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Abstract Hydrological models frequently suffer from limited predictive power despite adequate calibra-

tion performances. This can indicate insufficient representations of the underlying processes. Thus, ways are

sought to increase model consistency while satisfying the contrasting priorities of increased model com-

plexity and limited equifinality. In this study, the value of a systematic use of hydrological signatures and

expert knowledge for increasing model consistency was tested. It was found that a simple conceptual

model, constrained by four calibration objective functions, was able to adequately reproduce the hydro-

graph in the calibration period. The model, however, could not reproduce a suite of hydrological signatures,

indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in

a stepwise way and counter-balanced by ‘‘prior constraints,’’ inferred from expert knowledge to ensure a

model which behaves well with respect to the modeler’s perception of the system. We showed that, in spite

of unchanged calibration performance, the most complex model setup exhibited increased performance in

the independent test period and skill to better reproduce all tested signatures, indicating a better system

representation. The results suggest that a model may be inadequate despite good performance with

respect to multiple calibration objectives and that increasing model complexity, if counter-balanced by prior

constraints, can significantly increase predictive performance of a model and its skill to reproduce hydrolog-

ical signatures. The results strongly illustrate the need to balance automated model calibration with a more

expert-knowledge-driven strategy of constraining models.

1. Introduction

In recent years, an increased awareness has developed that an improved consistency of landscape-scale

conceptual environmental models, i.e., more plausible representations of observed system dynamics, is

required [e.g., Wagener and Gupta, 2005; Kirchner, 2006; Martinez and Gupta, 2011; Gupta et al., 2012; Hra-

chowitz et al., 2013a] to increase the predictive power of models, in the sense of constraining their

responses ‘‘to achieve the least uncertainty for forecasts’’ [Kumar, 2011]. The ability of models to adequately

reproduce relevant system dynamics is typically undermined not only by aleatory and epistemic uncertain-

ties in data [Beven and Westerberg, 2011; Beven, 2013] but also by ontological uncertainties, i.e., our limited

knowledge of process heterogeneity together with our often rudimentary understanding of mechanisms of

nonstationarity in real-world systems. This implies that all models are simplifications, no matter their physi-

cal and spatial complexity [Gupta et al., 2012]. The above uncertainties and the limited number of observa-

tions in a continuous spatial domain typically make such models ill-posed inverse problems. Being

overdetermined and frequently insufficiently constrained lends such problems elevated degrees of free-

dom, resulting in nonunique (i.e., equifinal) and instable solutions that can be highly sensitive to already

small errors [Yeh, 1986; Beven, 2000; Neuman, 2003]. To ensure robust predictions, modelers have to find a

suitable level of model complexity that allows an adequate reproduction of functional characteristics of a

system with a minimum of parameter and architectural uncertainty. However, due to insufficient model

selection and testing procedures [e.g., Klemes, 1986; Wagener, 2003; Jakeman et al., 2006; Gupta et al., 2008;

Andr�eassian et al., 2009; Coron et al., 2012], deceptively good calibration performances can frequently be

mere reflections of the mathematical fitting process in a typically overparameterized domain and may
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generate undesirable model internal dynamics, thereby potentially limiting the predictive capability in inde-

pendent test periods [Wagener and Gupta, 2005; Beven, 2006; Kirchner, 2006; Andr�eassian et al., 2012; Gharari

et al., 2013a].

In the hypothetical most ideal and general sense, it is the modeler’s task to sufficiently constrain the theo-

retical complete set of ‘‘all possible models’’ to the subset of models that can, in the perception of the mod-

eler, reproduce several signatures of the observed response dynamics of a system to facilitate as reliable

predictions as possible given the available data. More specifically, models are typically selected according

to a hierarchy of different types of constraints whose effectiveness is dependent on the range of observa-

tions and knowledge available. These constraints include (1) model architectural constraints (hereafter inter-

changeably used with the term ‘‘model structure’’) that limit the possible response dynamics of the

modeled variable(s) by the choice of the model structure(s) [e.g., Leavesley et al., 1996; Wagener et al., 2001;

Neuman, 2003; Clark et al., 2008, 2011; Fenicia et al., 2011]. For example, a model consisting of one simple

linear reservoir is to be rejected where discharge is the combination of contributions from storage compo-

nents with different response times; (2) model parameterization constraints that define the subset of possi-

ble responses of a given model architecture by the choice of constitutive functions [cf. Kavetski and Fenicia,

2011]; (3) modeling objective constraints that limit the feasible model space to those models that can repro-

duce the chosen modeling objectives and criteria. In the past, the use of multiple objective functions [e.g.,

Gupta et al., 1998; Freer et al., 2004; Wagener et al., 2009; Efstratiadis and Koutsoyiannis, 2010; Hrachowitz

et al., 2013b] and/or criteria such as catchment signatures [e.g., Yadav et al., 2007; Wagener and Montanari,

2011; Westerberg et al., 2011; Euser et al., 2013; Coxon et al., 2014] has proven valuable for the selection of

robust subsets of feasible models; and finally (4) model prior constraints, i.e., prior information that helps

identifying models which do not contradict physical necessities and/or the modeler’s perception of how

the system functions [e.g., Ambroise et al., 1996a].

The value of prior constraints, e.g., using prior knowledge on parameters, uncertainties in forcing or spatial

heterogeneities, to better pose inverse problems has been successfully demonstrated in the past [e.g., Yeh,

1986; Renard et al., 2010] using regularization [e.g., Tonkin and Doherty, 2005; Pokhrel et al., 2008; Kumar

et al., 2010, 2013; Samaniego et al., 2010] and other techniques [e.g., Carrera and Neuman, 1986; Refsgaard

et al., 2006; Jafarpour, 2011; Jafarpour and Tarrahi, 2011; Shi et al., 2014]. Alternatively, but rarely fully

exploited in hydrology, where not enough data are available to warrant the above methods, prior informa-

tion can also be incorporated based on explicit hydrological reasoning and semiquantitative or anecdotal

expert knowledge [Seibert and McDonnell, 2002; Gao et al., 2014; Gharari et al., 2013b; Hughes, 2013]. Follow-

ing this approach, a model will only be retained as feasible if it can satisfy these prior constraints imposed

on parameters and modeled processes.

In this paper, we will describe a procedure for systematically applying anecdotal and expert-knowledge-

based, semiquantitative prior information to better pose overdetermined inverse problems. Specifically, the

novel contribution of this paper is to test and illustrate the potential of above procedure for reconciling

increased process heterogeneity, i.e., hydrological consistency, and limited uncertainty in hydrological mod-

els to iteratively obtain models that better reflect the understanding of overall catchment functioning,

therefore providing higher predictive power for forecasting, as illustrated in a proof-of-concept case study.

2. Study Site and Hydrological Data

The study site is the 11 ha Kerrien experimental catchment, which is part of the ORE-AgrHys observatory

(www.inra.fr/ore_agrhys) in French Brittany (Figure 1).

In the oceanic climate with mild winters and relatively cool summers, the long-term mean annual tempera-

ture reaches 11.4�C with a mean annual precipitation of 1035 mm yr21. Average potential Penman evapora-

tion is estimated at 690 mm yr21. An intermittent first-order stream, typically running dry between August

and October, drains the catchment with a long-term mean runoff of about 270 mm yr21.

Daily precipitation totals and parameters to estimate the daily potential evaporation (Penman-Monteith)

were obtained from an automated weather station located at around 700 m from the catchment outlet for

the 11 year period from 1 October 2001 to 30 September 2012 (Figures 2a and 2b). Daily runoff values for

the same period were obtained from a V notch weir equipped with a shaft encoder (OTT Thalimedes;
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Figure 2b). Groundwater level data from a total of 5 piezometers (depth> 5 m) located along two hillslope

transects were used (GW1–GW5; Figure 2c).

Covering an elevation range between 15 and 40 m, the catchment is underlain by a series of differently

weathered regolith facies on top of unweathered granite at a depth of around 20 m [Legchenko et al., 2004].

The well-drained district cambisols are mostly sandy loam, rich in organic matter, and on average 80 cm

deep. In correspondence with the high-permeability regolith, the groundwater table responds quickly and

exhibits intraannual amplitudes of up to 7 m [Martin et al., 2006; Legout et al., 2007]. Based on soil maps,

topography and expert knowledge, around 10% of the catchment can be characterized as wetlands with

very shallow groundwater tables. The recharge period typically extends from November through March.

Approximately 40% of the catchment is used for the cultivation of maize, while a further 40% is used as

grassland. For a more detailed description of the study catchment, the reader is referred to Ruiz et al. [2002]

and Molenat et al. [2008].

3. Modeling Strategy

Adopting a flexible modeling strategy, in which a model should reflect the characteristics of a given catch-

ment [Fenicia et al., 2013], each model structure in this study represents a testable hypothesis [Beven, 2001;

Clark et al., 2011; Fenicia et al., 2011]. Following the principle of model parsimony [e.g., Jakeman et al., 2006],

Figure 2. Observed time series of (a) daily potential evaporation, (b) daily precipitation and streamflow, and (c) the groundwater levels of

5 piezometers located along two transects (see Figure 1), normalized by their respective range between minimum and maximum observed

values. Note that GW1 is located in the wetland zone.

Figure 1. The Kerrien study catchment, which is part of the ORE-AgrHys network.
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thus keeping to a minimum the necessary parameters and thereby the adverse effects of equifinality [e.g.,

Schoups et al., 2008], a suite of model structure hypotheses, i.e., architectural and parameterization con-

straints, of increasing process complexity was thus designed. This suite of models was developed based on

both expert knowledge of the underlying processes and additional data and then tested in a stepwise effort

[e.g., Fenicia et al., 2008a, 2008b]. To counterbalance model equifinality, introduced by additional parame-

ters, suitable prior constraints were imposed on the model after each iteration, i.e., adaptation of the model

structure. The adequacy of the individual models was subsequently assessed not only based on calibration

performance (modeling objective constraints) but also based on the associated predictive power post calibra-

tion [cf. Klemes, 1986] and, more importantly, on their skill to reproduce a range of functional characteristics,

i.e., hydrological signatures [e.g., Gupta et al., 2014].

The general procedure as outlined also in Figure 3 can in principal be applied to any catchment using any

type of model setup. Therefore, the model structure development will in the following only be roughly out-

lined (see also Table 1). Emphasis will rather be given to a detailed rationale of the different types of con-

straints and signatures used in this study.

3.1. Stepwise Model Hypothesis Development

Making use of the recently developed conceptual DYNAMIT flexible modeling framework [Hrachowitz et al.,

2013b], a total of 11 model hypotheses, i.e., different architectural and parameterization constraints, were

tested in a stepwise development in this study (M1–M11; Table 1). Details, including the relevant state and

flux equations, are given in Table 2.

3.1.1. Defining the Benchmark Model

As a starting point, a simple three box model (M1; seven parameters) was tested and compared, as a bench-

mark, to three models commonly used in many scientific studies and in operational hydrology: NWS Sacra-

mento [Burnash, 1995], HBV [Bergstr€om, 1995], and HyMod [Moore, 1985; Wagener et al., 2001].

Figure 3. Flow chart of the modeling strategy.
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3.1.2. Stepwise Adaptation of Architectural Constraints

3.1.2.1. Deep Infiltration Loss Constraints

Analyzing the long-term water balance in the study catchment revealed a significant deficit (see section 3.2.2.2).

Although this cannot be fully verified, as pointed out by Beven [2001], there is evidence that such deficits are in

many catchments—at least partly—caused by significant intercatchment groundwater flow [e.g., Le Moine et al.,

2007; Schaller and Fan, 2009]. Nevertheless, such deep infiltration losses are rarely accounted for in standard for-

mulations of common conceptual models [e.g., Bergstr€om, 1995; Burnash, 1995], with a rare exception being the

GR4J model [Perrin et al., 2003]. In the absence of detailed process knowledge, the apparent deep infiltration

losses from the study catchment were here conceptualized with architectural and parameterization constraints of

varying degrees of complexity and tested in model setups M2–M6 (Table 1). In the least complex conceptualiza-

tions (M2, M3; eight parameters), a second outlet was incorporated into the groundwater storage. Subsequently,

a threshold (SS,p,max) was added to allow for continued loss when the stream runs dry, representing a hydraulically

passive storage volume below the level of the stream bed [e.g., Fenicia et al., 2008a; M4–M5; nine parameters).

Table 1. Model Architectural Constraints (Model Structures), Parameterization Constraints (Parameters and Equations W1–W44), and Prior Constraints (C1–C8) Used for Model Formu-

lations M1–M11a

Model Structure Model Parameters Equations Prior Constraints

Par.

No.

Constr.

No.

M1 CP, kF, kS, Lp, Pmax, SUmax,H, bH W1–W12, W20–W21,

W41, W43

C1 7 (7) 1

M2 CP, kF, kL, kS, Lp, Pmax, SUmax,H, bH W1–W11, W13, W20,

W22–W25, W41, W43

C1 8 (8) 1

M3 CP, kF, kL, kS, Lp, Pmax, SUmax,H, bH W1–W11, W13, W20,

W22–W25, W40, W42

C1, C4, C5 8 (8) 3

M4 CP, kF, kL, kS, Lp, Pmax, SS,p,max, SUmax,H, bH W1–W11, W14–W16,

W24–W29, W41, W43

C1, C4, C5 9 (9) 3

M5 CP, kF, kL, kS, Lp, Pmax, SS,p,max, SUmax,H, bH W1–W11, W14–W16,

W24–W29, W41, W43

C1, C4, C5, C6 9 (9) 4

M6 CP, kF, kS, Lp, QL,const, Pmax, SUmax,H, bH W1–W11, W17–W19,

W25–W26,

W30–W31, W41, W43

C1, C4, C5, C6 8 (6) 4

M7 CP, f, kF, kR, kS, Lp, QL,const, Pmax, SUmax,H, bH W1–W11, W17–W19,

W25–W26, W30–W31,

W37–W40, W42, W44

C1, C2, C4, C5, C6 10 (7) 5

M8 CP, f, kF, kR, kS, Lp, QL,const, Pmax, SUmax,H, SUmax,R, bH W1–W11, W17–W19,

W25–W26, W30–W35,

W37–W40, W42, W45

C1, C2, C3, C4, C5, C6 11 (8) 6

M9 CP, f, kF, kR, kS, Lp, QL,const, Pmax, SUmax,H, SUmax,R, bH W1–W11, W17–W19,

W25–W26, W30–W35,

W37–W40, W42, W45

C1, C2, C3, C4, C5, C6, C7 11 (8) 7

M10 CP, f, kF, kR, kS, Lp, QL,const, Pmax, SUmax,H, SUmax,R, bH W1–W11, W17–W19,

W25–W26, W30–W35,

W37–W40, W42, W45

C1, C2, C3, C4, C5,

C6, C7, C8

11 (8) 8

M11 CP, f, kF, kR, kS, Lp, QL,const, Pmax, SUmax,H, SUmax,R, bH, bR W1–W11, W17–W19,

W25–W26, W30–W34,

W36–W40, W42, W45

C1, C2, C3, C4, C5,

C6, C7, C8

12 (9)

8

aUnderlined parameters are free calibration parameters, not underlined parameters are fixed. A list of symbols is given in the notation section.
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Analysis of the available piezometer data (Figure 2) did not only reveal that the groundwater table

fluctuations are rather homogeneous along the two observed transects and may therefore serve as

indicators for catchment storage but also that under no-flow conditions the groundwater levels con-

tinued to fall at an approximately constant rate, which can be directly estimated from the available

data (see Appendix A). Thus, in model setup M6 the deep percolation loss was treated as known

(QL,const), rather than as a process determined by calibration parameters. In addition, with an a priori

estimation of QL,const, the storage coefficient kS could be determined from a Master Recession Curve

[e.g., Lamb and Beven, 1997; Hrachowitz et al., 2011] after subtracting QL,const from Qobs at each

recession time step (kS5 0.041 d21). This resulted in a reduction to six free calibration parameters

in M6.

Table 2. Model Parameterization Constraints, i.e., Water Balance, State, and Flux Equations of the Models Used in the Analysisa

Process Water Balance Equation

Flux and State Equations,

Constitutive Relationships Equation

Unsaturated zone dSU=dt5P2EU2RF2RP2RS (W1) EU5EPmin 1; SU
SUmax;H

1
LP

� �

(W2)

RU5 12CRð ÞP (W3)

RF5CR 12CPð ÞP (W4)

RP5CRCPP (W5)

RS5Pmax
SU

SUmax;H

� �

(W6)

CR5
1

11exp
2SU =SUmax;H10:5

bH

� �� � (W7)

Fast reservoir dSF=dt5 RF2QF2EF (W8) SF;in5SF1RFdt (W9)

QF5SF;in 12e2kF t
� �

dt21 (W10)

EF5min EP2EU ;
SF;in
dt

2QF

� �

(W11)

Slow reservoir dSS=dt5 RS1RP2QS (W12) SS;in5SS1RSdt1RPdt (W20)

dSS=dt5 RS1RP2QS2QL (W13) QS5SS;in 12e2kS t
� �

dt21 (W21)

dSS;a=dt5
SS;a2SS;tot;out1SS;p;max

� �

dt21

0; SS;tot;out < SS;p;max

(

(W14) QS;tot5SS;in 12e 2kS2kLð Þt
� �

dt21 (W22)

dSS;p=dt5
0; SS;tot;out � SS;p;max

SS;tot;in2SS;tot;out
� �

dt21; SS;tot;out < SS;p;max

(

(W15) QS

QL
5

kS
kL

(W23)

dSS=dt5 dSS;a=dt1dSS;p=dt5RS1RP2QS2QL (W16) QL5
QS;tot

QS
QL
11

� �
(W24)

dSS;a=dt5
SS;a2max 0; SS;tot;out

� �� �

dt21 ; SS;tot;in > 0

0; SS;tot;in � 0

(

(W17) QS5max 0;QS;tot2QL

� �

(W25)

Slow reservoir
dSS;p=dt5

SS;p1min 0; SS;tot;out
� �� �

dt21; SS;tot;in > 0

SS;p1SS;tot;out
� �

dt21; SS;tot;in � 0

(

(W18) SS;tot;in5SS;a1SS;p1RSdt1RPdt (W26)

dSS=dt5 dSS;a=dt1dSS;p=dt5RS1RP2QS2QL;const (W19)
SS;tot;out5

kSSS;p
kS1kL

1SS;tot;ine
2kS2kLð Þt

2
kSSS;tot;ine

2kS2kLð Þt

kS1kL

(W27)

QS;tot5
SS;tot;in2SS;tot;out

dt
(W28)

QS

QL
5max 0;

kS SS;tot;in2SS;pð Þ
kLSS;tot;in

� �

(W29)

SS;tot;out5
SS;tot;ine

2kS t2
QL;const

kS
12e2kS t
� �

; SS;tot;in > 0

SS;tot;in2QL;const ; SS;tot;in � 0

8

<

:

(W30)

QL;const5const: (W31)

Unsaturated

riparian zone

dSU;R=dt5P2EU;R2RR (W32) EU;R5EPmin 1;
SU;R

SUmax;R

1
LP

� �

(W33)

RR5CR;RP (W34)

CR;R5min 1;
SU;R

SU;max;R

� �� �

(W35)

CR;R5min 1;
SU;R

SUmax;R

� �bR
� �

(W36)

Riparian reservoir dSR=dt5 RR2QR2ER (W37) SR;in5SR1RRdt (W38)

QR5SRin 12e2kR t
� �

dt21 (W39)

ER5min EP2EU;R;
SR;in
dt

2QR

� �

(W40)

Total runoff QT5QF1QS (W41)

QT5 12fð Þ QF1QSð Þ1fQR (W42)

Total evaporative fluxes EA5EU1EF (W43)

EA5 12fð Þ EU1EFð Þ1fER (W44)

EA5 12fð Þ EU1EFð Þ1f EU;R1ER
� �

(W45)

aA list of symbols is given in the notation section.
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3.1.2.2. Riparian Zone Constraints

In many catchments, distinct process dynamics characterize the responses of hillslopes and riparian zones

[e.g., Seibert et al., 2003b; Freer et al., 2004; Detty and McGuire, 2010]. This can be attributed to reduced storage

capacities in riparian areas, leading to faster storm flow generation, in particular during relatively dry condi-

tions [e.g.,McGlynn et al., 2004; Molenat et al., 2005]. In spite of calls to explicitly account for these differences

[e.g., Savenije, 2010; Gharari et al., 2011], only a minority of models makes use of individual parallel compo-

nents for hillslopes and riparian areas in (semi)distributed setups [e.g., Knudsen et al., 1986; Beven and Freer,

2001; Peters et al., 2003; Seibert et al., 2003a; Birkel et al., 2010; Gao et al., 2014; Gharari et al., 2013b]. Here

model complexity was thus further increased by incorporating a parallel model component representing wet-

lands. As the proportion f of wetland (or riparian area) in the catchment is estimated at 10%, based on soil

data and long-term on-site experience [Martin et al., 2004], the simplest conceptualization required only one

additional free calibration parameter: the storage coefficient of the wetland reservoir (M7; seven free calibra-

tion parameters). More complex model structures to be tested subsequently allowed for an unsaturated ripar-

ian zone with different flow generation functions (M8–M11; eight to nine free calibration parameters). The

three benchmark models (NWS Sacramento, HBV, and HyMod) were adapted to allow a process representa-

tion equivalent to M11, including constant deep infiltration and a parallel wetland component.

3.2. Prior Constraints

Model equifinality and predictive uncertainty, inherently linked to the ill-posed nature of many inverse

problems, are strongly associated with an elevated number of degrees of freedom in combination with

insufficient model constraints [Yeh, 1986; Gupta et al., 2008]. In other words, the model space (i.e., the com-

bined space of model structures and parameters) is insufficiently constrained by typically uninformative

prior distributions within frequently rather loose limits and with an insufficient number of objective func-

tions. This may, in spite of adequate calibration performances, yield model internal dynamics that contradict

the modeler’s perception of how the system works, that do not correspond with available observations or

that potentially contradict physical necessities, such as the requirement that forests are characterized by

higher interception capacities than grassland. It is therefore critical to identify and exclude these combina-

tions from the feasible model space, thereby better posing the problem by confining the model space and

enforcing the selection of models that better reflect our perception of the real system.

An obvious candidate for potentially powerful model constraints are often overlooked and not systemati-

cally exploited plausibility checks using prior information, such as semiquantitative or indicative information

from expert knowledge and the long-term water balance. Note that only few, if any, of these prior con-

straints introduced hereafter are particularly new and there is no claim to originality or to particular creativ-

ity made here. Some of them were already successfully used in previous studies [e.g., Seibert and McDonnell,

2002; Winsemius et al., 2009; Gao et al., 2014; Gharari et al., 2013b]. However, such frequently anecdotal ‘‘bits

and pieces’’ of information are rarely used systematically in an explicit and exhaustive way, i.e., a significant

number of them at one time to improve the overall modeled system behavior, thereby increasing model

consistency [e.g., Hughes, 2013].

Following Gharari et al. [2013c], two classes of prior constraints were distinguished in this study. On the one

hand, there are parameter constraints. These purely relational constraints ensure that only parameter combi-

nations that follow the logic of the modeler’s perception of the system are selected as feasible. This

approach takes a middle way between the use of a priori fixed narrow parameter ranges [e.g., Ambroise

et al., 1996a; Anderson et al., 2006; Koren et al., 2008] and automated calibration using the complete parame-

ter space defined by uninformed prior distributions, largely avoiding the disadvantages of either method.

On the other hand, the class of process constraints ensures that, in the absence of observed time series to

be directly evaluated against, some summary metric of individual modeled fluxes (e.g., their modeled mean

value) falls within an expectation interval. This can be defined within limits of acceptability [Beven, 2006]

inferred from data or expert judgment-based hydrological reasoning. The details of the prior constraints

investigated in this study are given below and in Table 1.

3.2.1. Parameter Constraints

3.2.1.1. Storage Coefficients (C1, C2)

The storage coefficients kS (d
21), kF (d

21), and kR (d
21) control the outflow from the respective reservoirs SS

(mm), SF (mm), and SR (mm) (see Table 2). Due to the intrinsic definition of SS as slow responding reservoir,
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representing groundwater dynamics, its storage coefficient kS needs to be smaller than the storage coeffi-

cient kF of the fast responding reservoir SF [e.g., Seibert and Vis, 2012] (constraint C1):

kS < kF : (1)

Although this is implicit in many studies (albeit not all!) by the choice of nonoverlapping prior parameter

ranges for kS and kF, it is nevertheless explicitly included here to underline its nature as a hydrologically criti-

cal prior constraint. To acknowledge its common use, this prior constraint will here be used in all model set-

ups (M1–M11).

Likewise, the storage coefficient kF, representing the outflow dynamics of a fast responding reservoir, fre-

quently conceptualized as flow through higher permeability matrix or preferential flow path networks on

hillslopes, can be argued to be lower than kR, characterizing saturation overland flow from a riparian zone.

The rationale being that there is evidence that, once connected, effective flow velocities of riparian zones

exceed those of preferential flow networks from hillslopes [cf. Anderson et al., 2009] (C2):

kF < kR: (2)

Constraint C2 was applied to models that distinguish wetland areas (M7–M11).

3.2.1.2. Soil Moisture Capacity (C3)

The parameters defining the soil moisture capacity of hillslopes and riparian zones, SU,max,H (mm) and

SU,max,R (mm), respectively, define the dynamic part of the unsaturated zone. They are limited by the rooting

depth or the depth of the groundwater table. Due to generally shallower ground water levels, the unsatu-

rated storage capacity in riparian zones is assumed to be lower than the storage capacity of hillslopes (C3;

M8–M11):

SU;max;R < SU;max;H: (3)

3.2.2. Process Constraints

3.2.2.1. Long-Term Mean Annual Actual Evaporation (C4)

In the absence of detailed actual evaporation (EA) data, already monthly or annual actual evaporation rates

can be valuable to identify inadequate models, as for example shown by Winsemius et al. [2008]. Alterna-

tively, the Budyko framework [Budyko, 1974] may be a useful source of information especially in the poten-

tial presence of intercatchment groundwater flow [e.g., Andr�eassian and Perrin, 2012]. Assuming that over a

multiyear period, catchment storage changes are negligible, upper and lower limits of long-term average

annual EA can be estimated [e.g., Arora, 2002] (Appendix B). The modeled long-term average annual evapo-

ration (EA,m (mm yr21)) had to fall in between these limits for a model to be retained as feasible. In absence

of more information and in contrast to more detailed limits of acceptability approaches [e.g., Liu et al.,

2009], all values within the limits were considered equally likely. Thus, constraint C4, applied in M3–M11,

was here formulated as

515 mm yr21 < EA;m < 654 mm yr21: (4)

3.2.2.2. Long-Term Mean Annual Loss Rates (C5)

Bounds on the long-term mean annual loss rate QL,mean due to intercatchment groundwater flow can be

estimated by closing the water balance using the upper and lower bounds of mean annual EA,m. Constraint

C5, applied in M3–M11, was here formulated as

106 mm yr21 < QL;mean < 246 mm yr21: (5)

3.2.2.3. Long-Term Mean Base Flow Contribution (C6)

To enhance process plausibility, it was deemed desirable that the model component SS, representing the

groundwater storage, generates flow dynamics that reflect what is commonly referred to as base flow. The

long-term average relative base flow contribution CBð2Þ can be estimated from stream flow data with the

use of digital low-pass filters [e.g., Chapman and Maxwell, 1996; Eckhardt, 2005; Merz et al., 2006; Hrachowitz

et al., 2011]:

CB5

XT

t51

a
22a

QS t2Dtð Þ1 12a
22a

QT tð Þ
XT

t51
QT tð Þ

; QS tð Þ � QT tð Þ; (6)

Water Resources Research 10.1002/2014WR015484

HRACHOWITZ ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 8



a5e2kSDt; (7)

where QS(t) and QT(t) are base flow and total runoff at time t5 1, . . ., T, respectively, Dt is the observation

time step, and a is the base flow recession constant, derived from storage coefficient kS. For the determina-

tion of a, kS was estimated from a preliminary Master Recession Curve. To account for uncertainties intro-

duced by the effects of unknown loss rates QL in M5 and for the fact that base flow is frequently not

completely generated from SS, upper and lower bounds of the long-term average relative base flow contri-

bution were established using values of kS that range between 0.75 and 1.25 times the kS obtained from the

MRC. Constraint C6, applied in M5–M11, was therefore here formulated as

0:36 < CB < 0:54: (8)

3.2.2.4. Long-Term Mean Fast Wetland Contributions (C7, C8)

During dry periods (here: June–October), wetlands or riparian areas can be expected to contribute a higher

average proportion of fast flow (QR,dry,peak (mm d21)) in response to storm events than hillslopes (QF,dry,peak

(mm d21)), which are frequently characterized by a more pronounced soil moisture deficit as discussed in

section 3.1.2.2. Constraint C7, applied in models that distinguish wetlands (M9–M11) was formulated as

X

T

t51

QR;dry;peak tð Þ >
X

T

t51

QF;dry;peak tð Þ: (9)

Conversely, during wet periods (here: December–March) the average fast flow generated from the hillslope

(QF,wet (mm d21)) can be expected to exceed the total flow from wetlands (QR,wet (mm d21)) as both land-

scape units are connected to the stream for most of the time but hillslopes occupy around 90% of the

catchment area, while wetlands only account for 10%. Constraint C8 was applied in M10–M11:

X

T

t51

12fð ÞQF;wet tð Þ >
X

T

t51

fQR;wet tð Þ: (10)

Note that the above presented prior constraints are mere suggestions. Additional and/or different

constraints may be applicable in other catchments, depending on the modeler’s understanding of

the system and available data, leaving the necessity of choices on an ad hoc basis [e.g., Ambroise et al.,

1996a, 1996b; Seibert and McDonnell, 2002; Hughes, 2013]. It is also emphasized that prior information is

not only applicable in natural systems, but potentially even more so in anthropogenically influenced envi-

ronments, where more information about disturbances may be available. Note that the setup of the

study mainly aims at reducing the probability of Type I errors (false positives). Due to the conservative

formulation of constraints and the modular modeling progression (i.e., more complex models encapsulate

essentially all processes of less complex models), the method is not expected to increase the probability

of Type II errors (false negatives).

3.3. Model Evaluation

3.3.1. Performance Metrics

The ability of the model to reproduce the time series of flow and several other catchment signatures was

quantified by different metrics, such as the Nash-Sutcliffe efficiency (ENS) [Nash and Sutcliffe, 1970], the vol-

ume error (EV) [Criss and Winston, 2008], and the relative error (ER) [e.g., Euser et al., 2013], depending on the

type of signature, as given in Table 3. As a more global summary metric in the presence of model uncer-

tainty, the Continuous Rank Probability Score (UCRPS) [Hersbach, 2000; Fenicia et al., 2013], a distance mea-

sure between observations and predictive distributions, reflecting both precision and reliability of a model,

was additionally used:

UCRPS5
1

Nt

X

Nt

n51

ð1

21

�

�Fn xmð Þ2Hn xm � xof g
�

�dx; (11)

where Nt is the number of observations, xo and xm are the observed and modeled variables (e.g., Q), respec-

tively, Fn(xm) is the cumulative distribution function of the model predictions at (time) step n, and Hn is the

Heaviside step function with Hn5 1 if xm� xo and 0 otherwise. For a perfect model fit, UCRPS reduces to 0

and for deterministic predictions it equals the mean absolute error. Furthermore, assessment of model
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overall performance was gauged by the mean Euclidean distance DE from the ‘‘perfect’’ model based on

equally weighted performance metrics [e.g., Schoups et al., 2005; Hrachowitz et al., 2013b]:

DE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

n51
12Enð Þ2

N

s

; (12)

where En is the performance metric (ENS, EV, ER) of the nth variable or signature and N is their complete

number. Note that in the following ‘‘low flow’’ refers to the period 1 June to 31 October and ‘‘high flow’’

refers to the period 1 December to 28 February.

3.3.2. Model Calibration

Each model setup (M1–M11), run on daily time steps, was after a 1 year warm-up period calibrated for the

period 1 October 2002 to 30 November 2007 using a Monte-Carlo sampling strategy (107 realizations),

based on multiobjective evaluation [e.g., Gupta et al., 1998], i.e., modeling objective constraint, in an attempt

to identify sufficiently consistent parameterizations. The four calibration objective functions (O1–O4) are

given in Table 3 and the uninformed prior parameter distributions are shown in Table 4. Considering that

mathematically (pareto) optimal parameter sets are unlikely to be the hydrologically most suitable ones

[e.g., Beven, 2006], all parameter sets that fell within the space spanned by the four-dimensional pareto

fronts, approximated by the cloud of sample points, were retained as feasible. Note that here the objective

functions were equally weighted as models that can best reproduce the overall system dynamics were

sought. To construct model uncertainty intervals, the feasible parameter sets where thereafter weighted

according to a likelihood measure L5D
p
E;cal [cf. Freer et al., 1996], where the exponent was set to p5 10 to

emphasize models with good overall calibration performance and where DE,cal is the mean Euclidean dis-

tance (equation (12)) to the perfect model with respect to the four calibration objectives O1–O4.

3.3.3. Posterior Model Evaluation

The tested models were not only evaluated against their respective skill to predict the system response

with respect to the calibration objectives during an independent test period, thereafter referred to as valida-

tion period (1 October 2007 to 30 November 2012). Rather, a range of catchment signatures (S1–S13), as

described in Table 3, was used in a multiobjective/criteria posterior evaluation strategy based on the mean

Table 3. Hydrological Variables and Signatures With the Corresponding Performance Metrics Used for Calibration and Postcalibration

Model Evaluationa

Variable/Signature Abbreviation ID Performance Metric Reference

Calibration Time series of flow Q O1 ENS,Q Nash and Sutcliffe [1970]

O2 ENS,log(Q)
O3 EV,Q Criss and Winston [2008]

Flow duration curve FDC O4 ENS,FDC Jothityangkoon et al. [2001]

DE,cal Schoups et al. [2005]

Evaluation Flow during low flow period Qlow S1 ENS,Q,low Freer et al. [2003]

Groundwater dynamicsb GW S2 ENS,GW Fenicia et al. [2008a]

Flow duration curve low flow period FDC,low S3 ENS,FDC,low Yilmaz et al. [2008]

Flow duration curve high flow period FDC,high S4 ENS,FDC,high Yilmaz et al. [2008]

Groundwater duration curveb GDC S5 ENS,GDC
Peak distribution PD S6 ENS,PD Euser et al. [2013]

Peak distribution low flow period PD,low S7 ENS,PD,low Euser et al. [2013]

Rising limb density RLD S8 ER,RLD Shamir et al. [2005]

Declining limb density DLD S9 ER,DLD Sawicz et al. [2011]

Autocorrelation function of flowc AC S10 ENS,AC Montanari and Toth [2007]

Lag-1 autocorrelation of high flow period AC1, Q10 S11 ER,AC1,Q10 Euser et al. [2013]

Lag-1 autocorrelation of low flow period AC1,low S12 ER,AC1,low Euser et al. [2013]

Runoff coefficientd RC S13 ER,RC Yadav et al. [2007]

DE Schoups et al. [2005]

aThe performance metrics include the Nash-Sutcliffe efficiency (ENS), the volume error (EV), and the relative error (ER). For all variables

and signatures, except for Q, Qlow, and GW, the long-term averages were used.
bAveraged and normalized time series data of the 5 piezometer were compared to normalized fluctuations in model state variable

SS.
cDescribing the spectral properties of a signal and thus the memory of the system, the observed and modeled autocorrelation func-

tions with lags from 1 to 100d were compared.
dNote that in catchments without long-term storage changes and intercatchment groundwater flow, long-term average RC equals

the long-term average 1-EA.
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Euclidean distance DE from the ‘‘perfect’’ model based on all equally weighted performance metrics (O1–

O4; S1–S13), under the assumption that the more signatures can be adequately reproduced by a given

model, the higher the confidence in this model being an adequate representation of the observed response

dynamics in a catchment. Besides the distributions of DE themselves, UCRPS,DE was used as a robust distance

measure to allow a clearer and mathematically more rigorous assessment of the overall performance differ-

ences for the individual models M1–M11. To further support decisions if one model is to be rejected in favor

of another one, Wilcoxon Rank Sum Tests tested if the distributions of DE of the individual models were sig-

nificantly different from each other.

Further, the combined modeled consistency and performance was evaluated using the Framework to

Assess the Realism of Models (FARM), introduced by Euser et al. [2013]. Briefly, FARM is based on princi-

pal component analysis for reduction of the 17 performance measure dimensions in this study, i.e.,

O1–O4 and S1–S13, to a more instructive two-dimensional representation. Specifically, the consistency

of a model, i.e., the degree of direct correlation between values of the used performance measures

and thereby a model’s ability to reproduce several performance measures simultaneously, increases the

more loading vectors (representing one signature each) point into the positive direction of PC1. In con-

trast, model performance is represented by scaling the loadings according to the median Euclidean dis-

tance to the perfect model DE. The more observed response dynamics a model can reproduce and the

better these individual performances, the smaller the plot and the smaller the spread between the

loadings.

Note that in principle for all models, starting from the least complex one (M1), all prior constraints could

have been simultaneously imposed and the models could have been calibrated to the full set of N perform-

ance metrics in an extended multiobjective strategy, i.e., a stricter modeling objective constraint. However,

here we test how additional pieces of information can help to increase model consistency, i.e., to better

reproduce the overall system response, characterized by the ensemble of signatures, in a stepwise a poste-

rior evaluation.

4. Results and Discussion

4.1. Calibrated and Constrained Models

4.1.1. Benchmark Model

For the calibration period, the baseline model setup M1, quite well reproduced the general features of the

hydrograph, while somewhat overestimating the amount of water in the system during wet conditions.

Both the most balanced solution (DE,cal,min) and the median of all retained feasible solutions (DE,cal,med) with

respect to the four calibration objectives (O1–O4) reached relatively high values (Figures 4a and 5). Inspec-

tion of the validation period, however, revealed a substantial overestimation of flow in wet periods for all

retained models, resulting in a considerable decrease of all calibration objective functions during validation

as shown in Figures 4a and 5. Thus, in spite of the reasonable performance during calibration, pointing

Table 4. Prior Distributions and 5/95th Percentiles of Posterior Distributions for M1–M11a

CP f kF (d
21) kL (d

21) kR (d
21) kS (d

21) Lp (2)

QL,const

(mm d21)

Pmax

(mm d21)

SS,p,max

(mm)

SUmax,H

(mm)

SUmax,R

(mm) bH bR

Prior distribution 0–1 0.1 0.025–1 0.0001–0.001 0.05–2 0.001–0.05 0–1 0.37 0–4 0–2000 0–1500 0–750 0–100 0–2

Posterior

distribution

M1 0.12/0.63 0.042/0.094 0.031/0.049 0.00/0.07 0.03/0.29 637/1446 10.5/61.5

M2 0.08/0.62 0.039/0.175 0.027/0.098 0.031/0.047 0.00/0.15 0.21/3.19 569/1401 10.6/70.1

M3 0.10/0.59 0.046/0.500 0.029/0.0968 0.030/0.049 0.01/0.28 0.20/3.19 608/1427 4.4/68.2

M4 0.14/0.94 0.060/0.906 0.0002/0.0009 0.032/0.049 0.04/0.32 0.14/2.87 309/1803 706/1466 3.4/51.4

M5 0.15/0.56 0.055/0.648 0.0002/0.0009 0.031/0.049 0.05/0.32 0.18/2.02 361/1744 712/1461 3.1/35.5

M6 0.14/0.55 0.054/0.627 0.041b 0.05/0.34 0.37b 0.27/1.98 722/1461 2.4/36.9

M7 0.21/0.73 0.1b 0.052/0.674 0.336/1.891 0.041b 0.01/0.20 0.37b 0.19/2.37 638/1444 6.3/69.0

M8 0.18/0.66 0.1b 0.054/0.666 0.352/1.894 0.041b 0.04/0.28 0.37b 0.24/2.40 689/1444 88/720 4.3/66.9

M9 0.15/0.63 0.1b 0.054/0.604 0.324/1.894 0.041b 0.04/0.27 0.37b 0.32/2.27 677/1439 128/731 11.7/69.4

M10 0.15/0.64 0.1b 0.054/0.619 0.333/1.863 0.041b 0.04/0.27 0.37b 0.34/2.29 686/1442 132/725 13.6/69.7

M11 0.19/0.64 0.1b 0.054/0.466 0.318/1.857 0.041b 0.04/0.27 0.37b 0.29/2.18 683/1444 120/730 13.0/69.2 0.13/1.86

M11a 0.27/0.98 0.1b 0.055/0.904 0.113/1.868 0.041b 0.02/0.40 0.37b 0.15/2.95 502/1429 71/721 7.2/69.8 0.13/1.91

M11b 0.00/0.50 0.05/0.15 0.043/0.167 0.283/1.891 0.022/0.044 0.06/0.34 0.23/0.57 0.22/1.53 737/1462 110/736 17.8/73.1 0.10/1.86

aA list of symbols is given in the notation section.
bFixed parameter values.
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toward a well constrained, adequate and robust model, the validation results indicated serious limitations in

the adequacy of M1. Analysis of the modeled catchment signatures clearly supported the assessment that M1

cannot be considered consistent (Figure 6). Some signatures could only be reproduced for either the calibra-

tion or the validation period (S4, S7, S8, and S10–S13; Figures 5 and 6a), highlighting their sensitivity to the dis-

tinct hydrometeorological conditions in these periods and the model’s inability to sufficiently respond to

these variations. Other signatures could be reproduced for neither period (S2–S3, S5, and S9), indicating a

general deficiency of M1 to represent the processes controlling these signatures. This is also illustrated by a

largely inadequate reproduction of the observed groundwater dynamics (Figure 7a): while the general dynam-

ics are captured, the observed variance of the groundwater response substantially exceeds the modeled var-

iance. The results suggest that inadequate process representations in M1 result in model internal dynamics

that do not adequately reflect the system response dynamics but which are rather mere manifestations of the

fitting process. Similar performances of the three benchmark models (NWS Sacramento, HBV, and HyMod;

supporting information Figure S2) indicate little sensitivity of the analysis to the initial model choice. Following

these results, model hypothesis M1 had to be rejected. Note that in the following assessment of the overall

performance of the individual model setups is for brevity restricted to the median of all retained feasible solu-

tions (ENS,med, ER,med, DE,med). Due to the functionally equivalent results obtained, UCPRS, provided for selected

signatures in supporting information Figure S1, will not be individually discussed.

Figure 4. Observed (red line) and modeled runoff for model setups (a) M1, (b) M6, (c) M8, and (d) M11 in calibration and validation periods. Modeled runoff shown as most balanced

solution (dark blue line) and the 5/95th uncertainty bounds (light blue shaded area). Values of the calibration objective functions ENS,Q (O1), ENS,log(Q) (O2), EV,Q (O3), and ENS,FDC (O4) in

calibration and validation period are the performance of the most balanced solution and in brackets the 5/50 (bold)/95th percentiles of all retained feasible solutions. Model uncertainty

is estimated by the area IU spanned by the 5/95th percentiles of modeled runoff over the entire calibration and validation periods, respectively.
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4.1.2. Deep Infiltration Loss Constraints

Model setup M2, allowing for deep infiltration losses, resulted in a comparable calibration performance as

M1 (Figure 5). The uncertainty in modeled stream flow, estimated as the total area spanned by the 5/95th

percentiles of the uncertainty interval, however increased in M2 as a result of the additional free calibration

parameter (kL; Figure 8a). Although M2 could better reproduce the long-term annual runoff coefficient

(S13), due to a more plausible partitioning of flows, as well as some low flow and groundwater related

signatures (S2 and S5–S7), the overall model skill, as indicated by DE,med and UCPRS,DE, did not improve

(Figure 8b).

Applying prior constraints C4 and C5, i.e., estimates of average annual actual evaporation and deep infiltra-

tion, model M3 experienced a deterioration in overall calibration performance (O1–O4 in Figure 5). This indi-

cates that a range of well-performing parameterizations of the previous model (M2) were clear

misrepresentations of the system as they could not reproduce the system response within the rather wide

limits of acceptability of C4 and C5. This was also reflected in the modest overall skill of the model to repro-

duce other signatures (Figures 5 and 8b) except for S8 and S9 that were captured significantly better than

in the preceding models.

As a result of their poor performances, M2 and M3 were therefore rejected. In M4, one additional free cali-

bration parameter was added. The inclusion of a threshold in the groundwater reservoir proved highly ben-

eficial for the model’s ability to better reproduce the majority of signatures in this study (Figures 5 and 8b).

Considerable improvements where in particular observed for groundwater related signatures (S2 and S5) as

well as for the flow duration curves (O4 and S3–S4), all of which pointing toward the importance of the new

threshold to adequately reproduce the system response. Yet as in the preceding models, not all signatures

improved. The ability of M4 to reproduce O2 as well as S6–S7 decreased, underlining the distinct sensitiv-

ities of different parts of the system to different process representations. Owing to the relatively high

Figure 5. Performance of the most balanced solutions (triangles) and the complete sets of all feasible solutions (box plots; the dots indicate 5/95th percentiles, the whiskers 10/90th per-

centiles, and the horizontal middle line the median) with respect to the calibration objectives (O1–O4) and the catchment signatures (S2–S13) for calibration and validation periods for

all model setups M1–M11.
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number of free calibration parameters in M4, the model uncertainty for stream flow remains comparatively

high. As discussed above, a high number of parameters can often result in good model performance, yet

this is frequently offset by loss of internal consistency in the model. Closer inspection of model internal

fluxes in M4 revealed that many parameter sets resulted either in the groundwater flux being effectively

shut down for much of the time, i.e., when the modeled recharge was too low compared to the combined

fluxes QS and QL or in an excessively high groundwater long-term average contribution QS (up to 98%) to

stream flow QT. To limit such misrepresentations in favor of expert-based and empirical understanding of

the system, constraint C6 was applied in the model setup M5.

In contrast to the previous set of prior constraints (C4 and C5), the additional application of C6 in M5

did result in significant improvements for virtually all signatures (Figure 5) and thus also for overall

model performance (Figure 8b) both, during calibration and validation periods. Together with the sig-

nificant reduction in uncertainty (Figure 8a), this clearly highlights the value and effectiveness of addi-

tional prior constraints in filtering out parameterizations that are mere artifacts of the calibration

process.

In an attempt to keep the numbers of free calibration parameters to a minimum to preserve model parsi-

mony, i.e., ‘‘as complex as necessary and as simple as possible,’’ setting the deep infiltration loss rate QL to a

constant value, as inferred from groundwater observations (see section 3.1.2.1) allowed the reduction of

free calibration parameters from nine to six in M6. Like for M5, it was observed in M6 that although the cali-

bration objective functions (O1–O4) did improve with respect to the preceding model setup, they could not

quite reach the level of those of M1 (Figures 4b and 5). Further, low flow related signatures (S3, S7, S9, and

S12; Figure 6b) still demonstrated relatively poor performance levels and considerable uncertainties. How-

ever, the overall skill of M6 to reproduce the ensemble of catchment signatures clearly exceeded the skill of

the benchmark model M1 (Figure 8). This is also illustrated by the model’s ability to more satisfactorily

mimic the no-flow conditions related to the dynamics of the observed groundwater fluctuation as

Figure 6. Selected signatures—FDC,low (S3; left), PD,low (S7; middle) and AC (S10; right)—for model setups (a) M1, (b) M6, (c) M8, and (d) M11 in the validation period. The red lines indi-

cate signatures constructed from observed data, the dark blue lines represent the signature generated from the most balanced model solution, and the blue shaded area highlights the

5/95th uncertainty interval of the modeled signature. The performance metrics given are the most balanced solution and in brackets the 5/50 (bold)/95th percentiles of all retained feasi-

ble solutions.

Water Resources Research 10.1002/2014WR015484

HRACHOWITZ ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 14



compared to M1–M5 (Figures 5 and 7b). The results of M6 further suggested that the reduction of parame-

ters was justified as it did not result in significant changes in the models ability to reproduce the overall sys-

tem response in comparison to M5 (Figures 5 and 8b). In addition, the reduction of free calibration

parameters slightly reduced model uncertainty (Figure 8a). Following these results, model setup M6 was

used as the basis for further model development.

4.1.3. Riparian Zone Constraints

In M7, it was tested whether the inclusion of a separate model component representing the dynamics of

the riparian zone, formulated as a simple linear reservoir, can improve the so far unsuitably reproduced

response of the system to rain events during otherwise relatively dry periods, as indicated by, e.g., S3,

S7, S9, or S12. It was observed that although a few signatures generated by M7 exhibited significantly

improved performances (e.g., S3, S6, S7, and S9; Figure 5), many other signatures were characterized by

considerable performance reductions (e.g., O1, O3, S2, and S5). On balance not significantly improving

overall model skill compared to M6 (Figure 8b). The model setup M7 was therefore rejected as feasible

model architecture constraint.

In M8, the representation of the riparian component in the model was adapted by adding an unsaturated

zone. Together with an additional prior constraint (C3), M8 showed slightly increased performance with

respect to O1–O4, in both calibration and validation period (Figures 4c and 5). In spite of two additional

free calibration parameters as compared to M6, M8 was characterized by slightly reduced model uncer-

tainty (Figures 4c and 8a). In addition to the clear improvement of the model’s ability to reproduce S12,

other signatures could be reproduced at similar performance levels as before but within reduced uncer-

tainty (e.g., S3–S5 and S10; Figures 5, 6c, and 7c). It was found that as a result M8 exhibited a clearly

Figure 7. Observed (green line) and modeled average relative groundwater levels for model setups (a) M1, (b) M6, (c) M8, and (d) M11 in

calibration and validation periods. Modeled relative groundwater levels are shown as most balanced solution (dark blue line) and the 5/

95th uncertainty bounds (light blue shaded area). Values of the calibration objective functions ENS,GW (S2) in calibration and validation

period are the performance of the most balanced solution and in brackets the 5/50 (bold)/95th percentiles of all retained feasible solu-

tions. Uncertainty in the modeled relative groundwater level is estimated by the area IU spanned by the 5/95th percentiles of modeled run-

off over the entire calibration and validation periods, respectively.
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improved overall skill within narrower performance bounds in comparison to all preceding model setups in

particular with respect to the validation period (Figure 8b).

Adding two further prior constraints (C7 and C8) in M9 and M10, respectively, slightly increased the models

ability to reproduce objective function O2 as well as signatures S3 and S10–S11 in particular for the valida-

tion period by discarding parameter sets that could not simultaneously satisfy all prior constraints, thereby

also gradually reducing model uncertainty in M9 and M10 (Figure 8a).

Replacing the linear flow generation mechanism in the unsaturated zone from the preceding model by a

nonlinear mechanism, M11, with a total of nine free calibration parameters and eight prior constraints, was

the most complex model structure tested in this study. The further increased ability of the model to repro-

duce relevant signatures (S3–S4 and S10; Figures 5 and 6d) and an significantly increased overall perform-

ance of M11 with respect to all performance measures (i.e., O1–O4 and S1–S13; Figure 8b) together with

reduced uncertainty (Figures 4d and 8a) compared to M1–M10 give evidence that M11 is a clearly more

adequate representation of the system response than the simpler models M1–M10 in spite of exhibiting

essentially the same calibration performance (O1–O4; Figures 4d and 5).

Inspection of PCA plots generated within the FARM framework [Euser et al., 2013] corroborates these find-

ings. M1 (Figure 9a) is characterized by a star-shaped spread of the objective functions and signatures. This

indicates that this model is not capable to simultaneously reproduce various signatures with the same

parameter set. For example, it can be seen that parameters that result in high values for O1 show low values

for O4 as they are plotting on roughly opposite ends of PC2, i.e., they are inversely correlated. The same is

true, among others, for O2–S8/S9, O4/S3–O3/S13, or S4–S10/11/12. The PCA of M11’s signatures, on the

other hand, shows a clearly reduced spread, indicating a higher degree of model consistency, with only S10

showing significant loadings in the second and third quadrant Figure 9b. Conversely, O2 was now found to

be directly correlated with S8/S9, while O4/S3 were uncorrelated with O3/S13 rather than inversely corre-

lated as in M1. Similarly, S4 appeared to become more consistent with S11/12.

Note that M11 itself is clearly not to be seen as endpoint in the modeling efforts for this catchment, but

rather as the, so far, best performing hypothesis of catchment function that was not yet falsified. Although

Figure 8. (a) Number of free calibration parameters (solid black line), number of prior constraints (green dashed line), and the area spanned

by the 5/95th percentile uncertainty interval IU for calibration (pink dash-dotted line) and validation periods (orange dash-dotted line) for

model setups M1–M11. (b) Overall model performance for all model setups (M1–M11) expressed as Euclidean distance DE from the ‘‘perfect

model’’ computed from all calibration objectives (O1–O4) and signatures (S1–S13) with respect to calibration and validation periods. Triangles

represent the most balanced solution, i.e., the solution obtained from the parameter set with the lowest Euclidean distance during calibration.

Box plots represent the Euclidean distance for the complete sets of all feasible solutions (the dots indicate 5/95th percentiles, the whiskers

10/90th percentiles, and the horizontal middle line the median). The plus and cross symbols represent the UCPRS,DE of the Euclidean distances

of all feasible models with respect to the ‘‘perfect model.’’ The results of the Wilcoxon Rank Sum Tests for pairwise comparisons of subsequent

distributions of DE (i.e., M1–M2, M2–M3, etc.) indicate if the distributions are significantly different from each other (", #) or not (5).
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it exhibits considerably higher process consistency than M1–M10, some performance metrics, such as O1 or

S7, still offer some room for future improvement. Further model tests were not attempted here as the actual

objective of this study was to demonstrate the value of anecdotal information to formulate prior constraints

to bridge the gap between simplistic process representation and predictive uncertainty in more complex

representations of the system, caused by model equifinality in an illustrative example. In spite of differences

in the absolute performances of the three benchmark models whose complexity was adapted equivalently

to M11, the similar pattern of performance changes from simple to more complex as compared to the pro-

gression of M1–M11 (supporting information Figure S2) indicates a certain level of general value of the sug-

gested modeling approach, irrespective of the model used.

4.2. Calibrated but Unconstrained Model

In order to get a better understanding of the respective values of the parameter and process constraints

used in this study, M11 was further evaluated in M11a both without these prior constraints and with

each of them individually applied. Although the most balanced calibration and validation solutions

remained in the range of what was found for M11 (Figure 8 and supporting information Figure S3a), the

removal of all prior constraints resulted in a substantially reduced overall performance of M11a. This was

caused by the inclusion of parameter sets that result in acceptable calibration performances but do not

satisfy one or more of the previously applied prior constraints. It was also observed that these additional

solutions, as unsuitable representations of the observed response dynamics and thus artifacts of the cali-

bration process, tend to generate relatively low performance solutions for at least some of the signa-

tures S1–S13. This further highlights the effectiveness of the combined use of signatures and prior

constraints. In addition to an unconstrained model’s inability to identify and discard a wide range of

unsuitable parameter sets due to its ill-posed nature, omitting prior constraints also significantly

increases model uncertainty as shown in Figure 10a, thereby negatively affecting its predictive

capability.

To assess the impact of individual prior constraints on the model, C1–C8 were subsequently added one by

one to M11a. It was found that no single prior constraint could significantly improve the overall model per-

formance in both calibration and validation period (Figure 10). Thus, being dependent on the cumulative

effects of all prior constraints applied, a significant effect will only be achieved once a certain number of

prior constraints is applied. This is also supported by the results of Winsemius et al. [2009], who, applying

three constraints, only obtained weak constraining power. Further evidence for this hypothesis is that

although the individual reductions of model uncertainty DIU due to C1–C8 are low (Figure 10), the sum of

DIU (�390 mm) approaches the difference of uncertainty between M11 and M11a (�420 mm). Note that

the 30 mm difference is caused by the individual calibration runs for M11 and M11a.

Figure 9. Overall performance-scaled PCA plots for (a) M1 and (b) M11 used to assess model realism in within the FARM framework [Euser

et al., 2013]. Analysis based on all objective functions (O1–O4) and signatures (S1–S13) of all solutions retained as feasible. Thin, light

shaded lines indicate low average performances with respect to the individual signatures while dark, thick lines indicate high average

performances.
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In general, it became apparent that in this study parameter constraints (C1–C3) were less effective than process

constraints (C4–C8). This is true for the reduction of feasible parameter sets but also for the reduction of uncer-

tainty. While individual parameter constraints in this study could only reduce feasible parameter sets by up to

�20% (Figure 10), individual process constraints reduced the feasible parameter sets by up to �65% (C6; Fig-

ure 10). This disparity becomes even more apparent for the reduction in uncertainty: parameter constraints

reduce uncertainty by a total of�40 mm, while process constraints are responsible for the remainder of

�350 mm (Figure 10). The by far most effective individual prior constraint in this study was C6, i.e., bounds on

base flow contribution, underlining the importance of estimates of internal fluxes on model internal process

consistency. Note that in more complex model formulations, where more parameter constraints can be

applied [e.g., Gao et al., 2014; Gharari et al., 2013b], parameter constraintsmay become more important.

4.3. Uncalibrated but Constrained Model

As a final step to assess the value of prior constraints in complex models, model setup M11 was applied in

an uncalibrated but constrained way. That is, feasible parameterizations in M11b were chosen exclusively

on a rejectionist basis defined by the full set of prior constraints, i.e., all parameter sets that satisfied C1–C8

were retained as feasible.

The results were very encouraging in particular for predictions in ungauged basins (PUB) [e.g., Sivapalan

et al., 2003; Hrachowitz et al., 2013a]: the overall performance of the uncalibrated but constrained complex

model M11b clearly outperforms the relatively simple calibrated setups M1–M4 (Figure 8b and supporting

information Figure S3b). Although model uncertainty is slightly higher for M11b than for benchmark setup

M1, it is similar to that of M11, a calibrated and constrained setup, for both calibration and validation peri-

ods (Figure 8a). In other words, when little or unreliable calibration data are available, the use of a complex

uncalibrated model setup in conjunction with a sufficient degree of prior information, expressed as prior

constraints can prove valuable in comparison to a simple calibrated model.

5. Wider Implications

The results of this study in a small catchment do potentially have wider implications. It is frequently claimed

that for many regions in the world not enough data are available to warrant the use of more complex

Figure 10. Evaluation of the influence of individual realism constraints on a calibrated but initially unconstrained model M11a. Parameter

sets retained as feasible for each individual constraint (C1–C8) as proportion of the full set of feasible parameters obtained from calibrated

but unconstrained M11a (green dashed line) and the change of the 5/95th uncertainty interval DIU in the modeled hydrograph with

respect to calibrated but unconstrained setup M11a (pink dash-dotted line). Box plots illustrate the influence of the individual realism con-

straints on the overall model performance (Euclidean distance to the perfect model) for calibrated but unconstrained M11a (see also Fig-

ure 8) and realism constraints C1–C8 for calibration and validation periods (the dots indicate 5/95th percentiles, the whiskers 10/90th

percentiles and the horizontal middle line the median). Note that, being redundant with the use of QL,const, C5 has no effect in M11a.

Water Resources Research 10.1002/2014WR015484

HRACHOWITZ ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 18



model structures than those of standard lumped conceptual models, arguably preventing the use of poten-

tially more plausible process representations. This is in principle true when considering standard calibration

techniques without efficient use of prior constraints. As it was shown here, although an unconstrained

higher complexity model (M11a) can outperform a simple lumped model (M1), this comes at the price of

substantially increased model uncertainty (Figure 8a). However, evaluating models not only on the basis of

standard performance metrics but also on a wide variety of catchment signatures revealed that many mod-

els that perform well during the calibration period are effectively artifacts of the calibration process as they

cannot reproduce a range of other signatures. It was shown that many models cannot simultaneously

reproduce different aspects of the desired response variable when the model architecture is unsuitable for

a given catchment and/or the feasible model parameter space is insufficiently constrained. Thus, the use of

multiple hydrological signatures allowed for a falsification of models otherwise considered feasible, and it

illustrated the importance of a suitable representation of the system response dynamics as a whole rather

than the focus on one specific variable (here: the hydrograph). The use of very simple, anecdotal and/or

expert-knowledge-based prior constraints subsequently proved critical for identifying and discarding param-

eterizations that resulted in unsuitable models, allowing that at least the following holds true: ‘‘[. . .] the best

we can hope for is to demonstrate that the model does not violate our theoretical understanding of the sys-

tem and is consistent with the available data [. . .]’’ [Knutti, 2008, p. 4651].

By following the stepwise development of the model and observing the interplay between model structure,

prior constraints, and signatures, it became further clear that in the study catchment, increasingly complex

model structures, i.e., architectural and parameterization constraints, are responsible for improving average

model performances as illustrated by the performance jumps in M4, M8, and M11 (Figure 8b). Conversely,

the choice of feasible parameter sets, controlled by modeling objective and prior constraints are rather linked

to reducing the performance spread by discarding parameterizations at the low performance tail end of the

performance distributions, i.e., the ill-posedness of the problem (M4–M11; Figure 8b).

In contrast to the prevailing notion that more complex models also entail increased model uncertainty, the

results of this study suggest, in correspondence with the results of Gharari et al. [2013b], that simple, semi-

quantitative prior constraints are highly valuable, arguably even necessary tools to reduce uncertainty of

complex models, thereby allowing for increased model consistency within limited ranges of uncertainty.

Depending on the model complexity and the choice of prior constraints, it was also shown that, in the study

catchment, a complex uncalibrated but constrained model can on average reach the performance levels of

calibrated but unconstrained simple model formulations (M1–M4), resembling standard models such as

HBV (Figure 8b). This potentially opens a wide range of opportunities on how future studies in ungauged

regions may be designed and it highlights the need for a paradigm shift away from pure automated calibra-

tion toward giving higher priority to constraining the feasible parameter space [e.g., Martinez and Gupta,

2011; Gupta et al., 2012], based on efficiently extracting information from widely available data and expert

knowledge [Seibert and McDonnell, 2002; Savenije, 2009]. Although not capable of predicting so far

unknown patterns emerging from multiscale process dynamics and feedbacks, i.e., ontological uncertain-

ties, as new generations of models may do [e.g., Ruddell and Kumar, 2009a, 2009b], a paradigm shift in

method, as presented here, could prove attractive and beneficial in a twofold way for forecasting and pro-

cess understanding not only for scientific but also, and maybe more importantly for operational hydrology,

as it would imply higher model consistency, and thereby potentially increased predictive power, as well as

reduced need for calibration data at little additional computational cost. Future research will, however,

need to test the general value of the suggested constraint-based framework for multiple catchment typolo-

gies and identify which types of expert judgment and constraints may be effective for different types of

catchment function.

6. Conclusions

In this study, a simple conceptual baseline model for the study catchment was iteratively developed to

allow for more process complexity and constrained by prior expert knowledge. It was found that

1. In spite of its relatively high calibration performance with respect to the four calibration objective func-

tions, a simple baseline model (M1) was not able to adequately reproduce a range of catchment signa-

tures, indicating an inadequate representation of the observed response dynamics.
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2. Iteratively increasing model complexity while at the same time explicitly incorporating semiquantitative,

expert-knowledge-based, constraining prior information resulted in a model (M11) that showed substan-

tially higher skill to reproduce the overall system response with comparably limited uncertainty, high-

lighting the value of prior constraints in filtering out unsuitable models.

3. Process constraints were found to contain more constraining information than parameter constraints in

this study.

4. A calibrated but unconstrained complex model (M11a) included a wide range of implausible parameter-

izations, resulting in increased uncertainty and an overall performance that was reduced compared to a

calibrated and constrained model (M11).

5. An uncalibrated but constrained complex model (M11b) resulted in similar model performance and

uncertainty as a calibrated but unconstrained standard lumped model (M1), further underlining the value

of prior constraints and the balance automated model calibration with a more general expert-knowledge-

driven and system understanding-based strategy of constraining and rejecting models if a certain level

of model consistency wants to be achieved.

Appendix A: Estimating Constant Deep Infiltration Loss Rate

The long-term average constant loss rate of the normalized groundwater levels (QL,const,norm), representing catch-

ment storage (Snorm), was estimated from a time-storage relation (T-S0,norm) at a value of QL,const,norm5 0.0022

d21 by concatenating the annual segments of S0,norm during no-flow conditions (Figures A1a and A1b). As this

loss rate is related to normalized groundwater levels rather than to flow rates, it cannot be directly used in a

model. For use in a model, the actual loss rate (QL,const) from catchment storage in mm d21 had to be estimated.

This was done by extrapolating the T-S0,norm relation backward in time to instants when stream flow was

observed (Figure A1c). As field observations provide evidence for rather homogenous porosity at depth [Legout

et al., 2007], the decrease of Snorm caused by discharge only, i.e., SQ,norm, could then be determined for each time

step by subtracting S0,norm from the relative groundwater level (Snorm), during relatively dry recession periods

(i.e., 2003 and 2006). From the observed flow (Qobs) at time steps at which the gradients of the time-SQ,norm rela-

tionship are equal to QL,const,norm (Figure A1d), the actual loss rate QL,const5 0.37 mm d21 could be inferred (Fig-

ure A1e), as it was assumed that equal gradients in time-S0,norm and time-SQ,norm relationships imply equal flow

rates for base flow (QS) and deep percolation losses (QL,const).

Appendix B: Limits on Average Annual EA

The upper and lower limits on long-term mean annual EA were established using data from 420 catchments

belonging to the Model Parameter Estimation Experiment (MOPEX) [Schaake et al., 2006]. Data from these

catchments were plotted in the Budyko framework. The limits on EA where then estimated from the 5/95th

percentiles of EA/P in the binned region of the aridity index IA5 EP/P that corresponded to the IA of the

study catchment (IA5 0.67).

Notation

CP preferential recharge coefficient.

CR hillslope runoff generation coefficient.

CR,R riparian runoff generation coefficient.

EF transpiration fast responding reservoir, L T21.

EP potential evaporation, L T21.

ER transpiration from riparian reservoir, L T21.

EU transpiration from unsaturated reservoir, L T21.

EU,R transpiration unsaturated riparian reservoir, L T21.

f proportion wetlands in the catchment.

kF storage coefficient of fast reservoir, T21.

kL storage coefficient for deep infiltration loss, T21.

kR storage coefficient of riparian reservoir, T21.

kS storage coefficient of slow reservoir, T21.

LP transpiration threshold.
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Figure A1. Illustrative example of how the observed averaged relative groundwater level was used to estimate a constant deep infiltration

loss rate QL,const. (a) A selected period of the observed hydrograph (red) and the averaged relative groundwater level (green). No-flow peri-

ods are highlighted in gray. Light green lines for groundwater levels indicate the parts of the time series (no flow) used in to construct the

time-storage relation T-S0,norm. (b) Concatenation of segments of the relative groundwater levels during no-flow conditions to construct a

‘‘master’’ T-S0,norm relation. (c) Backward extrapolation of the T-S0,norm relation to instants when flow was observed to estimate SQ,norm in

relatively dry recession periods. (d) At time t, when S0,norm (light green) is a tangent to SQ,norm (dark green) it was assumed that (e) QL,const

(dark green dot) is equal to QS (red line).
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P total precipitation, L T21.

Pmax percolation capacity, L T21.

QF runoff from fast reservoir, L T21.

QL deep infiltration loss, L T21.

QL,const constant deep infiltration loss, L T21.

QR runoff from riparian reservoir, L T21.

QS runoff from slow reservoir, L T21.

RF recharge of fast reservoir, L T21.

RP preferential recharge of slow reservoir, L T21.

RR recharge of riparian reservoir, L T21.

RS recharge of slow reservoir, L T21.

RU infiltration into unsaturated reservoir, L T21.

SF storage in fast reservoir, L.

SR storage in riparian reservoir, L.

SS storage in slow reservoir, L.

SS,a active storage in slow reservoir, L.

SS,p passive storage in slow reservoir, L.

SS,p,max passive storage in slow reservoir, L.

SS,tot total storage in slow reservoir, L.

SU storage in unsaturated reservoir, L.

SUmax,H unsaturated hillslope storage capacity, L.

SUmax,R unsaturated riparian storage capacity, L.

bH hillslope shape parameter for CR.

bR riparian shape parameter for CR,R.
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