
1

Process Discovery and Conformance Checking Using Passages

W.M.P. van der Aalst

Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tue.nl

H.M.W. Verbeek

Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, The Netherlands.

h.m.w.verbeek@tue.nl

Abstract. The two most prominent process mining tasks are process discovery (i.e., learning a pro-

cess model from an event log) and conformance checking (i.e., diagnosing and quantifying differ-

ences between observed and modeled behavior). The increasing availability of event data makes

these tasks highly relevant for process analysis and improvement. Therefore, process mining is con-

sidered to be one of the key technologies for Business Process Management (BPM). However, as

event logs and process models grow, process mining becomes more challenging. Therefore, we pro-

pose an approach to decompose process mining problems into smaller problems using the notion of

passages. A passage is a pair of two non-empty sets of activities (X,Y) such that the set of direct

successors of X is Y and the set of direct predecessors of Y is X . Any Petri net can be partitioned

using passages. Moreover, process discovery and conformance checking can be done per passage

and the results can be aggregated. This has advantages in terms of efficiency and diagnostics. More-

over, passages can be used to distribute process mining problems over a network of computers.

Passages are supported through ProM plug-ins that automatically decompose process discovery and

conformance checking tasks.

Keywords: process mining, conformance checking, process discovery, distributed computing, busi-

ness process management

Address for correspondence: Wil van der Aalst, Department of Mathematics and Computer Science, Technische Universiteit

Eindhoven, PO Box 513, 5600 MB, Eindhoven, The Netherlands. E-mail: w.m.p.v.d.aalst@tue.nl. WWW: vdaalst.com.

2 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

1. Introduction

The term “Big Data” refers to the spectacular growth of data and the potential economic value such data

has when analyzed using clever algorithms [28, 31]. The exponential growth of event data (e.g., from

2.6 exabytes in 1986 to 295 exabytes in 2007 according to [28]) provides new opportunities for process

analysis. As more and more actions of people, organizations, and devices are recorded, there are ample

opportunities to analyze processes based on the footprints they leave in event logs. In fact, the analysis of

hand-made process models will become less important given the omnipresence of event data. This is the

reason why process mining is one of the “hot” topics in Business Process Management (BPM). Process

mining aims to discover, monitor and improve real processes by extracting knowledge from event logs

readily available in today’s information systems [2].

The starting point for process mining is an event log. Each event in such a log refers to an activity

(i.e., a well-defined step in some process) and is related to a particular case (i.e., a process instance). The

events belonging to a case are ordered and can be seen as one “run” of the process. It is important to

note that an event log contains only example behavior, i.e., we cannot assume that all possible runs have

been observed. In fact, an event log often contains only a fraction of the possible behavior [2].

The growing interest in process mining is illustrated by the Process Mining Manifesto [29] recently

released by the IEEE Task Force on Process Mining. This manifesto is supported by 53 organizations

and 77 process mining experts contributed to it. The active contributions from end-users, tool vendors,

consultants, analysts, and researchers illustrate the significance of process mining as a bridge between

data mining and business process modeling.

Petri nets are often used in the context of process mining. Various algorithms employ Petri nets as

the internal representation used for process mining. Examples are the region-based process discovery

techniques [7, 15, 37, 21, 42], the α algorithm [8], and various conformance checking techniques [9, 33,

34, 36]. Other techniques use alternative internal representations (C-nets, heuristic nets, etc.) that can

easily be converted to (labeled) Petri nets [2].

In this paper, we focus on the following two main process mining tasks:

• Process discovery: Given an event log consisting of a collection of traces (i.e., sequences of

events), construct a Petri net that “adequately” describes the observed behavior.

• Conformance checking: Given an event log and a Petri net, diagnose the differences between the

observed behavior (i.e., traces in the event log) and the modeled behavior (i.e., firing sequences of

the Petri net).

Both tasks are formulated in terms of Petri nets. However, other process notations could be used, e.g.,

BPMN models, BPEL specifications, UML activity diagrams, Statecharts, C-nets, heuristic nets, etc. In

fact, also different types of Petri nets can be employed, e.g., safe Petri nets, labeled Petri nets, free-choice

Petri nets, etc.

Process mining problems tend to be very challenging. There are obvious challenges that also apply

to many other data mining and machine learning problems, e.g., dealing with noise, concept drift, and

the need to explore a large and complex search space. For example, event logs may contain millions

of events. Moreover, there are also some specific problems that make process discovery even more

challenging:

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 3

• there are no negative examples (i.e., a log shows what has happened but does not show what could

not happen);

• due to concurrency, loops, and choices the search space has a complex structure and the log

typically contains only a fraction of all possible behaviors;

• there is no clear relation between the size of a model and its behavior (i.e., a smaller model may

generate more or less behavior although classical analysis and evaluation methods typically assume

some monotonicity property); and

• there is a need to balance between four (often) competing quality criteria (see Section 4): (1) fitness

(be able to generate the observed behavior), (2) simplicity (avoid large and complex models), (3)

precision (avoid “underfitting”), and (4) generalization (avoid “overfitting”).

Process discovery and conformance checking are related problems. This becomes evident when

considering genetic process discovery techniques [32, 17]. In each generation of models generated by

the genetic algorithm, the conformance of every individual model in the population needs to be assessed

(the so-called fitness evaluation). Models that fit well with the event log are used to create the next

generation of candidate models. Poorly fitting models are discarded. The performance of genetic process

discovery techniques will only be acceptable if dozens of conformance checks can be done per second

(on the whole event log). This illustrates the need for efficient process mining techniques.

Dozens of process discovery [2, 7, 8, 13, 15, 20, 21, 23, 27, 32, 37, 40, 42] and conformance checking

[5, 9, 10, 12, 18, 24, 27, 33, 34, 36, 38] approaches have been proposed in literature. Despite the growing

maturity of these approaches, the quality and efficiency of existing techniques leave much to be desired.

State-of-the-art techniques still have problems dealing with large and/or complex event logs and process

models. Therefore, we proposed a divide-and-conquer approach for process mining. This approach uses

a new concept: passages. A passage is a pair of two sets of activity nodes (X,Y) such that X• = Y (i.e.,

the activity nodes in X influence the enabling of the activity nodes in Y) and X = •Y (i.e., the activity

nodes in Y are influenced by the activity nodes in X). The notion of passages will be formalized in terms

of graphs and labeled Petri nets. Passages can be used to decompose process discovery and conformance

checking problems into smaller problems. By localizing process mining techniques to passages, more

refined techniques can be used. Assuming that the event log and process model can be decomposed

into many small passages, substantial speedups are possible. Moreover, passages can also be used to

distribute process mining problems over a network of computers (e.g., a grid or cloud infrastructure).

This paper focuses on the theoretical foundations of process mining based on passages and extends

our earlier conference paper [3] in various respects. For example, the results are generalized to a larger

class of models and different passage partitionings. Moreover, we describe new ProM plug-ins based on

this work and present experimental results.

The remainder is organized as follows. Section 2 introduces various preliminaries (Petri nets, event

logs, etc.). Section 3 defines the notion of passages for arbitrary graphs and analyzes their properties.

Section 4 discusses quality criteria for process mining and introduces the notion of alignments to com-

pute the level of conformance. The notion of passages is used in Section 5 to decompose the overall

conformance checking problem into a set of localized conformance checking problems. Section 6 shows

how the same ideas can be used for process discovery, i.e., after determining the causal structure and

related passages, the overall process discovery problem can be decomposed into a set of local process

4 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

discovery problems. Section 7 shows, using a real-life event log, that dividing the problem into smaller

problems using passages may indeed lead to significant speedups. Section 8 describes some of the ProM

plug-ins that use passages to decompose process mining tasks into smaller tasks handled by conventional

algorithms. Related work is discussed in Section 9. Section 10 concludes the paper.

2. Preliminaries

This section introduces basic concepts related to graphs, Petri nets and event logs.

2.1. Graphs and Paths

First, we introduce basic graphs notations. We will use graphs to represent process models (i.e., Petri

nets) and the causal structure (also referred to as “skeleton”) of processes.

Definition 2.1. (Graph)

A graph is a pair G = (N,E) comprising a set N of nodes and a set E ⊆ N ×N of edges.

For a graph G = (N,E) and n ∈ N , we define preset
G
• n = {n′ ∈ N | (n′, n) ∈ E} (direct

predecessors) and postset n
G
•= {n′ ∈ N | (n, n′) ∈ E} (direct successors). This can be generalized to

sets, i.e., for X ⊆ N :
G
•X =

⋃
n∈X

G
• n and X

G
•=

⋃
n∈X n

G
• . The superscript G can be omitted if

the graph is clear from the context.

Sequences are used to represent paths in a graph and traces in an event log. As defined next, σ1 · σ1
is the concatenation of two sequences and σ↾X is the projection of σ on X , e.g., 〈a, b, c, c, b, a〉↾{a,b}=
〈a, b, b, a〉.

Definition 2.2. (Sequences)

Let A be a set. σ = 〈a1, a2, . . . , an〉 ∈ A∗ denotes a sequence over A of length n. For σ1, σ2 ∈ A∗:

σ1 · σ2 is the concatenation of two sequences, e.g., 〈a〉 · 〈b, c〉 = 〈a, b, c〉. σ↾X is the projection of σ on

X ⊆ A, i.e., ↾X∈ A∗ → X∗ and is defined recursively: (1) 〈 〉↾X= 〈 〉, (2) for a ∈ X and σ ∈ A∗:

(〈a〉 · σ)↾X= 〈a〉 · σ↾X , and (3) for a ∈ A \X and σ ∈ A∗: (〈a〉 · σ)↾X= σ↾X .

A path in a graph is a sequence of nodes connected through edges. We use the notation x
σ:E′#Q
 y to

state that there is a non-empty path σ from node x to node y using edges in E′ not visiting any nodes in

Q.

Definition 2.3. (Path)

Let G = (N,E) be a graph, x, y ∈ N , E′ ⊆ E, and Q ⊆ N . x
σ:E′#Q
 y if and only if σ is a sequence

such that σ = 〈n1, n2, . . . nk〉, k > 1, x = n1, y = nk, for all 1 ≤ i < k: (ni, ni+1) ∈ E′, and for all

1 < i < k: ni 6∈ Q. Derived notations:

• x
E′#Q
 y if and only if there exists a sequence σ such that x

σ:E′#Q
 y,

• nodes(x
E′#Q
 y) = {n ∈ σ | σ ∈ N∗ ∧ x

σ:E′#Q
 y}, and

• for X,Y ⊆ N : nodes(X
E′#Q
 Y) =

⋃
(x,y)∈X×Y nodes(x

E′#Q
 y).

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 5

Consider the graph G = (N,E) in Fig. 2 which is later used to introduce the notion of passages. a
E#Q
 i

holds for Q = {b, d, e, g} because of the path σ = 〈a, c, f, h, i〉. a
E#Q
 i does not hold if Q = {g, h}

because all paths connecting a to i need to visit g or h. If Q = {d, e, g}, then nodes(a
E#Q
 i) =

{a, b, c, f, h, i} because of the two paths connecting a to i not visiting any of the nodes in Q.

2.2. Multisets

Multisets are used to represent the state of a Petri net and to describe event logs where the same trace

may appear multiple times.

B(A) is the set of all finite multisets over some set A. For some multiset b ∈ B(A), b(a) denotes the

number of times element a ∈ A appears in b. Some examples: b1 = [], b2 = [x, x, y], b3 = [x, y, z],
b4 = [x, x, y, x, y, z], b5 = [x3, y2, z] are multisets over A = {x, y, z}. b1 is the empty multiset, b2 and

b3 both consist of three elements, and b4 = b5, i.e., the ordering of elements is irrelevant and a more

compact notation may be used for repeating elements.

The standard set operators can be extended to multisets, e.g., x ∈ b2, b2 ⊎ b3 = b4, and b5 \ b2 = b3.

|b| is the size of multiset b, e.g., |b1| = 0 and |b5| = 6. {a ∈ b} denotes the set with all elements a for

which b(a) ≥ 1.

Let σ = 〈a1, a2, . . . , an〉 ∈ A∗ be a sequence and b = [a1, a2, . . . , an] ∈ B(A) the corresponding

multiset. a ∈ σ if and only if a ∈ b.
∑

a∈σ f(a) =
∑

a∈b f(a) = f(a1) + f(a2) + . . .+ f(an) for some

function f .

Given a function f ∈ A → B and a multiset b ∈ B(A): [f(a) | a ∈ b] denotes the multiset over B

where element f(a) appears
∑

x∈A|f(x)=f(a) b(x) times.

2.3. Petri Nets

Most of the results presented in the paper, can be adapted for various process modeling notations. How-

ever, we use Petri nets to formalize the main ideas and to prove their correctness.

Definition 2.4. (Petri Net)

A Petri net is a tuple PN = (P, T, F) having a finite set of places P , a finite set of transitions T , and a

flow relation F ⊆ (P × T) ∪ (T × P).

Figure 1 shows an example Petri net PN = (P, T, F) with P = {start , c1, . . . , c5, end}, T = {a, b,
. . . , h}, and F = {(start , a), (a, c1), (a, c2), . . . , (h, end)}. The state of a Petri net, called marking, is a

multiset of places indicating how many tokens each place contains. Any M ∈ B(P) is a marking. [start]
is the initial marking shown in Fig. 1. Another potential marking is [c110, c25, c45]. This is the state with

ten tokens in c1, five tokens in c2, and five tokens in c4.

A Petri net PN = (P, T, F) defines a graph (P ∪ T, F). Hence, for any x ∈ P ∪ T ,
PN
• x =

{y | (y, x) ∈ F} (input nodes) and x
PN
• = {y | (x, y) ∈ F} (output nodes). As before, we drop the

superscript if it is clear from the context.

A transition t ∈ T is enabled in marking M , denoted as M [t〉, if each of its input places •t contains

at least one token. Consider the Petri net in Fig. 1 with M = [c3, c4]: M [e〉 because both input places

are marked.

6 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

a

start register

request

b

examine
thoroughly

c

examine
casually

d

check ticket

decide

pay
compensation

reject
request

reinitiate
request

e

g

h

f

end

c1

c2

c3

c4

c5

Figure 1. A Petri net.

An enabled transition t may fire, i.e., one token is removed from each of the input places •t and

one token is produced for each of the output places t• . Formally: M ′ = (M \ •t) ⊎ t• is the marking

resulting from firing enabled transition t in marking M . M [t〉M ′ denotes that t is enabled in M and

firing t results in marking M ′. For example, [start][a〉[c1, c2] and [c3, c4][e〉[c5] for the net in Fig. 1.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. M [σ〉M ′ denotes that there is a set

of markings M0,M1, . . . ,Mn such that M0 = M , Mn = M ′, and Mi[ti+1〉Mi+1 for 0 ≤ i < n. A

marking M ′ is reachable from M if there exists a σ such that M [σ〉M ′. For example, [start][σ〉[end]
for σ = 〈a, b, d, e, g〉.

Definition 2.5. (Labeled Petri Net)

A labeled Petri net PN = (P, T, F, Tv) is a Petri net (P, T, F) with visible transitions Tv ⊆ T . Let

σv = 〈t1, t2, . . . , tn〉 ∈ T ∗
v be a sequence of visible transitions. M [σv ⊲M ′ if and only if there is a

sequence σ ∈ T ∗ such that M [σ〉M ′ and the projection of σ on Tv yields σv, i.e., σv = σ↾Tv
.

If we assume Tv = {a, e, g, h} for the Petri net in Fig. 1, then [start][σv⊲ [end] for σv = 〈a, e, e, e, e, g〉
(i.e., b, c, d, and f are invisible). Note that we consider a very limited form of labeling because any event

in an event log need to deterministically refer to a transition.

In the context of process mining, we always consider processes that start in an initial state and end

in a well-defined end state. For example, given the net in Fig. 1 we are interested in firing sequences

starting in Mi = [start] and ending in Mo = [end]. Therefore, we define the notion of a system net.

Definition 2.6. (System Net)

A system net is a triplet SN = (PN ,Mi,Mo) where PN = (P, T, F, Tv) is a Petri net with visible

transitions Tv, Mi ∈ B(P) is the initial marking, and Mo ∈ B(P) is the final marking.

Given a system net, τ(SN) is the set of all possible visible full traces, i.e., firing sequences starting in

Mi and ending in Mo projected onto the set of visible transitions.

Definition 2.7. (Traces)

Let SN = (PN ,Mi,Mo) be a system net. τ(SN) = {σv | Mi[σv⊲Mo} is the set of visible full traces.

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 7

In the remainder, we will simply refer to such traces as the visible traces of SN . If we assume Tv =
{a, e, f, g, h} for the Petri net in Fig. 1, then τ(SN) = {〈a, e, g〉, 〈a, e, h〉, 〈a, e, f, e, g〉, 〈a, e, f, e, h〉,
. . .}.

Definition 2.8. (Connected)

Let SN = (PN ,Mi,Mo) with PN = (P, T, F, Tv) be a system net. SN is connected if and only if

P ∪ T = nodes({p ∈ Mi}
F#∅
 {p ∈ Mo}) and τ(SN) 6= ∅.

In a connected system net all nodes are on a path from some initially marked place to some place marked

in the final marking. Moreover, there should be at least one trace leading from Mi to Mo (ensured by the

requirement τ(SN) 6= ∅). System nets that have no traces cannot be used for conformance checking and

are not very meaningful from a process discovery point of view. When decomposing a net into passages

we will often assume it is connected, e.g., the connectedness requirement ensures that all nodes end up

in at least one passage in Theorem 5.4.

2.4. Event Log

As indicated earlier, event logs serve as the starting point for process mining. An event log is a multiset

of traces. Each trace describes the life-cycle of a particular case (i.e., a process instance) in terms of the

activities executed.

Definition 2.9. (Trace, Event Log)

Let A be a finite set of activities. A trace σ ∈ A∗ is a finite sequence of activities. L ∈ B(A∗) is an event

log, i.e., a finite multiset of traces.

An event log is a multiset of traces because there can be multiple cases having the same trace. In this

simple definition of an event log, an event refers to just an activity. Often event logs may store additional

information about events. For example, many process mining techniques use extra information such as

the resource (i.e., person or device) executing or initiating the activity, the timestamp of the event, or

data elements recorded with the event (e.g., the size of an order). In this paper, we abstract from such

information. However, the results presented in this paper can easily be extended to event logs with more

information.

An example log is L1 = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2]. L1 contains informa-

tion about 20 cases, e.g., 10 cases followed trace 〈a, e, g〉. There are 10×3+5×3+3×5+2×5 = 70
events in total.

The projection function ↾X (cf. Definition 2.2) is generalized to event logs, i.e., for some event log

L ∈ B(A∗) and set X ⊆ A: L↾X= [σ↾X | σ ∈ L]. For example, L1↾{a,g,h}= [〈a, g〉13, 〈a, h〉7]. Note

that all e and f events have been removed.

3. Passages

To decompose large process mining problems into smaller problems, we partition process models using

the notion of passages introduced in this paper. A passage is a pair of non-empty sets of nodes (X,Y)
such that the set of direct successors of X is Y and the set of direct predecessors of Y is X .

8 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

Definition 3.1. (Passage)

Let G = (N,E) be a graph. P = (X,Y) is a passage if and only if ∅ 6= X ⊆ N , ∅ 6= Y ⊆ N , X
G
•= Y ,

and X =
G
• Y . X is the set of input nodes of P , and Y is the set of output nodes of P . pas(G) is the set

of all passages of G.

Consider the sets X = {b, c, d} and Y = {d, e, f} in Fig. 2 (for the moment ignore the numbers in the

graph). X• = {b, c, d}• = {d, e, f} = Y and X = {b, c, d} = •{d, e, f} = •Y , so (X,Y) is indeed

a passage.

a

b

c

d

e

f

g

h

i

1

1

2

2

2

2

2

2

3

4

5

5

X Y

Figure 2. A graph with five minimal passages: P1 = ({a}, {b, c}), P2 = ({b, c, d}, {d, e, f}), P3 = ({e}, {g}),
P4 = ({f}, {h}), and P5 = ({g, h}, {i}). Passage P2 is highlighted and edges carry numbers to refer to the

minimal passage they belong to.

Definition 3.2. (Passages Operators)

Let P1 = (X1, Y1) and P2 = (X2, Y2) be two passages.

• P1 ≤ P2 if and only if X1 ⊆ X2 and Y1 ⊆ Y2,

• P1 < P2 if and only if P1 ≤ P2 and P1 6= P2,

• P1 ∪ P2 = (X1 ∪X2, Y1 ∪ Y2),
• P1 ∩ P2 = (X1 ∩X2, Y1 ∩ Y2),
• P1 \ P2 = (X1 \X2, Y1 \ Y2),
• P1 ⊲ P2 if and only if Y1 ∩X2 6= ∅, and

• P1#P2 if and only if (X1 ∩X2) ∪ (Y1 ∩ Y2) = ∅.

P1 ⊲ P2 means that P2 follows P1, i.e., an output node of P1 is an input node of P2. Two passages P1

and P2 are called disjoint if P1#P2. Consider the following two concrete passages in Fig. 2: P4 =
({f}, {h}) and P5 = ({g, h}, {i}). P4 ⊲ P5 because node h is an output node of P4 and an input node

of P5. P4#P5 because ({f} ∩ {g, h}) ∪ ({h} ∩ {i}) = ∅.

Lemma 3.3. (Relating Passages)

Let G = (N,E) be a graph with passages P1 = (X1, Y1) ∈ pas(G) and P2 = (X2, Y2) ∈ pas(G).
• P3 = P1 \ P2 is a passage if P3 6= (∅, ∅),
• P4 = P2 \ P1 is a passage if P4 6= (∅, ∅),
• P5 = P1 ∩ P2 is a passage if P5 6= (∅, ∅), and

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 9

• P6 = P1 ∪ P2 is a passage.

Proof:

Let P3 = (X3, Y3) = P1 \ P2, P4 = (X4, Y4) = P2 \ P1, P5 = (X5, Y5) = P1 ∩ P2, and P6 =
(X6, Y6) = P1 ∪ P2 as sketched in Fig. 3(a).

Assume P3 6= (∅, ∅). Remains to prove that ∅ 6= X3 ⊆ N , ∅ 6= Y3 ⊆ N , X3• = Y3, and X3 = •Y3.

(Recall that X3 = X1 \X2 and Y3 = Y1 \ Y2.)

• For any x ∈ X3 there is at least one edge (x, y′) ∈ E because x ∈ X1 and P1 is a passage. For all

such edges: y′ ∈ Y3 because y′ ∈ Y1 (x ∈ X1 and P1 is a passage) and y′ 6∈ Y2 (because P2 is a

passage and x 6∈ X2). Note that if (x, y′) ∈ E, x ∈ X3, and y′ ∈ Y2, we find a contradiction (P2

cannot be a passage without x as input node). Hence, ∅ 6= x• ⊆ Y3 for x ∈ X3 which implies that

X3• ⊆ Y3.

• For any y ∈ Y3 there is at least one edge (x′, y) ∈ E because y ∈ Y1 and P1 is a passage. For all

such edges: x′ ∈ X3 because x′ ∈ X1 (y ∈ Y1 and P1 is a passage) and x′ 6∈ X2 (because P2 is a

passage and y 6∈ Y2). Hence, ∅ 6= •y ⊆ X3 for y ∈ Y3 which implies that •Y3 ⊆ X3.

• Since X3• ⊆ Y3, •Y3 ⊆ X3, all nodes in X3 have an outgoing edge, and all nodes in Y3 have an

incoming edge, we conclude: X3• = Y3, and X3 = •Y3. Hence, P3 = P1 \ P2 is a passage.

In a similar fashion it can be shown that P4 = P2 \ P1 is a passage if P4 6= (∅, ∅).

Assume P5 6= (∅, ∅). Remains to prove that ∅ 6= X5 ⊆ N , ∅ 6= Y5 ⊆ N , X5• = Y5, and X5 = •Y5.

(Recall that X5 = X1 ∩X2 and Y5 = Y1 ∩ Y2.)

• For any x ∈ X5 there is at least one edge (x, y′) ∈ E because x ∈ X1 and P1 is a passage (and

x ∈ X2 and P2 is a passage). For all such edges: y′ ∈ Y5 because y′ ∈ Y1 (x ∈ X1 and P1 is

a passage) and y′ ∈ Y2 (x ∈ X2 and P2 is a passage). Hence, ∅ 6= x• ⊆ Y5 for x ∈ X5 which

implies that X5• ⊆ Y5.

• For any y ∈ Y5 there is at least one edge (x′, y) ∈ E because y ∈ Y1 and P1 is a passage (and

y ∈ Y2 and P2 is a passage). For all such edges: x′ ∈ X5 because x′ ∈ X1 (y ∈ Y1 and P1 is

a passage) and x′ ∈ X2 (y ∈ Y2 and P2 is a passage). Hence, ∅ 6= •y ⊆ X5 for y ∈ Y5 which

implies that •Y5 ⊆ X5.

• Since X5• ⊆ Y5, •Y5 ⊆ X5, all nodes in X5 have an outgoing edge, and all nodes in Y5 have an

incoming edge, we conclude: X5• = Y5, and X5 = •Y5. Hence, P5 = P1 ∩ P2 is a passage.

In a similar fashion it can be shown that P6 = P1 ∪ P2 is a passage. There is no need to require

P6 6= (∅, ∅) because the union of two passages will always contain edges. ⊓⊔

Definition 3.4. (Edge Representation of Passages)

Let G = (N,E) be a graph. For any P = (X,Y) with X ⊆ N and Y ⊆ N : P̂ = E ∩ (X × Y) denotes

the set of edges of P .

Sets of edges can be used to fully characterize passages. In fact, any passage P = (X,Y) with edges

Z = P̂ is uniquely defined by (1) X , (2) Y , and (3) Z separately. If X is known, then we can derive

Y = X• and Z = E ∩ (X × Y) knowing that P is a passage. If Y is known, then X = •Y and

Z = E ∩ (X × Y). If Z is known, then X = {x | (x, y) ∈ Z} and Y = {y | (x, y) ∈ Z} because there

cannot be input or output nodes without corresponding edges.

10 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

X1

X2

X5

X3

X4

Y1

Y2

Y5

Y3

Y4

X1

X2

Y1

Y2

(a) (b)

Figure 3. Understanding the fabric of passages: (a) only edges between pairs (X3, Y3), (X4, Y4), and (X5, Y5)
are possible if (X1, Y1) and (X2, Y2) are passages, and (b) passages are composed of minimal passages. Note that

input nodes Xi may overlap with output nodes Yj but this is not shown to avoid cluttering the diagrams.

Lemma 3.5. (Relating Passages in Terms of Edges)

Let G = (N,E) be a graph with passages P1, P2 ∈ pas(G) and let P3 = P1 \ P2, P4 = P2 \ P1,

P5 = P1 ∩ P2, and P6 = P1 ∪ P2. The following properties hold:

• P̂3 = P̂1 \ P̂2,

• P̂4 = P̂2 \ P̂1,

• P̂5 = P̂1 ∩ P̂2, and

• P̂6 = P̂1 ∪ P̂2.

Proof:

Note that the naming of passages is similar to Fig. 3(a). As shown in the proof of Lemma 3.3: X3• = Y3,

X3 = •Y3, X4• = Y4, X4 = •Y4, and X5• = Y5, X5 = •Y5. Moreover, X3, X4, and X5 partition

X6, and Y3, Y4, and Y5 partition Y6. These properties also hold when one of more sets are empty, e.g.,

if X3 = ∅, then still X3• = ∅• = ∅ = Y3. This implies that any edge in E ∩ (X6 × Y6) belongs to

E ∩ (X3 × Y3), E ∩ (X4 × Y4), or E ∩ (X5 × Y5) as sketched in Fig. 3(a). The partitioning of the edges

over these three sets can be used to prove the properties listed. ⊓⊔

Corollary 3.6. (Comparing Passages in Terms of Edges)

Let G = (N,E) be a graph with passages P1, P2 ∈ pas(G). The following properties hold:

• P1 ≤ P2 if and only if P̂1 ⊆ P̂2,

• P1 < P2 if and only if P̂1 ⊂ P̂2, and

• P1#P2 if and only if P̂1 ∩ P̂2 = ∅.

To decompose process mining problems, we aim to partition a process model into smaller models using

the notion of passages. Therefore, we define the notion of a passage partitioning. Consider for example

the five passages shown in Fig. 2. The edges in Fig. 2 have numbers corresponding to the passage

they belong to, e.g., edges (a, b) and (a, c) have a label “1” showing that they belong to passage P1 =
({a}, {b, c}). Passages {P1, P2, P3, P4, P5} in Fig. 2 form a passage partitioning because the passages

are pairwise disjoint and together they cover all edges.

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 11

Definition 3.7. (Passage Partitioning)

Let G = (N,E) be a graph. {P1, P2, . . . , Pn} is a passage partitioning if and only if

1. P1, P2, . . . , Pn ∈ pas(G) are passages,

2. for all 1 ≤ i < j ≤ n: Pi#Pj , and

3. E =
⋃

1≤i≤n P̂i.

Consider the graph in Fig. 2 and P6 = P1 ∪ P2 = ({a, b, c, d}, {b, c, d, e, f}) and P7 = P3 ∪ P4 ∪ P5 =
({e, f, g, h}, {g, h, i}). P6 and P7 are passages because the union of passages is guaranteed to be a

passage (cf. Lemma 3.3). {P6, P7} is a passage partitioning because P6#P7 and P̂6∪ P̂7 = E. As Fig. 4

shows, relations between passages in a passage partitioning can be visualized using the follows relation.

P1 P2

P3

P4

P5 P6 P7

(a) (b)

Figure 4. Two graphs based on the follows relation (⊲) showing dependencies between passages in a passages

partitioning, e.g., P2 ⊲ P4 because Y2 ∩X4 = {f} 6= ∅.

A passage partitioning {P1, P2, . . . , Pn} defines an equivalence relation on the edges in a graph:

(x1, y1) ∼ (x2, y2) if and only if there is a Pi such that {(x1, y1), (x2, y2)} ⊆ P̂i. It is easy to see that ∼
is reflexive (i.e., (x, y) ∼ (x, y)) , symmetric (i.e., (x1, y1) ∼ (x2, y2) if and only if (x2, y2) ∼ (x1, y1)),
and transitive (i.e., (x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3) implies (x1, y1) ∼ (x3, y3)). Given

passage partitioning {P1, P2, P3, P4, P5} in Fig. 2: (b, d) ∼ (b, e) ∼ (b, f) ∼ (c, f) ∼ (d, d) ∼ (d, e),
i.e., the arcs having label “2” form an equivalence class.

To prove that a passage partitioning always exists we introduce the notion of minimal passages. A

passage is minimal if it does not “contain” a smaller passage.

Definition 3.8. (Minimal Passage)

Let G = (N,E) be a graph with passages pas(G). P ∈ pas(G) is minimal if there is no P ′ ∈ pas(G)
such that P ′ < P . pasmin(G) is the set of minimal passages.

The five passages in Fig. 2 are minimal. Note that each edge belongs to precisely one minimal passage.

In fact, a minimal passage is uniquely identified by any of its elements as is shown next.

Lemma 3.9. Let G = (N,E) be a graph and (x, y) ∈ E. There is precisely one minimal passage

P(x,y) = (X,Y) ∈ pasmin(G) such that x ∈ X and y ∈ Y .

Proof:

Construct P(x,y) = (X,Y) as follows. Initially: X := {x} and Y := {y}. Then repeat X := X ∪ •Y
and Y := Y ∪ X• until X and Y do not change anymore. The algorithm will end because there are

finitely many nodes. When it ends, X = •Y and Y = X• . Hence, P(x,y) = (X,Y) is passage.

No unnecessary elements are added to X and Y , so (X,Y) is minimal and there is precisely one such

minimal passage for (x, y) ∈ E.

12 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

To prove the latter one can also consider all passages Q = {P1, P2, . . . , Pn} that contain (x, y). The

intersection of all such passages
⋂
Q contains edge (x, y) and is again a passage because of Lemma 3.3.

Hence,
⋂

Q = P(x,y). ⊓⊔

For any {(x, y), (x′, y), (x, y′)} ⊆ E: P(x,y) = P(x′,y) = P(x,y′), i.e., P(x,y) is uniquely determined by

x and P(x,y) is also uniquely determined by y. The set of all minimal passages pasmin(G) = {P(x,y) |
(x, y) ∈ E} forms a passage partitioning.

Corollary 3.10. (Any Graph Has a Passage Partitioning)

Any graph G = (N,E) has a passage partitioning, e.g., the set of minimal passages pasmin(G).

Later we will use this corollary to partition process mining problems into smaller problems. To control

the granularity of composition it is important that passages can be combined to form larger passages (cf.

Lemma 3.3) or split into minimal passages as shown by the following corollary.

Corollary 3.11. (Passages are Composed of Minimal Passages)

Let G = (N,E) be a graph. For any passage P ∈ pas(G), there exists a set of minimal passages

{P1, P2, . . . , Pn} ⊆ pasmin(G) such that P = P1 ∪ P2 ∪ . . . ∪ Pn.

Figure 3(b) illustrates the “fabric” of passages and the role of minimal passages. The figure shows nodes

as black dots and a few example edges are shown (just a sketch). The smaller areas correspond to minimal

passages. Passage P1 = (X1, Y1) is composed of 8 minimal passages, P2 = (X2, Y2) is composed of 7

minimal passages. P5 = P1∩P2 is composed of 3 minimal passages shared by P1 and P2. P6 = P1∪P2

is composed of 12 minimal passages. Any edge belongs to precisely one minimal passage. Any node

on the left-hand side (X1 ∪X2) and any node on the right-hand side (Y1 ∪ Y2) belongs to precisely one

minimal passage. Although not shown, note that the same node may appear on both sides.

4. Conformance Checking

Conformance checking techniques investigate how well an event log L ∈ B(A∗) and a system net SN =
(PN ,Mi,Mo) fit together. Note that the process model SN may have been discovered through process

mining or may have been made by hand. In any case, it is interesting to compare the observed example

behavior in L and the potential behavior of SN .

Conformance checking can be done for various reasons. First of all, it may be used to audit processes

to see whether reality conforms to some normative or descriptive model [6]. Deviations may point to

fraud, inefficiencies, and poorly designed or outdated procedures. Second, conformance checking can be

used to evaluate process discovery results. In fact, genetic process mining algorithms use conformance

checking to select the candidate models used to create the next generation of models [32].

There are four quality dimensions for comparing model and log: (1) fitness, (2) simplicity, (3) pre-

cision, and (4) generalization [2]. A model with good fitness allows for most of the behavior seen in

the event log. A model has a perfect fitness if all traces in the log can be replayed by the model from

beginning to end. The simplest model that can explain the behavior seen in the log is the best model.

This principle is known as Occam’s Razor. Fitness and simplicity alone are not sufficient to judge the

quality of a discovered process model. For example, it is very easy to construct an extremely simple

Petri net (“flower model”) that is able to replay all traces in an event log (but also any other event log

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 13

referring to the same set of activities). Similarly, it is undesirable to have a model that only allows for

the exact behavior seen in the event log. Remember that the log contains only example behavior and

that many traces that are possible may not have been seen yet. A model is precise if it does not allow

for “too much” behavior. Clearly, the “flower model” lacks precision. A model that is not precise is

“underfitting”. Underfitting is the problem that the model over-generalizes the example behavior in the

log (i.e., the model allows for behaviors very different from what was seen in the log). At the same time,

the model should generalize and not restrict behavior to just the examples seen in the log. A model that

does not generalize is “overfitting”. Overfitting is the problem that a very specific model is generated

whereas it is obvious that the log only holds example behavior (i.e., the model explains the particular

sample log, but there is a high probability that the model is unable to explain the next batch of cases).

In the remainder, we will focus on fitness. However, the ideas are applicable to the other quality

dimensions.

Definition 4.1. (Perfectly Fitting Log)

Let L ∈ B(A∗) be an event log and let SN = (PN ,Mi,Mo) be a system net. L perfectly fits SN if and

only if {σ ∈ L} ⊆ τ(SN).

Note that {σ ∈ L} converts multiset L into a set of traces. Consider two event logs L1 = [〈a, e, g〉10,
〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2] and L2 = [〈a, e, g〉10, 〈a, g〉3, 〈a, a, g, e, h〉2] and the system net

SN of the Petri net depicted in Fig. 1 with Tv = {a, e, f, g, h}. Clearly, L1 perfectly fits SN whereas

L2 is not. There are various ways to quantify fitness [2, 5, 9, 27, 32, 33, 34, 36]. To illustrate that

conformance checking tasks can be decomposed using passages, we focus on alignments as the basis for

conformance checking.

To measure fitness, one needs to align traces in the event log to traces of the process model. Some

example alignments for L2 and SN :

γ1 =
a e g

a e g
γ2 =

a ≫ g

a e g
γ3 =

a a g e h

a ≫ ≫ e h
γ4 =

a a ≫ g e h

a ≫ e g ≫ ≫

The top row of each alignment corresponds to “moves in the log” and the bottom row corresponds to

“moves in the model”. If a move in the log cannot be mimicked by a move in the model, then a “≫”

(“no move”) appears in the bottom row. For example, in γ3 the model is unable to do the second a move

and is unable to do g before e. If a move in the model cannot be mimicked by a move in the log, then a

“≫” (“no move”) appears in the top row. For example, in γ2 the log did not do an e move whereas the

model has to make this move to enable g and reach the end. Given a trace in the event log, there may be

many possible alignments. To select the most appropriate one we associate costs to moves and select an

alignment with the lowest total costs.

A move is a pair (x, y) where the first element refers to the log and the second element refers to the

model. For example, (a, a) means that both log and model make an “a move”. (≫, a) means that the

model makes an “a move” without a corresponding move of the log. (a,≫) means that the log makes

an “a move” not followed by the model.

Definition 4.2. (Alignment)

Let L ∈ B(A∗) be an event log and let SN be a system net with visible traces τ(SN) ⊆ A∗. ALM =
{(a, a) | a ∈ A} ∪ {(≫, a) | a ∈ A} ∪ {(a,≫) | a ∈ A} is the set of legal moves.

14 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

Let σL ∈ L be a log trace and σM ∈ τ(SN) a model trace. An alignment of σL and σM is a sequence

γ ∈ ALM
∗ such that the projection on the first element (ignoring ≫) yields σL and the projection on the

second element (again ignoring ≫) yields σM .

γ1-γ4 are examples of alignments for traces in L2 and the net depicted in Fig. 1 with Tv = {a, e, f, g, h}.

Clearly, γ3 is a better alignment than γ4. This can be quantified using a cost function δ.

Definition 4.3. (Cost of Alignment)

Cost function δ ∈ ALM → IN assigns costs to legal moves. The cost of an alignment γ is the sum of all

costs: δ(γ) =
∑

(x,y)∈γ δ(x, y) for γ ∈ ALM
∗.

Moves where log and model agree have no costs, i.e., δ(a, a) = 0 for all a ∈ A. δ(≫, a) > 0 is the

cost when the model makes an “a move” without a corresponding move of the log. δ(a,≫) > 0 is the

cost for an “a move” in just the log. These costs may depend on the nature of the activity, e.g., skipping

a payment may be more severe than sending too many letters. However, in this paper we often use a

standard cost function δS that assigns unit costs: δS(a, a) = 0 and δS(≫, a) = δS(a,≫) = 1 for all

a ∈ A. For example, δS(γ1) = 0, δS(γ2) = 1, δS(γ3) = 2, and δS(γ4) = 4 (simply count the number of

≫ symbols).

Definition 4.4. (Optimal Alignment)

Let L ∈ B(A∗) be an event log and SN be a system net with τ(SN) 6= ∅.

• For σL ∈ L, we define: ΓσL,SN = {γ ∈ ALM
∗ | ∃σM∈τ(SN) γ is an aligment of σL and σM}.

• An alignment γ ∈ ΓσL,SN is optimal for trace σL ∈ L and system net SN if for any γ′ ∈ ΓσL,M :

δ(γ′) ≥ δ(γ).
• λSN ∈ A∗ → ALM

∗ is a deterministic mapping that assigns any log trace σL to an optimal

alignment, i.e., λSN (σL) ∈ ΓσL,SN and λSN (σL) is optimal.

• costs(L,SN , δ) =
∑

σL∈L
δ(λSN (σL)) are the misalignment costs of the whole event log.

γ4 is not an optimal alignment for trace 〈a, a, g, e, h〉 and the net in Fig. 1 with Tv = {a, e, f, g, h}. γ1,

γ2, and γ3 are optimal alignments. Hence, costs(L2,SN , δS) = 10×δS(γ1)+3×δS(γ2)+2×δS(γ3) =
10× 0 + 3× 1 + 2× 2 = 7.

It is possible to convert misalignment costs into a fitness value between 0 (poor fitness, i.e., maximal

costs) and 1 (perfect fitness, zero costs). We refer to [5, 9] for details. Misalignment costs can be related

to Definition 4.1, because only perfectly fitting traces have costs 0 (assuming τ(SN) 6= ∅).

Lemma 4.5. (Perfectly Fitting Log)

Event log L perfectly fits system net SN if and only if costs(L,SN , δ) = 0.

Once an optimal alignment has been established for every trace in the event log, these alignments can also

be used as a basis to quantify other conformance notations such as precision and generalization [5]. For

example, precision can be computed by counting “escaping edges” as shown in [33, 34]. Recent results

show that such computations should be based on alignments [11]. The same holds for generalization [5].

Therefore, we focus on alignments when decomposing passages.

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 15

5. Distributed Conformance Checking

Conformance checking techniques can be time consuming as potentially many different traces need to

be aligned with a model that may allow for an exponential (or even infinite) number of traces. Event

logs may contain millions of events. Finding the best alignment may require solving many optimization

problems [9] or repeated state-space explorations [36]. When using genetic process mining, one needs

to check the fitness of every individual model in every generation [32]. As a result, thousands or even

millions of conformance checks need to be done. For each conformance check, the whole event log needs

to be traversed. Given these challenges, we are interested in reducing the time needed for conformance

checking. Moreover, passages can be used to provide local diagnostics (per passage).

In this section, we show that it is possible to decompose and distribute conformance checking prob-

lems using the notion of passages defined in Section 3. In order to do this we focus on the visible

transitions and create the so-called skeleton of the process model.

Definition 5.1. (Skeleton)

Let PN = (P, T, F, Tv) be a labeled Petri net. The skeleton of PN is the graph skel(PN) = (N,E)

with N = Tv and E = {(x, y) ∈ Tv × Tv | x
F#Tv
 y}.

Figure 5 shows the skeleton of the net in Fig. 1 assuming that Tv = {a, e, f, g, h}. The resulting graph

has two minimal passages.

a
register

request

decide

reject
request

reinitiate
request

e g

hf

pay
compensation

Figure 5. The skeleton of the labeled Petri net in Fig. 1 (assuming that Tv = {a, e, f, g, h}). There are two

minimal passages: ({a, f}, {e}) and ({e}, {f, g, h}).

Note that only the visible transitions Tv appear in the skeleton. For example, if we assume that

Tv = {a, g, h} in Fig. 1, then the skeleton is ({a, g, h}, {(a, g), (a, h)}) and there is only one passage

({a}, {g, h}).

If there are multiple (minimal) passages in the skeleton, then we can decompose conformance check-

ing problems into smaller problems by partitioning the Petri net into net fragments and the event log into

sublogs. We will first show that each passage (X,Y) defines one net fragment PN (X,Y) (cf. Defini-

tion 5.2) and one sublog L↾X∪Y . Then we will prove that conformance can be checked per passage.

Consider event log L = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2], the Petri net PN shown

in Fig. 1 with Tv = {a, e, f, g, h}, and the skeleton shown in Fig. 5. There are two passages: P1 =
({a, f}, {e}) and P2 = ({e}, {f, g, h}). Based on this we define two net fragments PN 1 and PN 2

as shown in Fig. 6. Moreover, we define two sublogs: L1 = [〈a, e〉15, 〈a, e, f, e〉5] and L2 = [〈e, g〉10,
〈e, h〉5, 〈e, f, e, g〉3, 〈e, f, e, h〉2]. To check the conformance of the overall event log on the overall model,

we check the conformance of L1 on PN 1 and L2 on PN 2. Since L1 perfectly fits PN 1 and L2 perfectly

16 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

fits PN 2, we can conclude that L perfectly fits PN .1 This illustrates that conformance checking can be

decomposed.

a

register

request

b

examine
thoroughly

c

examine
casually

d

check ticket

decide pay
compensation

reject
request

reinitiate
request

e g

hf

c1

c2

c3

c4

c5

decide

e

reinitiate
request

f

Figure 6. Two net fragments corresponding to the two passages of the skeleton in Fig. 5: PN 1 = PN ({a,f},{e})

(left) and PN 2 = PN ({e},{f,g,h}) (right). The visible transitions Tv = {a, e, f, g, h} that form the boundaries of

the fragments are highlighted.

In order to prove this, we first define the notion of a net fragment.

Definition 5.2. (Net Fragment)

Let PN = (P, T, F, Tv) be a labeled Petri net. For any two sets of transitions X,Y ⊆ Tv, we define the

net fragment PN (X,Y) = (P ′, T ′, F ′, T ′
v) with:

• Z = nodes(X
F#Tv
 Y) \ (X ∪ Y) are the internal nodes of the fragment,

• P ′ = P ∩ Z,

• T ′ = (T ∩ Z) ∪X ∪ Y ,

• F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)), and

• T ′
v = X ∪ Y .

Note that PN 1 = PN ({a,f},{e}) in Fig. 6 has Z = {b, c, d, c1, c2, c3, c4} as internal nodes.

Now we can prove the main result of this paper. Figure 7 illustrates our decomposition approach.

A larger model can be decomposed into net fragments corresponding to passages. The event log can be

decomposed in a similar manner and conformance checking can be done per passage.

The fragments corresponding to the passages are initially empty whereas the overall Petri net starts in

a particular initial marking and ends in a particular final marking. Therefore, we extend the Petri net and

event log to incorporate initialization and termination (cf. the dashed ⊤ and ⊥ transitions in Figure 7).

Definition 5.3. (Extended System Net and Event Log)

Let L ∈ B(A∗) be an event log and SN = (PN ,Mi,Mo) be a system net with PN = (P, T, F, Tv).
Assume two fresh identifiers ⊤ and ⊥ to represent an artificial start (⊤) and an artificial complete (⊥).

• L = [〈⊤〉 · σ · 〈⊥〉 | σ ∈ L] is the event log extended with explicit start and complete events.

• PN = (P, T ∪ {⊤,⊥}, F ∪ {(⊤, p) | p ∈ Mi} ∪ {(p,⊥) | p ∈ Mo}, Tv ∪ {⊤,⊥}) is the Petri net

extended with with start and complete transitions.

• SN = (PN , [], []) is the extended system net having empty initial and final markings.

1Here we abstract from initialization and termination. These will be addressed by adding artificial start and complete transi-

tions/events (cf. Definition 5.3).

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 17

b

a

c

d

e

j

i

h
f

nk

l

m

o

pgi o

Figure 7. Petri net PN is decomposed into subnets PN (X,Y). The “clouds” model the internal structure of these

subnets (places but possibly also hidden transitions). Due to the decomposition based on passages, one cloud

can only influence another cloud through the visible interface transitions X and Y . Since the visible interface

transitions are “controlled” by the event log, it is possible to check fitness locally per subnet.

The initial system net will often be a WF-net [1] as shown in Figure 7, i.e., there is one source place i and

one sink place o with all nodes on a path from i to o and Mi = [i] and Mo = [o]. However, the results

presented apply to any connected net and not just WF-nets. Note that Definition 5.3 assumes that Mi and

Mo are safe, i.e., these two markings have at most one token per place. However, the construction can

easily be generalized by introducing arc weights. Figure 8(a-b) illustrates the net extension described in

Definition 5.3.

To be able to project traces onto the visible nodes of a fragment, we define the following shorthand

for a passage P = (X,Y): L↾P= L↾X∪Y , i.e., only the events corresponding to input or output nodes

of P are retained in the resulting log.

Theorem 5.4. (Conformance Checking Can be Decomposed)

Let L ∈ B(A∗) be an event log and let SN = (PN ,Mi,Mo) be a connected system net. For any

passage partitioning {P1, P2, . . . , Pn} of skel(PN): L perfectly fits system net SN if and only if for all

1 ≤ i ≤ n: L↾Pi
perfectly fits SN i = (PN

Pi
, [], []).

Proof:

Note that SN is connected. This implies that in PN all nodes are on a path from ⊤ to ⊥ and that all

nodes and edges in PN (i.e., also the nodes in PN) are included in at least one net fragment PN
Pi

, i.e.,⋃
i PN

Pi = PN .

Second, we argue that L perfectly fits system net SN if and only if L perfectly fits system net SN .

This can be learned from the observation that for any σ: Mi[σ〉Mo in PN if and only if [] [(〈⊤〉 · σ ·
〈⊥〉)〉 [] in PN . Hence, for σv ∈ L: Mi[σv⊲Mo in PN if and only if [] [(〈⊤〉 · σv · 〈⊥〉)⊲ [] in PN .

Hence it suffices to prove that: L perfectly fits the extended system net SN = (PN , [], []) if and only

if for all i: L↾Pi
perfectly fits SN i = (PN

Pi
, [], []). In the remainder we use the following notations:

PN = (P, T, F, Tv) (note that {⊤,⊥} ⊆ Tv because PN is the extended Petri net) and PN
Pi =

(P i, T i, F i, T i
v) (the net fragment corresponding to passage Pi, constructed using Definition 5.2).

(⇒) Let σv ∈ L such that there is a σ ∈ T ∗ with [][σ〉[] in PN and σ↾Tv
= σv (i.e., σv fits into the

18 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

a b

c d

c1
c2

start

end

a b

c d

c1
c2

start

end

a b

c d

(a) original model

(b) extended model

(c) skeleton

a b

c d

b

c

(d) two passages

a

b

c d

c1

c2

start

end

b

c

(e) two net fragments

P1

P2

PN1

PN2

Figure 8. The system net SN = (PN , [start], [end]) shown in (a) is extended into system net SN = (PN , [], [])
by adding artificial start (⊤) and complete (⊥) transitions as shown in (b). The skeleton skel(PN) is shown in (c).

A passage partitioning composed of P1 = ({⊤, a}, {a, b, c}) and P2 = ({b, c, d}, {d,⊥}) is shown in (d) and the

corresponding two net fragments are shown in (e).

overall extended system net SN). For all 1 ≤ i ≤ n, we need to prove that there is a σi with [][σi〉[]

in PN
Pi

such that σi↾Pi
= σv↾Pi

. This follows trivially because SN i can mimic any move of SN with

respect to transitions T i: just take σi = σ↾T i .

(⇐) Let σv ∈ L such that for each 1 ≤ i ≤ n there is a σi such that [][σi〉[] in PN
Pi

and σi↾Pi
= σv↾Pi

.

We need to prove that there is a σ ∈ T ∗ such that [][σ〉[] in PN and σ ↾Tv
= σv. The different σi

sequences can be stitched together into an overall σ because the different subnets only interface via vis-

ible transitions and
⋃

i PN
Pi = PN . Take σv and extend it by adding the local events. Transitions

in one subnet can only influence other subnets through visible transitions and these can only move syn-

chronously as defined by σv ∈ L. ⊓⊔

Theorem 5.4 shows that any trace in the log fits the overall model if and only if it fits each of the passage-

based fragments. Moreover, as shown next, an upper bound for the degree of fitness can be computed in

a distributed manner. For this we introduce an adapted cost function δQ.

Definition 5.5. (Adapted Cost Function)

Let Q = {P1, P2, . . . , Pn} be a passage partitioning and δ ∈ ALM → IN a cost function (cf. Defini-

tion 4.3). cQ(x, y) = |{1 ≤ j ≤ n | {x, y} ∩ (Xj ∪ Yj) 6= ∅}| counts the number of passages where x

or y is an input or output node. The adapted cost function δQ is defined as follows: δQ(⊤,⊤) = 0,

δQ(⊤, x) = δQ(x,⊤) = ∞ if x 6= ⊤, δQ(⊥,⊥) = 0, δQ(⊥, x) = δQ(x,⊥) = ∞ if x 6= ⊥,

δQ(x, y) =
δ(x,y)
cQ(x,y) for (x, y) ∈ ALM and cQ(x, y) 6= 0.

There should never be a move on log only or a move on model only involving ⊤ or ⊥. This can be

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 19

avoided by associating extremely high costs (denoted as ∞) to moves other than (⊤,⊤) and (⊥,⊥).
A visible transition may appear in multiple passages. Therefore, we divide its costs by the number of

passages in which it appears: δQ(x, y) = δ(x,y)
cQ(x,y) . This way we avoid counting misalignments of the

same activity multiple times.

Theorem 5.6. (Lower Bound for Misalignment Costs)

Let L ∈ B(A∗) be an event log and let SN = (PN ,Mi,Mo) be a connected system net. For any passage

partitioning Q = {P1, P2, . . . , Pn} of skel(PN):

costs(L,SN , δ) ≥
∑

1≤i≤n

costs(L↾Pi
,SN i, δQ)

where SN i = (PN
Pi
, [], []).

Proof:

We can assume that the only moves involving the artificially added nodes are (⊤,⊤) and (⊥,⊥). Hence,

no costs are added by extending the event log with ⊤ at the beginning and ⊥ at end of each trace. For

any σv ∈ L there is an optimal alignment γ of σv and SN such that the projection on the second element

yields a trace σ′
v with [][σ′

v⊲ [] in PN , i.e., there is a trace σ with [][σ〉[] in PN and σ ↾Tv
= σ′

v.

As shown in the proof of Theorem 5.4 there is a σi with [][σi〉[] in PN
Pi

and σi↾Pi
= σ′

v ↾Pi
for any

1 ≤ i ≤ n. In a similar fashion, γ can be decomposed in γ1, γ2, . . . γn where γi is an alignment of σv↾Pi

and SN i. The sum of the costs associated with these local alignments γi is exactly the same as the cost

of the overall alignment γ. However, there may be local improvements lowering the sum of the costs

associated with these local alignments. Hence, costs(L,SN , δ) ≥
∑

1≤i≤n costs(L↾Pi
,SN i, δQ). ⊓⊔

Consider system net SN in Figure 8(a), passages P1 = ({⊤, a}, {a, b, c}) and P2 = ({b, c, d}, {d,⊥}),
and event logs L1 = [〈a, b〉10, 〈c, d〉5], L2 = [〈a, a, b〉], and L3 = [〈a, b, c, d〉]. The corresponding

extended system net SN is shown in Figure 8(b) and the corresponding extended event logs are L1 =
[〈⊤, a, b,⊥〉10, 〈⊤, c, d,⊥〉5], L2 = [〈⊤, a, a, b,⊥〉], and L3 = [〈⊤, a, b, c, d,⊥〉]. costs(L1,SN , δS) =
costs(L1↾P1

,SN 1, δQ)+costs(L1↾P2
,SN 2, δQ) = 0 and costs(L2,SN , δS) = costs(L2↾P1

,SN 1, δQ)+
costs(L2↾P2

,SN 2, δQ) = 1 + 0 = 1, i.e., the costs of the optimal overall alignments are equal to the

sums of the costs associated to all optimal local alignments. Consider for example the following overall

optimal alignment for 〈a, a, b〉 and optimal local alignments for 〈⊤, a, a, b,⊥〉:

γ =
a a b

a ≫ b
γ1 =

⊤ a a b

⊤ a ≫ b
γ2 =

b ⊥

b ⊥

The costs of the overall optimal alignment γ equals the costs of the two optimal local alignments γ1
and γ2. This does not hold for event log L3: costs(L3,SN , δS) = 2, costs(L3 ↾P1

,SN 1, δQ) = 0.5,

and costs(L3↾P2
,SN 2, δQ) = 0.5. Hence, the total costs are higher than the costs associated to the two

optimal local alignments. To understand this, consider the following optimal alignments for 〈a, b, c, d〉
and 〈⊤, a, b, c, d,⊥〉:

γ =
a b c d

a b ≫ ≫
γ′ =

a b c d

≫ ≫ c d
γ1 =

⊤ a b c

⊤ a b ≫
γ2 =

b c d ⊥

≫ c d ⊥

20 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

The cost of any of the two overall optimal alignments is δS(γ) = δS(γ
′) = 2. The cost of the optimal

alignment γ1 for passage P1 is δQ(γ1) = 0 + 0 + 0 + δQ(c,≫) = δS(c,≫)
cQ(c,≫) = 1

2 = 0.5. The cost of the

optimal alignment γ2 for passage P2 is δQ(γ2) = δQ(b,≫) + 0 + 0 + 0 = δS(b,≫)
cQ(b,≫) =

1
2 = 0.5. Hence,

costs(L3,SN , δS) = 2 > costs(L3↾P1
,SN 1, δQ) + costs(L3↾P2

,SN 2, δQ) = 1. This shows that there

may indeed be local improvements lowering the sum of the costs associated with local alignments.

Theorem 5.6 shows that the sum of the costs associated to all selected optimal local alignments

(using δQ) can never exceed the cost of an optimal overall alignment using δ. Hence, it can be used

for an optimistic estimate, i.e., computing an upper bound for the overall fitness and a lower bound for

the overall costs. More important, the fitness values of the different passages provide valuable local

diagnostics. The passages with the highest costs are the most problematic parts of the model. The

alignments for these “problem spots” help to understand the main problems without having to look at

very long overall alignments.

Theorem 5.6 shows just one of many possible definitions of fitness. We can also simply count

the fraction of fitting traces. In this case the problem can be decomposed easily using the notation

of passages.

Theorem 5.7. (Fraction of Perfectly Fitting Traces)

Let L ∈ B(A∗) be an event log and let SN = (PN ,Mi,Mo) be a connected system net. For any passage

partitioning Q = {P1, P2, . . . , Pn} of skel(PN):

|[σ ∈ L | σ ∈ τ(SN)]|

|L|
=

|[σ ∈ L | ∀1≤i≤n σ↾Pi
∈ τ(SN i)]|

|L|

Proof:

Follows from the construction used in Theorem 5.4. A trace is fitting the overall model if and only if it

fits all passages. ⊓⊔

As Theorem 5.7 suggests, traces in the event log can be marked as fitting or non-fitting per passage.

These results can be merged easily and used to compute the fraction of traces fitting the overall model.

Although the results presented only address the notion of fitness, it should be noted that alignments

are the starting point for many other types of analysis. For example, precision can be computed by

counting so-called “escaping edges” (sequences of steps allowed by the model but never happening in

the event log) [33, 34]. This can be done at the level of passages even though there is not a straightforward

manner to compute the overall precision level. Note that relatively many escaping edges in a passage

suggest “underfitting” of that part of model. As shown in [11], alignments should be the basis for

precision analysis. Therefore, the construction used in Theorems 5.4 and 5.6 can be used as a starting

point. A similar approach can be used for generalization: many unique paths in a passage may indicate

“overfitting” of that part of the model [5].

The alignments can be used beyond conformance checking. An alignment γi (see proof of The-

orem 5.6) relates observed events to occurrences of transitions of some passage Pi. If the event log

contains timestamps, such alignments can be used to compute times in-between transition occurrences

(waiting times, response times, service times, etc.) as shown in [2]. This way bottlenecks can be iden-

tified. If the event log contains additional data (e.g., size of order, age of patient, or type of customer),

these local alignments can be used for decision mining [35]. For any decision point in a passage (place

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 21

with multiple output arcs), one can create a decision tree based on the data available prior to the choice.

Note that bottleneck analysis and decision point analysis provide local diagnostics and can be added to

the overall model without any problems.

Assuming a process model with many passages, the time needed for conformance checking can be

reduced significantly. There are two reasons for this. First of all, as our theorems show, larger problems

can be decomposed into sets of independent smaller problems. Therefore, conformance checking can

be distributed over multiple computers. Second, due to the exponential nature of most conformance

checking techniques, the time needed to solve “many smaller problems” is less than the time needed

to solve “one big problem”. Existing conformance checking approaches use state-space analysis (e.g.,

in [36] the shortest path enabling a transition is computed) or optimization over all possible alignments

(e.g., in [9] the A∗ algorithm is used to find the best alignment). These techniques do not scale linearly

in the number of activities. Therefore, decomposition is useful even if the checks per passage are done

on a single computer. Moreover, passages are not just interesting from a performance point of view: they

can also be used to pinpoint the most problematic parts of the process (also in terms of performance) and

provide localized diagnostics.

6. Process Discovery: Divide and Conquer

In the previous section, we showed that we can decompose conformance checking tasks using passages.

Instead of checking the conformance of the entire event log on the entire system net, we split up the

log and the net into pairs of sublogs and net fragments, and check conformance on each of these pairs.

Provided that we have a collection of passages, we can do something similar for discovery: Instead of

discovering the whole system net in one go, we first split up the log into sublogs, then discover a net

fragment for every sublog, and finally fold all net fragments into one overall system net.

Our approach builds on existing process discovery algorithms. There exist dozens of algorithms –

ranging from the simple α miner [8] to the more sophisticated ILP miner [42] – that discover a Petri

net from an event log. For passage-based discovery, we use such an algorithm, discover a fragment per

passage, and apply Definition 5.2 in reverse direction. Γp denotes the class of algorithms that can be

used to discover a Petri net PN (X,Y) for a passage (X,Y). In order to decompose a discovery problem

using passages, we first need to derive a graph with causal dependencies from the event log. Γc denotes

the class of algorithms that can be used to discover these dependencies.

Definition 6.1. (Γc algorithm)

Let L ∈ B(A∗) be an event log over A. A Γc algorithm is an algorithm that takes the event log L

and returns a causal structure (i.e. a graph) with nodes V ⊆ A, that is, if γc is a Γc algorithm, then

γc(L) = (V,E) is a graph with V ⊆ A.

Note that many process discovery algorithms have an initial phase deriving these dependencies by scan-

ning the event log, e.g., the > (“directly follows”), → (“causality”), ‖ (“concurrency”), and # (“choice”)

relationships inferred by the α miner [8]. The Heuristics miner [41, 39] derives similar relations while

taking noise and incompleteness into account. These algorithms can easily be distributed as they simply

count basic patterns in the event log. Basically, a Γc algorithm takes an event log as input, and returns

a causal structure as output. Optionally, the discovered causal structure can be edited before computing

22 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

the passages from it. After determining the passages, we discover a net fragment per passage using a Γp

algorithm and merge the results.

Definition 6.2. (Γp algorithm)

Let L ∈ B(A∗) be an event log over A and let X,Y ⊆ A. A Γp algorithm is an algorithm that takes a

passage (X,Y) and the corresponding sublog L↾X∪Y and returns a net fragment with visible transitions

X ∪ Y , that is, if γp is a Γp algorithm, then γp(L↾X∪Y , X, Y) = (P, T, F,X ∪ Y) is a labeled Petri net.

Note that γc ∈ Γc returns a causal structure that may include some (but not necessarily all) activities

(V ⊆ A). This way, the algorithm can effectively remove, for example, infrequent activities that might

only complicate the discovery process. The resulting causal structure can be inspected and modified by

a domain expert. This domain expert can remove any causalities that she knows do not exist, and can

add any causalities that she knows are missing. After the domain expert has thus massaged the causal

structure, a passage partitioning is derived from it and used to decompose the whole event log into a

collection of sublogs.

The Γc algorithm operates on the whole event log, whereas we are trying to speed-up discovery

by splitting up the entire log into a collection of sublogs. However, we can use Γc algorithms that are

very fast compared to more sophisticated process mining algorithms, e.g., algorithms based on state-

based regions [7, 21, 37], language-based regions [15, 42], or genetic evolution [32] are much more

time consuming. A typical example is the ILP miner [42], which creates an integer-linear programming

problem that is exponential in the size of A, that is, in the number of activities. By using a fast Γc

algorithm, passages can be used to quickly split up A into smaller sets; as a result the ILP miner can

work much faster. Furthermore, the Γc algorithm need not take the entire log into account. Its purpose is

to construct a causal structure, which is more abstract and high-level, whereas the Γp algorithm needs to

fill in the nitty-gritty low-level details later. Therefore, it may suffice to use only a sample set of traces.

After having introduced the Γp and Γc classes of algorithms, we now introduce our passage-based

discovery approach.

Definition 6.3. (Passage-based Discovery)

Let L ∈ B(A∗) be an event log over a set of activities A and let γp ∈ Γp and γc ∈ Γc be the two selected

algorithms. Our passage-based discovery approach proceeds as follows:

1. Extend each trace in the event log with an artificial start event ⊤ and an artificial end event ⊥
({⊤,⊥} ∩A = ∅). L = [〈⊤〉 · σ · 〈⊥〉 | σ ∈ L] is the resulting log over A = {⊤,⊥} ∪A.

2. Discover the causal structure using γc. (Aγc , Cγc) = γc(L) is the resulting causal structure with

{⊤,⊥} ⊆ Aγc ⊆ A and Cγc ⊆ Aγc ×Aγc .

3. Optional: Have a domain expert inspect (and massage if needed) the causal structure (Aγc , Cγc).
(A′

γc , C
′
γc) is the resulting, possibly modified, causal structure.

4. Compute the set of minimal passages on the causal structure (A′
γc , C

′
γc). {(X1, Y1), (X2, Y2), . . . ,

(Xk, Yk)} = pasmin(A
′
γc , C

′
γc) is the resulting set of passages.

5. For every minimal passage (Xi, Yi): Discover a net fragment using γp. PN i = (Pi, Ti, Fi, Xi ∪
Yi) = γp(L↾Xi∪Yi

, Xi, Yi) is the resulting net fragment for passage i.

6. Merge the individual net fragments PN i into one overall system net. SN = (PN ,Mi,Mo) with

PN = (P, T, F, Tv) is the resulting system net, where:

• P = {in, out} ∪
⋃

1≤i≤k Pi,

• T = ∪1≤i≤k Ti,

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 23

• F = {(in,⊤), (⊥, out)} ∪ (
⋃

1≤i≤k Fi),
• Tv =

⋃
1≤i≤k Xi ∪ Yi,

• Mi = [in], and

• Mo = [out].

The log is extended by adding an artificial start event ⊤ and an artificial end event ⊥ to every trace. This

is just a technicality to ensure that there is a clearly defined start and end. Note that passages can be

activated multiple times, e.g., in case of loops. Therefore, we add transitions ⊤ and ⊥ and places in and

out . If there is a unique start (end) event, then there is no need to add transition ⊤ (⊥). Ideally, the causal

structure (A′
γc , C

′
γc) has one source node ⊤, one sink node ⊥, and all other nodes are on a path from ⊤

to ⊥ (like in a WF-net [1]).

Note that in Step 4 minimal passages are computed since we aim to decompose the discovery problem

in as many small independent problems as possible. However, in principle any passage partitioning may

be used as illustrated by Theorems 5.4, 5.6, and 5.7.

To illustrate our divide-and-conquer approach, consider the event log L = [〈a, b, c, d〉40, 〈b, a, c, d〉35,
〈a, b, c, e〉30, 〈b, a, c, e〉25, 〈a, b, x, d〉1, 〈a, b, e〉1]. The log describes 132 cases. We first add artificial

events as described in Step 1: L = [〈⊤, a, b, c, d,⊥〉40, 〈⊤, b, a, c, d,⊥〉35, 〈⊤, a, b, c, e,⊥〉30, 〈⊤, b, a,

c, e,⊥〉25, 〈⊤, a, b, x, d,⊥〉1, 〈⊤, a, b, e,⊥〉1]. Then we compute the causal structure using the γc ∈ Γc

algorithm of choice (Step 2). Assume that the causal structure shown in Fig. 9 is computed. Since x

occurs only once whereas the other activities occur more than 50 times, x is excluded. The same holds

for the dependency between b and e. Furthermore, we assume that the domain expert does not change

the causal structure (Step 3).

a

b

c

d

e

Figure 9. Causal structure γc(L) discovered for the extended event log having four minimal passages.

The causal structure has four minimal passages (Step 4): P1 = ({⊤}, {a, b}), P2 = ({a, b}, {c}),
P3 = ({c}, {d, e}), and P4 = ({d, e}, {⊥}). Based on these passages, we create four corresponding

sublogs: L1 = [〈⊤, a, b〉72, 〈⊤, b, a〉60], L2 = [〈a, b, c〉70, 〈b, a, c〉60, 〈a, b〉2], L3 = [〈c, d〉75, 〈c, e〉55,
〈d〉1, 〈e〉1], and L4 = [〈d,⊥〉76, 〈e,⊥〉56]. One transition-bordered Petri net is discovered per sublog

using the γp ∈ Γp algorithm of choice (Step 5). Figure 10 shows the net fragments discovered per

passage. Note that infrequent behavior has been discarded by γp, i.e., trace 〈a, b〉 in L2 is not possible

according to PN 2 (does not end is desired end state), and traces 〈d〉 and 〈e〉 in L3 are not possible

according to PN 3.

In the last step of the approach, the four net fragments of Fig. 10 are merged into the overall net

system shown in Figure 11 (Step 6). Note that this net system is indeed able to replay all frequent

behavior. Two of the 132 cases cannot be replayed because they were treated as noise by the selected γc
and γp algorithms.

Although the resulting model in Figure 11 is simple and has no loops, there are no limitations with

respect to the control-flow patterns used and loops can be handled without any problems. The small

example shows that we can use a divide-and-conquer approach when discovering process models. We

24 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

a

b

c

d

e

d

e

a

b

c

Figure 10. The Petri net fragments discovered for the four passages: PN 1, PN 2, PN 3, and PN 4.

in

a

b

c

d

e

out

Figure 11. The Petri net obtained by merging the individual subsets.

deliberately did not restrict ourselves to specific Γc and Γp algorithms. The approach is generic and can

be combined with existing process discovery techniques [2, 7, 8, 13, 15, 20, 21, 23, 27, 32, 37, 40, 42].

Moreover, the user can modify the causal structure to guide the discovery process.

By decomposing the overall discovery problem into a collection of smaller discovery problems, it is

possible to do a more refined analysis and achieve significant speed-ups. The γc algorithm only needs

to construct an abstract causal structure. Hence, it may take only a sample (say, 100 randomly chosen

traces) of the event log into account. The γp algorithm is applied for every net passage, and needs to

construct a detailed net fragment. Hence, it needs only to consider an event log consisting of just the

activities involved in the corresponding passage. As a result, process discovery tasks can be distributed

over a network of computers (assuming there are multiple passages). As most discovery algorithms

are exponential in the number of activities, the sequential discovery of all individual passages on one

computer is often still faster than solving one big discovery problem. If there are more minimal passages

than computers, one can merge minimal passages into aggregate passages and use these for discovery

and conformance checking (one passage per computer). However, in most situations, it will be more

efficient to analyze the minimal passages sequentially.

7. Empirical Evaluation

In earlier sections we showed that process mining problems can be divided into smaller problems and

that by doing this, in theory, significant speed-ups are possible. Since our passage-based decomposition

approach is very general, it is not easy to evaluate this empirically. For example, we can choose from

many different process discovery algorithms. Moreover, there are various algorithms that cannot benefit

from a passage-based decomposition approach because they are linear in the size of the event log. For

example, the α miner [8] and the heuristics miner [41] make one pass through the whole log while

counting simple metrics like direct successions. Obvious such techniques will not benefit from passage-

based decomposition. However, these algorithms have various limitations: they create models without

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 25

I1 I2 I3 I4

IO1 IO2

O1 O2 O3

I1 I2 I3 I4

IO1 IO2

O1 O2 O3

Figure 12. An example passage and a corresponding Petri net.

any guarantees, e.g., the resulting models may have deadlocks, have a poor fitness, and be very complex

and under- or over-fitting. Only more expensive algorithms that replay the log and solve optimization

problems can provide such guarantees.

Therefore, we use a particular setting to provide some insights into the speed-ups possible due to

passage-based decomposition. We use a particular process discovery technique that heavily relies on

conformance checking (replay). Section 7.1 presents the setting for the evaluation. Section 7.2 presents

the empirical results obtained. These results clearly show that without using passages we would not

be able to use the given γp algorithm, whereas with using passages it can be used on real-life logs.

Section 7.3 discusses the main findings.

7.1. Setting

For the evaluation, we use a real-life event log2 based on the BPI Challenge 2012 event log [26] and

aim to discover a process model describing the most frequent behavior. This real-life log contains noise,

which we will tackle by using the Heuristic Miner [41]3 as γc algorithm. This miner will provide us with

a Heuristic net that shows generic causal relations between actions, but which does not show the specific

transitions that represent these relations. To obtain these specific transitions we will use an exhaustive

search algorithm as γp algorithm. This algorithm simply iterates over all possible sets of transitions that

satisfy the causal relations, and takes in the end the set of transitions with maximal fitness.

The left-hand side of Figure 12 shows a passage containing six input nodes and five output nodes.

Input node I2 is source to two causal relations: one to IO1 and one to O2. The splitting behavior of I2

can be captured by the exhaustive search algorithm in two ways: either there is an XOR-split between

IO1 and O2, or there is an AND-split to both. The splitting behavior of I1 is slightly more complicated,

as it involves three causal relations. This behavior can either be captured using (1) a single XOR-split,

(2) a single AND-split, or (3) by a combination of an XOR-split between one and an AND-split for the

other two, five possibilities in total.

2The actual event log used can be downloaded from http://www.win.tue.nl/~hverbeek/downloads/preprints/

Aalst13.xes.gz.
3For sake of completeness: We used the Heuristics Miner with default settings, except for Relative to best, which we set

to 0, and Dependency, which we set to 100.

26 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

Table 1 shows the numbers of partitions (Bell numbers) up to sets containing 7 relations. Please note

that we explicitly partition the set of outgoing causal relations, that is, we do not allow multiple splitting

transitions to capture the same outgoing causal relation. Reason for doing so is that the latter would allow

for a Petri net that contains all possible splitting transitions, which would have maximal fitness by default.

Instead, we partition the outgoing causal relations over the splitting transitions, and try to maximize the

fitness thus. Mutatis mutandis, the same holds for incoming causal relations and joining transitions. As

an example, there are 52 possible sets of transitions that capture the five incoming edges to the O2 output

transition. In total, this particular passage would require (5× 2× 2× 2)× (2× 52× 2) = 8320 possible

sets of transitions. The right-hand side of Figure 12 shows a possible set of transitions.

To show the effect of passages, we will mine a Petri net for different log sizes (1%, 5%, 10%, 50%,

and 100% of the 13, 087 traces of the original log) and for different numbers of passages (20, 15, 10, 7,

and 5). Table 2 shows the characteristics of the system we used to run the evaluation on. For sake of

completeness, we mention that we set the OpenXES shadow size to 16, which allows OpenXES to keep

16 buckets containing event log data in memory.

The log at hand contains 20 passages, of which the most complex passage requires 877 fitness checks,

and 2062 fitness checks in total. Starting from these passages, we obtained less (but more complex)

passages by combining pairs of passages into single passages. As a result, we obtained situations with

15, 10, 7, and 5 passages (see Table 3). Please note that the decision which passages to merge into

new passages may have a huge impact on the resulting run times. For example, if we would merge two

passages with 1 and 877 possibilities, then the resulting passage would have 877 possibilities, whereas

if we would merge passages with 300 and 10 possibilities, the the resulting passage would have 3000
possibilities. With this in mind, we tried to merge passages that share some nodes in such a way that

the remaining number of possibilities would not rise too quickly. For example, to obtain 15 passages

from the initial 20 passages, we merged four passages with single-possibility passages, which does not

increase the total number of possibilities, and we allowed only a minor increase for the fifth merger (from

25 and 5 to 125).

As for the situation with only 5 passages it was already a challenge to discover the model using only

1% of the traces in the log, we decided to stop at 5 passages. Clearly, it is impossible to apply our brute-

force discovery approach to the overall log without any passages. As the results will show, the situation

where we would only have a single passage, that is, the situation where we would try an exhaustive

search for all possible transitions, would take about 3.46× 1019 fitness checks, which would have taken

eras to compute even if a single fitness check would take a fraction (say, a hundredth) of a second.

7.2. Results

Table 4 and Figure 13 show the results of the evaluation. These results clearly show that the run times

are positively effected by an increase in the number of passages. For example, when using only 1 percent

of the event log, it takes 879,634 seconds (more than 10 days) to discover the process when using 5

passages whereas this only takes 873 seconds (less than a quarter) to discover the process when using 20

passages.

Figure 14 shows the resulting Petri net from one of the experiments. Please note that not all experi-

ments resulted in the same net, which is caused by the fact that we use random samples from the log to

check the fitness on. From this example we can conclude that, at least for this log, many causal relations

correspond to XOR-splits and/or XOR-joins, as the resulting net contains only two transitions with mul-

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 27

Edges 1 2 3 4 5 6 7 . . .

Possibilities 1 2 5 15 52 203 877 . . .

Table 1. The number of potential partitions given a set of k edges corresponds to the k-th Bell number

Key Value

Computer Dell Precision T5400

Processor Intel R© Xeon R© CPU, E5430 @ 2.66Ghz (2 processors)

Installed memory (RAM) 16.0 GB

System type 64-bit Windows 7 Enterprise SP 1

JRE 64-bit jdk1.6.0 24

VM arguments -ea -Xmx4G

Table 2. Basic information on the system used

Passages

Passage 20 15 10 7 5

1 1 1

2 1 1 1

3 240

4 1 240 240 240 240

5 300 300

6 10 10 3000 3000

7 25

8 5 125 125 125 375, 000

9 1 1

10 2 2 2

11 1

12 30 30 30 60 60

13 2 2

14 300 300 600

15 1

16 60 60 60 36, 000 36, 000

17 1 1

18 877 877 877 877

19 1

20 203 203 203 203 178, 031

Total 2062 2153 5138 40, 505 589, 331

Table 3. Numbers of possibilities per passage

28 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

Passages # Checks 1% 5% 10% 50% 100%

5 589, 331 879, 634 − − − −

7 40, 505 36, 183 100, 852 198, 765 − −

10 5138 5308 16, 853 25, 928 86, 116 139, 230

15 2153 1087 2882 4480 13, 995 24, 067

20 2062 873 2487 4040 12, 480 20, 414

Table 4. Obtained run times (in seconds). Due to lack of resources, we were unable to run the situations marked

−.

100

1000

10000

100000

1000000

0 20 40 60 80 100

se
co

n
d

s

Percentage of log size

5 7 10 15 20#Passages:

100

1000

10000

100000

1000000

0 5 10 15 20 25

se
co

n
d

s

#Passages

1 5 10 50 100Percentage of log size:

Figure 13. Obtained run times (in seconds) per log size (left) and number of passages (right). Note that run times

are plotted on a logarithmic scale and for smaller numbers of passages we were only able to use a fraction of the

event log.

tiple outputs and two transitions with multiple inputs. Also note that, using this technique, we were able

to mine not only the transitions that do correspond to event classes in the log, but also many transitions

that do not correspond to any event class in the log, that is, we were also able to discover many silent

transitions.

7.3. Discussion of Experimental Results

Passage-based decomposition enabled us to discover a Petri net from a real-life log (based on the BPI

Challenge 2012 log) using a brute-force approach. In a first phase, we have used the Heuristic Miner to

extract the major causal relations from the log. In a second phase, we have split up these causal relations

into passages, and have used an exhaustive search miner to convert these causal relations into transitions.

As a result, we have obtained a Petri net able to explain the mainstream behavior. The resulting net

contains 36 transitions that correspond to event classes in the log, 22 silent transitions, and 43 places.

Note that the fact that the resulting Petri net contains silent transitions can be considered to be a plus,

as there are only few techniques that can both handle noise in the log and come up with these silent

transitions.

If we would not have been able to split up the causal relations into smaller parts (like the passages),

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 29

SCHEDU

LE
START

COMPL

ETE

W_Valideren

aanvraag

A_SUB

MITTED

A_PART

LY_SUB

MITTED

A_PREA

CCEPTE

D

A_CANC

ELED

O_SENT

_BACK

A_ACCE

PTED

O_SELE

CTED

A_FINA

LIZED

O_CAN

CELED

O_CREA

TED
O_SENT

O_ACCE

PTED

A_APPR

OVED

A_ACTI

VATED

A_REGI

STERED

O_DECL

INED

A_DECLI

NE

SCHEDU

LE
START

COMPL

ETE

W_Completeren

aanvraag

START
COMPL

ETE

SCHEDU

LE

W_Nabellen

offertes

SCHEDU

LE
START

COMPL

ETE

W_Nabellen

incomplete

dossiers

COMPL

ETE
START

SCHEDU

LE

W_Beoordelen fraude

SCHEDU

LE
START

COMPL

ETE

W_Afhandelen leads

W_Wijzigen

contractgegevens

Figure 14. Obtained Petri net

30 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

then we would have had a hard time to convert these causal relations into transitions and places, as we

would have to check 3.46× 1019 possible combinations of transitions for the entire net.

The mining of the net took almost six hours when using the complete log to check the fitness for

all 2062 possible transition sets for the 20 passages. The fewer passages we detect, the more complex

they will be, the more possible transition sets there will be, and the more time it will take to check them

all. Therefore, it is important to have as many passages as possible. In our example, our most complex

passage corresponded to 877 possible transitions sets, and even this took almost six hours. Hence, it is

vital to be able to break down passages into smaller passages in case the complexity of the passages is

too high. More research is needed to create so-called “approximate passages”, i.e., passages created by

inserting artificial events or by leaving out edges that are less important. Obviously, there is a trade-off

between the desire to include all possible causalities and breaking down larger passages. However, since

one is often looking for understandable models that capture most of the observed behavior, it is valid to

consider such trade-offs. Note that models obtained using large passages will typically contain complex

fragments that are not understandable.

In this section, we focussed on discovery. However, the brute-force approach repeatedly computes

fitness. Hence, the results shown in Table 4 and Figure 13 are also representative for conformance

checking.

8. Implementation in ProM

The distributed conformance checking approach presented in Section 5 has been implemented as the

“Replay Passages” plug-in in ProM 6.2, and the divide-and-conquer process discovery technique from

Section 6 has been implemented as the “Mine Petri net using Passages” plug-in. Both plug-ins have been

implemented in the “Passage” package, which is installed in ProM 6.2 by default.

The “Mine Petri net using Passages” plug-in is configured by selecting a γc ∈ Γc algorithm and a

γp ∈ Γp algorithm, a maximum size on passages, and which activities to retain in the causal structure.

ProM 6.2 supports the following Γc algorithms:

Alpha Miner Returns a causal structure based on the → (“causality”) relation constructed by the α

miner [8].

Basic Log Relations Constructs basic log relations (similar to those used by the α miner) from the event

log and derives a causal structure from these relations.

Heuristics Miner Returns a causal structure using the Heuristics miner [41, 39]. The user is allowed to

configure the Heuristics miner in the usual way (e.g., set thresholds for deriving causalities).

Flower Miner Creates a causal structure which results in two passages: One passage containing only

the start (⊤) and complete (⊥) events, and one passage containing all other (i.e., original) events.

This algorithm allows one to run the chosen Γp algorithm on the original log (as the second passage

contains all events from the original, i.e., not extended, log).

Flower and ILP Miner with Proper Completion First creates the two passages like the previous algo-

rithm, then runs the ILP miner (with the proper completion option selected) on the second passage,

and derives a causal structure from the mined net.

and the following Γp algorithms4:

4The exhaustive miner as used in Section 7 is not included in ProM 6.2, but is included as the Exhaustive Miner in the ProM 6

nightly build (See http://www.promtools.org/prom6) as of December 7, 2012.

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 31

Alpha Miner Returns a Petri net fragment per passage by applying the α miner [8] to each sublog.

ILP Miner Returns a Petri net fragment per passage by applying the ILP miner [42] to each sublog

(using the default configuration).

ILP Miner with Proper Completion Returns a Petri net fragment per passage by applying the ILP

miner [42] to each sublog (with the proper completion option selected).

The maximum passage size determines for which passages the Γp algorithm is used: If the size of a

passage (|X ∪ Y | for a passage (X,Y)) exceeds this threshold, then a dummy net fragment containing

only a transition for every event (i.e, no places) is constructed, otherwise the Γp algorithm is used to mine

the net fragment. However, if this size is set to 0, then no maximum size applies, i.e., the Γp algorithm is

used to mine every net fragment.

The current implementation does not allow for the interactive editing of the causal structure. The

domain expert can only inspect the causal structure and select the set of activities to retain. After the

plug-in has been configured, the passage-based discovery approach described in Definition 6.3 is used to

construct the overall process model.

9. Related Work

For an introduction to process mining we refer to [2]. For an overview of best practices and challenges,

we refer to the Process Mining Manifesto [29]. The goal of this paper is to decompose challenging

process discovery and conformance checking problems into smaller problems [4]. Therefore, we first

review some of the techniques available for process discovery and conformance checking.

Process discovery, i.e., discovering a process model from a multiset of example traces, is a very chal-

lenging problem and various discovery techniques have been proposed [7, 8, 13, 15, 20, 21, 23, 27, 32,

37, 40, 42]. Many of these techniques use Petri nets during the discovery process and/or to represent the

discovered model. It is impossible to provide a complete overview of all techniques here. Very differ-

ent approaches are used, e.g., heuristics [23, 40], inductive logic programming [27], state-based regions

[7, 21, 37], language-based regions [15, 42], and genetic algorithms [32]. Classical synthesis techniques

based on regions [25] cannot be applied directly because the event log contains only example behav-

ior. For state-based regions one first needs to create an automaton as described in [7]. Moreover, when

constructing the regions, one should avoid overfitting. Language-based regions seem good candidates

for discovering transition-bordered Petri nets for passages [15, 42]. Unfortunately, these techniques still

have problems dealing with infrequent/incomplete behavior.

As described in [2], there are four competing quality criteria when comparing modeled behavior and

recorded behavior: fitness, simplicity, precision, and generalization. In this paper, we focused on fitness,

but also precision and generalization can also be investigated per passage. Various conformance checking

techniques have been proposed in recent years [5, 9, 10, 12, 18, 24, 27, 33, 34, 36, 38]. Conformance

checking can be used to evaluate the quality of discovered processes but can also be used for auditing

purposes [6]. Most of the techniques mentioned can be applied to passages. The most challenging part

is to aggregate the metrics per passage into metrics for the overall model and log. We consider the

approach described in [9] to be most promising as it constructs an optimal alignment given an arbitrary

cost function. This alignment can be used for computing precision and generalization [5, 34]. However,

the approach can be rather time consuming. Therefore, the efficiency gains can be considerable for larger

processes with many activities and passages.

32 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

Little work has been done on the decomposition and distribution of process mining problems [4].

In [17] an approach is described to distribute genetic process mining over multiple computers. In this

approach candidate models are distributed and in a similar fashion also the log can be distributed. How-

ever, individual models are not partitioned over multiple nodes. Therefore, the approach in this paper is

complementary. Moreover, unlike [17], the decomposition approach based on passages is not restricted

to genetic process mining.

Most related are the divide-and-conquer techniques presented in [22]. In [22] it is shown that region-

based synthesis can be done at the level of synchronized State Machine Components (SMCs). Also a

heuristic is given to partition the causal dependency graph into overlapping sets of events that are used to

construct sets of SMCs. Passages provide a different (more local) partitioning of the problem and, unlike

[22] which focuses specifically on state-based region mining, we decouple the decomposition approach

from the actual conformance checking and process discovery approaches.

Several approaches have been proposed to distribute the verification of Petri net properties, e.g., by

partitioning the state space using a hash function [16] or by modularizing the state space using localized

strongly connected components [30]. These techniques do not consider event logs and cannot be applied

to process mining.

Most data mining techniques can be distributed [19], e.g., distributed classification, distributed clus-

tering, and distributed association rule mining [14]. These techniques often partition the input data and

cannot be used for the discovery of Petri nets.

This paper is an extended version of a paper presented at Petri nets 2012 [3]. Many of the results have

been generalized, e.g., from WF-nets to arbitrary nets and from minimal passages to arbitrary passage

partitionings. Moreover, the properties of passages are now described in detail and the notion of passages

is supported through various new ProM plug-ins. Unlike [3] we now also provide experimental results

showing that speedups are indeed possible.

10. Conclusion

Computationally challenging process mining problems can be decomposed into smaller problems using

the new notion of passages. As shown, conformance checking can be done per passage and the results

per passage can be merged into useful overall conformance diagnostics using the observation that a trace

is non-fitting if and only if it is non-fitting for at least one passage. The paper also presents a discovery

approach where the discovery problem can be decomposed after determining the causal structure. The

refined behavior can be discovered per passage and, subsequently, the discovered net fragments can be

merged into an overall process model. Conformance checking and process discovery can be done much

more efficiently using such decompositions. Moreover, the notion of passages can be used to local-

ize process-related diagnostics. For example, it is easier to explore conformance-related problems per

passage and passages provide a means to hierarchically structure discovered process models. Both ap-

proaches have been implemented in ProM 6.2 and can be used for decomposing a variety of conformance

checking and process discovery algorithms.

Future work will focus on more large scale experiments demonstrating the performance gains when

decomposing various process mining tasks. The experiments in this paper show that the actual speedup

heavily depends on the number of passages and the size of the largest passage. If there are many smaller

passages, orders of magnitude can be gained. However, in worst case, there is just one passage and no

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 33

speed-up is possible. Ideally, we would like to use a passage partitioning Q = {P1, P2, . . . , Pn} such

that n is as large as possible and the passages Pi are as small as possible. From a practical point of view,

models with just a few large passages are less interesting as, by definition, they will be Spaghetti-like

[2]. To ensure smaller passages, one may need to abstract from edges that are less important. We are

currently investigating such “approximate passages”. Clearly, there is a trade-off between the desire to

include all possible causalities and minimizing the average passage size or the size of the biggest passage.

Therefore, we would like to investigate Γc algorithms that try to minimize the number of passages without

compromising accuracy too much.

References

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal of Circuits,

Systems and Computers, 8(1):21–66, 1998.

[2] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Business Processes.

Springer-Verlag, Berlin, 2011.

[3] W.M.P. van der Aalst. Decomposing Process Mining Problems Using Passages. In S. Haddad and L. Pomello,

editors, Applications and Theory of Petri Nets 2012, volume 7347 of Lecture Notes in Computer Science,

pages 72–91. Springer-Verlag, Berlin, 2012.

[4] W.M.P. van der Aalst. Distributed Process Discovery and Conformance Checking. In J. de Lara and A. Zis-

man, editors, International Conference on Fundamental Approaches to Software Engineering (FASE 2012),

volume 7212 of Lecture Notes in Computer Science, pages 1–25. Springer-Verlag, Berlin, 2012.

[5] W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History on Process Models for Confor-

mance Checking and Performance Analysis. WIREs Data Mining and Knowledge Discovery, 2(2):182–192,

2012.

[6] W.M.P. van der Aalst, K.M. van Hee, J.M. van der Werf, and M. Verdonk. Auditing 2.0: Using Process

Mining to Support Tomorrow’s Auditor. IEEE Computer, 43(3):90–93, 2010.

[7] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler, and C.W. Günther. Process

Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting. Software and Systems

Modeling, 9(1):87–111, 2010.

[8] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering Process Models

from Event Logs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[9] A. Adriansyah, B. van Dongen, and W.M.P. van der Aalst. Conformance Checking using Cost-Based Fitness

Analysis. In C.H. Chi and P. Johnson, editors, IEEE International Enterprise Computing Conference (EDOC

2011), pages 55–64. IEEE Computer Society, 2011.

[10] A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Towards Robust Conformance Checking. In

M. zur Muehlen and J. Su, editors, BPM 2010 Workshops, Proceedings of the Sixth Workshop on Business

Process Intelligence (BPI2010), volume 66 of Lecture Notes in Business Information Processing, pages 122–

133. Springer-Verlag, Berlin, 2011.

[11] A. Adriansyah, J. Munoz-Gama, J. Carmona, B.F. van Dongen, and W.M.P. van der Aalst. Alignment Based

Precision Checking. In B. Weber, D.R. Ferreira, and B. van Dongen, editors, Workshop on Business Process

Intelligence (BPI 2012), Tallinn, Estonia, 2012.

34 W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages

[12] A. Adriansyah, N. Sidorova, and B.F. van Dongen. Cost-based Fitness in Conformance Checking. In In-

ternational Conference on Application of Concurrency to System Design (ACSD 2011), pages 57–66. IEEE

Computer Society, 2011.

[13] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow Logs. In Sixth Interna-

tional Conference on Extending Database Technology, volume 1377 of Lecture Notes in Computer Science,

pages 469–483. Springer-Verlag, Berlin, 1998.

[14] R. Agrawal and J.C. Shafer. Parallel Mining of Association Rules. IEEE Transactions on Knowledge and

Data Engineering, 8(6):962–969, 1996.

[15] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions of Languages. In

G. Alonso, P. Dadam, and M. Rosemann, editors, International Conference on Business Process Management

(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 375–383. Springer-Verlag, Berlin,

2007.

[16] M.C. Boukala and L. Petrucci. Towards Distributed Verification of Petri Nets properties. In Proceedings

of the International Workshop on Verification and Evaluation of Computer and Communication Systems

(VECOS’07), pages 15–26. British Computer Society, 2007.

[17] C. Bratosin, N. Sidorova, and W.M.P. van der Aalst. Distributed Genetic Process Mining. In H. Ishibuchi,

editor, IEEE World Congress on Computational Intelligence (WCCI 2010), pages 1951–1958, Barcelona,

Spain, July 2010. IEEE.

[18] T. Calders, C. Guenther, M. Pechenizkiy, and A. Rozinat. Using Minimum Description Length for Process

Mining. In ACM Symposium on Applied Computing (SAC 2009), pages 1451–1455. ACM Press, 2009.

[19] M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, and P. Trunfio. Distributed Data Mining on Grids:

Services, Tools, and Applications. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(6):2451–

2465, 2004.

[20] J. Carmona and J. Cortadella. Process Mining Meets Abstract Interpretation. In J.L. Balcazar, editor,

ECML/PKDD 210, volume 6321 of Lecture Notes in Artificial Intelligence, pages 184–199. Springer-Verlag,

Berlin, 2010.

[21] J. Carmona, J. Cortadella, and M. Kishinevsky. A Region-Based Algorithm for Discovering Petri Nets from

Event Logs. In Business Process Management (BPM2008), pages 358–373, 2008.

[22] J. Carmona, J. Cortadella, and M. Kishinevsky. Divide-and-Conquer Strategies for Process Mining. In

U. Dayal, J. Eder, J. Koehler, and H. Reijers, editors, Business Process Management (BPM 2009), volume

5701 of Lecture Notes in Computer Science, pages 327–343. Springer-Verlag, Berlin, 2009.

[23] J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based Data. ACM Trans-

actions on Software Engineering and Methodology, 7(3):215–249, 1998.

[24] J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring the Correspondence of a

Process to a Model. ACM Transactions on Software Engineering and Methodology, 8(2):147–176, 1999.

[25] P. Darondeau. Unbounded Petri Net Synthesis. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on

Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 413–438. Springer-

Verlag, Berlin, 2004.

[26] B. van Dongen. BPI Challenge 2012. Dataset. http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-

75976070e91f, 2012.

[27] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust Process Discovery with Artificial Negative

Events. Journal of Machine Learning Research, 10:1305–1340, 2009.

W. van der Aalst, H. Verbeek / Decomposing Process Mining Problems Using Passages 35

[28] M. Hilbert and P. Lopez. The World’s Technological Capacity to Store, Communicate, and Compute Infor-

mation. Science, 332(6025):60–65, 2011.

[29] IEEE Task Force on Process Mining. Process Mining Manifesto. In F. Daniel, K. Barkaoui, and S. Dustdar,

editors, Business Process Management Workshops, volume 99 of Lecture Notes in Business Information

Processing, pages 169–194. Springer-Verlag, Berlin, 2012.

[30] C. Lakos and L. Petrucci. Modular Analysis of Systems Composed of Semiautonomous Subsystems. In

Application of Concurrency to System Design (ACSD2004), pages 185–194. IEEE Computer Society, 2004.

[31] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. Byers. Big Data: The Next

Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute, 2011.

[32] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic Process Mining: An Exper-

imental Evaluation. Data Mining and Knowledge Discovery, 14(2):245–304, 2007.

[33] J. Munoz-Gama and J. Carmona. A Fresh Look at Precision in Process Conformance. In R. Hull, J. Mendling,

and S. Tai, editors, Business Process Management (BPM 2010), volume 6336 of Lecture Notes in Computer

Science, pages 211–226. Springer-Verlag, Berlin, 2010.

[34] J. Munoz-Gama and J. Carmona. Enhancing Precision in Process Conformance: Stability, Confidence and

Severity. In N. Chawla, I. King, and A. Sperduti, editors, IEEE Symposium on Computational Intelligence

and Data Mining (CIDM 2011), pages 184–191, Paris, France, April 2011. IEEE.

[35] A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In S. Dustdar, J.L. Fiadeiro, and A. Sheth,

editors, International Conference on Business Process Management (BPM 2006), volume 4102 of Lecture

Notes in Computer Science, pages 420–425. Springer-Verlag, Berlin, 2006.

[36] A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based on Monitoring Real

Behavior. Information Systems, 33(1):64–95, 2008.

[37] M. Sole and J. Carmona. Process Mining from a Basis of Regions. In J. Lilius and W. Penczek, editors,

Applications and Theory of Petri Nets 2010, volume 6128 of Lecture Notes in Computer Science, pages

226–245. Springer-Verlag, Berlin, 2010.

[38] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens. A Robust F-measure for Evaluating Discov-

ered Process Models. In N. Chawla, I. King, and A. Sperduti, editors, IEEE Symposium on Computational

Intelligence and Data Mining (CIDM 2011), pages 148–155, Paris, France, April 2011. IEEE.

[39] A. Weijters and J. Ribeiro. Flexible Heuristics Miner (FHM). In N. Chawla, I. King, and A. Sperduti,

editors, IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011), pages 310–317,

Paris, France, April 2011. IEEE.

[40] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-Based Data using

Little Thumb. Integrated Computer-Aided Engineering, 10(2):151–162, 2003.

[41] A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process Mining with the Heuristics

Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology, Eindhoven,

2006.

[42] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process Discovery using

Integer Linear Programming. Fundamenta Informaticae, 94:387–412, 2010.

