

2 2 2 2

ˆ ˆ
 , 

ˆ ˆ3 ( ) 3 (ˆ ˆ )
pmk

USL LSL
C min

T T

µ µ

µ µσ σ

 − − =  
+ − + −  

 (4)

4.2. Capability analysis of non-normal data

4.2.1. Clements’ method

When it is detected that the process control 
variable is not normally distributed, one way to 
introduce the effects of non-normality into the 
analysis is Clements’ method, in which the expression 
(1) is generalized as follows (Bittanti et al., 1998; 
Gonçalez & Werner, 2009; Hosseinifard et al., 2009):

0.9987 0.0013

 , 
ˆ ˆ

pk

USL LSL
C min

m mθ θ
µ µ − −

=  − − 
 (5)

where m is the median of the distribution and 
θ0.9987  and  θ0.0013 are the percentiles corresponding 
to probabilities 0.9987 and 0.0013, respectively. 
It is clear that in the normal case this formulation 
reduces to (2), since then µ̂ = m, θ

0,0013
 = µ̂ – 3σ̂, 

and θ
0,9987

 = µ̂ + 3σ̂. This nonparametric method 
seems very attractive because of its simplicity, but 
unfortunately it suffers from two major drawbacks. 
First, when working with small samples or noisy 
data, the nonparametric estimation of tail percentiles 
becomes a difficult task and the obtained estimates 
can be very inaccurate. Therefore, this approach 
is likely to be very sensitive to sampling in actual 
applications. Second, the estimated percentiles do 
not provide a very clear picture of the distribution 
underlying the data. This signifies that it cannot 
serve for process monitoring, because of its limited 
ability to detect changes in the process distribution 
(Bittanti et al., 1998).

4.2.2. The Pearson system of curves

Another approach to handle non-normal 
situations is to search for a type of probability 
distribution that best fits to the data. One way 
to do this is to base the analysis on parametric 
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In our application, the variable θ is not 
represented by a normal distribution (see Section 
6). As indicated in Section 6, the TTI data obtained 
with the SA meta-heuristic are represented by 394 
temperature and time values covering a typical tour, 
to the exception of the line-haul segment from 
the last visit to the depot. Computing the central 
moments of the TTI series, one has m

2
 = 2.227, 

m
3
 = 0.352 and m

4
 = 22.922, with mean µ = 5.05 °C 

and skewness = 0.106. Expression (10), associated 
with (11), yields K = 0.0062 > 0, meaning that the 
probability distribution of θ  is a Pearson’s Type IV 
curve. The fitting of a distribution such as (14) is 
not simple and usually requires large samples in 
order to adequately represent the tail effect in the 
mathematical representation.

4.2.3. The Burr transformation approach

Another method of handling non-normal 
situations in PCI analysis is to reduce the 
non-normal data into a normal configuration 
through a transformation technique, and then use a 
conventional normal method to estimate PCI values 
(Lin & Chen, 2006). Burr (1973) proposed a system 
of probability distributions, denominated Burr XII 
distribution, whose cumulative function is

( ) ( ),  1 (1 ) 0 0, 0c kF x x x F xfor and for x−= − + ≥ = <  (16)

The corresponding probability density function 
of the Burr XII distribution is (Lin & Chen, 2006)

( ) ( ) ( 1)
1  1

k
c cf x k c x x

− +−= +  (17)

Burr (1973) tabulated the expected values, 
standard deviations, skewness and kurtosis 
coefficients for the Burr XII distribution, for several 
combinations of c and k. The resulting tables enable 
users to make a standardized transformation between 
a sample variate and a Burr random variate. For a 
set of data, after the sample skewness and kurtosis 
coefficients have been estimated, the mean and 
standard deviation of the corresponding Burr 
distribution may be obtained using standard tables.

As mentioned, the fitting of probability functions, 
such as Pearson’s curves and Burr’s distribution, is 
not simple and usually requires large samples in 
order to adequately represent the tail effect in the 
mathematical representation. As a result, several 
approximate approaches to the PCI problem with 
skewed populations have been proposed and tested 
in the literature (Chang & Bai, 2001; Chang et al., 
2002; Gonçalez & Werner, 2009).

2
3 4

1 22 2
2 2

m m
and

m m
β β= =  (11)

m
2
, m

3 
and m

4
  being the second, third and fourth 

central moments of f (θ). 
Pearson defined 13 such types of curves but, for 

practical applications, three main types are of interest 
(Bittanti et al., 1998; Elderton & Johnson, 1969):

Pearson’s Type I: Expression (8) has two real 
roots of opposite sign, yielding K < 0. The solution 
of (8) is

( )
1 2

0
1 2

1 1f y

g g
θ θθ
d d

   
= + −      

 (12)

where d
1
, d

2
, g

1
, g

2
 are coefficients to be fitted to 

the data and y
0
 is the normalization factor. The 

corresponding pdf of (12) only exists when θ is 
limited to the range

1 2d θ d− < <  (13)

over which θ is real and positive.

Pearson’s Type IV: It corresponds to values of 
K between 0 and 1, i.e. to situations where (8) has 
two complex conjugate roots, leading to the solution

( ) ( ) ( )( )
2

  / /

0 1
v arctan v rv

f y e
r

g
θ dθθ

d

−
− −  = + −    

 (14)

where d, ν, r, g are the four parameters to be fitted 
to the data and y

0
 is the normalization factor. The 

range of θ in this case is unlimited, i.e. –∞ < θ <+∞.
Pearson’s Type VI: It corresponds to values of K 

greater than one, i.e., to situations where (8) has two 
real roots of the same sign, leading to the solution

( )
1 2

0
1 2

1 1f y

g g
θ θθ
d d

   
= + +      

 (15)

with the pdf of f (θ) limited to the range d
1
 < θ <+∞, 

or –∞ < θ < d
2
, depending on the sign of the roots 

of polynomial (8). Thus, while Type I curves are 
adequate for the representation of variates with 
both an upper and a lower limit, Type VI curves 
can be used when only one such limit exists as, 
for example, the case of a pdf of a nonnegative 
variable to be fitted to the data (Bittanti et al., 
1998). All other Pearson’s curve types, sometimes 
indicated as transition types, correspond to single 
values of K. For instance, when K is nil, it indicates 
that the distribution is symmetrical and, in the 
Pearson system of frequency curves, it can be the 
Normal,	the	Uniform,	the	Pearson	type	II	and	the	
Pearson type VII.
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The PCI for temperature θ, for the case of 
two-side specifications (upper and lower values) is

( ) ( ){ } ( ),   , 
6  6 1  

U L

pk pk pk

USL LSL
C min C C min

P Pθ θ

µ µ
σ σ

 − − = =  −  
 (24)

In Equations 22 and 23, 2σ
U
 and 2σ

L
 are used in 

place of σ to reflect the degree of skewness in the 
probability distribution of θ. When the underlying 
distribution of θ is symmetric Pθ = 0.5, repeating the 
value given by (1). However, if it is skewed, the value 
of C

pk
 given by (24) is smaller than the standard one 

given by (1).

The numerical estimation of C
p
 and C

pk
 is 

performed as follows. Let (θ
1
, θ

2
, ..., θ

n
) be the sample 

containing n values of the temperature θ. The mean 
θ̂ and the standard deviation σ̂ of the sample are 
computed. The probability Pθ can be estimated by 
using the number of observations with value smaller 
than or equal to θ̂ (Chang et al., 2002):

1

)ˆ1
  (ˆ
n

i

i

P g
n

θ θθ
=

≅ −∑  (25)

where g(x) = 1 for x ≥ 0 and g(x) = 0 for x < 0. Then 
C

pk
 can be estimated by substituting µ̂, σ̂, and P̂θ for 

µ, σ and Pθ respectively in Equation 24.

5. A simulated annealing approach to 

solve the vehicle routing problem

Simulated annealing (SA) is a meta-heuristic 
for solving combinatorial optimization problems. 
The algorithm is based on a combination of 
ideas from two different fields: statistical physics 
(physical annealing process of solids converging to 
their minimum energy states) and combinatorial 
optimization (Kirkpatrick et al., 1983; Magalhães 
&	 Moura	 Neto,	 2011).	 The	 simulated	 annealing	
algorithm starts off with a given initial solution, 
very often chosen at random, and continuously 
tries to move from a current solution to one of its 
neighbours by applying a generation mechanism and 
an acceptance criterion. The acceptance criterion 
allows for sporadic deteriorations in the optimization 
function in a limited way. This is controlled by a 
parameter that plays a similar role as the temperature 
in the physical annealing process. The possibility 
of deteriorations makes the SA algorithm more 
general than pure iterative improvement algorithms, 
in which only strict improvements are applied. The 
resulting effect is that the annealing algorithm can 
systematically avoid local minima in order to arrive 
at a global minimum.

Many works have been published on SA 
applications to the solution of vehicle routing 

4.3. An approximate C
pk
 evaluation method

Gonçalez & Werner (2009) compared a number 

of approximate methods to evaluate non-normal 

situations and suggested that the method of 

Chen & Ding (2001) reflects with better accuracy 

the number of normal non-conforming items in 

the evaluated sample, being superior to the other 

analysed methods. Such method adjusts the values 

of PCIs in accordance to the degree of skewness of 

the underlying population, by using specific factors 

in computing the deviations above and below the 

variable mean.

The method is based on the idea that σ can be 

divided into upper and lower deviations, σ
U
 and σ

L
, 

which represent the dispersions of the upper and 

lower sides around the mean µ, respectively. An 

asymmetric probability density function  f (θ) can 

be approximated with two normal pdfs

( ) ( )1 1
  

2 2 2 2
U L

U U L L

f and f
θ µ θ µθ θ

σ σ σ σ
   − −

= ∅ = ∅   
  

 (18)

with the same mean µ but different standard 

deviations 2σ
U
 and 2σ

L
, where ∅ represents the 

standard normal pdf. The upper and lower sides of 

f (θ) are approximated with the upper side of f
U
 (θ) 

and the lower side of f
L
 (θ), respectively. The values 

of σ
U
 and σ

L
 are computed as Chang et al., 2002)

( ) 1  U LP and Pθ θσ σ σ σ= = −  (19)

with Pθ = Pr{θ < µ}.

The value of C
p
 is defined as (Chang & Bai, 2001)

)
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Making Dθ = 1 + |1 – 2Pθ|, expression (20) can 

be simplified to

1
    

6
p

USL LSL
C

Dθσ
−

=  (21)

where 1/Dθ is a corrective coefficient on (1) due to 

the skewness of the probability distribution of θ. On 

the other hand, according to Chang et al. (2002), the 

value of C
pk
, corrected for skewness, can be estimated 

as follows. First, the upper and lower capability 

indices are defined as

( )

 3  2 6 

U
pk

U

USL USL
C

Pθ

µ µ
σ σ
− −

= =
×  (22)

( )

3  2 6 (1 )

L
pk

L

LSL LSL
C

Pθ

µ µ
σ σ

− −
= =

× −  (23)



Process capability index C
pk
 … distribution of refrigerated products. Production, 26(1), 54-65, jan./mar. 2016

61
Novaes, A. G. N. et al.

distance, but at same time keeping the TTI values 
within the required range. The TTI results from the 
SA model are represented by 394 temperature and 
time values, covering a typical tour. Figure 2 depicts 
the histogram of the TTI values obtained with the SA 
meta-heuristic. It can be seen that the temperature 
distribution is positively skewed (not normal), 
justifying the use of the C

pk
 index (see Section 4).

The TTI data used to make Figure 2 do not 
include the values corresponding to the vehicle 
travel from the last visit back to the depot because, 
in this application, the truck travels empty along 
the backwards line-haul segment of the route since 
all cargo has been delivered up to that point, and 
therefore the corresponding temperature values do 
not affect the product quality. The mean temperature 
is µ̂ = 5.05 °C, and its standard deviation σ̂ = 1.49.

problems (Breedam, 1995; Osman, 1993; Mauri & 
Lorena, 2009; Leung et al., 2013). In this paper, 
SA has been applied to solve the optimization of 
the proposed vehicle routing problem. Let n be the 
number of delivering points (clients) to be visited 
in the route. Each client receives an identification 
number i = 1, 2, …, n. Putting the client numbers 
according to the sequence they are visited, one has 
a vector of n components. The depot is part of the 
Hamiltonian routing cycle, and is placed in position 
n + 1 on such a vector. In the application, two 
exploratory stages, represented by k, are considered. 
In stage k = 1, a candidate solution, represented by 
the vector x, is defined by a Monte Carlo routine, with 
the position of each client in the visiting sequence 
selected at random. This is done to allow the SA 
procedure to explore prospective solutions covering 
all the set of possibilities, thus avoiding local minima. 
In stage 2, the selection of a new candidate solution 
is performed in a more restricted manner. In order 
to get a candidate solution departing from a former 
solution, two clients are selected at random in the 
corresponding vector. The positions of these two 
clients are exchanged mutually in order to generate 
a new prospective solution, with the remaining 
clients keeping the same positions they occupied 
before. With this approach the SA improvement 
sequence explores closer neighbouring possibilities, 
thus avoiding too large jumps over the overall set 
of solutions.

6. Results and sensitivity analysis

The necessary basic inputs for the model 
application are presented in Table 2.The urban 
distribution district in this work is located about 84 
km from the base depot. The served urban district has 
an approximated area of 73 sq.km, where 12 retail 
shops are located, as shown in Figure 1. The product 
is ready-to-eat refrigerated meat products (ham, 
turkey and chicken breasts, salami, sausage). A total 
of 12,000 kg of assorted products are distributed in 
the daily round, with two retailers receiving larger 
quantities (7,000 and 2,000 kg respectively), while 
the other ten clients getting 300 kg each (Table 2). 
The route starts with a line-haul phase, which goes 
from the depot to the first client in the district, and 
taking 84 minutes approximately. It is followed by 
a sequence of visits, intercalating cargo discharging 
tasks with vehicle displacements between successive 
delivery points. Finally, there is the line-haul reverse 
segment, linking the last served client to the depot.

The optimal delivery sequence shown in Figure 1 
was obtained with the SA algorithm, in which 
the objective is to minimize the vehicle travelling 

Figure 1. The simulated annealing (SA) optimized route.

Table 2. Product quantity delivered per retailer client and 
mean unloading time.

Retailer 
number

Quantity of product 
delivered per visit (kg)

Mean unloading time 
(min)

1 300 10

2 300 10

3 300 10

4 300 10

5 300 10

6 300 10

7 2,000 24

8 7,000 64

9 300 10

10 300 10

11 300 10

12 300 10
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is even worse, with C
pk 

= 0.15. Looking at the zigzag 
sequence pattern of the SA solution (Figure 1), 
it might look non intuitive, but the increased 
distances linking some servicing points can help 
the vehicle refrigeration equipment to reduce the 
internal temperature to acceptable levels. In fact, 
the temperature inside the truck along the delivery 
journey tends to increase when it stops to discharge 
the product, and the temperature inversely tends to 
decrease while the vehicle is travelling from a client 
to the next one in the routing sequence. Generally, 
a heavier discharge weight takes more time to be 
unloaded. If the next visiting point is located close by, 
the corresponding travelling time might be too short, 
and the temperature would not decrease enough to 
compensate for the heat surge observed in the last 
unloading stops. This means that the vehicle routing 
sequence has an important influence in the TTI 
history, indicating that both have to be investigated 
jointly, as it has been done in this analysis.

For the SA optimal solution indicated above, 
the values of C

pk  
were also computed considering 

the intermediate stages of the process. The process 
stages correspond to the instants when the vehicle 
has just finished a delivery service to a client, and 
is preparing to depart for the next visit. In order 
to investigate the sensitivity of these results, a 
simulation was performed considering the product 
discharging times and the vehicle travelling times 
as random variables. For this, such variables were 
assumed to be log-normally distributed. It was 
assumed a coefficient of variation CV = 0.2 for the 
cargo discharging times, and CV = 0.05 for all vehicle 

In this application there is no target value for 
the temperature θ, being only necessary to respect 
the two-sided specified limits, namely LSL and USL, 
whose values are LSL = 2 °C and USL = 7 °C in our 
analysis. Consequently, as indicated in Section 4.1, 
the index C

pk
 has been adopted. In the sequel, the 

capability index C
pk
 is computed for every route 

sequence following the Chen & Ding (2001) method 
described in Section 4.3, since it is computationally 
easy to implement and has shown to be superior 
when compared to other approximate PCI methods 
(Gonçalez & Werner, 2009). Although, in some 
manufacturing processes, values of C

pk
 greater than 

1.33 are adopted, a capable level, corresponding to 
a six-sigma formulation (see Table 1), seems more 
appropriate for this kind of process, since many 
external factors generate greater dispersions in the 
operational variables. Other authors, such Estrada-
Flores & Eddy (2006), analysing a similar problem, 
have adopted the same C

pk
 threshold.

The computer model (steps c and d, Section 2) 
was programmed in Free Pascal, version 2.6.4, 
to be further incorporated into a Delphi format. 
Applying the SA algorithm, the first stage involved 
1,306 steps, and the second 10,815 steps, leading 
to the following optimal delivery sequence: 
Depot – 8 - 7 – 4 – 6 – 9 – 10 – 11 – 3 – 12 – 5 – 2 
– 1 – Depot, with a total vehicle distance of 222.7 km, 
and with a satisfactory “capable” C

pk 
 value of 1.33.

The TSP alternative i.e., the route with minimum 
vehicle travel distance (204.1 km, in this application), 
yielded C

pk 
= 0.35, well bellow the required standard 

level of 1.33. Taking the inverse TSP route, the result 

Figure 2. Optimal SA route - histogram of internal vehicle temperature
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the local links between clients in the route, show 
comparatively less variation.

Figure 3 shows that, for this application and with 
a 95% confidence level, the four last visits indicated 
in Table 3, namely clients 12, 5, 2, and 1, should be 
assigned to another truck. In fact, a better approach 
to set the process within the specified temperature 
range should be the re-assignment of delivery stops 
per vehicle round, with the selection of smaller 
vehicles to perform the tasks defined with the aid 
of an optimization algorithm.

Although food temperature control largely 
influences microbial activities, allowing for an 
adequate surveillance of product quality along 
short and medium distance delivery routes, 
new risks of foodborne illnesses associated with 
micro-organisms are presently identified. One 
factor is the changing characteristics of the 
relevant micro-organisms. Second, the occurrence 
of changing production methodologies, in 
parallel with changes in the environment and 
an increase of the global trade of food stuffs 
(Havelaar et al., 2010). In parallel, it can be 
noticed in the literature substantial advances 
in the development of predictive microbiology, 
with efforts exploring a better balance between 
science and applications (McMeekin et al., 2008). 
Since temperature abuses in the distribution of 
refrigerated and frozen products are quite common 
in developing countries like Brazil (Pereira et al., 
2010), its correct monitoring is naturally a 
first step in establishing a more comprehensive 
food perishability control, as is the case of the 
present work. Following this line further, the 
authors intend to research on the distribution 
of refrigerated products applying mathematical 
models describing the effects of environmental 
conditions on the growth and inactivation of 
microorganisms, in food distribution under more 
diverse logistics conditions.

7. Conclusions

The investigation presented in this paper has 
shown that the assignment of refrigerated vehicles 
to the distribution of perishable products is not a 
trivial process, requiring, in fact, a more detailed 
and integrated investigation of its thermal aspects. 
The use of process capability index evaluation over 
TTI data, together with a simulating annealing 
algorithm has produced an optimal constrained result 
in terms of a minimum-distance distribution route, 
but at same time respecting a pre-defined quality 
requirement, expressed through a C

pk
 coefficient.

travel times, including the line-haul segment and the 
local vehicle displacements, represented by the links 
from one served client to the next. For each stage, 
the simulation was replicated 1,000 times. The results 
are shown in Table 3 and Figure 3, where the mean 
C

pk 
values are exhibited, as well as their lower and 

upper 95% significance levels.

The results of the model show that the thermal 
properties inside the vehicle are very sensitive to 
time variations along the route, specifically the cargo 
discharging times. This fact has practical implications 
in real-life operations because different delays 
are common as, for example, unexpected waiting 
times to start the unloading process, long paths to 
reach the point where the discharged cargo is to be 
set inside the client’s premises, excessive product 
checking times, etc. And conversely, vehicle travelling 
times, both along the line-haul segments and along 

Table 3. Optimal simulated annealing route: C
pk 

values for 
each process stage.

Stage
Client 

n°

C
pk 

 simulated values

Minimum (95% 
confidence)

Mean 
value

Maximum (95% 
confidence)

1 8 2.00 2.18 2.49

2 7 2.14 2.29 2.46

3 4 2.16 2.34 2.51

4 6 2.07 2.37 2.56

5 9 1.97 2.38 2.60

6 10 1.70 2.34 2.62

7 11 1.51 2.24 2.58

8 3 1.31 2.11 2.49

9 12 1.16 1.97 2.39

10 5 0.97 1.82 2.28

11 2 0.86 1.64 2.06

12 1 0.55 1.33 1.68

Figure 3. C
pk
 estimated values per routing stage
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