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Abstract: Human-Computer Interaction (HCI) research has extensively employed eye-tracking
technologies in a variety of fields. Meanwhile, the ongoing development of Internet Protocol TV
(IPTV) has significantly enriched the TV customer experience, which is of great interest to researchers
across academia and industry. A previous study was carried out at the BT Ireland Innovation Centre
(BTIIC), where an eye tracker was employed to record user interactions with a Video-on-Demand
(VoD) application, the BT Player. This paper is a complementary and subsequent study of the analysis
of eye-tracking data in our previously published introductory paper. Here, we propose a method for
integrating layout information from the BT Player with mining the process of customer eye movement
on the screen, thereby generating HCI and Industry-relevant insights regarding user experience. We
incorporate a popular Machine Learning model, a discrete-time Markov Chain (DTMC), into our
methodology, as the eye tracker records each gaze movement at a particular frequency, which is a
good example of discrete-time sequences. The Markov Model is found suitable for our study, and
it helps to reveal characteristics of the gaze movement as well as the user interface (UI) design on
the VoD application by interpreting transition matrices, first passage time, proposed ‘most likely
trajectory’ and other Markov properties of the model. Additionally, the study has revealed numerous
promising areas for future research. And the code involved in this study is open access on GitHub.

Keywords: eye tracking; HCI; discrete-time markov chains; process mining; TV customer experience;
IPTV; statistical analysis; machine learning; R; Java

1. Introduction

The last 15 years have seen the growth of TV delivered over broadband IP networks
(often termed IPTV) from a niche proposition to a product which is commonplace in
households worldwide, with on-demand viewing now very much integrated into everyday
life [1]. IPTV can be seen as an integration of the Internet, multimedia, communication and
other technologies delivered over broadband access networks. It provides households with
a variety of interactive services and adapts to the rapid development of networks, making
full and effective use of network resources [2]. IPTV typically offers at least the following
three features: live broadcast, replay and on-demand viewing. Replay refers to recording
programmes that have been broadcast in the past few days so that customers can choose to
watch them later with the option to fast-forward or rewind. On-demand viewing is often
more interactive and personalised, with customers provided with dedicated applications
offering libraries of TV content for viewing at any time.

Algorithms 2023, 16, 82. https://doi.org/10.3390/a16020082 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16020082
https://doi.org/10.3390/a16020082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4821-6404
https://orcid.org/0000-0002-6871-3504
https://doi.org/10.3390/a16020082
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16020082?type=check_update&version=1


Algorithms 2023, 16, 82 2 of 33

In the past, the TV experience involved a fixed number of channels showing one
programme at a given time, with the customer only having the choice of a limited variety
of channels [3]. Today, however, this linear approach has been totally redeveloped with
the use of IPTV services. This advancement in technology has not only improved the
viewing experience, but it provides more detailed data to analyse, and this, in turn, can
ultimately improve the customer’s interaction with the service. For instance, we have
seen on IPTV platforms how algorithms are used to predict other films or TV shows that
the customer may be interested in based on their viewing history. For many, this is a
welcome development, as it reduces the need to scroll through significant numbers of
pages in an attempt to search for a film, particularly if the user is simply “browsing” and
has no specific film in mind to watch. As a consequence, it has been a trending research
topic for IPTV service providers or video-sharing platforms to gain insights into users’
interaction data regarding their preferences for programme content, habits of using the
Electronic Program Guide (EPG), patterns of TV viewing time on a daily/weekly/monthly
basis, or quality of the service, etc. In the meantime, analytics technologies have been
widely used for data provided by a variety of devices and viewing media for industrial
and academic study in order to get a deeper knowledge of TV viewers’ behaviour [4]. In
the IPTV domain, studies of customer behaviour normally fall into one of the following
categories: One is related to how they interact with the TV service plan and Electronic
Programme Guide (EPG) provided by the IPTV service provider. Such actions can be briefly
described as “subscribe to the service,” “turn on the set-top-box,” “use the remote control,”
“watch a programme,” “switch channels,” “add a programme to favourites,” “purchase a
programme,” “unsubscribe to the package,” “leave the service,” etc. The other direction
of study is more focused on customers’ preferences concerning programme content and
genre when they are watching IPTV. Respectively, there have been studies related to
IPTV customers, including behaviour prediction (e.g., churn prediction [5], channel switch
prediction [6,7]) and recommender systems [8]).

Since the interactivity of IPTV systems and similar video-content-based platforms has
been significantly developed in the past years, it has also brought along challenges for
usability studies on IPTV systems to improve the quality of the user interfaces. Besides, the
interactions between users and IPTV systems take various shapes depending on the source
of data. Ref. [9] has conducted a case study on an IPTV app, testing the usability of the
system. The focus of the study is on optimising the UI/UX. They provide a solution to define
and evaluate the usability problems of the app by investigating remote control data in terms
of the interaction between users and IPTV systems. However, there are fewer studies on
customers’ engagement with IPTV interfaces based on their eye movements. Given that the
data behind those IPTV platforms are already being put to use to improve the user’s viewing
experience, it follows logically that the companies behind these IPTV services would also
try to find other methods to improve and enrich their platform in any way they can. In that
regard, eye-tracking technology has been introduced in the study of interactions between
TV users and the IPTV system regarding gaze movement. The concept of eye tracking has
rapid improvement in recent times with advancements in technology, and therefore so has
our analysis of the data. Our eyes analyse the world at an almost constant rate; therefore,
it makes sense that this information should be used to improve our daily lives. There are
potentially many uses for eye tracking technology in multiple areas, to improve professional
performance in the workplace, to aid scientific research, and for the Gaming and Virtual
Reality (VR) industry, eye tracking can also vastly improve their research. The study in [10]
introduces a list of eye-tracking technology implementation methods, including single
and multi-camera eye trackers. Eye tracking can provide insight into behaviours and
interactions with on-screen content and the surrounding environment [11]. The process
through which humans make observations on multimedia content can be analysed via
eye tracking [12], which is relevant for IPTV settings. In addition, ref. [13] presents a
method for evaluating interface usability based on eye movement data. Both [14,15] of
the more recent studies [14,15] use eye-tracking equipment to analyse viewing behaviours.
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Ref. [14] provides a better representation of web pages by combining the user’s viewport
screenshots with fixed elements on the web page, subsequently assessing the usability of
the web page. Ref. [15] utilises eye tracking technology in modelling the eye movement
of two different groups of learners reading the same material on the screen to assess
their learning experience. In this paper, we focus on the application of eye-tracking
technology for the benefit of the Human-Computer Interaction (HCI) study, especially in the
IPTV domain.

Previously, at the BT Ireland Innovation Centre (BTIIC) in Belfast [11], an eye tracker
(Tobii X60) was used to evaluate the user experience on the BT Player, a video-on-demand
application supplied by BT as part of their IPTV service in the United Kingdom. The
collaboration between BT and Ulster University through the BT Ireland Innovation Centre
(BTIIC) has allowed eye-tracking technology to be applied in a typical user setting of the
BT Player application and, subsequently, the data from these experiments can potentially
offer additional insights into user participation that have not been accessed before. The
contributions of this paper can be generalized as follows. Firstly, the paper presents a
follow-up investigation of the experimental results by extending our early-stage work [16].
We here apply a first-order discrete-time Markov Chain (DTMC) [17] to model and describe
the data generated by the eye tracker, as well as gain insights about customers’ interaction
with BT Player in terms of their gaze movement. Our hypothesis is that the gaze movement
process of participants watching IPTV satisfies the Markov assumption, which is that
what the participant is gazing at now only depends on what s/he last gazed at and does
not depend on the rest of the gaze history. We have created a pipeline of data analysis
and modelling and come up with interpretations of created DTMC properties for specific
scenarios as well as evaluation of user interface when using the BT Player on different
pages. Also, we have generated a series of scripts using Java, R Studio, MySQL, etc.,
and relevant code scripts are now available on GitHub for reference through the link:
https://github.com/Benedict1123/Eyetracking, accessed on 18 January 2023. The study
in our paper has demonstrated a comprehensive methodology to combine eye-tracking
technology with IPTV products, along with machine learning techniques, to generate
explainable results for the purposes of evaluating and improving the UI design of the IPTV
platform. The main difference between our study and previous research in the eye-tracking
and HCI fields is that we focus on the sequence in the gaze movement from the eye-tracker
data, and we also introduce time into the methodology when calculating the mean passage
time of a DTMC. Previous literature shows that researchers usually carry out quantitative
analysis of eye tracker data such as fixation counts, fixation period, etc. The methodology
in our study can be applied to other IPTV products or systems with human interactions for
further research.

The remainder of the paper is structured as follows. The next section talks about the
research background, regarding previous related work on applications of eye tracking
technology, human-computer interactions, Markov Modelling, etc. In Section 3, a detailed
discussion of our methodology is covered, including the setup of the eye-tracking experi-
ment at BT and the relevant analytical techniques we have applied. Section 4 highlights
analytical results, and Section 5 shows our evaluation of the entire study. Finally, we draw
some conclusions in Section 6, supported by BT’s industrial feedback on the results.

2. Related Work

Previous research has documented that eye-tracking technology has been widely used
across many areas with regard to customer behaviour studies and production evaluation.
Also, the advancement of Human-Computer Interaction (HCI) has developed considerably
as we attempt to understand not only how humans interact with computer screens but why
we make certain choices or our attention is drawn to specific areas of the screen rather than
others. If this can be understood, then it can be manipulated to improve customer engage-
ment with an IPTV service. Moreover, Markov chains have been extensively incorporated
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into studies on HCI and other sorts of behavioural data, such as eye gaze movement, which
is also known as sequential or time series data.

2.1. Eye Tracking in Research

Eye tracking has evolved over many years in terms of both its technology and its
applications. In 1980, Just and Carpenter [18] first brought up the concept of the “eye-mind
hypothesis,” which was related to studies on reading comprehension. Their work was
based on the assumption that “the eye remains fixated on a word as long as the word is
being processed,” which indicates the strong correlation between what a person is looking
at and cognitive processes [11]. The first application of eye-tracking technology was to
assist severely disabled people with daily activities by designing an eye-wink interface in
the 1990s [19]. Since then, eye tracking has been utilised in a variety of fields of research
and commercial applications.

For example, one study [12] employs Tobii X60 (a model of eye tracker) to assess
how students learn from multimedia sources. In the experiment, there are two groups of
students from the second and sixth grades of Primary Education, and they are presented
with four different sets of multimedia presentations that include verbal content. Their eye
movements are recorded by the eye tracker and measured by the pre-defined metric named
“learning efficiency.” As a result, they validate the hypothesis that different formats of
materials (e.g., text only, image with text, image with audio) work differently for the two age
groups. Similarly, the research [15] on the difference between English as a foreign language
(EFL) beginners and intermediate-level readers when they read narratives comprised of text
and images also applies eye-tracking technology to the analysis of eye movement on the
target areas of interest (AOIs). In the same area, to help assess school-aged children’s virtual
attention and identify potential risks of learning or attention problems, the authors [20]
propose an integrated platform consisting of a GP3 eye tracker and the OGAMA application,
etc. The platform shows some great potential for future applications in education, VR, or
AR development. The same eye tracker and software set were employed in another study
in the education area [21]. The authors set up an experiment by recording volunteers’ eye
gaze moments while they are doing code debugging in front of the computer screen. The
study comes up with some algorithms to calculate the efficiency of debugging between
two groups of participants. The characteristic parameters are taken into account when
dividing participants, and the results show a significant difference between the two groups
in terms of efficiency and the number of fixations. It reveals a more efficient way of doing
software development. Also, the study has set a successful example for measuring people’s
perception abilities in the field of education.

Eye-tracking technology has also played an important role in the research area of
e-commerce. For example, ref. [22] has proposed a framework for evaluating the perfor-
mance of an e-commerce website in terms of item recommendation. They introduce a
neural network at the heart of the framework that is trained with synthetic data regarding
the user’s demographics and other characteristics. And a GP3 eye tracker is the main
piece of equipment in the study to provide gaze movement data on the website with both
a vertical and horizontal layout. The results of the study have demonstrated the high
prediction accuracy of items being added to baskets and also provided a solid solution to
automating an optimal recommendation interface adjustment for an e-commerce website.
Additionally, ref. [13] has proposed a new method of evaluating webpage usability by
the analysis of eye movement. Eye movements are recorded using a head-mounted eye
tracker when participants are instructed to look at four webpages twice per page and locate
relevant information. By comparing all participants’ records of performance measurements
(i.e., response score, task completion time) with eye movement measures, the study indi-
cates that eye movement data may be used in conjunction with performance measures to
acquire a deeper knowledge of usability issues. Similarly, ref. [14] employs eye tracking to
estimate user attentiveness and evaluate the usability of website pages.
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Eye tracking has also had success in lots of different areas of consumer research for
a variety of reasons. In traditional research, a task may be carried out by the participant
and then afterwards, they would be asked questions based on that task. For example,
in a supermarket, a customer could be asked to carry out their daily shopping and then
afterwards asked if they noticed certain labels, offers etc. and why those choices may have
seemed appealing [23]. One of the problems within this area of research is that human
memory is not faultless, and sometimes the customer will either forget, not notice or not
think about why such a decision was made, which can make giving an answer to some of
these types of questions difficult, or can provide false information at times [24–26]. The
benefit of eye tracking software is that it has the ability to capture the gaze position of the
participants’ eyes, and this position will be recorded at different time intervals depending
on the device. This removes the potential for any memory issues and therefore removes
human error in the process. If the trajectories of the participants’ eyes can be monitored at
all times, then the reasons behind their choices become more apparent, whether because
of colour, a bolder font, or a special offer price [27–29]. The purpose of the study at BTIIC
was to evaluate TV customer experience by measuring participants’ eye movements while
using BT Player on a television [11].

The BT Player screen is very visual, showcasing available material via a combination
of menu items, controls, and images (See Figure 1 below). The eye tracker was utilised to
document the user’s engagement with the interface. During the step of data extraction
following the session with participants, the recorded screens for each task were separated
into AOIs. Fixation occurs when an AOI is selected, but saccades occur between each
AOI. A trajectory is the path of gaze travel between numerous AOIs. Understanding and
constructing such a model of user behaviour helps facilitate prediction.
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2.2. Human-Computer Interaction

Advancement in technology and the use of computer screens in everyday life has
rapidly expanded the research into Human-Computer Interaction (HCI) and how users
explore the screen, both with their eyes and where they point or click on the screen. This
research has provided useful information for graphic designers who want to make websites
as efficient and user-friendly as possible while also conveying the most crucial information
clearly. It is necessary, therefore, to understand why the human eye is attracted to certain
regions or objects on the screen to be able to adapt these websites accordingly.



Algorithms 2023, 16, 82 6 of 33

2.2.1. Fitts’ Law

Fitts’ Law can be used to understand why human behaviour demonstrates certain
distinct patterns, both on computer screens and otherwise. This law states that the time
required to point at an object using some form of a pointer (either on a computer screen or
otherwise) is a function of the distance from the desired object to be pointed at and the size
of that object. Leading on from that, it suggests that if the object is both small and far away,
then it will require a longer time for someone to locate and point to the object than if it is
closer and larger, as can be seen in Figure 2 [30], where the graph shows how the object
size interacts with the Usability Index of that object. The equation to define Fitts’ Law is:

T = A + Blog2

(
2

D
W

)
(1)

where:

• T is the Time required to point to the object;
• A and B are empirically determined regression coefficients;
• D is the distance from the pointer to the object;
• W is the width of the object text following an equation, which need not be a

new paragraph.
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Although Fitts’ Law was initially established in 1954, it has developed great signifi-
cance in recent times due to the desire to improve human-computer interaction and the
ergonomics of the computer screen. Businesses want to promote certain aspects more than
others, such as more expensive items, or make certain buttons clearer and more defined,
e.g., the ‘Continue’ button rather than the ‘Back’ one. Using Fitts’ principles, it has become
clearer to graphical designers that command buttons should be larger and distinguishable
from other features on the page. Additionally, when smaller objects are far apart, it takes
longer for users to select than larger ones that are closer together, so a pie chart menu is
preferable to a drop-down menu or a horizontal/vertical task bar etc. All of these features
have been taken into account in recent graphical design, with the basis of Fitts’ Law [31,32].
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2.2.2. Gestalt Principles

Taking Fitts’ Law a step further is the Gestalt Principles. Gestalt is German for “shape,”
and the principles look at proximity, similarity, continuity and closure between objects
and analyse how the eyes may deal with different examples of these. These principles
originated in the 1920s from Gestalt Psychologists, who proposed that humans naturally
observe objects in certain patterns and in an organised manner, as the brain naturally
perceives objects in this way [33–35].

• Proximity: This principle states that if objects are within close proximity to each other,
the brain naturally groups them compared to those that are further apart;

• Similarity: This principle suggests that the brain groups objects based on their similar-
ity, in relation to colour and shape etc., and distinguishes those that are different as a
separate group;

• Continuity: The brain naturally follows and continues lines, even those that intersect
with each other, and forms groups based on this continuation;

• Closure: In relation to shapes, if the brain observes lines which form incomplete
outlines of certain shapes, we naturally close the gaps to form that shape as the brain
prefers completeness and, therefore, initially views the shape as a whole.

2.2.3. F-Shape and Horizontal Left Patterns

A study in human-computer interaction using eye-tracking technology has also been
used to better understand human on-screen behaviour, out of which two clear patterns have
emerged-the “F-shape” [36] and “horizontal-left” [37]. The terms come from gaze pattern
analysis which has shown that the human eye naturally reads material in an F-shape,
reading horizontally from left to right along the upper content of the page, then travelling
vertically down the left-hand side and traversing horizontally across the next section of
information again from left to right, but not continuing along as far to the right-hand side as
the first section, before finally continuing vertically along the left-hand side before finishing.
This pattern forms an “F” shape on a heatmap produced by the gaze pattern [36].

In terms of the “horizontal left” pattern, this refers to the user’s eye-tracking pat-
terns appearing significantly more on the left-hand side of the page than on the right. A
study performed in 2010 found that 80% of fixations fell on the left-hand side of the page,
with only 20% of fixations on the right-hand side [37]. Taking the previous information
regarding the typical “F” shape reading pattern, it is understandable that these figures
are so disproportionately high as the scrolling vertically on the left-hand size would lean
to a higher amount of left-side fixations. With this information, graphic designers are
able to adjust the layout and content on websites accordingly, placing the most important
information in the top few lines and along the left-hand side of the page where viewers are
most likely to fixate on it [36].

2.2.4. HCI Evaluation Techniques

There already exist multiple methods to evaluate HCI systems, which differ across
computer and television platforms. However, IPTV may require a combination of these
techniques as it involves interactive television screens in different environments to tra-
ditional computer use [38]. Methods such as Cognitive Walkthrough, which involves
an expert evaluating the HCI design to identify any potential problems [39], or Think
Aloud/Cooperative Evaluation, where the user is observed performing a task and is asked
to comment or collaborate on the evaluation, have been used to evaluate and improve HCI
designs [40]. These traditional methods have previously been useful for evaluating existing
screens; however, with the emergence of IPTV services, a new approach could be taken to
evaluate the interactive element of these designs.

In the field of e-commerce, which was also introduced in the literature review in the
previous part, research on human-computer interaction is also very popular. Many of them
study the behaviour of users during the shopping process on the website, analysing how
they browse products and finally add them to the shopping cart. This type of research
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can help websites better understand user preferences and the impact of website design on
user transactions. In one of the studies [41], the authors developed a tool to analyse users’
shopping behaviour on e-commerce websites from the perspective of human-computer
interaction. This tool can combine a series of user-triggered front-end DOM (document
object model) events, as well as mouse and keyboard input, and conduct experiments
on product recommendation systems with three different page structures, comparing
the impact of web page structure on user browsing and impact on product purchases.
They concluded that vertically structured product areas are more attractive to users than
horizontally structured product areas. Their future research plan is to introduce eye-
tracking technology to add the user’s eye movement trajectory and combine the current
DOM information to generate a more accurate user interaction behaviour model.

There are other types of human-computer interaction, generally depending on which
device a person uses to operate and control a computer system. Among the game consoles
we are familiar with, the Xbox 360 has launched a Kinect camera to capture the user’s body
movements to interact with the game. The Wii game console provides a somatosensory
handle to capture the waving movements of the user’s hands and arms and then operate
the game character. In another study [42], the authors used an IoT device (a Leap Motion
controller), which can capture the movement of the user’s palm and fingers, allowing the
user to use the hand instead of the traditional mouse to remotely operate the computer. The
study invited 32 volunteers to participate in the experiment. The content of the experiment
was to use the Leap Motion controller to complete an IT task on the computer. At the same
time, they also asked the volunteers to use a traditional mouse for the experiment as a
control. The researchers analysed the movement of the cursor on the screen of the traditional
mouse and the Leap Motion controller and carried out qualitative and quantitative analyses
and comparisons. Similar to the previous research methods using eye-tracking technology,
they also use indicators such as “fixation number” and “fixation period.” Additionally,
the field of human-computer interaction also includes research on the interaction between
the human brain and machines because, fundamentally speaking, human interaction
behaviours are actions taken after receiving brain signals. For example, in an analysis
based on Electroencephalograph(EEG) and user behaviour [43], the author used a brain
wave acquisition device (the MindFlex EGG headset) to collect brain activity information
from volunteers and developed a system to process and quantify brain waves, including
graphical visualisation of brain signals over time. Their research results can be redeveloped
and applied to other human-machine control research.

Based on the literature above, eye-tracking technology has been chosen for this study
as a method to evaluate these designs; however, to date, it has largely been used to monitor
television or video/computer screens, where there is fixed content that all users watch
and then the Areas of Interest (AOI’s) can be analysed. For IPTV, the challenge with eye
tracking is that users have much more choice in the content that they choose, meaning users
can dynamically change the screen. This can potentially give significant insight into the
use of this service, while the analysis can be more complex as a ‘one-size-fits-all’ approach
will not work in terms of annotating AOIs, which may be different for each user and at
different points in time.

2.3. Markov Chain Application in Process Mining

A Markov chain or Markov process is a stochastic model describing a series of events
where the probability of each event is dependent on the state attained in the previous
event [44]. And there are overall two types of Markov chains according to the inter-
val type of the change between states in the chain, discrete-time Markov Chain (DTMC)
and continuous-time Markov Chain (CTMC). They are appropriate for modelling data
which contain a random process and the state of the system changing over time. There-
fore, Markov chains have been widely applied to the exploratory analysis of time-series
(i.e., sequential) data over a large range of domains.
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For instance, a kernel variable length Markov Model (KVLMM) is proposed in a
study about GPS trajectory prediction [45]. Similarly, in the context of social robotics,
there has been a study [46] using machine learning techniques as well as eye trackers,
specifically incorporating Markov Models for the stochastic process of gaze movement. The
authors have developed a probabilistic algorithm for gaze trajectory prediction. In other
industries, such as communication, a study in Nigeria [5] applies Markov models to the
telecommunication industry use case, helping to predict customers’ churn and retention
rates. For bank customer behaviour modelling, ref. [47] proposes Markov chains to describe
customers’ dynamically changing delinquent status and behavioural scores. In [48,49],
clickstream data are explored for studies on online purchasing processes, and a Markov
Model is used to characterise page changes. Similarly, refs. [50,51] utilise Markov Models
to visualise website clickstream data. Another study [52] uses a Markov Model to construct
an intelligent pre-loading system for online resources, wherein the navigation graph is
considered a Markov model. In addition, studies on healthcare data [53] emphasise the use
of non-homogeneous Markov Models for sequential pattern mining of records pertaining
to the behaviours of elderly patients.

Meanwhile, the trending application of Markov chains has also facilitated the devel-
opment of handy packages for modelling. There are R packages (such as ‘clickstream’ [48]
and ‘markovchain’ [17]) based on Markov characteristics that facilitate study on appli-
cations of the Markov Model. The ‘mar-kovchain’ package closes a gap in the R frame-
work for discrete and continuous time Markov chain analysis as well as probabilistic
statistical analysis [17].

Above all, in this paper for our study, compared to previous studies in terms of the
eye tracking application and HCI analysis techniques, here we focus more on the trajectory
of gaze movement, which is about the gaze transition information. Also, to distinguish our
method from traditional quantitative analysis of eye tracker data, we chose Markov chains
to model the viewer’s gaze movement when they’re watching the BT Player.

3. Methodology

As previously mentioned, this paper is subsequent work to the previous eye-tracking
experiment at BT and Ulster University [11,16], in which a group of participants used
BT Player while their eye movements were monitored by an eye tracker. The dataflow
of the eye gaze movement is integrated with other information, such as the BT Player
screens, by the Tobii Studio (version 1803, Windows) software package. For the duration
of the experiment, participants were instructed to complete several activities connected
to TV viewing. This study focuses largely on 2 activities, namely, how TV customers
acquire content and how their eyes stay on the Content Discovery page for the first few
minutes throughout this activity. Besides, since Markov models have been chosen to model
the eye-tracking data, this section discusses how the calculations and techniques can be
implemented. As with most forms of data analysis, certain date manipulation needs to take
place to achieve the required format before the Markov analysis can begin.

3.1. Experiment Design

As part of a collaboration between BT and Ulster University, an eye-tracking experi-
ment was undertaken, with participants using the BT Player app while a Tobii eye-tracking
device monitors the gaze positions of each participant’s eyes. This experiment was set up
to develop a richer understanding of how customers use BT Player, which could potentially
be used to improve the design and usability of future versions of BT’s TV service [11]. An
overview of the experiment setup can be seen in Figure 3 below, which shows how the TV
screen and eye-tracking device were set up for each participant [11]. Each participant must
be sitting the same distance from the screen, with the eye-tracking device positioned near
them on an adjustable stand to account for different participant heights, so the eye-tracker
can be a fixed distance from their eyes, as the maximum gaze angle must be 35 degrees. All
of these measurements must be fixed across the experiment to ensure consistent results.
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Data from the eye-tracking software has been collected by Ulster University during
an experiment where 14 individuals each spent a period using BT Player while being
monitored by eye-tracking software. Each individual completed a survey asking for
demographic information such as gender, age, and familiarity with BT Player and other
popular TV services. The individuals were required to complete a series of tasks throughout
this period, which were based on the requirements provided by BT.
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3.2. Aims and Objectives

For the whole eye tracking study at BT and Ulster University, BT initially provided
a list of requirements of interest, intending to improve BT Player from the perspective
of UI/UX evaluation. In this paper, we conduct our research by investigating 2 of them.
These requirements targeted on specific pages on BT Player are listed below, with a brief
explanation of each:

1. Purchase Flow Pages: BT is interested in how the user interacts with the TV on
Demand service to improve the ease of use of the purchase flow (from initially
choosing a TV show/film to going through with payment) to ultimately
increase sales;

2. Content Discovery Pages: BT is interested in how the user interacts with the main
pages of the BT Player, regarding searching for items, looking at menus and carousels
(large images and descriptions on the screen to draw attention), to improve the user
interface of these pages to increase sales.

More specifically, there are comparatively representative sub-requirements under each
requirement. Thus, we focus on one specific sub-requirement for each high-level one shown
above as our research objectives defined by BT:

3. Content Purchase: “When purchasing content (TV on Demand), what draws the eye?
Is it the price, is it the quality, or is it something else?”

4. Content Viewing: “When a Content Discovery page first loads, what are customers
viewing? Are they drawn to the hero carousel, the navigation or something else?”

In the study of a “content purchase” scenario using the BT Player, the eye-tracking
data taken from the experiment will be analysed. With the use of the eye tracker software
(Tobii Studio), various Areas of Interest (AOIs) can be highlighted on each screen, so the
Purchase Flow screens can be analysed, and the AOIs chosen as certain sections or buttons
on that screen that are more of interest than others. For example, the buttons to select a
specific payment option, as well as any images or information relating to the content that
is available on the screen. In general, the eye tracker records data about the user’s gaze
point on the screen, in addition to other relevant variables. This data will be analysed
using mathematical modelling techniques to determine if certain features on the Purchase
Flow pages of BT Player are of significant interest or if the user does not appear to notice
other features. Likewise, the same methodology is also applied to the “content viewing”
scenario, which is aimed at providing some insights into the gaze movement on the Content
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Discovery page in terms of customers’ navigation paths, thereby generating feedback on
how the user interface could be configured to be more accessible for users. Previously, there
was some work related to this scenario published in October 2019 [16].

Ultimately, our study aims to use eye-tracking technology to gain a better understand-
ing of how users interact with BT Player in relation to the purchase of films and TV shows,
as well as the discovery of content available throughout BT Player in terms of carousels,
menus etc. The trajectory of gaze movement is analysed while participants are fixating on
the purchase screens to highlight the areas on the screen that appear to be more of interest to
the participants and attempt to gain some insights into why this is the case. Moreover, the
analysis of gaze movement on the content discovery is to demonstrate the top eye-catching
parts among participants, along with some preferences on the order of viewings, so that
designated parts on the screen can be highlighted accordingly to draw more attention for
various purposes. Consequently, the underlying process of the customer’s eyes traversing
over the screen is revealed.

3.3. Data Manipulation
3.3.1. Data Collection

Tobii Studio is utilised to capture gaze data from an eye tracker. As the entire ex-
periment comprised numerous tasks, it was required to partition the entire data set and
obtain the relevant information for the evaluated task. The target dataset was afterwards
exported as ‘.csv’ files. MongoDB was used to store the dataset in order to gain an overview
of the data structure prior to beginning the study due to the dataset’s raw data format
and massive information on its numerous features. Also, the Tobii software (version 1803,
Windows) allows the user to define certain AOIs on the screen concerning sections of the
screen which may be of more interest than others. Thus, we had a list of pre-defined AOIs
on BT Player during the eye-tracking experiment.

3.3.2. Data Pre-Processing

The raw data from Tobii software provides a significant amount of information by
default, while only some of which are necessary for creating a Markov Model. It originally
came in JSON format, and Tobii Studio converted it into CSV files. We saved the raw
data into a MongoDB table to get a quick overview of it. There were only six attributes in
the MongoDB database that were relevant to our research: “id eyetracker,” “participant
name,” “local timestamp,” “GazePointX (ADCSpx),” “GazePointY (ADCSpx),” and “gaze
event kind.” Initially, there were 59 columns in the table. The six variables extracted are
described below:

• id eye-tracker-time sequential ordered list based on the timestamp where each record-
ing was taken (i.e., the first recording is 1, the second is 2 etc.);

• participant name-14 participants (P001–P014);
• local timestamp-timestamp taken every 00:00:00.165 s (i.e., 10:07:46.441);
• GazePointX (ADCSpx)-the co-ordinates of the gaze-point in the X-direction;
• GazePointY (ADCSpx)-the co-ordinates of the gaze-point in the Y-direction;
• gaze event type-can be “Fixation,” “Saccade,” or “Unclassified.”

Those variables are extracted for each participant, and all of the data is combined in
one database using a JavaScript program before the coordinates can be defined as AOIs. As
the participants were looking at different parts of the BT Player app during the experiment,
it is only the times during which they were on the Purchase Flow and Content Discovery
pages that are of interest; therefore, the recordings of each participant in the study were
reviewed, and the timestamps based on when the participant was on relevant pages
were recorded.

However, some of the columns pertaining to the aforementioned key properties
originally contained blank values. This is because the eye tracker continues to record
throughout the whole trial, including the participants’ eye movements when they glance
away from the TV screen. The only valid region for the eye tracker in this experimental
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configuration is the TV screen. Once the gaze point falls outside of the barrier, the columns
“GazePointX (ADCSpx)” and “GazePointY (ADCSpx)L” will have null values. A Java
application is used to assign zero values (i.e., (0,0)) to certain types of records in order
to maintain their status as objective data in this study. The application connects to the
MongoDB database and replaces blank values in target columns with zeros in a recursive
manner. By extracting information from these six important columns, irrelevant attributes
from the original dataset are deleted. A MySQL database is created to store the data in order
to maintain a well-structured data schema and conduct queries using rows and columns as
opposed to JSON-formatted data (e.g., csv files). To do this, a Java program is written that
can connect to both the MongoDB and MySQL databases.

3.4. Fitting into a DTMC Model
3.4.1. Markov Definitions

Considering that the eye tracker records gaze movement at a particular frequency,
which makes it a discrete-time process, discrete-time Markov chains (DTMC) are chosen
to model the trajectory of participants’ gaze movement on the screen in our study. Before
going deep into the modelling approach, we would like to provide a brief description of
several commonly discussed terms in a DTMC and relevant properties which are primarily
used in our study.

• DTMC

The concept of a Markov Model uses a system with a set of ‘states’ S = {S1, S2, . . . , Sn}
where n is the number of states in the system, so for example, if S = {A, B, C, D, E, F . . . }
S1 = A, S2 = B, etc. [54]. In a first-order DTMC, the probability of the current state is based
solely on the previous state of the Markov chain. That is, where the time instants associated
with state changes are t = 0, 1, 2, 3 . . . and the actual state at a given time t (t ≥ 1) is denoted
as qt, the probability of arriving at a given state, given its previous state, can be calculated
as follows:

P
(
qt = Sj

∣∣qt−1 = Si) (2)

• Dependency Test

For successive events to form a Markov chain, these events must be dependent on
each other, which can be tested statistically [55]. Let pij be the probability that the system
moves from state Si to state Sj in one step. For successive events to be independent in a
first-order Markov chain, the statistic α, is defined as:

α = 2
k

∑
i,j

nijln
pij

pj
(3)

is distributed asymptotically as χ2, with (k − 1)2 degrees of freedom (DF), where k is the
total number of states. The marginal probabilities, pj, can be calculated as:

pj =
∑m

i nij

∑m
i,j nij

(4)

where nij is the frequency of transitions from state i to state j [56].

• Transition Matrix

Given that these processes can be considered independent of time (as they are discrete
with equal time intervals, a set of state transition probabilities aij can be calculated by:

aij = P
(
qt = Sj

∣∣qt−1 = Si
)
, 1 ≤ i, j ≤ N (5)

with the state transition coefficients having the following properties: aij ≥ 0,
N
∑

j=1
aij = 1.
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This means a transition matrix containing the sets of aij can be formed with the
probabilities where each element of position (i, j) in the matrix stands for the transition
probability aij, meaning in each row that a given state qt−1 will go to the next state qt. And
each row will sum to 1 [54].

• Classification of States

In a Markov Chain, two states, i and j, are said to be communicating if they are
accessible from each other. In other words, if the probabilities in the transition matrix
aij > 0 and aji > 0, then these states are said to be communicating. If all states communicate
with each other in the Markov chain, then it is said to be irreducible, and it has only one
communicating class, while Markov chains with multiple communicating classes are said
to be reducible.

Moreover, a state is said to be recurrent if, upon leaving the state, the chain is certain
to return to that state (with a probability of one); however, if the probability of returning to
that state is less than one, the state is said to be transient [57]. This can be defined as:

fii = P(Xn = i, f or some n ≥ 1|X0 = i) (6)

and state i will be recurrent if fii = 1. However, it will be transient if fii < 1.
If a state exists such that when the state is entered, it is then impossible to leave, and

the probability of remaining within that state is equal to one. This is known as an absorbing
state, denoted in the transition matrix as aii = 1.

• Distribution of States

In each step, t = 0, 1, 2, 3 . . . , the distribution over all states in the whole system can
be represented by a row vector x (∑i xi = 1, xi ≥ 0), and the state is denoted by Xt. When
t = 0, we call x an initial state vector, denoted by πinit:

πinit = [P(X0 = S1), P(X0 = S2), . . . , P(X0 = Sn)] (7)

In a DTMC, let A be the transition matrix, and πinit be the initial state vector, then the
probability distribution of Xn after n steps is πn:

πn = πinit An (8)

In a Markov Model that is finite, irreducible and aperiodic, an equilibrium can be
reached after a long-run period known as the ‘Steady State’. This is a vector π for a
transition matrix A such that:

π = πA (9)

which can be solved analytically or through computation. Alternatively, to calculate the
stationary distribution over time, An can be calculated as n→ ∞.

• Trajectory

A trajectory of a Markov Chain is a particular set of values for X0, X1, X2, . . . . Gener-
ally, if we refer to the trajectory {S1, S2, S3, . . . }, we mean that X0 = S1, X1 = S2, X2 = S3, . . .
In this study, the trajectory refers to the path of people’s gaze movements on the TV screen.
Based on the Markov Property, if the transition matrix A = (aij) is known, we can find the
probability of any trajectory {s1, s2, s3, . . . , sn−1, sn} by multiplying together the starting
distribution and all subsequent single-step probabilities. The calculation is shown:

P(s0, s1, s2, . . . , sn) = P(X0 = s0, X1 = s1, X2 = s2, . . . , Xn = sn)
= P(X0 = s0)× a01 × a12 × an−2,n−1 × an−1,n

(10)

Therefore, in this case study, we provide a method for determining the probability of
the “most likely trajectory” (the trajectory is formed of the most probable condition at each
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stage). According to Equation (8), in the nth step, let πn denote the probability distribution
over the states, sn

max denotes the state of the highest probability, then we have:

P(Xn = sn
max) = argmax{πn} (11)

Let pmax denote the probability of the ‘most likely trajectory’ in n steps, then can
calculate it as follows:

pmax = ∏n
i=0 argmax{πi} (12)

Meanwhile, the state sn
max in each step n comprises a set of states Smax, which represents

the sequence of states from X0. Thus, Smax is the most likely trajectory shown below:

Smax = {s0
max, s1

max, s2
max, . . . , sn

max} (13)

Similarly, ref. [29] introduces the same concept about maximum likelihood trajectories
but calculates them in a different way.

• First Passage Time

First passage time [30] is also named hitting time, referring to the time to reach a
certain state (if the states communicate). Given the initial state X0 = Si, the total number Tij
of steps taken by the Markov Chain from state Si to reach state Sj for the first time is the first
passage time from Si to Sj. The commonly used quantity related to the first passage time is
the mean first passage time. Let Tij be the first passage time from state Si to Sj, so we define
mij as the mean first passage time correspondingly, which is represented as follows [31]:

mij = E
[
Tij
∣∣X0 = Si

]
(14)

• Transition Matrix Segmentation

If state j is an absorbing state such that it has m transient states and n absorbing states,
then the transition matrix A can be separated into sections Q, R, 0 and In written as [58]:

A =

[
Q R
0 In

]
(15)

where:

• Q is an m × m matrix;
• R is an m × n matrix;
• 0 is an n × m matrix of zeros;
• In is an n × n identity matrix [59–62].

This segmentation of the transition matrix of an absorbing chain can allow for further
calculations, including the Fundamental Matrix N = {nij}, such that the element nij for N
provides the expected number of times the process is in transient state Sj, given that the
chain began in transient state Si. The Fundamental Matrix N is the inverse of (I − Q) and
can therefore be calculated by the equation as follows [59–62]:

N = (I −Q)−1 (16)

• Expected Time to Absorption

Furthermore, if we let ti represent the expected number of steps before the Markov
chain is absorbed, given that the chain began in state i, then the column vector t (with an
ith entry of ti) can be calculated as:

t = Nc (17)
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where c is a column vector of 1 s, e.g., if N is a 3 × 3 matrix, then c will be a 3 × 1 matrix:

c =

1
1
1


Given that this is representative of a discrete-time Markov chain with equal time steps

between state changes, if t is a column vector representing the expected number of steps
before the state is absorbed from any state i, then the expected time to absorption can be
calculated by multiplying t by the value of the interval between each state change.

3.4.2. Markov Packages–R and MATLAB

The R programming language contributes significantly to scientific research and analy-
sis. This study handles Markov Chain Modelling using the R package “markovchain” [17].
The package contains versatile methods for creating a DTMC object based on the transition
matrix, as well as robust algorithms for generating exhaustive results. Assuming that
we already have the transition matrix A and a list of states L (state space in the Markov
Chain) in R studio, Table 1 below lists the R package functions that we can utilize for our
study. In addition, the package can aid in the visualisation of the DTMC model using the
R plot() function.

Table 1. Main functions available in “markovchain” R package.

R Statement Function Description

R > dtmc <- new(“markovchain,”
transitionMatrix = A, states = L)

Create an object of the “markovchain” class, and,
e.g., name it “dtmc” as an R variable

R > summary(dtmc) Display properties and classification of states
R > communicatingClasses(dtmc) Display communicating states
R > absorbingStates(dtmc) Display absorbing states
R > steadyStates(dtmc) Generate the steady-state vector (see Equation (9))
R > meanFirstPassageTime(dtmc) Create a matrix for the mean first passage times

In addition, to create discrete-time Markov Models, MATLAB also has an inbuilt
function ‘dtmc’ (discrete-time Markov Chain), where, given a transition matrix A and we let
the state names be {1,2,3,4}, the Markov Chain can be constructed using the command: [63]
“mc = dtmc(A, ‘StateNames’, [“1,” ”2,” ”3,” ”4”])”.

This chain can then be observed as a directed graph to clearly show which states are
communicating, if any states are absorbing or if there exist multiple state systems in the
chain by executing the “graphplot” function. The MATLAB command is as follows: “graph-
plot(mc, ’ColorEdges’, true)”. The ‘ColorEdges’ parameter allows the transition probabilities
to be viewed as different colours on a scale of 0–1.

Furthermore, MATLAB can calculate the steady-state vector (xFix) of the chain and the
mixing time (tMix), which is defined as the time until the Markov chain is close to reaching
its steady-state distribution by the following command [64]: “[xFix, tMix] = asymptotics(mc)”.
Besides, MATLAB also provides solutions to calculate the expected time to reach every
state (mean first passage time).

3.4.3. DTMC Modelling Steps

In our study, to create a discrete-time Markov Chain (DTMC), there are three primary
elements to define and calculate: (1) state space, (2) initial state probability distribution,
and (3) transition matrix.

1. State space–AOI categories

As mentioned before, Tobii Studio allows the user to define certain AOIs on the screen
which are of more interest than others. In this case, for both “content purchase” and
“content viewing” scenarios, we have divided the screen into several AOIs, represented



Algorithms 2023, 16, 82 16 of 33

by rectangular blocks in Tobii Studio. For the Markov model about gaze movement,
those AOIs are the states indicating where the gaze point falls during the Markov process.
Similarly, in both scenarios, the onscreen area, apart from defined AOIs, is counted as a
whole non-AOI part which is also considered a separate state in the Markov model.

For the “content purchase” scenario, there are two possible screens: A and B. The
AOIs for the two different types of screens available in the BT TV Player can be seen in
Figure 4 below, with their AOIs defined as either A-F for screen A or A-D for screen B.

Depending on the options available for the video content, screen A has ‘Rent HD/SD’
options in addition to ‘Buy HD/SD’, which is why there are more defined AOI E and F
than screen B. For both screens, the letter Z has been assigned to the non-AOI sections of
the screen. It refers to any area being fixated on the screen which does not include the AOIs
A-F or A-D listed above. For example, if the TV viewer is reading the “Buy” or “Buy or
Rent?” text information or fixating on the “Cancel” button, this is categorised as AOI ‘Z’.
For other common AOIs on both screens, A refers to the packshot image of the video, B
shows a brief description, and C and D are the buying options for different definitions
of quality.
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For the “content viewing” scenario, there is one screen in our study. Similarly, we
have divided the screen into AOIs by content. The screenshot of all AOIs on the original
screen can be seen in Figure 5 below. Also, to make it simple and clear, we have also made
a layout-only screen based on all AOI blocks.
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Figure 5. “Content viewing”–Original (top) & Layout-only (bottom) screens [16].

In Figure 5 above, block A has the BT TV logo, whereas blocks B through J include
menu items. R features a large “hero” graphic for a programme being advertised. The K to
N blocks provide additional information on this programme. S comprises shortcut buttons
and overlaps R; hence, R is represented by two blocks. Both O and P display images and
text as supplementary information. Q is positioned at the bottom of the page and provides
a link to suggested shows. Block T refers to the area outside of the defined blocks, which is
a non-AOI block.

The next step is to convert the gaze movement data into transitions between AOIs so
that we can apply DTMCs. Unfortunately, although the Tobii Software can define an AOI
and can provide statistics based on the metrics in relation to those AOIs, such as the mean
time to first fixation on each AOI for the user, it does not provide a time-sequential list of
the AOIs the user was fixating on for the duration of the recording, which is necessary
for the Markov Model. However, the raw Tobii data, which provides X and Y gaze point
co-ordinates of the eye, can be used to do this. The X and Y co-ordinates axis are shown in
Figure 6 below, where the origin begins in the top left-hand corner; however, the X and Y
axis both extend further in the horizontal and vertical directions than shown.

Therefore, based on a 1920 × 1080 resolution screen in our study, we have extracted
the co-ordinates information for each AOI block for both scenarios. A sample of AOIs and
co-ordinates of each corner can be seen in Figure 7 below. Each cell (e.g., (349,128)) under
the columns shows the x and y axis coordinates, respectively. For the AOI column, E* and
F* refer to the AOIs only available on the screen A.

Then a Java function was created to convert gaze point coordinates into the block
(AOI) labels, as is shown in Figure 8 below.
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Figure 8. Conversion from Gaze Coordinate to Block Label [16].

The function results in an extra column named ‘block_letter’ in the MySQL table,
which we created to store processed gaze movement data (see Figure 9). It indicates which
AOI on the screen the current gaze movement falls in.
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Figure 9. Example of gaze movement data in MySQL table.

In this way, we have a sequential list of AOIs from the original gaze movement data,
which is suitable for a discrete-time Markov model. The full set of all possible states (also
known as state space S) for both scenarios are as follows:

For “content purchase” screens:

• S = {“A,” “B,” “C,” “D,” “E,” “F,” “Z”} – Screen A;
• S = {“A,” “B,” “C,” “D,” “Z”} – Screen B;
• For “content viewing” screens:
• S = {“A,” “B,” “C,” “Dl,” “E,” . . . “T”}.
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2. Initial state probability distribution

For a Markov Model, if it exists, X0 refers to the state when t = 0, and the initial
probability distribution is defined by:

P(X0 = si) =
count(X0 = si)

count(X0)
(18)

The distribution is also called the initial state vector of the Markov chain (see Equation (7)).
For instance, for the ‘content viewing’ scenario, among all 14 participants, their eye gaze
fell on different areas at first sight. The details are listed below:

• Two participants looked at AOI-E;
• One participant looked at AOI-I;
• Two participants looked at AOI-L;
• Two participants looked at AOI-M;
• One participant looked at AOI-O;
• Four participants looked at AOI-R;
• Two participants looked at AOI-T.

Therefore, the initial state distribution is estimated and displayed in Figure 10
as follows:

3. Transition matrix
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A transition matrix in the Markov model, in principle, is a reflection of how states
change during the whole process. In our study, the transition matrix for a given state
space infers how participants move their eyes on the screen; in other words, it illustrates
the “jump” from the current state to the next state in the Markov Model created for
each scenario.

In the MySQL database that we use to store eye tracking log data, after data pre-
processing (AOI-categorization, non-relevant record filtering out, etc.), a sequence of states
was determined for each participant, combined with the timestamp information and block
labels. Furthermore, in the sequence, each pair of states indicates a one-step transition
(Xt, Xt+1) in the DTMC model. In that regard, the state change pairs can be generated by
simply applying an iteration of a length-2 sliding window over each sequence. In this
paper, the function was implemented in Java. An example of the function is displayed in
Figure 11 below:
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Subsequently, for both scenarios, transition matrices were defined by employing the
maximum likelihood estimator (MLE) [17] of the pij entry, where nij stands for the number
of pairs (Xt = si, Xt+1 = sj) found in the whole dataset. The calculation for each pij is
presented by the equation below [17]:

p̂ij
MLE =

nij

∑k
u=1 niu

(19)

The standard errors of the p̂ij
MLE values [17] were then generated by:

SEij =
p̂ij

MLE

√nij
(20)
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The transition matrix generation was implemented in Java by exploiting the features
of hash maps and two-dimensional arrays. Subsequently, the transition matrices were
exported into .csv files by the Java function and later were used in either MATLAB or
R Studio to create DTMC models, implemented by the functions we have demonstrated
in Section 3.4.2. For example, in the ‘content viewing’ scenario, R studio was used to
read the .csv file of the created transition matrix. Using the “markovchain” package, a
DTMC object was generated based on the transition matrix. We also acquired crucial
Markov Chain properties, such as the classification of states. Next, the ‘steadyStates()’ R
function was used to compute the steady-state vector (see Equation (7)). Using the function
‘meanFirstPassageTime()’, a matrix of mean first passage times between state si and sj (let si
be the initial state) was also generated. Equation (13) was then used to construct the ‘most
likely trajectory,’ which illustrated the course of the most likely state at each stage of the
Markov process. In this instance, it depicts the most prominent way in which participants
travel their eyes across the screen.

3.4.4. Summary of Data Pipeline

The pipeline of data throughout our study from collection to analysis is presented in
Figure 12 below:
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We can see that the raw data originated from the eye tracker, was initially stored by
Tobii Studio, and then exported via .csv files, thereby being transferred to a MongoDB
database (Step 1). Afterwards, the data was cleansed using a Java program (Step 2) and
then passed into a MySQL database (Step 3). Before records could be saved into the
MySQL database, the Java program converted gaze point coordinates to block labels. In
Step 4, a Java program accessed the MySQL database and calculated the properties of
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the DTMC model (i.e., the transition matrix and the initial state distribution). Lastly, in
Step 5, the Java program created some .csv files containing DTMC metrics for MATLAB
(“content purchase” scenario) or R Studio (“content viewing” scenario) to employ. Then,
in MATLAB, functions such as “dtmc” and “graphplot” were implemented, while in R
Studio, we used functions mostly from the “markovchain” package, subsequently to create
and observe DTMC models.

3.5. DTMC Visualisation

Once DTMC models were created, to have a better understanding of them so that
we could make more sense of the gaze movement process, several attempts were made to
visualize the model in different ways. One option is to use the built-in function in MATLAB,
which is similar to using the R plotting function in R Studio. However, those functions
generate static plots and can be overcrowded in the case of a model with many states. A
more interactive plot, better to show the transition process as well, was therefore used for
our study.

Therefore, in order to enhance comprehension and readability, the DTMC model given
in this work would incorporate animations, illustrating a clear graph and modelling the
transition process. To do this, the “D3.js” JavaScript package was used to generate an
interactive display of the DTMC, complete with the animation of each state transition.

4. Results

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4.1. DTMC–“Content Purchase” Screens

In order to incorporate purchase flow through to the payment screen into the Markov
Model, an extra “Payment” state has been included to model the trajectories of the BT
Player customers’ fixations, to better understand which AOIs they are fixating on before
they go through to payment and which they are not. The “Payment” state will be both the
last row and column in transition matrices.

Once the BT Player customer goes through to the payment screen, they are classified
as choosing to pay for the TV Show/Film, and therefore if they choose to go back from
payment to the previous screen, this is regarded as a failure to go through with payment.
This means the payment state is accessible from any of the states on screen A or B, but
the converse is not true, and the other states are not accessible from the payment state.
Therefore, these transition matrices are no longer irreducible, and the steady state cannot
be calculated.

Furthermore, the newly introduced “Payment” state is an absorbing state as once the
Markov chain enters the state, it will remain there with a probability of one by definition of
the state. Therefore, the expected number of steps to absorption and therefore expected
time to absorption can be calculated for each state. In our case, it is possible when including
all AOIs states and the non-AOI (Z) state as it is representative of the whole model. In
a word, the Payment screen will simply be defined as an additional state in the Markov
chain, “Payment”. The inclusion of this state allows the expected time taken by the user to
reach payment, based on the Markov Model.

4.1.1. Transition Matrix–Screen A&B

The transition matrix for the initial states A-F for screen A, as well as including the
non-AOI (Z) and “Payment” states, have been generated. This allows the expected number
of steps and time to absorb into the “Payment” state to be calculated afterwards. The
directed graph, which is the visualisation of the DTMC in MATLAB, has also been created.
Figure 13a,b, respectively, show the transition matrix and plotting for the DTMC model of
screen A.



Algorithms 2023, 16, 82 22 of 33

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 34 
 

number of steps and time to absorb into the “Payment” state to be calculated afterwards. 

The directed graph, which is the visualisation of the DTMC in MATLAB, has also been 

created. Figure 13a and Figure 13b, respectively, show the transition matrix and plotting 

for the DTMC model of screen A. 

 

 

(a) (b) 

Figure 13. (a) Transition Matrix for Screen A; (b) DTMC Plot for Screen A.  

In terms of the transition matrix in Figure 13a, the highest probabilities fall along the 

diagonal, suggesting that the most frequent state change is to remain within that state for 

the next period, which makes sense for this data as the timestamps are recorded every 

00:00:00.165 s and if the user is focusing on an image or reading some text then this will 

require a greater period than jumping from fixating on one AOI to the next. In both Figure 

13a,b, state A is accessible from state D, but this is not the case vice-versa, as state D is not 

directly accessible from state A. In terms of AOIs, this suggests that the viewer’s eye tra-

jectories can begin at “Buy to own SD” and return to the “Packshot image,” but never 

from the “Packshot” to the “Buy to own SD” button. This would further suggest that view-

ers either glance directly to the right from the “Packshot” to the information or straight 

down to the “Buy to own HD” button. This could potentially be due to the “Buy to own 

HD” button being highlighted in a different colour than the rest of the buttons, therefore 

drawing the viewers’ eyes immediately.  

Similarly, the transition matrix and directed graph for screen B are shown in Figure 

14a,b below. 

Figure 13. (a) Transition Matrix for Screen A; (b) DTMC Plot for Screen A.

In terms of the transition matrix in Figure 13a, the highest probabilities fall along the
diagonal, suggesting that the most frequent state change is to remain within that state for
the next period, which makes sense for this data as the timestamps are recorded every
00:00:00.165 s and if the user is focusing on an image or reading some text then this will
require a greater period than jumping from fixating on one AOI to the next. In both
Figure 13a,b, state A is accessible from state D, but this is not the case vice-versa, as state
D is not directly accessible from state A. In terms of AOIs, this suggests that the viewer’s
eye trajectories can begin at “Buy to own SD” and return to the “Packshot image,” but
never from the “Packshot” to the “Buy to own SD” button. This would further suggest
that viewers either glance directly to the right from the “Packshot” to the information or
straight down to the “Buy to own HD” button. This could potentially be due to the “Buy
to own HD” button being highlighted in a different colour than the rest of the buttons,
therefore drawing the viewers’ eyes immediately.

Similarly, the transition matrix and directed graph for screen B are shown in
Figure 14a,b below.

It can be seen that the same pattern is emerging as with screen A, albeit with fewer
states available. It is interesting that despite being a different screen, the users never directly
access from state A to D, only D to A, suggesting the “Buy SD” option does not immediately
draw their interest from the “Packshot”, and instead, the user fixates on the information or
the “Buy HD” option after looking at the Packshot image. This agrees with the concept
that we observe computer screens horizontally and vertically, in a traditional “F” shape,
much more frequently than diagonally. Once again, in the transition matrix for Screen B in
Figure 14a, the highest transitional probabilities are along the diagonal, where the fixations
remain within the same state for a prolonged period.

For both screens, the non-AOI (Z) state communicates with all states as it covers a large
area surrounding all of the AOIs. For screen A, the “Payment” state can be accessed from
both state C and the non-AOI state, while for screen B, the “Payment” state is accessible
from states C and D and the non-AOI state(Z). This could be a result of users reading
the “Buy or Rent?” information at the bottom of the page before proceeding to payment.
The bottom row of each matrix shows the Payment state is absorbing, with all of the
probabilities of the payment state reaching a different state equal to 0, while the probability
of remaining within the payment state once it has been entered is equal to 1. As this is an
absorbing state and as Figures 13 and 14 represent an accurate model of each screen, now
the expected time to absorption (Payment) can be calculated.
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From the perspective of HCI analysis, for both screens A and B, state C is the ‘Buy
to Own HD button’, which is on the left-hand side and highlighted in a pale grey colour
which heavily contrasts against the dark grey background, while the other buttons appear
in a much darker purple colour that is less of a contrast against the black background. As
the button is on the left-hand side, the user’s eyes will naturally be drawn more to it than
the buttons on the right-hand side. Also, from the Gestalt principles [33–35], the brain will
naturally group the purple buttons (states D–F on screen A), so the eye will naturally be
drawn to the contrast button. As this is the most expensive option, this is the ideal position
and colour for this button to drive sales. In addition, the high probabilities of entering the
non-AOI(Z) state could be interpreted as users reading the information at the bottom of
the page relating to the ‘Buy’ or ‘Buy or Rent?’ possibilities, or they could be fixating on
the cancel button if they have decided they no longer want to continue with the purchase.
Another reason for this could be due to the fact that users are on a different screen before
proceeding to the purchase content screen (A or B), and therefore they could be fixating on
a different area of the screen that is then a non-AOI area of screen A or B. If this is the case,
the user will continue to fixate on that area initially for a short period before then focusing
on a different area of the new screen.

4.1.2. Expected Time to Payment–Screen A&B

For screen A, the transition matrix can be taken and separated into subsections, as
shown in Equation (15). Given there are 7 transient states and 1 absorbing state, m = 7 and
n = 1, therefore we calculate the Q and R sections in the transition matrix, and the results
are shown in Figure 15 below.
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The Fundamental Matrix can then be calculated using Equation 16, where In, in this
case, will be an identity matrix of size m =7, so we have N in Figure 16 below.
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Next, using Equation 17, the expected number of steps to absorption can be calculated,
as given there are 7 transient states, c will be a 7 × 1 column vector of 1’s, and therefore t
will also be a matrix of size 7 × 1. Besides, given that t represents the expected number
of steps to absorption for all states, then ti represents the expected number of steps to
absorption from a given state i. In this case, the states are A, B, C, D, E, F and Z. Also,
considering the created discrete Markov chain follows a time step of 0.165 s between states,
the expected number of steps for each state will be multiplied by 0.165 to get the real
expected time to absorption from each state. Table 2 shows the calculated expected time to
absorption from each state.

Table 2. Expected time to absorption from each state–DTMC for screen A.

AOI/State Name Expected Time to Absorption

A 7.88 s
B 7.96 s
C 7.81 s
D 7.84 s
E 7.85 s
F 7.86 s
Z 7.77 s

From these calculations, it can be inferred that despite the initial state (or AOI on
screen A) being fixated on, it takes relatively the same time to reach the payment state, with
less than 0.2 s of a difference between the ‘quickest’ initial state Z and the ‘slowest’ initial
state B.

Likewise, the calculations by Equations (15)–(17) are applied to screen B. For this
screen, there are 5 transient states and 1 absorbing state, so m = 5 and n = 1. The Q and R
sections in the transition matrix and the results are shown in Figure 17 below.
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Again, using Equation (17), the expected number of steps to absorption can be cal-
culated, as given there are 5 transient states, c will be a 5 × 1 column vector of 1’s, and
therefore t will also be a matrix of size 5 × 1. For screen B, the states are A, B, C, D, and Z.
Table 3 below shows the calculated expected time to absorption for the DTMC on screen B.

Table 3. Expected time to absorption from each state–DTMC for screen B.

AOI/State Name Expected Time to Absorption

A 9.67 s
B 9.67 s
C 9.59 s
D 9.54 s
Z 9.49 s

According to Table 3, it can be concluded that irrespective of the initial state, it takes
approximately the same expected time to the absorption state (Payment screen), with
almost the same range between the ‘quickest’, again the Z state, and the ‘slowest’, both A
and B have the same expected time.

It is also interesting to note that although there are more AOIs on screen A (6: A–F)
than on screen B (4: A–D), the expected time to reach the payment screen on screen A is
almost 2 s faster than B. Despite having additional options to choose from, the TV customer
is more efficient in making their choice when there are “Buy and Rent” HD and SD options
rather than when there are only “Buy” options available.

4.2. DTMC–“Content Viewing” Screens

After developing the DTMC model, it was revealed that given the restricted time
allotted for this particular activity, participants did not focus on certain blocks as they did in
previous tasks. Therefore, the state space of the DTMC model is finalised as S = {B, D, E, F, G,
H, I, J, K, L, M, N, O, P, Q, R, S, T}. The Markov Modelling of the “content viewing” screen
is implemented in R Studio by the “markovchain” package and R functions belonging to it,
which was previously discussed in Section 3.4.2.

In R studio, after the DTMC object is created, the properties of the model can be
checked by calling the object itself as well as specific functions, see Figure 19. In the example,
the created DTMC object is named “dtmcA”, and the R function “communicateingClasses()”
is executed.

Figure 19. Markov Model properties–“content viewing” screen.
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Observe that there is only one communicating class in the model and that all states
communicate. When a participant looks at one block on the page, there is always a path
in the subsequent n steps of the gaze movement by which they will finally look at the
remaining blocks in the DTMC model. In addition, it strengthens the likelihood that
participants explored the page across all AOIs throughout the trial. There is no absorbing
state, i.e., participants are unlikely to concentrate on a single AOI for the duration of the
experiment.

The transition matrix of the DTMC, as well as the matrix of mean first passage times
(see Equation (14)), are presented in the 18 × 18 matrices in Figures 20 and 21 below.

Algorithms 2023, 16, x FOR PEER REVIEW 26 of 34 
 

screen is implemented in R Studio by the “markovchain” package and R functions belong-

ing to it, which was previously discussed in Section 3.4.2. 

In R studio, after the DTMC object is created, the properties of the model can be 

checked by calling the object itself as well as specific functions, see Figure 19. In the exam-

ple, the created DTMC object is named “dtmcA”, and the R function “communi-

cateingClasses()” is executed. 

 

Figure 19. Markov Model properties – “content viewing” screen. 

Observe that there is only one communicating class in the model and that all states 

communicate. When a participant looks at one block on the page, there is always a path 

in the subsequent n steps of the gaze movement by which they will finally look at the 

remaining blocks in the DTMC model. In addition, it strengthens the likelihood that par-

ticipants explored the page across all AOIs throughout the trial. There is no absorbing 

state, i.e., participants are unlikely to concentrate on a single AOI for the duration of the 

experiment. 

The transition matrix of the DTMC, as well as the matrix of mean first passage times 

(see Equation (14)), are presented in the 18 × 18 matrices in Figures 20 and 21 below. 

 

Figure 20. Transition matrix–“content viewing” screen [16]. Figure 20. Transition matrix–“content viewing” screen [16].

Algorithms 2023, 16, x FOR PEER REVIEW 27 of 34 
 

 

Figure 21. Matrix of mean first passage time–“content viewing” screen [16]. 

In the row of R of the transition matrix (Figure 20), besides the diagonal cell (R,R), all 

other values in the cell are small. On the basis of this data, we may conclude that when 

participants notice AOI R (background image), they tend to study it further rather than 

moving on to other places. In addition, columns R and T have the greatest number of 

values, indicating a high chance of transition from other states in the Markov Model, in-

dicating that participants are likely to shift their attention to AOI-R or AOI-T from other 

AOIs. It indicates that the backdrop image is appealing to participants for AOI-R. T rep-

resents non-AOI portions of the display; it is a segment between many blocks. Participants 

shift their eyes to AOI-T, presumably because they will observe another AOI via T. 

In Figure 21, the value in each cell is related to the number of steps before the DTMC 

reaches the destination state from the initial state. The diagonal values are 0 s because it 

takes no step to reach the state from itself. The values can also reflect the actual time (time 

= step number × eye tracker recording interval) participants spend to move their gaze from 

one block to another. On the other hand, the values also reflect the connections between 

every two blocks regarding the page layout. For instance, from the initial state H, it takes 

the chain Six steps to reach state R (cell(H, R)). Six is the minimum value among all other 

cases at which the chain reaches state R from the other initial states. The reason is that, 

according to the page layout (Figure 5), block H is adjacent to block R. Moreover, cell (H,R) 

has the lowest value in the matrix, indicating that once participants see the music button, 

they will quickly gaze at the backdrop image. In addition, column H has the highest av-

erage value compared to the other columns, indicating that it takes the longest time for 

the chain to reach state H from other states. Thus, the matrix of the “content viewing” 

page (Figure 21) reveals that participants are likely not as interested in the music button 

since they opt to view other sections first and position the music button last. 

Apart from the matrices, Table 4 below shows the probability distribution over initial 

states and steady states for the DTMC model. 

Table 4. Initial state and steady-state distribution–DTMC for “content viewing” screen. 

State Initial Probability Steady Probability 

B 0 0.013 

D 0 0.001 

E 0.143 0.018 

F 0 0.010 

G 0 0.006 

H 0 0.002 

Figure 21. Matrix of mean first passage time–“content viewing” screen [16].

In the row of R of the transition matrix (Figure 20), besides the diagonal cell (R,R), all
other values in the cell are small. On the basis of this data, we may conclude that when
participants notice AOI R (background image), they tend to study it further rather than
moving on to other places. In addition, columns R and T have the greatest number of values,
indicating a high chance of transition from other states in the Markov Model, indicating
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that participants are likely to shift their attention to AOI-R or AOI-T from other AOIs. It
indicates that the backdrop image is appealing to participants for AOI-R. T represents
non-AOI portions of the display; it is a segment between many blocks. Participants shift
their eyes to AOI-T, presumably because they will observe another AOI via T.

In Figure 21, the value in each cell is related to the number of steps before the DTMC
reaches the destination state from the initial state. The diagonal values are 0 s because
it takes no step to reach the state from itself. The values can also reflect the actual time
(time = step number × eye tracker recording interval) participants spend to move their
gaze from one block to another. On the other hand, the values also reflect the connections
between every two blocks regarding the page layout. For instance, from the initial state H,
it takes the chain Six steps to reach state R (cell(H, R)). Six is the minimum value among all
other cases at which the chain reaches state R from the other initial states. The reason is
that, according to the page layout (Figure 5), block H is adjacent to block R. Moreover, cell
(H,R) has the lowest value in the matrix, indicating that once participants see the music
button, they will quickly gaze at the backdrop image. In addition, column H has the highest
average value compared to the other columns, indicating that it takes the longest time for
the chain to reach state H from other states. Thus, the matrix of the “content viewing” page
(Figure 21) reveals that participants are likely not as interested in the music button since
they opt to view other sections first and position the music button last.

Apart from the matrices, Table 4 below shows the probability distribution over initial
states and steady states for the DTMC model.

Table 4. Initial state and steady-state distribution–DTMC for “content viewing” screen.

State Initial Probability Steady Probability

B 0 0.013
D 0 0.001
E 0.143 0.018
F 0 0.010
G 0 0.006
H 0 0.002
I 0.071 0.005
J 0 0.008
K 0 0.009
L 0.143 0.032
M 0.143 0.075
N 0 0.047
O 0.071 0.303
P 0 0.059
Q 0 0.005
R 0.286 0.088
S 0 0.038
T 0.143 0.281

Under the column of initial state probability, State R has the highest value, indicating
that all participants are more likely to look at state R first when they reach this ‘content
viewing’ screen in BT Player, which can also be interpreted as “the background image
attracts the most attention at first sight.” The column of steady state probability reflects
the likelihood that participants will view each block over time. State O, for example, has
the highest value, indicating that the gaze is most likely to reach and terminate in that
block (“programme packshots”). However, state D has the lowest score, indicating that
after participants have explored the page for some time, they are least likely to view the
‘sport button’.

Additionally, the “most likely trajectory” of the DTMC is generated by Equation (13),
Smax = {R, . . . , T, . . . , O . . . }, which is calculated by the simulation of Markov transitions
in R. The trajectory is depicted and mapped to the real-world screen layout as the most
likely gaze path on the screen, which is shown in Figure 22.
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In addition, we have two implementations of the DTMC visualization in R and D3.js,
as shown in Figures 23a and 23b, respectively.
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Figure 23. “Content viewing” screen–DTMC visualisation: (a) R plotting; (b) D3.js plotting [16].

Intuitively, T is the state that most other states will jump to. Figure 23a is a static
image, while Figure 23b is a screenshot of the animation of a Markov Model process on the
browser. In Figure 23b, the thickness of arrows and directed lines indicates the value of
probability. The animation of each transition is based on the transition matrix.

5. Discussion

Throughout the eye-tracking experiment, there were elements that were successful
and went well, while there were also areas that were difficult and proved more challenging
to complete. In other words, working with data involves a significant amount of under-
standing and then cleaning, or manipulation before the actual analysis can begin. This
involved time to both understand the data and find a method that could be used to model
it. For instance, a good level of prior knowledge about the raw data (e.g., gaze-point
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coordinates and timestamps) from Tobii Studio was required for the analysis tasks. Mean-
while, the format of raw data brought some difficulties before the data modelling stage.
Different requirements and tasks in relation to the experiment were also provided along
with the statistical analysis based on these, and it was only after understanding the nature
of the data that it became clear that gaze point co-ordinates in the raw Tobii data would
need to be converted into AOI regions. As discussed in Section 3.4, a Java program was
developed for:

• Capturing coordinates of AOI regions on the screen;
• Converting gaze point to AOI block letters;
• Raw data cleaning and transferring from Mongo DB to MySQL Workbench.

After a significant amount of research into data-mining algorithms such as Apriori
and other methods, Markov-Chain Models were shown to be an effective technique to
analyse this discrete time-sequential data as the raw data is recorded every 00:00:00.165 s,
making it appropriate for the Discrete Time Markov Chain (DTMC) model.

MATLAB and R Studio provide powerful functions for Markov modelling, from simply
plotting a Markov model with a directed graph to a greater magnitude of information
available for Markov models, such as first passage time, mean time to recurrence, absorption
and the extent of the statistical knowledge it would take to understand all of these terms
and how to apply them. They have been used effectively to calculate the steady states of
different matrices and the expected time to absorption for the Payment state; however,
in hindsight, it would have been beneficial to better understand these complexities at
the outset, which may have allowed the computation of each of these aspects to run
more smoothly, rather than having to research more each time. The workflow of Markov
modelling allowed for easy adaptation once the first screen transition matrix had been
completed, as the same process just needed to be carried out on another screen and then
implemented in the same manner on MATLAB/R Studio. This was beneficial as it was
quite an efficient process, allowing for changes to be made if necessary.

The study was overall successful, and a lot was learned with regard to working with
eye gaze movement data, exploring in-depth information for BT Player and mining the
process of how participants interact with the UI on the screen. Specifically, the analysis of
eye tracking data has enabled the two key research questions to be answered:

4. “Content purchase” scenario: when purchasing content (TV on Demand), what draws
the eye? Is it the price, is it the quality, or is it something else?

It can be said that the price is of interest to the user; however, they are particularly
focused on the “Buy to Own HD” option, potentially due to the fact that it is highlighted in
a different background colour than the other price options. As it is also on the left-hand
side of the page, it can be said that the user is more likely to fixate on the HD than the
SD buttons, which are on the right-hand side. Taking into account several results from
other aspects of the eye tracking experiment which are not covered in this study, a more
general recommendation for Purchase Flow could be “Put important information in the
top position of a screen to help the reading flow”.

5. “Content viewing” scenario: when a Content Discovery page first loads, what
are customers viewing? Are they drawn to the hero carousel, the navigation, or
something else?

One outcome of the study was that large images first caught the attention of most
people after loading a screen. Therefore, a recommendation could be made to use a large
image to enhance a significant part and avoid large images in less important areas. These
recommendations have helped to improve the design of the BT Player, as it could be
confirmed that certain elements may need to be changed while others could remain the
same in order to engage the customer and increase sales.

Furthermore, the research findings were shared with the BT product team and other
individuals with domain knowledge of BT IPTV and TV customer behaviour. The DTMC-
derived gaze movement trajectory, as well as other Markov properties such as steady-state
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distribution, expected time to absorption, and so on, were found to be quite reasonable
for the use cases. The product team provided some validation of the results by comparing
them to the original layout design. Besides, our interactions with the BT team during the
course of the eye-tracking study led to the following observations of more general business
benefits, with feedback from BT as follows:

• Eye tracking studies can provide valuable inputs to a human-centred design approach
for TV applications;

• Eye tracking results can show the order in which people focus on different parts of a
TV application page, which enables designers to review the information architecture
and whether some pages are too complex;

• Heat maps derived from eye tracking and information on the order of focus can be
used to re-assess “what should be the key function of this page?”

6. Conclusions

Our study in this paper has provided some interesting insights into the eye fixation
data from users of the BT Player app by applying machine learning and process mining
technology (Markov Model). The aim of the research was to better understand how
participants interacted with the app, with the ultimate goal of using these results to improve
the product design in a way that will increase the sales of TV shows or films on BT Player.
Also, the results have proved that the methodology of DTMC modelling and statistical
analysis fits in well with industrial scenarios and requirements.

Some of these insights can demonstrate that a product design is either working, in
which case it should remain the same going forward, or that there are some elements that
could be improved. Such information was revealed by DTMC transition matrices as well
as “steady states distribution,” etc. Moreover, observing the trajectory of eye fixations over
a period of time has also provided some interesting results in terms of human behaviour
when viewing screens. There is evidence to corroborate the fact that we read on screens
from left to right, as we would expect due to this being the same direction that we read and
write ordinarily. We also read in the ”F” shape, in straight lines horizontally and vertically
rather than diagonally. The “most likely trajectory” on the screen was also a significant
finding in our study as a summary of the possible path of eye gaze movement. Additionally,
the information in relation to the expected time (mean passage time) to different screens
and AOIs can be interpreted as the level of importance among different on-screen parts
for viewers.

We plan to introduce more variables into the current methodology of the paper as
part of our future study. For instance, the fixation duration on each AOI was not used
in the paper. In that case, a continuous-time Markov chain could be applied. Also, there
are some limitations to our study, one of which is that we didn’t do much quantitative
analysis of the eye tracker data, and that can lead to partially missing information in the
human-computer interaction. Then, in addition to eye tracking technology, another method
of monitoring IPTV viewer interaction should be used, such as click events on the remote
control, which will provide a comparison between two parallel actions and generate a more
comprehensive model.

The workflow described in this paper and its Java software implementation were
re-used in a second eye-tracking study at BT, which addressed a different set of IPTV
user scenarios. As such, it is believed that the methodology in this study can be a good
foundation for further development and can be applied to other HCI research, e.g., usability
evaluation, where an eye tracker is possibly in use. It is also generally applicable to data
that comes in the format of sequential events, and such data can come from various devices
like TVs, smartphones, tablets, IoT sensors, etc., and different domains. It also allows
for the measurement and summarization of cognitive processes when people interact
with screens.
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