
Softw Syst Model (2010) 9:87–111

DOI 10.1007/s10270-008-0106-z

REGULAR PAPER

Process mining: a two-step approach to balance
between underfitting and overfitting

W. M. P. van der Aalst · V. Rubin ·

H. M. W. Verbeek · B. F. van Dongen ·

E. Kindler · C. W. Günther

Received: 24 April 2008 / Revised: 29 August 2008 / Accepted: 3 November 2008 / Published online: 25 November 2008

© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract Process mining includes the automated discovery

of processes from event logs. Based on observed events (e.g.,

activities being executed or messages being exchanged) a

process model is constructed. One of the essential problems

in process mining is that one cannot assume to have seen all

possible behavior. At best, one has seen a representative sub-

set. Therefore, classical synthesis techniques are not suitable

as they aim at finding a model that is able to exactly reproduce

the log. Existing process mining techniques try to avoid such

“overfitting” by generalizing the model to allow for more

behavior. This generalization is often driven by the represen-

tation language and very crude assumptions about complete-

ness. As a result, parts of the model are “overfitting” (allow

only for what has actually been observed) while other parts

Communicated by Prof. August-Wilhelm Scheer.

W. M. P. van der Aalst (B) · H. M. W. Verbeek ·

B. F. van Dongen · C. W. Günther

Eindhoven University of Technology, P.O. Box 513,

5600 MB, Eindhoven, The Netherlands

e-mail: w.m.p.v.d.aalst@tue.nl

H. M. W. Verbeek

e-mail: h.m.w.verbeek@tue.nl

B. F. van Dongen

e-mail: b.f.v.dongen@tue.nl

C. W. Günther

e-mail: c.w.gunther@tue.nl

V. Rubin

Software Design and Management (sd&m AG),

Offenbach am Main, Germany

e-mail: Vladimir.Rubin@sdm.de

E. Kindler

Technical University of Denmark, Informatics

and Mathematical Modelling, Lyngby, Denmark

e-mail: eki@imm.dtu.dk

may be “underfitting” (allow for much more behavior without

strong support for it). None of the existing techniques enables

the user to control the balance between “overfitting” and

“underfitting”. To address this, we propose a two-step

approach. First, using a configurable approach, a transition

system is constructed. Then, using the “theory of regions”,

the model is synthesized. The approach has been imple-

mented in the context of ProM and overcomes many of the

limitations of traditional approaches.

1 Introduction

More and more information about processes is recorded by

information systems in the form of so-called “event logs”. A

wide variety of Process-Aware Information Systems (PAISs)

[22] is recording excellent data on actual events taking place.

Enterprise Resource Planning (ERP), WorkFlow Manage-

ment (WFM), Customer Relationship Management (CRM),

Supply Chain Management (SCM), and Product Data Man-

agement (PDM) systems are examples of such systems.

Despite the omnipresence and richness of these event logs,

most software vendors use this information for answering

only relatively simple questions under the assumption that

the process is fixed and known, e.g., the calculation of sim-

ple performance metrics like utilization and flow time. How-

ever, in many domains processes are evolving and people

typically have an oversimplified and incorrect view of the

actual business processes. Therefore, process mining tech-

niques attempt to extract non-trivial and useful information

from event logs. One aspect of process mining is control-flow

discovery, i.e., automatically constructing a process model

(e.g., a Petri net) describing the causal dependencies

between activities [7,8,12,16,20,21,40]. The basic idea of

control-flow discovery is very simple: given an event log

123

88 W. M. P. van der Aalst et al.

containing a set of traces, automatically construct a suit-

able process model “describing the behavior” seen in the log.

Algorithms such as the α-algorithm [7] construct a process

model (in this case a Petri net) based on the identification

of characteristic patterns in the event log, e.g., one activity

always follows another activity.

Research on process mining started by analyzing the logs

of WFM systems [7,8]. These systems have typically excel-

lent logging facilities that allow for a wide variety of process

mining techniques. However, discovering the control-flow

in such systems is less interesting because the process is

controlled based on an already known process model. More-

over, WFM systems are just one type of systems in a broad

spectrum of systems recording events. To illustrate this, we

provide some examples of processes in non-workflow envi-

ronments that are being recorded today:

– For many years, hospitals have been working towards

a comprehensive Electronic Patient Record (EPR), i.e.,

information about the health history of a patient, includ-

ing all past and present health conditions, illnesses, and

treatments. Although there are still many problems that

need to be resolved (mainly of a non-technical nature),

many people forget that most of this information is already

present in today’s hospital information systems. For

example, by Dutch law all hospitals need to record the

diagnosis and treatment steps at the level of individual

patients in order to receive payment. This so-called “Diag-

nose Behandeling Combinatie” (DBC) forces hospitals to

record all kinds of events.

– Today, many organizations are moving towards a Service-

Oriented Architecture (SOA). A SOA is essentially a col-

lection of services that communicate with each other. The

communication can involve either simple data passing or

it could involve two or more services coordinating some

activity. Here, technologies and standards such as SOAP,

WSDL, and BPEL are used. It is relatively easy to listen in

on the message exchange between services. This results

in massive amounts of relevant information that can be

recorded.

– Increasingly, professional high-tech systems such as

high-end copiers, complex medical equipment, lithogra-

phy systems, automated production systems, etc. record

events which allow for the monitoring of these systems.

These raw event logs can be distributed via the inter-

net allowing for both real-time and off-line analysis. This

information is valuable for (preventive) maintenance,

monitoring user adoption, etc.

– Software development processes are supported by tools

that record events related to software artifacts. For exam-

ple, Software Configuration Management (SCM) systems

such as CVS, Subversion, SourceSafe, Clear Case, etc.

record the events corresponding to the commits of

documents. The analysis of such information may help

to get more grip on the (often chaotic) development pro-

cesses.

– Other examples can be found in the classical administra-

tive systems of large organizations using, e.g. ERP, CRM,

and PDM software. Consider for example processes in

banks, insurance companies, local governments, etc. Here

most activities are recorded in some form.

These examples illustrate that one can find a variety of

event logs in today’s PAISs. However, in most cases real

processes are not as simple and structured as the processes

typically supported by WFM systems. Most process min-

ing algorithms produce spaghetti-like diagrams that do not

correspond to valid process models (e.g., the models have

deadlocks, etc.) and that do not provide useful insights.

We have applied process mining in all of the areas men-

tioned above, e.g., our tool ProM has been applied in several

hospitals (AMC and Catherina hospitals), banks (ING), high-

tech system manufacturers (ASML and Philips Medical Sys-

tems), software repositories for open-source projects, several

municipalities (Heusden, Alkmaar, etc.), etc. These expe-

riences show that the main problem is finding a balance

between “overfitting” and “underfitting”. Some algorithms

have a tendency to “underfit”, i.e., the discovered model

allows for much more behavior than actually recorded in

the log. The reason for such over-generalizing is often the

representation used and a coarse completeness notion. Other

algorithms have a tendency to “overfit” the model. Classical

synthesis approaches such as the “theory of regions” aim at

a model that is able to exactly reproduce the log. Therefore,

the model is merely another representation of the log without

deriving any new knowledge.

We aim at creating a balance between “overfitting” and

“underfitting”, therefore, we elaborate on these two notions.

Let L be a log and M be a model.

– M is overfitting L if M does not generalize and is sensi-

tive to particularities in L . In an extreme case, M could

merely be a representation of the log without any infer-

ence. A mining algorithm is producing overfitting models

if the removal or addition of a small percentage of the pro-

cess instances in L would lead to a remarkably different

model. In a complex process with many possible paths,

most process instances will follow a path not taken by

other instances in the same period. Therefore, it is unde-

sirable to construct a model that allows only for the paths

that happened to be present in the log as this is only a frac-

tion of all possible paths. If one knows that only a fraction

of the possible event sequences are in the log, the only

way to avoid overfitting is to generalize and have a model

M that allows for more behavior than recorded in L .

123

A two-step approach towards process mining 89

– M is underfitting L if M allows for “too much behavior”

that is not supported by L . This is also referred to as

“overgeneralization”. It is very easy to construct a model

that allows for the behavior seen in the log but also com-

pletely different behavior. For example, assume a log L

consisting of 1,000 cases. For each case A is followed by

B and there are no cases where B is followed by A. Obvi-

ously, one could derive a causal dependency between A

and B. However, one could also create a model M where

A and B are in parallel. The latter would not be “wrong”

in the sense that the behavior seen in the log is possible

according to the model. However, it is very unlikely and

therefore one could argue that M is underfitting L .

To illustrate the problem between overfitting and under-

fitting, consider some process in a hospital. When observing

such a process over a period of years it is very likely that every

individual patient follows a “unique process”, i.e., seen from

the viewpoint of a particular patient it is very unlikely that

there is another patient that has exactly the same sequence

of events. Therefore, it does not make sense to assume that

the event log contains all possible paths a particular case can

take. In fact, it is very likely that the next patient will have a

sequence of events different from all earlier patients. There-

fore, one cannot assume that an event log is “complete” and

one is forced to generalize to avoid overfitting. However, at

the same time underfitting (“anything is possible”) should be

avoided.

This paper will present a new type of process discovery

which uses a two-step approach: (1) we generate a transition

system that is used as an intermediate representation and

(2) based on this we obtain a Petri net constructed through

regions [9,10,14,15,23] as a final representation. Transition

systems are the most basic representation of processes, but

even simple processes tend to have many states (cf. “state

explosion” problem in verification). However, using the “the-

ory of regions” and tools like Petrify [15], transition systems

can be “folded” into more compact representations, e.g., Petri

nets [17,34]. Especially transition systems with a lot of con-

currency (assuming interleaving semantics) can be reduced

dramatically through the folding of states into regions, e.g.,

transition systems with hundreds or even thousands of states

can be mapped onto compact Petri nets. However, before

using regions to fold transition systems into Petri nets, we

first need to derive a transition system from an event log. This

paper shows that this can be done in several ways enabling a

repertoire of process discovery approaches. Different strate-

gies for generating transition systems are possible depending

on the desired degree of generalization, i.e., we will show that

while constructing the transition system it is possible to con-

trol the degree and nature of generalization and thus allow the

analyst to balance between “overfitting” and “underfitting”.

The two-step approach presented in this paper has been

implemented in ProM (http://www.processmining.org).

ProM serves as a testbed for our process mining research

[2]. For the second step of our approach ProM calls Petrify

[15] to synthesize the Petri net.

The remainder of this paper is organized as follows.

Related work is discussed in Sect. 2. Section 3 provides an

overview of process mining and discusses problems related

to process discovery. Section 4 introduces the approach by

using a real-life example. The first step of our approach is

presented in Sect. 5. Here it is shown that there are various

ways to construct a transition system based on a log. This

results in a family of process mining techniques that assist in

finding the balance between “overfitting” and “underfitting”.

The second step where the transition system is transformed

into a Petri net is presented in Sect. 6. Section 7 describes the

implementation, evaluation, and application of our two-step

approach. Section 8 concludes the paper.

2 Related work

Since the mid-nineties several groups have been working

on techniques for process mining [7,4,8,12,16,20,21,40],

i.e., discovering process models based on observed events.

In [6] an overview is given of the early work in this domain.

The idea to apply process mining in the context of work-

flow management systems was introduced in [8]. In parallel,

Datta [16] looked at the discovery of business process mod-

els. Cook et al. investigated similar issues in the context of

software engineering processes [12]. Herbst [26] was one of

the first to tackle more complicated processes, e.g., processes

containing duplicate tasks.

Most of the classical approaches have problems dealing

with concurrency. The α-algorithm [7] is an example of a

simple technique that takes concurrency as a starting point.

However, this simple algorithm has problems dealing with

complicated routing constructs and noise (like most of the

other approaches described in literature). In [20,21] a more

robust but less precise approach is presented.

In this paper we do not consider issues such as noise (cf.

Sect. 3.3). Heuristics [40] or genetic algorithms [3,31] have

been proposed to deal with issues such as noise. It appears

that some of the ideas presented in [40] can be combined with

other approaches, including the one presented in this paper.

The second step in our approach uses the “theory of

regions”. In our approach we use the so-called state-based

regions as defined in [9,10,14,15,23]. This way, transition

systems can be mapped onto Petri nets using synthesis. Ini-

tially, the theory could be applied only to a restricted set

of transition systems. However, over time the approach has

been extended to allow for the synthesis from any finite

transition system. In this paper, we use Petrify [13] for this

123

http://www.processmining.org

90 W. M. P. van der Aalst et al.

purpose. The idea to use regions has been mentioned in sev-

eral papers. However, only recently people have been apply-

ing state-based regions to process mining [28]. It is important

to note that the focus of regions has been on the synthesis of

models exactly reproducing the observed behavior (i.e., the

transition system). An important difference with our work

is that we try to generalize and deduce models that allow

for more behavior, i.e., our approach supports the balancing

between “overfitting” and “underfitting”. In our view, this is

the most important challenge in process mining research.

Recently, some work on language-based regions theory

appeared [11,29,30,42]. In [11,42] it is shown how this can

be applied to process mining. These approaches are very

interesting and directly construct a Petri net. They are not

building an intermediate transition system. This has advan-

tages, e.g., in terms of efficiency, but also disadvantages

because the approach is less configurable.

Process mining can be seen in the broader context of

Business Process Intelligence (BPI) and Business Activity

Monitoring (BAM). In [24,38] a BPI toolset on top of HP’s

Process Manager is described. The BPI toolset includes a so-

called “BPI Process Mining Engine”. In zur Muehlen [33]

describes the PISA tool which can be used to extract perfor-

mance metrics from workflow logs. Similar diagnostics are

provided by the ARIS Process Performance Manager (PPM)

[27]. The tool is commercially available and a customized

version of PPM is the Staffware Process Monitor (SPM) [39]

which is tailored towards mining Staffware logs. It should

be noted that BPI tools typically do not allow for process

discovery and offer relatively simple performance analysis

tools that depend on a correct a-priori process model. One

of the few commercial tools that supports process mining is

the BPM|suite of Pallas Athena. This tool is using the ideas

behind ProM and integrates this into a BPM product.

An earlier version of this paper appeared as a technical

report [5]. Here additional examples are shown and the role

of data/documents for state construction is discussed in more

detail.

3 Process mining

This section introduces the concept of process mining and

provides examples of issues related to control-flow discov-

ery. It also discusses requirements such as the need to produce

correct models and to balance between models that are too

specific or too generic.

3.1 Overview of process mining

As indicated in the introduction, today’s information sys-

tems are recording events in so-called event logs. The goal

of process mining is to extract information on the process

models
analyzes

records
events, e.g.,
messages,

transactions,
etc.

specifies
configures
implements
analyzes

supports/
controls

people machines

organizations

components

business processes

Fig. 1 Three types of process mining: (1) discovery, (2) conformance,

and (3) extension

from these logs, i.e., process mining describes a family of

a-posteriori analysis techniques exploiting the information

recorded in the event logs. Typically, these approaches

assume that it is possible to sequentially record events such

that each event refers to an activity (i.e., a well-defined step

in the process) and is related to a particular case (i.e., a pro-

cess instance). Furthermore, some mining techniques use

additional information such as the performer or originator

of the event (i.e., the person/resource executing or initiating

the activity), the timestamp of the event, or data elements

recorded with the event (e.g., the size of an order).

Process mining addresses the problem that most organi-

zations have very limited information about what is actu-

ally happening in their organization. In practice, there is

often a significant gap between what is prescribed or sup-

posed to happen, and what actually happens. Only a concise

assessment of the organizational reality, which process min-

ing strives to deliver, can help in verifying process models,

and ultimately be used in a process redesign effort.

The idea of process mining is to discover, monitor and

improve real processes (i.e., not assumed processes) by

extracting knowledge from event logs. We consider three

basic types of process mining (Fig. 1):

– Discovery. There is no a-priori model, i.e., based on an

event log some model is constructed. For example, using

the α-algorithm [7] a process model can be discovered

based on low-level events.

– Conformance. There is an a-priori model. This model

is used to check if reality, as recorded in the log, con-

forms to the model and vice versa. For example, there

may be a process model indicating that purchase orders of

more than one million Euro require two checks. Another

example is the checking of the four-eyes principle. Con-

formance checking may be used to detect deviations, to

locate and explain these deviations, and to measure the

severity of these deviations. As an example consider the

123

A two-step approach towards process mining 91

conformance checking algorithms described in Rozinat

and van der Aalst [37].

– Extension. There is an a-priori model. This model is

extended with a new aspect or perspective, i.e., the goal

is not to check conformance but to enrich the model. An

example is the extension of a process model with perfor-

mance data, i.e., some a-priori process model is used on

which bottlenecks are projected. Another example is the

decision mining algorithm described in Rozinat and van

der Aalst [36] that extends a given process model with

conditions for each decision.

Today, process mining tools are becoming available and

are being integrated into larger systems. The ProM frame-

work [2] provides an extensive set of analysis techniques

which can be applied to real process enactments while cov-

ering the whole spectrum depicted in Fig. 1. ARIS PPM was

one of the first commercial tools to offer some support for

process mining. Using ARIS PPM, one can extract perfor-

mance information and social networks. Also some primi-

tive form of process discovery is supported. However, ARIS

PPM still requires some a-priori modeling. The BPM|suite

of Pallas Athena was the first commercial tool to support

process discovery without a-priori modeling. Although the

above tools can already be applied to real-life processes, it

remains a challenge to extract suitable process models from

event logs.

3.2 Control-flow discovery

The focus of this paper is on control-flow discovery, i.e.,

extracting a process model from an event log. The event logs

of various systems may look very different. Some systems

log a lot of information while other systems provide only

very basic information. In fact, in many cases one needs to

extract event logs from different sources and merge them.

Tools such as our ProM Import Framework allows devel-

opers to quickly implement plug-ins that can be used to

extract information from a variety of systems and convert

this into the so-called MXML format [25]. MXML encom-

passes timestamps (when the event took place), originators

(which person or software component executed the corre-

sponding activity), transactional data, case data, etc. Most of

this information is optional, i.e., if it is there, it can be used for

process mining, but it is not necessary for control-flow dis-

covery. The only requirement that we assume in this paper is

that any event needs to be linked to a case (process instance)

and an activity. Assuming that only this information is avail-

able, an event is described by a pair (c, a) where c refers to the

case and a refers to the activity. In process mining, one typi-

cally abstracts from dependencies between cases. Hence, we

assume that each case is executed independently from other

cases, i.e., the routing of one case does not depend on the

A

B

C

DE

Fig. 2 A log represented by sequences of activities and the process

model that is discovered using the α-algorithm

routing of other cases (although they may compete for the

same resources). As a result, we can focus on the ordering

of activities within individual cases. Therefore, a single case

σ can be represented as a sequence of activities, i.e., a trace

σ ∈ A∗ where A is the set of activities. Consequently, a log

can be seen as a collection of traces (i.e., L ⊆ A∗).

Figure 2 shows an example of a log and the correspond-

ing process model discovered using the α-algorithm [7]. It

is easy to see that the Petri net is able to reproduce the log,

i.e., there is a good fit between the log and the discovered

process model.1 Note that the α-algorithm is a very simple

algorithm. Unfortunately, like many other algorithms, it has

several limitations (cf. Sect. 2).

As mentioned earlier, existing process mining algorithms

for control-flow discovery typically have several problems.

Using the example shown in Fig. 2, we can discuss these

problems in a bit more detail.

The first problem is that many algorithms have problems

with complex control-flow constructs. For example, the

choice between the concurrent execution of B and C or the

execution of just E shown in Fig. 2 cannot be handled by

many algorithms. Most algorithms do not allow for so-called

“non-free-choice constructs” where concurrency and choice

meet. The concept of free-choice nets is well-defined in the

Petri net domain [17]. However, in reality processes tend to be

non-free-choice. In the example of Fig. 2, the α-algorithm is

able to deal with the non-free-choice construct. However, it is

easy to think of a non-free-choice process that cannot be dis-

covered by the α-algorithm. The non-free-choice construct

is just one of many constructs that existing process mining

algorithms have problems with. Other examples are arbitrary

nested loops, unbalanced splits and joins, partial synchroni-

zation, etc. In this context it is important to note that process

mining is, by definition, restricted by the expressive power

of the target language, i.e., if a simple or highly informal

language is used, process mining is destined to produce less

relevant or over-simplified results.

The second problem is the fact that most algorithms have

problems with duplicates. The same activity may appear at

different places in the process or different activities may

1 In this paper, we assume that the reader has a basic understanding of

Petri nets, cf. [17,19,34].

123

92 W. M. P. van der Aalst et al.

be recorded in an indistinguishable manner. Consider for

example Fig. 2 and assume that activities A and D are both

recorded as X (or, equivalently, assume that A and D are both

replaced by activity X). Hence the trace ABCD in the original

model is recorded as XBCX. Most algorithms will try to map

the first and the second X onto the same activity. In some

cases this make sense, e.g., to create loops. However, if the

two occurrences of X (i.e., A and D) really play a different

role in the process, then algorithms that are unable to sepa-

rate them will run into all kinds of problems, e.g., the model

becomes more difficult or incorrect. Since the duplicate activ-

ities have the same “footprint” in the log, most algorithms

map these different activities onto a single activity thus mak-

ing the model incorrect or counter-intuitive.

The third problem is that many algorithms have a ten-

dency to generate inconsistent models. Note that here we do

not refer to the relation between the log and the model but

to the internal consistency of the model by itself. For exam-

ple, the α-algorithm may yield models that have deadlocks

or livelocks when the log shows certain types of behavior.

When using Petri nets as a model to represent processes, an

obvious choice is to require the model to be sound [1]. Sound-

ness implies that for any case: (1) the model can potentially

terminate from any reachable state (option to complete), (2)

that the model has no dead parts, and (3) that no tokens are

left behind (proper completion). See [1,7] for details.

The fourth and last problem described here is probably the

most important problem: existing algorithms have problems

balancing between “overfitting” and “underfitting”. Over-

fitting is the problem that a very specific model is generated

while it is obvious that the log only holds example behav-

ior, i.e., the model explains the particular sample log but a

next sample log of the same process may produce a com-

pletely different process model. Underfitting is the problem

that the model over-generalizes the example behavior in the

log, i.e., the model allows for very different behaviors from

what was seen in the log. The problem of balancing between

“overfitting” and “underfitting” is related to the notion of

completeness assumed. This will be discussed in more detail

in the next subsection.

The four problems just mentioned illustrate the need for

more powerful algorithms. See also [32] for a more elabo-

rate discussion on these and other challenges in control-flow

discovery.

3.3 Notions of completeness

When it comes to process mining the notion of complete-

ness is very important. Like in any data mining or machine

learning context one cannot assume to have seen all possi-

bilities in the “training material” (i.e., the event log at hand).

In Fig. 2, the set of possible traces found in the log is exactly

the same as the set of possible traces in the model, i.e.,

{ABC D, AC B D, AE D}. In general, this is not the case.

For example, the trace AB EC D may be possible but did not

(yet) occur in the log.

To define the concept of completeness assume that there is

a model correctly describing the process being observed. Let

L be the set of traces in some event log and L M the set of all

traces possible according to the model. Clearly, L ⊆ L M . If

L = L M , the log is trivially complete. However, as indicated

above one can never assume L = L M because, typically, |L|

is much smaller than |L M |. For a model with lots of choices

and concurrency |L| is only a fraction of |L M |. Therefore, it

makes no sense to define completeness as |L|/|L M |. There-

fore, other criteria are needed to describe how “complete” a

log is. For example, the α-algorithm [7] assumes that the log

is “locally complete”, i.e., if there are two activities X and Y ,

and X can be directly followed by Y this should be observed

in the log. Other completeness notions are possible and based

on these notions one can reason about the correctness of a

mining algorithm [7].

To illustrate the relevance of completeness, consider 10

tasks which can be executed in parallel. The total number of

interleavings is 10! = 3,628,800 (i.e., |L M | = 3,628,800). It

is probably not realistic that each interleaving is present in

the log, since typically |L| << |L M |. Moreover, even if |L|

and |L M | are of the same order of magnitude, it is still very

unlikely that L = L M . To motivate this consider the fol-

lowing analogy. In a group of 365 people it is very unlikely

that everyone has a different birthdate (365!/365365, i.e., a

probability of approximately 1.45∗10−157). Similarly, it is

unlikely that all possible traces will occur for a given pro-

cess of some complexity. However, for local completeness

as assumed by the α-algorithm [7] only 10(10 − 1) = 90

different observations are needed (rather than 10!).

Completeness is closely linked to the notions of over-

fitting and underfitting mentioned earlier. It is also linked

to Occam’s Razor, a principle attributed to the fourteenth

century English logician William of Ockham. The principle

states that “one should not increase, beyond what is neces-

sary, the number of entities required to explain anything”,

to look for the “simplest model” that can explain what is

in the log. Using this principle different algorithms assume

different notions of completeness.

Process mining algorithms needs to strike a balance

between “overfitting” and “underfitting”. A model is over-

fitting if it does not generalize and only allows for the exact

behavior recorded in the log. This means that the correspond-

ing mining technique assumes a very strong notion of com-

pleteness: “If the sequence is not in the event log, it is not

possible”. An underfitting model over-generalizes the things

seen in the log, i.e., it allows for more behavior even when

there are no indications in the log that suggest this addi-

tional behavior. An example is shown in Fig. 3. This so-called

“flower Petri net” allows for any sequence starting with start

123

A two-step approach towards process mining 93

A
B

C

D E

start end

Fig. 3 The so-called “flower Petri net” allowing for any log containing

A, B, C, D, and E

A D

C

EB

A D

C

EB

(a)

(b)

(c)

(d)

Fig. 4 Two logs and two models illustrating issues related to complete-

ness (i.e., “overfitting” and “underfitting”)

and ending with end and containing any ordering of activities

A, B, C, D, and E in between. Clearly, this model allows for

the set of traces {ABC D, AC B D, AE D} (without the added

start and end activities) but also many more, e.g., DD AA,

without much evidence that they should be possible.

Let us now consider another example showing that it is

difficult to balance between being too general and too spe-

cific. Figure 4 shows two event logs and two models. Both

logs are possible according to the model shown in (d), i.e.,

model (d) may have produced logs (a) and (b). However,

log (b) is not possible according to the model shown in (c)

because this model does not allow for ACE and BCD present

in log (b). Clearly, (c) seems to be a suitable model for (a),

and (d) seems to be a suitable model for (b). However, the

question is whether (d) is also a suitable model for (a). If the

log consists of just two cases ACD and BCE, then there is

no reason to argue why (d) would not be a suitable model

[although (d) allows for more behavior]. However, if there

are 100 cases following ACD and 100 cases BCE, then it is

difficult to justify (d) as a suitable model. It would be very

unlikely that ACE and BCD never occurred in one of the 200

cases and hence (c) seems more appropriate.

Figure 4 shows that there is a delicate balance and that it

is non-trivial to compare logs and process models. In [35,37]

notions such as fitness and appropriateness have been quan-

tified. An event log and Petri net “fit” if the Petri net can

generate each trace in the log.2 In other words: the Petri

net should be able to “parse” (i.e., reproduce) every activity

sequence observed. In [35,37] it is shown that it is possi-

ble to quantify fitness as a measure between 0 and 1. The

intuitive meaning is that a fitness close to 1 means that all

observed events can be explained by the model. However, the

precise meaning is more involved since tokens can remain

in the net and not all transactions in the model need to be

logged [35,37]. Unfortunately, a good fitness alone does not

imply that the model is indeed suitable, e.g., it is easy to

construct Petri nets that are able to reproduce any event log

(cf. the “flower model” in Fig. 3). Although such Petri nets

have a fitness of 1, they do not provide meaningful infor-

mation. Therefore, in [35] a second dimension is introduced:

appropriateness. Appropriateness tries to answer the follow-

ing question: “Does the model describe the observed process

in a concise way?”. This notion can be evaluated from both

a structural and a behavioral perspective. In [35] it is shown

that a “good” process model should somehow be minimal

in structure to clearly reflect the described behavior, referred

to as structural appropriateness, and minimal in behavior in

order to represent as closely as possible what actually takes

place, which will be called behavioral appropriateness. The

ProM conformance checker supports both the notion of fit-

ness and various notions of appropriateness, i.e., for a given

log and a given model it computes the different metrics.

Although there are different ways to quantify notions such

as fitness and appropriateness, it is difficult to agree on the

definition of an “optimal model”. What is optimal seems to

depend on the intended purpose and even given a clear met-

ric there may be many models having the same score. Since

there is not “one size fits all”, it is important to have algo-

rithms that can be tuned to specific applications. Therefore,

we present an approach that allows for different strategies

enabling different interpretations of completeness to avoid

overfitting and underfitting.

Linked to notions such as completeness, overfitting, and

underfitting is the issue of noise. The log may contain traces

that one would like to refer to as noise, e.g., incorrectly logged

events (i.e., the log does not reflect reality) and exceptions

(i.e., sequences of events corresponding to “abnormal behav-

ior”). The fact that a particular trace of events is observed

does not automatically mean that the model should be able

to reproduce it. Noise is typically tackled by cleaning the log

and setting thresholds [3,31,40]. This paper will not address

issues related to noise. However, existing ideas for deal-

ing with noise [3,31,40] can easily be combined with the

approach presented here.

2 It is important not to confuse fitness with overfitting and underfitting.

A model that is overfitting or underfitting may have a fitness of 1.

123

94 W. M. P. van der Aalst et al.

Fig. 5 Two models discovered

using an event log of the

Municipality of Heusden.

Although both models are based

on the same log and provide

information on the same set of

activities, they are very

different. The “spaghetti-like

model” is clearly overfitting,

difficult to interpret, and,

therefore, not very useful. The

smaller model is obtained after

applying one of the abstractions

proposed in this paper. This

more simple model provides

better insights

4 Approach

In the previous section, we used rather academic examples

to illustrate issues related to completeness and the need to

balance between overfitting and underfitting. However, it is

important to realize that these issues are of the utmost impor-

tance when applying process mining in a real-life setting.

We have been applying process mining in a wide variety of

organizations and were often confronted with spaghetti-like

models when applying classical process mining approaches.

These models where typically the result of overfitting, i.e.,

the models were a correct reflection of reality, but not very

useful.

To illustrate this we show some results based on an event

log of the Municipality of Heusden. The event log is based

on the process “Bezwaar WOZ”. This process handles objec-

tions (i.e., appeals) against the real-estate property valuation

or the real-estate property tax. We used an event log with data

on 1982 objections handled by the Municipality of Heusden.

The log contains 12,726 events. Because the actual activity

names are not relevant for our discussion here (and because

of reasons of confidentiality), we anonymized the process

and replaced names by letters.

Figure 5 shows two Petri nets. The spaghetti-like model

was obtained by applying a simple process mining algorithm

where it is assumed that the state of a case is determined by

the sequence of activities that have taken place. The Petri net

is able to reproduce the event log, i.e., all observed traces can

be reproduced and the model does not allow for any traces not

present in the original event log. So the model is definitely

“correct” but not very useful as it does not give much insight

into the Municipality’s appeal process. The second (smaller)

Petri net was obtained using the same log. However, it uses

the abstraction that the state of a case is determined by only

the last activity that has taken place (if any). This simpler

Petri net is able to reproduce the event log, i.e., all observed

traces can be generated by the net. However, the model also

allows for traces not present in the original log.

It should be noted that both models in Fig. 5 provide infor-

mation on identical sets of activities, i.e., the scope is not

123

A two-step approach towards process mining 95

changed. Both models are able to reproduce the initial log

and no noise or infrequent behavior has been removed in the

smaller model.

Figure 5 convincingly shows the need for abstraction.

Although existing process mining techniques are using some

form of abstraction, the level and nature of the abstraction

cannot be controlled or adapted. Therefore, we propose a

two step approach:

– In the first step (Sect. 5), we construct a transition system.

While constructing the transition system we can choose

from various abstractions. We will identify five abstrac-

tions, including the one used to simplify the model in

Fig. 5. Moreover, as we will show, the set of abstractions

can be easily extended.

– In the second step (Sect. 6), we transform the transition

system into a process model. This step is needed because

the transition system is not able to show concurrency and

parallel branches typically result in an explosion of states

making the transition system unreadable. Hence, the goal

of the second step is to provide a compact representation

of the selected behavior. In our approach we are generat-

ing a Petri net using the theory of regions, but in principle

any representation with AND/XOR-splits/joins could be

used.

Note that the first step is mainly concerned with abstraction,

while the second step is mainly concerned with represen-

tation issues. In the remainder, we present the two steps in

detail.

5 Constructing a transition system (Step 1)

After introducing the concept of control-flow discovery and

discussing the problems of existing approaches, we can now

explain the first step of our approach. An important qual-

ity of the first step is that, unlike existing approaches, it can

be tuned towards the application. Depending on the desired

properties of the model and the characteristics of the log, the

algorithm can be tuned to provide a more suitable model.

5.1 Preliminaries

To explain the different strategies for constructing transition

systems from event logs, we need the following notations.

f ∈ A → B is a function with domain A and range B.

f ∈ A �→ B is a partial function, i.e., the domain of f may

be a subset of A.

A multi-set (also referred to as bag) is like a set where each

element may occur multiple times. For example, {a, b2, c3, d}

is the multiset with seven elements: one a, two b’s, three c’s,

and one d.

B(A) = A → N is the set of multi-sets (bags) over a

finite domain A, i.e., X ∈ B(A) is a multi-set, where for each

a ∈ A: X (a) denotes the number of times a is included in the

multi-set. For example, if X = {a, b2, c3, d}, then X (b) = 2

and X (e) = 0. The sum of two multi-sets (X +Y), the differ-

ence (X − Y), the presence of an element in a multi-set (x ∈

X), and the notion of subset (X ≤ Y) are defined in a straight-

forward way. For example, {a, b2, c3, d}+ {c3, d, e2, f 3} =

{a, b2, c6, d2, e2, f 3}. Moreover, we also apply these oper-

ators to sets, where we assume that a set is a multiset in

which every element occurs exactly once. The operators are

also robust with respect to the domains of the multi-sets, i.e.,

even if X and Y are defined on different domains, X + Y ,

X − Y , and X ≤ Y are defined properly by extending the

domain where needed. |X | =
∑

a∈A X (a) is the cardinality

of some multi-set X over A. set(X) transforms a bag X into

a set: set(X) = {a ∈ X | X (a) > 0}.

P(A) is the powerset of A, i.e., P(A) = {X | X ⊆ A}.

For a given set A, A∗ is the set of all finite sequences over

A. A finite sequence over A of length n is a mapping σ ∈

{1, . . . , n} → A. Such a sequence is represented by a string,

i.e., σ = 〈a1, a2, . . . , an〉 where ai = σ(i) for 1 ≤ i ≤ n.

hdk(σ) = 〈a1, a2, . . . , ak min n〉, i.e., the sequence consist-

ing of the first k elements (if possible). Note that hd0(σ) is

the empty sequence and for k ≥ n: hdk(σ) = σ . tlk(σ) =

〈a(n−k+1)max1, ak+2, . . . , an〉, i.e., sequence composed of

the last k elements (if possible). Note that tl0(σ) is the empty

sequence and for k ≥ n: tlk(σ) = σ . σ ↑ X is the projection

of σ onto some subset X ⊆ A, e.g., 〈a, b, c, a, b, c, d〉 ↑

{a, b} = 〈a, b, a, b〉 and 〈d, a, a, a, a, a, a, d〉 ↑ {d} =

〈d, d〉.

For any sequence σ over A, the Parikh vector par(σ) maps

every element a of A onto the number of occurrences of a in

σ , i.e., par(σ) ∈ B(A) where for any a ∈ A: par(σ)(a) =

|σ ↑ {a}|.

Later, we will use the Parikh vector to count the number

of times an activity occurs in a log trace.

5.2 Basic approach

Although an event log can store transactional information,

information about resources, related data, timestamps, etc.

we first focus on the ordering of activities. Cases are exe-

cuted independently from each other, and therefore, we can

simply restrict our input to the ordering of activities within

individual cases. A single case is described as a sequence of

activities and a log can be described as a set of traces.3

3 Note that we ignore multiple occurrences of the same trace in this

paper. When dealing with issues such as noise, it is vital to also look at

the frequency of activities and traces. Therefore, an event log is typi-

cally defined as a multi-set of traces rather than a set. However, for the

purpose of this paper it suffices to consider sets.

123

96 W. M. P. van der Aalst et al.

past future

current state

past and future

Fig. 6 Three basic “ingredients” can be considered as a basis for

calculating the “process state”: (1) past, (2) future, and (3) past and

future

Definition 1 (Simple Trace, Simple Event log). Let A be a

set of activities. σ ∈ A∗ is a (simple) trace and L ∈ P(A∗)

is a (simple) event log.

The reason that we call σ ∈ A∗ a simple trace and L ∈

P(A∗) a simple event log is that we initially assume that an

event only refers to the activity being executed. In Sect. 5.4

we will refine this view and include attributes describing

other perspectives (e.g., data, time, resources, etc.).

The set of activities can be found by inspecting the log.

However, the most important aspect of process discovery is

deducing the states of the operational process in the log.

Most mining algorithms have an implicit notion of state, i.e.,

activities are glued together in some process modeling lan-

guage based on an analysis of the log and the resulting model

has a behavior that can be represented as a transition system.

In this paper, we propose to define states explicitly and start

with the definition of a transition system.

In some cases, the state can be derived directly, e.g., each

event encodes the complete state by providing values for

all relevant data attributes. However, in the event log we

typically only see activities and not states. Hence, we need

to deduce the state information from the activities executed

before and after a given state. Based on this, there are basi-

cally three approaches to define the state of a partially exe-

cuted case in a log:

– past, i.e., the state is constructed based on the history of

a case,

– future, i.e., the state of a case is based on its future, or

– past and future, i.e., a combination of the previous two.

Figure 6 shows an example of a trace and the three differ-

ent “ingredients” that can be used to calculate state informa-

tion. Given a concrete trace, i.e., the execution of a case from

beginning to end, we can look at the state after executing

the first nine activities. This state can be represented by the

prefix, the postfix, or both.

To explain the basic idea of constructing a transition sys-

tem from an event log, consider Fig. 7. Here we start from the

same log as used in Fig. 2. If we just consider the prefix (i.e.,

the past), we get the transition system shown in Fig. 7a. Note

that the initial state is denoted 〈〉, i.e., the empty sequence.

Starting from this initial state the first activity is always A in

each of the traces. Hence, there is one outgoing arc labeled

A, and the subsequent state is labeled 〈A〉. From this state,

three transitions are possible that lead to different states,

e.g., executing activity B results in state 〈A, B〉, etc. Note

that in Fig. 7a there is one initial state and three final states.

Figure 7b shows the transition system based on postfixes.

Here the state of a case is determined by its future. This

future is known because process mining looks at the event

log containing completed cases. Now there are three initial

states and one final state. Initial state 〈A, E, D〉 indicates that

the next activity will be A, followed by E and D. Note that

the final state has label 〈〉 indicating that no activities need

to be executed. Figure 7c shows a transition system based on

both past and future. The node with label “〈A, B〉,〈C, D〉”

denotes the state where A and B have happened and C and D

still need to occur. Note that now there are three initial states

and three final states.

The past of a case is a prefix of the complete trace. Sim-

ilarly, the future of a case is a postfix of the complete trace.

This may be taken into account completely, which leads to

many different states and process models that may be too

specific (i.e., “overfitting” models). However, many abstrac-

tions are possible as shown below. The abstractions can be

applied to prefixes, postfixes, or both.

Abstraction 1: Maximal horizon (h) The basis of the state

calculation can be the complete prefix (postfix) or a partial

prefix (postfix). In the later case, only a subset of the trace

is considered. For example, instead of taking the complete

prefix 〈A, B, C, D, C, D, C, D, E〉 shown in Fig. 6, only the

last four (h = 4) events could considered: 〈D, C, D, E〉. In

a partial prefix, only the h most recent events are considered

as input for the state calculation. In a partial postfix, also a

limited horizon is considered, i.e., seen from the state under

consideration, only the next h events are taken into account.

Taking a complete prefix (postfix) corresponds to h = ∞.

Abstraction 2: Filter (F) The second abstraction is to filter

the (partial) prefix and/or postfix, i.e., activities in F ⊆ A

are kept while activities A\F are removed. Filtering can be

seen as projecting the horizon onto a set of activities F . For

example, if F = {C, D}, then the prefix 〈A, B, C, D, C, D,

C, D, E〉 shown in Fig. 6 is reduced to 〈C, D, C, D, C, D〉.

Note that the filtering is applied to the sequence resulting

from the horizon. It is also possible to first filter the log, but

we consider this to be part of the preprocessing of the log

and not part of the mining algorithm itself. The occurrence

of some activity a ∈ F is considered relevant for the state of

a case. If a �∈ F , then the occurrence of a is still relevant for

the process (i.e., it may appear on the arcs in the transition

system) but is assumed to be irrelevant for determining the

123

A two-step approach towards process mining 97

Fig. 7 Three transition

systems derived from the log

ABCD

ACBD
AED
ABCD

ABCD
AED
ACBD

...

(b) transition system based on postfix

<>
A

<A> <A,E>
E

<A,E,D>
D

<A,B>

B

<A,B,C>
C

<A,B,C,D>
D

<A,C> <A,C,B>
B

<A,C,B,D>
D

C

<A,B,C,D>
A

<B,C,D>

<A,E,D> <E,D>

<A,C,B,D>

A

A
<C,B,D>

<D>
E

<C,D>

<B,D>

B

C

C

B

<>
D

<>
<A,B,C,D>

A <A>
<B,C,D>

<>
<A,E,D>

<A>
<E,D>

<>

<A,C,B,D>

A

A <A>

<C,B,D>

<A,E>
<D>

E

<A,B>
<C,D>

<A,C>

<B,D>

B

C

<A,E,D>
<>

D

<A,C,B>

<D>

B

<A,B,C>
<D>

C <A,B,C,D>
<>

D

<A,C,B,D>

<>

D

(c) transition system based on prefix and postfix

(a) transition system based on prefix

state. If a is not relevant at all, it should be filtered out before

and should not appear in L .

Abstraction 3: Maximum number of filtered events (m)

The sequence resulting after filtering may contain a vari-

able number of elements. Again one can determine a kind of

horizon for this filtered sequence. The number m determines

the maximum number of filtered events. Consider the prefix

〈A, B, C, D, C, D, C , D, E〉 shown in Fig. 6. Suppose that

h = 6, then the first abstraction yields 〈D, C, D, C, D, E〉.

Suppose that F = {C, E}, then the second abstraction yields

〈C, C, E〉. Suppose that m = 2, then the third abstraction

yields 〈C, E〉. Note that there is a difference between h and

m. If h = 2, F = {C, E}, and m = 6, then the result is 〈E〉

rather than 〈C, E〉. Note that m = ∞ implies that no events

are removed by this third abstraction.

Abstraction 4: Sequence, bag, or set (q) The first three

abstractions yield a sequence. The fourth abstraction mech-

anism optionally removes the order or frequency from the

resulting trace. For the current state it may be less interesting

to know when some activity a occurred and how many times

a occurred, i.e., only the fact that it occurs within the scope

determined by the first three abstractions is relevant. In other

cases, it may be relevant to know how many times a occurred

or it may be essential to know whether a occurred before b or

not. This suggests that there are three ways of representing

knowledge about the past and the future:

– sequence, i.e., the order of activities is recorded in the

state,

– multi-set of activities, i.e., the number of times each activ-

ity is executed ignoring their order, and

– set of activities, i.e., the mere presence of activities.

Consider again the prefix 〈A, B, C, D, C, D, C, D, E〉 and

suppose that h = ∞, F = A, and m = ∞, then the

fourth abstraction step yields 〈A, B, C, D, C, D, C, D, E〉

(sequence), {A, B, C3, D3, E} (multiset), and {A, B, D, E}

(set). We will denote this abstraction using the identifier q,

i.e., q = seq (sequence), q = ms (multiset), or q = set (set).

Abstraction 5: Visible activities (V) The fifth abstraction

is concerned with the transition labels. Activities in V ⊆ A

are shown explicitly on the arcs while the activities in A\V

are not shown. Note that the arcs are not removed from the

123

98 W. M. P. van der Aalst et al.

Fig. 8 Two transition systems

using the following prefix

abstractions: a h = ∞, F = A

(i.e., all activities), m = ∞,

q = set, and V = A, and b

h = ∞, F = {A, D, E}, m = 1,

q = seq, and V = {A, D, E}

ABCD

ACBD

AED

ABCD

ABCD

AED

ACBD

...

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

(a) transition system based on sets

B

<>
A

<A> <D>
D

<E>

E

(b) transition system abstracting from B and C

D

transition system; only the label on the arc is suppressed. This

abstraction is particularly useful if there are many activities

having a similar effect in terms of changing states. Rather

than having many arcs from one state to another, these are

then collapsed into a single unlabeled arc.

Figure 8 illustrates the abstractions. In Fig. 8a only the set

abstraction is used q = set. The result is that several states

are merged (compare with Fig. 7a). In Fig. 8b activities B and

C are filtered out (i.e., F = {A, D, E} and V = {A, D, E}).

Moreover, only the last non-filtered event is considered for

constructing the state (i.e., m = 1). Note that the states in

Fig. 8b refer to the last event in {A, D, E}. Therefore, there

are four states: 〈A〉, 〈D〉, 〈E〉, and 〈〉. It is interesting to con-

sider the role of B and C . First of all, they are not considered

for building the state (F = {A, D, E}). Second, they are

also not visualized (V = {A, D, E}), i.e., the labels are sup-

pressed. The corresponding transitions are collapsed into the

unlabeled arc from 〈A〉 to 〈A〉. If V would have included

B and C , there would have been two such arcs labeled B

respectively C .

The first four abstractions can be applied to the prefix,

the postfix, or both. In fact, different abstractions can be

applied to the prefix and postfix while the last abstraction is

applied to the resulting transition system. As a result of these

choices, many different transitions systems can be generated.

If more abstractions are used, the number of states will be

smaller and the danger of “underfitting” is present. If, on

the other hand, fewer abstractions are used, the number of

states may be larger resulting in an “overfitting” model. An

extreme case of overfitting was shown in Fig. 7c where each

trace is presented separately without deducing control-flow

constructs. In fact, all of the abstractions used in Fig. 7 will

lead to overfitting because the whole prefix and/or postfix

is considered.

At first it may seem confusing that there are multiple pro-

cess models that can be deduced based on the same log,

however, as indicated in the introduction it is important to

provide a repertoire of process discovery approaches.

Depending on the desired degree of generalization, suitable

abstractions are selected and in this way the analyst can bal-

ance between “overfitting” and “underfitting” in a controlled

way. Existing approaches do not allow the analyst to con-

trol the degree and nature of abstraction, i.e., the degree of

generalization is fixed by the method.

5.3 Formalization basic approach

Let us now further formalize the ideas presented so far. For

this purpose, we first take a broader perspective and then

focus on the concrete abstractions discussed thus far.

To determine the states of the transition system, we need

to construct a so-called state representation based on the first

four abstractions and the choice of prefix and postfix.

Definition 2 (State representation). A state representation

function state() is a function that, given a sequence σ and

a number k indicating the number of events of σ that have

occurred, produces some representation r . Formally, state ∈

(A∗ ×N) �→ R where A is the set of activities, R is the set of

possible state representations (e.g., sequences, sets, or bags

over A), and dom(state) = {(σ, k) ∈ A∗ ×N | 0 ≤ k ≤ |σ |}.

123

A two-step approach towards process mining 99

Based on the notion of a state() function, we can define

the transition system. In this definition we use a renaming

function jV that renames invisible activities to τ : jV (a) = a

if a ∈ V and jV (a) = τ otherwise. Such transitions are not

labeled in the diagram, e.g., see Fig. 8b where the B and C

labels are not shown.

Definition 3 (Transition system). Let A be a set of activities

and let L ∈ P(A∗) be an event log. Given a state() function

as defined before and a set of visible activities V ⊆ A, we

define a labeled transition system T S = (S, E, T) where

S = {state(σ, k) | σ ∈ L ∧ 0 ≤ k ≤ |σ |} is the state space,

E = V ∪{τ } is the set of events (labels) and T ⊆ S × E × S

with T = {(state(σ, k), jV (σ (k + 1)), state(σ, k + 1)) | σ ∈

L ∧ 0 ≤ k < |σ |} is the transition relation. Sstart ⊆ S is the

set of initial states, i.e., Sstart = {state(σ, 0) | σ ∈ L}. Send ⊆

S is the set of final states, i.e., Send = {state(σ, |σ |) | σ ∈ L}.

The set of states of the transition system is determined by

the range of function state() when applied to the log data.

The transitions in the transition system have a label in E =

V ∪{τ }. Note that V is the set of visible activities and τ refers

to activities made “invisible” in the transition system.

The algorithm for constructing a transition system is

straightforward: for every trace σ , iterating over k (0 ≤ k ≤

|σ |), we create a new state state(σ, k) if it does not exist

yet. Then the traces are scanned for transitions state(σ, k −

1)
jV (σ (k))
−→ state(σ, k) and these are added if they do not exist

yet.4 Recall that, if jV (σ (k)) = τ , then the label is not shown

in the diagram.

So given a state() function and a set of visible activities V

it is possible to automatically build a transition system. This

was already illustrated in Fig. 8 which shows two examples

using the same log but different choices for state() and V .

Let us now consider the construction of different state()

functions. To this end, this we introduce some notations.

First, we show how to obtain the past and future of a case σ

after k steps.

Definition 4 (Past and future of a case). Let A be a set of

activities and let σ = 〈a1, a2, . . . , an〉 ∈ A∗ be a trace that

represents a complete execution of a case. The past of this

case after executing k steps (0 ≤ k ≤ n) is hdk(σ). The future

of this case after executing k steps (0 ≤ k ≤ n) is tln−k(σ).

The past and future are denoted as a pair: (hdk(σ), tln−k(σ)).

Note that σ = hdk(σ)tln−k(σ), i.e., the concatenation of past

and future yields the whole trace.

Let us now consider the first four abstractions presented in

Sect. 5.2. For simplicity, we first focus on the past of a case.

4 Note that the elements of T are often denoted as s1
e

→ s2 instead of

(s1, e, s2).

Let σ0 = hdk(σ) be the complete prefix of some case σ after

k steps.

The first abstraction presented in Sect. 5.2 can be tackled

using function tl. Recall that this abstraction sets a horizon of

length h. Assuming a horizon h, the result of this first abstrac-

tion is σ1 = tlh(σ0). The second abstraction can be tackled

using the projection operator ↑ defined earlier. Assuming a

filter F , the result of this second abstraction is σ2 = σ1 ↑ F .

The third abstraction sets a maximum to the number of fil-

tered events to be considered. Again function tl can be used.

Assuming a maximum m, the result of this third abstraction

is σ3 = tlm(σ2). The fourth abstraction is based on q. Recall

that there are three possible values: q = seq (sequence),

q = ms (multiset), or q = set (set). Hence, we take the

sequence σ3 resulting from the first three abstractions and

use σ3 (no abstraction), par(σ3) (i.e., construct a multi-set

and remove the ordering) or set(par(σ3)) (i.e., construct a

set and remove both ordering and frequencies).

Now we can formalize examples of state() functions. For

example, consider Fig. 8a where h = ∞, F = A, m =

∞, q = set. In this case, state(σ, k) = set(par(tl∞(tl∞

(hdk(σ)) ↑ A))). This can be simplified to state(σ, k) =

set(par(hdk(σ) ↑ A)). In Fig. 8b, where h = ∞,

F = {A, D, E}, m = 1, and q = seq, the function is

state(σ, k) = tl1(tl∞(hdk(σ)) ↑ {A, D, E}). Using these

two state() functions and the corresponding V values, the

two transition systems shown in Fig. 8 can be obtained by

simply applying Definition 3.

The examples so far have focused on the past of a case (i.e.,

prefixes). A similar approach can be used for postfixes (i.e.,

future). In this situation σ0 = tln−k(σ) is the complete postfix

of some case σ of length n after k steps. The first abstrac-

tion presented in Sect. 5.2 can be tackled using function hd.

Assuming a horizon h, is results in σ1 = hdh(σ0). Assuming

a filter F , the result of the second abstraction is σ2 = σ1 ↑ F .

The third abstraction sets a maximum to the number of fil-

tered events: σ3 = hdm(σ2) The fourth abstraction is identi-

cal to using a prefix, i.e., σ3, par(σ3) or set(par(σ3)). Figure 9

shows an abstraction based on the postfix and m = 1 (i.e., at

most one filtered event is considered).

If both the past and future are used, then for both prefix

and postfix an abstraction needs to be selected and the state

is then determined by pairing both abstractions. For example,

state(σ, k) = (par(tl∞(tl2(hdk(σ)) ↑ {A, B})), set(par

(hd2(hd∞(tln−k(σ)) ↑ {B, C, D})))).

5.4 Extensions

We have now introduced and formalized the basic approach

to construct a transition system based on an event log. The

next step is to transform this transition system into a process

model. However, before discussing the second step, we first

discuss two types of extensions of the basic approach. To

123

100 W. M. P. van der Aalst et al.

Fig. 9 A transition system

constructed based on the future

of a case (postfix) with

abstractions h = ∞, F = A

(i.e., all activities), m = 1,

q = set, and V = A

ABCD

ACBD

AED

ABCD

ABCD

AED

ACBD

...

{A}
A

{C} {D}
C

{B}

A B

{ }
D

{E}

EA

CB

Fig. 10 Two examples of

modifications of the transition

system to aid the construction of

the process model

s1

s2 s3

s4

s1

s2 s3

s4

a1 a2

a2

a1 a2

a2 a1

(b) closing the “diamond”

s

(a) removing self-loops

a
s

avoid an overkill of notations, we only present these exten-

sions informally.

Massaging the transition system The first type of exten-

sions is related to “massaging” the transition system after it

is generated. This is intended to “pave the path” for the second

step. For example, one may remove all “self-loops”, i.e., tran-

sitions of the form s
a

→ s (cf. Fig. 10a). The reason may be

that one is not interested in events that do not change the state

or that the synthesis algorithm in the second step cannot han-

dle this. Another example would be to close all “diamonds”,

i.e., if s1
a1
→ s2, s1

a2
→ s3, and s2

a2
→ s4, then s3

a1
→ s4 is added

(cf. Fig. 10b). The reason for doing so may be that because

(1) both a1 and a2 are enabled in s1 and (2) after doing a1,

activity a2 is still enabled, it is assumed that a1 and a2 can

be executed in parallel. Although the sequence 〈a2, a1〉 was

not observed, it is assumed that this is possible and hence the

transition system is extended by adding s3
a1
→ s4.

Incorporating other perspectives The second type of exten-

sions is related to the input, i.e., the “richness” of the event

log. In Definition 1, a simple log was assumed, i.e., a case

is described as a sequence of activities and a log is a set

of such simple sequences. In reality, one knows much more

about events. Most information systems do not just record

the ordering of activities but also timestamps and informa-

tion about resources, data, transactional information, etc.

Definition 5 (Trace, Event log). Let E be a set of events.

Based on E there is a set of p properties: {prop1, . . . , propp}.

Each property is a function with a particular range, i.e., for

1 ≤ i ≤ p: propi ∈ E → Ri . Given an event e ∈ E , propi (e)

maps the event onto a particular property of the event, e.g.,

its timestamp, the activity executed, the person executing the

event, etc. Based on E and the set of properties, we define

σ ∈ E∗ as a (complex) trace and L ∈ P(E∗) as a (complex)

event log.

E is a set of unique event identifiers, i.e., there cannot

be two events having the same id in a given log. Note that

Definition 1 can be seen as a special case of the above defi-

nition with only one property, being the activity itself. Some

examples of typical property functions are:

– activity ∈ E → A where A is the set of activities.

activity(e) is the activity that e refers to.

– timestamp ∈ E → T S where T S is the set of timestamps.

timestamp(e) is the time that e occurred.

– performer ∈ E → P where P is the set of persons.

performer(e) is the person executing e.

– trans_type ∈ E → {enable, start, complete, abort, . . .}.

trans_type(e) is the type of transaction, e.g., if activity(e)

= conduct_interview and trans_type(e) = start, then e

is the start of the interview.

There may also be property functions describing data attri-

butes of an event or linking events to business objects.

For convenience, we assume that all property functions

are extended to sequences, i.e., if σ = 〈e1, e2, . . . , en〉 ∈ E∗,

then propi (σ)=〈propi (e1), propi (e2), . . . , propi (en)〉∈ R∗
i .

The goal of the additional information captured in events

is to provide for more ways of extracting transition systems.

One way would be to allow for state functions of the form

123

A two-step approach towards process mining 101

Fig. 11 A transition system

based on prefixes and

abstractions h = ∞, F = A,

m = ∞, q = set, and V = A, is

converted into a Petri net using

the “theory of regions”. The six

regions correspond to places in

the Petri net

ABCD

ACBD

AED

ABCD

ABCD

AED

ACBD

...

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

B

A

B

C

DE

p1

p2

p3

p4

p5

p6

Step 1

Step 2

state ∈ (E∗ × N) �→ R, i.e., defining dedicated abstrac-

tions based on the various properties of a case. Another

approach would be to use the abstractions defined earlier

(i.e., h, F , m, q, and V) and first project the complex trace

onto a simple trace. For example, transform the complex log

L ∈ P(E∗) into a simple log L ′ = {activity(σ) | σ ∈ L}

by projecting each event onto its activity. In a similar way

L ′ = {performer(σ) | σ ∈ L} could be used to explore

the transfer of work from one person to another using the

abstractions defined earlier. In our implementation described

in Sect. 7, we will show that we essentially used the sec-

ond approach. Independent of the approach chosen, this will

result in a state() function that can be used to construct a

transition system as defined in Definition 3.

6 Synthesis using regions (Step 2)

In this section, we present the second step of our approach.

In this second step, a process model is synthesized from the

transition system resulting from the first step. In this paper

and our implementation, we use the well-known “theory of

regions” [15,18,23] to construct a Petri net.

6.1 Constructing Petri nets using regions

The synthesis problem is the problem to construct, for a given

behavioral specification, a Petri net such that the behavior

of this net coincides with the specified behavior (if such a

net exists). There are basically two approaches to tackle this

problem. Both use the notion of “regions”. The state-based

region theory [15,18,23] uses a transition system as input,

i.e., it attempts to construct a Petri net that is bisimilar to

the transition system. Hence both are behaviorally equiva-

lent and if the system exhibits concurrency, the Petri net may

be much smaller than the transition system. The language-

based region theory [11,29,30,42] does not take a transition

system as input but a language (e.g., a regular language or

simply a finite set of sequences, i.e., a log). However, the

basic principle is similar.

Given the fact that, in the first step, we construct, in a con-

trolled manner, a transition system, it seems most natural to

use the state-based region theory. There are many variants

and extensions of this theory. However, to present the basic

idea we start with the classical definition of a region.

Definition 6 (Region). Let T S = (S, E, T) be a transition

system and S′ ⊆ S be a subset of states. S′ is a region if for

each event e ∈ E one of the following conditions hold:

1. all the transitions s1
e

→ s2 enter S′, i.e. s1 /∈ S′ and

s2 ∈ S′,

2. all the transitions s1
e

→ s2 exit S′, i.e. s1 ∈ S′ and s2 /∈ S′,

3. all the transitions s1
e

→ s2 do not cross S′, i.e. s1, s2 ∈ S′

or s1, s2 /∈ S′

Figure 11 illustrates this notion and puts the idea in the

context of this paper. The log is converted into a transition

system as shown earlier. The transition system consists of

eight states. The set consisting of just state {} is a region

because all A-transitions leave this region and all other tran-

sitions never cross this region. The set consisting of states

{A} and {A, B} is a region because all A-transitions enter this

region, all C-transitions leave this region, all E-transitions

leave this region, and all other transitions (i.e., B and D)

never cross this region. Figure 11 also shows a region con-

sisting of three states: {A, B}, {A, B, C}, and {A, E}. Note

123

102 W. M. P. van der Aalst et al.

Fig. 12 The transition system

generated based on the log is not

elementary. Therefore, the

generated Petri net using

classical region theory is not

equivalent (modulo

bisimilarity). However, using

“label-splitting” an equivalent

Petri net can be obtained

ABCD

ACBD

AED

ABCD

ABCD

AED

ACBD

...

Step 1

Step 2

(classical

region

theory)

<>
A

<A> <D>
D

<E>

E
D

A D

E

p1 p2 p3

A D1

E

p1 p2 p4

D2

p3

Step 2

(using

label

splitting)

that this region is shown by two connected areas in Fig. 11.

All B-transitions enter this region, all E-transitions enter

this region, all D-transitions leave this region, and all other

transitions never cross this region. As Fig. 11 shows regions

correspond to places in the Petri net. The transitions that enter

a region r are input transitions of the corresponding r place.

Transitions that leave region r are output transitions of r .

The transitions that do not cross r are not connected to the

corresponding place.

Any transition system T S = (S, E, T) has two trivial

regions: ∅ (the empty region) and S (the region consisting of

all states). Since these hold no information about the process,

only non-trivial regions are considered. A region r ′ is said to

be a subregion of another region r if r ′ ⊂ r . A region r is

minimal if there is no other non-trivial region r ′ which is a

subregion of r . Note that all regions in Fig. 11 are minimal.

Region r is a preregion of e if there is a transition labeled

with e which exits r . Region r is a postregion of e if there is

a transition labeled with e which enters r .

For Petri net synthesis, a region corresponds to a Petri net

place and an event corresponds to a Petri net transition. Thus,

the main idea of the synthesis algorithm is the following: for

each event e in the transition system, a transition labeled with

e is generated in the Petri net. For each minimal region ri a

place pi is generated. The flow relation of the Petri net is

built the following way: e ∈ p•
i if ri is a preregion of e and

e ∈ • pi if ri is a postregion of e. An example of a Petri

net synthesized from a transition system using this simple

algorithm is given in Fig. 11.

The first papers on the “theory of regions” only dealt with

a special class of transition systems called elementary transi-

tion systems. See [9,10,18] for details. The class of elemen-

tary transition systems is very restricted. In practice, most of

the time, people need to deal with arbitrary transition systems

that only by coincidence fall into the class of elementary

transition systems. In the papers of Cortadella et al. [14,15],

a method for handling arbitrary transition systems was pre-

sented. This approach uses labeled Petri nets, i.e., different

transitions can refer to the same event. For this approach it

has been shown that the reachability graph of the synthesized

Petri net is bisimilar to the initial transition system even if

the transition system is non-elementary.

To illustrate the problem of non-elementary transition sys-

tems, consider Fig. 12. The transition system is obtained by

abstracting away B and C , e.g., use h = ∞, F = {A, D, E},

m = 1, q = seq, and V = {A, D, E} like in Fig. 8 and then

remove the self loop. An isomorphic transition system can be

obtained by filtering out B and C first and then use prefixes

of length 1 without any further abstractions. This transition

system is not elementary. The problem is that there are two

states 〈A〉 and 〈E〉 that are identical in terms of regions, i.e.,

there is no region such that one is part of it and the other

is not. As a result, the constructed Petri net on the left hand

side of Fig. 12 fails to construct a bisimilar Petri net. How-

ever, using label-splitting as presented in [14,15], the Petri

net on the right hand side can be obtained. This Petri net has

two transitions D1 and D2 corresponding to activity D in the

log. The splitting is based on the so-called notions of excita-

tion and generalized excitation region, see [14]. As shown in

[14,15] it is always possible to construct an equivalent Petri

net. However, label-splitting may lead to larger Petri nets.

6.2 More on regions

In this paper, we do not propose a new approach to construct

regions. However, we would like to reflect on the application

of region theory in the context of mining.

123

A two-step approach towards process mining 103

1

2

3

5

6

4

1

2

3

5

6

4

Fig. 13 The left-hand side Petri net can “parse” any log while the

addition of place p on the right-hand side imposes a constraint on the

traces that can be parsed

Generalization Region theory aims at synthesis, i.e., the

Petri net should have a behavior which is identical to the

initial behavior specified. Therefore, the Petri net shown on

the left-hand side of Fig. 12 is considered to be a problem

from the synthesis point of view. This is the reason why

label-splitting is used to construct a bisimilar Petri net if the

net is not elementary, cf. right-hand side of Fig. 12.

In this paper, we have used an approach where all gener-

alizations take place in the first step. This way the purpose of

each step is clear: (a) Step 1 is concerned with selecting the

desired behavior (i.e., abstraction and generalization), and

(b) Step 2 is only concerned with generating the correspond-

ing Petri net representation. This means that the analyst can

influence the first step but not the second. Note that the Petri

net shown on the left-hand side of Fig. 12 is generalizing

things in an uncontrolled manner. Because of representation

issues E is suddenly allowed to execute an arbitrary number

of times while in the log it was never executed multiple times.

This is undesirable and shows that region theory tends to yield

overfitting models but at the same time it may generalize

things in an uncontrolled manner, i.e., the generalization is

driven by representational issues rather than behavioral ones.

Although in this paper and the implementation described

in Sect. 7 we only generalize in the first step, it is interesting

to note that existing synthesis approaches can be fine-tuned

for mining [11,42]. Such approaches are completely different

from the main approach described in this paper and consist

of only one step that constructs a Petri net while generalizing

at the same time.

Figure 13 shows the basic idea. Suppose one has a log

with activities A = {t1, . . . , t6}. It is easy to see that the Petri

net on the left-hand side in Fig. 13 can “parse” this log, i.e.,

the model fits any log containing activities A. The addition

of a place can be seen as adding a constraint. By adding

place p in Fig. 13 a constraint is introduced. Suppose that

σ ∈ L . Let σ1 and σ2 = σ1〈t
′〉 (i.e., σ1 concatenated with

some t ′), be two prefixes of σ . Assume that p has initially

k tokens. Then p can only be added if k + par(σ1)(t1) +

par(σ1)(t2) + par(σ1)(t3) + par(σ1)(t4) − par(σ2)(t3) −

par(σ2)(t4) − par(σ2)(t5) − par(σ2)(t6) ≥ 0.5 Hence, we

5 Recall that par(σ1)(t) is the number of times that t occurred in σ1.

can add any place such that above constraint holds for any

σ ∈ L . In [11,29,30,42] several approaches are presented to

add as few places as possible while maximally constraining

the net (without violating the constraints mentioned above).

It is obvious that any cost function can be associated to the

addition of a place. For example, there may a “penalty” for

places that are not easy to understand. Such penalties can

easily be combined with constraints into an integer linear

programming problem [42]. This way regions can be used

directly to balance between overfitting and underfitting.

Selecting the target format The goal of process

mining is to present a model that can be interpreted easily by

process analysts and end-users. Therefore, complex patterns

should be avoided. Region-based approaches have a tendency

to introduce “smart places”, i.e., places that compactly serve

multiple purposes. Such places have many connections and

may have non-local effects (i.e., the same place is used for dif-

ferent purposes in different phases of the process). Therefore,

it may be useful to guide the generation of places such that

they are easier to understand. This is fairly straightforward

in both state-based region theory and language-based region

theory. In [14,15] it is shown that additional requirements

can be added with respect to the properties of the resulting

net. For example, the net can be forced to be free-choice,

pure, etc. Figure 14 shows the Petri net obtained by using the

approach in [14,15] while demanding the result to be free-

choice. Note that in order to make the net free-choice the

labels B and C were split.

The Petri net in Fig. 14 is bisimilar to the transition system

and the set of possible traces of the model coincides with the

initial log. However, other approaches such as the one pre-

sented [42] do not aim at a model where the set of all possible

traces of the model coincides with the initial log. In such an

approach it is possible to allow only the adding of places that

have the desired properties. One can use cost functions to

decide on the addition of a place such as the one shown in

Fig. 13. Using such an approach it is also possible to enforce

that the model is e.g. free-choice.

It is interesting to think about “cost models” in the context

of process mining to balance overfitting and underfitting. It

may be that there is a simple model that almost captures the

behavior observed while all models that exactly capture the

behavior are much more complex. In such a case, it may be

wise to show the simple model to the user. The addition of

a place has a “cost” in terms of adding to the complexity of

the result and potentially overfitting. Note that a place with

many input and output transitions is typically a sign of over-

fitting. However, not adding a place has a “cost” in terms of

underfitting, i.e., allow for too much behavior not present in

the log. The notion of costs is also interesting when dealing

with noise (cf. Sect. 3.3), i.e., a place may be added because

the majority of the cases suggest that this is natural while

123

104 W. M. P. van der Aalst et al.

Fig. 14 The techniques

presented in [14,15] can be used

to obtain a free-choice Petri net.

Note that labels B and C are

split in order to achieve this

ABCD

ACBD

AED

ABCD
ABCD

AED

ACBD

...

Step 1

Step 2

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

B

A D

B1

p1 p2 p6

B2C1

C2

E

p3

p4

p5

a small fraction of the log cannot be reproduced because of

this place.

7 Implementation and evaluation

In the previous two sections, we presented a two-step appro-

ach. In Sect. 5, we showed how transition systems can be

extracted in a controlled way while balancing between over-

fitting and underfitting. Section 6 showed that region theory

can be used to convert the result into an equivalent Petri net,

i.e., concurrency is detected and moved to the net level. The

ideas presented in this paper have been fully implemented

in the context of ProM. ProM serves as a testbed for our

process mining research [2] and can be downloaded from

http://www.processmining.org. Starting point for ProM is the

MXML format. This is a vendor-independent format to store

event logs. Similar to Definition 5, this format allows for the

recording of timestamps, data elements, performers, etc.

Note that in this paper we focused on discovering Petri

nets and not models in other notations. However, the resulting

Petri net can then be converted into the desired notation, e.g.,

BPMN, EPCs, UML activity diagrams, etc. This is standard

functionality of ProM, therefore, we do not elaborate on this.

7.1 ProMimport

The ProMimport Framework [25] allows developers to

quickly implement plug-ins that can be used to extract infor-

mation from a variety of systems and convert it into the

MXML format (cf. http://promimport.sourceforge.net).

There are standard import plug-ins for a wide variety of sys-

tems, e.g., workflow management systems like Staffware,

case handling systems like FLOWer, ERP components like

PeopleSoft Financials, simulation tools like ARIS and CPN

Tools, middleware systems like WebSphere, BI tools like

ARIS PPM, etc. Moreover, it has been used to develop many

organization/system-specific conversions (e.g., hospitals,

banks, governments, high-tech systems, etc.).

7.2 ProM

Once the logs are converted to MXML, ProM can be used

to extract a variety of models from these logs. ProM pro-

vides an environment to easily add so-called “plug-ins” that

implement a specific mining approach. Although the most

interesting plug-ins in the context of this paper are the min-

ing plug-ins, it is important to note that there are in total five

types of plug-ins:

Mining plug-ins which implement some mining algorithm,

e.g., mining algorithms that construct a Petri net based on

some event log, or algorithms that construct a transition sys-

tem or a social network from an event log.

Export plug-ins which implement some “save as” function-

ality for some objects (such as graphs). For example, there

are plug-ins to save EPCs, Petri nets, spreadsheets, etc.

Import plug-ins which implement an “open” functionality

for exported objects, e.g., load Petri nets that are generated

by Petrify or EPCs from ARIS.

Analysis plug-ins which typically implement some property

analysis on some mining result. For example, for Petri nets

there is a plug-in which constructs place invariants, transition

invariants, and a coverability graph.

Conversion plug-ins which implement conversions

between different data formats, e.g., from EPCs to Petri nets

and from Petri nets to YAWL and BPEL.

Currently, there are more than 230 plug-ins [2]. One of

these plug-ins is the mining plug-in that generates the tran-

sition system that can be used to build a Petri net model.

Another plug-in is the conversion plug-in that uses Petrify to

synthesize a Petri net. Petrify is embedded in ProM and uses

the algorithms developed by Cortadella et al. [14,15].

Figure 15 shows the mining and conversion plug-in in

ProM. Although the notation is slightly different, it is easy

to see that the results of the two steps are indeed as shown

earlier in Fig. 11. What is more difficult to see is that the

top window allows for all kinds of abstractions. The tabs

Model element, Originator, Event type, and Attributes refer

123

http://www.processmining.org
http://promimport.sourceforge.net

A two-step approach towards process mining 105

Fig. 15 A screenshot of ProM

while analyzing the running

example. The top window shows

the various abstractions that can

be selected. The right window

show the result of Step 1 and the

left window shows the result of

Step 2

to the type of information to be used. This corresponds to the

selection of properties used for building the transition system

(cf. the property functions mentioned in Definition 5). Note

that any conjunction of these properties can be used, e.g., a

state may be based on the person that executed the last task

and the name of the next activity. Moreover, all abstractions

mentioned in this paper are available. In Fig. 15 the following

settings are used: prefixes with h = ∞, F = A, m = ∞,

and q = set. Under tab Visible the transition names to be

shown one the arcs in the diagram can be selected (i.e., the

value of V). The Modifications tab allows for the extensions

mentioned in Sect. 5.4.

As Fig. 15 illustrates, the ideas presented in this paper have

been fully implemented.

7.3 Evaluation

In the introduction we mentioned that existing process min-

ing approaches suffer from the problems such as the inability

to deal with advanced control-flow constructs (e.g., non-local

dependencies, skips, duplicates, etc.), the inability to guaran-

tee the correctness of the model (e.g., absence of deadlocks,

etc.), and inability to balance between overfitting and under-

fitting. In this section, we show that our approach can indeed

overcome these problems.

In Fig. 5 where we already showed the effect of abstraction

using a real-life log. The difference between both models is

in the horizon considered. For the smaller model h = 1 while

for the spaghetti-like model h = ∞. Figure 5 convincingly

shows the practical relevance of our approach, but fails to

provide good insights into the way the simplifications are

achieved. Therefore, we use a smaller but non-trivial process

(Fig. 16) to illustrate our approach in more detail.

Figure 16 shows a process modeled in terms of a Petri net.

Note that this model has two types of constructs that most

process mining algorithms have problems dealing with. The

first construct is activity G that is not being logged. As a

result F can be skipped. Since such a skip is not recorded,

it is not trivial to detect it. The second construct is the non-

local dependency controlling the choice between K and L .

Note that K (L) is only selected if also D (E) was selected.

However, there are always at least two activities in-between

D (E) and K (L) (activities H and J). Most process min-

ing techniques have problems with at least one of these two

constructs. Based on the model in Fig. 16, we have randomly

generated 1,000 cases using the simulation tool CPN Tools.

The event log of CPN Tools is converted into MXML such

that we can apply a wide variety of process mining algorithms

(including the one presented in this paper).

The 1,000 cases have been generated randomly. The model

allows for 80 different traces (assuming G is visible). How-

ever, only 66 of these traces actually occur in the log. More-

over, some traces appear frequent in the log (e.g., there is

a trace that is repeated 83 times in the log) while others are

unique. This nicely illustrates the discussion on completeness

in Sect. 3.3.

Figure 17 shows the result when applying the α algorithm

[7]. Note that this model and its layout are automatically

123

106 W. M. P. van der Aalst et al.

Fig. 16 Thousand cases have

been generated according to this

process model. Complications

are that G is invisible (see

dashed transition) and that there

is a non-local dependency

controlling the choice between

K and L

A

B

C

E H

F I

J

D

G

L

K

M

Fig. 17 The Petri net

discovered by the α algorithm in

ProM. Note that although F can

be skipped in reality this is not

possible in the model.

Moreover, the non-local

dependencies are not discovered

generated from the log without human intervention. (Note

that the ProM plug-in constructing the Petri net using the α

algorithm inserts transactional information. Therefore, each

transition is classified as a “complete transition” in Fig. 17.)

As can be seen, the model is incorrect because it does not

allow for the skipping of F . This is caused by the fact that

G is invisible. Moreover, there are no connections from the

choice between D and E to the choice between K and L .

Some of the algorithms presented in literature can over-

come these problems. For example, the α++ algorithm pre-

sented in [41] and implemented in ProM can discover the

non-local dependencies between D (E) and K (L). However,

it cannot handle the skipping of F leading to the same prob-

lem as shown in Fig. 17. The multi-phase miner [20] (also

implemented in ProM) can handle the skipping of F but not

the non-local dependencies. The genetic miner [3,31] may

be able to discover both types of constructs correctly. How-

ever, this takes a lot of computation time and the end result is

not guaranteed. Older algorithms such as [12] are not able to

discover concurrency. Therefore, Fig. 16 is a nice benchmark

example to evaluate our two-step approach.

Figure 18 shows the transition system based the log con-

taining 1,000 cases and function state(σ, k) = set(par(tl∞

(tl∞(hdk(σ)) ↑ A))) = set(par(hdk(σ))), i.e., we use pre-

fixes and the abstractions h = ∞, F = A, m = ∞, q = set,

and V = A. The transition system in Fig. 18 can easily be

converted into the Petri net shown in Fig. 19 using the “the-

ory of regions”. Note that the Petri net and its layout are

automatically generated using ProM.

Figure 19 captures the non-local dependencies and the

skipping of F correctly. The two places between D and E

and K and L correctly model the dependencies present. The

skipping is modeled by label-splitting, i.e., there are two tran-

sition referring to activity I : I._1 and I . Note that the notation

generated by ProM is slightly different from the notation used

in this paper. However, the correspondence should be clear.

Also note that the output place of M is suppressed. However,

this is merely a technicality and not a limitation.

The above example shows that the two-step approach is

able to discover complex constructs and is capabele of deliv-

ering models that are guaranteed to satisfy various correct-

ness criteria. The reason is that the transition system is a

controlled abstraction of the log and has guaranteed proper-

ties that are preserved through the construction of the Petri

net. (Recall that the Petri net is bisimilar.)

Another property of the two-step approach is that it is

configurable, i.e., by changing settings different models can

be constructed depending on the desired abstraction/gener-

alization. This way one can balance between overfitting and

underfitting in a controlled way. Figure 20 shows an alter-

native process model constructed using the same log but a

different abstraction. In this case, we again use prefixes and

h = ∞, m = ∞, q = set, and V = A. However, now

F = {A, B, D, E, G, H, J, K , L , M}. This means that we

tell the algorithm not to use C , F , and I for constructing the

state but to still include the activities in the process model.

As Fig. 20 shows C , F , and I can be executed in-between A

and J . However, because these activities are not used in the

state information, the process model only indicates that they

can be executed without indicating an order or frequency.

Figure 21 shows yet another alternative process model.

This example has been added to show the use of postfixes

and a limited horizon. In this case, h = ∞, F = A, m = 1,

q = set, and V = A. Moreover, activities C , F , and I have

now been filtered out of the log before applying the algo-

rithm. Hence, they do not appear in the model at all (i.e., also

not on the arcs like in Fig. 20). It is interesting to note that the

non-local dependency is deliberately abstracted from by set-

ting m = 1. Moreover, since the state is based on the future

(i.e., next activity), activities B and J are split. The reason is

123

A two-step approach towards process mining 107

Fig. 18 The transition system

constructed by ProM

Fig. 19 The Petri net

constructed by ProM based on

the transition system of Fig. 18

Fig. 20 Another Petri net

constructed using the

abstraction F =

{A, B, D, E, G, H, J, K , L , M}

123

108 W. M. P. van der Aalst et al.

Fig. 21 A Petri net constructed

by filtering the log and building

states based on postfixes using

abstraction m = 1

that using this state function, the next step is already known

after executing B or J . Therefore, the moment of choice is

moved to an earlier point.

Figures 19, 20, and 21 show that based on the same log

different models can be constructed based on the desired

abstraction/generalization. As far as we know, this is the

only algorithm described in literature able to balance between

overfitting and underfitting in a controlled way.

8 Conclusion

This paper presented a new two-step process mining

approach. It uses innovative ways of constructing transi-

tion systems and regions to synthesize process models in

terms of Petri nets. Using this approach, it is possible to dis-

cover process models that adequately describe the behavior

recorded in event logs. These logs may come from a vari-

ety of information systems e.g., systems constructed using

ERP, WFM, CRM, SCM, and PDM software. The applica-

tion is not limited to repetitive administrative processes and

can also be applied to development processes and processes

in complicated professional/embedded systems. Moreover,

process mining is suitable for the monitoring of interacting

web services.

Existing approaches typically provide a single process

mining algorithm, i.e., they assume “one size fits all” and can-

not be tailored towards a specific application. Unlike existing

approaches, we allow for a wide variety of strategies, and,

as a side-effect, overcome some of the problems of exist-

ing approaches. Selecting the right state representation aids

in balancing between “overfitting” (i.e., the model is over-

specific and only allows for the behavior that happened to

be in the log) and “underfitting” (i.e., the model is too gen-

eral and allows for unlikely behavior). The relation between

the log and the transition system is much more direct than

in existing approaches. Therefore, it is easier to control the

abstraction/generalization and it is clear which properties are

preserved. For the transformation of a transition system into

a Petri net we use regions. The idea is that, in this second

step, the behavior is not changed, i.e., using regions we look

for concurrency and move this to the net level. As a result the

model becomes more compact and can easily be translated

to other process modeling languages (EPCs, BPMN, UML

activity diagrams, etc.).

The approach has been fully implemented in ProM and

the resulting process mining tool can be downloaded from

http://www.processmining.org.

Future work aims at a better support for strategy selec-

tion and new synthesis methods. The fact that our two-step

approach allows for a variety of strategies makes it very

important to support the user in selecting suitable strategies

depending on the characteristics of the log and the desired

end-result. Practical experiments point out the need for better

synthesis methods. Existing region-based approaches imple-

mented in tools such as Petrify have severe performance

problems and typically lead to less intuitive models. The

“theory of regions” aims at developing an equivalent Petri

net while in process mining a simple less accurate model is

more desirable than a complex model that is only able to

reproduce the log. Hence it is interesting to investigate “new

theories of regions” tailored towards process mining. Some

initial work in this direction has already been presented in

[11,42].

Acknowledgements This research is supported by EIT, NWO-EW,

and the Technology Foundation STW. Moreover, we would like to thank

the many people involved in the development of ProM.

Open Access This article is distributed under the terms of the Creative

Commons Attribution Noncommercial License which permits any

noncommercial use, distribution, and reproduction in any medium,

provided the original author(s) and source are credited.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow

management. J. Circ. Syst. Comput. 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans,

R.S., Alves de Medeiros, A.K., Rozinat, A., Rubin, V., Song, M.,

Verbeek, H.M.W., Weijters, A.J.M.M.: ProM 4.0: comprehensive

support for real process analysis. In: Kleijn, J., Yakovlev, A., (eds.)

Application and Theory of Petri Nets and Other Models of Concur-

rency (ICATPN 2007). Lecture Notes in Computer Science, vol.

4546, pp. 484–494. Springer, Berlin (2007)

3. van der Aalst, W.M.P., Alves de Medeiros, A.K., Weijters,

A.J.M.M.: Genetic process mining. In: Ciardo, G., Darondeau, P.

(eds.) Applications and Theory of Petri Nets 2005. Lecture Notes

in Computer Science, vol. 3536, pp. 48–69. Springer, Berlin (2005)

4. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M.,

van Dongen, B.F., Alvesde Medeiros, A.K., Song, M., Verbeek,

H.M.W.: Business process mining: an industrial application. Inf.

Syst. 32(5), 713–732 (2007)

5. van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler,

E., Günther, C.W.: Process mining: a two-step approach using

transition systems and regions. BPM Center Report BPM-06-30,

BPMcenter.org (2006)

6. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L.,

Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of

issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)

123

http://www.processmining.org

A two-step approach towards process mining 109

7. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow

mining: discovering process models from event logs. IEEE Trans.

Knowl. Data Eng. 16(9), 1128–1142 (2004)

8. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process mod-

els from workflow logs. In: Proceedings of the Sixth International

Conference on Extending Database Technology, pp. 469–483

(1998)

9. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis prob-

lem for elementary net systems is NP-complete. Theor. Comput.

Sci. 186(1–2), 107–134 (1997)

10. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W.,

Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models. Lec-

ture Notes in Computer Science, vol. 1491, pp. 529–586. Springer,

Berlin (1998)

11. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process min-

ing based on regions of languages. In: Alonso, G., Dadam, P.,

Rosemann, M. (eds.) International Conference on Business Pro-

cess Management (BPM 2007). Lecture Notes in Computer Sci-

ence, vol. 4714, pp. 375–383. Springer, Berlin (2007)

12. Cook, J.E., Wolf, A.L.: Discovering models of software pro-

cesses from event-based data. ACM Trans. Softw. Eng. Meth-

odol. 7(3), 215–249 (1998)

13. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L.,

Yakovlev, A.: Petrify: a tool for manipulating concurrent speci-

fications and synthesis of asynchronous controllers. IEICE Trans.

Inf. Syst. E 80-D(3):315–325 (1997)

14. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Syn-

thesizing Petri Nets from state-based models. In: Proceedings of

the 1995 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD ’95), pp. 164–171. IEEE Computer Society, Los

Alamitos (1995)

15. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriv-

ing Petri nets from finite transition systems. IEEE Trans. Com-

put. 47(8), 859–882 (1998)

16. Datta, A.: Automating the discovery of As-Is business pro-

cess models: probabilistic and algorithmic approaches. Inf. Syst.

Res. 9(3), 275–301 (1998)

17. Desel, J., Esparza, J.: Free choice Petri nets. In: Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press,

Cambridge (1995)

18. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta

Inf. 33(4), 297–315 (1996)

19. Desel, J., Reisig, W., Rozenberg, G.: (eds) Lectures on Concur-

rency and Petri Nets. Lecture Notes in Computer Science, vol.

3098, Springer-Verlag, Berlin (2004)

20. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase process min-

ing: building instance graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou,

S., Ling, T.W. (eds.) International Conference on Conceptual Mod-

eling (ER 2004). Lecture Notes in Computer Science, vol. 3288,

pp. 362–376. Springer, Berlin (2004)

21. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase mining:

aggregating instances graphs into EPCs and Petri nets. In: Marine-

scu, D. (ed.) Proceedings of the Second International Workshop on

Applications of Petri Nets to Coordination, Workflow and Business

Process Management, pp. 35–58. Florida International University,

Miami, Florida, USA (2005)

22. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Pro-

cess-Aware Information Systems: Bridging People and Software

through Process Technology. Wiley, London (2005)

23. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-structures—part 1

and part 2. Acta Inf. 27(4), 315–368 (1989)

24. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M.,

Shan, M.C.: Business process intelligence. Comput. Ind. 53(3),

321–343 (2004)

25. Günther, C., van der Aalst, W.M.P.: A generic import framework for

process event logs. In: Eder J., Dustdar S. (eds.) Business Process

Management Workshops, Workshop on Business Process Intelli-

gence (BPI 2006). Lecture Notes in Computer Science, vol. 4103,

pp. 81–92. Springer, Berlin (2006)

26. Herbst, J.: A machine learning approach to workflow management.

In: Proceedings 11th European Conference on Machine Learn-

ing. Lecture Notes in Computer Science, vol. 1810, pp. 183–194.

Springer, Berlin (2000)

27. IDS Scheer, ARIS Process Performance Manager (ARIS PPM):

Measure, Analyze and Optimize Your Business Process Perfor-

mance (whitepaper). IDS Scheer, Saarbruecken, Gemany. http://

www.ids-scheer.com (2002)

28. Kindler, E., Rubin, V., Schäfer, W.: Process mining and Petri net

synthesis. In: Eder, J., Dustdar, S. (eds.) Business Process Manage-

ment Workshops. Lecture Notes in Computer Science, vol. 4103,

pp. 105–116. Springer, Berlin (2006)

29. Lorenz, R., Bergenthum, R., Desel, J., Mauser, S.: Synthesis of

Petri nets from finite partial languages. In: Basten, T., Juhás, G.,

Shukla, S.K. (eds.) International Conference on Application of

Concurrency to System Design (ACSD 2007), pp. 157–166. IEEE

Computer Society, Los Alamitos (2007)

30. Lorenz, R., Juhás, G.: How to synthesize nets from languages: a

survey. In: Henderson, S.G., Biller, B., Hsieh, M., Shortle, J., Tew,

J.D., Barton, R.R. (eds.) Proceedings of the Winter simulation Con-

ference (WSC 2007), pp. 637–647. IEEE Computer Society, Los

Alamitos (2007)

31. de Medeiros, A.K.A.: Genetic Process Mining. PhD thesis, Eind-

hoven University of Technology, Eindhoven (2006)

32. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.:

Workflow mining: current status and future directions. In: Meers-

man, R., Tari, Z., Schmidt, D.C. (eds.) On The Move to Mean-

ingful Internet Systems 2003: CoopIS, DOA, and ODBASE. Lec-

ture Notes in Computer Science, vol. 2888, pp. 389–406. Springer,

Berlin (2003)

33. zur Mühlen, M., Rosemann, M.: Workflow-based process mon-

itoring and controlling—technical and organizational issues. In:

Sprague, R. (ed.) Proceedings of the 33rd Hawaii International

Conference on System Science (HICSS-33), pp. 1–10. IEEE Com-

puter Society Press, Los Alamitos (2000)

34. Reisig, W., Rozenberg, G. (eds). Lectures on Petri Nets I: Basic

Models. Lecture Notes in Computer Science, vol. 1491, Springer-

Verlag, Berlin, (1998)

35. Rozinat, A., van der Aalst, W.M.P.: Conformance testing: measur-

ing the fit and appropriateness of event logs and process models. In:

Bussler, C. et al. (ed.) BPM 2005 Workshops (Workshop on Busi-

ness Process Intelligence). Lecture Notes in Computer Science,

vol. 3812, pp. 163–176. Springer, Berlin (2006)

36. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In:

Dustdar, S., Faideiro, J.L., Sheth, A. (eds.) International Confer-

ence on Business Process Management (BPM 2006). Lecture Notes

in Computer Science, vol. 4102, pp. 420–425. Springer, Berlin

(2006)

37. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of

processes based on monitoring real behavior. Inf. Syst. 33(1),

64–95 (2008)

38. Sayal M., Casati, F., Dayal, U., Shan, M.C.: Business process cock-

pit. In: Proceedings of 28th International Conference on Very Large

Data Bases (VLDBG’02), pp. 880–883. Morgan Kaufmann, USA

(2002)

39. TIBCO. TIBCO Staffware Process Monitor (SPM). http://www.

tibco.com, 2005

40. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering

workflow models from event-based data using little thumb. Integr.

Comput. Aided Eng. 10(2), 151–162 (2003)

41. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining pro-

cess models with non-free-choice constructs. Data Min. Knowl.

Discov. 15(2), 145–180 (2007)

123

http://www.ids-scheer.com
http://www.ids-scheer.com
http://www.tibco.com
http://www.tibco.com

110 W. M. P. van der Aalst et al.

42. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J.,

Serebrenik, A.: Process discovery using integer linear program-

ming. In: van Hee, K., Valk, R., (eds.) Proceedings of the 29th

International Conference on Applications and Theory of Petri Nets

(Petri Nets 2008). Lecture Notes in Computer Science, vol. 5062 ,

pp. 368–387. Springer, Berlin (2008)

Author Biographys

Prof. Dr. W. M. P. van der Aalst

is a full professor of Information

Systems at the Technische Univer-

siteit Eindhoven (TU/e). Currently,

he is also an adjunct professor at

Queensland University of Technol-

ogy (QUT) working within the BPM

group there. His research interests

include workflow management, pro-

cess mining, Petri nets, business

process management, process mod-

eling, and process analysis. Wil

van der Aalst has published more

than 90 journal papers, 13 books (as

author or editor), 200 refereed con-

ference/workshop publications, and 30 book chapters. Many of his

papers are highly cited (he has an H-index of more than 50 according

to Google Scholar) and his ideas have influenced researchers, software

developers, and standardization committees working on process sup-

port. He has been chairing many large international conferences and is

also editor/member of the editorial board of several journals, including

the Business Process Management Journal, the International Journal of

Business Process Integration and Management, the International Jour-

nal on Enterprise Modelling and Information Systems Architectures,

Computers in Industry, IEEE Transactions on Services Computing,

Lecture Notes in Business Information Processing, and Transactions

on Petri Nets and Other Models of Concurrency.

Dr. V. Rubin received a Diploma

in Computer Science from the Mos-

cow State University of Railway

Transport and a Ph.D. from the

University of Paderborn (Germany).

He worked as a Software Devel-

oper at the Keldysh Institute of

Applied Mathematics (Moscow, Rus-

sia) from 1999 to 2001. From

2001 to 2003, he worked as a

System Engineer in the NetCrack-

er Technology Corp. (2001, 2002—

Moscow, Russia; 2003—Boston, USA).

From 2004 to 2007, he was a

Researcher at the Software Engineer-

ing Group, Department of Computer Science, University of Paderborn.

Since 2007, he works as a Senior Software Engineer at the sd&m AG

(Frankfurt, Germany). His research interests include business process

modeling and process mining, model-based software engineering and

software processes.

Dr. H. M. W. Verbeek is a

scientific engineer at the Informa-

tion Systems group of the depart-

ment of Mathematics and Computer

Science at the Technische Univer-

siteit Eindhoven, where he also

received his Ph.D. His research

interests include workflow man-

agement, business process man-

agement, and process verification.

Dr. B. F. van Dongen is a postdoc

in the Information Systems group

of the Department of Mathemat-

ics and Computer Science of Eind-

hoven University of Technology,

Eindhoven, The Netherlands. He

received his Ph.D. in 2007, after

successfully defending his thesis

titled “Process Mining and Verifica-

tion”. Currently, his research inter-

ests extend from process mining and

process verification to supporting

flexible processes and visualization

of research results. Furthermore, he

plays an important role in the devel-

opment of the open-source process mining framework ProM, freely

available from http://www.processmining.org.

Prof. Dr. E. Kindler is currently an

associate professor in Computer Sci-

ence and Engineering at the Techni-

cal University of Denmark (DTU).

He received his masters and his

Ph.D. in Computer Science from the

Technische Universtität München in

1990 and 1995, respectively. He

received his Habilitation in Com-

puter Science from the Humboldt-

Universität zu Berlin in 2001. After

his Habilitation, he was visiting pro-

fessor in theoretical as well as in

practical computer science at dif-

ferent German Universities and was

an assistant professor (Hochschuldozent) in Software Engineering at

Paderborn University from 2002 to 2007. His research interests include

formal methods and their application in software and systems engi-

neering and business process management. Currently, he is working on

formalizing and unifying the concepts of business process modelling

and on techniques and tools for the automatic analysis and verification

of system and process models. He is also working in the area of Model-

based Software Engineering and techniques that make use of models in

the software development process for getting rid of low-level program-

ming. This includes techniques for interpreting models as well as for

automatically generating code from models.

123

http://www.processmining.org

A two-step approach towards process mining 111

C. W. Günther is a Ph.D.

Candidate at the Information Sys-

tems group at the Technische Uni-

versiteit Eindhoven (TU/e). He

received his B.Sc. and M.Sc. in Soft-

ware Engineering from the Has-

so Plattner-Institute in Potsdam

(Germany). His research interests

include process mining, flexible and

unstructured processes, and process

analysis.

123

	Process mining: a two-step approach to balancebetween underfitting and overfitting
	Abstract
	1 Introduction
	2 Related work
	3 Process mining
	3.1 Overview of process mining
	3.2 Control-flow discovery
	3.3 Notions of completeness

	4 Approach
	5 Constructing a transition system (Step 1)
	5.1 Preliminaries
	5.2 Basic approach
	5.3 Formalization basic approach
	5.4 Extensions

	6 Synthesis using regions (Step 2)
	6.1 Constructing Petri nets using regions
	6.2 More on regions

	7 Implementation and evaluation
	7.1 ProMimport
	7.2 ProM
	7.3 Evaluation

	8 Conclusion
	Acknowledgements

