Process Decomposition Through
Locality of Reference

Anne Rogers
Keshav Pingali*

TR 88-935
August 1988

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

" This research is supported by NSF grant CCR-8702668.

Process Decomposition Through Locality
of Reference*

Anne Rogers
Keshav Pingali
Department of Computer Science,

Cornell University,
Ithaca, NY 14853.

August 24, 1988

Abstract

In the context of sequential computers, it is common practice to
exploit temporal locality of reference through devices such as caches
and virtual memory. In the context of multiprocessors, we believe
that it is equally important to exploit spatial locality of reference.
We are developing a system which, given a sequential program and
its domain decomposition, performs process decomposition so as to
enhance spatial locality of reference. We describe an application of
this method - generating code from shared-memory programs for the
(distributed memory) Intel iPSC/2.

Submitted to the Third Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

*This research is supported by NSF grant CCR-8702668.

1 Introduction

Fundamental limits on the switching times and integration densities of de-
vices constrain the computational speeds of single processors. To achieve
the computation rates required for large problems such as PDE solutions,
it is necessary to harness the power of multiprocessing. The trend towards
multiprocessing is very evident in the market-place - the best-selling CRAY
machine is the CRAY-XMP which obtains its performance from four pro-
cessors (each of which is only 30% faster than the original CRAY-1) while
multiprocessors with less complex processing elements, such as the BBN
Butterfly and Intel Hypercube, are becoming increasingly popular. The
major barrier to widespread acceptance of multiprocessors is the primitive
state of parallelizing compilers. Most vendors have taken the easy way out
and have simply added parallel constructs to an existing language like C
or FORTRAN. The compiler provides little or no help in parallelism de-
tection or ensuring correct synchronization, leaving all that entirely to the
programmer. This places a severe burden on the programmer and opens the
door to time-dependent bugs such as races between reads and writes which
are extremely difficult to track down. It is no exaggeration to say that
compiler technology for multiprocessors is in the same sorry state that vec-
torizing compilers were in ten years ago. The CRAY-1 of the mid-70’s sold
well in spite of poor vectorizing software mainly because it could be used
as a very fast scalar machine. Most multiprocessors, on the other hand, are
being built from microprocessors such as the Intel 80386 or the Motorola
68020 which are not exactly supercomputers! The only way such machines
will gain acceptance is if compiler technology improves to a point where
programmers can exploit a large number of processing elements without
undue programming effort. This will be achieved when the programmer
can write his application program using standard high-level control and
data abstractions such as procedures, loops, and arrays, leaving it to the
compiler and run-time system to worry about lower level details such as
process decomposition, synchronization, and load balancing.

Our approach to the compilation problem is based on exploiting locality
of reference. In the context of uniprocessors, it is commonplace to exploit
temporal locality of reference through devices such as caches, virtual mem-
ory, and translation look-aside buffers. We believe that it is just as impor-
tant to exploit spatiallocality of reference in the context of multiprocessors.

2

This concept can be explained with reference to the way multiprocessors are
organized: as message-passing machines and as shared-memorymachines. In
message-passing machines, like the Intel Hypercube and the NCUBE, each
process has its own address space and processes must communicate by ex-
plicitly sending and receiving messages. Message-passing systems typically
take hundreds to thousands of cycles to deliver messages[1]. Thus, a process
can access local data items (i.e., data items in its own address space) very
efficiently, but access to non-local data items, which must be choreographed
through an exchange of messages, is rather ineflicient. Clearly, exploiting
locality of reference is critical in message-passing architectures. In shared-
memory machines, such as the BBN Butterfly and the IBM RP3, there is
a single, global address space that is shared by all processes. Inter-process
communication is accomplished simply by reading and writing of memory
. locations. The single, shared address space is usually an illusion presented
to the programmer by the operating system since most shared memory
systems are implemented as a number of processor-memory pairs inter-
connected through some network. The cost of accessing a non-local data
item (i.e., across the network) is on the order of tens of cycles. Therefore,
even in shared-memory machines, spatial locality of reference is extremely
important for good performance!. In a recent paper on programming mul-
tiprocessors, Karp summarizes the importance of locality of reference as
follows: “... we see that data organization is the key to parallel algorithms
even on shared memory systems. It will take some retraining to get FOR-
TRAN programmers to plan their data first and their program flow later.
The importance of data management is also a problem for people writ-
ing automatic parallelization compilers....A new kind of analysis will have
to match the data structures to the executable code in order to minimize
memory traffic.”[1]

These admonitions have not been heeded by most researchers working
on automatic parallelization. The most popular approach to automatic par-
allelization is the ‘program-driven’ approach, a typical example of which is
the Camp system of Peir and Gajski[3]. Their strategy is to parallelize the
program by distributing loop iterations among processors. Synchronization

IThe only exception to this is the Ultracomputer [2] in which all memory is equally
far away from all processors. This uniformity is achieved by making all accesses equally
expensive!

is required for loops with loop-carried dependencies and is implemented
through complex bit-masks at every word of memory. A similar approach
is being pursued in the CEDAR system at Illinois. Most of these efforts
discuss locality but do very little to exploit it. In contrast, exploiting local-
ity of reference is the cornerstone of our approach. The intuitive idea is the
following. The programmer writes and debugs his program in a high-level
language such as Id Nouveau[4] using standard high-level abstractions such
as loops and arrays. Once this is accomplished, he specifies the domain
decomposition - that is, how data structures are to be distributed across the
multiprocessor. In most programs we have looked at (such as matrix al-
gorithms, SIMPLE, and particle-in-the-cell), this is quite straight-forward
since the programmer thinks naturally in terms of mapping by columns,
rows, blocks, etc. Given this data decomposition, the compiler performs
process decomposition by analyzing the program and specializing it to the
data that resides at each processor. Thus, our approach to process decom-
position is ‘data-driven’ rather than ‘program-driven’. An interesting facet
of our technique is that it can be viewed formally as a novel kind of type
inference for overloaded operators.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the programming language and the machine model we use in this
paper. The programming language is a functional language augmented
with I-structures, an array construct borrowed from logic programming
languages. The machine model is a simple message-passing model similar
to that supported by the Intel Hypercube or the Ncube. In this section, we
also introduce the ‘wavefront’ problem which we use as a running example in
this paper. In Section 3, we discuss our code generation strategy. The basic
strategy is embodied in a simple but inefficient algorithm called run-time
resolution. The code generated by this algorithm can be improved consid-
erably by partial evaluation (evaluation at compile-time) and incorporating
this optimization leads to an improved algorithm that we call compile-time
resolution. We also remark on some connections between our techniques and
standard code generation strategies for languages with overloaded opera-
tors. In Section 4, we discuss other optimizations that must be performed
to generate good code. To reduce the overhead of message passing, it is
preferable to combine messages together, thereby reducing message traffic.
However, this must be done judiciously since combining messages can have
an adverse effect on parallelism. The transformations in Section 4 attempt

4

to strike a balance between these two concerns. We present experimental
results that highlight the importance of these transformations. We discuss
some extensions in Section 5, related work in Section 6, and conclusions in
Section 7.

2 Language and Machine Model

The programming language we use in this paper is Id Nouveau [4] which is
a functional language with an array construct called I-structures borrowed
from logic programming languages. Our techniques work equally well for
an imperative language such as FORTRAN. The machine model is a simple
message-passing model like the one supported on the Intel Hypercube or
the Ncube. We chose to work with this model since we are implementing
" the system on the Intel iPSC/2. However, our techniques can also be used
to exploit spatial locality of reference in code for shared-memory machines

such as the BBN Butterfly.

2.1 Programming Language

Id Nouveau is a functional language augmented with I-structures, an array
construct borrowed from logic programming languages. The rationale be-
hind this integration of functional and logic programming constructs is to
permit the programmer to define large arrays and matrices incrementally
without incurring the copy overhead of functional arrays. We assume that
the reader is familiar with functional languages; therefore, we will describe
only I-structures. In a functional language, the allocation of storage for an
array is inseparable from the definition of the array elements. This makes
it difficult to write programs in which arrays must be defined incrementally.
I-structures get around this problem by separating the allocation of stor-
age from the definition of the array elements. This is similar to imperative
arrays; however, unlike in imperative arrays, an element of an I-structure
cannot be redefined once it has been given a value. Looked at another
way, I-structures are ‘write-once’ arrays. For the sake of completeness, we
describe the primitives for manipulating two-dimensional I-structures.

matrix(el,e2) The expressions el and e2 must evaluate to positive in-
tegers. A matrix of that size is allocated.

5

A[i1,i2] = e The expression e is evaluated and the resulting value is
stored into A[i1,i2]. If A[i1,i2] has already been written into, a
run-time error occurs.

A[i1,i2] The contents of A[i1,i2] are returned. If A[i1,i2] is unde-
fined, a run-time error occurs.

For a complete description of Id Nouveau, we refer the reader to [5].
Figure 1 shows the Id Nouveau program for the Gauss-Seidel relaxation
method applied to a grid in normal order. In this program, procedure
init-boundary initializes the boundary of the array New. Interior elements
in the new matrix are computed by averaging neighbors, two from the old
matrix and two from the new as illustrated in Figure 2a. The code in italics
specifies the domain decomposition and will be explained later.

2.2 Machine Model

As we stated in the introduction, our techniques work equally well for
shared memory as well as message-passing machines. For the sake of con-
creteness, we will assume a message-passing model similar to that provided
by the Intel iPSC or the NCube. There are n processors in the model, each
of which executes one process?’. We assume that communication between
two processors is independent of the identities of the processors. This is a
reasonable assumption because in most message-passing systems, the time
for packing and unpacking a message dominates the ‘time-of-flight’ of the
message. Thus, the cost of accessing a data item is ‘binary’ - local access is
more efficient than non-local access, but all non-local accesses are equally
expensive.

2.3 Domain Decomposition

To exploit spatial locality, a programmer first decomposes the data in a
manner appropriate for the problem and the architecture. For example,
given an architecture that contains a ring of size S, a good data organi-
zation for executing this version of Gauss-Seidel in parallel is to wrap the

2Strictly speaking, the iPSC permits multiple processes to execute on a processor but
we can take that into account simply by increasing the number of processors in our model.

6

columns of the matrix around a ring like a dealer deals cards, one column
to each processor in turn until all of the columns have been distributed.
In general, column j is assigned to processor j mod s. In Figure 1, which
is the Gauss-Seidel program discussed earlier, the italicized portion of the
program specifies the domain decomposition. Parallelism in this program
is along a wavefront (see Figure 2b).

Procedure GS-iteration(Old:column) : column
Let New = matrix(N,N) : column in

init—boundary New;
for j =2 to N-1do
fori=2to N-1do
Newli, j] = ¢ x (Newl[i—1, j] + Newl[i, j—1] +
Old[i+1, j] + Oldfi, j+1]);
return New

Figure 1: Sequential version of Gauss-Seidel Iteration

In general, domain decomposition is specified as follows. Variables may
be mapped to either a single processor (a:P1) or to all processors (a:ALL).
This processor is said to own the variable. Array mappings consist of three
functions:

Map Given the indices of an array reference, map computes the processor
on which the element resides.

Local Given the indices of a reference, local computes the location of the
reference in the processor on which it resides.

Alloc Given the subscript ranges for the original array, allocate an appro-
priately sized local array.

The owner of an array element is the processor to which it is mapped.
For example, the wrapped columns discussed earlier are defined as:

Column = <col-map, col-local, col-alloc>

Col-map(i, j) = j mod s

Col-local(i, j) = (i-1)x N/s + (j div s)
Col-alloc(N, N) = matrix(N, N/S)

[0 - 01d values
O - New Values \
(a) Data Dependencies (b) Wavefront

Figure 2: Wavefront Program Data Dependencies

Our prototype compiler accepts programs such as the one in Figure 1
as input. Our goal is to produce C code for the iPSC/2 that does as well as
a handwritten program. For the purpose of discussion, Figure 3 contains
a handwritten version of Gauss-Seidel written in pseudo-Id with explicit
message passing constructs. The matrix is wrapped by column around a
ring of size S. The complexity of this program is caused by the need to
reduce the number of message exchanged between neighboring processors.
Values from the old matrix are sent a column at a time to the left. To
exploit wavefront parallelism, it is necessary to pipeline the computation
and communication of the new values. To accomplish this, we compute a
block of new values and send the block in one message to the right. The
best block size depends on the size of the matrix.

In the remainder of the paper, we discuss how a compiler can generate
the code similar to that of Figure 3 from the program of Figure 1.

8

LEFT = (p—1) mod s;
RIGHT = (p+1) mod s;

Procedure GS—iteration(Old)
Let New = matrix(N, N/S)
rnewvalues = vector[blksize]
snewvalues =vector[blksize] in

init—boundary(New);
{ For every column residing in this process }
forj= 1toN/S do
{ Send column j of Old values to the LEFT
and receive column j+1 of Old values
from the RIGHT }
send(Old[1..N, j], LEFT);
t[1..N] = receive(Old[1..N, j+1], New);

{ The new values for column j are computed
and communicated in blocks of size blksize }
for k = 0 to N/blksize do
{ Receive a block of new values for column j—1 }

rnewvalues[1..blksize] = receive(snewvalues[1..blksize],
LEFT);
{ Compute a block of new values for column j }
for i = kxblksize + 2 to min((k+1)xblksize+1, n—1) do
Newl[i, j] = ¢ x (rnewvalues[i mod blksize] +
Newl[i—1, j] + t[i] + Old[i+1, j]);
snewvalues[i mod s] = New[i,j];
{ send these values to the RIGHT }
send(snewvalues[1..blksize], RIGHT);

return(New);

Figure 3: Handwritten version of Gauss-Seidel iteration for a non-boundary
processor, p

3 Code Generation

We first discuss run-time resolution which is a simple but fairly ineflicient
implementation. Next, we show how this code can be improved by partial
evaluation at compile-time - the resulting code generation strategy is called
compile-time resolution. We also point out some connections between this
problem and the problem of code generation for languages with overloaded
operators.

3.1 Run-time Resolution

Our first method, called run-time resolution, produces the same program
for each processor. Three simple rules drive the generation of code.

1. The owner of a variable or array element computes its value.

2. The owner of a variable or array element is responsible for communi-
cating its value to any processor that requires it.

3. Every statement is examined by every processor to determine its role
(if any) in the execution of the statement.

For example, in the program of Figure 4a, the first statement will be
executed by processor P1 since the identifier a is mapped onto processor P1.
Similarly, the expression on the right hand side of the third statement is
computed by P3, with P1 and P2 participating only in the communication of
the values of a and b respectively. Coerce sends a value from the processor
that owns it to the processor that needs it. These processors may be the
same, in which case just a read is performed.

Figure 4b shows the code generated by the run-time resolution strategy
from the program of Figure 4a. The code in Figure 4b is executed by
all processors. mynode is a procedure that is executed by a processor to
determine its own identity.

3.2 Compile-time Resolution

Run-time resolution inserts many extra lines of code into each processor.
In our example, none of the tests that follow the first coercion in the code

10

a:P1, b:P2, c¢:P3 P1, P2, P3:

a:=5; if P1 = mynode() then a := 5;
b:=T; if P2 = mynode() then b := 7,
c:=a + b; t1 := coerce(a, P1, P3);

t2 := coerce(b, P2, P3);
if P3 = mynode() then t3 := t1 + t2;
if P3 = mynode() then c := t3;

(a) Sequential code (b) Code generated by run-time resolution

1= {P3} <P1, P2, P3>

c + {P3} <Pi, P2, P3>
{P3} <P3>
a b
{p1, P3} <P1, P3> {p2, P3} <P2, P3>

(c) Evaluators and participants computations

P1: P2: P3:

a = 5; b:=T, tl := receive(a, P1);

send(a, P3); send(b, p3); t2 := receive(b, P2);
t3 := t1 4 t2;

(d) Code generated by compile-time resolution

Figure 4: Simple example

11

will evaluate to true for processor P1. Techniques similar to those used
to resolve overloading in conventional compilers can be used to generate
less extraneous code. When compiling languages like Lisp, an overloaded
operator like + is usually compiled into a case statement that tests the type
of the arguments and dispatches to the appropriate type specific addition
routine. The naive code generated by this strategy can be improved con-
siderably if the compiler knows the types of the arguments or the result
(for example, through type declarations) since the case statement can be
replaced by a dispatch to the relevant addition routine. This kind of code
improvement through ‘specialization’ of generic code can be used profitably
in our context as well. Our compiler uses mapping information to eliminate
many tests by specializing, for each processor, the ‘generic’ code produced
by the run-time resolution strategy (which runs on all processors). This
approach is called compile-time resolution.

When generating code for each processor using compile-time resolution,
the compiler examines each statement to determine the processor’s role in
the evaluation of that statement. This is done in two stages. The com-
piler uses conventional abstract syntax trees as the internal representation
of programs. In the first stage, the user’s mapping information is prop-
agated through the program’s abstract syntax tree. In the second stage,
this information is used to generate code. Each node of the abstract syntax
tree has two attributes named evaluators and participants. The evaluators
of a node in the abstract syntax tree is the set of processors that perform
the operation defined by the node. The participants of a node, n, in the
abstract syntax tree is the set of processors that must participate in the
evaluation of some node in the subtree rooted at the node, i.e. the union
of the evaluators of the nodes in the subtree rooted at n.

Figure 4c shows these sets for the our simple example; the evaluators
are enclosed in braces and the participants are enclosed in angle brackets.
In this simple example, only processor names appear in the evaluators and
participants. This is not necessarily the case since the mapping for an
array reference will be an equation that may include program variables.
For example, if a matrix, A, is declared to be mapped by column, the
evaluators for the reference, A[i, j+1], would include (j+1) mod S.

The set of participants is used to determine the evaluators for some
types of nodes, such as conditionals. The union of the participants of
the then-branch and else-branch defines the evaluators for a conditional

12

expression. The participants for a function definition is also a function.
To determine the evaluators of a particular function call, the participants
function is symbolically applied to the actual parameters of the call.

The information collected in the propagation stage is used to generate
code. Given a processor name and a tree node, the compiler tries to de-
termine if the processor is a member of the evaluators of the node. Three
outcomes are possible: true, false, and inconclusive. True means that the
processor must perform the operation defined by the node. False means
it need not. Inconclusive means that run-time resolution must be applied
because the compiler cannot analyze the mappings sufficiently. This evalu-
ation will require techniques such as subscript analysis that are commonly
used in vectorizing compilers. The code generation phase produces code
for each processor by walking the annotated abstract syntax tree while ap-
. plying this evaluation scheme at each node. Figure 4d contains the code
that this method generates for our simple example.

Returning to the Gauss-Seidel example discussed earlier, Figure 5 con-
tains the code that would be generated by compile-time resolution for a
non-boundary processor p. Since the goal of compile-time resolution is to
have each processor participate in only those computations for which it
has data, it is important to ensure that a processor executes only required
loop iterations, rather than go through all iterations looking for work. To
compute the required set of iterations for a given processor, we set the
equations in the evaluators equal to the processor name and solve for the
loop variable.

4 Optimizations

While Figure 5, the end result of compile-time resolution, resembles the
handwritten program (Figure 3) to some extent, there are important dif-
ferences in the treatment of messages in the two programs. By combining
messages that have the same source and destination processors, the hand-
written version attempts to cut down on the number of messages that must
be sent - for example, values in the Old column are sent through a single
send command, rather than one element at a time. This is useful because
of the relatively high start-up cost of messages on the iPSC/2. On the
other hand, combining messages may impact adversely on parallelism - for

13

Procedure GS—iteration(Old)
Let New = col—alloc(n, n) in

init—boundary(New);
for j=p to N by Sdo
fori=1to N do
send(Old[col—local(i, j)], (j—1) mod S);

fori=1to Ndo

t1 = New[col—local(i—1, j)];

t2 = receive(Newli, j—1], (j—1) mod S);

t3 = Old[col—local(i+1, j)];

t4 = receive(Old[i, j+1], (j4+1) mod S);

New[col—local(i, j)] = ¢ x (t1 + t2 + t3 + t4);
fori =1to Ndo

send(New][col—local(i, j)], (j+1) mod S);

return(New)

Figure 5: Gauss-Seidel code by compile-time resolution for a non-boundary
processor

14

example, if the New column is passed only after all of its elements have
been computed, there is no parallelism in the execution of the program.
Thus, communication and computation have to be pipelined in order to
achieve the best tradeoff between minimizing the number of messages and
exploiting parallelism. The handwritten version achieves this by sending
the new elements in blocks of size 8, a compromise between sending them
one at a time and sending them all at once.

How important are these optimizations? To understand this issue, we
performed a set of preliminary experiments to determine how the code gen-
erated using run-time and compile-time resolution compares with hand-
written code. Figures 6 and 7 contain graphs of the results for an 128 x 128
integer grid. Compared to the handwritten version, the run-time resolution
code performs rather poorly. This was to be expected because it exchanges
. many more messages than the handwritten code * and messages on the In-
tel iPSC/2 are very expensive. The relatively flat shape of the curve arises
from the fact that there is no parallelism being exploited in this program.
The compile-time implementation is more encouraging but still bad. It ex-
changes as many messages as the run-time version but each processor only
participates in those iteration for which it has data. However, it does not
exploit any parallelism either. Figure 6 (Optimized I) shows the improve-
ment that results from combining all the values of the Old column into a
single message. The most impressive gains are demonstrated by Figure 6
(Optimized II) which shows the improvements due to pipelining of compu-
tation and communication. In this program, a new value is sent as soon
as it is computed. This leads to a lot of message traffic. By ‘blocking’
these values, we obtain the curve of Figure 6 (Optimized III) which has the
best performance - the block size is a compromise between decreasing the
number of messages and exploiting parallelism.

The effect of these optimizations can be obtained through standard
transformations on the code produced by compile-time resolution. The
techniques are vectorization, loop jamming, and strip mining (see [6]). Vec-
torizing the send’s of the elements of the Old column has precisely the effect
of combining all these messages into a single message. This is a standard
transformation based on recognizing that the old values are not changed

331,752 messages for the run-time resolution code versus 2142 messages for the hand-
written code.

15

. Run-time Resolution
20
. Compile-time Resolution
15
Time -
(sec.) .
10
5_
0II|||||||||||Il|lll|l|l|||||lll|
0 4 8 12 16 20 24 28 32

Number of Processors

Figure 6: Effect of Compile-time and Run-time Resolution

16

Time
(sec.)

5.0

4.5

4.0

3.5 1

3.0

2.0

1.5

1.0

0.5

Optimized 1

Optimized II

Handwrittem Optimized III

0.0

LI B B NN B NN BN NN SN BEN SO SN SN B BN BN NN SN R NN SN SR B (N BN BN NN NN SR B B |

0 4 8 12 16 20 24 28 32

Number of Processors

Figure 7: Effect of Message-Passing Optimizations

17

during the execution of the loop. Next, applying loop jamming to the com-
putation and communication loops in the vectorized compile-time version
yields a program in which new values are sent off as soon as they are com-
puted. The final optimization is to stripmine this loop, resulting in the
desired program. One issue that is still under study is the determination of
the block size to obtain the best trade-off between minimizing message traf-
fic and exploiting parallelism. Appendix A has a more complete discussion
of the effects of these transformations, including the resulting programs.

We plan to automate these transformations in the next phase of our
compiler development. In addition to these transformations, we will also
include transformations to align the order of the computation with the
mapping of the data. For example, if the sequential version of Gauss-Seidel
had had the i and j-loops reversed then generated code would not have
shown any parallelism, so loop interchange would be required.

5 Extensions

This section briefly presents several extensions we plan to incorporate into
our system: mapping polymorphism, higher order functions, dynamically
spawned processes, and load balancing.

5.1 Mapping Polymorphism

One disadvantage of the system described above is that a procedure must
have a fixed mapping - if the programmer wants two different mappings
for a procedure, he must make two copies of the code of procedure. This
is, of course, analogous to the situation in ordinary type specification -
a PASCAL programmer who wants to sort both integer lists and floating
point lists must write two procedures with similar code but different type
specifications. To get around this problem, we can introduce mapping poly-
morphism by permitting the abstraction of mapping specifications, in much
the same way that abstracting types from procedures yields polymorphic
type systems. The constants include the single processor mappings as well
as the special constant ALL. The type of a function describes the map-
pings of the arguments and the return value along with their conventional
types. A difference arises between the mapping and the conventional view

18

of array. The mapping of an array element depends on which element it is,
i.e. it depends on the values of the indices into the array. Such mappings
may be modeled with a dependent product?. A simple example illustrates
why this is of more than theoretical interest. Consider the identity function
f = Aa: Pl.a and the code fragment

b:P2;
c:P3;

..f(b)...
..f(c)...

Applying compile-time resolution would generate the three processes in
Figure 8.

PL: P2: P3
fpi(a) = a;
receive(templ, P2); .
temp2 = fp;(templ); send(b, P1); send(c,P1);

send(temp2, P2); receive(temp, P1); receive(temp,P1);

receive(temp3, P3);
temp4 = fp;(temp3);
send(temp4, P3);

Figure 8: Code Generated in Absence of Mapping Polymorphism

Even though processes P2 and P3 own the only values used in each of
the function calls, the calls must be performed by processor P1 because f is
defined to take an argument owned by processor P1. If instead we allowed
the polymorphic identity function AP.A¢ : P.a and the code fragment

4The members of a dependent product type x:A}B are the terms <a, b> with acA and
beB[a/x]. The type of the second component may depend on the first component[7].

19

b: P2;
c: P3;

..£(P2)(b)...
..£(P3)(c)...

the generated code (see Figure 9) would exhibit much more parallelism.
Not only can f£(b) and f(c) be done in parallel but also four messages
have been eliminated.

P1: P2: P3:
fpe(a:P2) = a; fps(a:P3) = a;
fpa(b); fps(c)

Figure 9: Code Generated with mapping Polymorphism

We do not as yet understand the full ramifications of mapping polymor-
phism. We believe that there are connections to work done by Lucassen
and Gifford on using mapping specifications to perform alias detection[8].

5.2 Higher Order Functions

Higher order functions are those that may take functions as arguments
and return functions as results. Run-time resolution can handle higher-
order functions without any modifications. To permit good compile-time
resolution, some restrictions must be placed on functions. All functions
passed as an argument to a given function must have:

o the same argument types and return type,
¢ the same argument mappings and return mapping,

e and the same participants function.

Without these restrictions, compile-time analysis may produce code
that is not much better than run-time resolution. To allow functions as

20

return values second order participants functions are needed. We do not as
yet know if these restrictions are overly constraining.

5.3 Dynamically Spawned Processes

Our current scheme is based on a fixed number of processes. We would like
to expand our mapping language to allow the user to specify that a new
process should be allocated for a particular set of data. This would allow
the user to specify some process graph parallelism without needing to be
concerned about process decomposition and synchronization. The code for
the new process will be determined by the data mapped to it, using the
" usual rules. Synchronization is a bit more tricky; any existing process that
owns data required by the new process must participate in the spawning of
the new process, so that its existence and need for data are known.

In addition to user specified dynamically spawned processes, our com-
piler will need to spawn new processes to exploit process graph parallelism.
Since Id Nouveau is a functional language, this kind of parallelism is easy to
detect but we need some metric to determine when spawning a new process
is worth the overhead.

5.4 Load Balancing

A good process decomposition places several processes on one processor
to ensure that when one process needs to wait for a remote reference the
processor running it will have work to do. In addition to hiding mem-
ory latency, having multiple processes on a node facilitates load balancing.
Processes may be shuffled from overloaded to underloaded nodes without
slowing their execution if the data associated with a process is moved along
with the code. We would like to experiment with a simple load balancing
scheme that moves a process and its data together. Preliminary work on
this problem has been done by Fox et al [9] and we are studying their work
to see if it can be adapted to our situation.

21

6 Related Work

Callahan and Kennedy are studying similar techniques for compiling a ver-
sion of FORTRAN 77 that includes annotations for specifying a data de-
composition, for the Intel iPSC/2. In [10] they describe at length a method
quite similar to our run-time resolution. They also discuss how existing
transformations may be used to improve their generated code. Our meth-
ods are equally applicable to FORTRAN.

FORTRAN 77 does not have recursion. If code space is not at a pre-
mium, function calls may be expanded inline. As a result, work on par-
allelizing FORTRAN often does not deal explicitly with functions. In our
setting, inline expansion is not possible since we have recursion. Instead,
compile-time resolution must perform interprocedural analysis to determine
which processes need to participate in a particular function call.

Koelbel, Mehrotra, and Van Rosendale [11] at Purdue are translating
Blaze, a functional language with a forall construct, into an extension, E-
Blaze, that includes constructs for explicit process creation, data storage
layout, and interprocessor communication and synchronization. They use
programmer supplied data decomposition information to schedule forall
loops to exploit spatial locality.

7 Conclusions

In this paper, we presented a compilation strategy for multiprocessors that
exploits locality of reference. The ideas in this paper are applicable to
both shared-memory processors as well as message-passing processors. We
discussed an implementation on the Intel iPSC/2.

8 Acknowledgements

Many thanks to Laurie Hendren for typesetting the graphs and to Tom
Coleman for looking at our programs.

22

A Optimizing the Compile-time Resolution
Code

Section 4 discusses the optimizations we applied to the compile-time res-
olution code to reduce message traffic and to pipeline computation and
communication. In this appendix, we present each of the four versions of
the wavefront iteration code with an explaination of the transformation
applied and its effects. The programs in this appendix are written in C for
the iPSC/2. is_read and is_write are macros from our run-time system
that perform I-structure reads and writes.

A.1 Compile-time resolution code

" The code shown here was generated using the compile-time resolution rules
for a non-boundary processor p.

istructure wavefront (0ld, n)
istructure a;
int n, p;

{ int ¢, i, j, tmpil, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, left, right;
istructure New;

left = p - 1;
right = p + 1;

c=1;
New = column_alloc(n, n);
init_boundary(New, n, p);

for (j=p <=n-3; j = j + 5) <
for (i=2; i <= n-1; i++)
{ tmpl = is_read(0ld, column_local(i, j+1));
csend(p, &tmpl, sizeof(int), left, 0); }

for (i=2; i <= n-1; i++)
{ tmp2 = is_read(New, column_local(i-1, j+1));
crecv(right, &tmp3, sizeof(int));
tmp4 = is_read(Dld, column_local(i+i, j+1));
crecv(left, &tmp5, sizeof(int));

23

tmp6 = ¢ * (tmp2 + tmp3 + tmpd + tmp5);
is_write(New, column_local(i, j+1), tmp6); }

for (i=2; i <= n-1; i++)
{ tmp7 = is_read(New, column_local(i, j+1));
csend(p, &tmp7, sizeof(int), right, 0); } }

return(New); }

A.2 Applying Vectorization

In the original compile-time resolution version, each element of a column of
the Old matrix is sent to the left in its own message. It is straightforward
to recognize that these sends may be vectorized, since the Old values do not
change during the computation. Vector sends and receives are inserted and
every send and receive of an old value is converted to access these vectors.

istructure wavefront (0ld, n)
istructure a;
int n;

{ int ¢, i, j, tmp2, tmp4, tmp5, tmp6, tmp7, left, right, *oldvalues;
istructure b;

left = p - 1;
right = p + 1;

c=1;
New = column_alloc(n, n);
init_boundary(New, n, p);
oldvalues = (int *) calloc(n, sizeof(int));

for (j=p; j <=n-3; j =j+5S) {
/* £ill in the vector with 0ld values and send it. */
for (i=2; i <= n-1; i++)
oldvalues[i) = is_read(0ld, column_local(i, j+1));
csend(p, oldvalues, sizeof(int)*n, left, 0);

/* Recieve a column of 0ld values */
crecv(right, oldvalues, sizeof(int)*n);

24

for (i=2; i <= n-1; i++)
{ tmp2 = is_read(New, column_local(i-1, j+1));
tmp4 = is_read(0ld, column_local(i+i, j+1));
crecv(left, &tmp5, sizeof(int));
/* Read 01d value from the received column */
tmp6 = ¢ * (tmp2 + oldvalues[i] + tmp4 + tmp5);
is_write(New, column_local(i, j+1i), tmp6); }

for (i=2; i <= n-1; i++)
{ tmp7 = is_read(New, column_local(i, j+1));
csend(p, &tmp7, sizeof(int), right, 0); } }

return(New); }

A.3 Applying Loop Jamming

As discussed in section 4, the vectorized version is significantly faster but
still exhibits no parallelism. This arises from the fact that every element
of a New column is computed before any of them are sent. Pipelining the
computation and communication of the elements in a column is achieved
by applying loop jamming to the computation and communication loops.

istructure wavefront (0ld, n)
istructure a;
int n;

{ int ¢, i, j, tmp2, tmp4, tmp5, tmp6, tmp7, left, right, *oldvalues;
istructure b;

left = p - 1;
right = p + 1;

c=1;
New = column_alloc(n, n);
init_boundary(New, n, p);
oldvalues = (int *) calloc(n, sizeof(int));

25

for (j=p ; j <=n-3; j =3 +5s) {
for (i=2; i <= n-1; i++)
oldvalues[i] = is_read(0ld, column_local(i, j+1));
csend(p, oldvalues, sizeof(int)#*n, left, 0);

crecv(right, oldvalues, sizeof(int)#n);
/* Pipeline the computation of New[i, j] with its
communication to the left */
for (i=2; i <= n-1; i++)

{ tmp2 = is_read(New, column_local(i-1, j+1));
tmp4 = is_read(0ld, column_local(i+l, j+1));
crecv(left, &tmp5, sizeof(int));
tmp6 = ¢ * (tmp2 + oldvalues[i] + tmp4 + tmp5);
is_write(New, column_local(i, j+1), tmp6);

tmp7 = is_read(New, column_local(i, j+1));
csend(p, &tmp7, sizeof(int), right, 0); 1} }

return(New); }

A.4 Applying Strip Mining

The final optimization, strip mining, further reduces message traffic without
nullifying the effects of pipelining. Rather than sending each New value as
it is computed, a block of New values is computed and then sent in a single
message. The transformation necessary to achieve this is strip mining. The
outer-loop (k-loop) steps through a column in blocks while the inner-loop
(i-loop) processes each element in a block. We use two arrays, snewvalues
and rnewvalues, to hold the blocks of communicated values to make the
code easier to follow. One would suffice.

istructure wavefront (014, n)
istructure a;
int n;

{ int ¢, i, j, k, tmp2, tmp4, tmp6, left, right, *oldvalues,

snewvalues[blksize], rnewvalues[blksize];
istructure b;

26

left = p - 1;
right = p + 1;

c=1;
New = column_alloc(n, n);
init_boundary(New, n, p);
oldvalues = (int *) calloc(n, sizeof(int));

for (j=0; j <=n-3; j = j +58) {
for (i=2; i <= n-1; i++)
oldvalues[i] = is_read(01d, column_local(i, j+1));
csend(p, oldvalues, sizeof(int)#*n, left, 0);

crecv(right, oldvalues, sizeof(int)#*n);
/* Walk through column j in blocks of size blksize */
for (k=0; k <= n/blksize; k++) {
/* Receive a block of newvalues */
crecv(left, rnewvalues, sizeof(int)*blksize);
for (i=k*blksize+2; i <= min((k+1)#*blksize+1l, n-1); i++)
{ tmp2 = is_read(New, column_local(i-1, j+1));
tmp4 = is_read(0ld, column_local(i+i, j+1));
tmp6 = ¢ * (tmp2 + oldvalues[i] + tmp4 + rnewvalues[iYblksize]);
is_write(New, column_local(i, j+1), tmp6);

snewvalues[i%blksizel = is_read(New, column_local(i, j+1)); }
/* Send New values in a block */
csend(p, snewvalues, sizeof(int)#*blksize, right, 0); } }

return(New); }

27

References

[1]
2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Karp, Programming for Parallelism, IEEE Computer, May 1987.

A. Gottlieb et al., The NYU Ultracomputer— Designing an MIMD
Shared Memory Parallel Computer, IEEE Transactions on Computers,
1983.

J. Peir and D. Gajski, Camp: a programming aide for multiproces-
sors, Proceedings of the International Conference on Parallel Processing,
1986.

Arvind, R. Nikhil and K. Pingali, Id Nouveau: Language and Opera-
tional Semantics, CSG Memo, M.I.T., September 1987.

Arvind, R. Nikhil, K. Pingali, I-structures: Data Structures for Parallel
Computing, Proceedings of Workshop on Graph Reduction, Santa Fe,
NM. Springer-verlag LNCS 279 (September 1986).

D. Padua and M. Wolfe, Advanced Compiler Optimizations For Su-
percomputers, Communications of the ACM, December 1986.

R. L. Constable et al, Implementing Mathematics with the Nuprl Proof
Development System, Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

J. Lucassen and D. Gifford, Polymorphic Effect Systems, Proceedings
of the Fifteenth Annual Symposium on Principles of Programming Lan-
guages.

[9] G. Fox et al, Solving Problems on Concurrent Processors, Volume 1,

Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[10] D. Callahan and K. Kennedy, Compiling Programs for Distributed-

Memory Multiprocessors, to appear in The Journal of Supercomputing.

[11] C. Koelbel, P. Mehrotra, and J. Van Rosendale, Semi-Automatic Do-

main Decomposition in Blaze, Proceedings of the International Confer-
ence on Parallel Processing, 1987.

28

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif

