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Preface

This book focuses on the basics of process control, process identification, PID controllers and

autotuning. Our objective is to enable students and engineers who are not familiar with these

topics to understand the basic concepts of feedback control, process identification, autotuning

and design of real feedback controllers (especially PID controllers).

Parts One and Two are aimed at undergraduate students who have not taken any courses on

process control. Parts Three and Four are appropriate for graduate students and control

engineers who want to design real feedback controllers or perform research on process

identification and autotuning. Parts One and Two introduce the basics of process control and

dynamics, the analysis tools (Bode plot, Nyquist plot) to characterize the dynamics of the

process, PID controllers and tuning, and advanced control strategies that have beenwidely used

in industry. Also, simple simulation techniques required for practical controller designs and

research on process identification and autotuning are also included. Part Three provides useful

process identification methods actually used in industry. It includes several important

identification algorithms to obtain frequencymodels or continuous-time/discrete-time transfer

function models from the measured process input and output data sets. Part Four introduces

various relay feedbackmethods to activate the process effectively for process identification and

controller autotuning.

We have tried to include as many examples as possible. In particular, the readers can use the

numerical examples and the MATLAB R codes with slight modifications to solve actual

problems in their processes or research. The codes (MATLAB Rm-files) and real-time virtual

processes for the simulations and practices are available from theWileywebsite at www.wiley.

com/go/swsung. The codes will be useful to those who want to understand the actual

implementation techniques for control, process identification and autotuning. Also, the readers

can design their own controllers, implement them and confirm the performances in real time

using real-timevirtual processes.Also, the problem-solving ability of students can be enhanced

by performing a controller design project on the basis of the virtual process. We welcome the

comments of students and instructors to improve the book and the materials for lectures and

simulations. Please visit our other website at http://pse.knu.ac.kr for comments and questions

about this book or process systems engineering. We hope this book is useful to you.

We wish to express special thanks to the students at KNU who provided the simulation

results and detailed reviews: Cheol Ho Je, Chun Ho Jeon and Yu Jin Cheon. We acknowledge



John Wiley & Sons, especially James Murphy, Roger Bullen, Sarah Abdul Karim and Peter

Lewis, for their effective cooperation and great care in preparing this book. We also gratefully

acknowledge the financial support by Kyungpook National University (KNU Research Fund,

2006).

Su Whan Sung

Jietae Lee

In-Beum Lee
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Part One

Basics of Process
Dynamics

Part One introduces the basics of process dynamics which are appropriate for an undergraduate

course. Chapter 1 defines linear processes and discusses how to represent linear processes in a

mathematical way. Chapter 2 introduces several simulation and numerical analysis techniques

required to simulate/design process controllers. Chapter 3 discusses the dynamic behaviors of

linear processes and provides several analysis tools to characterize the dynamics of the control

system.





1

Mathematical Representations
of Linear Processes

1.1 Introduction to Process Control and Identification

The basic concepts and terms of process control and identification are first introduced.

1.1.1 Process Control

Process control consists of manipulating variables, controlled variables and processes. The

manipulating variables and the controlled variables usually correspond to the process inputs

and the process outputs respectively. The objective of process control is to make the process

outputs (controlled variables) behave in a desired way by adjusting the process inputs

(manipulating variables). Consider the temperature control system in Figure 1.1.

The SCR unit is to provide electrical power to the heating coil, which is proportional to the

voltage u(t). The temperature is measured by the thermocouple sensor. The objective of

the temperature control system in Figure 1.1 is to drive the temperature y(t) to the desired

value by adjusting u(t). So, u(t) and y(t) are the process input (manipulating variable) and the

process output (controlled variable) respectively. The role of the feedback controller is to

determine u(t) appropriately on the basis of the measured y(t) to achieve the control

objective.

Example 1.1

Consider the control system in Figure 1.2. It consists of two tanks, a control valve, a DP cell and

a controller. TheDP cell and the control valve are tomeasure the liquid level of the last tank and

adjust the inlet flow rate respectively. The objective of the control system is to drive the liquid

level of the last tank to a desired value. In this case, the manipulating variable is the inlet flow

rate and the controlled variable is the level of the last tank.

Process Identification and PID Control Su Whan Sung, Jietae Lee, and In-Beum Lee
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1.1.2 Process Identification

Process identification is the obtaining of a model of which the role is to predict the behavior of

the process output for a given process input. Themodels are in the formof differential equations

or frequency data sets (whichwill be explained later). From the energy balance equation for the

temperature control system in Figure 1.1, the model of the following simple differential

equation form can be derived:

t
dyðtÞ
dt

þ yðtÞ ¼ kuðtÞþ b ð1:1Þ

where t, k and b are known constants determined by the heat capacity, mass, amplification

coefficient, heat transfer coefficient, area and ambient temperature. This is a simple example of

process identification. The behavior of y(t) can be predicted by solving the differential equation

for a given u(t). In this book, how to obtain the model from historical data of the process input

and the process output will be treated without considering physical principles such as material

balance, energy balance and chemical reactions. This kind of model is called a �black-box
model.�

u(t)

y(t)
controller DP

Figure 1.2 Level control system.

SCR unit
+

u(t)

y(t)thermocouple

power
–

process output heating coil

process input

Figure 1.1 Temperature control system.
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Example 1.2

Assume that the black-box model structure for a given process has the following form:

t
dyðtÞ
dt

þ yðtÞ ¼ kuðtÞ ð1:2Þ

And assume that y(t)¼ 1� exp(�2t) is obtained from an experiment when u(t)¼ 1 is

applied to the process. Then, it is straightforward to estimate the model parameters of t and k
from the experiment. Replace y(t) and u(t) in (1.2) by y(t)¼ 1� exp(�2t) and u(t)¼ 1. Then,

(1.2) becomes (2t� 1) exp(�2t) þ 1¼ k. So, t¼ 0.5 and k¼ 1 is obtained. This is a simple

example of parameter estimation. The determination of the model structure and the parameter

estimation are the core parts of process identification.

Example 1.3

Assume that the black-box model structure for a given process has the following form:

t2
d2yðtÞ
dt2

þ 2t
dyðtÞ
dt

þ yðtÞ ¼ kuðtÞ ð1:3Þ

And assume that y(t)¼ 0.5 sin(t�p/2) is obtained from an experiment when u(t)¼ sin(t) is

applied to the process. Estimate the model parameters t and k from the experiment.

Solution Replace y(t) and u(t) in (1.3) by y(t)¼ 0.5 sin(t�p/2) and u(t)¼ sin(t). Then, (1.3)

becomes

� 0:5t2sinðt�p=2Þþ tcosðt�p=2Þþ 0:5sinðt�p=2Þ ¼ k sinðtÞ

which can be rewritten as (0.5t2� 0.5) cos(t) þ t sin(t)¼ k sin(t) because sin(t�p/2)¼
�cos(t) and cos(t�p/2)¼ sin(t). So, t¼ 1.0 and k¼ 1 is obtained.

1.1.3 Steady State

When all the derivatives of the process input and process output are zero, this is called the

steady state. For example, the process (1.4) will be (1.5) at steady state:

d2yðtÞ
dt2

þ 2
dyðtÞ
dt

þ yðtÞ ¼ duðtÞ
dt

þ 2uðtÞþ 2 ð1:4Þ

d2yssðtÞ
dt2

þ 2
dyssðtÞ
dt

þ yssðtÞ ¼ dussðtÞ
dt

þ 2ussðtÞþ 2! yssðtÞ ¼ 2ussðtÞþ 2 ð1:5Þ

where the subscript ‘ss’ denotes steady state. As shown in (1.5), all the derivatives go to zeroes

at steady state. On the other hand, a cyclic steady state means that the process output and input

are periodic signals.

Mathematical Representations of Linear Processes 5



Example 1.4

Consider the process input u(t) and the process output y(t) in Figure 1.3. It can be seen that the

process is in steady state after t¼ 8.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y(
t)

(a) 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

t

u(
t)

(b)

Figure 1.3 The process output and the process input of a control system.

Example 1.5

Obtain y(t) for u(t)¼ 2.0 at steady state for the following process:

0:2
d2yðtÞ
dt2

þ dyðtÞ
dt

ð0:1þ 0:05uðtÞÞþ yðtÞ ¼ duðtÞ
dt

þ
ffiffiffiffiffiffiffiffi
uðtÞ

p
ð1:6Þ

6 Process Identification and PID Control



Because all the derivatives are zero at steady state, yssðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ussðtÞ

p
. So, yssðtÞ ¼

ffiffiffiffiffiffiffi
2:0

p
for

uss(t)¼ 2.0 at steady state.

Example 1.6

Obtain y(t) for ys(t)¼ 1.0 at steady state for the following process:

d2yðtÞ
dt2

þ 2
dyðtÞ
dt

þ yðtÞ ¼ 0:1
duðtÞ
dt

þ uðtÞ ð1:7Þ

uðtÞ ¼ 1:5ðysðtÞ� yðtÞÞþ 0:5
dðysðtÞ� yðtÞÞ

dt
ð1:8Þ

Because all the derivatives in (1.7) are zero at steady state, yss(t)¼ uss(t) and uss¼
1.5 (ys,ss� yss) are obtained from (1.7) and (1.8). So, yss(t)¼ 1.5/2.5 at steady state.

Example 1.7

Consider the process input u(t) and the process output y(t) in Figure 1.4. It can be seen that the

process is in cyclic steady state after about t¼ 15 because u(t) and y(t) are periodic after t¼ 15.

1.1.4 Deviation Variables

The deviation variable �xðtÞ is the difference between the original variable x(t) and a reference
value xref. That is, �xðtÞ ¼ xðtÞ� xref . So, it represents how far the original variable deviates

from the reference value. The deviation variables for the process output and process input can

be defined like �yðtÞ ¼ yðtÞ� yref and �uðtÞ ¼ uðtÞ� uref respectively. Here, yref and uref are

usually the process output and the process input at steady state if there is no special notice.Note,

yref is automatically fixed for the given uref at steady state. For example, the process (1.4) can be

rewritten using deviation variables by subtracting (1.5) from (1.4):

d2�yðtÞ
dt2

þ 2
d�yðtÞ
dt

þ�yðtÞ ¼ d�uðtÞ
dt

þ 2�uðtÞ ð1:9Þ

�yðtÞ ¼ yðtÞ� yss; �uðtÞ ¼ uðtÞ� uss ð1:10Þ

where �uðtÞ and �yðtÞ are deviation variables. uss and yss are the reference values for u(t) and y(t)
respectively. Here, uss and yss should satisfy (1.5). So, yss is automatically fixed for the given uss
at steady state.

Example 1.8

Rewrite the following process with deviationvariables when the reference value for the process

input u(t) is chosen as 2.0.

d3yðtÞ
dt3

þ 3
d2yðtÞ
dt2

þ 3
dyðtÞ
dt

þ yðtÞþ 1 ¼ 2
duðtÞ
dt

þ 3uðtÞ ð1:11Þ

Mathematical Representations of Linear Processes 7



Solution First, apply the steady-state assumption to (1.11):

d3yssðtÞ
dt3

þ 3
d2yssðtÞ
dt2

þ 3
dyssðtÞ
dt

þ yssðtÞþ 1 ¼ 2
dussðtÞ
dt

þ 3ussðtÞ ð1:12Þ

By subtracting (1.12) from (1.11), the following process described by the deviationvariables

is obtained:

d3�yðtÞ
dt3

þ 3
d2�yðtÞ
dt2

þ 3
d�yðtÞ
dt

þ�yðtÞ ¼ 2
d�uðtÞ
dt

þ 3�uðtÞ ð1:13Þ

�yðtÞ ¼ yðtÞ� yss; �uðtÞ ¼ uðtÞ� uss ð1:14Þ

0 5 10 15 20
–0.1

0

0.1

0.2

0.3

0.4

t

y(
t)

(a) 

0 5 10 15 20

–1

–0.5

0

0.5

1

t

u(
t)

(b)

Figure 1.4 The process output and the process input of a relay feedback system.
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Here, uss¼ 2.0. From (1.11), it is known that yss¼ 5.0 for uss¼ 2.0 by applying the steady-

state assumption. So, the deviation variables (1.14) should be

�yðtÞ ¼ yðtÞ� 5:0; �uðtÞ ¼ uðtÞ� 2:0 ð1:15Þ

Example 1.9
Rewrite the following process with deviationvariables when the reference value for the process

input u(t) is chosen as 2.0:

d3yðtÞ
dt3

þ 3
d2yðtÞ
dt2

þ 3
dyðtÞ
dt

þ yðtÞþ 1 ¼ 2
duðt� 0:5Þ

dt
þ 3uðt� 0:5Þ ð1:16Þ

First, apply the steady-state assumption to (1.16):

d3yssðtÞ
dt3

þ 3
d2yssðtÞ
dt2

þ 3
dyssðtÞ
dt

þ yssðtÞþ 1 ¼ 2
dussðt� 0:5Þ

dt
þ 3ussðt� 0:5Þ ð1:17Þ

By subtracting (1.17) from (1.16) the following process described by the deviation variables

is obtained:

d3�yðtÞ
dt3

þ 3
d2�yðtÞ
dt2

þ 3
d�yðtÞ
dt

þ�yðtÞ ¼ 2
d�uðt� 0:5Þ

dt
þ 3�uðt� 0:5Þ ð1:18Þ

�yðtÞ ¼ yðtÞ� yss; �uðtÞ ¼ uðtÞ� uss ð1:19Þ
From (1.16)yss¼ 5.0 is obtained for uss¼ 2.0 because uss(t)¼ uss(t� 0.5)¼ 2.0 at steady

state. So, the deviation variables (1.19) should be

�yðtÞ ¼ yðtÞ� 5:0; �uðtÞ ¼ uðtÞ� 2:0 ð1:20Þ

1.2 Properties of Linear Processes

Linear processes are defined and several important properties of linear processes are discussed.

1.2.1 Linear Process

When the dynamics of a process can be described by a linear combination of derivatives (d jy(t)/

dt j, d ju(t)/dt j, j¼ 0, 1, 2, . . .) of the process output y(t) and the process input u(t) and a constant,
it is a linear process. If the coefficients are time invariant (constants), then it is the time-invariant

linear process. If the coefficients are time variant, then it is the time-variant linear process. For

example, (1.4) is a linear process. But, the following processes are nonlinear:

3
d2yðtÞ
dt2

� dyðtÞ
dt

þ yðtÞ ¼ duðtÞ
dt

uðtÞþ 4uðtÞ ð1:21Þ

dyðtÞ
dt

þ yðtÞ ¼ 4
ffiffiffiffiffiffiffiffi
uðtÞ

p
ð1:22Þ

Mathematical Representations of Linear Processes 9



Equations (1.21) and (1.22) are nonlinear because of the (du(t)/dt)u(t) and
ffiffiffiffiffiffiffiffi
uðtÞp

terms

respectively.

Example 1.10
Consider the following process:

d2yðtÞ
dt2

þ 2
dyðtÞ
dt

þ yðtÞ ¼ uðt� 0:5Þ ð1:23Þ

Here, it should be noted that

uðt� 0:5Þ ¼ uðtÞþ
X¥
i¼1

ð� 0:5Þi
i!

diuðtÞ
dti

(which will be discussed later). So, (1.23) is a time-invariant linear process. That is, linear

processes can include time delays.

Example 1.11

Consider the following process:

d2yðtÞ
dt2

þ 2
dyðtÞ
dt

þ yðtÞ ¼ uðt� 0:5Þ ð1:24Þ

uðtÞ ¼ 0:5

ðt
0

ð1� yðtÞÞdtþ 0:1
dð1� yðtÞÞ

dt
ð1:25Þ

In Example 1.11, it is revealed that the time delay does not change the linearity. Also, by

differentiating (1.24) and (1.25), the integral in (1.25) then disappears. So, (1.24) and (1.25) is a

time-invariant linear process.

Example 1.12

Consider the process

d2yðtÞ
dt2

þ 2
dyðtÞ
dt

þ yðtÞ ¼ uðt� 0:5Þ ð1:26Þ

uðtÞ ¼ 2ðysðtÞ� yðtÞÞ ð1:27Þ
From (1.26) and (1.27), the following process is obtained:

d2yðtÞ
dt2

þ 2
dyðtÞ
dt

þ yðtÞ ¼ 2 ysðt� 0:5Þ� yðt� 0:5Þ½ � ð1:28Þ

So, the process (1.28) of which the input and output are ys(t) and y(t) is a time-invariant

linear process.

10 Process Identification and PID Control



Example 1.13

Consider the process

d2yðtÞ
dt2

þð2þ 0:1tÞ dyðtÞ
dt

þð1� 0:05tÞyðtÞ ¼ ð2þ 0:3tÞuðtÞ ð1:29Þ

in which the coefficients are time variant. Thus, this is a time-variant linear process.

1.2.2 Superposition Rule

Suppose that the process input is a linear combination of several signals. Then, the process

output is the linear combination of the respective process outputs for the several signals if

the process is linear. For example, the process output y(t) for the process input u(t)¼ u1(t) þ
0.3u2(t) þ 1.3u3(t) can be obtained without a plant test from the available information that the

process is linear and the process outputs y1(t), y2(t) and y3(t) are the responses of the process to

the process inputs u1(t), u2(t) and u3(t) respectively. That is, it is clear that the process output is

y(t)¼ y1(t) þ 0.3y2(t) þ 1.3y3(t) for the given process input u(t) by the superposition rule

(Figure 1.5).

Therefore, if the pairs (u1(t), y1(t)), (u2(t), y2(t)), (u3(t), y3(t)), . . . for the given linear process
are known, then y(t) can be easily calculated corresponding to any u(t) of a linear combination

u1(t), u2(t), u3(t), . . ..

Example 1.14

Obtain the process output y(0.0), y(0.1), y(0.2), y(0.3) of a linear process for the following

process input u(t):

uðtÞ ¼ 2 for t � 0; uðtÞ ¼ 0 for t < 0 ð1:30Þ
The available information is that the responses of the process to the process input u1(t)¼ 1

for t� 0, u1(t)¼ 0 for t < 0 are y1(0.0)¼ 0.0, y1(0.1)¼ 0.01, y1(0.2)¼ 0.02 and y1(0.3)¼ 0.04.

Solution Note that u(t)¼ 2u1(t). Then, y(t)¼ 2y1(t) by the superposition rule. So,

y(0.0)¼ 0.0, y(0.1)¼ 0.02, y(0.2)¼ 0.04 and y(0.3)¼ 0.08 are obtained.

u1(t)
Process 

y1(t)

u2(t)
Process 

y2(t)

u3(t)
Process 

y3(t)
u(t) = u1(t) + 0.3u2(t) + 1.3u3(t)

Process

y(t) = y1(t) + 0.3y2(t) + 1.3y3(t)

y(t)u(t)

Figure 1.5 Superposition principle.
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Example 1.15

Obtain the process output y(0.0), y(0.1), y(0.2), y(0.3) of a linear process for the following

process input u(t):

uðtÞ ¼ 1 for t � 0:1; uðtÞ ¼ 2 for 0 � t < 0:1; uðtÞ ¼ 0 for t < 0 ð1:31Þ
The available information is that the responses of the process to the process input u1(t)¼ 1

for t� 0, u1(t)¼ 0 for t < 0 are y1(0.0)¼ 0.0, y1(0.1)¼ 0.01, y1(0.2)¼ 0.02 and y1(0.3)¼ 0.04,

and the responses for the process input u2(t)¼ 1 for t� 0.1, u2(t)¼ 0 for t < 0.1 are y2(0.0)¼
0.0, y2(0.1)¼ 0.0, y2(0.2)¼ 0.01 and y2(0.3)¼ 0.02.

Solution Note that u(t)¼ 2u1(t)� u2(t). Then, y(t)¼ 2y1(t)� y2(t) by the superposition rule.

So, y(0.0)¼ 0.0, y(0.1)¼ 0.02, y(0.2)¼ 0.03 and y(0.3)¼ 0.06 are obtained.

Example 1.16

Obtain the process output y(0.0), y(0.1), y(0.2), y(0.3) of a linear time-invariant process for the

following process input u(t):

uðtÞ ¼ 0 for t � 0:1; uðtÞ ¼ 1 for 0 � t < 0:1; uðtÞ ¼ 0 for t < 0 ð1:32Þ

The available information is that the responses of the process to the process input u1(t)¼ 1

for t� 0, u1(t)¼ 0 for t < 0 are y1(�0.1)¼ 0.0, y1(0.0)¼ 0.0, y1(0.1)¼ 0.01, y1(0.2)¼ 0.02 and

y1(0.3)¼ 0.04.

Solution Note that u(t)¼ u1(t)� u1(t� 0.1). Then, y(t)¼ y1(t)� y1(t� 0.1) by the superpo-

sition rule. So, y(0.0)¼ 0.0, y(0.1)¼ 0.01, y(0.2)¼ 0.01 and y(0.3)¼ 0.02 are obtained. This

example demonstrates how to obtain the impulse responses from the step responses.

Example 1.17

Obtain the process output y(0.0), y(0.1), y(0.2), y(0.3) of a linear time-invariant process for the

following process input u(t):

uðtÞ ¼ 3 for 0:2 � t; uðtÞ ¼ 4 for 0:1 � t < 0:2; uðtÞ ¼ 2

for 0 � t < 0:1; uðtÞ ¼ 0 for t < 0 ð1:33Þ
The available information is that the responses of the process to the process input u1(t)¼ 0

for t� 0.1, u1(t)¼ 1 for 0� t < 0.1, u1(t)¼ 0 for t < 0 are y1(�0.2)¼ 0.0, y1(�0.1)¼ 0.0,

y1(0.0)¼ 0.0, y1(0.1)¼ 0.01, y1(0.2)¼ 0.03 and y1(0.3)¼ 0.02.

Solution Note that u(t)¼ 3u1(t� 0.2) þ 4u1(t� 0.1) þ 2u1(t). Then, y(t)¼ 3y1(t� 0.2) þ
4y1(t� 0.1) þ 2y1(t) by the superposition rule. So, y(0.0)¼ 0.0, y(0.1)¼ 0.02, y(0.2)¼ 0.10

and y(0.3)¼ 0.19 are obtained. This example demonstrates how to calculate the process output

from the impulse responses of the process. This kind of model is called an �impulse response

model.�
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Example 1.18

Obtain the process output y(t) of a linear process for the process input u(t)¼ 3 sin(t) þ 2

sin(3t). The available information is that the responses of the process to the process input

u1(t)¼ sin(t) are y1(t)¼ 0.3 sin(t� 0.1) and the responses of the process for the process input

u2(t)¼ sin(3t) are y2(t)¼ 0.1 sin(3t� 0.2).

Solution Note that u(t)¼ 3u1(t) þ 2u2(t). Then, y(t)¼ 3y1(t) þ 2y2(t) by the superposition

rule. So, y(t)¼ 0.9 sin(t� 0.1) þ 0.2 sin(3t� 0.2) is obtained.

Example 1.19
Obtain the process output y(t) of a linear time-invariant process for the process input u(t)¼
sin(t). The available information is that the responses of the process to the process input

u1(t)¼ 0.4 sin(t� 0.1) þ 0.2 sin(3t� 0.2) are y1(t)¼ 0.3 sin(t� 0.2) þ 0.1 sin(3t� 0.4).

Solution y(t)¼ 0.3 sin(t� 0.2) is obtained for u(t)¼ 0.4 sin(t� 0.1) and, equivalently,

y(t)¼ 3 sin(t� 0.1)/4 for u(t)¼ sin(t) from the given information and the superposition rule.

Also, y(t)¼ sin(3t� 0.2)/2 is the response to the process input u(t)¼ sin(3t).

1.2.3 Linearization

It is notable that many nonlinear processes can be approximated effectively by linearized

models. Linearization is the process of obtaining a linear model to approximate the nonlinear

model. Taylor series are frequently used for linearization. Theoretically, a nonlinear function

f(u) can be represented by the following Taylor series:

f ðuÞ ¼ f ðu0Þþ df

du

����
u¼u0

ðu� u0Þþ 1

2!

d2f

du2

����
u¼u0

ðu� u0Þ2 þ 1

3!

d3f

du3

����
u¼u0

ðu� u0Þ3 þ � � � ð1:34Þ

The following approximation of (1.34) to (1.35) is called linearization at u¼ u0:

f ðuÞ � f ðu0Þþ df

du

����
u¼u0

ðu� u0Þ ð1:35Þ

For example, the straight line in Figure 1.6 corresponds to (1.35), which is close to (1.34)

around u¼ u0.

u

f(u)

u0

Figure 1.6 Linearization of f(u) at u¼ u0.
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Equation (1.22) can be approximated by the Taylor series at u(t)¼ u0¼ 1 as follows:

dyðtÞ
dt

þ yðtÞ ¼ 4
ffiffiffiffiffiffiffiffi
uðtÞ

p
� 4

ffiffiffiffiffi
u0

p þ 4
1

2
ðu0Þ� 1=2ðuðtÞ� u0Þ ð1:36Þ

Equation (1.36) can be rewritten to the following linearized process:

dyðtÞ
dt

þ yðtÞ � 2
ffiffiffiffiffi
u0

p þ 2ðu0Þ� 1=2
uðtÞ ð1:37Þ

Equation (1.37) can be also described by the deviation variables:

d�yðtÞ
dt

þ�yðtÞ ¼ 2ðu0Þ� 1=2�uðtÞ; �yðtÞ ¼ yðtÞ� yss; �uðtÞ ¼ uðtÞ� uss ð1:38Þ

Now, the linearized process (1.38) is obtained for the nonlinear process (1.22).

The Taylor series approximation can be also applied to multivariable nonlinear functions

such as f(u1, u2) as follows:

f ðu1; u2Þ � f ðu1;0; u2;0Þþ qf
qu1

����
u1¼u1;0;u2¼u2;0

ðu1 � u1;0Þþ qf
qu2

����
u1¼u1;0;u2¼u2;0

ðu2 � u2;0Þ ð1:39Þ

Similarly, the Taylor series approximation can be applied tomultivariable functions ofwhich

the number of the variables is bigger than 2 in a straightforward manner.

Example 1.20

Obtain the linearized process around u(t)¼ u0¼ 2 for the following nonlinear process, and

express it with the deviation variables:

dyðtÞ
dt

þ y1:5ðtÞ ¼ u3ðtÞ ð1:40Þ

Solution Equation (1.40) becomes y1.5(t)¼ u3(t) at steady state. So, the value of the process

output y(t) for u(t)¼ u0¼ 2 is y0¼ 23/1.5. We obtain y1.5(t)� 8 þ 3(y(t)� 23/1.5) and u3(t)�
8 þ 12(u(t)� 2) by the Taylor series approximation. Then, the linearized process is

dyðtÞ
dt

þ 8þ 3ðyðtÞ� 23=1:5Þ ¼ 8þ 12ðuðtÞ� 2Þ ð1:41Þ

Equation (1.41) is valid for the steady state. That is, the following equation is valid:

dy0ðtÞ
dt

þ 8þ 3ðy0ðtÞ� 23=1:5Þ ¼ 8þ 12ðu0ðtÞ� 2Þ ð1:42Þ

So, the following linearized process represented by the deviation variables is obtained by

subtracting (1.42) from (1.41):

d�yðtÞ
dt

þ 3�yðtÞ ¼ 12�uðtÞ ð1:43Þ

�yðtÞ ¼ yðtÞ� 23=1:5; �uðtÞ ¼ uðtÞ� 2 ð1:44Þ
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Example 1.21

Obtain the linearized process around u(t)¼ u0¼ 2 for the following nonlinear process, and

express it with the deviation variables:

dyðtÞ
dt

þ yðtÞð1þ 0:1u2ðtÞÞ ¼ u3ðtÞ ð1:45Þ

Solution Equation (1.45) becomes y(t)(1 þ 0.1u2(t))¼ u3(t) at steady state. So, the value of

the process output y(t) for u(t)¼ u0¼ 2 is y0¼ 8/1.4. The following equation is obtained by the

Taylor series approximation for the multivariable function y(t)(1 þ 0.1u2(t)):

y tð Þð1þ 0:1u2 tð ÞÞ� y0ð1þ 0:1u20Þ þ ð1þ 0:1u20Þ y tð Þ� y0ð Þ þ 0:2y0u0 u tð Þ� u0ð Þ

¼ 8þ 1:4 yðtÞ� 8

1:4

� �
þ 3:2

1:4
ðuðtÞ� 2Þ ð1:46Þ

and u3(t)� 8 þ 12(u(t)� 2) by the Taylor series approximation. Then, the linearized process

is as follows:

dyðtÞ
dt

þ 8þ 1:4 yðtÞ� 8

1:4

� �
þ 3:2

1:4
ðuðtÞ� 2Þ ¼ 8þ 12ðuðtÞ� 2Þ ð1:47Þ

Equation (1.46) is valid for the steady state. That is, the following equation is valid:

dy0ðtÞ
dt

þ 8þ 1:4 y0ðtÞ� 8

1:4

� �
þ 3:2

1:4
ðu0ðtÞ� 2Þ ¼ 8þ 12ðu0ðtÞ� 2Þ ð1:48Þ

So, the following linearized process represented by the deviation variables is obtained by

subtracting (1.48) from (1.47):

d�yðtÞ
dt

þ 1:4�yðtÞ ¼ 12� 3:2

1:4

� �
�uðtÞ ð1:49Þ

�yðtÞ ¼ yðtÞ� 8=1:4; �uðtÞ ¼ uðtÞ� 2 ð1:50Þ

Example 1.22

Obtain the linearized process around u(t)¼ u0¼ 2 for the following nonlinear process and

express it with the deviation variables:

d2yðtÞ
dt2

þ 2
dyðtÞ
dt

þ yðtÞþ 0:01
dyðtÞ
dt

uðtÞyðtÞ ¼ uðtÞ ð1:51Þ

Solution Equation (1.51) becomes y(t)¼ u(t) at steady state. So, the value of the pro-

cess output y(t) for u(t)¼ u0¼ 2 is y0¼ 2 and the value of dy(t)/dt at steady state is zero.

So, the linearization should be done around u0¼ 2, y0¼ 2 and (dy(t)/dt)0¼ 0. The following

equation is obtained by the Taylor series approximation for the multivariable function
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0.01(dy(t)/dt)u(t)y(t). Here, dy(t)/dt should be considered one of the variables of the nonlinear

function 0.01(dy(t)/dt)u(t)y(t). Also, q(0.01(dy(t)/dt)u(t)y(t))/qu(t)¼ 0 and q(0.01(dy(t)/
dt)u(t)y(t))/qy(t)¼ 0 at steady state should be used.

0:01
dyðtÞ
dt

uðtÞyðtÞ � 0:01u0y0
dyðtÞ
dt

� 0

� �
¼ 0:04

dyðtÞ
dt

ð1:52Þ

Then, the linearized process is as follows:

d2yðtÞ
dt2

þ 2:04
dyðtÞ
dt

þ yðtÞ ¼ uðtÞ ð1:53Þ

Equation (1.53) is valid for the steady state. That is, the following equation is valid:

d2y0ðtÞ
dt2

þ 2:04
dy0ðtÞ
dt

þ y0ðtÞ ¼ u0ðtÞ ð1:54Þ

So, the following linearized process represented by the deviation variables is obtained by

subtracting (1.54) from (1.53):

d2�yðtÞ
dt2

þ 2:04
d�yðtÞ
dt

þ�yðtÞ ¼ �uðtÞ ð1:55Þ

�yðtÞ ¼ yðtÞ� 2; �uðtÞ ¼ uðtÞ� 2 ð1:56Þ

1.3 Laplace Transform

The Laplace transform plays an important role in analyzing/designing the control system. In

this section, the definition of the Laplace transform is introduced. Also how to obtain the

Laplace transforms for various functions and how to solve differential equations using the

Laplace transform are explained.

1.3.1 Laplace Transforms, Inverse Laplace Transforms

The Laplace transform of f(t) is defined as

Lff ðtÞg ¼ f ðsÞ ¼
ð¥
0

expð� stÞf ðtÞ dt ð1:57Þ

where s is a complex variable. f(s) orL{f(t)} denotes the Laplace transform of f(t). Note that f(s)

is a function of s because it is the integral of expð� stÞf ðtÞ from t¼ 0 to t¼¥, whichmeans that

the variable t disappears.

The inverse Laplace transform restores the original function f(t) from the Laplace transform

of f(t):

L� 1ff ðsÞg ¼ f ðtÞ ð1:58Þ
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