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Process models are used to convey semantics about business operations that are to be supported by an information 
system. A wide variety of professionals is targeted to use such models, including people who have little modeling or 
domain expertise. We identify important user characteristics that influence the comprehension of process models. 
Through a free simulation experiment, we provide evidence that selected cognitive abilities, learning style, and 
learning strategy influence the development of process model comprehension. These insights draw attention to the 
importance of research that views process model comprehension as an emergent learning process rather than as 
an attribute of the models as objects. Based on our findings, we identify a set of organizational intervention 
strategies that can lead to more successful process modeling workshops. 
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I. INTRODUCTION 

When analyzing or designing information systems, analysts frequently use graphical models of the relevant business 
domain to aid the determination of requirements. To that end, analysts often use conceptual models of business 
processes (process models) to assess or build information systems that are process-aware [Dumas, van der Aalst, 
and ter Hofstede, 2005]. Process modeling is a primary reason to engage in conceptual modeling [Davies, Green, 
Rosemann, Indulska, and Gallo., 2006] and has been shown to be a key success factor in organizational and 
systems re-design projects [Kock, Verville, Danesh-Pajou, and DeLuca, 2009]. 

Because of the relevance of process modeling during the analysis and design of information systems, the evaluation 
of process modeling-related phenomena is an active research area [Burton-Jones, Wand, and Weber, 2009; Recker, 
2013]. Current research in this area can be classified in two streams. One stream is devoted to enhancing the 
support for process modeling, for example, by examining technological support for requirements modeling [Dennis, 
Hayes, and Daniels, 1999] or by providing support for collaboration during modeling activities [Dean, Lee, Orwig, 
and Vogel, 2001; Recker, Mendling, and Hahn, 2013]. The other stream, which is important to the line of research 
presented in this article, has examined how process modeling is applied. This stream is pursued with the aim of 
understanding how individuals learn how to model [Agarwal, De, and Sinha, 1999], determining the performance 
benefits and usefulness of models for different tasks [Figl, Derntl, Rodriguez, and Botturi, 2010; Recker, Rosemann, 
Green, and Indulska, 2011] or understanding how process models can be designed so that comprehension of these 
models can be maximized [Reijers and Mendling, 2011; Reijers, Mendling, and Dijkman, 2011; Mendling, 
Strembeck, and Recker, 2012]. Our research follows this tradition and examines how end-users comprehend the 
content of process models, that is, how much they learn about the domain that is visualized in the process model 
[Gemino and Wand, 2003]. This question is important because the usage of a process model, either for purposes of 
process analysis, performance measurement, or redesign, are ultimately dependent on how well individuals can 
comprehend the modeled process (e.g., Dean et al., 2001; Burton-Jones and Meso, 2008; Mendling et al., 2012). 

Specifically, we are interested in examining dynamic traits of business users who wish to comprehend a process 
model. Dynamic traits are those user characteristics that can be influenced by organizational interventions, i.e., that 
can be shaped and triggered through appropriate learning stimuli within the setting of a process modeling workshop. 
This focus of our work, therefore, contributes new knowledge on learning requirements from process models (e.g., 
Sheetz, Irwin, Tegarden, Nelson, and Monarchi, 1997). Through this focus, we extend the literature that has largely 
focused on traits of the models themselves―e.g., their visual design [Figl, Recker, and Mendling, 2013], the use of 
different grammar constructs [Recker, 2013], or the use of modularization [Reijers et al., 2011] and labeling 
[Mendling, Reijers, and Recker, 2010b]―rather than those of the model users. 

We draw on multimedia learning theory [Mayer, 2009] and student learning theory [Biggs, 1987] to hypothesize that 
individual cognitive abilities, learning style, and learning strategy are important predictors of process model 
comprehension. We report on a free simulation experiment that we conducted to test these hypotheses. Our findings 
suggest several intervention strategies that provide relevant stimuli to increase the influence of the identified 
enabling traits, while disabling the influence of traits that inhibit model understanding. 

Our study makes several contributions to the literature. First, it draws on student learning theory [Biggs, 1987] to 
extend the prevalent conceptualization of model understanding [Gemino and Wand, 2005] with three stages of a 
learning process, viz., presage, process, and product. Second, it adds to the existing literature on conceptual model 
comprehension (e.g., Agarwal et al., 1999; Reijers and Mendling, 2011) by offering an alternative, user-centric 
perspective on important antecedents to model comprehension. As will be discussed, the current literature puts the 
emphasis on the intrinsic properties of a process model as the prime factor in making sense of these. Third, it adds 
to the body of literature on cognitive abilities [Wang, Wang, Patel, and Patel, 2006] by providing the first empirical 
test that examines which cognitive abilities are positively and negatively associated with the process of viewing 
diagrammatic representations. 

We proceed as follows: First, we review prior research on process model comprehension. Then, we conceptualize 
how comprehending a process model can be seen as an extended one-episode learning process. We will draw 
attention to six important factors alongside three stages of this learning process. Then, we discuss design, conduct, 
and findings of a free simulation experiment to test these arguments. Based on the results, we provide a discussion 
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of actionable items that can be expected to improve the use of process models by business users. Finally, we 
conclude this article by providing a discussion of contributions. 

II. BACKGROUND AND THEORY 

Process Modeling 

The essence of process modeling is to capture and represent information about business processes [Dennis et al., 
1999; Recker, Rosemann, Indulska, and Green, 2009]. To that end, process models typically include graphical 
depictions of the activities, events, states, and control flow logic that constitute a business process. Additionally, 
process models may also include representations for the involved data, organizational/IT resources, and, potentially, 
other artifacts such as external stakeholders and performance metrics, to name just a few, if this information is 
important to the information systems that is analyzed or designed from the viewpoint of the business processes it is 
intended to support. 

Process models are used as an externalized representation of the problem space for an unstructured problem, be it 
that of redesigning the organizational work procedure to improve its performance [Danesh and Kock, 2005] or that of 
designing an IT-based system to enact or automate parts of the process [Reijers, Limam, and van der Aalst, 2003]. 
To support such problem-solving, a fundamental requirement is that users faithfully comprehend the content of the 
conceptual models of the process domain [Burton-Jones and Meso, 2008]. 

Most research in the area of process model comprehension has attempted to define process model comprehension 
as a function of intrinsic properties of a process model. This means that comprehension has been looked at as a 
function of the design of the process model itself (e.g., Hahn and Kim, 1999; Reijers et al., 2011). Factors pertaining 
to the person viewing the model have scarcely been investigated (e.g., Khatri, Vessey, Ramesh, Clay, and Sung-Jin, 
2006; Burton-Jones and Meso, 2008; Reijers and Mendling, 2011), but the focus of these studies has been on static 
features of the user of a model (such as level of expertise or level of familiarity of the domain), and these measures 
have mostly been used as control variables. While improving our knowledge to date, these contributions, we argue, 
are not comprehensively capturing the process of developing process model understanding. We posit that process 
model comprehension is an emergent property rather than an intrinsic one. This view takes into account the relation 
between individual traits and the problem representation in the specific context of a model-based task performance 
[Vessey and Galletta, 1991]. 

Process Model Comprehension as a Learning Process 

Prior research (e.g., Gemino and Wand, 2005; Burton-Jones and Meso, 2008; Mayer, 2009) has suggested that 
conceptual models can be viewed as explanative multimedia messages that individuals can use to learn information 
about a domain and thereby develop domain understanding. In line with this view, we conceptualize process model 
comprehension as a one-episode learning process. Model viewers actively organize and integrate information 
content in the process model that is presented to them with their own previous experience and existing mental 
models. This learning process will then result in the construction of new knowledge [Mayer, 2009]. In the middle part 
of Figure 1, this process is captured in the framework developed by Mayer [2009]. This conceptualization of model 
comprehension as a one-episode learning process has yielded some useful insights in the area of data modeling 
[Masri, Parker, and Gemino, 2008], object modeling [Burton-Jones and Meso, 2008], and process modeling [Recker 
and Dreiling, 2011], thereby increasing our confidence that the framework is an appropriate conceptualization of 
process model comprehension. 

As visualized in the upper part of Figure 1, the existing literature has examined this framework mostly with a focus 
on content and content presentation in a model, e.g., the use of optional properties [Bodart, Patel, Sim, and Weber, 
2001] or the use of different grammars to present the content in a model [Recker and Dreiling, 2011] and typically 
has controlled for variances in user characteristics. At this point, it has not examined in detail the knowledge 
construction process (indicated in the upper part of Figure 1 through dashed lines). 

To complement and extend this focus, we, therefore, will control for content and content presentation factors. We will 
instead examine important user characteristics and the role these characteristics play in the knowledge construction 
process that leads to domain understanding generated through process model comprehension. This focus in our 
research is indicated through grey highlighting and shaded lines in the framework in the bottom part of Figure 1. 

Our specific interest is in those user characteristics that can be shaped through short-term organizational 
interventions, namely those that fall within the scope of a modeling workshop. Such characteristics are called 
dynamic traits. Dynamic traits are situation-specific, individual differences that affect responses to stimuli within a 
specific situation [Thatcher and Perrewe, 2002]. Dynamic traits differ from stable traits in that training, incentives, or 
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other environmental stimuli can be used to promote or prevent their influence on behavior, while stable traits exhibit 
largely constant effects (such as levels of experience or familiarity). 
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Figure 1. Prior Research, Theoretical Framework, and Focus of Study,  
on basis of Mayer, 2009, and Biggs [1987] 

Knowledge Construction in Process Model Comprehension 

To conceptualize the knowledge construction process in Mayer’s [2009] theory of multimedia learning, we draw on 
Biggs’ [1987] 3P model of learning. The 3P model is rooted in the theory of student approaches to learning [Marton 
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and Säljö, 1976] and has become accepted due to its simplicity, comprehensiveness, and parsimoniousness of 
measurement. 

The model identifies three stages: process (the learning process), presage (what exists prior to the learning 
process), and product (the result of the learning process). We discuss relevant elements of these stages, in turn. 

Process 

Two factors―the learning motive and the learning strategy―are essential to understanding how students engage in 
learning activities. The learning motive expresses a student’s desire as a drive toward learning and, in turn, 
determines the student’s perception of learning requirements. Two types of motives can be distinguished, viz., a 
surface or a deep motive [Kember, Biggs, and Leung, 2004]. A surface motive is tailored to the product of the 
learning process and is fueled by extrinsic motivation, such as aspiring to meet a superior’s expectations or to 
outperform others in some sort of contest. In contrast, a deep motive considers the intrinsic interest to engage in 
knowledge creation in anticipation of the outcome; an example is learning for self-development. The learning 
strategy refers to making a plan congruent to the motive about how to learn from a process model. A deep learning 
strategy implies learning for developing a maximum of understanding. In contrast, a surface learning strategy implies 
rote learning, viz., learning to memorize enough to meet a task or performance requirements. 

These two factors, importantly, are not static properties of individuals. Rather, they are context-dependent, meaning 
that they can be influenced within the learning setting [Biggs, 1987]. Therefore, learning motive and learning strategy 
denote choices relevant to the learning task at hand and, as such, can be influenced through appropriate 
intervention strategies. 

Presage 

The choice of learning motive and strategy depend on three important user characteristics during the presage stage 
of learning: prior knowledge, ability, and preferred style of learning [Biggs, Kember, and Leung, 2001]. In terms of 
prior knowledge relevant to learning from process models, research to date has shown that prior domain knowledge 
[Khatri et al., 2006] and prior method knowledge about process modeling [Reijers and Mendling, 2011; Mendling et 
al., 2012] can influence the development of understanding. Further, research in education has shown that self-
efficacy is a third important factor because students’ learning activities are influenced by their broad expectations 
about their ability to successfully perform a specific task or behavior [Zhang, 2000]. 

These three factors correspond to broad and stable traits of individuals, which have been shown to predispose 
individuals in task-based performances, but do so in a consistent manner [Bandura, 1997] and thus exert a less 
pervasive influence on dynamic individual differences [Day and Silverman, 1989]. Given that these traits cannot 
easily be subjected to influence through short-term interventions within the scope of a modeling workshop, and 
because their broad influence on model-based task performance has been demonstrated in prior research, we have 
no interest in revisiting these findings. Therefore, we will control for these prior knowledge factors when examining 
other antecedents of model comprehension. 

In terms of abilities, comprehending process models is essentially a cognitive processing task [Gemino and Wand, 
2003]. Users need to comprehend the provided conceptualization, abstract from irrelevant details provided, and 
instead select those informational objects relevant to the problem-solving task at hand. Depending on the viewer’s 
cognitive information-processing abilities, the external representation (the process model) may be different from the 
internal representation (the internal mental model) developed by the viewer. We argue, therefore, that understanding 
which cognitive abilities are important to the process of understanding process models will be key to designing 
incentives or stimuli in workshop settings that can appropriately stimulate the relevant cognitive abilities. 

Abstraction ability is a cognitive process that enables an individual to establish an abstract model for an entity of the 
external world by identifying its common information and relevant attributes or properties [Bennedsen and 
Caspersen, 2006]. This ability applies to process modeling, as these models themselves represent abstractions from 
things―individual instances of the process, to classes of things―a common model that encompasses the execution 
of several process instances. The ability to abstract is a fundamental prerequisite to classification (assigning 
elements to groups of entities based on shared characteristics), which is a key purpose of conceptual models of any 
sort [Parsons and Wand, 2008]. 

Selection ability is a cognitive process that enables an individual to search through a set of correlated objects, 
attributes, or relations to find a given object or set of objects. This ability is relevant to process modeling, as these 
models are typically quite large and rich diagrams with many informational artifacts, requiring the viewer to select the 
relevant information from the diagrams to reason about their use for the task at hand [Winn, 1993]. The ability to 
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select, therefore, provides an account for how well individuals can identify and retrieve relevant information from 
visual diagrams such as process models [Winn, 1990]. 

Finally, in terms of learning style, students take in and process information in different ways: by seeing and hearing, 
reflecting and acting, reasoning logically and intuitively, analyzing and visualizing, or steadily and in fits and starts 
[Felder and Silverman, 1988]. Because we are interested in how users learn about a domain from a graphical 
process model (a question of how an externalized knowledge representation system is perceived), we consider how 
these models are related to the perceptual learning styles of the users. Felder and Silverman’s [1988] division 
between sensing and intuitive learning styles covers this difference. Intuitive learners prefer discovering new 
relations and grasping new concepts in a holistic way from information material (such as a process model), whereas 
sensing learners prefer learning and memorizing facts from a process model bit-by-bit. Again, we note that the 
learning style is a dynamic, task-dependent choice of the individual and, therefore, is susceptible to context-specific 
environmental stimuli. 

Product 

The outcome of the learning process is a level of comprehension of the content of process model. For the purpose 
of our study, we define process model comprehension as the ability of a user to retain domain information from the 
elements in a process model [Mayer, 2009]. Therefore, process model comprehension refers to the learning product 
of being able to remember and reproduce information, such as: “What is the correct procedure for verifying 
invoices?” or “Which options do I have for reimbursing prior expenses?” 

This definition of model comprehension relates to a user’s ability to retain information about the business domain 
depicted in the model, as used in the study in Recker and Dreiling [2011], which is different from the definition of 
comprehension as a user’s ability to understand the grammatical logic with which the model was constructed 
[Mendling et al., 2012]. It is also different from deep domain understanding, that is, a user’s ability for problem-
solving on the basis of a model [Gemino and Wand, 2005]. Our focus on comprehension is justified because 
comprehension of the domain information in a process model is a necessary prerequisite for all model-based 
problem-solving tasks, such as systems analysis, communication, design, organizational reengineering, project 
management, end-user querying, and others. In other words, for a model to be useful for any modeling-related task, 
it is imperative that the stakeholders doing these tasks are able to comprehend the model well and timely [Mendling 
et al., 2012]. 

III. RESEARCH MODEL AND HYPOTHESES 

The instantiation of our adaptation of Mayer’s framework as applied to process model comprehension (see Figure 1) 
in a research model is shown in Figure 2. Our primary conjecture is that process model comprehension is a function 
of the learning style, learning motive, and learning strategy of the users working with the model, as well as of two 
relevant cognitive abilities. 

We now discuss five expected effects on process model comprehension stemming from our conceptualization. In 
our initial two hypotheses, we explore how process model comprehension will vary, dependent on the cognitive 
abilities brought to bear to this task by the user. The essential argument is that the cognitive functions of abstraction 
and selection ability are important facilitative precursors to learning, comprehension, and problem solving, in fact, to 
any subsequent higher-layer cognitive activity such as reasoning, decision making, analysis, or explanation [Wang 
and Chiew, 2010]. 

First, we turn to selection ability, which is used to simplify the cognitive model of informational material that contains 
(some) irrelevant information. Process models are often high in complexity (the amount of information and the flow in 
which the information is presented, see Lassen and van der Aalst, 2009) because they contain representations of 
the tasks, events, states, and control flow logic that constitute a business process. They may also capture 
information about relevant actors, data, systems, or other process-relevant artifacts [Recker et al., 2009]. To 
determine whether all or only some of these objects in a model are relevant to a particular question about the 
domain that is being modeled, therefore, is a cognitive process of search. It requires the user to evaluate a large 
amount of information and make a relevant selection to find a set of correlated objects, attributes, or relations for a 
given object or concept [Wang et al., 2006]. Being able to mentally simplify the flow by undoing it from irrelevant 
parts of a process model, therefore, is expected to facilitate understanding by reducing the error-proneness of the 
learner, in turn facilitating model understanding. Therefore, we have: 

H1. Selection ability will be positively associated with process model comprehension performance. 
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Figure 2. Research Model 

 
Second, we turn to abstraction ability, which is used to simplify information by deducing common attributes. In this 
respect, it is important to stress that a process model itself already can be seen as a procedural abstraction of how 
individual cases (or instances) are dealt with in a certain organizational context. To attain a domain understanding of 
the procedure that is captured in a process model, it is essential that the meaning and location of individual elements 
of a process model are specifically retained. The very reason that individual elements appear in a process model is 
that they either (1) show important points of differentiation between dealing with slightly different cases or (2) show 
distinctive stages in dealing with one single case. Therefore, increased attempts to invoke one’s abstraction abilities 
on such a process model may work counterproductively, in the sense that important, granular information from the 
model is neglected and aggregated to an overly simplistic mental image. Therefore, we state: 

H2. Abstraction ability will be negatively associated with process model comprehension performance. 

Next, we consider the perceptual learning style. Sensing learners tend to focus on learning facts and memorizing 
material. Intuitive learners, on the other hand, often prefer discovering possibilities and relationships; they also prefer 
discovering new relations and are known to be impatient and inferior with details [Felder and Brent, 2005]. As the 
learning goal in our study setting is set at memorization (retaining information from a process model) rather than 
knowledge discovery (developing novel knowledge based on the content of the model to solve new problems), these 
differences in style suggest that thorough bit-by-bit inspection of the different elements in the process model is 
expected to prevail over taking a more holistic approach of “getting the picture.” As such, sensing learners are 
expected to outperform intuitive learners in developing process model understanding: 

H3. Users with a sensing learning style will achieve a higher process model comprehension performance than 
users with an intuitive learning style. 

Biggs [1987] argued that the engagement in learning activity depends on the user’s motivation to learn. This 
motivation can be either intrinsic (deep motive) or extrinsic (surface motive). The former relates to following a deep 
approach aimed at the creation of meaning and individual learning. The latter fuels a surface approach to learning, 
targeted at meeting exterior expectations and/or outperforming others. Through our focus on process model 
comprehension, the learning goal is inclined toward a performance goal (scoring as high as possible in comparison 
to others) rather than a learning goal―increasing one’s competency, understanding, and appreciation for what is 
being learned [Covington, 2000]. The performance goal is an extrinsic motivator, more in line with a surface 
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approach to learning. Therefore, we suggest that users following a surface approach to learning are expected to 
attain higher levels of process model understanding based on goal-approach compatibility: 

H4. Users’ surface learning motive will be positively associated with process model comprehension 
performance. 

H5. Users’ surface learning strategy will be positively associated with process model comprehension 
performance. 

Due to memorization being a prerequisite to transfer (and, hence, process model comprehension being a 
prerequisite for problem solving), we contend that users following a deep approach to learning also attain some level 
of goal-approach compatibility. Still, their approach to learning, while partly addressing the development of domain 
understanding, is specifically targeted at developing a thorough level of understanding aimed at complex tasks and 
problems and facilitating discovery of new knowledge. Therefore, we may expect that positive relationships exist to 
domain understanding performance; yet, these effects are likely not to be significant. This is because a deep 
learning strategy implies that the user engages in active interaction with the process model, critically examining its 
soundness and attempting to link its information to existing mental models in an attempt to uncover knowledge that 
is not yet present. In contrast, a surface learning strategy implies simple learning for memorization. The user tries to 
memorize the information in the process model without questioning it or trying hard to discover underlying patterns. 
This is likely to yield benefits for model comprehension over and above a deep immersion in the content. 

IV. RESEARCH METHOD 

Design 

To be able to collect sufficient data while maintaining control over potentially confounding external factors, we 
designed a free simulation experiment [Fromkin and Streufert, 1976]. Free simulation experiments are different from 
traditional factorial experiment designs in that subjects are placed in a complex environment resembling a real-world 
situation as closely as possible where they are free to behave within the required boundaries of the study (e.g., the 
rules of the task setting at hand) and are asked to make decisions and choices as they see fit. Free simulations do 
not involve preprogrammed treatments and, thus, allow the values of the independent variables to span the natural 
range of the subject’s experience. In effect, the experimental tasks induce subject responses, which are then 
measured via the research instrument. This research design was applicable because our hypotheses pertain to the 
characteristics of the users without relating to a specific treatment (e.g., different types of models). Instead of 
random assignment of participants to groups, we collected and examined several key demographic variables to 
evidence an appropriate variety in the responses (see below). Furthermore, we followed the suggestions of Gemino 
and Wand [2003] to control for those antecedents of model understanding that are considered not relevant to the 
theoretical arguments we advanced. 

In our study, we engaged with domain experts as well as method experts. We used paper-based experimental 
material. Additionally, we implemented an online experimentation system to gather responses from a control group 
of users with average domain and method expertise (see the discussion below). Both systems displayed the 
experimental material in sections, allowing participants to move from section to section at their own pace. We pilot-
tested the experiment with five domain and methodology experts, which resulted in minor modifications to 
instrumentation and procedure. A subsequent ANOVA test confirmed that the mode of experimentation system did 
not bias the results. 

Procedures 

Instrumentation was considered in accordance with the three stages of learning suggested by Biggs [1987]. 

During the presage stage, we began with a pretest of prior domain and method knowledge, as well as basic 
demographic questions (age, gender, nationality, etc.). Next, participants were required to complete tests for the two 
cognitive abilities considered and their perceptual learning style. 

After completing the tests, in the process stage, participants were shown two process models. One model dealt with 
a government agency’s “Advertising specific vacancies” process, and the other with a “Priority placement” process. 
Copies of the models are available from the contact author upon request. The choice for the two process models 
was made based on a trade-off between internal and external validity. Using a greater multitude of models as a 
treatment would potentially yield higher levels of external validity. But, given our study’s focus on user characteristics 
and their learning approach, utilizing more models potentially introduces a result bias. After all, score differences 
may be attributable to model features such as secondary notation or modularization [Reijers and Mendling, 2011], 
thereby threatening the internal validity of our research. Still, by using two cases, our research design allowed us to 
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replicate our findings in two different settings, thereby increasing external validity. This provided for a stronger test of 
our hypotheses than would have been possible with a single model case only. 

The “Advertising specific vacancies” and “Priority placement” process models were selected for two reasons: First, 
the models were part of actual process documentation in day-to-day use at the government agency. This increased 
the ecological validity of the study, while ensuring content validity and avoiding inflated researcher bias (through use 
of an artificially created model). Second, both models were of considerable complexity, which guaranteed that the 
comprehension tasks were of substantial difficulty. This can be considered beneficial to generate fluctuations in 
comprehension performance, which allowed testing for associations with differences in user characteristics. 
Specifically, the models comprised over fifty objects, a size that was previously shown to affect complexity and 
understanding levels [Mendling, Reijers, and van der Aalst, 2010a; Recker, 2013]. Also, both models featured 
several instances of modularization and branching [Muketha, Ghani, Selamat, and Atan, 2010]. 

After the respondents were shown the two models briefly, they were asked to answer questions about learning 
motives and strategy. Next, the two process models were displayed again for five minutes. The online 
experimentation system featured a timer that automatically moved on to the next stage of the free simulation 
experiment. In the paper-based variant, the facilitator collected the models after five minutes before allowing 
participants to move on to the next stage. Last, in the product stage, the models were removed so that the quality of 
the mental representation of the domain and the models could be assessed [Gemino and Wand, 2005]. Questions 
about the modeled domains and the models themselves were mixed in no particular order. No posttest was required 
for our study. 

Materials 

The study materials consisted of an information cover sheet with consent form and directions, as well as different 
sections about demographics, cognitive abilities, two process models, learning approaches, and model 
understanding. Appendix A displays the measurement material used (except for the cognitive abilities tests and the 
models used). We briefly describe important material elements in the following. 

Pretest 

As control variables, we collected data on prior domain knowledge, prior method knowledge, and self-efficacy 
beliefs. The measures for prior knowledge of the relevant process domains (PDK-1 and PDK-2) were adopted from 
the measure used by Burton-Jones and Meso [2008]. Participants had to rate their own level of domain knowledge 
on a 7-point Likert scale, for each of the two process domains used (“Advertising specific vacancies” and “Priority 
placement”). To measure prior method knowledge about process modeling (PMK), we chose the set of process 
modeling method knowledge questions used in related studies [Mendling et al., 2012; Recker, 2013]. This set 
quizzes respondents’ theoretical knowledge of the process modeling method in use. The questions concern 
grammatical rules of process model logic, derived from fundamental work in this area [Kiepuszewski, ter Hofstede, 
and van der Aalst, 2003], and address control flow criteria such as reachability [Verbeek, van der Aalst, and ter 
Hofstede, 2007], deadlocks [Sadiq and Orlowska, 2000], liveness [Kindler and van der Aalst, 1999], and option to 
complete [van der Aalst, 1998]. 

To measure self-efficacy beliefs (SE), we adapted the action-oriented operationalization of self-efficacy used by 
Philips and Gully [1997] because we were interested in the task-specific self-efficacy beliefs of our participants. As 
part of the pretest, also, several key demographic data were collected (e.g., age, nationality, gender). 

Cognitive Abilities Test 

To measure abstraction ability (AA), respondents had to undertake the Abstract Reasoning: Thinking in Figures test 
[de Wit and Compaan, 2005], which required them to finalize visual series by deducing their underlying rule. To 
measure selection ability (SA), respondents had to complete the Choosing a Path test [Ekstrom, French, Harman, 
and Dermen, 1976], which required visual scanning to identify one path out of five that adhered to a pre-specified 
condition. We omit the test material from this article due to space limitations. The material is available from the Kit 
Reference Test for Cognitive Factors [Ekstrom et al., 1976] and the Differential Aptitude Test [de Wit and Compaan, 
2005]. 

Learning Style Test 

To measure learning style (LS), the sensing versus intuitive learning scale by Felder and Spurlin [2005] was used. 
These authors defined eleven questions, which allow the mapping of a learner’s score on the sensing–intuitive 
learning continuum. These questions were selected based on their succinctness, proven robustness, and validity 
and due to its frequent application in learning in technological contexts [Felder and Spurlin, 2005]. 
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Learning Approach Test 

To measure participants’ learning approach in terms of deep and surface learning motive (DM and SM) and deep 
and surface learning strategies (DS and SS), we used the Revised Learning Process Questionnaire (R-LPQ-2F) by 
Kember et al. [2004]. Because their questions mainly pertain to long-term learning behavior, we selected and 
revised the questions to fit one-episodic short-term learning, as appropriate to our research context. This way, 
motives more closely resemble intention and strategies more closely relate to subsequent behavior. 

Process Model Comprehension Test 

As dependent variables, we measured the participants’ performance in a comprehension test about the domain 
modeled (comp-D1 and comp-D2), once for each of the two process domains (“Advertising specific vacancies” and 
“Priority placement”). The domain comprehension questions were similar to those asked in prior studies [Burton-
Jones and Meso, 2008; Recker and Dreiling, 2011], in that they queried the ability to retain different domain 
information about the process modeled in each of the two cases [Mayer, 2009]. 

To be able to contrast the predicted effects about the understandability of a domain from a process model on the 
one hand, with the ability to understand the models per se on the other, we measured, as a control variable, the 
participant’s ability to comprehend grammatical process modeling rules as they apply to the process models 
themselves (comp-M), as used in the literature [Mendling et al., 2012; Recker, 2013]. Similar in nature to our 
measure for prior method knowledge, these comprehension questions quizzed modularity, concurrency, 
exclusiveness, and repetition of the control flow logic present in the process models. 

Participants 

Overall, ninety-two individuals participated in our study. The respondents were spread across three groups of 
modeling practitioners, which we determined based on different levels of domain and method knowledge. The 
grouping was applied to approximate the different cohorts of business users typically engaging with process models. 
One group was selected because of high levels of prior domain knowledge, one group was selected because of high 
levels of prior method knowledge, and a third group was selected because of medium levels of both prior domain 
and prior method knowledge. We selected respondents from these three groups to be able to examine our 
hypotheses across two different types of modeling practitioners, in line with the broad community of business users 
that can be expected to interact with process models. Table 1 summarizes the normalized average scores on prior 
domain and prior method knowledge for each of the three groups of respondents considered. 

Table 1: Respondent Groups by Prior Domain and Prior Method Knowledge 

Respondent group N Average score on prior 
domain knowledge 

Average score on prior 
method knowledge 

Domain experts 35 0.80 0.04 
Method experts 22 0.33 0.68 
Control group 35 0.34 0.30 

The group of domain experts was comprised of thirty-five staff members who were selected from a government 
agency in Queensland, Australia. This group scored highly on prior domain knowledge, because all of them were, as 
part of their jobs, involved in the business processes that were provided as models in this study. This group of 
individuals, therefore, can be considered a proxy for domain experts who take part in process modeling workshops. 

The group of method experts was comprised of twenty-two respondents selected due to their expertise in Business 
Process Modeling. The group consisted of postgraduate students enrolled in a Business Process Management 
course at Eindhoven University of Technology, academic staff at the University of Innsbruck (Austria), and corporate 
partners in the Netherlands. As expected, this group had limited domain knowledge but higher levels of prior method 
knowledge compared to the other two groups (see Table 1). This group of individuals, therefore, can be considered 
a proxy for method experts that take part in process modeling workshops. 

The control group consisted of thirty-five respondents, made up of postgraduate students from the Radboud 
University Nijmegen and Maastricht University, and some Queensland government agency staff members not 
affiliated with the selected processes. Members of this group did not display high scores on either prior domain or 
prior method knowledge. 

To ensure that pooling of the data from the three samples was appropriate, we conducted independent sample t-
tests between the three groups of participants and relevant independent and dependent variables to ensure that 
differences in understanding would not result from significant heterogeneity between the respondent groups. All t-
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tests confirmed that group differences were insignificant, except for the score differences in prior domain and 
method knowledge shown in Table 1. 

V. RESULTS 

After eliminating three incomplete and one invalid case, eighty-eight usable responses were identified. The results 
were examined in two steps. We first screened the data for its conformance with the assumptions of our tests, after 
which we examined the tests of our predictions. 

Data Screening and Validation 

We started by assessing validity and reliability of the Likert-type measures, viz., prior domain knowledge (PDK-D1 
and PDK-D2), self-efficacy (SE), deep/surface learning motive (DM/SM), and deep/surface learning strategy 
(DS/SS), through an exploratory factor analysis implemented in SPSS 19.0 [Tabachnick and Fidell, 2001]. Several 
iterations of the factor analysis were conducted to eliminate problematic measurement items and to see whether our 
item adaptations to the one-episode learning setting was appropriate. It became apparent that some measurement 
items for surface learning strategy needed to be culled due to bad loading. We retained a three-item measure that 
appropriately captures a surface strategy to memorize material in the learning task at hand. Item properties are 
shown in Table 2. Table 3 summarizes scale properties. Appendix A summarizes the final measurements used in 
our analyses. 

Table 2: Item Properties 

Item Mean St. Dev. Loading 
PDK-D1 2.48 1.38 0.92 
PDK-D2 2.61 1.37 0.92 
SE1 3.07 0.94 0.70 
SE2 2.76 0.93 0.60 
SE3 3.07 0.89 0.77 
SE4 3.24 0.92 0.74 
SE5 3.26 0.90 0.69 
SE6 3.56 0.79 0.70 
SE7 2.80 0.89 0.68 
DM1 3.38 1.10 0.65 
DM2 2.88 1.00 0.60 
DM3 3.18 1.26 0.78 
DM4 3.81 0.83 0.73 
SM1 2.53 1.14 0.69 
SM2 3.16 1.13 0.66 
SM3 2.58 1.06 0.64 
DS1 3.65 0.86 0.83 
DS2 3.75 0.63 0.70 
DS3 3.81 0.71 0.80 
SS1 2.40 0.88 0.74 
SS2 2.84 1.02 0.69 
SS3 2.51 0.88 0.76 

 

Table 3: Scale Properties 

Construct Number 
of items 

Average 
factor score 

St. Dev. Cronbach’s 
α 

ρc AVE 

Self-efficacy (SE) 7 3.11 0.63 0.83 0.66 0.80 
Deep learning motive (DM) 
 

4 3.31 0.76 0.68 0.61 0.75 
Surface learning motive (SM) 
 

3 2.76 0.85 0.63 0.65 0.80 
Deep learning strategy (DS) 
 

3 3.73 0.57 0.63 0.66 0.78 
Surface learning strategy (SS) 
 

3 2.58 0.72 0.66 0.68 0.81 

As can be seen from Table 3, all constructs have Cronbach’s α and composite reliability ρc higher than 0.6, which is 
acceptable, given that these scales were developed and used for the first time in a process modeling context. All 
items load significantly and higher on their presumed constructs (all λ > 0.6), and the average variance extracted 
(AVE) for each construct exceeds the variance due to measurement error (i.e., AVE > 0.5). These results suggest 
appropriate convergent validity of the measures. For each construct, the AVE for each construct is also higher than 
the squared correlation between that and any other construct considered, which indicates discriminating validity. 
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Appendix B gives the correlation statistics between the average total factor scores of the multi-item measures and all 
other items, i.e., the single-item scores for previous method knowledge, the two cognitive abilities, the learning style, 
and the three types of comprehension task scores related to the two domains (comp-D1 and comp-D2) and the 
grammatical rules instantiated in the process model (comp-M). It can be seen that several of the considered factors 
correlate significantly with the comprehension task scores, suggesting their adequacy as independent factors. 

We also see that self-efficacy, prior domain, and prior method knowledge do not correlate significantly with the two 
dependent variables. They do correlate with most of the independent factors, however, which suggests that we 
should include these factors as control variables, as visualized in our research model (see Figure 2). We further note 
that both cognitive abilities correlate as expected and that learning styles correlates strongly with abilities, 
knowledge, and strategies. These results were expected. Overall, we do not find any counterintuitive correlations in 
Appendix B. 

Hypothesis Testing 

We ran two tests to examine our hypotheses. 

First, to examine the data collected on H1–H2, H4, and H5, we estimated two hierarchical regression analyses, one 
for each process model. These analyses were carried out with SPSS Version 19.0. 

One assumption behind the use of regression analysis is that the variables are normally distributed. Our data 
screening confirmed that these criteria were met for the measures for abstraction ability and selection ability, the 
dependent variables comp-D1 and comp-D2, as well as for the control variables prior domain knowledge and prior 
method knowledge. The principal components analysis for the factors’ deep learning motive (DM), surface learning 
motive (SM), deep learning strategy (LS), and surface learning strategy (SS), as well as the control variable self-
efficacy (SE), allowed us to extract average total factor scores that also satisfied these assumptions. 

We ran the two three-step hierarchical regression analyses as follows. In step one, we entered prior domain 
knowledge (PDK-1 and PDK-2), prior method knowledge (PMK), and self-efficacy (SE) as control variables. This 
was done because they correspond to broad, stable traits whose impacts are well-established in the model 
understanding literature. In step two, we entered our scores for the two types of cognitive abilities considered, as 
dynamic traits of relevance to the model-based task at hand. In step three, we added the scores for learning motive 
and learning strategy as further dynamic traits. This hierarchical analysis allowed us to test whether each of the 
dynamic traits considered (cognitive abilities, learning process) added significantly to the model. We completed 
these steps for both domain understanding scores for model 1 and model 2. 

Table 4 provides descriptive statistics from the analyses. Tables 5 and 6 provide the details of the two hierarchical 
regression analyses showing the standardized beta coefficients and significance levels. 

 

Table 4: Hierarchical Regression Analyses: Descriptive Statistics 

Variable Mean St. Deviation 

Model comprehension model 1 (comp-D1) 2.92 1.15 

Model comprehension model 2 (comp-D2) 2.13 1.03 

Prior domain knowledge model 1 (PDK-1) 2.48 1.38 

Prior domain knowledge model 2 (PDK-2) 2.61 1.37 

Prior method knowledge score (PMK) 1.74 2.41 

Self-efficacy score (SE) 3.11 0.63 

Abstraction Ability score (AA) 10.94 4.21 

Selection Ability score (SA) 5.35 3.53 

Deep Learning Motive (DM) 3.31 0.76 

Surface Learning Motive (SM) 2.76 0.85 

Deep Learning Strategy score (LS) 3.74 0.57 

Surface Learning Strategy score (SS) 2.58 0.72 
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Table 5: Hierarchical Regression Analysis (Dependent Variable: Comp-D1) 

Term 1: Controls 2: Cognitive 
Abilities 

3: Learning 
Process 

Collinearity 
Statistics 

St. Beta St. Beta St. Beta Tolerance VIF 

PDK-1 0.02 0.13 0.03 0.66 1.52 

PMK 0.10 0.03 -0.07 0.69 1.45 

SE 0.10 0.07 0.08 0.80 1.25 

AA  -0.21 -0.25* 0.55 1.83 

SA  0.46** 0.56*** 0.47 2.12 

DM   0.01 0.66 1.52 

SM   -0.34** 0.80 1.25 

DS   0.18 0.60 1.67 

SS   0.29* 0.74 1.34 

F 0.62 2.40* 3.04**  
F change 0.62 4.97** 3.45** 

R2 change 0.02 0.11* 0.13* 

R2 0.02 0.13 0.26 

* p < 0.05; ** p < 0.01; ***p < 0.001. 

 

Table 6: Hierarchical Regression Analysis (Dependent Variable: Comp-D2) 

Term 1: Controls 2: Cognitive 
Abilities 

3: Learning 
Process 

Collinearity 
Statistics 

St. Beta St. Beta St. Beta Tolerance VIF 

PDK-2 0.05 0.14 0.01 0.63 1.59 

PMK 0.11 0.04 -0.06 0.66 1.52 

SE 0.10 0.08 0.10 0.82 1.22 

AA  -0.28* -0.32* 0.54 1.85 

SA  0.51*** 0.61*** 0.48 2.08 

DM   -0.01 0.66 1.52 

SM   -0.28* 0.79 1.27 

DS   0.16 0.59 1.68 

SS   0.32** 0.72 1.38 

F 0.70 3.04* 3.16**  

F change 0.70 6.41** 2.94* 

R2 change 0.03 0.13** 0.11* 

R2 0.03 0.16 0.27 

* p < 0.05; ** p < 0.01; ***p < 0.001. 

 
We first examine collinearity statistics. Multi-collinearity is present when tolerance is close to 0 (< 0.01; see 
Tabachnick and Fidell, 2001) or the VIF is high (> 10), in which case the beta and p coefficients may be unstable. 
The VIF and tolerance measures shown in Table 5 and Table 6 suggest that multi-collinearity is not an issue in our 
data. 

Perusal of the data in Tables 5 and 6 leads to the following observations. 

First, we note that, after controlling for prior domain knowledge (PDK), prior method knowledge (PMK), and self-
efficacy (SE) as stable traits, cognitive abilities (AA and SA), and learning approach (DM, SM, DS, and SS) as 
dynamic traits significantly aid the explanation of domain understanding in both cases considered. Adding these 
factors step-by-step increased the R2 of the regression models to 0.26 (for comp-D1) and 0.27 (for comp-D2), with 
the changes in R2 being significant in each step (F change = 4.97 and 3.45, both p < 0.01 for model 1; and F 
change = 6.41, p < 0.01 and 2.94, p < 0.05 for model 2). 

Second, H1 and H2 hypothesized different levels of domain understanding depending on selection and abstraction 
abilities. In the final models in Tables 5 and 6, we see that abstraction and selection ability indeed were significant 
predictors of domain understanding (β = 0.56, p < 0.001, and β = -0.25, p < 0.05 for comp-D1; β = 0.61, p < 0.001, 
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and β = -0.32, p < 0.05 for comp-D2). As expected, selection ability had a strong (p < 0.001) positive effect, lending 
support to H1. Abstraction ability had a significant, somewhat weaker (p < 0.05) and consistently negative effect on 
the comprehension scores, as per our expectation in H2. 

Third, H4 and H5 speculated a surface learning approach to be a significant predictor of domain understanding. 
Tables 5 and 6 show that surface motive and surface strategy indeed were significant predictors in both cases (β = -
0.34, p < 0.05, and β = 0.29, p < 0.05 for comp-D1; β = -0.28, p < 0.05, and β = 0.32, p < 0.01 for comp-D2). 
However, for the surface learning motive, we note a directionality reverse to our initial expectation. In line with our 
expectations related to H4 and H5, we found that, for both process models, a deep learning approach (motive and 
strategy) did not emerge as a significant predictor of process model comprehension. 

In a subsequent test, we then examined the data collected on the learning style of the participants (sensing versus 
intuitive) to examine H3. The Felder and Spurlin (2005) test results in scores on a continuum between -11 and +11, 
with negative scores indicating a sensing style and positive scores indicating a preferences for an intuitive learning 
style. 

Therefore, we used an analysis of the co-variance technique implemented in SPSS 19.0, with the independent factor 
learning style, coded as a binary variable (sensing = 0, intuitive = 1) based on the learning style test scores received, 
and again using prior domain knowledge, prior method knowledge, and self-efficacy as covariates. To that end, we 
created three 0/1 dummy variables, one for each covariate, to divide the total factors score for each covariate by the 
respective median to create two groups (high and low). All following results, therefore, have been computed while 
controlling for differences in the covariates considered. The two domain understanding scores were used as a 
dependent factor in the two analyses. Table 7 shows mean values and standard deviations and Table 8 gives the 
results from the two ANCOVA tests. 

Table 7: Means and Standard Deviations for Process Model Comprehension Scores 

Independent Factor N Comp-D1 Comp-D2 
Mean St. deviation Mean St. deviation 

Sensing Learning Style 35 3.25 1.07 2.40 1.01 
Intuitive Learning Style 53 2.70 1.15 2.19 1.01 

 

Table 8: Results from ANCOVA Tests 

Dependent 
Factor 

Independent Factor df F P Partial Eta 
Squared 

Comp-D1 Learning Style 1 5.18 0.03 0.06 
Prior Domain Knowledge model 1 (PDK-1) 1 0.96 0.33 0.01 
Prior Method Knowledge (PMK) 1 0.02 0.88 0.00 
Self-efficacy (SE) 1 0.12 0.74 0.00 

Comp-D2 Learning Style 1 4.30 0.04 0.05 
Prior Domain Knowledge model 2 (PDK-2) 1 1.17 0.28 0.01 
Prior Method Knowledge (PMK) 1 0.10 0.75 0.00 
Self-efficacy (SE) 1 0.09 0.76 0.00 

 
We observe from Table 8 that, as predicted, sensing learners achieved higher domain understanding scores than 
intuitive learners. The data in Table 8 confirms that these score differences are significant at p = 0.03 (model 1) and 
p = 0.04 (model 2). These results lend support to H4. 

Post-hoc Analysis 

To strengthen the confidence in our predictions, we reran the hierarchical regression and the analysis of variance 
tests. This time, we used the model comprehension score (comp-M) that related to understanding the grammatical 
rules by which the process models were constructed as a dependent variable. Recall, our prediction was that none 
of the independent factors considered (cognitive abilities, learning style, learning approach) would be a significant 
predictor of this comprehension score. Our line of thinking here is that comprehension of process modeling rules 
was previously shown to depend on structural model qualities such as connectivity [Vanderfeesten, Reijers, 
Mendling, van der Aalst, and Cardoso, 2008], complexity [Recker, 2013], or modularity [Reijers et al., 2011]. 

We omit the detailed table of results to conserve space. The results were in line with our predictions. Neither the 
regression nor the variance analysis showed any significant relationships between any of the factors considered and 
the comp-M score. This, in turn, strengthened our confidence in the theoretical propositions advanced. 
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VI. DISCUSSION 

Summary of Findings 

Our empirical study set out to test five hypotheses about the effects of dynamic user characteristics and learning 
process factors on process model comprehension, using two process models as test cases. Four of our hypotheses 
received full and strong support from the data. Regarding H4, we found that the data showed a significant but 
reversely-directed effect of the surface learning motive. Five key findings of our empirical study are worth discussing. 

Dynamic traits are of relevance to process model comprehension. 

This finding suggests that appropriate organizational interventions within the scope of a modeling workshop can be 
expected to increase domain understanding. The hierarchical regression analysis shows that, when controlling for 
stable traits (such as prior knowledge), dynamic traits significantly increase the explanatory power of the model. 

Selection ability has a positive effect on domain understanding, while abstraction ability shows a negative effect. 

These findings highlight an important cognitive aspect when viewing process models. The models provide the 
domain information on such an abstract level that model viewers are required to search (and select) the relevant 
information within this set of abstracted material. Cognitive selection skills assist with this task. Cognitive abstraction 
skills, however, appear to be largely detrimental to this search for information as they aggregate the (already 
aggregated) material to an even higher level of abstraction that is counterproductive to understanding specifics 
about the domain that is presented. 

These results are of interest in that they confirm that (a) different types of cognitive abilities are relevant to 
comprehending a process model, and (b) different cognitive abilities have opposite influences on comprehension. 
Our results show that process model comprehension is not merely dependent on people having “better” cognitive 
abilities, but rather that some of these abilities (such as selection ability) are highly relevant, while others (such as 
abstraction ability) are detrimental. Knowing about these oppositional effects is key to designing organizational 
interventions that provide appropriate stimuli that both focus and increase positive influences while limiting or 
prohibiting negative influences. 

A sensing learning style is more suitable to attain domain understanding than an intuitive style. 

This situation is attributed to sensing learners’ preference for details and facts, which suits memorization better than 
the more holistic and innovative learning goals of an intuitor [Felder and Brent, 2005]. Our results are in line with 
these predictions, lending further credibility to the notion of learning styles. 

A surface learning motive has a negative effect on process model comprehension rather than a positive. 

The results, on first sight, appear counterintuitive. However, by expecting that a surface motive would be conducive 
to attaining a memorization goal, we ceded that motives do not only relate to the initiation of behavior but also to 
behavioral composure [Covington, 2000]. Consistently, due to surface learners focusing on the learning product 
rather than the process, a surface motive may have indicated low levels of learning intensity and persistence. 
Clearly, these factors would inhibit any type of favorable learning outcome. This type of interpretation can be seen to 
be in line with research on educational strategies that have shown that surface approaches to learning are often 
associated with a focus on unrelated parts of the learning task, an unreflective association of facts and concepts, 
and a failure to distinguish common principles from specific examples [Ramsden, 1988]. And indeed, our results 
suggest that surface motives do not yield the type of approach of learning that would lead to good process model 
comprehension. Since surface denote choices toward a learning task [Biggs, 1987], this finding is instrumental for 
designing an environment for model learning that reduces the chances that individuals opt for a surface approach. 

A memorization strategy is an effective approach for attaining domain understanding. 

Our data about the impact of learning strategies suggest that goal-strategy compatibility appears to be more 
accurate than a goal-motive relation. In line with our predictions, we also found that strategies focusing on deep 
understanding did not yield positive contributions to developing a domain understanding. These findings further 
emphasize the importance of what actually happens during the process stage toward the development of process 
model understanding. 

Theoretical Implications 

Our article provides evidence that process model comprehension should be regarded as an emergent property of 
the relation between process model and the person viewing the model. Our findings suggest that future research 
into process model comprehension should refrain from taking an exclusively artifact-centric perspective. Instead, the 
inclusion of factors from the presage and process stages of learning should be considered. 
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Furthermore, our work provides additional evidence for the conceptualization of attaining process model 
comprehension as a cognitive process of learning (e.g., Gemino and Wand, 2005; Burton-Jones and Meso, 2008; 
Recker and Dreiling, 2011). Specifically, the effects found in our study add to the explanatory power of prior work 
and together inform a comprehensive body of knowledge on model understanding. This article specifically 
encourages the exploration of alternative presage and process factors to work toward a more integrative 
understanding of the effect of these stages, be it distal factors like personality [Goldberg, 1990] or higher-order 
cognitive factors like memorization [Wang et al., 2006]. 

Finally, future research could extend our approach to measuring aspects of process model comprehension. In this 
articale we chose to examine process model comprehension in terms of retention of domain information. Past 
research suggests that retention is a measure of memorization, different from using knowledge for problem solving 
or other transfer tasks [Gemino and Wand, 2005; Burton-Jones and Meso, 2008; Recker and Dreiling, 2011]. Future 
research could extend our work on model comprehension and examine the domain understanding of individuals who 
use process models to solve problem tasks such as organizational redesign, software specification, certification, and 
others. 

Practical Implications 

We believe our findings inform a largely neglected aspect of process modeling practice―how to instruct and guide 
individual business users working with the models. Indeed, identifying appropriate intervention strategies would 
address one of the top noted issues in current process modeling, viz., defining an appropriate governance of 
modeling workshops [Indulska, Recker, Rosemann, and Green, 2009]. Our focus in this work has been on dynamic 
traits, that is, characteristics of the model user and the learning process that can be influenced through appropriate 
stimuli. Therefore, we can derive from the empirical findings a set of strategies to define interventions that maximize 
the development of domain understanding in process modeling workshops. Specifically, we identify three broad, 
complementary strategies. 

Design appropriate cognitive exercises. 

Cognitive abilities have both positive and negative influences on process model comprehension. Thus, it is 
instrumental to identify appropriate stimuli to activate (only) the relevant cognitive activities immediately prior to the 
workshop. Similar stimulus/activation techniques are widespread in creative problem solving (e.g., Martinsen, 1993), 
and our findings suggest applying similar techniques in process modeling workshops. Precisely, cognitive selection 
activities should be stimulated while cognitive abstraction abilities should be prohibited where possible. This could 
be achieved either through appropriate instructive communication (“Make sure that you try not to abstract the 
information in the model.”) or, potentially more effectively, through relevant warm-up exercises, such as those 
provided in the Kit of Factor-referenced Cognitive Tests [Ekstrom et al., 1976], or through the design of new stimuli 
techniques. 

Use appropriate instructive communication. 

The positive effects of selection ability and a sensing learning style suggest that it is more effective to have people 
walk through a model step-by-step, rather than have them focus more holistically on making sense of the bigger 
picture. This is a highly actionable item for instructive communication, for instance, in presentations or prefaces. An 
appropriate instructive communication message, for example, could make use of multimedia techniques that explain 
how to inspect process models. Multimedia messaging is a highly effective technique promoted in learning contexts 
[Mayer, 2009]. One way to operationalize this technique in process modeling workshops is to have the flow of tokens 
through process models displayed in an animated and narrated video sequence. 

Implement expectation management. 

The effects of learning motive and learning strategy emphasize that facilitating understanding is not only a matter of 
training but also of managing expectations. It, thereby, reemphasizes the notion of clearly informing business users 
on the purpose of a model in order to prevent them from entering the learning process with a lack of composure. Our 
findings further suggest that the approaches taken by individuals to make sense of a process model warrant close 
attention. Motive and strategy can be shaped through appropriate environment-setting and instructions. Therefore, 
our findings inform organizations how to use educational strategies (e.g., Ramsden, 1988) to facilitate a working 
environment in which business users working with process models can put them to their best possible use. 

VII. CONCLUSIONS 

Process modeling is a popular and relevant use of conceptual modeling for systems analysis and design tasks. We 
contribute to the related body of knowledge by extending our understanding of individual difference factors and their 
relevance to process model comprehension. We found that different cognitive abilities, different learning styles, and 



 

 

Volume 34 Article 9 
215 

different learning motives and strategies are significantly associated with the level of comprehension of domain 
information generated from a process model. 

Overall, our findings suggest that individual dynamic user characteristics are important elements in such studies and 
relevant to the practice of process modeling in general. Our work informs process modeling work and outcomes and 
may ultimately lead to a more successful application of process models by identifying actionable items on preparing 
business users to their use. 
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APPENDIX A: FINAL MEASUREMENT ITEMS USED 

Control Variables 

Self-efficacy, adapted from Phillips and Gully [1997], anchored between “Strongly Disagree” and “Strongly Agree” 

1. I feel confident in my ability to perform well on the upcoming assessment. 
2. I am not confident that I will do as well on this assessment as I would like. 
3. I don’t feel that I am capable of performing as well on this assessment as others. 
4. I am a fast learner for these types of assessments, in comparison to other people. 
5. I would have to practice for a long time to be able to do well on this assessment. 
6. I think that my performance will be adequate on this assessment. 
7. I am sure that I can learn the techniques required for the next assessment in a short period of time. 
8. On average, other individuals are probably not as capable of doing as well on this assessment as I am. 

Prior Domain Knowledge, adapted from Burton-Jones and Meso [2008], anchored between “Very Low” and “Very 
High” 

1. Compared to other staff working in the area of processing vacancies, I would rate my level of knowledge in this 
area as… 

2. If I were asked a question about priority placements, I would rate the likelihood of my being able to answer this 
question correctly as… 

Prior Method Knowledge, adapted from Mendling et al. [2012] [True/False] 

1. For exclusive choices, exactly one of the alternative branches is activated. 
2. Exclusive choices can be used to model a repetition. 
3. If two activities are concurrent, then they are executed at the same time. 
4. If an activity is modeled to be part of a loop, then it has to be executed at least once. 
5. For joining multiple paths out of an OR split, you can use either XOR or AND gateways. 
6. An OR gateway activates either one or all outgoing paths. 
7. Every task in a process model has to be executed at least once. 
8. A process model can have multiple starts and ends. 

User Abilities 

Learning Style, adapted from Felder and Spurlin [2005] 

1. I would rather be considered 
a. realistic 
b. innovative 

2. If I were a teacher, I would rather teach a course 
a. that deals with facts and real life situations 
b. that deals with ideas and theories 

3. I find it easier 
a. to learn facts 
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b. to learn concepts 
4. In reading nonfiction, I prefer  

a. something that teaches me new facts or tells me how to do something 
b. something that gives me new ideas to think about 

5. I prefer the idea of 
a. certainty 
b. theory 

6. I am more likely to be considered 
a. careful about the details of my work 
b. creative about how to do my work 

7. When I am reading for enjoyment, I like writers to 
a. clearly say what they mean 
b. say things in creative, interesting ways 

8. When I have to perform a task, I prefer to 
a. master one way of doing it 
b. come up with new ways of doing it 

9. I consider it higher praise to call someone 
a. sensible 
b. imaginative 

10. I prefer courses that emphasize 
a. concrete material (facts, data) 
b. abstract material (concepts, theories) 

11. When I am doing long calculations, 
a. I tend to repeat all my steps and check my work carefully 
b. I find checking my work tiresome and have to force myself to do it 

Abstraction Ability and Selection Ability 

The material is available from Ekstrom et al. [1976] and de Wit and Compaan [2005] or from the contact author upon 
request. 

Approach to Learning 

Deep Motive, adapted from Kember et al. [2004], anchored between “Strongly Disagree” and “Strongly Agree” 

1. I feel that nearly any topic can be highly interesting once I get into it. 
2. I come to most (refresher) courses with questions in mind that I want answered. 
3. I find I am continually going over my work in my mind at times like when I am on the bus, walking, or lying in 

bed, and so on. 
4. I like to do enough work on a topic so that I can form my own conclusions before I am satisfied. 

Surface Motive, adapted from Kember et al. [2004], anchored between “Strongly Disagree” and “Strongly Agree” 

1. I will be discouraged by a poor result on this assessment and will worry about how I will do in future 
assessments. 

2. Whether I like it or not, I can see that doing well in assessments is a good way to move up the corporate ladder. 
3. I desire to get good qualifications in assessments like this because I feel that I will then be able to get a reward 

later on. 

Deep Strategy, adapted from Kember et al. [2004], anchored between “Strongly Disagree” and “Strongly Agree” 
1. I will try to relate what I learn in this assessment to what I have learned in other situations. 
2. As I am engaged in the assessment I will try to relate new material to what I already know on that topic. 
3. When I undertake this assessment I will try to understand what the modeler meant with the model. 

Surface Strategy, adapted from Kember et al. [2004], anchored between “Strongly Disagree” and “Strongly Agree” 

1. I will aim to memorize the models by repetition, going over and over them until I know them by heart even if I do 
not understand them. 

2. I find the best way to pass assessments is to try to remember answers to likely questions. 
3. I find I can get by in most assessments by memorizing key sections rather than trying to understand them. 
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Model Comprehension 

Domain Surface Understanding Questions―“Advertising Specific Vacancies” process [Yes/No] 

1. An Agency is required to go through the priority placement process prior to sending government agency 
documentation to request advertising for a vacancy. 

2. The government agency Recruitment Team is responsible for identifying the priority placement phase 
appropriate for each vacancy in line with the documentation provided by the Agency. 

3. The process depicted in the model has only one possible end state. 
4. Creating an appointment vacancy within the support system is a responsibility of the government agency 

Recruitment Team. 
5. For every vacancy processed, the identification of the priority placement phase is completed before sending 

applications to the panel. 

Domain Surface Understanding Questions―“Priority Placement” process [Yes/No] 

1. Checking for errors and checking for changes involve the same remedial action when an error or change is 
identified. 

2. An ad could have multiple priority placement phases but must have at least one. 
3. The determination of a priority placement phase must be done at the same time as arranging the press 

placement for each vacancy. 

Process Model Comprehension Control Questions [Yes/No] 

1. The process “Advertising Specific Vacancies” is a part of the “Priority Placement” process. [Modularity] 
2. A Processor can “Conduct a Self-check” at the same time that the Checker is doing the task of “Conduct Check,” 

but they don’t always have to be done at the same time. [Concurrency] 
3. “Update Role Description” and “Enter Details and Load Documents into RASP” are tasks which must be 

completed for every vacancy that is advertised. [Exclusiveness] 
4. For every vacancy processed, the task “Complete Details in Support System” is executed only once. [Repetition] 

APPENDIX B: CORRELATION STATISTICS 

 
Table B1: Item Correlations 

SS DS SM DM LS SA AA SE PMK PDK-
D2 

PDK-
D1 

Comp-
M 

Comp-
D2 

  

0.11 0.05 -0.21 0.02 -0.24 0.28 0.06 0.12 0.11 -0.02 0.00 0.04 0.94 Comp-
D1 

0.15 0.02 -0.15 0.02 -0.22 0.29 0.02 0.12 0.11 0.01 0.02 0.10 0 Comp-
D2 

0.00 0.18 0.05 0.00 -0.10 0.02 0.03 -0.03 0.12 0.01 0.01     Comp-
M 

0.20 0.02 -0.12 -0.05 0.25 -0.47 -0.40 0.09 -0.34 0.93       PDK-
D1 

0.22 0.00 -0.14 -0.07 0.25 -0.46 -0.42 0.03 -0.39         PDK-
D2 

0.05 0.22 0.09 0.25 -0.26 0.39 0.32 0.20           PMK 

-0.09 0.36 0.09 0.19 -0.17 0.14 0.16             SE 

-0.12 0.07 0.05 0.05 -0.23 0.65               AA 

-0.19 0.00 0.11 0.09 -0.40                 SA 

0.10 -0.12 0.12 -0.14                   LS 

0.09 0.45 0.39                     DM 

0.16 0.17                       SM 

-0.25                         DS 
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