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Abstract. Business process modeling has become an important tool for
managing organizational change and for capturing requirements of soft-
ware. A central problem in this area is the fact that the acquisition of as-is
models consumes up to 60% of the time spent on process management
projects. This is paradox as there are often extensive documentations
available in companies, but not in a ready-to-use format. In this pa-
per, we tackle this problem based on an automatic approach to generate
BPMN models from natural language text. We combine existing tools
from natural language processing in an innovative way and augmented
them with a suitable anaphora resolution mechanism. The evaluation of
our technique shows that for a set of 47 text-model pairs from industry
and textbooks, we are able to generate on average 77% of the models
correctly.

1 Introduction

Business process management is a discipline which seeks to increase the effi-
ciency and effectiveness of companies by holistically analyzing and improving
business processes across departmental boundaries. In order to be able to ana-
lyze a process, a thorough understanding of it is required first. The necessary
level of insight can be obtained by creating a formal model for a given business
process.

The required knowledge for constructing process models has to be made ex-
plicit by actors participating in the process [1]. However, these actors are usually
not qualified to create formal models themselves [2]. For this reason, modeling
experts are employed to iteratively formalize and validate process models in col-
laboration with the domain experts. This traditional procedure of extracting
process models involves interviews, meetings, or workshops [3]. It entails con-
siderable time and costs due to ambiguities or misunderstandings between the
involved participants [4]. Therefore, the initial elicitation of conceptual models
is considered to be a knowledge acquisition bottleneck [5]. According to Herbst
[1] the acquisition of the as-is model in a workflow project requires 60% of the
total time spent. Accordingly, substantial savings are possible by providing ap-
propriate tool support to speed up the acquisition phase.
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In this context, it is a paradox that acquisition is costly although detailed
information about processes is often already available in the form of informal
textual specifications. Such textual documents can be policies, reports, forms,
manuals, content of knowledge management systems, and e-mail messages. Con-
tent management professionals estimated that 85% of the information in com-
panies is stored in such an unstructured format [6]. Moreover, the amount of
unstructured text is growing at a much faster rate than structured data [7]. It
seems reasonable to assume that these texts are relevant sources of information
for the construction of conceptual models.

In this paper, we develop an approach to directly extract business process
models from textual descriptions. Our contribution is a corresponding technique
that does not make any assumptions about the structure of the provided text. We
combine an extensive set of tools from natural language processing (NLP) in an
innovative way and augment it with an anaphora resolution mechanism, which
was particularly developed for our approach. The evaluation of our technique
with a set of 47 text-model pairs from industry and textbooks reveals that on
average 77% of the model is correctly generated. We furthermore discuss current
limitations and directions of improvement.

The paper is structured as follows. Section 2 introduces the foundations of
our approach, namely BPMN process models and natural language processing
techniques. Section 3 identifies a set of language processing requirements, and
illustrates how they are tackled in the various steps of our generation approach.
Section 4 presents our evaluation results based on a sample of text-model pairs.
Section 5 discusses related work before Section 6 concludes the paper.

2 Background

Generating models builds on understanding the essential concepts of BPMN
process models and of state-of-the-art techniques for natural language processing.
In this section, we introduce BPMN and then natural language processing tools.

The Business Process Model and Notation (BPMN) is a standard for process
modeling that has been recently published in its version 2.0 [8]. It includes four
categories of elements, namely Flow Objects (Activities, Events and Gateways),
Swimlanes (Pools and Lanes), Artifacts (e.g. Data Objects, Text Annotations
or Groups), and Connecting Objects (Sequence Flows, Message Flows and Asso-
ciations). The first three are nodes, the latter ones are edges. Figure 1 shows a
BPMN example of a claims handling process provided by QUT. The process is
subdivided into three pools (one with two lanes) capturing the actors of the pro-
cess. Activities are depicted as rounded boxes. Different events (round elements
with icons) for sending and receiving messages affect the execution of the process.
The diamond-shaped elements define specific routing behavior as gateways.

A BPMN process model is typically the result of analyzing textual descrip-
tions of a process. A claims handling process provided by QUT is described as
follows: “The process starts when a customer submits a claim by sending in
relevant documentation. The Notification department at the car insurer checks
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Fig. 1. Example of a claims handling process in BPMN

the documents upon completeness and registers the claim. Then, the Handling
department picks up the claim and checks the insurance. Then, an assessment
is performed. If the assessment is positive, a garage is phoned to authorise the
repairs and the payment is scheduled (in this order). Otherwise, the claim is re-
jected. In any case (whether the outcome is positive or negative), a letter is sent
to the customer and the process is considered to be complete.” Such information
is usually provided by people working in the process and then formalized as a
model by system analysts [2].

For our model generation approach, we will employ methods from compu-
tational linguistics and natural language processing. This branch of artificial
intelligence deals with analyzing and extracting useful information from natural
language texts or speech. For our approach, three concepts are of vital impor-
tance: syntax parsing, which is the determination of a syntax tree and the gram-
matical relations between the parts of the sentence; semantic analysis, which
is the extraction of the meaning of words or phrases; and anaphora resolution,
which involves the identification of the concepts which are references using pro-
nouns (“we”,“he”,“it”) and certain articles (“this”, “that”). For syntax parsing
and semantic analysis, there are standard tools available.

The Stanford Parser is a syntax parsing tool for determining a syntax tree.
This tree shows the dependencies between the words of the sentence through the
tree structure [10]. Additionally, each word and phrase is labeled with an appro-
priate part-of-speech and phrase tag. The tags of the Stanford Parser are the
same which can be found in the Penn Tree Bank [11]. The Stanford Parser also
produces 55 different Stanford Dependencies [12]. These dependencies reflect the
grammatical relationships between the words. Such grammatical relations pro-
vide an abstraction layer to the pure syntax tree. They also contain information
about the syntactic role of all elements.
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There are also tools available for semantic analysis. They provide semantic
relations on different levels of detail. We use FrameNet [13] and the lexical
database WordNet[14]. WordNet provides various links to synonyms, homonyms,
and hypernyms for a particular class of meaning associated with a synonym-set.
FrameNet defines semantic relations that are expected for specific words. These
relations are useful, e.g., to recognize that a verb “send” would usually go with
a particular object being sent. Syntax parsers and semantic analysis are used in
our transformation approach, augmented with anaphora resolution.

3 Transformation Approach

The most important issue we are facing when trying to build a system for gener-
ating models is the complexity of natural language. We collected issues related
to the structure of natural language texts from the scientific literature and an-
alyzed the test data, which is described in section 4. Thereby, we were able to
identify four broad categories of issues which we have to solve in order to ana-
lyze natural language process descriptions successfully (see Table 1). Syntactic
Leeway relates to the fact that there is a mismatch between the semantic and
syntactic layer of a text. Atomicity deals with the question of how to construct
a proper phrase-activity mapping. Relevance has to check whether parts of the
text might be irrelevant for the generated process model. Finally, Referencing
addresses the question of how to resolve relative references between words and
between sentences.

Table 1. References in the literature to the analyzed issues

Issue Refs. Issue Refs.

1 Syntactic Leeway 3 Relevance
1.1 Active-Passive [15] 3.1 Relative Clause Importance [16]
1.2 Rewording/Order [17,18] 3.2 Example Sentences [19]
1.3 Implicit Conditions [20,21] 3.3 Meta-Sentences [16]

2 Atomicity 4 Referencing
2.1 Complex Sentences [16,18] 4.1 Anaphora [22,23]
2.2 Action Split over Sentences [22] 4.2 Textual Links [24]
2.3 Relative Clauses [16] 4.3 End-of-block Recognition [19,16]

Different solution strategies were applied in the works listed in Table 1 to
overcome the stated problems, e.g. by constricting the format of the textual input
[17], but no study considers all mentioned problems and offers a comprehensive
solution strategy. Another interesting fact is that none of the works using a
shallow parser shows how they deal with passive voice [15,22,23,17]. We solved
this problem by using the grammatical relations of the Stanford Parser.

To obtain a structured representation of the knowledge we extract from the
text, we decided to store it in a World Model, as opposed to a direct straight
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through model generation. This approach was also taken by most of the other
works which built a similar system [17,22,18,23]. The data structure used by the
approach of the University of Rio de Janeiro [23] was taken from the CREWS
project [15]. The authors argue that it is suited well for this task as a scenario
description corresponds to the description of a process model. Therefore, we also
use the CREWS scenario metamodel as starting point. However, we modified
several parts as, e.g., we explicitly represent connections between the elements
using the class “Flow”. Additionally, we explicitly considered traceability as a
requirement. Thus, attributes relating an object to a sentence or a word are
added to the World Model. The four main elements of our World Model are
Actor, Resource, Action, and Flow. This World Model will be used throughout
all phases of our transformation procedure to capture syntactic and semantic
analysis results. Each phase is allowed to access, modify and add data.

The rest of this section is dedicated to analyzing and discussing the issues
collected in Table 1. We will then seize the developed suggestions and reference
these issues during the description of our transformation approach. Section 3.1
discusses sentence level analysis for finding actions. Section 3.2 investigates text
level analysis for enriching the data stored in the world model. Finally, Sec-
tion 3.3 describes the generation of a BPMN model. While we focus on the
general procedure here, we documented details of all algorithms in [25].

3.1 Sentence Level Analysis

The first step of our transformation procedure is a sentence level analysis. The
extraction procedure consists of the steps that are outlined as a BPMN model
in Figure 2. This overview also shows the different components upon which our
transformation procedure builds and their usage of Data Sources.

The text is processed in several stages. First, a tokenization splits up the text
into individual sentences. The challenge here is to distinguish a period used for
an abbreviation (e.g. M.Sc.) from a period marking the end of a sentence.

Fig. 2. Structural overview of the steps of the Sentence Level Analysis
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Afterwards, each sentence is parsed by the Stanford Parser using the factored
model for English [11]. We utilize the factored model and not the pure proba-
bilistic context free grammar, because it provides better results in determining
the dependencies between markers as “if” or “then”, which are important for
the process model generation. Next, complex sentences are split into individual
phrases. This is accomplished by scanning for sentence tags on the top level of
the Parse Tree and within nested prepositional, adverbial, and noun phrases.

Once the sentence is broken down into individual constituent phrases, actions
can be extracted. First, we determine whether the parsedSentence is in active
or passive voice by searching for the appropriate grammatical relations (Issue
1.1). Then, all Actors and Actions are extracted by analyzing the grammatical
relations. To overcome the problem of example sentences mentioned earlier (Issue
3.2) the actions are also filtered. This filtering method simply checks whether the
sentence contains a word of a stop word list called example indicators. Then, we
extract all objects from the phrase and each Action is combined with each Object.
The same is done with all Actors. This procedure is necessary as an Action
is supposed to be atomic according to the BPMN specification [8] and Issue
2.1. Therefore, a new Action has to be created for each piece of information as
illustrated in the following example sentences. In each sentence the conjunction
relation which causes the extraction of several Actors, Actions or Resources is
highlighted. As a last step, all extracted Actions are added to the World Model.

◦ “Likewise the old supplier creates and sends the final billing to the cus-
tomer.” (Action)

◦ “It is given either by a sales representative or by a pre-sales employee
in case of a more technical presentation.” (Actor)

◦ “At this point, the Assistant Registry Manager puts the receipt and
copied documents into an envelope and posts it to the party.” (Resource)

3.2 Text Level Analysis

This section describes the text level analysis. It analyzes the sentences taking
their relationships into account. The structural overview of this phase is shown
in Figure 3. We use the Stanford Parser and WordNet here, and also an anaphora
resolution algorithm. During each of the five steps, the Actions previously added
to the World Model are augmented with additional information.

An important part of the algorithm presented here is the determination heuris-
tic for resolving relative references within the text (Issue 4.1). Existing libraries
are not seamlessly integrateable with the output provided by the Stanford Parser.
Therefore, we implemented a simple anaphora resolution technique for the reso-
lution of determiner and pronouns. This procedure is described in detail in [25].
An experimental evaluation using our test data set showed that this approach
achieved a good accuracy of 63.06%.

The second step in our analysis is the detection of conditional markers. These
markers can either be a single word like “if”, “then”, “meanwhile” or “other-
wise”, or a short phrase like “in the meantime” or “in parallel”. All of these
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Fig. 3. Structural overview of the steps of the Text Level Analysis

markers have specific characteristics and can be mapped to different BPMN
constructions. In order to capture this semantic information we compiled four
lists, namely ConditionIndicators (exclusive gateway), ParallelIndicators (paral-
lel gateway), ExceptionIndicators (for Error Intermediate Events), and Sequen-
ceIndicators (for the continuation of a branch of a gateway). These lists do not
claim completeness and can be extended by the user, if necessary.

We can use the information gathered so far to combine the information con-
tained in two different Actions. This procedure tackles the problem of Actions
which are split up over several sentences (Issue 2.2). To consider two Actions as
a candidate for a merger, a reference had to be established between them during
the anaphora resolution phase. This reference can either directly point from the
Actor or from the Object of this Action. But, for the case that the Object points
to another Actor or Resource we also consider the Action which contains it as
a possible candidate. Next, it is checked whether the objects can be merged by
checking various characteristics of both Actions. If the actions truly complement
each other, they can be merged and form one single action. When both Actions
complement each other except for the negation modifier we can still enhance the
information content of one action by copying information, as the initiating Actor,
the Object, and/or the copula attribute. An example for such a case are these
sentences: “Of course, asking the customer whether he is generally interested is
also important.” and “If this is not the case, we leave him alone, [...]”

For Issue 4.2, we defined three types of textual references: forward, backward,
and jump references. In order to identify those links in the text automatically,
we start by comparing all actions within our World Model to one another. It
is then determined whether the selected actions can be linked or not. Within
this method, we compare the following characteristics of both Actions: Copula
Specifier, Negation Status, the initiating Actor (ActorFrom), the Object, the
open clausal complement, and the Prepositional Specifiers, whose head word is
“to” or “about”. The elements are compared using their root form provided by
WordNet. If the elements differ or an element is defined for one Action, but
not for the other, the Actions cannot be merged. Otherwise, the Actions are
considered equal and a link relationship can be established. Additionally, the
type of the link relationship is determined and saved along with the link.



Process Model Generation from Natural Language Text 489

The last step of the text level analysis is the generation of Flows. A flow
describes how activities are interacting with each other. Therefore, during the
process model generation such Flows can be translated to BPMN connecting
objects. When creating the Flows we build upon the assumption that a process
is described sequentially and upon the information gathered in the previous steps.
The word, which connected the items is important to determine how to proceed
and what type of gateway we have to create. So far we support a distinction
between “or”, “and/or”, and “and”. Other conjunctions are skipped.

3.3 Process Model Generation

In the last phase of our approach the information contained in the World Model
is transformed into its BPMN representation. We follow a nine step procedure, as
depicted in Figure 3.3. The first 4 steps: creation of nodes, building of Sequence
Flows, removal of dummy elements, the finishing of open ends, and the processing
of meta activities are used to create an initial and complete model. Optionally,
the model can be augmented by creating Black Box Pools and Data Objects.
Finally, the model is laid out to achieve a human-readable representation.

Fig. 4. Structural overview of the steps of the Process Model Generation phase

The first step required for the model creation is the construction of all nodes
of the model. After the Flow Object was generated, we create a Lane Element
representing the Actor initiating the Action. If no Lane was determined for an
Action, it is added to the last Lane which was created successfully as we assume
that the process is described in a sequential manner. The second step required
during the model creation is the construction of all edges. Due to the defini-
tion of Flows within our World Model, this transformation is straight-forward.
Whenever a Flow which is not of the type “Sequence” is encountered, a Gate-
way appropriate for the type of the flow is created. An exception to that is the
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type “Exception”. If the World Model contains a flow of this type, an exception
intermediate event is attached to the task which serves as a source and this In-
termediate Event is connected to the target instead of the node itself. We then
skip dummy actions, which were inserted between gateways directly following
each other.

Step four is concerned with open ends. So far, no Start and End Events
were created. This is accomplished in this step. The procedure is also straight
forward. We create a preceding Start event to all Tasks which do not have any
predecessors (in-flow = 0) and succeeding End Events to all Tasks which do
not have any successors (out-flow = 0). Additionally, Gateways whose in- and
out-flow is one receive an additional branch ending in an End Event.

The last step in the model creation phase handles Meta-Activities (Issue 3.3).
We search and remove redundant nodes directly adjacent to Start or End Events.
This is required as several texts contain sentences like “[...] the process flow at
the customer also ends.” or “The process of “winning” a new customer ends
here.” If such sentences are not filtered, we might find tasks labeled “process
ends” right in front of an end event or “start workflow” following a start event.
We remove nodes whose verb is contained in the hypernym tree of “end” or
“start” in WordNet if they are adjacent to a Start or End Event.

The execution of these five steps yields a full BPMN model. As the elements of
this model do not contain any position information yet, our generation procedure
concludes with an automated layout algorithm. We utilize a simple grid layout
approach similar to [26], enhanced with standard layout graph layout algorithms
as Sugiyama [27] and the topology-shape-metric approach [28]. For the example
text of the claims handling process from Section 2 we generated the model given
in Figure 5. The question of how far this result can be considered to be accurate
is discussed in the following section.

4 Evaluation of Generated Process Models

For the validation of our approach, we collected a test data set consisting of
47 of those text-model pairs, each including a textual process description and
a corresponding BPMN models created by a human modeler. Different sources
from research and practice were incorporated into our test data set: Academic
(15 models), Industry (9 models), Textbook (9 models), and Public Sector (14
models), see Table 2. While the academic pairs were provided by our university
partners, the industry models are taken from two main sources. First, we gath-
ered four models from the websites of three BPM tool vendors, namely Active
VOS, Oracle, and BizAgi. Four models stem from training material of inubit
AG, another one from a German BPM practitioner, and further ones from two
BPMN textbooks [29,9]. Finally, we included the definition of switch processes
of the Federal Network Agency of Germany in its semi-structured tabular format
and the corresponding model.

To avoid unintended effects while parsing, minor corrections were applied
to the texts. Some models were translated, some were converted from other
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Fig. 5. The claims handling model as generated by our system

modeling languages to BPMN in order to compare them. Table 2 lists character-
istics of the texts and models of our data set. The table captures the following
data: a unique ID, the number of models (M), the number of sentences (n), the
average length of sentences (∅l), the size of the models in terms of nodes (|N |),
gateways (|G|), and edges (|E|). All our material is published in [25].

The evaluation results are based on the similarity (sim) between the manually
and automatically created models. We employ the metric of Graph Edit Distance.
To compute the Graph Edit Distance, the graph representation of the process
models is analyzed. The labels, attributes, the structural context, and behavior
are compared [32]. Afterwards a greedy graph matching heuristic [33] is employed

Table 2. Characteristics of the test data set by source (average values)

ID Source M Type n ∅l |N | |G| |E|
1 HU Berlin 4 academic 10.00 18.14 25.75 6.00 24.50
2 TU Berlin [30] 2 academic 34.00 21.17 71.00 9.50 79.50
3 QUT 8 academic 6.13 18.26 14.88 1.88 16.00
4 TU Eindhoven [31] 1 academic 40.00 18.45 38.00 8.00 37.00
5 Vendor Tutorials 4 industry 9.00 18.20 14.00 2.25 11.50
6 inubit AG 4 industry 11.50 18.38 24.00 4.25 21.25
7 BPM Practicioners 1 industry 7.00 9.71 13.00 1.00 9.00
8 BPMN Prac. Handbook [9] 3 textbook 4.67 17.03 13.00 1.33 14.67
9 BPMN M&R Guide [29] 6 textbook 7.00 20.77 23.83 3.00 23.67
10 FNA - Metrology Processes 14 public sector 6.43 13.95 24.43 3.14 25.93

Total 47 9.19 17.16 23.21 3.38 23.64
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to create pairs of nodes and edges. We use the greedy heuristic as it showed the
best performance without considerable accuracy trade-offs. After the mapping
is created, a Graph Edit Distance value can be calculated given:

◦ Ni - set of nodes in model i
◦ Ei - set of edges of model i
◦ Ni - the set of nodes in model i which were not mapped
◦ Ei - the set of edges in model i which were not mapped
◦ M - The mapping between the nodes of model 1 and 2

An indicator for the difference between the models can be calculated as:

m∗ =

{∑|M|
i=1 1 − sim(Mi) if|M | > 0

1.0 otherwise
(1)

As a last step weights for the importance of the differences (wmap), the un-
mapped Nodes (wuN), and the unmapped Edges (wuE) have to be defined. For
our experiments we gave the difference a slightly higher importance and assigned
wmap = 0.4 and wuN = wuE = 0.3. The overall graph edit distance then becomes:

sim(m1, m2) = 1 − (wmap ∗ m∗

|M | + wuN ∗ |N1| + |N2|
|N1| + |N2| + wuE ∗ |E1| + |E2|

|E1| + |E2| ) (2)

This value ranges between 0 and 1. For the case that all nodes could be mapped
with a similarity of 1.0 the terms will also become 1.0. If the mapping is not
optimal, the term in parenthesis will grow steadily and the similarity decreases.
If no nodes are mapped at all, the similarity will be 0.

For our evaluation, we generated the model for each text and calculated the
similarity metric between it and the original BPMN model. The results are
shown in Table 3. Columns 2-4 show that the concepts of meta sentences, relative
references, and textual jumps are important for almost all elements within our
test data. The following six columns show the average values of nodes, gateways,

Table 3. Result of the application of the evaluation metrics to the test data set

ID m r j |Ngen| Δ|Ngen| |Ggen| Δ|Ggen| |Egen| Δ|Egen| sim

1 3 5,25 0 30,25 14,88% 5,50 -9,09% 28,75 14,78% 77,94%
2 7,50 7,50 2,50 91,50 22,40% 13,00 26,92% 94,00 15,43% 70,79%
3 0,50 1,38 0,00 20,25 26,54% 2,63 28,57% 20,13 20,50% 78,78%
4 8,00 4,00 1,00 63,00 39,68% 1,00 -700,00% 52,00 28,85% 41,54%
5 1,25 1,75 1,75 24,75 43,43% 4,25 47,06% 23,00 50,00% 63,63%
6 2,25 8,00 0,50 29,75 19,33% 2,75 -54,55% 25,25 15,84% 60,93%
7 0,00 5,00 0,00 14,00 7,14% 2,00 50,00% 11,00 18,18% 74,35%
8 0,00 5,00 0,33 13,33 2,50% 1,00 -33,33% 10,33 -41,94% 77,49%
9 0,83 1,50 0,33 22,33 -6,72% 3,33 10,00% 20,83 -13,60% 71,77%
10 0,00 0,21 0,36 25,29 3,39% 3,71 15,38% 27,29 4,97% 89,81%

Total 1,23 2,60 0,49 27,43 15,36% 3,72 9,14% 26,77 11,69% 76,98%
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and edges within the generated models. We can see that the transformation
procedure tends to produce models which are on average 9-15% larger in size
then what a human would create. This can be partially explained by noise and
meta sentences which were not filtered appropriately. On the other hand, humans
tend to abstract during the process of modeling. Therefore, we often find more
detail of the text also in the generated model. The results are highly encouraging
as our approach is able to correctly recreate 77% of the model in average. On
a model level up to 96% of similarity can be reached, which means that only
minor corrections by a human modeler are required.

During the detailed analysis we determined different sources of failure, which
resulted in a decreased metric value. These are noise, different levels of abstrac-
tions, and processing problems within our system. Noise includes sentences or
phrases that are not part of the process description, as for instance “This ob-
ject consists of data elements such as the customers name and address and the
assigned power gauge.” While such information can be important for the under-
standing of a process, it leads to unwanted Activities within the generated model.
To tackle this problem, further filtering mechanisms are required. Low similarity
also results from difference in the level of granularity. To solve this problem, we
could apply automated abstraction techniques like [34] on the generated model.
Finally, the employed natural language processing components failed during the
analysis. At stages, the Stanford Parser failed at correctly classifying verbs. For
instance, the parser classified “the second activity checks and configures” as a
noun phrase, such that the verbs “check” and “configure” cannot be extracted
into Actions. Furthermore, important verbs related to business processes are
not contained in FrameNet, as “report”. Therefore, no message flow is created
between report activities and a Black Box Pool. We expect this problem to
be solved in the future as the FrameNet database grows. With WordNet, for
instance, there is a problem with times like “2:00 pm”, where pm as an abbre-
viation for “Prime Minister” is classified as an Actor. To solve this problem a
reliable sense disambiguation has to be conducted. Nevertheless, overall good
results were achieved by using WordNet as a general purpose Ontology.

5 Related Work

Recently, there is an increasing interest in the derivation of conceptual models
from text. This research is mainly conducted by six different groups.

Two approaches generate UML models. The Klagenfurt Conceptual Pre-design
Model and a corresponding tool are used to parse German text and fill instances
of a generic meta-model [35]. The stored information can be transformed to UML
activity diagrams and class diagrams [18]. The transformation from text to the
meta-model requires the user to make decisions about the relevant parts of a
sentence. In contrast to that, the approach described in [36] is fully automated.
It uses use-case descriptions in a format called RUCM to generate activity di-
agrams and class diagrams [17]. Yet, the system is not able to parse free-text.
The RUCM input is required to be in a restricted format allowing only 26 types
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of sentence structures, which rely on keywords like “VALIDATES THAT” or
“MEANWHILE”. Therefore, it can hardly be used in the initial process defini-
tion phase as it would require rewriting of process-relevant documents.

The University of Rio de Janeiro focuses on the derivation of BPMN models
from group stories provided in Portuguese [23]. The approach was tested with
a course enrollment process modeled by students. The examples in their paper
show that process models can be created successfully, but a couple of their ex-
hibits show that syntactical problems can occur, e.g. implicit conditions, which
we explicitly tackle with our approach. The R-BPD toolkit from the Univer-
sity of Wollongong uses a syntax parser to identify verb-object phrases [21]. It
also identifies textual patterns like “If <condition/event>, [then] <action>” [20].
The result are rather BPMN snippets than fully connected models. Nevertheless,
this toolkit is able to take existing models into account for cross validation.

A fifth approach is the one of Policy-Driven Process Mapping [37]. First, a
procedure was developed which creates a BPMN diagram, given that data items,
tasks, resources (actors), and constraints are identified in an input text document.
Although the approach does not require a process description to be sequential,
it does not support Pools, Data Objects, and Gateways other than an exclusive
split. Furthermore, user-interaction is required at several stages.

The approach by Sinha et al. builds on a linguistic analysis pipeline [22,38].
First, text is preprocessed with a part-of-speech tagger. Next, words are anno-
tated with dictionary concepts, which classify verbs using a domain ontology.
Then, an anaphora resolution algorithm and a context annotator are applied.
The resulting information is then transferred to a Use Case Description meta-
model and later into a BPMN process model. The dictionary concepts, which
are a vital part of their approach, rely on a domain ontology which has to be
hand-crafted. This imposes a manual effort when transferring the system to other
types of texts or languages. Instead, our approach builds on the free WordNet
and FrameNet lexical databases, which are available for different languages.

6 Conclusion

In this paper, we presented an automatic approach to generate BPMN mod-
els from natural language text. We have combined existing tools from natural
language processing in an innovative way and augmented them with a suitable
anaphora resolution mechanism. The evaluation of our technique shows that for
a set of 47 text-model pairs from industry and textbooks, we are able to generate
on average 77% of the models correctly.

Despite these encouraging results, we still require empirical user studies. Such
studies should investigate whether humans find the generated models useful and
easy to adapt towards a fully accurate model. Furthermore, our system is able to
read process descriptions consisting of full sentences. Furthermore, we assumed
the description to be sequential and to contain no questions and little process-
irrelevant information. Another prerequisite is that the text is grammatically
correct and constituent. Thus, the parsing of structured input, like tables or
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texts making use of indentions, or texts which are of low quality is not possible
at the moment and presents opportunities for further research.

While the evaluation conducted in this thesis evinced encouraging results
different lines of research could be pursued in order to enhance the quality or
scope of our process model generation procedure. As shown the occurrence of
meta-sentences or noise in general is one of the severest problems affecting the
generation results. Therefore, we could improve the quality of our results by
adding further rules and heuristics to identify such noise. Another major source
of problems was the syntax parser we employed. As an alternative, semantic
parsers like [39] could be investigated.
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