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Abstract 

To allow the distribution of control and visibility of cross-organizational process models 

and to increase availability and performance of the processes, a process model can be fragmented 

into logically different parts and distributed in the enterprise architecture. Fragmentation 

algorithms and execution environments which connect the fragmented process model parts 

together, recreating the original process execution semantics, have been proposed in earlier 

work. However, a critical challenge that is left open is the ability of the distributed process 

execution environment to respond effectively to process changes. In this paper, we describe the 

difficulties, advantages and issues of process model change support in a fragmented and 

distributed environment. Moreover, we propose a system which tackles the identified issues and 

allows the propagation and coordination of process changes at runtime in the distributed process 

execution architecture. 

 

Keywords: Business Process Enactment, Process Evolution, Workflow Change, Distributed 

Business Processes, Service Oriented Architecture  
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Process Evolution in a Distributed Process Execution Environment 

 

Business process model fragmentation is the process of splitting a process model that was 

modeled as a whole into logically different, smaller model fragments with the intention to 

distribute the fragments over different execution and controlling partners. There are several 

reasons for process model fragmentation: distribution of ownership and/or coordination across 

process model fragments; elimination of a single point of failure during process model 

execution; and increasing availability and performance of the process model execution. 

Process model fragmentation allows for the distribution of control and responsibility of 

the process model. In contrary, using a central execution scheme to operate the complete process 

flow implies that the responsibility of the entire process execution lies with one organizational 

entity. However, it is not uncommon that processes are cross-departmental or even cross-

organizational, where it is not viable that one single entity has full control over the entire process 

flow, or even has visibility of the entire process flow. Also, the process may be designed 

centrally as one unit, but off-shoring and outsourcing process capabilities may require the 

fragmentation of this process model.  

Besides such organizational reasons, executable business process models, i.e. a process 

model described in an executable process language like BPEL (OASIS, 2007) or YAWL (van 

der Aalst & ter Hofstede, 2005) may also have technical reasons for their distribution and 

fragmentation. When the model is executed as one unit by one process engine (centralized 

process execution) and at high loads (i.e. increasing client requests), the engine has to handle a 

significant amount of process instances simultaneously. For complex processes this requires 

handling a vast state space, performing complex data transformations and invoking multiple 
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component services (e.g. web services and task managers). This puts a high pressure on the 

central process engine and performance degrades as the number of process instances increases 

(Chafle, Chandra, Mann, & Nanda, 2004). Alongside degradation of the performance, 

centralized execution also adds a single point of failure to the process execution architecture. 

Services (e.g. web services) are distributed and decentralized, but the decision logic and 

coordination (composition) of these services is still located at one point (i.e. the process engine). 

Failure of the coordinator means failure of the entire process, even if the services themselves are 

still available and ready to be executed (Chafle et al., 2004; Muth, Wodtke, Weissenfels, 

Dittrich, & Weikum, 1998). Process model fragmentation and distributed execution addresses 

these issues.  

Many different techniques for process model fragmentation have been proposed in 

literature. For example, Chafle et al. (2004) use program dependency graphs, a tool borrowed 

from compiler optimization, to split up the process flow. Their goal is to reduce the network 

traffic involved. For the same reasons, Fdhila et al. (2009) fragment the process flow using 

dependency tables. To increase availability and failure-resilience Muth et al. (1998) perform 

process model fragmentation using state and activity charts and Khalaf et al. (2008) fragment a 

BPEL flow according to predefined swim-lanes to enable distribution of ownership and 

coordination. The proposed techniques differ in the way and reasons processes are fragmented, 

but the result is, however, always the same: a set of logically different fragments distilled in an 

(automated) way from the original process model, which enables the distributed execution of 

each fragment by different process partners.  

A problem that is left open is how process evolution and process model change is 

performed in these distributed process execution environments. A critical challenge for any 
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process-aware information system (PAIS) is its ability to respond effectively to process changes 

(Weber, Sadiq, & Reichert, 2009; van der Aalst W. , 2001; Rinderle, Reichert, & Dadam, 2004). 

Processes evolve over time and the execution environment should adequately support these 

changes. The distributed execution environment adds, however, additional difficulties in process 

change support: a global process overview is unavailable since execution is fragmented, 

instances are created for fragments and not for the global process model and extra overhead is 

introduced since coordination between physically distributed fragments is needed to propagate 

changes in the execution environment. 

In this paper we describe the difficulties, advantages and issues of process evolution in a 

fragmented and distributed process model execution environment and propose a system to 

propagate and coordinate process changes at runtime. The change support system is based on our 

previously proposed approach for distributed process execution, where a non-intrusive 

fragmentation algorithm is used; with dedicated, lightweight process engines for fragment 

execution, and an event-based communication paradigm between process fragments to ensure a 

scalable, loosely coupled and flexible runtime environment (Hens, Snoeck, Poels, & De Backer, 

2012). Our previous work has demonstrated that beyond a certain system load threshold, the 

distributed process execution outperforms the centralized execution and the performance 

increase outweighs the distribution overhead. The fragmentation itself is kept non-intrusive, 

because this ensures that the process modeler does not have to know the technical details of 

process distribution and of the runtime architecture. In the same manner, the process 

redeployment (or change) system should also be non-intrusive, and allow for the automatic 

propagation of changes in the runtime architecture.  
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Throughout the rest of the paper, the term 'global process model' refers to the original 

(whole) process model; 'process model fragment' refers to an item of the outcome of the 

fragmentation algorithm and 'global process instance' and 'process fragment instance' refer to 

instantiations of the global process model and process model fragment respectively. 

In this paper we follow a nested problem-solving approach as proposed by Wieringa 

(2009), which describes an intertwinement of practical and knowledge problems in the research 

cycle. At the top, we solve the practical problem of process evolution in the distributed 

environment. First, a running example is presented, which is used throughout the paper. 

Subsequently, our distributed event-based process execution approach is briefly described: its 

concepts, the fragmentation transformation and the execution architecture. In the second part of 

the paper, a knowledge problem is tackled first. The aspects of process evolution in such a 

distributed environment are discussed and issues are identified which complicate change 

management for fragmented and distributed processes. In the next section, a solution for the 

practical problem of change management in the distributed environment is presented: a protocol 

which describes every step involved in detail and addresses the issues identified. Finally, an 

evaluation of the distributed change management is given in the form of a prototype 

implementation which shows the feasibility of the approach and a discussion on any 

disadvantages compared to classical process evolution techniques. The paper ends with a 

discussion on related work and some concluding remarks. 
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Figure 1. Running example. 

 

Figure 1 shows a small BPMN business process diagram for insurance claim handling. 

Arriving claims are inspected by an analyst who prepares documents for the automated web 

service and creates a report of the client’s history. These two tasks can be done in parallel by the 

analyst(s). A web service takes as input a prepared (computer readable) claim report and 

calculates an insurance sum based on all variables in the report. A manager in the insurance 

company takes the eventual decision based on the client’s history report and the claim amount 

calculated by the web service. Finally, a sum is refunded or the claim is rejected. A process 

engine is used to execute and control the process flow, task managers are employed to handle the 

inbox for manual tasks and a web service is used to calculate the insurance sum. 

Although this example is kept small for exploratory purposes, the approach proposed in 

this paper is not limited to these simple examples. Also note that the example omits any data 
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flow considerations. Since this research is focused on the control flow of process execution, for 

simplicity we assume data is transmitted along with the sequence flow.  

 

Background: Distributed Event-Based Process Execution 

In this section we give a brief overview of distributed event-based process execution and 

describe the fragmentation and execution architecture required to achieve the distributed 

execution. 
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Figure 2. Distributed event-based process execution. 
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Figure 2a shows in part the centralized execution of the insurance claim handling 

process. One process engine (PE1) is used to manage the entire process flow, whereby multiple 

process instances are controlled at the same time. To overcome the managerial and technical 

issues of centralized execution, a distributed approach is adopted where not one, but multiple 

process engines are used to manage, in collaboration, the entire process flow. At deployment 

time a transformation algorithm takes as input the original process flow and outputs different 

process model fragments. These fragments are deployed on different, dedicated process engines 

as shown in Figure 2b. Instead of one (or multiple duplicated) engine(s), multiple engines are 

used which differ both physically (location in the IT architecture) and logically (execute a 

different process model fragment) from each other (see PE1-PE4 in Figure 2b). The global 

process execution for a certain process instance is performed by the collaboration of all the 

process engines, each running a different process model fragment. 

To achieve this collaboration an event-based communication paradigm is used. In an 

event-based (publish/subscribe) communication architecture, components communicate with 

each other by generating and receiving event notifications (Mühl, Fiege, & Pietzuch, 2006). 

Components (publishers) publish notifications into the architecture, from where they are routed 

to other interested parties (subscribers). This routing is done by an event service that keeps track 

of which entity is interested in which event type and which entity is able to publish which event 

type (content-based many-to-many routing). In our case, the fragmented process engines are both 

publishers and subscribers of event notifications, with an event being a past happening in the 

PAIS with a business meaning, e.g. the completion of a business task, the arrival of a new task, 

the cancellation of a task, etc. Each notification hereby relates to the completion of a specific 
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business task. For example: “Accept Claim completed for process instance 1” would be an event 

notification in the insurance handling’s process execution. 

A consequence of using event-based communication is that for each process fragment it 

must be specified for which event types it needs a subscription (and thus a notification). This 

specification is called the event rule for the process fragment. The event rule specifies a logical 

combination of events that describes in which state the (business) environment should be before 

the process fragment can start executing. The process fragment is enabled if its event rule 

evaluates to true, i.e., the fragment’s process engine received event notifications indicating the 

completion of other fragments on which it is sequence dependent, or in other words: the 

environment is in a state where the fragment is able to execute. For example, the event rule for 

the ‘Assess Claim’ task from Figure 1 will state that the task can start when ‘Check Client 

History’ and ‘Calculate Insurance Sum’ is completed (for the same process instance).  

Figure 3 shows an overview of the major components of distributed event-based process 

execution. A process model is split into different process fragments, which are each executed by 

a different process engine. Each process engine is complemented with an event rule for which it 

needs subscriptions and one or more events which it publishes itself (i.e. completion events). To 

handle these publications and subscriptions, the engine is contained in a publish/subscribe 

wrapper which can communicate with the underlying event architecture. Eventually the process 

fragment's engine will create process fragment instances, publish event notifications and react to 

notifications, hereby collaborating with other process engines which results in the execution of 

the modeled, global process flow. 
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In the following sections the transformation from a global process model to process 

model fragments is briefly described, as well as the resulting distributed process architecture and 

execution. 
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Figure 3. Meta model 

Process Transformation 

To be able to execute a process in the distributed event-based setting, the process model 

needs to be transformed into different process fragments, with each a corresponding event rule. 

Before the event rule for each fragment can be calculated, the fragments in the process model 

have to be defined by choosing a unit of decomposition. The unit of decomposition can be 

anything from a single task to a group of process model elements. Grouping of process elements 

is supported by hierarchical process modeling. Process model elements that form one fragment 

can be grouped in one composite task (or sub-process in BPMN). The use of the concept of sub-

process immediately provides the modeler with a correct fragmentation semantic and avoids the 

necessity of a separate fragmentation language. Figure 4 shows an example of the insurance 
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claim handling process fragmented into four fragments. At deployment, the transformation 

algorithm will use this grouping to split the global process model and calculate the event rules 

and completion events per fragment.  

Fragment Claim Preparation

Fragment Claim Execution

Fragment 

Accept 

Claim

Fragment Check 

Client History

Assess 

Claim

Inform 

Client

Schedule 

PaymentAccept

Reject

Prepare

Claim

Calculate 

Insurance 

Sum

 

Figure 4. A fragmentation example 

 

Grouping process model elements in composite tasks enables different fragmentation 

strategies. For example, a process model can be split according to workflow variants 

(Hallerbach, Bauer, & Reichert, 2010), according to the network traffic involved (Chafle, 

Chandra, Mann, & Nanda, 2004), according to user defined regions, etc. However, a restriction 

is imposed on the fragmentation by the event-based execution model (see Figure 3). The process 

model part contained in the fragment must be structurally sound, it has one entry point and one 

exit point. This is because each fragment can only contain one event rule and one completion 

event. A further discussion on this restriction is provided in the Related Work section. 

Which fragmentation strategy is used is left out of scope of this paper. For illustration 

purposes, we assume that a task is used as unit of decomposition (similar to METEOR2 (Miller, 

Palaniswami, Sheth, Kochut, & Singh, 1998)). Choosing a task as the unit of decomposition, 

guarantees a fine grained distribution of the global process flow. The presented transformation 

algorithm, enactment and process evolution protocol can be adapted accordingly to allow other 

decomposition units. 
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Transformation Algorithm. Figure 5 shows the basic algorithm to split a global process 

flow (in       time). For illustration purposes, the algorithm only shows a very basic 

transformation, supporting a limited set of process modeling elements (tasks, sequence flows and 

exclusive- and parallel- gateways) and assumes a task as the unit of decomposition. An extended 

algorithm can be found in (Hens, Snoeck, Poels, & De Backer, 2012). 

The algorithm takes as input a fully specified process flow and outputs different 

(executable) process fragments. Each resulting process fragment consists of a starting rule, a task 

(or sub-process) to execute and an (end) event to publish the completion of the fragment (see line 

3). A starting rule for a split process consists of an event part (the event rule) and a user-defined 

conditions part. Finding the event rule for a fragment equals to finding which preceding 

fragments in the process flow need to be completed before the execution of the fragment can 

start. The algorithm finds these completion events by means of a depth-first search in the upward 

flow in the global process model. The event rule is transcribed as a logical expression in 

Disjunctive Normal Form, where an event in the expression is a signal (or event notification) 

which is matched with a publication event of another fragment (see line 9). The conjunctions and 

disjunctions in the event rule match with the gateways preceding the fragment (see lines 12-18). 

If, for example, the fragment is preceded by a parallel gateway, the event rule will consist of a 

conjunction containing the publication events of the fragments preceding the parallel gateway. 

Hence, the gateway logic preceding a fragment is included in the fragment itself. This ensures 

that only events are published which have a business meaning (relate to a specific task or sub-

process in the original process model). Events indicate the completion of a task, the receipt of a 

message, etc. and not for example that a parallel split in a process path happened, or that a 

conditional merge happened. 
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The second part of the starting rule consists of user defined conditions originating from 

XOR-splits. A fragment is only enabled when its event rule evaluates to true AND the respective 

conditions evaluate to true. When searching for the completion events for the event rule, any 

condition encountered on an XOR-gateway is also stored in the starting rule (see lines 14-15).  

As an example, after transformation, the task ‘Schedule Payment’ from the insurance 

claim handling process will be transformed to a fragment containing:                                                                                                     
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Figure 5. Basic Transformation Algorithm 

 

Execution Architecture 

After the transformation, each process fragment can be deployed to a dedicated process engine 

and these can be distributed into the enterprise architecture together with a publish/subscribe 

middleware which handles the publication, subscription and notification messages. Figure 6 

positions these components in a service oriented architecture (SOA), featuring an enterprise 

service bus (ESB) as connectivity layer (Chapell, 2004). The publish/subscribe middleware is a 

part of the infrastructure services which provides the routing and subscription facilities for the 
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event messages. Each process fragment engine is a composition service and invokes one or more 

business services in the ESB. Additionally, management and monitoring services can be added 

which allow for the observation and administration of the distributed process execution. 
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Figure 6. Distributed event-based process execution 

 

Process Execution 

Upon deployment into the enterprise architecture, each process fragment engine 

subscribes to the event types found in its corresponding event rule. For example, the fragment for 

task ‘Check Client History’ will subscribe to one completion event i.e. AcceptClaim-
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Completed. After subscription, the fragment is capable of accepting event notification 

messages from the publish/subscribe middleware.  

The data payload of an event notification message in the architecture should minimally 

consist of two things, one is the indication of the task it represents (i.e. the tasks name or id, 

which also serves as the event-id), and another is a process instance id, which indicates for which 

(global) process instance an action has been performed. The latter attribute is necessary not to 

lose the coupling between the global process instance and the action performed. Other attributes 

can also be added to allow for process specific data transmission or process control. An example 

event notification is: 

[id=”AcceptClaimCompleted”;PIID=”1”;client-id=”1234”] 

Figure 7 shows the internal workings of a fragmented process engine embedded in a 

publish/subscribe wrapper and Figure 8 shows the possible states of a fragment instance. Upon 

arrival of an event notification three steps are performed by the fragmented process engine: 

1. The notification is routed to the corresponding fragment instance. This is done by 

matching the instance id found in the event notification, with the instance ids of 

the already running fragment instances (in state evaluating). If no match is found, 

a new fragment instance is created. In the fragment instance, the event in the 

event rule corresponding to the notification will become enabled. 

2. After each notification receipt, the event rule is evaluated. If the event rule 

evaluates to true, the state of the fragment instance changes from evaluating to 

ready (see Figure 8), indicating that the fragment is enabled and can start 

executing. When the instance is picked for execution (instantaneously for an 

automated business task), its state changes to ‘running’. An enabled fragment 
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instance can also move from the ready state back to the evaluating state, since for 

some workflow patterns (e.g. the milestone pattern (van der Aalst, Ter Hofstede, 

Kiepuszewski, & Barros, 2003)) it is possible that an enabled fragment becomes 

disabled again (Hens, Snoeck, Poels, & De Backer, 2012). If the fragment’s 

execution is triggered, the original process engine takes over and executes the 

actual work described in the fragment (e.g. controlling a process model part, 

invoking a service task, etc.). 

3. At the end of process execution (state completed), a notification is published by 

the publish/subscribe wrapper to signal the end of this fragment's instance, with 

the corresponding event-id and process-instance-id as attributes. 

 

The published end event is routed through the event architecture (and the ESB), and 

picked up by other interested fragment engines, which handle this event again with the steps 

described above. Eventually, the combined execution of all these split process engines have 

achieved the global execution of the entire, designed process flow.  
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Figure 8. The state machine of a process fragment instance. 
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Process Evolution in the Distributed Process Execution Environment 

The distributed execution environment described above allows the execution of a process 

model pre-defined at design time by different process partners and enables the distribution of 

process control, visibility and execution infrastructure. This (as-is) execution environment does, 

however, not allow any flexibility at process runtime. When a process is deployed for a certain 

process model, the execution will follow this pre-loaded model from start to finish. Such a non-

modifiable execution is, however, often not sufficient for a PAIS (Weber, Sadiq, & Reichert, 

2009): enterprises need to be able to quickly react to changing business needs and depend on the 

PAIS to support these changes.  

Weber et al. (2009) give a good overview of flexibility issues in PAISs and present 

existing flexibility approaches along the phases of the process lifecycle. Flexibility support can 

be can be found in the modeling, execution and monitoring phases of the process lifecycle. Since 

this paper describes a process execution environment, we focus on flexibility in the execution 

phase, and more specifically on structural process model change support in the PAIS. We focus 

on the ability of the distributed execution environment to change the process’s behavior by 

migrating a global process’s specification to a new version. This is termed evolutionary change.  

The next sections describe process evolution in more detail and define the difficulties 

involved when a distributed process execution scheme is used. 

 

Process Evolution 

Processes change over time, which means that one process type has multiple process 

schemas (Reichert, Rinderle, & Dadam, 2003). The relationship between process type, process 

schema and process instance is shown in Figure 9. Each schema represents another version of 
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the process type. The PAIS should support the evolution of these process schemas by allowing 

the redeployment of a changed process model into the already running execution environment. 

After redeployment, any new process instance creation requests are handled with the new 

process schema. The biggest challenge for the PAIS is the management of the already running 

process instances during (and after) process change and redeployment. Especially for long 

running processes, it is possible that a number of process instances are being executed at the time 

of process change. Stopping these instances and rebooting them with the new process schema is 

not viable (due to task duplication). A versioning mechanism should therefore be adopted where 

at one moment, multiple instances belonging to multiple schemas for the same process type are 

running in the execution environment. The versioning mechanism keeps track of which process 

instances belong to which process schema and executes these instances accordingly (see Figure 

9).  
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Figure 9. Versioning of a process type. 
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Adopting a simple versioning mechanism where only new instances are created with the 

new process schema is in some cases still not adequate. Most of the time the enterprise wants to 

migrate the maximum amount of process instances to the new schema version. For example, in 

the insurance claim process, a change is needed because a new regulation requires that a police 

report has to be filed before any claim analysis can happen. The addition of this extra condition 

has to be added to new (future) insurance claims as well as to existing, already started claims. 

The change has to be propagated to all running instances. This propagation is however not 

always possible. Current solutions define correctness criteria describing when a process instance 

can migrate to a new schema (Rinderle, Reichert, & Dadam, 2004). Globally, propagation of 

change can happen when the current execution state of the process instance is compliant with the 

new process schema. Several algorithms and techniques have been proposed which check and 

migrate process instances to a new process schema according to specific correctness criteria 

(Casati, Ceri, Pernici, & Pozzi, 1998; Reichert & Dadam, 1998; van der Aalst & Basten, 2002; 

van der Aalst W. , 2001). Most process evolution techniques can however not be used as-is in the 

distributed process execution environment. Additional difficulties are introduced by the 

fragmentation and distribution of the original process schema. These are discussed in the next 

section. 

 

Difficulties in Distributed Process Evolution 

Figure 10 shows the relation between the process schema, its fragments, the fragment's 

event rules and  instances in a distributed process execution environment. Like in Figure 9, a 

process type has different schemas, each representing a different version of the global process. A 

process schema is transformed into different fragments at deployment time. Fragments are 
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however not duplicated into the distributed environment according to the schema they 

correspond to. Fragments overlap across schemas. For example, in Figure 10, process schema v1 

includes a task ‘Prepare Claim’, which is transformed into a single process fragment with a 

corresponding event rule (fragment 3). Process schema v2 also includes this task, but has a 

different event rule (different control flow dependency). Instead of duplicating the existing 

process fragment and assigning it another event rule, the same fragment is used and a new event 

rule is added to this fragment. Hence, a single process fragment can contain multiple event rules, 

each representing another schema version. In distributed execution, the multiple event rules of a 

process fragment represent the different versions of a process type in the actual runtime 

environment. An advantage of this approach where fragments are reused, but event rules are 

updated, is that only fragments for which the event rule changes need to be updated and 

redeployed. Fragments to which no changes apply can be left untouched and running in the 

architecture. In Figure 10 for example, fragment 2 still uses its original event rule and serves all 

three process schemas.  

The relation between process schema, fragment and event rule, which is inherent for the 

distributed execution, adds difficulties to process evolution:  late instantiation of process 

fragments, loss of the global process overview and an increased requirement for coordination 

between process fragments and a change manager. These are discussed below. 
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Figure 10. Versioning in the distributed execution environment. 

 

Late instantiation. Fragments are instantiated 'just-in-time'. It is only upon activation, 

i.e. when an event notification is received, that a fragment is instantiated. Fragments that appear 

first in the process flow are instantiated earlier than fragments at the end of the process flow. 

Figure 11 demonstrates the relation between the global process schema instance and its fragment 

instances. The global instance (top half) is in a state where task A is ‘running’. In the distributed 

environment (bottom half), there exists only one process fragment instance, which is an instance 

of fragment A. No instances have (yet) been created for the process model fragments in the 

downward flow of the process. Fragment B or C will only get instantiated after A completes and 

fragment D only instantiates after B or C completes. 
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Figure 11. Late instantiation of process fragments. 

 

Late instantiation has consequences for the versioning mechanism in the distributed 

environment. In a classical execution environment a process instance is simply linked to its 

corresponding schema version (see Figure 9). This is, however, not possible in the fragmented 

process execution. A versioning system cannot link a process instance up front to its 

corresponding schema version (i.e. event rule version), because not all process fragment 

instances exist yet (and no global process instance is available). A possible solution would be to 

instantiate every future process fragment (shaded fragments in Figure 11) ahead of time and link 

these to the correct event rule version, thus simulating the schema-instance link from Figure 9. 

The disadvantage is that fragments which will never be executed for a specific process instance 

also get instantiated, and stay in existence for the lifetime of the process type. This is the case 

when a conditional split is present in the global process flow. In Figure 11, both fragments B and 

C would get instantiated, whereas only one fragment instance will eventually get activated (B 

xor C). The other fragment instance stays in the evaluating state forever. This is problematic for 
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big processes with multiple alternative paths, since these non-active fragments clog up resources 

over time. A distributed versioning mechanism therefore has to provide a way to cope with late 

instantiation. 

 

Loss of a global process overview. In order to discover which running process instances 

can migrate to a new schema version, the state of the global running instance has to be inspected. 

For example, van der Aalst (2001) provides an algorithm which defines a region in a changed 

process model where instances which reside in a state within this region, are not able to migrate 

to the new version. Other change management techniques also need a notion of the state of the 

(global) process instance (Rinderle, Reichert, & Dadam, 2004). The problem in distributed 

execution is that the global overview of the entire process is lost. Each fragment executes its own 

process logic and has only knowledge of its own execution state. The global process state can 

only be reconstructed by inspecting the current state of each process fragment involved in a 

specific process execution. This requires a lot of communication between a central manager and 

the process fragments (certainly for large processes with a high amount of fragments).  

Another way of reconstructing the state of the global process is enabling runtime logging 

of each event in the distributed execution environment. The resulting event traces can be used to 

calculate the current state of a specific process instance, given the corresponding process 

schema. The drawback of this approach is that a runtime monitor has to be available at all times, 

since missed events make it impossible to reconstruct the state of the process. 

 

Need for additional coordination. Since the fragments are distributed, extra 

coordination is required to migrate changes to specific process fragments. A (reliable) 
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communication protocol has to be established so that process fragments can react to control 

messages from a central change manager, which enables state-inspection, suspension, change 

propagation, etc. 

 

A Distributed Process Evolution Protocol 

In the previous section we introduced the difficulties of process evolution in a distributed 

process execution environment. In what follows, we propose a process evolution system which 

tackles those problems and shows the feasibility of change evolution in a distributed process 

execution environment. Since a method for instance migration is needed, the change region 

method from van der Aalst (2001) is described first. The second part of this section describes all 

steps involved in propagating a change into a running, distributed event-based process execution 

environment. 

 

Change Region 

Since changes in the process schema need to be migrated to the running process 

instances, a mechanism is needed which decides when a process instance can migrate and when 

it cannot. For illustration purposes the algorithm presented by van der Aalst (2001) is adopted in 

the distributed change protocol. Any other technique for change migration can also be used, 

provided the protocol presented below is adapted accordingly (see Related Work section). 

The algorithm calculates a region in the old (and new) process schema, called the change 

region. The region contains a collection of states which cannot migrate to a state in the new 

process version. The change region is calculated with the following correctness criteria: 
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Figure 12. Change region for two versions of the running example’s process. 

 

"a transfer is valid if the state of the case after migration could have been reached from the initial 

state" (van der Aalst, 2001, p. 304). Figure 12 shows two versions of the insurance claim 

handling process. Two change operations are performed: a task 'File Police Report' is inserted in 

the process flow; and the task 'Prepare Claim' is deleted. The change region in both versions is 

indicated with the dashed box. In general, the change region contains the modified flow elements 

in the process, supplemented with elements of any alternative paths originating from gateways, 

such as to create a block structured region. Any process instance that resides in an executable 

state in the region cannot be migrated to the new version and should be left running in the old 

configuration. For example, instance 1 shown in Figure 12, has an executable state inside the 

change region and can therefore not migrate to a new schema version. 
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Process Evolution Protocol 

In this section we present the steps and communication messages involved for process 

evolution in the distributed environment. The redeployment protocol starts from the moment a 

process modeler defined a new process schema. When the modeler redeploys the schema, the 

deployment engine (change manager) takes the old and new process specification as input. From 

here on the old schema is referred to as                and the new schema is referred to 

as                (see Figure 5). Every step is described in detail below
1
. The difficulties 

in process evolution: loss of the global process overview and late instantiation are tackled in 

steps 3 and 5 respectively and the additional coordination messages are described in the proof-of-

concept section. Note that the protocol is used to realize changes in the inter-fragment structure. 

If a change resides inside a fragment itself, classical centralized process evolution techniques can 

be used to change and migrate the process fragment instances without interference with other 

fragments. 

 

Step 1: Change region. The dynamic change region is calculated for    and   . The 

outcome is a set of process flow elements:   , which make up the change region. 

 Actor: Change Manager                                             

Figure 12 shows the change region for the two versions of the insurance claim handling 

process:                                                                                             
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Step 2: Suspension.  The execution of every fragment, which has instances residing 

inside the change region is suspended. A control message is sent to each fragment in the change 

region, which suspends every evaluating, ready or running process fragment instance (see 

Figure 8). Additionally the fragments just outside the border in the upward flow of the change 

region are also suspended. The latter is necessary to prevent process instances which are in an 

executable state outside the change region entering an executable state inside the change region 

during process redeployment. If such a state change would happen between steps 3 and 4 of the 

redeployment steps, the process instance will reside in an inconsistent state. 

Actor: Change manager and process fragment engines                                                                                        

 

Suspending the fragments inside the change region and the border fragments in the 

upward flow is the minimal suspension criteria for process redeployment. Every other fragment 

can keep executing fragment instances. This has as advantage that process instances which are in 

an execution state past the change region can execute and terminate without downtime. Non-

border fragments before the change region can also keep executing, but any events received by a 

suspended fragment will be queued and only propagated to the fragment instance after 

redeployment is complete. In contrary to centralized process execution, downtime during change 

propagation is thus minimized to instances inside the change region. 

From the global process schemas    and    of the insurance claim handling process 

(Figure 12), the change manager deduces that the fragment engines running the tasks 'Check 
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Client History', 'Calculate Insurance Sum', 'Prepare Claim' and the border fragment 'Accept 

Claim' should suspend their actions. A control message is sent to these fragment’s engines, 

where the engine will suspend each fragment instance
2
. Instances already in an execution state 

past the change region ('Assess Claim' and downward) are not suspended. Figure 13 shows the 

fragment’s engines of the insurance process. PE1, PE2, PE3 and PE4 are suspended. Note that 

the situation is only shown for process instance 1 of Figure 12; many other process instances can 

be running at the same time. 

 

Step 3: Execution state retrieval. Since process instances which reside in an executable 

state inside the change region cannot migrate to the new schema version, the next step is to 

determine these process instances. As mentioned in the previous section, the state of the global 

process is not readily available in the distributed environment. The advantage of the use of the 

change region is that not all fragments in the execution environment need to be inspected, but 

only those belonging to the change region. A global process instance has an executable state 

inside the change region if it is executing a task belonging to this region. Any fragment instance 

in a running or ready state inside the change region thus indicates that its respective global 

instance also resides in the change region. 

A control message is sent to each fragment in the change region, requesting the process 

instance ids (PIIDs) of instances which are currently in the (suspended-) ready or (suspended-) 

running state.  

Actor: Change manager and process fragment engines 
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A second option to retrieve the process instances which are not allowed to migrate and 

which does not require the inspection of individual fragments, is the inspection of the event 

traces captured by a monitor (if available). For example, the event trace of instance 1 in Figure 

12 is: AcceptClaimCompleted. This trace can be mapped on the global process schema 

from which it can be concluded that the global process instance is in a state where 'Check Client 

History' and 'Prepare Claim' are enabled (or executing) and thus falls inside the change region. 

Each process instance trace can be checked and PIIDs can be collected. 

For the insurance claim handling process, the process fragment engines PE2 ('Prepare 

Claim'), PE3 ('Check Client History') and PE4 ('Calculate Insurance Sum') are requested to 

respond with the PIIDs of their ready and running fragment instances. PE2 will respond with the 

set            , PE3 responds with the same set and PE4 responds with an empty set since no 

instance fragments are present at the time of inspection (see the late instantiation section). The 

combination of these responses are the PIIDs of global instances residing inside the change 

region, i.e.,            . 
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Figure 13. The distributed execution environment for the insurance claim handling process in a 

state between steps 5 and 6 of the redeployment process. 

 

Step 4: Process fragmentation. Each process fragment where the event rule changed 

needs to be updated. The new process schema (  ) is therefore transformed with algorithm 1 

(see Figure 5) into different fragments with their own event rule. Since only fragments that 

changed need to be updated, the fragments of the new schema are compared with the fragments 

of the old schema version. The difference between the old and new fragments are the fragments 

which need to be redeployed. Additionally, tasks which are removed from the new schema 
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version also need to update their event rule. The deleted fragment has to unsubscribe to any 

events it previously subscribed to (unless it still participates in 'old' process instances, see step 5). 

Note that the set of to-be-redeployed process fragments is by definition a subset of the change 

region (van der Aalst, 2001), but is not necessarily equal to the change region.  

Actor: Change manager   (                     )                                                                         
In Figure 12, 'Check Client History' and 'Calculate Insurance Sum' have a changed event 

rule and need to be redeployed. Additionally, since 'Prepare Claim' is removed from the new 

process schema it is also added to the to-be-redeployed process fragments. The inserted task 'File 

Police Report' is deployed as usual. 

 

Step 5: Fragment redeployment and versioning. Each process fragment engine that has 

to change its event rule is sent a redeployment control message including the new event rule and 

the set of PIIDs that still need to run on the old schema version (i.e. event rule). 

 Actor: Change manager                          

 

One of the specific problems of distributed processes is the late instantiation of process 

fragments. As a result of this problem, not every fragment instance can immediately be linked to 

its corresponding event rule version. This is the case for PE4 where no fragment instance is 

instantiated yet for process instance 1 (see Figure 13). However, PE4 has to eventually execute 
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instance 1 with the old event rule version (it falls within the change region). To circumvent this 

difficulty, a list of event rules is kept in each process engine, which links a rule to a set of PIIDs 

and links one rule to a 'current' tag. Upon receipt of the redeployment message, the fragment's 

engine links its current rule to the PIIDs included in the message and makes the new event rule 

the current one. 

Actor: Process fragment engines                            c   e t    
 

Figure 13 shows the situation of the fragment engines after redeployment. Engines PE2, 

PE3 and PE4 contain changed event rules (the shaded rectangles). The old event rule is linked to 

a set of process instance ids (in this case only one id) and the new event rule is the current one.  

Because now a fragment has multiple event rules (versions), step 1 from the execution 

semantics of the fragment engine changes slightly. Upon arrival of an event notification 

message, it is checked if this event should be handled with the current rule or an old rule. An old 

event rule is used if the instance id included in the event notification message is also included in 

a PIID set of the EventRules list. If the id is included in the list, the corresponding event rule 

version is used to instantiate a fragment instance. For PE4 in Figure 13, upon receipt of a 

PrepareClaimCompleted event notification for           , the engine will create a 

fragment instance linked to the old event rule. Any notification corresponding to other process 

instances will be linked to the current, new event rule. 

 

Step 6: Resumption. The last step in the redeployment process is resuming all suspended 

process fragment engines. 
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Actor: Change manager                      

 

The protocol described above allows the migration of instances compliant with the new 

process schema. In some situations, non-compliant instances should however also be allowed to 

migrate. Rinderle-Ma et al. (2010) discuss different migration strategies for non-compliant 

instances. Their second strategy: adjusted instance specific changes, can be used in the 

distributed environment to allow for non-compliant migration. The only extra requirement is that 

a system for ad-hoc changes is made available in the distributed environment (see Future 

Research). 

 

Proof of Concept Implementation 

The proposed change protocol can be realized in the ESB architecture, by enabling a 

central change manager which performs the steps described. The change manager only needs as 

input the original and new process model. Figure 14 shows the communication protocol between 

the change manager and a process fragment. This coordination requires the use of control event 

messages. These are event messages still following the publish/subscribe paradigm, but having a 

predefined format describing a certain action that has to be performed. A process engine 

subscribes to the control event messages next to its regular process related events. Upon receipt 

of a control message an interpreter reads the actions included and performs the necessary steps. 

The control event message should minimally consist of an indication that it is a control message, 

the fragment for which the message is intended (location-independent fragment-id) and the 
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actual action that needs to be performed with any necessary attributes. Similarly, fragment 

engines can send control messages back to the change manager. 

For example:  

[id="CTRL";fragment="PrepareClaim";action="suspend"] 

[id="CTRL";fragment="CheckClientHistory";  

 action="redeploy";event-rule="FilePoliceReportCompleted";   

 PIIDS="1"] 

[id="CTRL";fragment="ChangeManager";action="PIIDS"; 

PIIDS=”1,2,3,4”] 

 

Change Manager Fragment

suspend

getRunningProcessInstances

PIIDs

redeploy(EventRule,PIIDs)

resume

 

Figure 14. Interaction between change manager and process fragment. 

 

The advantage of reusing the publish/subscribe architecture is that no extra service has to 

be provided which coordinates the change propagation actions. Every communication is handled 
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by the publish/subscribe architecture which knows the location of each fragment engine and can 

therefore easily forward messages. If a more standardized and WS-* based approach is needed, 

the change propagation protocol can be plugged into a standard coordination framework like 

WS-Coordination (OASIS, 2009).  

To demonstrate the feasibility of the approach, we developed a prototype of the 

distributed execution environment (Hens, Snoeck, Poels, & De Backer, 2012) and implemented a 

change manager based on the process evolution protocol described above. The prototype is based 

on BPMN2.0 process schemas with the Siena publish/subscribe service (Carzaniga, Rosenblum, 

& Wolf, 2001), the Activiti BPMN2.0 process engine (Alfresco, 2012) and event control 

messages as previously described. A change manager is made available which allows process 

evolution and controls the migration of process instances to a new process version. 

The major disadvantage of the distributed change propagation compared to change 

management techniques in a classical process execution scenario (see Figure 2a) is the added 

network overhead when redeploying a changed process schema. For a specific process change 

the overhead can be calculated as follows:                                                
Four messages are sent to and from each fragment in the change region (suspend, 

getRunningProcessInstances, PIIDs and resume), one extra suspend and resume 

message is sent to the border fragments and the redeploy message is sent to each fragment of 

which the event rule changed. For a simple change pattern like a 'serial insert' (Weber, Reichert, 

& Rinderle, 2008), the redeployment coordination already takes 7 messages (see Figure 15). 

Coordination messages remain very small (~100bytes), but still have to traverse the network, 

which can delay the redeployment process. 
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Figure 15. Network overhead of the serial insert change pattern. 

 

The correctness of the evolution protocol is validated by checking the correct execution 

of a process instance during process evolution for all supported change patterns (Weber, 

Reichert, & Rinderle, 2008). To this end, our prototype implementation is used to simulate the 

described change and to check the correct execution of the instance after change propagation. 

The protocol has also been experimentally evaluated for its performance, robustness and 

scalability. A detailed explanation of this evaluation can be found in (Hens, Snoeck, & De 

Backer, 2012). 

 

 

Related Work 

Distributed Workflows. In the domain of PAIS, the problem of centralized process 

execution is recognized by many researchers (Muth, Wodtke, Weissenfels, Dittrich, & Weikum, 

1998; Fdhila, Yildiz, & Godart, 2009; Chafle, Chandra, Mann, & Nanda, 2004; Li, Muthusamy, 

& Jacobsen, 2010; Fjellheim, Milliner, Dumas, & Vayssiere, 2007; Khalaf, Kopp, & Leymann, 

2008). All approaches identify situations where a centralized process execution environment is 

not adequate. As described in the introduction, fragmentation is done with different technologies 
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and according to specific criteria: to reduce network overhead, to increase availability and failure 

resilience, or to enable the distribution of fragment coordination and ownership. The use of event 

architectures in distributed process execution is also proposed by Li et al. (2010) and Fjellheim et 

al. (2007). Li et al. (2010) use the publish/subscribe architecture to increase flexibility, 

scalability and adaptability of the process flow and Fjellheim et al. (2007)  use the 

publish/subscribe architecture to target mobile devices.  

A restriction of our approach is that each process model part contained in a fragment 

should be structurally sound (comparable to the MENTOR approach (Wodtke, Weissenfels, 

Weikum, & Dittrich, 1996)). This is in contrast with e.g. ADEPTdistribution (Bauer & Dadam, 

1997) which does not restrict the fragment’s definition. A way to permit arbitrary distribution in 

our approach is to change the meta-model (see Figure 3) and allow multiple event rules per 

fragment, one per fragment entry point; and multiple end events, one per fragment exit point.  

 

Adaptive Process Management. In classical centralized process execution 

environments, change management is thoroughly researched: Weber et al. (2009) provide a good 

overview of this domain. Specifically for flexibility in the execution phase of the process 

lifecycle, a lot of different techniques have been proposed to migrate running process instances 

to a new schema version (Casati, Ceri, Pernici, & Pozzi, 1998; Reichert & Dadam, 1998; van der 

Aalst & Basten, 2002). These techniques differ by the correctness criteria used to propagate 

changes in the runtime process execution environment. Rinderle at al. (2004) provide a good 

overview of the commonly used correctness criteria and respective change management 

techniques. The change technique described here uses a specific correctness criteria with a 
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corresponding change algorithm (van der Aalst W. , 2001), but can be extended to be used with 

other criteria as well (based on e.g. change operations instead of a change region). 

There are a few approaches that discuss the combination of process changes and 

distributed workflow execution. Kochut et al. (2003) present the IntelliGen approach. In a similar 

way as our technique, they allow the individual control of process fragments, enabling updates of 

the fragment’s specification. The approach does however not discuss how to migrate running 

process instances and only allows new cases to be run in the new process configuration. Casati et 

al. (1998), Weske (1998) and Barbará et al. (1996) also describe a distributed execution 

environment and additionally describe workflow evolution, but do not explicitly address how the 

two interact. Instance specific changes in a distributed environment are enabled by 

ADEPTdistribution (Reichert & Bauer, 2007). Similar to our approach, only relevant workflow 

servers are inspected and synchronized, keeping communication costs to a minimum. However, 

different from our approach, ADEPTdistribution assumes a local copy of the complete process 

schema at each distributed node. Rinderle et al. (2006) present an evolution technique for process 

choreographies. Process choreography evolution can be compared to our approach as a 

choreography also describes a process between distributed entities (organizations). The 

difference lies in the fact that our approach focusses on internal business processes which need to 

be distributed, instead of a change in the message interaction between public processes and how 

this affects internal, private processes.  

 

Event Rules. The combination of event rules (in e.g. Event-Condition-Action format) 

and processes is also described in Event Driven Service Oriented Architectures (Levina, 2009). 

Their focus is however on the invocation of services, not on the decentralization of the process 
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flow. In declarative process modeling, event rules are also used to represent a process flow. In 

DECLARE (van der Aalst, Pesic, & Schonenberg, 2009) rules identify the enablement of a 

process part. Kappel et al. (1997) also effectively implement Event-Condition-Action rules for 

workflow management. The biggest difference is that we start from an imperative process model 

and transform this to a distributed model with declarative rules, while in declarative modeling, 

models are defined in a declarative way from the start. 

 

Conclusion and Future Research 

To increase availability and performance and enable the distribution of control and/or 

visibility of a process specification, a distributed process execution architecture can be adopted. 

Many process fragmentation solutions are proposed which fragment and distribute a given 

process specification among different process partners. These solutions do, however, leave the 

dynamic features of a process enactment system out of consideration. This paper outlined the 

difficulties in process evolution in a distributed environment and demonstrates that a viable 

solution exists for these problems. Late instantiation and the loss of the global process overview 

in a distributed setting demand for extra coordination. We developed a protocol which is able to 

cater for the specific problems of process evolution in a distributed environment and showed the 

different steps needed to support the propagation of changes in the schema level to changes in 

the instance and fragment level.  

One major advantage of change management in the distributed environment is that 

process instances are not suspended as a whole during change propagation: only relevant 

fragments are suspended. On the other hand, a drawback of the approach is that it generates extra 

network overhead. Nevertheless, the decision on adopting a distributed process environment 
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should not be based only on the results of an extra communication cost during process change 

management. This paper explains that process evolution can be supported in the distributed 

environment. Advantages of the distributed runtime environment outweigh any disadvantages in 

the redeployment process of that execution environment (i.e. performance increase during 

process runtime versus network overhead during process redeployment). When an organization 

requires highly available, quick response process systems, a distributed process execution 

approach can be adopted, which can leverage the processing power from the distributed 

environment. 

Future research involves implementing other dynamic features (Weber, Sadiq, & 

Reichert, 2009), which provide an added value for distributed process execution. The protocol 

described here supports top-down changes, where the global process flow is changed and 

redeployed. Since process fragments can each be managed by other process partners, it is also 

interesting to look at bottom-up changes. A fragment’s manager can decide to change the starting 

(event) rule of his fragment, hereby implicitly also changing the global process flow. In addition, 

ad-hoc or instance specific changes in the distributed process environment can also be 

investigated. 
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Footnotes 

1
 Note that the protocol only describes incremental schema versioning, i.e. migration 

from v1 to v2 to v3 and so on. To allow migration of multiple older versions to the new version, 

e.g. migration from schema v1 to schema v3, steps 1 to 5 of the protocol have to be executed for 

each combination of running schema versions and the new to-be deployed version. 

2
 Suspending a process fragment instance does not mean that the actual running activity 

should be suspended (e.g. suspend a boat shipment). The activity is still allowed to continue and 

finish, but the status of the instance will not change from ‘running’ to ‘completed’ once executed 

(see Figure 8). 


