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Abstract. The research domain of process discovery aims at construct-
ing a process model (e.g. a Petri net) which is an abstract representation
of an execution log. Such a Petri net should (1) be able to reproduce the
log under consideration and (2) be independent of the number of cases
in the log. In this paper, we present a process discovery algorithm where
we use concepts taken from the language-based theory of regions, a well-
known Petri net research area. We identify a number of shortcomings
of this theory from the process discovery perspective, and we provide
solutions based on integer linear programming.

1 Introduction

Enterprise information systems typically log information on the steps performed
by the users of the system. For legacy information systems, such execution logs
are often the only means for gaining insight into ongoing processes. Especially,
since system documentation is usually missing or obsolete and nobody is confi-
dent enough to provide such documentation. Hence, in this paper we consider
the problem of process discovery [7], i.e. we construct a process model describing
the processes controlled by the information system by simply using the execution
log. We restrict our attention to the control flow, i.e., we focus on the ordering
of activities executed, rather than on the data recorded.

Table 1 illustrates our notion of an event log, where it is important to realize
that we assume that every event recorded is related to a single execution of a
process, also referred to as a case.

A process model (in our case a Petri net) discovered from a given execution
log should satisfy a number of requirements. First of all, such a Petri net should
be capable of reproducing the log, i.e. every sequence of events recorded in the
log should correspond to a firing sequence of the Petri net. Second, the size of the
Petri net should be independent of the number of cases in the log. Finally, the
Petri net should be such that the places in the net are as expressive as possible
in terms of the dependencies between transitions they express.

A problem similar to process discovery arises in areas such as hardware design
and control of manufacturing systems. There, the so called theory of regions is



Table 1. An event log.

case id activity id originator case id activity id originator

case 1 activity A John case 5 activity A Sue
case 2 activity A John case 4 activity C Carol
case 3 activity A Sue case 1 activity D Pete
case 3 activity B Carol case 3 activity C Sue
case 1 activity B Mike case 3 activity D Pete
case 1 activity C John case 4 activity B Sue
case 2 activity C Mike case 5 activity E Claire
case 4 activity A Sue case 5 activity D Claire
case 2 activity B John case 4 activity D Pete
case 2 activity D Pete

used to construct a Petri net from a behavioral specification (e.g., a language),
such that the behavior of this net corresponds with the specified behavior (if
such a net exists).

In this paper we investigate the application of the theory of regions in the
field of process discovery. It should be noted that we are not interested in Petri
nets whose behavior corresponds completely with the given execution log, i.e.
logs cannot be assumed to exhibit all behavior possible. Instead, they merely
provide insights into “common practice” within a company.

In Section 3, we show that a straightforward application of the theory of re-
gions to process discovery would lead to Petri nets of which the number of places
depends on size of the log. Therefore, in Section 4, we discuss how ideas from
the theory of regions can be combined with generally accepted concepts from
the field of process discovery to generate Petri nets that satisfy the requirements
given above. Furthermore, using the log of Table 1 as an illustrative example, we
show how our approach can lead to Petri nets having certain structural proper-
ties, such as marked graphs, state machines and free-choice nets [14]. Finally, in
Section 5 we present the implementation of our approach in ProM [4], followed
by a brief discussion on its usability on logs taken from practice. In Section 6,
we provide some conclusions.

2 Preliminaries

Let S be a set. The powerset of S, the set of all subsets of S, is denoted by
P(S) = {S′|S′ ⊆ S}. A bag (multiset) m over S is a function S → IN, where
IN = {0, 1, 2, . . .} denotes the set of natural numbers. The set of all bags over S is
denoted by INS . We identify a bag with all elements occurring only once with the
set containing these elements, and vice versa. We use + and − for the sum and
difference of two bags, and =, <,>,≤,≥ for the comparison of two bags, which
are defined in a standard way. We use ∅ for the empty bag, and ∈ for the element
inclusion. We write e.g. m = 2[p] + [q] for a bag m with m(p) = 2, m(q) = 1 and
m(x) = 0, for all x 6∈ {p, q}. We use the standard notation |m| and |S| to denote
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the number of elements in bags and sets. Let n ∈ IN. A sequence over S of length
n is a function σ : {1, . . . , n} → S. If n > 0 and σ(1) = a1, . . . , σ(n) = an, we
write σ = 〈a1, . . . , an〉, and σi for σ(i). The length of a sequence is denoted by |σ|.
The sequence of length 0 is called the empty sequence, and is denoted by ε. The
set of finite sequences over S is denoted by S∗. Let υ, τ ∈ S∗ be two sequences.
Concatenation, denoted by σ = υ; τ is defined as σ : {1, . . . , |υ|+ |τ |} → S, such
that for 1 ≤ i ≤ |υ|, σ(i) = υ(i), and for |υ| + 1 ≤ i ≤ |σ|, σ(i) = τ(i − |υ|).
Further, we define the prefix ≤ on sequences by υ ≤ τ if and only if there exists a
sequence ρ ∈ S∗ such that τ = υ; ρ. We use x to denote column vectors and for a
sequence σ ∈ S∗, the Parikh vector σ : S → IN defines the number of occurrences
of each element of S in the sequence, i.e. σ(s) = |{i|1 ≤ i ≤ |σ|, σ(i) = s}|, for
all s ∈ S.

Let Σ be an alphabet, i.e. a finite and non-empty set. Its elements are called
letters. A word w is a finite sequence of letters, i.e. w ∈ Σ∗. A language L is
a set of words: L ⊆ Σ∗. A language is called prefix-closed if for all non-empty
words w = w′a ∈ L, a ∈ Σ, it holds that w′ ∈ L.

Definition 2.1. (Petri net) A Petri net N is a 3-tuple N = (P, T, F ), where
(1) P and T are two disjoint sets of places and transitions respectively; we call
the elements of the set P ∪ T nodes of N ; (2) F ⊆ (P × T ) ∪ (T × P ) is a flow
relation; an element of F is called an arc.

Let N = (P, T, F ) be a Petri net. Given a node n ∈ P ∪ T , we define its
preset •

Nn = {n′|(n′, n) ∈ F}, and its postset n•N = {n′|(n, n′) ∈ F}. If the
context is clear, we omit the N in the subscript.

To describe the execution semantics of a net, we use markings. A marking
m of a net N = (P, T, F ) is a bag over P . Markings are states (configurations)
of a net. A pair (N, m) is called a marked Petri net. A transition t ∈ T is
enabled in a marking m ∈ INP , denoted by (N, m)[t〉 if and only if •t ≤ m.
Enabled transitions may fire. A transition firing results in a new marking m′

with m′ = m− •t + t•, denoted by (N, m) [t〉 (N, m′).

Definition 2.2. (Firing sequence) Let N = (P, T, F ) be a Petri net, and
(N, m) be a marked Petri net. A sequence σ ∈ T ∗ is called a firing sequence
of (N,m) if and only if for n = |σ|, there exist markings m1, . . . ,mn−1 ∈
INP and transitions t1, . . . , tn ∈ T such that σ = 〈t1, . . . , tn〉, and, (N, m) [t1〉
(N, m1) . . . (N, mn−1)[tn〉. We lift the notations for being enabled and firing to
firing sequences, i.e. if σ ∈ T ∗ be a firing sequence, then for all 1 ≤ k ≤ |σ| and
for all places p ∈ P it holds that m(p) +

∑k−1
i=1 (σi

•(p)− •σi(p)) ≥ •σk(p).

As we stated before, a single execution of a model is called a case. If the
model is a Petri net, then a single firing sequence that results in a dead marking
(a marking where no transition is enabled) is a case. Since most information
systems log all kinds of events during execution of a process, we establish a link
between an execution log of an information system and firing sequences of Petri
nets. The basic assumption is that the log contains information about specific
transitions executed for specific cases.
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Definition 2.3. (Case, Log) Let T be a set of transitions, σ ∈ T ∗ is a case,
and L ∈ P(T ∗) is an execution log if and only if for all t ∈ T holds that there
is a σ ∈ L, such that t ∈ σ. In other words, an execution log is a set of firing
sequences of some marked Petri net (N, m) = ((P, T, F ), m), where P , F and m
are unknown and where no transition is dead.

In Definition 2.3, we define a log as a set of cases. Note that in real life,
logs are bags of cases, i.e. a case with a specific order in which transitions are
executed may occur more than once, as shown in our example. However, in this
paper, we do not have to consider occurrence frequencies of cases and therefore
sets suffice.

Recall that the goal of process discovery is to obtain a Petri net that can
reproduce the execution log under consideration. In [11], Lemma 1 states the
conditions under which this is the case. Here, we repeat that Lemma and we
adapt it to our own notation.

Definition 2.4. (Replayable log) Let L ∈ P(T ∗) be an execution log, and
σ ∈ L a case. Furthermore, let N = ((P, T, F ),m) be a marked Petri net. If the
log L is a subset of all possible cases of (N, m), i.e. each case in L is a firing
sequence in (N,m) ((N, m)[σ〉), we say that L can be replayed by (N,m).

In order to construct a Petri net that can indeed reproduce a given log, the
theory of regions can be used. In Section 3, we present this theory in detail and
we argue why the classical algorithms in existence are not directly applicable in
the context of process discovery. In Section 4, we show how to extend the theory
of regions to be more applicable in a process discovery context.

3 Theory of regions

The general question answered by the theory of regions is: given the specified
behavior of a system, what is the Petri net that represents this behavior? Both
the form in which the behavior is specified as well as the “represents” statement
can be expressed in different ways. Mainly, we distinguish two types, the first of
which is state-based region theory [9,12,16]. This theory focusses on the synthesis
of Petri nets from state-based models, where the statespace of the Petri net is
branching bisimilar to the given state-based model. Although state-based region
theory can be applied in the process discovery context [6], the main problem is
that execution logs rarely carry state information and the construction of this
state information from a log is far from trivial [6].

In this paper, we consider language-based region theory [8, 13, 17], of which
[17] presents a nice overview. In [17], the authors show how for different classes
of languages (step languages, regular languages and partial languages) a Petri
net can be derived such that the resulting net is the smallest Petri net in which
the words in the language are possible firing sequences.

In this section, we introduce the language-based regions, we briefly show how
the authors of [11,17] used these regions in the context of process discovery and
why we feel that this application is not a suitable one.

4



t1 t2

t4t3

x1

x2

x3

x4

y1

y2

y3

y2

c

Fig. 1. Region for a log with four events.

3.1 Language-based theory of regions

Given a prefix-closed language L over some alphabet T , the language-based
theory of regions tries to find a finite Petri net N(L) in which the transitions
correspond to the symbols in the alphabet of the language and of which all words
in the language are firing sequences. Furthermore, the Petri net should have only
minimal firing sequences not in the language.

The Petri net N(L) = (∅, T, ∅) is a finite Petri net in which all words are firing
sequences. However, its behavior not minimal. Therefore, the behavior of this
Petri net needs to be reduced, such that the Petri net still allows to reproduce
all words in the language, but does not allow for more behavior. This is achieved
by adding places to the Petri net. The theory of regions provides a method to
calculate these places, using regions.

Definition 3.1. (Region) A region of a prefix-closed language L over T =
{t1, . . . , tn} is a triple (x, y, c) with x, y ∈ {0, 1}|T | and c ∈ {0, 1}, such that for
each non-empty word w = w′; a ∈ L, w′ ∈ L, a ∈ T :

c +
∑

1≤i≤n

(w′(ti) · x(ti)−w(ti) · y(ti)) ≥ 0

This can be rewritten into the inequation system:

1 · c + A′ · x−A · y ≥ 0

where A and A′ are two |L| × |T | matrices with A(w, t) = w(t), and A′(w, t) =
w′(t), with w = w′a. The set of all regions of a language is denoted by <(L)
and the region (0,0, 0) is called the trivial region.1

Figure 1 shows a region for a log with four events, i.e. each solution (x, y, c)
of the inequation system can be regarded in the context of a Petri net, where the
region corresponds to a feasible place with preset {t|t ∈ T, x(t) = 1} and postset
{t|t ∈ T,y(t) = 1}, and initially marked with c tokens. Note that we do not
assume arc-weights, where the authors of [8, 11, 13, 17] do. However, in process

1 To reduce calculation time, the inequation system can be rewritten to the form
[1; A′;−A] · r ≥ 0 which can be simplified by eliminating duplicate rows.
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modelling languages, such arc weights typically do not exist, hence we decided
to ignore them. Our approach can however easily be extended to incorporate
them.

Since the place represented by a region is a place which can be added to a
Petri net, without disturbing the fact that the net can reproduce the language
under consideration, such a place is called a feasible place.

Definition 3.2. (Feasible place) Let L be a prefix-closed language over T
and let N = ((P, T, F ), m) be a marked Petri net. A place p ∈ P is is called
feasible if and only if there exists a corresponding region (x, y, c) ∈ <(L) such
that m(p) = c, and x(t) = 1 if and only if t ∈ •p, and y(t) = 1 if and only if
t ∈ p•.

In [11, 17] it was shown that any solution of the inequation system of Def-
inition 3.1 can be added to a Petri net without influencing the ability of that
Petri net to replay the log. However, since there are infinitely many solutions of
that inequation system, there are infinite many feasible places and the authors
of [11,17] present two ways of finitely representing these places.

Basis representation In the basis representation, the set of places is chosen
such that it is a basis for the non-negative integer solution space of the linear
inequation system. Although such a basis always exists for homogeneous inequa-
tion systems, it is worst-case exponential in the number of equations [17]. By
construction of the inequation system, the number of equations is linear in the
number of traces, and thus, the basis representation is worst-case exponential
in the number of events in the log. Hence, an event log containing ten thou-
sand events, referring to 40 transitions, might result in a Petri net containing a
hundred million places connected to those 40 transitions. Although [11] provides
some ideas on how to remove redundant places from the basis, these procedures
still require the basis to be constructed fully. Furthermore, the implementation of
the work in [11] is not publicly available for testing and no analysis is presented
of this approach on realistically sized logs.

Separating representation To reduce the theoretical size of the resulting
Petri net, the authors of [11,17] propose a separating representation. In this rep-
resentation, places that separate the allowed behavior (specified by the system)
using words not in the language are added to the resulting Petri net. Although
this representation is no longer exponential in the size of the language, but poly-
nomial, it requires the user to specify undesired behavior, which can hardly be
expected in the setting of process discovery, i.e. nothing is known about the be-
havior, except the behavior seen in the event log. Furthermore, again no analysis
is presented of this approach on realistically sized logs.

In [11,17] the authors propose the separating representation for regular and
step languages and by this, they maximize the number of places generated by
the number of events in the log times the number of transitions. As we stated in
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the introduction, the size of the Petri net should not depend on the size of the
log for the approach to be applicable in the context of process discovery.

4 Integer Linear Programming formulation

In [11, 17] it was shown that any solution of the inequation system of Defini-
tion 3.1 can be added to a Petri net without influencing the ability of that Petri
net to replay the log. Both the basis and the separating representation are pre-
sented to select which places to indeed add to the Petri net. However, as shown
in Section 3, we argue that the theoretical upper bound on the number of places
selected is high. Therefore, we take a different selection mechanism for adding
places that:

– Explicitly express certain causal dependencies between transitions that can
be discovered from the log, and

– Favors places which are more expressive than others (i.e. the added places
restrict the behavior as much as possible).

In this section, we first show how to express a log as a prefix-closed language,
which is a trivial, but necessary step and we quantify the expressiveness of places,
in order to provide a target function, necessary to translate the inequation system
of Definition 3.1 into a integer linear programming problem in Subsection 4.2. In
Section 4.3, we show a first algorithm to generate a Petri net. In Subsection 4.4,
we then provide insights into the causal dependencies found in a log and how
these can be used for finding places. We conclude this section with a description
of different algorithms for different classes of Petri nets.

4.1 Log to Language

To apply the language-based theory of regions in the field of process discovery,
we need to represent the process log as a prefix-closed language, i.e. by all the
traces present in the process log, and their prefixes. Recall from Definition 2.3
that a process log is a finite set of traces.

Definition 4.1. (Language of a process log) Let T be a set of activities, L ∈
P(T ∗) a process log over this set of transitions. The language L that represents
this process log, uses alphabet T , and is defined by:

L = {l ∈ T ∗|∃l′ ∈ L : l ≤ l′}

As mentioned before, a trivial Petri net capable of reproducing a language
is a net with only transitions. To restrict the behavior allowed by the Petri net,
but not observed in the log, we start adding places to that Petri net. However,
the places that we add to the Petri net should be as expressive as possible, which
can be expressed using the following observation. If we remove the arc (p, t) from
F in a Petri net N = (P, T, F ) (assuming p ∈ P, t ∈ T, (p, t) ∈ F ), the resulting
net still can replay the log (as we only weakened the pre-condition of transition
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t). Also if we would add a non-existing arc (t, p) to F , with t ∈ T and p ∈ P ,
the resulting net still can replay the log as it strengthens the post-condition of
t.

Lemma 4.2. (Adding an incoming arc to a place retains behavior)
Let N = ((P, T, F ), m) be a marked Petri net that can replay the process log
L ∈ P(T ∗). Let p ∈ P and t ∈ T such that (t, p) 6∈ F . The marked Petri nets
N ′ = ((P, T, F ′),m) with F ′ = F ∪ {(t, p)} can replay the log L.

Proof. Let σ = σ1; t; σ2 ∈ T ∗, such that t 6∈ σ1 be a firing sequence of (N, m).
Let m′ ∈ INP such that (N, m) [σ1; t〉 (N, m′) and (N, m′)[σ2〉 We know that
for all p′ ∈ t•N holds that m′(p′) > 0, since t just fired. Assume t 6∈ σ1. Then
(N ′,m) [σ1; t〉 (N ′,m′′) with m′′ = m′+[p]. Furthermore, since m′+[p] > m′, we
know that (N ′,m′′)[σ2〉. By induction on the occurrences of t, we get (N ′,m)[σ〉.

¤
Lemma 4.3. (Removing an outgoing arc from a place retains behavior)
Let N = ((P, T, F ), m) be a marked Petri net that can replay the process log
L ∈ P(T ∗). Let p ∈ P and t ∈ T such that (p, t) ∈ F . The marked Petri nets
N ′ = ((P, T, F ′),m) with F ′ = F \ {(p, t)} can replay the log L.

Proof. Let σ = σ1; t; σ2 ∈ T ∗, such that t 6∈ σ1 be a firing sequence of (N, m).
Let m′ ∈ INP such that (N,m) [σ1〉 (N, m′). We know that for all p′ ∈•N t
holds that m′(p′) > 0, since t is enabled. This implies that for all p′ ∈•N ′ t
also holds that m′(p′) > 0, since •

N ′t =•N t \ {p}. Hence, (N ′,m) [σ1〉 (N ′,m′)
and (N ′,m′) [t〉 (N ′,m′′). Due to monotonicity, we have (N ′,m′′)[σ2〉. Hence
(N ′,m)[σ〉.

¤
Besides searching for regions that lead to places with maximum expressive-

ness, i.e. a place with a maximum number of input arcs and a minimal number
of output arcs, we are also searching for “minimal regions”. As in the region
theory for synthesizing Petri nets with arc weights, minimal regions are regions
that are not the sum of two other regions.

Definition 4.4. (Minimal region) Let L ∈ P(T ∗) be a log, let r = (x,y, c) be
a region. We say that r is minimal, if there do not exist two other, non trivial,
regions r1, r2 with r1 = (x1,y1, c1) and r2 = (x2,y2, c2), such that x = x1 +x2

and y = y1 + y2 and c = c1 + c2.

Using the inequation system of Definition 3.1, the expressiveness of a place
and the partial order on regions, we can define an integer linear programming
problem (ILP formulation [20]) to construct the places of a Petri net in a logical
order.

4.2 ILP formulation

In order to transform the linear inequation system introduced in Section 3 to an
ILP problem, we need a target function. Since we have shown that places are
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most expressive if their input is minimal and their output is maximal, we could
minimize the value of a target function f((x, y, c)) = c + 1T · x − 1T · y, i.e.
adding an input arc from the corresponding feasible place increases the value of
1T · x, as does removing an output arc from the corresponding feasible place.

However, it is easy to see that this function does not favor minimal regions, i.e.
regions that are no sum of two other regions. Therefore, we need a target function
f ′, such that for any three regions r1, r2 and r3 with r3 = r1 + r + 2 holds that
f ′(r1) < f ′(r3) and f ′(r2) < f ′(r3), while preserving the property that regions
corresponding to more expressive feasible places have a lower target value. For
this purpose, we use the target function f ′((x,y, c)) = c + 1T ·A ·x− 1T ·A · y.

Definition 4.5. (Target function) Let L ∈ P(T ∗) be a log, let r = (x,y, c) be
a region and let A be the matrix as in definition 3.1. We define a target function
τ : <(L) → IN, such that τ(r) = c + 1T ·A · (x− y).

First, we show that the target function of Definition 4.5 indeed satisfies all
criteria.

Lemma 4.6. (Target function favors minimal regions) Let L ∈ P(T ∗) be
a log, let r1 = (x1, y1, c1), r2 = (x2,y2, c2) and r3 = (x1 + x2, y1 + y2, c1 + c2)
be three regions (i.e. with r3 = r1+r2). Furthermore, let A be the matrix defined
in Definition 3.1. Let τ : <(L) → IN, such that τ(r) = c + 1T ·A · (x− y). Then
τ(r1) < τ(r3) and τ(r2) < τ(r3).

Proof. First, we show that τ(r3) = τ(r1)+τ(r2). Clearly τ(r3) = c1+c2+1T ·A·
(x1+x2−(y1+y2)) and hence τ(r3) = c1+1T·A·(x1−y1)+c2+1T·A·(x2−y2) =
τ(r2) + τ(r3).

It remains to be shown that for any region r = (x,y, c) holds that τ(r) > 0.
Recall from Definition 3.1 that c + 1T · A′ · x − 1T · A · y ≥ 0. Since we know
that for all t ∈ T , there is a σ ∈ L with t ∈ σ (Definition 2.3), we know that
1T · A > 0 and 1T · A′ ≥ 0 (the sum over the columns of A produces the total
number of occurrences of each transition in the language and in A′ the last
occurrence in each prefix is not counted). Hence, 1T · A ≥ 1T · A′ and therefore
c+1T ·A·x−1T ·Ay ≥ c+1T ·A′ ·x−1T ·Ay ≥ 0. Assuming that 1T ·x+1T ·y > 0
(i.e. the place corresponding to region r has at least one connecting arc), we can
derive that c + 1T ·A · x− 1T ·Ay 6= 0 and hence we have shown that τ(r) > 0.
Combining this with the fact that τ(r3) = τ(r1) + τ(r2), we have shown that
τ(r3) > τ(r1) and τ(r3) > τ(r2). ¤

Lemma 4.6 shows that our target function satisfies our requirements pro-
vided that each region translates into a place with at least one arc, incoming
or outgoing. This does not restrict the generality of our approach, since places
without arcs attached to them are of no interest for the behavior of a Petri net.

Combining Definition 3.1 with the condition set by Lemma 4.6 and the tar-
get function of Definition 4.5, we get the following integer linear programming
problem.

Definition 4.7. (ILP formulation) Let L ∈ P(T ∗) be a log, and let A and A′

be the matrices defined in Definition 3.1. We define the ILP ILPL corresponding

9



with this log as:

Minimize c + 1T ·A · (x− y) Defintion 4.5
such that c + A′ · x−A · y ≥ 0 Definition 3.1

1T · x + 1T · y ≥ 1 There should be at least one edge
0 ≤ x ≤ 1 x ∈ {0, 1}|T |
0 ≤ y ≤ 1 y ∈ {0, 1}|T |
0 ≤ c ≤ 1 c ∈ {0, 1}

The ILP problem presented in Definition 4.7 provides the basis for our process
discovery problem. However, an optimal solution to this ILP only provides a
single feasible place with a minimal value for the target function. Therefore, in
the next subsection, we show how this ILP problem can be used as a basis for
constructing a Petri net from a log.

4.3 Constructing Petri nets using ILP

In the previous subsection, we provided the basis for constructing a Petri net
from a log. In fact, the target function of Definition 4.5 provides a partial order
on all elements of the set <(L), i.e. the set of all regions of a language. In this
subsection, we show how to generate the first n places of a Petri net, that is (1)
able to reproduce a log under consideration and (2) of which the places are as
expressive as possible.

A trivial approach would be to add each found solution as a negative example
to the ILP problem, i.e. explicitly forbidding this solution. However, it is clear
that once a region r has been found and the corresponding feasible place is
added to the Petri net, we are no longer interested in regions r′ for which the
corresponding feasible place has less tokens, less outgoing arcs or more incoming
arcs, i.e. we are only interested in unrelated regions.

Definition 4.8. (Refining the ILP after each solution) Let L ∈ P(T ∗) be
a log, let A and A′ be the matrices defined in Definition 3.1 and let ILP(L,0)

be the corresponding ILP. Furthermore, let region r0 = (x0,y0, c0) be a mini-
mal solution of ILP(L,0). We define the refined ILP as ILP(L,1), with the extra
constraint specifying that:

−c0 · c + yT · (1− y0)− xT · x0 ≥ −c0 + 1− 1T · x0

Lemma 4.9. (Refining yields unrelated regions) Let L ∈ P(T ∗) be a
log, let A and A′ be the matrices defined in Definition 3.1 and let ILP(L,0) be
the corresponding ILP. Furthermore, let region r0 = (x0, y0, c0) be a minimal
solution of ILP(L,0) and let r1 = (x1, y1, c1) be a minimal solution of ILP(L,1),
where ILP(L,1) is the refinement of ILP(L,0) following Definition 4.8. Then,
c1 < c0 or there exists a t ∈ T , such that x1(t) < x0(t) ∨ y1(t) > y0(t).

Proof. Assume that c1 ≥ c0 and for all t ∈ T holds that x1(t) ≥ x0(t), and
y1(t) ≤ y0(t). Then since c0, c1 ∈ {0, 1} we know that c0 · c1 = c0. Similarily,
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y1
T ·(1−y0) = 0 and x0

T ·x1 = x0
T ·1. Hence −c0 ·c1+y1

T ·(1−y0)−x0
T ·x1 =

−c0 − x0
T · 1 and since −c0 − x0

T · 1 < −c0 + 1 − 1T · x0, we know that r1 is
not a solution of ILP(l,0). This is a contradiction. ¤

The refinement operator presented above, basically defines an algorithm for
constructing the places of a Petri net that is capable of reproducing a given log.
The places are generated in an order which ensures that the most expressive
places are found first and that only places are added that have less tokens, less
outgoing arcs, or more incoming arcs. Furthermore, it is easy to see that the
solutions of each refined ILP are also solutions of the original ILP, hence all
places constructed using this procedure are feasible places.

The procedure, however, still has the downside that the total number of places
introduced is worst-case exponential in the number of transitions. Furthermore,
the first n places might be introduced linking a small number of transitions,
whereas other transitions in the net are only linked after the first n places are
found. Since there is no way to provide insights into the value of n for a given
Petri net, we propose a more suitable approach, not using the refinement step
of Definition 4.8. Instead, we propose to guide the search for solutions (i.e. for
places) by metrics from the field of process discovery [5, 7, 15,21].

4.4 Using log-based properties

Recall from the beginning of this section, that we are specifically interested
in places expressing explicit causal dependencies between transitions. In this
subsection, we first introduce how these causal dependencies are usually derived
from a log file. Then we use these relations in combination with the ILP of
Definition 4.7 to construct a Petri net.

Definition 4.10. (Causal dependency [7]) Let T be a set of transitions and
L ∈ P(T ∗) an execution log. If for two activities a, b ∈ T , there are traces
σ1, σ2 ∈ T ∗ such that σ1; a; b; σ2 ∈ L, we write a >L b. If in a log L we have
a >L b and not b >L a, there is a causal dependency between a and b, denoted
by a →L b.

In [7], it was shown that if a log L satisfies a certain completeness criterion
and if there exists a Petri net of a certain class [7] that can reproduce this
log, then the >L relation is enough to reconstruct this Petri net from the log.
However, the completeness criterion assumes knowledge of the Petri net used
to generate the log and hence it is undecidable whether an arbitrary log is
complete or not. Nonetheless, we provide the formal definition of the notion of
completeness, and we prove that for complete logs, causal dependencies directly
relate to places and hence provide a good guide for finding these places.

Definition 4.11. (Complete log [7]) Let N = ((P, T, F ),m) be a marked
Petri net. Let L ∈ P(T ∗) be a process log. The log L is called complete if and
only if there are traces σ1, σ2 ∈ T ∗ such that (N, m)[σ1; a; b; σ2〉 implies a >L b.
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In [7], the proof that a causal dependency corresponds to a place is only given
for safe Petri nets (where each place will never contain more than one token
during execution). This can however be generalized for non-safe Petri nets.

Lemma 4.12. (Causality implies a place) Let N = ((P, T, F ), m) be a
marked Petri net. Let L be a complete log of N . For all a, b ∈ T , it holds that if
a 6= b and a →L b then a• ∩ •b 6= ∅.
Proof. Assume a →L b and a• ∩ •b = ∅. By the definition of >L, there exist
sequences σ1, σ2 ∈ T ∗ such that (N,m)[σ1; a; b;σ2〉. Let s = m + Nσ1, then
(N, s)[a〉, but also (N, s) [b〉 (N, s′), for some s′ ∈ INP , since a• ∩ •b = ∅. Further
we have ¬(N, s′)[a〉, since otherwise a 6→L b. Therefore, (•b \ b•) ∩ •a 6= ∅. Let
p ∈ (•b\b•)∩•a. Then, s(p) = 1, since if s(p) > 1, a would be enabled in (N, s′).
Therefore, b is not enabled after firing (σ; a). This is a contradiction, since now
¬(N, s)[a; b〉. ¤

Causal dependencies between transitions are used by many process discovery
algorithms [5,7,15,21] and generally provide a good indication as to which transi-
tions should be connected through places. Furthermore, extensive techniques are
available to derive causal dependencies between transitions using heuristic ap-
proaches [7,15]. In order to find a place expressing a specific causal dependency,
we extend the ILP presented in Definition 4.7.

Definition 4.13. (ILP for causal dependency) Let L ∈ P(T ∗) be a log,
let A and A′ be the matrices defined in Definition 3.1 and let ILPL be the
corresponding ILP. Furthermore, let t1, t2 ∈ T and assume t1 →L t2. We define
the refined ILP, ILP(L,t1→t2) as ILPL, with two extra bounds specifying that:

x(t1) = y(t2) = 1

A solution of the optimization problem expresses the causal dependency
t1 →L t2, and restricts the behavior as much as possible. However, such a
solution does not have to exist, i.e. the ILP might be infeasible, in which case no
place is added to the Petri net being constructed. Nonetheless, by considering
a separate ILP for each causal dependency in the log, a Petri net can be con-
structed, in which each place is as expressive as possible and expresses at least
one dependency derived from the log. With this approach at most one place is
generated for each dependency and thus the upper bound of places in N(L) is
the number of causal dependencies, which is worst-case quadratic in the number
of transitions and hence independent of the size of the log.

4.5 Net types

So far, we presented two algorithms for constructing a Petri net able to replay
a log, using an ILP formulation. The two algorithms presented are generic and
can easily be extended to different log types or to different net classes. In this
subsection, we present possible extensions. For all of these extensions, we briefly
sketch how they affect the ILP, and what the result is in terms of computational
complexity.
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Workflow nets Workflow nets [3] are a special class of Petri nets with a single
marked input place and a single output place which are often used for modelling
business processes. To search for workflow nets using our ILP approach, we do
not allow for places to be marked, unless they have no incoming arcs. In terms of
the ILP, this simply translates into saying that c = 0 when searching a place for
a causal dependency and to separately search for initial places for each transition
t not expressing a causal dependency, but with c = 1 and 1T · x = 0.

Figure 2 shows a Petri net constructed from the log of Table 1. This Petri net
is almost what we consider to be a workflow net, i.e. it has a clear initial marking
and the initially marked place does not have incoming arcs. When replaying the
log of Table 1 in this net, it is obvious that the net is empty (i.e. no places contain
tokens) after completion of each case, whereas workflow nets should contain a
clearly marked final place when a case is complete. This property can also be
expressed in terms of constraints, by demanding that the Petri net should have
an empty marking after the completion of a case (in most cases, it is then rather
easy to extend such a net to a net with a single output place).

Empty after case completion Another property which is desirable in process
discovery, is the ability to identify the final marking. Using the ILP formulation

A

B

D

C

E

Fig. 2. Workflow net (without output
place).

A

B

D

C

E

Fig. 3. Marked graph.

A

B

D

C

E

Fig. 4. Marked graph, empty after case
completion.

A

B(C)

D

C(B)

E

Fig. 5. State machine.

A

B(C)

D

C(B)

E

Fig. 6. Free choice.

A

B(C)

D

C(B)

E

Fig. 7. Free choice, empty after case com-
pletion.
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we presented in this paper, this can easily be achieved, by adding constraints
ensuring that for all cases in the log which are no prefix of any other case in the
log (or maximum cases), the net is empty when all transitions are fired. These
constraints have the form c + σT · x− aT · y = 0, where σ is the Parikh vector
corresponding to a maximum case σ.

The requirement that the net has to be empty after case completion some-
times leads to a reduction of the number of feasible places. Consider for example
a class of Petri nets called “marked graphs”.

Marked Graphs In a marked graph [19], places have at most one input place
and one output place, i.e. 1T · x ≤ 1 and 1T · y ≤ 1. The influence of these con-
straints on the computation time is again negligible, however, these constraints
do introduce a problem, since it is no longer possible to maximize the number
of output arcs of a place (as it is at most 1). However, the procedure will find as
many places with single input single output as possible.

In Figure 3, a marked graph is presented that was constructed from the
log of Table 1. This net is clearly capable of replaying the log. However, after
completion of a case, tokens remain in the net, either in the place before “E”
or in the places before “B” and “C”. When looking for a marked graph that is
empty after case completion, the result is the net of Figure 4.

State machines State machines [19] are the counterpart of Marked graphs, i.e.
transitions have at most one input place and one output place. It is easy to see
that this cannot be captured by an extension of the ILP directly. The property
is not dealing with a single solution of the ILP (i.e. a single place), but it is
dealing with the collection of all places found.

Nonetheless, our implementation in ProM [4], which we present in Section 5
does contain a naive algorithm for generating state machines. The algorithm
implemented in ProM proceeds as follows. First, the ILP is constructed and
solved, thus yielding a place p to be added to the Petri net. Then, this place is
added and from that point on, for all transitions t ∈ •p, we say that x(t) = 0
and for all transitions t ∈ p•, we say that y(t) = 0. Currently, the order in which
places are found is undeterministic: the first place satisfying the conditions is
chosen, and from that moment on no other places are connected to the transitions
in its pre- and post-set.

Figure 5 shows a possible state machine that can be constructed using the
log of Table 1. Note that transitions “B” and “C” are symmetrical, i.e. the figure
actually shows 2 possible state machines, of which one will be provided by the
implementation.

Free-Choice nets Similar to state machines, free choice nets [14] impose re-
strictions on the net as a whole, rather than on a single place. A Petri net is
called free choice, if for all of its transitions t1, t2 holds that if there exists a
place p ∈ •t1 ∩ •t2 then •t1 = •t2.
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Our implementation allows for the construction of free-choice nets and the
algorithm used works as follows. First, all causal dependencies are placed on
a stack. Then, for the first dependency on the stack, the ILP is solved, thus
yielding a region (x0, y0, c0) with 1T · y0 > 1 corresponding to a place p with
multiple outgoing arcs to be added to the Petri net. Then, this place is added
and from that point on, constraints are added, saying for all t1, t2 ∈ T with
y0(t1) = y0(t2) = 1 holds that y(t1) = y(t2), i.e all outgoing edges of the place
added to the Petri net appear together, or none of them appears. If after this a
place p1 is found with even more outgoing edges than p, then p1 is added to the
Petri net, p is removed, the constraints are updated and the causal dependencies
expressed by p, but not by p1 are placed back on the stack. This procedure is
repeated until the stack is empty.

It is easy to see that the algorithm presented above indeed terminates, i.e.
places added to a Petri net that call for the removal of existing places always
have more outgoing arcs than the removed places. Since the number of outgoing
arcs is limited by the number of transitions, there is an upper bound to the
number of removals and hence to the number of constraints placed back on
the stack. The algorithm does however put a strain on the computation time,
since each causal dependency is investigated as most as often as the number of
transitions in the log, and hence instead of solving the ILP |T |2 times, it might
be solved |T |3 times. However, since the added constraints have a specific form,
solving the ILP gets quicker with each iteration (due to reduced complexity of
the Branch-and-Bound part) [20].

Figure 6 shows a possible free-choice net that can be constructed using the
log of Table 1. Note that transitions “B” and “C” are again symmetrical. Fur-
thermore, the only difference between this net and the net of Figure 2 is that
there is no arc from the place between “A” and “C” to “E”. Adding this arc
would violate the free-choice property. The fact that this arc is not there however
does violate the property that the net is empty after case completion. Figure 7
shows a free-choice net that is empty after case completion. However, this net is
no longer a so-called elementary net.

Pure nets Before introducing elementary nets, we first define pure nets [18],
since elementary nets are pure. In a pure net, no self-loops occur. By adding
a constraint x(t) + y(t) ≤ 1, for each transition t ∈ T , each transition either
consumes or produces tokens in a place, but not both at the same time. This pro-
cedure slightly increases the size of the ILP problem (with as many constraints
as transitions found in the log), thus resulting in a slight increase in computation
time. However, since most logs have far more prefixes than actual transitions,
the overall effect is negligible.

Elementary nets Elementary Petri nets [17] are nets in which transitions can
only fire when their output places are empty. This can easily be worked into
the ILP, as shown in [17]. Two sets of constraints are required. First, self-loops
are explicitly forbidden since elementary nets are pure and then, by adding the
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constraints c+1T ·A ·x−1T ·A ·y ≤ 1 it is ensured that after firing a transition
each of its output places should contain at most one token. State machines,
marked graphs and free-choice nets can all be made elementary this way. When
requiring an elementary net however, the problem size doubles (there are twice
as many constraints) and since the execution time is exponential in the size of
the problem, the worst-case execution time is squared.

In this section, we presented a way of constructing a Petri net from an execution
log using an ILP formulation. We presented a large number of net types and
extensions to get a Petri net satisfying criteria set by a user. The figures on
page 13 nicely show that with different sets of constraints, different models can
be produced.

Although we used a toy example to illustrate the different concepts, we intro-
duce our implementation embedded in the process discovery framework ProM,
which is capable of constructing nets for logs with thousands of cases referring
to dozens of transitions.

5 Implementation in ProM

The (Pro)cess (M)ining framework ProM [4] has been developed as a completely
plugable environment for process discovery and related topics. It can be extended
by simply adding plug-ins, and currently, more than 200 plug-ins have been
added. The ProM framework can be downloaded from www.processmining.org.

In the context of this paper, the “Parikh language-based region miner” was
developed, that implements the algorithms presented in Section 4. The Petri nets
on Page 13 were all constructed using our plugin. For solving ILP problems, an
open-source solver LpSolve [1] is used. Although experiments with CPlex [2] have
been conducted, we feel that the use of the open-source alternative is essential: it
allows for distribution of ProM, as well as reproducibility of the results presented
in this paper.

Note that the plugin is also capable of dealing with partially ordered logs,
i.e. logs where all cases are represented by partial orders on its events. The
construction of the ILP in that case is largely the same as for the totally ordered
cases as presented in [11,17] and as included in VIPtool [10].

5.1 Numerical analysis

Using the implementation in ProM, we performed some performance analysis
on our approach. We tested our algorithm on a collection of logs with varying
numbers of transitions and varying numbers of cases, using the default settings
of our plugin, which include the constraints for elementary nets and empty nets
after case completion. Furthermore, we used logs that are distributed with the
release of ProM and causal dependencies are used for guiding the solver.
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Table 2. Numerical analysis results.

log # transitions # variables # cases # events # constraints time (hh:mm:ss.sss)
a12f0n00 1 12 25 200 618 54 0.406
a12f0n00 1 600 1848 54 0.922
a12f0n00 3 1000 3077 54 1.120
a12f0n00 4 1400 4333 54 1.201
a12f0n00 5 1800 5573 54 1.234
a22f0n00 1 22 45 100 1833 1894 1:40.063
a22f0n00 2 300 5698 4350 5:07.344
a22f0n00 3 500 9463 5863 7:50.875
a22f0n00 4 700 13215 7238 10:24.219
a22f0n00 5 900 16952 8405 12:29.313
a32f0n00 1 32 65 100 2549 3352 32:14.047
a32f0n00 2 300 7657 7779 1:06:24.735
a32f0n00 3 500 12717 10927 1:46:34:469
a32f0n00 4 700 17977 13680 2:43:40.641
a32f0n00 5 900 23195 15978 2:54:01.765

Note that solving an ILP problem consists of two stages. The first stage
uses the Simplex algorithm, which is worst-case exponential, but generally out-
performs polynomial algorithms and the second phase which is an exponential
search.

The results presented in Table 2 show that adding cases to a log referring
to a given number of transitions increases the necessary calculation time in a
seemingly sub-linear fashion2, however this might not be the case in general.
Figure 8 shows a screenshot of ProM, showing the Petri nets discovered for the
log “a22” with 300 cases in the bottom right corner. The settings dialog for our
plugin is shown in the top-left corner.

Since for the log “a12” the number of constraints remains constant for dif-
ferent log sizes, the increase in processing time is only due to the overhead of
calculating the causal dependencies, which is polynomial in the size of the log.
For the other logs however, the increase in processing time is due to the fact
that adding constraints influences the first phase of solving an ILP problem, but
not the second phase which is far more complex. Furthermore, our experiments
so-far show an almost linear dependency between the number of cases in the log
and the execution time, although this might not be the case in general.

On the other hand, when increasing the number of transitions (i.e. the num-
ber of variables) instead of the number of case, the branch-and-bound phase is
heavily influenced. Hence the computation time increases exponentially, since
the branch-and-bound algorithm is worst-case exponential. However, these re-
sults show that the execution time is still feasible, i.e. results for a large log can
be generated overnight.

6 Conclusion and Future work

In this paper we presented a new method for process discovery using integer
linear programming (ILP). The main idea is that places restrict the possible
2 These calculations were performed on a 3 GHz Pentium 4, using ProM 4.2 and

LpSolve 5.5.0.10 running Java 1.5. The memory consumption never exceeded 256MB.
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firing sequences of a Petri net. Hence we search for as many places as possible,
such that the resulting Petri net is consistent with the log, i.e. such that the
Petri net is able to replay the log.

The well-known theory of regions solves a similar problem, but for finite
languages. Finite languages can be considered as prefix closures of a log and the
theory of regions tries to synthesize a Petri net which can reproduce the language
as precisely as possible. In [11, 17] this idea is elaborated and the problem is
formalized using a linear inequation system. However, the Petri nets synthesized
using the approach of [11, 17] scale in the number of events in the log, which is
undesirable in process discovery.

In this paper, we build on the methods proposed in [11, 17]. First of all we
have defined an optimality criterion transforming the inequation system into an
ILP. This ILP is than solved under different conditions, such that the places of
a Petri net capable of replaying the log are constructed.

The optimality criterion we defined is such that it guarantees that more ex-
pressive places are found first, i.e. places with less input arcs and more output
arcs are favored. Furthermore, using the causality relation that is used in the
alpha algorithm [7], we are able to specifically target the search to places ex-
pressing this relation. This causality relation is generally accepted in the field
of process discovery and, under the assumption the log is complete, is shown to
directly relate to places. Furthermore, the size of the constructed Petri net is
shown to be independent on the number of events in the log, which makes this
approach applicable in more practical situations.

Using additional constraints, we can enforce structural net properties of the
discovered Petri net, such as the freedom of choice. It is clear that not all these
constraints for structural properties lead to feasible solutions, but nonetheless,
we always find a Petri net that is consistent with the log. For all our constraints
we provide lemmas motivating these constraints.

The numerical quality of our approach is promising: we can discover nets with
about 25 transitions and a log with about 1000 cases in about 15 minutes on a
standard desktop PC. Moreover, while the execution time of our method appears
to scale sub-linear in the size of the log, although this needs to be validated more
thoroughly.

Since each place can be discovered in isolation, it seems to be easy to paral-
lelize the algorithm and to use grid computing techniques to speed up the com-
putation time. Other open questions concern the expression of more structural
and behavioral properties into linear constraints and the use of this algorithms
in a post-processing phase of other algorithms.
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