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Abstract Many models of the design and development

process have been published over the years, representing it

for different purposes and from different points of view.

This article contributes an organising framework that

clarifies the topology of the literature on these models and

thereby relates the main perspectives that have been

developed. The main categories of model are introduced.

Their contexts, advantages, and limitations are considered

through discussion of selected examples. It is demonstrated

that the framework integrates coverage of earlier reviews

and as such provides a new perspective on the literature.

Finally, key characteristics of design and development

process models are discussed considering their applications

in practice, and opportunities for further research are sug-

gested. Overall, the article should aid researchers in posi-

tioning new models and new modelling approaches in

relation to state-of-the-art. It may also be of interest to

practitioners and educators seeking an overview of devel-

opments in this area.

Keywords Process models � Design and development �

Literature review � Organising framework

1 Introduction

In comparison to many other processes, the design and

development process (DDP) is especially challenging to

navigate and manage. Researchers have developed

numerous process models to understand, improve, and

support the DDP considering its particular characteristics.

However, the complexity is such that no single model can

address all the issues. Furthermore, the many models that

have been developed are diverse in focus and formulation.

This article aims to summarise the current thinking in the

area by providing an up-to-date overview of DDP models,

and by developing an organising framework that positions

them in relation to one another.

The models we consider are motivated by, and aim to

address, certain characteristics of the DDP that distinguish

it from many other processes. In particular, the DDP tends

to involve significant elements of novelty, complexity, and

iteration. The following paragraphs introduce these inter-

related issues and outline how process models can help to

address them, before moving on to discuss this article’s

contribution.

First, considering novelty, ‘‘design processes seek to do

something novel, once, whereas many other business pro-

cesses seek to do the same thing repetitively’’ (O’Donovan

et al. 2005). In consequence, every DDP is unique and

involves a degree of uncertainty (Eckert and Clarkson

2010). New activities are typically discovered during pro-

jects (Karniel and Reich 2011); the process sequence is

unpredictable, because tasks are progressively concretised

and adjusted as work proceeds (Albers and Braun 2011);

and decisions must often be based on inadequate or pre-

liminary information (Antonsson and Otto 1995; Pich et al.

2002). These issues may be observed on all levels of scale,
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from designers working alone through to complex devel-

opment programs.

Second, considering complexity, large-scale concurrent

engineering in particular involves many tasks and indi-

viduals, a densely connected web of information flows, and

many interdependent design issues that must be considered

simultaneously (Eppinger et al. 1994). Feedback processes

within a DDP are also significant drivers of dynamic

complexity. For instance, bringing on new staff to handle a

peak in workload may cause quality problems that require

even more work to correct later on (Reichelt and Lyneis

1999). DDP complexity seems to be increasing overall, for

instance due to continuing introduction of new design

issues and technologies, and increasingly fragmented dis-

ciplinary specialisation (Maurer 2017).

Third, considering iteration, it is well recognised in the

literature that design and development are iterative in

nature (e.g., Dorst and Cross 2001; Yassine and Braha

2003). Iteration can have numerous roles in the DDP,

including: iteration to progress the design; iteration to

correct problems or implement changes; and iteration to

enable coordination within a process, or between a process

and its context (Wynn and Eckert 2017). Managing and

exploiting iteration are critical to design and development

on any scale, yet can be difficult in practice due to the

many perspectives that are possible.

To summarise, these characteristics and related issues

mean that companies and individual designers may not

fully understand the processes by which they generate their

designs (O’Donovan et al. 2005). In consequence, the DDP

is difficult to execute and manage effectively. Cost and

schedule overruns are common (Reichelt and Lyneis 1999).

Because effective design and development is critical to

many organisations’ performance, this has motivated much

research to better understand such processes and how they

might be supported and improved.

Research has suggested that process models can help to

address the challenges outlined above in several ways. For

example, while large-scale design and development pro-

cesses do involve novelty, they also involve routine

sequences and structures that can be modelled (Browning

et al. 2006). Consequently, a common view is that these

processes ‘‘are systems and can be engineered’’, a task

which can be facilitated by process models and process

modelling (Browning and Ramasesh 2007). Process models

may also help to align process participants and their mental

models. They are, therefore, important enablers of coor-

dination, defined by Malone and Crowston (1994) as the

management of dependencies among activities. This

becomes more important as complexity and innovation

increase (Zhang et al. 2015). Process models depicting best

practice may be useful ‘‘to rationalise creative work, to

reduce the likelihood of forgetting something important, to

permit design to be taught and transferred, to facilitate

planning, and to improve communication between disci-

plines involved in design’’ (Gericke and Blessing 2011).

Models can also help to generate and communicate con-

ceptual insights into the DDP. This is useful to researchers

and educators, may inform practitioners, and may inspire

the development of pragmatic support.

Although process models can, therefore, be helpful in

understanding and handling the special characteristics of

the DDP, those same characteristics make its modelling

difficult. Despite extensive work undertaken since the

1950s, no single descriptive model is agreed to provide a

satisfactory account of the design and development process

(Bahrami and Dagli 1993). Indeed, this is probably not

achievable. Similarly, in terms of prescriptive models

developed to support or improve the DDP, there is arguably

still ‘‘no silver bullet approach to achieve process

improvement’’ (Wynn and Clarkson 2005). This is again

unsurprising considering the complexity of the topic and

the many issues involved.

1.1 Contribution of this article

As noted above, DDP models fulfil a number of purposes

for practitioners, researchers, and educators. However, the

design and development process involves many interre-

lated issues, and each model of the DDP embodies a

selective viewpoint on those issues. We therefore contend

that state-of-the-art understanding of the DDP and of best

practice is not embodied in any one model—but in the set

of models and the relationships between them.

This article reviews the models and clarifies their rela-

tionships. First, we contribute an organising framework

which shows how models of design and development

processes can be positioned in relation to one another.

Second, we contribute a review and integrating summary of

key DDP models. We will show that although a number of

researchers have previously surveyed such models, the

earlier literature reviews each focus on only a subset of the

categories that we identify here. By describing key models,

integrating the coverage of earlier reviews, and providing

pointers for further reading, it is anticipated that this article

will be useful to researchers seeking to position their work

as well as to practitioners and educators seeking an over-

view of the approaches that have been developed. Insights

regarding the advantages, limitations, and applications of

the individual models are also provided along with sug-

gested areas for further research.

1.2 Scope of the literature review

The body of relevant literature is expansive and incor-

porates a broad range of perspectives. As with any work
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based on review of a large and established research field,

decisions were needed on what to include and how to

organise it. In this case, the decisions were guided by the

authors’ previous research into complex design pro-

cesses. This involved industry case studies, model and

method development, literature study, and practitioner

experience.

The following decisions were made regarding scope.

First, because designing is intertwined with the other

work that takes place in a development project, we

contend that these processes should be understood toge-

ther. Therefore, the scope includes both design processes

and development processes. Second, for the purposes of

this article, the term ‘model’ refers to any explicit rep-

resentation of a perceived or envisaged DDP situation, or

any approach specifically intended to express and/or

analyse such representations. A model may be expressed

graphically, mathematically, computationally, and/or in

written form. Third, we focus on models pertinent to

engineering design and development. Although related

topics such as user-centered design and product-service

systems design are not explicitly treated, a number of the

models that we review are relevant to all design activity

and thus may be of interest to researchers working on

these topics. Fourth, the article only considers models

that explicitly include design activity, excluding those

that focus entirely on other processes within the design

and development context, such as manufacturing. Fifth, it

was decided to focus on explicit models of process and to

not discuss in detail topics such as product models and

parametric models, even though such models do have

implications for the design and development process.

Sixth, models focusing on specific design issues such as

design for assembly are not emphasised, nor are models

specific to particular companies. Finally, work on com-

putational design and design optimisation processes is

considered out-of-scope.

The article is an integrative overview in which an

organising framework is explained and illustrated by

discussion of selected key publications. Therefore,

although the framework aims to provide comprehensive

coverage of model categories and to indicate the rela-

tionships between them, the bibliography does not com-

prise a complete list of all model variants nor all relevant

publications. Pointers to more exhaustive but more nar-

rowly focused reviews are provided where such work is

available. Finally, we note that many DDP models could

be interpreted or applied in different ways, which can

cause difficulties arriving at an unambiguous classifica-

tion. In this article, we seek to keep our analysis as

grounded as possible by restricting our attention to how

each model is described in its key supporting publica-

tions, as listed in the bibliography.

1.3 Methodology

We began with the organising framework first published by

Wynn and Clarkson (2005) and subsequently expanded by

Wynn (2007). We sought to substantially improve com-

prehensiveness of the framework and to complement it

with research insight developed since these earlier publi-

cations. Identification of models to include in the updated

framework began with study of earlier literature reviews

(see Sect. 6.6). Original sources mentioned in these reviews

were considered, and research journals were also consulted

to find additional recent publications. Bibliographies and

Internet search were used to progressively identify further

relevant sources. This yielded a large number of models

which were filtered according to the criteria of Sect. 1.2.

The framework described by Wynn (2007) was expan-

ded and iteratively revised as relevant literature was

digested. Our main consideration was to find a way to

conceptualise, articulate, and visualise the relationships

between diverse models while also allowing a relatively

linear exposition. This led to a new framework having

substantially different form and significantly expanded

coverage to the original.

2 Organising framework

The framework was designed to cluster similar models

together, such that models within each cluster can be

meaningfully compared and such that the clusters them-

selves can be meaningfully related. To approach this, we

note that each model is a simplification or abstraction of a

perceived or envisaged situation, in which the form of the

model is influenced by the intentions of the modeller (e.g.,

Pidd 1999; Browning et al. 2006; Maier et al. 2017). It

follows that models can be meaningfully grouped accord-

ing to (1) the characteristics of the targeted situation and

(2) the overall purpose of the model. The organising

framework that was developed from this concept comprises

two dimensions each subdivided into several categories.

These are introduced in the next subsections prior to dis-

cussing the models themselves.

2.1 Model scope dimension

The first dimension of the framework considers the scope,

i.e., breadth of coverage of a model. This dimension is

important because the framework organises models that

range from an individual’s mental activities during design

through to complex development programs that may

involve thousands of participants and multiple tiers of

suppliers. These situations have quite different character-

istics, which are reflected in the models.
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Considering the relationship between these situations,

Hall (1962) proposed a two-dimensional perspective of

development projects in which the stage-based structure of

a project’s lifecycle is orthogonal to an iterative problem-

solving process that occurs within each stage. Asimow

(1962) similarly described the essentially linear, chrono-

logical structure of a project as its morphological dimen-

sion, and the highly cyclical, iterative activities

characteristic of designers’ day-to-day activities as the

problem-solving dimension. Blessing (1994) refers to

models concerned with Asimow’s morphological and

problem-solving dimensions as stage-based and activity-

based, respectively. She also notes the existence of com-

bined models which prescribe well-structured, iterative

activities within each stage (e.g., Hubka 1982). Other

models such as the Task DSM (Eppinger et al. 1994)

represent individual tasks and their interrelationships. Their

focus is in between the iterative problem-solving process

and the overall structure of the DDP.

Combining these ideas, the model scope dimension of

the framework comprises three categories:

• Micro-level models focus on individual process steps

and their immediate contexts.

• Meso-level models focus on end-to-end flows of tasks

as the design is progressed.

• Macro-level models focus on project structures and/or

the design process in context. This can include the

overall form of a project or program, organisational and

managerial issues relating to a DDP situation, and/or

the interaction between the DDP and the context into

which a design is delivered.

2.2 Model type dimension

While the scope dimension groups models that target

similar situations, the type dimension groups models that

have similar overall purpose. Considering the literature and

extending the classification of Wynn (2007), four model

types were identified:

• Procedural models convey best practices intended to

guide real-world situations.

• Analytical models provide situation-specific insight,

improvement, and/or support which is based on repre-

senting the details of a particular DDP instance.

• Abstract models convey theories and conceptual

insights concerning the DDP. Such models have

yielded important insights into design and develop-

ment, and have inspired the creation of pragmatic

approaches, but many of them do not directly offer

guidance for practitioners.

• Management science/operations research (MS/OR)

models use mathematical or computational analysis of

representative or synthetic cases to develop generally

applicable insights into DDP issues.

2.3 Summary

The dimensions and categories of the organising frame-

work are summarised in Table 1. Most models are pos-

sible to align against a single category within each

dimension, but the categories are not mutually exclusive.

Some models and publications contribute to several cat-

egories in a dimension. Some could arguably be cate-

gorised in different ways depending on how they are

interpreted and applied.

Although the need for interpretation when categorising

models cannot be eliminated entirely, the premise of this

article is that any design or development process model can

be assigned to at least one category within each of the

framework dimensions. We contend that doing this can

help to express a model’s characteristics. Considering the

two dimensions together allows the DDP models and the

perspectives they represent to be clustered, and clarifies the

context in which each model should be considered. To

illustrate, selected key models are positioned against the

framework in Fig. 1.

The next sections elaborate the framework by dis-

cussing selected models in each category and some of the

main ideas embedded in them. Discussion is organised

primarily around the scope dimension and secondarily

around the type dimension, thereby spiralling outwards

through layers of the framework as depicted in Fig. 2.

This was found suitable to establish a linear presentation

of the issues. Sections 3, 4, 5 discuss models on the

micro-, meso-, and macro-levels, respectively. Section 6

draws on the framework to consider the implications of

key DDP characteristics on models and modelling. Sec-

tion 6 also discusses how DDP models are used in

engineering practice and suggests areas for future

research.

3 Micro-level models

To recap, models of the DDP on the micro-level focus on

individual process steps and their immediate contexts.

Such models typically emphasise individual or small

group situations. The next subsections describe micro-

level procedural, analytical, abstract, and MS/OR models

in turn.
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Table 1 The organising framework comprises two dimensions, each with several categories

Dimension Category Models in this category

Scope Micro-level Focus on individual process steps and their immediate contexts

Meso-level Focus on end-to-end flows of tasks as the design is progressed

Macro-level Focus on project structures and/or the design process in context

Type Procedural Convey recommendations of best practice

Analytical Provide ways to model specific situations for analysis/improvement/support

Abstract Convey theories and conceptual insights into the DDP

MS/OR Develop insights by mathematical/computational analysis of representative cases

Fig. 1 Positioning key models of design and development within the framework generates a map of the literature
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3.1 Micro-level procedural models

Micro-level procedural models provide prescriptive

guidelines for the design and problem-solving activity

which occurs at many points throughout a project. There

are four main groups of model in this category.

First, on the most conceptual level, certain overall

strategies for design are recommended by many authors.

Foremost is the idea that designers should proceed sys-

tematically and resist their preconceptions. Evbuomwan

et al. (1996) review the early work incorporating this rec-

ommendation, including Marples (1961), Jones (1963) and

Archer (1965). They find that all these authors prescribe the

three main steps of analysis, synthesis, and evaluation.

Analysis involves focusing on a problem and structuring it

into a set of objectives. Synthesis involves generation of a

range of candidate solutions. Evaluation involves the crit-

ical appraisal of those solutions against the objectives, to

rationally select between them and/or to drive iterative

improvement. Models incorporating this strategy have

often been described as problem oriented (Wynn and

Clarkson 2005). They are based on the premise that

designers can formulate solution-neutral problem state-

ments, and that doing so is useful to direct their creative

insights with systematic reasoning. Another common rec-

ommendation is to begin by deliberately expanding the

perceived boundaries of a problem, e.g., by relaxing con-

straints, attempting to reframe the problem, or attempting

to perceive it on a higher level of abstraction. This may

help to avoid artificial overconstraint and ensure that a

broad range of potential solutions is considered. A third

common strategy is to decompose a problem into simpler

subproblems with well-defined interactions as early as

possible, such that the subproblems can be addressed

individually prior to recombining solutions (Fig. 3). This is

thought to encourage ‘‘the discipline to proceed systemat-

ically’’ and enable ‘‘rationally organised division of

labour’’ (VDI2221 1987). Overall, the design strategies

discussed in this paragraph are desirable but might not

provide much practical guidance for implementation. For

this reason, they are often embedded in more concrete

procedural models, many of which are reviewed elsewhere

in this article.

The second group of models in this category comprises

more concrete systematic methods that support the execu-

tion of specific design steps. Examples include approaches

to promote creativity such as C-Sketch (Shah et al. 2001);

use of morphological matrices to search for possible

combinations of working principles (Pahl et al. 2007); and

decision methods such as the analytic hierarchy process

(AHP) (Saaty 1987) and the controlled convergence

method (Pugh 1991). Axiomatic Design recommends a

process of zig-zagging through a hierarchy of functional

requirements (FRs) and design parameters (DPs) while

striving to satisfy design rules derived from two axioms—

presented as ‘‘fundamental truths’’ about the characteristics

Fig. 2 The narrative in this article spirals outwards through the layers

of the framework. Numbers refer to subsections where corresponding

categories are discussed

Fig. 3 Method of structuring problems and systems (VDI2221 1987).

Reproduced with permission of the Verein Deutscher Ingenieure e. V
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of good designs (Suh 1990). TRIZ/ARIZ offers methods to

support innovation by identifying and resolving contra-

dictions in a design situation (Altshuller 1999).

Such systematic methods (and there are many more)

may be useful at many points in a DDP. Pugh (1991)

describes them as ‘‘the designer’s tool-kit’’ which allows

discipline-specific engineering knowledge to be applied

efficiently and effectively. Hubka (1982) expresses a

commonly held view by recommending systematic proce-

dures when searching for concepts to cover a wider search

space. He also suggests that a systematic approach can be

particularly beneficial in all review and revision activities.

Archer (1965) proposes that systematic approaches are

particularly useful under one or more of three conditions:

when mistakes can have significant consequences; when

the likelihood of making mistakes is high, for example due

to inexperience; and/or when the situation is complex,

characterised by many interacting variables.

A third group of models recommend procedures for

solving problems encountered during a DDP. The

archetypical procedural model of problem-solving is the

Shewhart Plan–Do–Check–Act (PDCA) cycle, which

dates from 1939 (Moen and Norman 2010). The PDCA

cycle recommends an iterative process in which thorough

up-front analysis of the problem (Plan) and solution

implementation (Do) are followed by seeking feedback

(Check) and adjustment of the solution (Act). This iter-

ative feedback process may help to obtain robust and

validated solutions. It is thought to be especially useful

where the problems being solved are ill-defined, complex

enough that they cannot be easily grasped, are set in a

changing context, and/or in a context where the

solution can influence the nature of the problem (Wynn

and Eckert 2017). Related to PDCA, more recent prob-

lem-solving models such as Define–Model–Analyse–Im-

prove–Control (DMAIC), Look–Ask–Model–Discuss–Act

(LAMDA), A3 Problem-Solving, and Kepner–Tregoe

methodology also often appear in DDP practice, and

include similar iterative elements. For further discussion

and review of prescriptive problem-solving models in the

DDP context, the reader is referred to Mohd Saad et al.

(2013).

The fourth and final group of micro-level procedural

models concern negotiation protocols for design. The

issue addressed by these models is that different stake-

holders in a design problem are usually responsible for

different variables and objectives, some of which will be

in conflict (Klein 1993). Negotiation protocols or

methodologies prescribe processes for interaction between

human and/or computational stakeholders, to assist them

in reaching a mutually satisfactory outcome without

excessive iteration (e.g., Lewis and Mistree 1998; Jin and

Geslin 2009).

3.2 Micro-level analytical models

Micro-level analytical models provide formalisms to assist

in the modelling of design knowledge from a process

perspective. They represent individual process steps and

decisions, indicating how they relate to specific features of

the design context. The contextual information is thought

to provide ‘‘guidance to reapply knowledge at the most

appropriate time’’ (Baxter et al. 2007).

An early approach called PROSUS uses a matrix system

for knowledge modelling during the design process

(Blessing 1994). The matrix columns are defined by three

micro-level activities, namely generate, evaluate, and

select. The rows denote the problem, requirements, func-

tions, concept, and the detail design. As the designer pro-

ceeds through iterative cycles, they are intended to capture

their knowledge regarding proposals, arguments, and

decisions within the appropriate cells of a PROSUS matrix.

It is proposed that a different matrix should be used for

each design situation encountered. A subsequent approach

called the design history system (DHS) represents technical

knowledge relevant to a design in terms of the processes

and decisions that generated it (Shah et al. 1996). DHS

represents: design steps; product data such as assembly

relations and geometry, including successive versions and

configurations; the relationships between design steps and

product data they operate on; and the rationale underlying

decisions. Emphasis is placed on intelligent querying of the

history to help designers understand and reuse past designs.

Addressing similar issues, the engineering history base

(EHB) of Taura and Kubota (1999) allows designers to

model the rationale behind design attributes in two ways:

their relationships to design goals; and the need to work

within constraints created by the previous decision-making

activities. A prototype software tool allows the reasoning

behind a particular attribute to be traced through the pro-

cess. Both these papers focus on defining classes and

relations to structure knowledge databases, and propose

form-oriented interfaces. The Decision Rationale Editor

(DREd) 2.0 tool reported by Aurisicchio and Bracewell

(2013) instead uses a less formal graphical network rep-

resentation building on the gIBIS approach, which allows

designers to model the rationale structure supporting each

process step or decision. Deployment and acceptance in an

industry context were achieved (Aurisicchio and Bracewell

2013).

Other models focus on representing micro-level process

knowledge with the specific objective of guiding a designer

from one step to the next. For example, Signposting was

developed to support rotor blade design by guiding the

designer towards tasks that are available and appropriate

for each design context that is reached (Clarkson and

Hamilton 2000). The unique feature of this approach is the
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notion that designer confidence is an important factor

driving task selection. In Signposting, a task is considered

available if the designer indicates that their confidence in

its input parameters meets specified thresholds, and

appropriate if completing the task is expected to increase

confidence in one or more parameters. In this context, high

confidence in a parameter means that its value is detailed,

accurate, robust, well understood, and physically realistic

(Clarkson and Hamilton 2000). In a prototype implemen-

tation, the designer indicates their confidence in each

design parameter, and the tool proposes tasks that are

available and appropriate to attempt next. The manufac-

turing integration and design automation system (MIDAS)

also aims to dynamically guide the designer through the

design process, in this case using a hierarchical grammar-

based model (Chung et al. 2002). In MIDAS, a design

process is initially represented as a flow of logical tasks

including inputs and outputs. This expresses what needs to

be done on a high level of abstraction. As the process is

executed, a database of production rules is consulted to

detail logical tasks as they are encountered, replacing them

on-the-fly with more detailed process flows. These can

comprise more concrete logical tasks and/or atomic tasks,

which encapsulate a specific approach for completing a

step. Each production rule represents a possible strategy for

approaching the logical task that it replaces. MIDAS

includes a way to roll back the process instantiation and

prompt the designer to try another strategy, which is nee-

ded when design data produced by a task do not satisfy

constraints.

Finally, a third group of analytical models on the micro-

level concern coordination support. For example, the

agent-based decision network (ADN) of Danesh and Jin

(2001) manages the process of decision-making and

negotiation of solutions among agents, embedding models

of a design problem alongside normative procedural

models of the negotiation process, such as those mentioned

in the previous subsection.

3.3 Micro-level abstract models

To recap, abstract models of the DDP focus on presenting

insights about the process without prescribing how it

should be approached. On the micro-level, such models

concern the forms of reasoning, the elementary activities,

and/or the types, structures, and evolutions of knowledge

that occur during design. Insights from such work are

essentially domain-independent.

The foci of these models may be illustrated by consid-

ering the categorisation of design situations discussed by

Gero (1990, 2000). In routine designing, ‘‘all the necessary

knowledge is available’’ (Gero 2000). Routine design

problems can be seen as search problems and in principle

can be solved using the conventional algorithms (Maher

2000). Nonroutine designing, in contrast, is thought to be

more difficult to automate. Gero argues that nonroutine

situations can be further divided into two subcategories.

First, in innovative designing, ‘‘the context that constrains

the available ranges for the variables is jettisoned, so that

unexpected values become possible’’ (Gero 2000). Second,

in creative designing, new variables may be introduced

during the design process allowing truly novel designs to

be produced (Gero 2000).

Models in this subsection focus mainly on nonroutine

design processes including both subcategories. Researchers

have identified important characteristics of such processes

that are reflected in their models. These include:

• Designing starts with ill-defined problems Design

problem specifications are often incomplete, inconsis-

tent, and/or vague, because people do not fully

understand the context, constraints, and possibilities

before design begins. One factor separating nonroutine

design from routine situations is that stakeholder needs

may or must be interpreted, reformulated, renegotiated,

and concretised (Smithers 1998).

• Design problems and solutions coevolve Considering

possible solutions highlights new aspects of ill-defined

problems and may lead to them being reframed. This

may change the constraints on possible solutions and

may change what is considered to be a good solution

(Dorst and Cross 2001).

• Designing is partly solution-oriented Empirical

research has indicated that designers prestructure

problems to solve them. That is, existing knowledge

and previous experiences are influential in the solution

process (Hillier et al. 1972). Models taking this view

are often called solution-oriented (Wynn and Clarkson

2005). According to Kruger and Cross (2006), they are

usually considered to be more realistic representations

of the designer’s thought process than models which

suggest the top–down and abstract-to-concrete strategy

exemplified in Fig. 3.

• Designing creates new parameters and generates new

knowledge Whereas routine processes involve finding

suitable values for parameters whose existence is

known, nonroutine designing involves modifying con-

straints and/or introducing new variables that were not

originally anticipated (Gero 2000). New knowledge

relevant to the design process is also generated as

design proceeds.

• Designing involves hierarchical structures Solving a

design problem often generates new problems at a more

detailed level. Problems lower in the hierarchy are

defined and constrained by partial solutions higher up

(Guindon 1990).
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• Designing is situated Each step in the design process

influences the design situation, including the designer’s

knowledge, which in turn influences and constrains

future design activity (Gero and Kannengiesser

2004).

• Designing is progressive and iterative As indicated

above, a design solution is not generated in a single step

but is approached progressively and iteratively. There

are several perspectives on what gets revisited during

micro-level iterations, and why (Wynn and Eckert

2017).

The next subsections discuss selected process models that

each emphasise some of these characteristics of nonroutine

design. The models convey insights that might be useful for

teaching design, as well for developing AI approaches to

either assist or automate design reasoning (Ullman et al.

1988). They might not all directly support working

designers, but models discussed in this subsection have

explanatory power and some have inspired the develop-

ment of procedural and analytical work.

3.3.1 Models that represent design as logical or formal

operations

The first group of abstract micro-level models represent

designing in terms of formal or logical operations. These

models are developed mainly from theoretical considera-

tions regarding the properties of design problems and the

design process. Motivations for such work include that if

the logic of designing could be understood and specified

formally, insights might be systematically derived and

aspects of the process might be supported or automated

with suitable reasoning algorithms.

In one seminal paper of this type, March (1976) devel-

oped the Production–Deduction–Induction (PDI) model

which clarifies how creative, evaluative, and learning

processes operate and interact when designing. The model

comprises three phases that repeat in an iterative cycle. In

the first phase, the designer considers a desired situation in

view of their existing knowledge to speculate a possible

design solution. This is seen as productive or abductive

reasoning. In the second phase, the candidate solution’s

behaviour is predicted considering its form and relevant

physical principles. This is deductive reasoning. In the

third phase, new knowledge concerning probable general

relations between solutions and their behaviours is induced

from the specific case just analysed. The cycle then repeats

with the benefit of this new knowledge. While deductive

reasoning is analytic, abductive reasoning and inductive

reasoning are synthetic. That is, their results are influenced

by the context, including the knowledge and experience of

the designer.

General design theory or GDT (Yoshikawa 1981) aims

to define a formal logic of design. Here, in keeping with the

scope of the present article, we do not discuss the for-

malism but focus on the process models associated with

GDT. First, the evolutionary design process model

(EDPM) focuses on how designers work with multiple

representations of an emerging design (Tomiyama et al.

1989). According to the EDPM, design proceeds by pro-

gressively extending a metamodel from which the different

product models can be derived. On each of a series of

cycles, a problem is identified, specific model(s) are

derived from the metamodel to analyse the design, allow-

ing the problem to be resolved and leading to information

being added to the metamodel. This is said to continue until

a fully detailed design is reached. Tomiyama et al. (1989)

argue that this is a mainly deductive process, comple-

mented with additional logic operations to handle the

multiple parallel paths considered during design and the

need for backtracking when a problem is reached that

cannot be solved by deduction. Second, Takeda et al.

(1990) extend this work, placing greater emphasis on how

the design process is directed from one step to the next and

on the forms of logic involved. Their extended EDPM

involves two levels. On the object level, the designer first

develops a solution suggestion from awareness of a design

(sub)problem, and then develops, details, and evaluates

their proposed solution. On the action level, they decide on

next steps if evaluation reveals contradictions in the pro-

posal. Takeda et al. (1990) argue that suggesting a solution

from awareness of a problem is achieved by abduction;

developing details of the solution and evaluating it are both

deduction; and causes of identified contradictions are found

through a form of logic called circumscription. In their

model, the causes of contradiction constitute new variables

and a new problem to be addressed in a future design cycle.

Third, Tomiyama (1994) devise a further improvement,

called the refinement model, in which design is seen as a

process to complete the specifications as well as to define

design attributes. A detailed analysis and critique of GDT

is provided by Reich (1995). Focusing mainly on the for-

mal axioms and theorems rather than the process models,

Reich (1995) concludes that the approach ‘‘cannot be an

adequate description of real design’’, although, he argues, it

might still provide useful ‘‘guidelines’’ for CAD system

development.

Zeng and Cheng (1991) also take a formal approach.

They focus on how reasoning at each step is situated in the

outcome of previous design cycles, developing a recursive

logic scheme to represent this process. Zeng (2002) inte-

grates these ideas into his axiomatic theory of design

modelling. This formally presents designing as a cycle of

synthesis and evaluation which operates on a hierarchical

structure defining the evolving design and its environment.
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On each cycle, the synthesis of partial solutions contributes

to the evaluation criteria for future cycles.

Braha and Reich (2003) build on the formal design

theory (FDT) of (Braha and Maimon 1998a) to develop the

coupled design process (CDP) model. CDP provides a

mathematical formalism which emphasises the role of

exploration in progressing a design. In overview, designing

is modelled as a repeating cycle of a closure operation

followed by a selection operation. The closure operation,

representing exploration, involves creating a set of design

descriptions which do ‘‘not differ substantially’’ from the

output of a previous design cycle. This is referred to as a

closure set. The selection operation then focuses attention

on one or more design descriptions from the closure set,

which form seeds for the next cycle. In CDP, each design

description comprises both specifications and solutions,

which are elaborated together until the design is complete.

Braha and Reich (2003) argue that their model allows

concepts from the mathematics of closures to be interpreted

to provide insights into design, and furthermore argue that

GDT is a special case of CDP. On the other hand, unlike

GDT, Braha and Reich (2003) do not discuss how their

formalism might be implemented computationally.

The final model to be mentioned in this subsection is the

C-K theory introduced by Hatchuel and Weil (2003, 2009).

These authors argue that the two issues of creativity and the

expansion of knowledge are fundamental to understanding

designing, but are not comprehensively integrated within

earlier models. C-K theory aims to address this by pre-

senting designing as a process of traversing back and forth

between two structured and expanding spaces. Knowledge

space K comprises statements representing the designer’s

knowledge. Concept space C comprises propositions

relating to the emerging design concept(s). These are

undecided in that they are not yet known to be true or false.

Designing is conceptualised as a set of operations that are

applied to expand the knowledge structures in conjunction

with the concept space. It concludes when the propositions

necessary for a design have been developed and found to

be true. Several formalisms have been developed consid-

ering the ideas of C-K theory (e.g., Kazakçi 2009; Salustri

2014). Some support tools and industrial applications using

the theory are discussed by Hatchuel et al. (2004). A 2014

review concluded that C-K theory has been developed,

applied, and adopted in more than 100 publications, and

that it provides a framework which may be able to integrate

earlier theories of design (Agogué and Kazakçi 2014).

3.3.2 Models that represent design as elementary abstract

processes

Some models decompose the design process into abstract

steps independently of a mathematical formalism or

analysis of inference types. One such model is the Func-

tion–Behaviour–Structure (FBS) framework (Gero 1990).

This is based on the idea that all designs can be represented

in terms of: functions, which describe what the design is

for; behaviours, which describe what it does; and struc-

tures, which describe what it is (Gero and Kannengiesser

2014). FBS considers that designing occurs through eight

transitions between these domains, defining the following

processes: (1) formulating a problem, in which required

functions are transformed into behaviours a design solution

should exhibit; (2) solving the problem, through an itera-

tive cycle in which desired behaviours are considered to

create a structure representing the design, which is anal-

ysed to determine its actual behaviours, which are com-

pared to the desired behaviours leading to design

improvements (Gero 1990; 3) ‘‘focus shifts, lateral think-

ing, and emergent ideas’’ which arise while considering the

design’s structure (Gero and Kannengiesser 2014); and (4)

documenting the solution. Gero and Kannengiesser (2004)

extend this model to include the situated nature of design

activity. They contend that design insights are generated

not only from interactions within the designer’s mind, as

per item (3) above, but also by reinterpretation triggered

when design ideas interact with the emerging design rep-

resentation. To incorporate these ideas, Situated FBS

decomposes designing into 20 transformation processes

that transition among FBS domains in the external world,

the designer’s interpretation of it with respect to their

emerging design, and the world they expect to produce

with that design. These processes are shown in Fig. 4.

Overall, Gero and Kannengiesser (2004) contend that their

models differ from most others in ‘‘explicitly’’ representing

the steps of reformulating the design and/or problem as

new information is generated. Gero and Kannengeiser

(2014) write that FBS and Situated FBS offer conceptual

tools for understanding designing and provide bases for

uniform coding of design protocols, allowing design

activity to be studied independently of domain. The FBS

framework and its underlying product model mentioned at

the start of this paragraph have also been widely adopted to

structure conceptual, computational, and empirical studies

(e.g., Howard et al. 2008; Hamraz et al. 2013).

Other micro-level abstract models conceptualise the

design process as an evolutionary system. For example,

Hybs and Gero (1992) propose that the solutions consid-

ered during design can each be conceptualised as a gen-

ome, in which individual genes represent subsolutions.

These authors develop a variant of FBS which illustrates

that design can be viewed in terms of two genetic operators

iteratively applied to a population of potential solutions:

crossover, in which subsolutions are transplanted across

designs, and mutation, in which subsolutions within one

solution are changed by redesign. Maher and Poon (1996)
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apply a similar evolutionary perspective with a focus on

exploration in design. In this context, exploration refers to

the process by which designers come to understand more

about a problem as they consider potential solution con-

cepts. In their model, Maher and Poon (1996) propose that

problem and solution can be conceptualised as evolving

genomes that influence the fitness function for each other.

This is described as a coevolutionary process which pro-

ceeds until problem and solution definitions are both

acceptable and compatible with one another (Maher 2000).

3.3.3 Models that represent design as elementary

operations

A possible criticism of some models discussed above is

their highly conceptual nature. This may cause difficulties

interpreting them for application to real design problems.

Although certain insights have been embedded in research

prototypes, the objective of some authors to establish a

mathematical basis for designing that allows its imple-

mentation in mainstream CAD does not seem to have been

achieved yet.

Other authors approach the challenge of decomposing

designing into elementary activity by focusing on more

concrete operators and the specific knowledge structures or

domains they operate on. For instance, Ullman et al. (1988)

develop the Task–Episode–Accumulation (TEA) model to

explain nonroutine mechanical design by analysing proto-

col recordings of designers working on such problems.

Their model describes design as a series of tasks, each

comprised from episodes that are undertaken to achieve

goals. In turn, the episodes are decomposed into series of

primitive operators falling into three categories: select,

evaluate, and decide. The primitive operators are applied to

the design state, which comprises all information about the

emerging design. Key features of the TEA model include:

design alternatives exist only within episodes, and as such,

the design is incrementally reached through an accumula-

tion of operators’ results; the designer’s working memory

is explicitly modelled alongside operators to manage its

limitations by loading and unloading relevant information;

and goals are managed on a step-by-step basis, not in

response to an overall plan. TEA, therefore, reflects

observed designer behaviour in which an initial concept is

‘‘developed and gradually extended to accomplish the

design goals’’ (Ullman et al. 1988). In common with other

micro-level abstract models, this differs substantially from

the systematic decomposition approaches exemplified by

Fig. 3.

Finally, other models in this category were derived from

the literature with a view to integrating key insights. For

example, Chandrasekaran (1990) argues that AI approa-

ches to design can be viewed as an iterative cycle of pro-

pose, critique, and modify. They review ways to approach

each step. For example, the first step of solution proposal

can be approached by algorithmic methods such as

decomposition and recombination, constraint satisfaction,

and so forth. A design process involves a mixture of

approaches according to the characteristics of each sub-

problem encountered. Chandrasekaran (1990) argues that

appropriate approaches can be selected dynamically by a

controller which structures the task and chooses methods

appropriate to each subgoal. Sim and Duffy (2003) develop

a model of designing as a cycle of activity that is executed

by a situated agent operating on input knowledge and

producing output knowledge, in the context of individual

objectives. They show that elementary activities described

in the design literature can be categorised into three groups:

design definition activities; design evaluation activities;

and design management activities. Srinivasan and Chak-

rabarti (2010) also review elementary task models in the

literature and argue that they can be mapped onto ‘‘a

general problem finding and solving cycle’’ comprising the

four activity types of generate, evaluate, modify, and select

(GEMS). The outcomes of each activity are represented in

terms of constructs that describe the emerging design and

its operating principles. These constructs, namely State

change, Action, Parts, Phenomenon, Input, oRgans, and

Fig. 4 Situated FBS views designing as a series of steps that are

triggered by, and affect, emerging models of function (F), behaviour

(B), structure (S), and requirements (R). The emerging models exist in

three worlds and 20 types of step are possible, as shown. Key: Xe =

external representation of X (where X is F, B, or S). Xi interpreted

representation. Xei expected representation. Reproduced from Gero

and Kannengiesser (2004) with permission of Elsevier
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Effects (SAPPhIRE) were developed by Chakrabarti et al.

(2005) based on the review and synthesis of earlier work.

3.3.4 Summary

Overall, micro-level abstract models highlight the iterative

nature of designing and the need to respond to new infor-

mation generated or revealed during that process. Such

models provide theories and descriptions of design cogni-

tion, linking design activity to details of the emerging

design and to knowledge and information about it. Most of

these models and theories are based on first-principles

reasoning and the supporting publications often do not

emphasise an empirical basis or real-world validation.

Nevertheless, some have received fairly wide interest and

have been found to provide useful insight for real-world

situations. According to Reich (1995), ‘‘each theory pro-

vides one perspective, broad, or limited, that may improve

design understanding and practice.’’ For further discussion

of work in this category, the reader is referred to Eder and

Weber (2006), Le Masson et al. (2013), and Chakrabarti

and Blessing (2015).

3.4 Micro-level MS/OR models

To recap, the MS/OR category of our framework concerns

models which apply mathematical or computer analysis to

generate general insights from representative or synthetic

situations. While many researchers have developed models

of this type on the meso- and macro-levels (as described in

forthcoming sections), we found relatively little on the

micro-level once work on computational design and design

optimisation is excluded. Some examples are given in the

next paragraph.

First, Braha and Maimon (1998b) develop a mathe-

matical model based on the principle that designing is

characterised by progressive addition of attributes and

relationships. Their model, based on an entropic perspec-

tive of design complexity, shows how progress causes an

increase in the emerging design’s complexity and conse-

quently increases the effort required to progress it further.

Second, Zeng and Yao (2009) use computer simulation to

study the impact of different design strategies within their

axiomatic theory of design modelling, which was discussed

earlier. This theory suggests that different design solutions

emerge through three levers: reformulating the problem;

changing the designer’s approach to the synthesis steps that

occur on each design cycle; and altering the sequence of

addressing problems that emerge while designing. Zeng

and Yao (2009) implement their axiomatic model in an

algorithm for generating a finite-element mesh—which

they argue is representative of common design problems—

and use simulated cases to show that adjusting these levers

does indeed result in different solutions. Third, Kazakçi

et al. (2010) develop a computer model to simulate

designing according to the C-K theory principle that

designs emerge through the interplay between concepts and

knowledge. In this model, graph structures are used to

represent the concept and knowledge spaces. These struc-

tures evolve through stepwise operations that reflect the

steps of designing according to C-K theory. For example,

one such operation involves generating a connection

between two nodes in K space—this is simulated by

selecting the nodes at random. Kazakçi et al. (2010) use

their simulation to study how attention should be dis-

tributed between developing design concepts and under-

taking research to develop relevant knowledge. They

conclude that emphasising the former may generate a

design solution more quickly, while the latter may help to

ensure the solution is robust. Finally, another area of work

that could contribute to this category is computational

creativity, an emerging topic that aims to generate insights

into creative activity by simulation of the processes

involved (Sosa and Gero 2016). However, such models

often focus on non-engineering domains and are thus out-

side the scope of this article.

To summarise, this is the least populated of the cate-

gories in our organising framework. Accordingly, there

seems to be an opportunity for further research to apply

mathematical and computational modelling to investigate

the implications of micro-level models of engineering

design activity, such as those discussed in Sect. 3.3.

4 Meso-level models

Having completed the discussion of micro-level models,

we now move on to consider meso-level models. To recap,

while micro-level models focus mainly on individual

activities in their context, meso-level models concern end-

to-end flows of activity that occur during design and

development. Procedural, analytical, abstract, and MS/OR

models on the meso-level are discussed in the next

subsections.

4.1 Meso-level procedural models

Meso-level procedural models aim to support the effective

generation of good designs by prescribing a systematic

design process. A noteworthy early example was published

by Evans (1959), who developed a spiral form to highlight

the iterative nature of the design process (Fig. 5). Noting

that one of the most fundamental characteristics of design

is the need to find trade-offs between interdependent fac-

tors, Evans argues that design cannot be achieved by fol-

lowing a sequential process alone. He proposes that a
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structured iterative procedure is adopted to resolve such

problems; early estimates are made and repeatedly refined

as the design progresses, until such time as the mutually

dependent variables are in accord. As the project pro-

gresses, these design considerations are gradually refined

by repeated attention in the indicated sequence until a

balanced solution is reached. At each iteration, the margins

available to absorb changes decrease as the interdepen-

dencies are gradually resolved, smaller modifications are

required, and different methods may be applied to each

problem. Evans notes that the effort required and the

number of people that can be brought to bear increase as

the solution converges.

Other models in this category present the design process

as a series of stages, each of which further concretises the

design by creating more information about it. This stage-

based form is exemplified in the early work of French

(1999), (Fig. 6), originally published in 1971. Later models

focusing on mechanical design, notably in the work of

Hubka and Eder (1996) and Pahl et al. (2007), prescribe

detailed lists of working steps for each stage. These models

define how to create the specific forms of information that

constitute a mechanical design, progressing from abstract

to concrete with the working steps organised such that each

stage establishes objectives and constraints for the next.

They depict ‘‘feedback’’ between the stages, which indi-

cates the possibility of undesirable rework as well as inter-

project and generational learning. Process models of this

type are strongly influenced by models of the information

structures that define a mechanical system design and its

operation (e.g., Hubka’s theory of technical systems and

design processes, Hubka and Eder 1996, see also Sect. 4.3).

Some years ago, Cross and Roozenburg (1992) argued that

most had converged upon a consensus form, which is

exemplified by Hubka’s model (Fig. 7). More recently,

some researchers have mapped numerous models onto

proposed canonical stages to compare them (e.g., Howard

et al. 2008; Gericke and Blessing 2012; Costa et al. 2015;

Bobbe et al. 2016).

Overall, prescriptive stage-based models promote the

idea that following a structured and systematic process will

lead to a better result. For example, Pahl et al. (2007) state

that following their steps ensures that nothing essential is

overlooked, leading to more accurate scheduling and

resulting in design solutions which may be more easily

reused. Although (or because) they are popular, these

models have also attracted critique. For example, the

models emphasise original design cascading from stake-

holder needs (Weber 2014), while real-world projects often

place strong limitations on the early concept design, with

constraints such as existing product platforms and legisla-

tive requirements often predetermining the form of the

solution (Pugh 1991). Considering coverage of the models,

Gericke and Blessing (2011) argue that although

Fig. 5 Evans’ meso-level

model of the ship design process

emphasises a structured cycle of

convergence on key design

objectives. Reproduced from

Evans (1959). Reproduced with

permission from the American

Society of Naval Engineers
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procedural models have been adapted to different disci-

plines, few integrate across them. Other researchers ques-

tion the pragmatism of mandating a stage-based form.

Whitney (2004), for instance, argues that the top–down

ideal as represented in these models is clearly desirable, but

practical considerations mean that this often merges with a

bottom–up fitting-together of existing partial solutions.

One reason for this discrepancy is that ‘‘a top–down pro-

cess is very challenging intellectually’’, because it requires

‘‘imagining subassemblies and parts before they are known

in any detail’’ (Whitney 2004). Konda et al. (1992) also

point out that in collaborative design, participants use

different analogies to represent the emerging design and

must negotiate solutions, such that the idealised top–down

approach proceeding from abstract to concrete may be

difficult to maintain. Andreasen et al. (2015) summarise

some of these concerns when writing that systematic

approaches ‘‘only give a sparse insight into actual design,

whilst giving the impression of rationality, which is not at

all present’’.

Despite perceived limitations, the prescriptive meso-

level model forms outlined here have been adapted and

applied in many publications proposing discipline-specific

design process models. For instance the general form of

Evans’ spiral model is still in use after more than five

decades in fields from naval architecture (Rawson and

Tupper 2001) to software engineering (Boehm 1988).

Stage-based forms may be found in Dym et al. (2014),

Ullman (2015), Pugh (1991), Roozenburg and Eekels

(1995), the VDI guideline 2221 (VDI2221 1987), and

many other publications.

4.2 Meso-level analytical models

The models described in the previous subsection recom-

mend useful procedures and working steps for design.

Although prominent in research and education, they are

arguably not specific or detailed enough to guide many

real-world situations. For example, in the design of com-

plex products such as aircraft, Step 8 alone from Hubka and

Eder (1996)’s model (see Fig. 7) typically involves some

highly specialised working steps, spans several years, and

involves hundreds or thousands of personnel and multiple

tiers of suppliers. The meso-level analytical models dis-

cussed in this section should be better positioned to provide

support in such contexts, because they are concerned with

the specific steps that do or should occur within a company

and/or design context. They help companies to portray

specific DDPs as discrete tasks that interact through well-

defined transfers of information to form an end-to-end

flow. The premise is that modelling the detail of tasks and

their organisation can support design, management, and

improvement of meso-level processes.

One factor that delineates families of models within this

category is how the relationships between tasks are treated

(Wynn 2007). Our extended review revealed five main

subcategories:

1. Task precedence models such as PERT/GERT (Taylor

and Moore 1980) and the Applied Signposting Model

(Wynn et al. 2006) represent interactions between

tasks in terms of information flows that define

sequences. A relationship between two tasks indicates

that the downstream task cannot be attempted until the

upstream task has been completed, or progressed by a

specified amount.

2. Task dependency models such as the design structure

matrix (Eppinger et al. 1994) indicate where one task

depends on information produced by another. Tasks in

design and development often form interdependent

clusters, such that there is no obvious sequence to

complete them. A dependency model describes such

interdependencies but does not indicate how they can

Fig. 6 Block diagram of design process. Figure and caption

reproduced from French (1999) with permission of Springer
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be resolved. Possibilities could include making initial

estimates for some information and then iterating the

tasks until convergence; or undertaking the tasks

concurrently with frequent information exchange.

3. Rule-based models such as the adaptive test process

(Lévárdy and Browning 2009) represent the DDP as a

situated process in which tasks depend on rules

concerning their context.

4. Domain-integrating task network models such as the

multiple-domain matrix (Lindemann et al. 2009)

explicitly focus on interactions between a meso-level

flow of tasks and other information domains, such as

design information.

5. Agent-based task network models such as the virtual

design team (Levitt et al. 1999) consider how the

meso-level flow of tasks is embodied in interactions

between the people who participate in the DDP.

The following subsections discuss these subcategories in

turn. For further information on models in this category,

the reader is referred to Browning and Ramasesh (2007).

4.2.1 Task precedence models

Perhaps the most commonly used analytical modelling

approaches in practice are those that represent processes as

flowchart diagrams. Such approaches can be especially

helpful for understanding, communicating, and reengi-

neering processes (Melão and Pidd 2000). For instance, the

event-driven process chain (EPC) notation maps a process

in terms of activities, events, and logic gates. An applica-

tion to product development is reported by Kreimeyer and

Lindemann (2011). Other similar notations include the

business process modelling notation (BPMN), and the

IDEF3 process description capture method (Mayer et al.

1995). These modelling approaches may be viewed as

interchangeable in many circumstances. Although the

graphical notations may differ, the basic principles and

focus on providing a visual notation for developing process

maps are very similar. Typically, such notations provide an

array of elements and graphical symbols allowing a mod-

eller to represent additional contextual information. Some

software tools provide features to support the construction

of large models, for instance creating variants of a process,

specifying rules to validate process models, and splitting

process models across multiple diagrams.

The modelling approaches discussed above are generic

and can be applied in many contexts. Focusing specifically

on engineering design, Park and Cutkosky (1999) develop

the design roadmap (DR) approach for modelling mature

engineering design processes comprising many tasks with

interactions that can be represented at multiple hierarchical

levels. DR defines tasks in terms of explicit input and

output information, because in comparison to representing

this implicitly using arrows between tasks, ‘‘the description

is more complete, the boundaries between tasks are

defined, and a basis for developing interfaces between tasks

is established’’ (Park and Cutkosky 1999). A noteworthy

feature of DR is that it distinguishes between various types

of relationships between tasks. First, strong precedence

relationships strictly constrain the sequence of tasks.

Fig. 7 General procedural model for designing of novel machine

elements. Figure and caption reproduced from Hubka and Eder

(1996) with permission of Springer
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Second, weak precedence relationships indicate flows that

may or may not occur, e.g., relating to iteration. Third,

side-effect relationships indicate where a task is not nec-

essary to produce information, but may impact it when

executed. Finally, constraint relationships indicate inter-

actions between the information produced by tasks.

A limitation of the above methods is that they provide

essentially static pictures, while processes typically involve

‘‘complex interactions that can only be understood by

unfolding behaviour through time’’ (Melão and Pidd 2000).

Researchers have accordingly developed computable mod-

els to study these issues using task precedence networks.

The early work focused on application of program evalu-

ation and review technique (PERT) to lay out the plan of

work for development projects and then to focus manage-

ment attention on the critical path (Pocock 1962). A related

approach called critical chain/buffer management (CC/

BM) is concerned with analysing a PERT-type network to

identify buffers that protect the critical path and are used

up as delays accumulate, so that those buffers can be

actively managed (Herroelen and Leus 2001). PERT and

CC/BM are based on acyclic precedence networks and do

not explicitly account for iteration, which is one of the key

characteristics of the DDP. Researchers considering this

limitation applied later developments of PERT, namely

graphical evaluation and review technique (GERT) (Prits-

ker 1966; Nelson et al. 2016) and its variant Q-GERT

(Taylor and Moore 1980) to analyse DDPs under the

assumption that some tasks in the network may trigger

iteration probabilistically.

Other DDP modelling approaches explicitly represent

dynamic flows of information in a process using variants of

the Petri net. This is a formal approach which, in its sim-

plest form, represents a process in terms of a network of

places and transitions (Van der Aalst 1998). A transition is

triggered when tokens accumulate in its input places,

whereupon those tokens are absorbed and reappear in the

transition’s output places, potentially triggering other

transitions in turn. Appropriately constructed Petri nets

allow the dynamic behaviours of serial, parallel, and iter-

ative task patterns to be modelled. For instance, McMahon

and Xianyi (1996) use a Petri net-based process model as

the basis of an automatic controller which directs computer

processes to design a crankshaft. A shortcoming of the

Petri net is that logical problems such as deadlocks can

appear if the net is not appropriately structured, which

becomes more difficult to achieve as the complexity of

information flows and the number of possible routes

increases. Considering these problems, Ha and Suh (2008)

develop a set of Petri net templates that each represent a

certain pattern of DDP task interactions. Larger models can

then be assembled from these templates. Another issue is

that, in the DDP context, it is common that changes in the

planned process are required during its execution. This is

also difficult to handle using Petri nets. Karniel and Reich

(2011) address this issue with an approach to automatically

generate or update a Petri net from a Task DSM (discussed

in Sect. 4.2.2) in a way that ensures its logical correctness,

thereby allowing simulation of a dynamic process involv-

ing complex information flows.

A more descriptively elaborate but less formal com-

putable model based on a graphical precedence approach is

the applied signposting model (ASM) developed by Wynn

et al. (2006). The ASM is based on a hierarchical

flowchart representation intended to be scaleable and

familiar to practitioners. Similar to DR, tasks are specified

in terms of input and output information, different depen-

dency types can be represented, and an abstraction hier-

archy of tasks and design parameters is provided with tool

support to automatically generate simplified views (Wynn

2007). The ASM simulation algorithm was developed to

handle processes having multiple intertwined iteration

loops, which are difficult to configure in many other

approaches. It also allows flexible specification of indi-

vidual tasks’ behaviours. In contrast to notations such as

EPC and BPMN, flow logic such as AND/OR/XOR gates is

not represented graphically, because this was found to

require large and complex diagrams even for relatively

simple processes. Instead, such logic is embedded in the

tasks’ configurations. The ASM was developed and applied

through industry collaborations in the aerospace sector. For

example, Kerley et al. (2011) describe how the approach

was applied to model and simulate jet engine conceptual

design in Rolls-Royce to support integration of improved

lifecycle engineering tools into the process. Hisarciklilar

et al. (2013) and Zhang et al. (2015) apply the approach to

determine how to reduce process span time at Bombardier

Aerospace. The ASM also laid groundwork for approaches

to predict change propagation in a design process (Wynn

et al. 2014), to analyse changes to the process itself (Sha-

piro et al. 2016), and to optimise resource allocation

(Xin Chen et al. 2016).

A strength of graphical task precedence approaches is

their intuitive flowchart-style notation which can be easily

understood by most people. Another is the flexibility; a

model may be constructed at different levels of rigour and

formality according to the modeller’s needs and preference.

However, such models also have limitations. As is apparent

in the example of Fig. 8, although it is possible to model

quite complex processes, graphical network models do

become unwieldy as a model’s structure becomes more

complex and incorporates more concurrent tasks, because it

becomes difficult to visually arrange and make sense of the

many information flows required. Flows that connect

across a long distance of the model are especially difficult

to read and manipulate. The effort to make changes to a
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graphical model tends to increase substantially with the

model’s scale and density, due to the need to manually

reorganise the layout and rewire the connections. Some of

these difficulties may be partially addressed by organising

a model hierarchically into subprocesses, but this can

introduce further challenges in managing and visualising

connections that cross levels and can also cause problems if

the hierarchy later needs to be repartitioned. Another

consideration is that if a model is used for simulation, some

schemes require careful configuration and painstaking

verification to ensure it operates as intended in all scenar-

ios, especially if it incorporates a dense structure of

dependencies with concurrent flows and intertwined itera-

tion loops (Karniel and Reich 2009).

ProModeller is a task precedence approach which is not

based on node-arrow diagramming and thus avoids some of

these issues. This system allows modellers to represent a

process by hierarchically combining process elements

drawn from a standard library comprising around 50

objects (Freisleben and Vajna 2002), each representing

either a type of task or a structural element. Tasks can be

configured when instantiated into a model. Structural ele-

ments are essentially hierarchical containers that specify

the procedure for attempting the objects nested within:

sequentially; in a cycle of iterative refinement; concur-

rently; or by selecting one from a set of alternatives (Vajna

2005). The reflection of process behaviour in structure

ensures that models constructed using this approach are

logically correct. In consequence, it is not necessary to

validate a model’s structure prior to analysis. This may

facilitate the distribution of modelling effort among many

process participants. On the other hand, in comparison to

graphical network approaches, tree-structured approaches

like ProModeller provide less flexibility for modelling

complex information flows and arguably a less visually

intuitive representation.

The task precedence models discussed in this subsection

may be especially useful where design processes are rela-

tively routine, while also involving enough complexity that

stakeholders may not fully understand them prior to mod-

elling. These situations do often occur in practice—for

instance in the evolutionary development of large-scale

designs (Wynn et al. 2014). The situated and responsive

aspects of designing may be embedded in the possibility of

some tasks triggering iteration, or may occur within indi-

vidual tasks and thus be below the level of resolution of a

model. They may also render a model inaccurate if they

lead to changes in the tasks that are needed or in the way

information flows between them.

4.2.2 Task dependency models

To recap, task dependency models represent the informa-

tion dependencies between tasks as well as, or instead of, a

procedure for attempting them. Such models emphasise

that the tasks could be organised in several ways. For

example, they could be attempted in different sequences or

in parallel. Approaches which incorporate dependency

Fig. 8 Task precedence model of a partial jet engine conceptual design process. Swimlanes are used to represent design responsibilities.

Reproduced from Wynn et al. (2014) with permission of ASME
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models are based on the premise that a process can be

improved by studying the underlying structure of the

situation.

The most well-known model in this category is prob-

ably the design structure matrix (DSM) introduced by

Steward (1981). A DSM is a square matrix in which a

mark in a cell indicates that the element in the row

depends upon that in the column (see the example in

Fig. 9). Where the elements represent tasks and the con-

nections represent information dependencies, the matrix is

called a Task DSM (Eppinger et al. 1994). If all the marks

lie below the leading diagonal in one or more of the

possible orderings of the rows and columns, the process

may be completed by attempting tasks sequentially or in

parallel. Conversely, if it is not possible to find such an

ordering, some of the tasks are interdependent and itera-

tion may be required to resolve them (Eppinger et al.

1994). Algorithms have been developed to analyse a DSM

to examine or exploit such structural characteristics. The

algorithms include: sequencing, which is attempting to

find a lower diagonal reordering, i.e., a sequence of tasks

to minimise information feedback and, therefore, reduce

the possibility of iteration; banding, identifying indepen-

dent elements in a sequenced DSM, i.e., tasks which may

be attempted in parallel; and clustering, attempting to

group elements into strongly connected sets with low

inter-cluster connectivity, i.e., groups of tasks that may be

appropriate to perform essentially in isolation (e.g.,

Kusiak and Wang 1993b; Yassine 2004).

The Task DSM has been extensively adopted in research

literature as the basis of models to analyse DDP charac-

teristics, especially those related to decomposition and

integration. The key consideration here is that when a high-

level task such as designing a system is decomposed into

subtasks that will be undertaken by different people or

teams, interdependencies are invariably created between

those subtasks. It is, therefore, important to carefully

organise the subtasks and manage the information flows

between them to minimise the rework that might be gen-

erated when tasks’ outputs are reintegrated—especially if

some of the work will be done concurrently. One seminal

meso-level model considering these issues is the work

transformation matrix (WTM) developed by Smith and

Eppinger (1997a). The WTM focuses on situations in

which interdependent tasks are executed in parallel with

frequent information transfer to manage their interdepen-

dencies. It assumes that each task in such a group contin-

uously creates iteration work for the others that depend on

it, at a constant rate. The dependencies and their corre-

sponding rates are represented in a Task DSM. Smith and

Eppinger (1997a) show how eigenstructure analysis can be

used to identify the drivers of iteration within a coupled

task group if the WTM assumptions hold. Assuming

instead that tasks are executed in sequence, such that each

task might create rework for others already completed if a

dependency exists between them, Browning and Eppinger

(2002) build on the earlier work of Smith and Eppinger

(1997b) to develop a Monte Carlo simulation model which

they use to evaluate the cost and schedule risk associated

with different task sequences and thereby identify the best

sequence for a given task decomposition. These two

models, respectively, described as parallel and sequential

rework models, have influenced many other research arti-

cles (e.g., Bhuiyan et al. 2004; Cho and Eppinger 2005).

The Task DSM provides a compact notation which can

be especially useful for processes involving dense struc-

tures of information dependency. It is also useful to con-

cisely visualise the properties of different dependencies, if

meaningful symbols and/or numbers are placed in each cell

(Browning 2016). Achieving a comprehensible visual lay-

out is likely to be easier than when graphical networks are

used. Another advantage is that the approach can be

applied without specialised software. Many computations

can be expressed and programmed as operations over the

matrix cells. On the other hand, some weaknesses are also

apparent. DSMs are not well suited to convey detail, and

thus, it can be easy to misplace marks when constructing or

reading large matrices. It is not clear how to deal visually

with opening and closing hierarchical structures in a DSM

model. Sequential and parallel flow structures are difficult

to visualise (Park and Cutkosky 1999), because, although

clusters of tasks can be easily indicated as shown in Fig. 9,

there is no equivalent of swimlanes. More information on

the Task DSM and the many related models can be found

in Eppinger and Browning (2012) and the review article by

Browning (2016).

Fig. 9 Binary design structure matrix, partitioned to represent a

sequence. Figure and caption reproduced from Eppinger et al. (1994)

with permission of Springer
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Another established dependency modelling approach is

IDEF0, which uses a hierarchically structured set of dia-

grams to represent a system in terms of functions and the

interactions between them (USAF 1981). Applied to the

DDP, functions are in essence similar to tasks. Each IDEF0

diagram comprises between three and six functions, which

are represented as boxes and interconnected by labelled

arrows. Arrows indicating a function’s inputs enter at the

left of the box, and are transformed to produce outputs

which leave from the right of the box. Control arrows enter

the top of a box and indicate constraints on the function’s

operation. Mechanism arrows enter the bottom of a box and

indicate provision of a means for executing the function.

Any function box can be decomposed into a more detailed

diagram showing its subfunctions. Functions can be linked

across and between levels in the hierarchy, and the model

may include a glossary of terms (USAF 1981). In com-

parison to DSM, the IDEF0 approach is more expressive,

but less concise. A large set of diagrams is often needed,

which can be time-consuming to produce (Colquhoun et al.

1993).

Although not as prominent as DSMs in the research

literature, IDEF0 has been quite widely applied for DDP

modelling. For example, Kusiak et al. (1994) discuss its

use to support reengineering of design and manufacturing

processes, arguing that the notation can help with per-

ceiving a process at different levels of detail and with

exploring how the constraints on a task’s execution can be

relaxed. ADePT PlanWeaver is a planning support tool for

the construction industry which is based on an IDEF0-style

representation, enhanced to indicate the discipline associ-

ated with each flow into a task, as well as the strength of

the dependency (Austin et al. 1999). In the approach, a

library of generic construction processes is used to con-

struct a customised process model for a specific project,

which can be viewed as a Task DSM and then sequenced to

minimise the scope of cycles that may cause iteration.

Identifying dependency loops that remain and finding ways

to eliminate them, for instance by splitting some tasks into

several parts, allows the project to be sequenced and a

schedule to be produced (Austin et al. 2000). More

recently, Romero et al. (2008) introduce an enhanced

IDEF0? approach. This includes additional symbols to

distinguish the main flow of information from other inter-

actions, such as coordination and cooperation, that are

needed in a collaborative design process.

To summarise, the main advantage of task dependency

models is their emphasis on information flow constraints

rather than procedures—because understanding constraints

is helpful when constructing a plan or seeking opportuni-

ties for process improvement. On the other hand, Austin

et al. (1999) identify one disadvantage in that untrained

readers tend to incorrectly assume a task sequence.

4.2.3 Rule-based models

Task precedence and dependency models as discussed

above view DDPs as essentially similar in nature to other

business processes, albeit with a high level of uncertainty

and with the expectation of iteration. One criticism that

might be levelled at such models is that they attempt to

represent design processes but do not explicitly integrate an

important insight gained from research into the nature of

design activity—its situatedness (see Sect. 3.3). Rule-based

models offer a possible route to address this limitation.

They aim to model how process outcomes emerge through

the interaction between the rules that define task properties

and the design situation which changes as tasks are

executed.

Some meso-level work in this area built on the Sign-

posting approach of Clarkson and Hamilton (2000), which

was discussed in Sect. 3.2. This model was extended

through a series of Ph.D. projects to study the multitude of

routes that might be possible in a complex, concurrent

design process. Features added to the model to do this

included: a probability density function defining the dura-

tion of each task; multiple outcomes from each task with a

probability of each occurring; and resources required by

each task along with their limited availability (O’Donovan

et al. 2004). Among other insights this model, called

Extended Signposting, was used to show how both the

probability and desirability of each route should be con-

sidered when planning a design process. The adaptive test

process (ATP) takes a similar approach, viewing a DDP as

a complex adaptive system that emerges from a ‘‘primor-

dial soup’’ of activities together with rules governing their

selection (Lévárdy and Browning 2009). In comparison to

Signposting, ATP offers more concrete criteria for select-

ing tasks, considering their roles in driving technical per-

formance measures (TPMs) closer to specified targets.

Lévárdy and Browning (2009) argue that at each step, the

next task should be selected to maximise expected project

value in terms of the TPMs, time, and cost. The ATP

incorporates a simulation model that can be used to

examine the value generated by different tasks and activity

modes at different points in a project, among other con-

tributions (Lévárdy and Browning 2009). More recently,

Wynn et al. (2011) describe a process model in which key

properties of tasks are defined according to rules that

consider evolving uncertainty levels relating to design

information. To illustrate, the time spent on an FEA task

would be influenced by the expected accuracy of boundary

conditions, which would propagate through the task to

influence the expected accuracy of its outputs. In this

model, a design is progressed through iterative cycles

which continue until uncertainty levels converge to

acceptable values. Wynn et al. (2011) suggest that this
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approach can be used to explore how different facets of

design uncertainty may contribute to project delays.

Apart from the possibility of capturing a process’

interdependency with the evolving situation, a noteworthy

feature of Signposting and ATP in particular is that they in

principle allow models to be constructed from knowledge

of individual tasks or process fragments, because an

information flow network does not need to be explicitly

represented. This bypasses the requirement for an inte-

grated overview of the process, which can be difficult to

develop in practice. On the other hand, when compared to

the approaches discussed in the previous two subsections,

rule-based models are difficult to visualise and it is not

clear how to validate all possible routes they allow.

Research towards addressing these limitations is reported

by Clarkson et al. (2000). For the moment though, such

models remain mainly of academic interest.

4.2.4 Domain-integrating task network models

Domain-integrating task network models explicitly inte-

grate process models capturing an end-to-end flow of tasks

with detailed information about other domains such as the

product being designed. Eckert et al. (2017) argue that

such models could be useful to guide trade-offs between

design characteristics and process performance. For

example, they might help to decide whether design changes

should be accepted during a project, considering whether

the design improvements would justify the additional time

and effort in the development process.

Recently a lot of attention has been paid to domain-

mapping matrices (DMMs) and multiple-domain matrices

(MDMs). These are extensions to the DSM which allow

modelling of linkages between different types of element

(Kusiak and Wang 1993a; Danilovic and Browning 2007;

Lindemann et al. 2009; Bartolomei et al. 2012). Danilovic

and Browning (2007) discuss application of DMMs to

explore connectivity between the process domains of tasks,

components, and teams. By analysing the domains inde-

pendently and in combination, it is possible to identify

mismatching structures. For example, a team structure

which does not reflect the decomposition of tasks in the

process may contribute to communication overhead or

rework (Kreimeyer and Lindemann 2011). Sosa et al.

(2004) discusses how such structures can be identified

using a DMM approach, and how this can be used to focus

coordination effort on the interactions which are likely to

drive design change and iterations. A key aspect of MDM

methodology is the use of filter operations to derive indi-

rect dependencies, for example, computing an implied

Task DSM from an MDM showing the tasks’ inputs and

outputs (Lindemann et al. 2009). Another element is using

graph-theoretic metrics such as betweenness centrality and

cycle count to develop insights about the importance of

nodes and patterns in the network (Kreimeyer and Linde-

mann 2011). Lindemann et al. (2009) and Kreimeyer and

Lindemann (2011) define a standard set of domains (e.g.,

subsystems, tasks, resources, etc) which can be modelled in

a development project and a set of metrics and filters for

analysing models thus constructed.

Object-process methodology (OPM) provides an inte-

grated representation of processes and objects using a

formal graphical notation or equivalent formally structured

sentences (Dori 2002). A model constructed using OPM

comprises a hierarchically organised set of object-process

diagrams (OPDs) that represent both processes and their

related objects (ISO/PAS19450 2015). Several types of

structural link allow the modeller to connect diagram ele-

ments within the process domain or within the object

domain, while several types of procedural link can be used

to connect elements across these two domains. OPM is a

general-purpose methodology that has been applied in

different contexts. Of particular interest to this review,

Sharon et al. (2013) consider how it can support planning

and control of development projects, by clarifying how the

project tasks (modelled as processes) are interrelated with

the required resources and the hierarchy of deliverables

(modelled as objects). In their approach, a project is

decomposed into a hierarchy of tasks and deliverables,

considered concurrently. The OPM representation is then

analysed to generate summary views useful for project

management. Sharon and Dori (2015) further develop this

method, arguing that it could help to avoid mismatches and

inconsistencies between the models and documents used to

manage a project.

Other models integrating product and design process

information have been developed with the specific objec-

tive to support resolution of conflicts among design

parameters. For example, the DEPNET approach stipulates

modelling a process as it unfolds, along with the design

information associated with each task (Ouertani and Gzara

2008). The resulting trace constitutes a network of

dependencies among information items, which can be used

to assess the knock-on impact of design changes. A similar

approach is taken in CoMoDe, an object-oriented model

intended to maintain a trace of the model versions that are

created and used at each step in a collaborative design

process (Gonnet et al. 2007). CoMoDe represents a hier-

archy of process activities and constituent operations;

requirements; the actors who perform each activity; char-

acteristics of the artefact as it is evolved; and decision

rationale. Gonnet et al. (2007) describe how it can be

applied to detect conflicts among models that exist simul-

taneously in the collaborative design process, according to

the logic by which those models were generated. Overall,

process-oriented conflict management seems a theoretical
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approach involving step-by-step capture of design history

using rather complex representations. Although the

potential is demonstrated by examples, the respective

authors do not report evaluation of the proposed support

tools in an industry context.

Focusing on coordination in major projects, Rouibah

and Caskey (2003) develop an engineering work flow

(EWF) approach based on identifying the engineering

parameters whose values need to be determined—this can

be partly constructed by reference to similar past projects.

The parameters are linked into a network to represent their

interdependencies, which can evolve during a project.

Parameters are also linked to the responsible parties.

During design, parameter values are iteratively developed

through increasing ‘‘hardness grades’’. Six steps are defined

to transition between successive hardness grades, to ensure

that the change is coordinated among impacted parties.

This approach seems to have strong potential to support the

coordination tasks to ensure consistency and transparency

during a project. However, it does not describe the specific

engineering tasks required to determine each parameter’s

value.

In comparison to the approaches reviewed in Sects.

4.2.1, 4.2.2 and 4.2.3, domain-integrating models more

strongly emphasise how a DDP interacts with its context.

While this potentially offers more insight, it also requires

more information. Consequently, it may be difficult to

create large-scale models in such approaches and ensure

their consistency (Park and Cutkosky 1999), as well as to

visualise and understand the models once created. There

are many other approaches in this category. For focused

reviews of integrated models and further discussion of their

advantages and limitations, the reader is referred to Eckert

et al. (2017) and Heisig et al. (2014).

4.2.5 Agent-based task network models

Finally, agent-based models (ABMs) have been developed

that combine meso-level task relationships with micro-

level models of agent behaviour. Such models offer the

possibility to study factors impacting a process in a more

realistic context than the other models described in this

section. For instance, they can incorporate factors such as

organisational structures and the many non-design activi-

ties that project participants must attend to—such as going

to meetings, chasing colleagues for information, and other

coordination activity that emerges as a project unfolds.

In one influential example, the virtual design team

(VDT) developed by Cohen (1992), Christiansen (1993)

and colleagues represents individual designers and man-

agers in a project as information-processing agents. These

agents interact by generating and responding to messages

according to rules. Messages can involve passing design

information between tasks and also the handling of

exceptions, which occur when an agent must stop work and

seek more information before they can complete their

assigned task. In the model, message handling depends on

factors such as the organisation structure and communi-

cation tools available. Later developments of the VDT

accounted for additional influences such as incongruency

between actors’ goals. Levitt et al. (1999) discuss a case

study of satellite launch vehicle design, in which the VDT

was used to evaluate the impact of proposed changes such

as increasing individuals’ skill levels and improving

alignment of their objectives. Other ABMs developed for

the DDP context include the Agent Model for Planning and

rEsearch of eaRly dEsign (AMPERE), which focuses on

studying the impact of requirements changes during design

(Fernandes 2015), and the model of Crowder et al. (2012),

which focuses on the factors involved in effective team

working.

Some advantages of ABMs were discussed at the start of

this subsection. In addition, it may be noted that ABMs can

represent the decisions of situated actors and thus may be

well suited to account for the responsive and emergent

facets of the DDP (Garcia 2005). In terms of disadvan-

tages, developing an ABM requires complex configuration

or programming of a specialised tool and may be beyond

the reach of many would-be modellers. Second, the models

are each unique and do not lend themselves to graphical

representation. As a result, their mechanics can be opaque

except to their creator, which might lead to credibility

concerns. Finally, although ABMs might be helpful to

build understanding of the factors influencing DDP per-

formance, they cannot easily be used to document or pre-

scribe a process.

4.3 Meso-level abstract models

Abstract models on the meso-level provide conceptual

frameworks for understanding how meso-level process

flows, or models of them, relate to the design’s progression.

In contrast to other categories of meso-level model, they do

not specify or analyse tasks in detail.

Some abstract models conceptualise the design process

as a series of tasks that transition in a progressive way

between the different types of information or knowledge

that are used as a design is created. Many of these are

informed by the early work of Hubka, Andreasen, and

others who showed how a mechanical design can be

described as a structure of information that cuts across

different ‘‘domains’’. Overviews of the product-focused

aspects of this work can be found in Buur (1990),

Andreasen (2011), Eder (2011), and Hubka (1982).

Applying these concepts to the design process, Theory of

Domains (recently summarised by Andreasen 2011;
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Andreasen et al. 2015) contends that designers consider an

emerging mechanical design from four perspectives or

domains: (1) a process of transformations effected by the

product in use; (2) functions that provide those transfor-

mations; (3) organs which provide physical effects required

for functions, through interaction between parts; and (4)

physical parts themselves. The theory states that designers

establish these domains in the sequence listed above, not-

ing that stepping back and forth between them is also likely

(Buur 1990). Within each domain, a design is described by

multiple product models that can each be categorised on a

two-dimensional grid: abstract vs. concrete, and simple

(undetailed) vs. total (detailed) (Fig. 10). Micro-level

procedural models such as those reviewed in Sect. 3.1 can

be seen as either assisting work within a domain or guiding

transitions between domains (Buur 1990).

Related to the theory of domains, Grabowski et al.

(1996, 1999) develop the Universal Design Theory (UDT)

based on the concept of design working spaces (DWSs).

Each DWS is bounded by constraints that determine how it

fits into a higher level system, and comprises the design’s

elements and relationships that are developed through four

stages, namely requirements, functions, physical principles,

and parts. The design process is seen as a series of opera-

tions in which a solution is progressively developed within

its DWS by stepwise moves that can be categorised on three

dimensions. The first dimension is concretisation vs.

abstraction. For example, concretisation might move a

solution state from functions to structures, while abstraction

might move it in the opposite direction. On the second

dimension, detailing vs. combination, a problem is

decomposed into subproblems with their own DWSs, or

subsolutions are combined into higher level solutions. On

the third dimension, variation refers to searching for alter-

native solutions on the same level of abstraction, while its

counterpart, limitation, refers to adding constraints that

reduce the solution space. Grabowski et al. (1996) also

emphasise the importance of guiding the process from one

step to the next.

Finally, characteristics-properties modelling/property-

driven development (CPM/PDD) was developed to provide

a theoretical framework for integrating computer tools into

the design process and vice versa (Weber et al. 2003).

CPM/PDD states that a design comprises characteristics,

which are set by designers, and properties, which describe

the design’s resulting behaviours. A design process is

presented as a collection of synthesis tasks, which deter-

mine or create characteristics from desired properties, and

analysis tasks, which determine properties from charac-

teristics. The model suggests that tasks are also influenced

by external conditions, such as load cases, and can be

supported through prescriptive methods such as those dis-

cussed in the previous sections. Key features of design that

the model aims to encompass include: how the process is

driven by the difference between desired and real proper-

ties; how the product definition becomes more complete

over time as more characteristics are created and their

values determined; how partial solutions can be integrated

into an emerging design; and how iterations may be caused

by conflicts, e.g., when multiple synthesis tasks affect the

same properties (Weber 2014).

4.4 Meso-level MS/OR models

Meso-level models of the fourth and final type, MS/OR, are

similar in many respects to the meso-level analytical

models discussed in Sect. 4.2. The key distinction is that

models in this category are created as mathematical or

computational tools for research in which representative or

synthetic cases are analysed to extract general insights—

whereas the analytical models discussed earlier provide

approaches that practitioners might in principle use to

model, analyse, and improve their specific situations.

One stream of work in this category focuses on devel-

oping mathematical models to study how concurrency may

help to reduce lead time by bringing more resource to bear,

at the cost of increased rework. For example, AitSahlia

et al. (1995) develop algebraic models that show how the

number of tasks that have to be redone if iteration occurs

increases as their concurrency increases. Their models

demonstrate how the tipping point at which further

increases in concurrency start to yield increases instead of

Fig. 10 Theory of domains views design as a process in which design

information is established through increasingly concrete domains. It

provides a framework in which models and methods used during

design can be positioned. Reproduced from Andreasen (1980) with

permission of the author
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reductions in process duration is determined by the prob-

ability of each task creating rework for others. Hoedemaker

et al. (1999) consider a similar situation, developing

models to explore how the increased need for communi-

cation and the need to reintegrate tasks cause additional

efficiency losses as concurrency is increased. Other authors

consider design reviews. For example, Ha and Porteus

(1995) develop a mathematical model to study the optimal

timing of such reviews during concurrent product and

process design. In this model, the desirable effects of

frequent design reviews are to find flaws before they are

incorporated into the design, and to validate interim

product design work so that it can be released to process

design, enabling concurrency. This is set against the time

required to set up and execute the reviews. Ha and Por-

teus (1995) show that the optimal frequency of reviews

depends on whether the concurrency or quality issues

dominate. Their model is extended by Ahmadi and Wang

(1999) to also consider how resource is allocated to dif-

ferent design stages. In this case, the model is used to

consider how the reviews should be scheduled with a

view to minimising the risk of missing targets. A number

of other MS/OR models focus on managerial decisions

relating to stage overlapping, without explicitly repre-

senting the interactions among numerous discrete tasks—

these are accordingly categorised as macro-level and

discussed in Sect. 5.4.

Another group of models emphasise how the task

decomposition influences convergence of a concurrent,

iterative design process—as explained by Browning

(1998), ‘‘tightly coupled, highly iterative processes can

expect greater difficulty converging to an acceptable design

under a given schedule and budget’’. Considering this

issue, Yassine et al. (2003) develop an MS/OR model to

study the causes of oscillatory situations in which progress

is repeatedly thought to be on schedule before falling

behind, arguing that this causes several knock-on problems

such as short-termism in resource allocation. They use their

model to show that this situation arises because teams that

work concurrently on interdependent problems only coor-

dinate periodically and thus often make design decisions

based on outdated information. Braha and Bar-Yam (2007)

focus on structural characteristics of the information flow

network among tasks being worked concurrently. They

develop a model considering that when any task is solved,

it is possible that this will cause any interdependent tasks to

require iteration. They analyse task networks from several

domains and find there are common characteristics. In

particular, most tasks are not strongly connected, but those

that are strongly connected are shown to be especially

susceptible to such iterations. Other researchers have

studied convergence problems using spectral analysis,

developing MS/OR models based on the Work

Transformation Model (WTM) developed by Smith and

Eppinger (1997a, see Sect. 4.2.2). In one such model, Loch

et al. (2003) apply an eigenstructure analysis to show that

convergence of an iterative process becomes less probable

and more time-consuming as the number of coupled tasks

increases. In two others, Huberman and Wilkinson (2005)

and Schlick et al. (2013) create spectral models incorpo-

rating fluctuations in task performance, both showing that

variance in overall process time can increase dramatically

if the fluctuations exceed a certain threshold.

The above models consider a process in terms of tasks

only, without reference to characteristics of the emerging

design. In contrast, Mihm et al. (2003) describe a model of

design convergence in which decision-making considering

design trade-offs is explicitly represented. Their model

represents a design situation as a network of interconnected

components, each defined by a single design parameter.

Every design parameter should be chosen to minimise a

performance parameter for the corresponding component.

However, a component’s performance depends not only on

its own design, but also on the designs of all components

connected to it. The model simulates how iteration can be

used to converge on a solution, through a series of steps in

which all parameters are updated simultaneously. Running

simulations based on randomly generated data sets, Mihm

et al. (2003) show that convergence takes longer with

larger problem sizes and eventually becomes impossible.

They develop recommendations to improve the speed of

iterative convergence: ensuring designers aim for the glo-

bal performance function instead of optimising locally;

accepting a slightly lower level of performance overall;

minimising information transfer delays so that decisions

are based on up-to-date information; converging step-by-

step towards the desired outcome, e.g., by exchanging

preliminary information through a series of iteration

cycles; and structuring the design into relatively indepen-

dent modules.

Overall, the models discussed in this subsection, and

others in the same category, are rather general in nature and

do not offer guidance tailored to specific situations. How-

ever, researchers’ conclusions from the models can provide

useful insight into the drivers of (desirable or undesirable)

development project behaviours.

5 Macro-level models

This section completes the review by discussing the third

and outermost of the three levels of the organising frame-

work shown in Fig. 1. Many of these macro-level models

concentrate on the large-scale organisation and manage-

ment of design and development. Some consider interac-

tions between the design and development process and the
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context into which the design will be delivered. Consid-

ering the first of these two situations, the primary difficulty

companies face is arguably the integration of systems,

disciplines, tools, processes, and personnel (Andreasen and

Hein 2000). Research addressing this is often known as

Concurrent Engineering (CE) (e.g., Prasad 1996a) or

Integrated Product Development (IPD) (e.g., Andreasen

and Hein 2000; Vajna and Burchardt 1998). According to

Prasad (1996a), CE emphasises approaches ‘‘to elicit the

product developers, from the outset, to consider the ‘total

job’ (including company’s support functions)’’. Some of

the key facets of this philosophy are to use advanced col-

laboration tools including approaches such as Quality

Function Deployment (Hauser and Clausing 1988),

appropriate team structures, and Design for X methods to

increase concurrency and information exchange between

coupled tasks, teams, and design considerations (Prasad

1996a; Vajna and Burchardt 1998). Overall, CE/IPD is

thought to compress lead time and support integration by

reducing the mistakes and oversights that can cause late

design changes (Prasad 1996a).

5.1 Macro-level procedural models

A number of prescriptive models provide graphical

depictions and explanations of the contextual issues that

need to be addressed during design, ranging from produc-

tion processes through to economic considerations.

Examples include the IPD model (Andreasen and Hein

2000), the total design model (Pugh 1991), the concurrent

engineering wheels (Prasad 1996b), (Fig. 11), and the

model of engineering design set in context developed by

Hales and Gooch (2004). Models of this type are discussed

further by Wynn and Clarkson (2005).

Other models in this category prescribe DDP manage-

ment structures and philosophies thought to mitigate the

risk of costly loop-backs, i.e., iterations between stages of

the development process. One such model commonly

found in companies is the stage-gate process (Cooper

1990), which emphasises the use of formal, structured

reviews to ensure a design is sufficiently mature before

allowing it to proceed from one stage to the next (Fig. 12).

Another is the Systems Engineering Vee model (Fig. 13)

which graphically emphasises decomposition of a complex

design into subsystems which are developed individually,

and then integrated, verified, and validated at every level of

the subsystem hierarchy (Forsberg et al. 2005; VDI2206

2004). Key concerns here include ensuring the proper

definition, flowdown and control of requirements and

interface definitions to avoid synchronisation problems and

rework. A third model that has gained attention is set-based

concurrent engineering (SBCE), which advocates con-

trolled reduction of technical uncertainties through a focus

on up-front learning about whether the design is feasible.

The guiding principle is that choosing the right concept

means fewer surprises later, reducing rework, and allowing

more standardised, more efficient work later in the design

process (Kennedy et al. 2014). SBCE proposes that this

should be approached by developing and maintaining

several workable designs for each subsystem, and gradu-

ally eliminating alternatives that are found to be infeasible

or found to generate integration difficulties as the design

moves forward (Fig. 14). This may be compared against

the more common practice of creating one design for each

subsystem and iterating until they can all work together.

Authors have also considered how Lean models developed

in manufacturing, involving concepts such as JIT and takt

periods, can be applied to manage routine aspects of

development processes (e.g., Oppenheim 2004). Holistic

procedural models that incorporate Lean and SBCE include

descriptions of the original Toyota Product Development

System (e.g., Sobek et al. 1999; Liker and Morgan 2006);

the learning first product development model of Kennedy

(2008); and the LeanPPD model of Al-Ashaab et al.

(2013).

The approaches discussed above focus on avoiding

rework by establishing an essentially funneled structure in

which the design space is progressively narrowed; deci-

sions thought to have greatest consequence are taken

earlier in the process and efforts are made to inform them

as fully as possible. This overall strategy is visualised in

the textbook model of Ulrich and Eppinger (2015). In

contrast, agile models prescribe structured iterative cycles

in which the design is repeatedly reintegrated as it pro-

gresses through increasing levels of definition (Cusumano

and Selby 1997). This and other forms of iterative

incremental development (IID) have been accepted in the

software development context for some time (see Larman

and Basili 2003 for a review) and have been proposed as

possible approaches to managing product development as

well (e.g., Turner 2007). They may be especially useful in

contexts where customer needs or technology evolve

rapidly, in cases where requirements are difficult to

specify and where the emerging solution influences the

nature of the problem. Considering similar issues, Ottos-

son (2004) developed Dynamic Product Development

(DPD), a model targeted at projects involving substantial

innovation and creativity. Ottosson (2004) argues that the

traditional emphasis on controlling projects by formal

documentation and review leads to delayed information

and reactive management. He also highlights the difficulty

of long-term planning in a project involving uncertainty.

To address these issues, DPD prescribes delegation of

control allowing continuous managerial involvement at all

levels, which is thought to facilitate real-time dynamic

guidance. Furthermore, DPD aims to minimise loop-backs
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by allowing the concept to be adjusted continuously

throughout a project, rather than freezing it early. A key

consideration regarding application of dynamic, iteration-

driven approaches such as IID and DPD to large projects

is ensuring sufficient discipline and control of the devel-

opment process (Turner 2007).

Fig. 11 Concurrent engineering wheels emphasise integrating the ‘total job’ in a CE project. The coupled wheel structure indicates that issues

are simultaneously addressed and capabilities are developed in unison. Reproduced from Prasad (1996b)

Fig. 12 Stage-Gate model emphasises the need to ensure that a design is sufficiently mature to exit each stage of the development process, to

prevent costly loop-backs. Figure reproduced from Cooper (1990) with permission of Elsevier
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Practice often integrates characteristics of several

models from this category without following any one

exactly as prescribed. Maffin et al. (1995) argue that

although such models can appear too general for easy

application, they can be adapted to a particular context.

They propose that a set of critical factors which define the

organisation and the product are influential upon the pro-

duct development process, and that classifying companies

according to this framework could form the basis for

guiding the selection of suitable models for a company.

One overall challenge with macro-level procedural models

is handling their implementation in a particular company,

each of which will start from a unique set of issues and

existing processes. The high level of abstraction of the

models arguably does not provide much guidance towards

improvements to an existing situation. Implementing a

change on the level described by these models, e.g., tran-

sitioning from a stage-gate product development system to

an SBCE-based system, is likely to pose many practical

challenges—especially in large organisations. Such models

might thus be viewed as more indicative than directive of

best practice; Blessing writes that prescriptive procedural

models (including those on the meso-level) are seldom

employed to direct DDP improvement (Blessing 1994).

5.2 Macro-level analytical models

Macro-level analytical models can be used to investigate

and address the impact of a process’ context. There are two

main groups of such model: queueing models and system

dynamics (SD) models. These are discussed in the next two

subsections.

5.2.1 Queueing models

When a process is considered in context of the organisation

that executes it, scarcity of resource and the need for

workers to divide their effort among tasks from several

sources often cause workload congestion and, conse-

quently, delays. Queueing models provide a means to

investigate and manage these macro-level issues.

Fig. 13 Vee model of the

systems engineering process

emphasises management of

decomposition and integration

to avoid rework.

Figure reproduced from

Forsberg et al. (2005) with

permission of Wiley. Copyright

�2005 by John Wiley & Sons,

Inc

Fig. 14 Depiction of the set-based concurrent engineering process.

Reproduced from Raudberget (2010) with permission

186 Res Eng Design (2018) 29:161–202

123



The first group of models in this category incorporate

dynamic simulations. For example, Adler et al. (1995)

develop a queueing model to study workload and conges-

tion effects in firms that handle multiple development

projects concurrently. In such situations, even when a task

has the information required to start, it must compete for

attention with tasks from other projects. In their model,

Adler et al. (1995) assume that projects can be grouped

into different types, each of which is represented as an

iterative task network that incorporates probability density

functions to represent variation in individual project char-

acteristics. The organisation is represented as a set of

processing stations, each of which has a fixed capacity

representing the number of individuals who can work on

tasks of a certain type. In the simulation, projects are

assumed to arrive at stochastic intervals, such that several

are in progress at any time. The tasks from each project-in-

progress are generated according to the precedence net-

work for the corresponding project type, and queue for

attention at the appropriate processing stations. Thus, the

model captures the time which a project spends waiting for

attention as well as the time spent performing tasks. Adler

et al. (1995) argue that their model can accordingly predict

cycle time more accurately than single-project approaches

and, through what-if analysis, can provide useful insight

into resourcing and congestion effects. Narahari et al.

(1999) build on this work, arguing that similar insights can

be gained through a simplified model in which each project

is represented as a single job that flows through a network

of processing stations, each representing a project stage.

The stations are organised in a reentrant line to simulate

loop-backs between stages. Although it does not represent

complex concurrency within each project, this model can

be used to assess project processing times and indicates

how they can be improved through insights from queueing

theory. In particular Narahari et al. (1999) recommend that

workers prioritise jobs using policies designed to reduce

variability, and that companies throttle the number of

projects they take on concurrently.

Queueing models also often appear in engineering

practice as the basis of tools that manage the queues of

tasks in administrative processes such as the review and

approval of design releases or of change orders. For

example, this functionality is offered by commercial PLM

solutions (Rangan et al. 2005). The emphasis is to auto-

mate the logistics of information flow and make people

aware of tasks awaiting their attention, based on a process

model which sets out the series of steps through which all

jobs flow. Although providing useful infrastructure, these

tools are in practice often associated with long process lead

times which can cause many secondary problems, some of

which are discussed by Oppenheim (2004). One approach

to managing this is to provide visual depictions of the

work-in-progress, through manually arranged or comput-

erised visual management dashboards. Such dashboards

usually show the sequence of process steps horizontally

across the top of a computer screen or meeting room wall,

and jobs awaiting attention are aligned underneath each

step (Parry and Turner 2006). They may be discussed

among a team on a regular basis with a view to managing

priorities and bottlenecks. Other authors develop metrics

for monitoring queueing in the DDP to enable and support

continuous improvement (e.g., Beauregard et al. 2008).

Value stream mapping (VSM) is a workshop-based

process mapping method that can help teams to identify

bottlenecks, long lead times, unnecessary activity, and

other wasteful situations in queueing processes, prior to

understanding and addressing the root causes (Rother and

Shook 2003). These problems commonly develop when

responsibility for queueing processes is decomposed across

departments or sites, such that no-one has overall respon-

sibility for ensuring timely end-to-end flow. This often

occurs for important back office processes in product

development as well as in the production processes for

which VSM was originally developed. Seeking to build on

successes in this context, the VSM method has been

adopted as the basis of the product development VSM

(PDVSM) which is intended for the typically less-struc-

tured design processes. The PDVSM manual published by

MIT Lean Aerospace Initiative states that 50–75% reduc-

tion in lead times of development processes can typically

be expected when applying this method (McManus 2005).

VSM is included in this section because it was originally

developed to model and improve queueing systems in

which inventory can accumulate between processing steps,

although PDVSM arguably blurs the boundary between

this idea and the task precedence models such as ASM that

were discussed earlier.

Overall, queueing models are arguably most useful for

handling relatively routine processes that can be perceived

as workflows in which numerous jobs must follow the same

sequence of operations. While these situations do fre-

quently occur in development projects, the models may be

less applicable to core design processes that involve less

routineness.

5.2.2 System dynamics models

Another important contextual issue that is not emphasised

in meso-level analytical models is the impact of influences

and pressures on a process. System dynamics (SD) models

address this issue by representing project governance

structures and other influences, showing how these are

coupled with the process and affect how it unfolds. Most

such models draw on the work of Cooper (1980), who

developed a canonical development project model which
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can be adapted and calibrated for a particular situation. In

Cooper’s model, tasks or work packages are represented as

interchangeable units which flow between four pools, as

shown in Fig. 15. A project begins with all tasks in the

original backlog of work and is considered complete once

they have flowed through the system into work actually

accomplished. The crux of the model as indicated in

Fig. 15 is that quality problems in task execution cause a

backlog of flawed work that needs to be redone, and some

of this backlog may remain undiscovered for some time.

Thus, the model shows why perceived progress tends to fall

behind schedule, and why actual progress lags even further

behind. This model structure became known as the rework

cycle and has been adapted and extended to form the basis

of many later SD models (Lyneis and Ford 2007). For

instance, Ford and Sterman (1998) show how a sequence of

rework cycles, each chained onto the next, can be used to

represent overlapping stages of a development project. In

these models, project influences are often dependent on the

states of the activity pools and influence the rates at which

tasks flow between pools. For example, one influence cycle

may indicate that a rate of completing work (e.g., pro-

ductivity, in Fig. 15) is influenced by schedule pressure,

determined by whether the perceived amount of work

remaining to be done is slipping behind a predetermined

schedule. At the same time, increased work completion rate

might reduce work quality causing progress to lag further

behind perceptions. SD models can be useful to identify

tipping points at which certain influences begin to domi-

nate a situation. The equations that govern feedback effects

are of great importance in determining a model’s

behaviour.

A related macro-level analytical modelling approach is

the use of qualitative causal networks to study project

influences. This approach can be used to analyse factors

that influence a DDP by modelling how they interact to

exacerbate or suppress each other, and ultimately how

these interactions might impact aspects of process perfor-

mance. For example, Browning (1998) and Le (2013) both

apply causal network modelling to analyse causes and

effects of iteration in product development. They model the

structure of influences relating to iteration by integrating

individual factors and relationships revealed in case studies

and prior research. Although the strengths of interactions

might vary from one situation to the next, generic causal

networks such as Fig. 16 may provide useful templates to

guide the modelling and analysis of a specific situation (Le

2013).

For more information on models in this category, the

reader is referred to Lyneis and Ford (2007) who provide a

focused review of SD models applied to project manage-

ment—many of which are either applicable or specific to

the development project domain.

5.3 Macro-level abstract models

Abstract models of the DDP on the macro-level focus on

clarifying its overall form and how design processes

interact with their context. To recap, abstract models nei-

ther prescribe best practices as procedural models do nor

provide concrete approaches for modelling a specific situ-

ation, as analytical models do.

One example of a model in this category is the capa-

bility maturity model for development or CMMI-DEV

(CMMI 2010), which among other elements describes the

system of process areas that exist in a generic development

project or program (Table 2). Large organisations and their

development projects may involve all these process areas,

while smaller companies and projects may deal with many

process areas in an ad-hoc way or not at all. The process

areas can be categorised into core processes that directly

create value, support processes, and management/control

processes. Engineering design is mainly represented within

1 of the 22 process areas, although as a core value-adding

process, it interacts strongly with the rest of the system. For

instance, change in customer requirements influences the

technical solution process, which in turn creates work for

configuration management processes. This descriptive

model, as summarised in Table 2, is helpful in the context

of this article to indicate the relationship between the

design process and the rest of a development project.

The diversity of models discussed thus far in the article

makes it clear that many perspectives on the processes (and

related systems) in an organisation are possible. The

Zachman Framework (Zachman 1987) was one of the first
Fig. 15 Cooper’s rework cycle (Cooper 1980). Reproduced with

permission. Copyright, INFORMS, http://www.informs.org
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models to provide a comprehensive picture of the possible

perspectives. This kind of model is now known as an

architecture framework. The Zachman Framework classi-

fies perspectives on a two-dimensional grid. The first

dimension indicates the question being asked by a model’s

users: What? How? Where? Who? When? and Why? The

second dimension indicates the stakeholder asking the

question: Planner, Owner, Designer, Builder, and Sub-

contractor. Zachman proposes that every modelling

approach may be categorised as a combination of one

question and one stakeholder, and that the alternative

perspectives are ‘‘additive and complementary’’ (Zachman

1987). A more recent architecture framework is the US

Department of Defense Architecture Framework (DoDAF)

(DoD 2010). Architecture frameworks consider that dif-

ferent modelling approaches allow different views of a

DDP system to be created. The different views must be

integrated in the minds of their users. Browning

(2009, 2014) argues for a centralised comprehensive DDP

model from which customised views may be extracted

according to each user’s needs, recognising the practical

difficulties of implementing such a system and keeping the

information synchronised and up-to-date.

Other authors present more conceptual models. For

example, the Integrated Product Engineering Model (iPeM)

discussed by Albers and Braun (2011) combines a prob-

lem-solving cycle with a stage-based view of product

development. This is framed as the so-called operation

Fig. 16 Qualitative causal network integrating influences and effects

relating to iteration in development projects. Dark blue boxes

represent factors under management control. Italic text indicates that

a factor appears at several points on the diagram. Symbols on arrows

represent the reinforcing or suppressing nature of each influence.

Figure reproduced from Le (2013) with permission of the author

(color figure online)
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system which transforms systems of objectives and

requirements into systems of objects. The model is said to

contain ‘‘the relevant elements to derive situation-specific

PDP models’’ while ‘‘taking into account the dynamism

and the uniqueness of product development processes’’

(Albers et al. 2016). Another example in this category is

the Autogenetic Design Theory (ADT) of Vajna et al.

(2005), which views design and development as a trial-and-

error procedure guided by feedback due to situated selec-

tion pressures. This is said to occur at every level of pro-

duct development. Vajna et al. (2005) present this as an

evolutionary process, in particular as a cycle of mutation to

generate alternatives, evaluation of alternatives, and

selection according to situated pressures, followed by

replication and recombination of successful candidates.

They write that levels of complexity in the design increase

as the evolutionary process proceeds, drawing an analogy

to the outcomes of evolution by natural selection. Wynn

et al. (2010) and Maier et al. (2014) develop a cybernetic

model of the DDP, arguing that the process participants

interact through consideration of an ecosystem of models,

including representations of the emerging design as well as

DDP models. The models are said to mediate dynamic

interactions among individual process participants and

their design contexts. This perspective is used to identify

eight factors that influence the effectiveness of models and

modelling in guiding a DDP towards desired outcomes in

the presence of uncertainty, disturbance, and situated

decisions. Siyam et al. (2015) present a Value Cycle Model

which presents complex product development as a network

of roles related to the process of defining, creating, and

delivering value with respect to stakeholders involved in

product development. This model is used to position tools

and approaches that may be used to improve the DDP from

a value perspective. Pich et al. (2002) present a formal

conceptual model that characterises projects according to

information adequacy with a view to choosing an appro-

priate management strategy. They consider three such

strategies, which correspond to models discussed earlier in

this article. First, instructionism involves programming

activities and perhaps contingency plans in detail, as per

PERT/GERT and similar approaches. Pich et al. (2002)

argue that this is suitable only if information about the

situation and about the effect of actions is deemed ade-

quate. In situations with many unknown unknowns, a

strategy involving learning (i.e., deliberately iterative,

experimental approaches such as DPD, Agile, and IID)

and/or selectionism (i.e., pursuing multiple alternatives in

Table 2 CMMI for Development v1.3 (CMMI 2010) includes definitions of 22 core development process areas. The engineering design process

is part of Technical solution

CMMI-DEV process area Purpose of processes in the area (summarised)

Causal analysis and resolution Identify causes of selected outcomes and act to improve process performance

Configuration management Establish/maintain configuration integrity of work products

Decision analysis and resolution Analyse identified alternatives against established criteria to make decisions

Integrated project mgmt. Define/execute integrated project processes tailored from standard processes

Measurement and analysis Develop/sustain measurement capability for management information needs

Organisational process defn. Establish/maintain process assets, and rules and guidelines for teams

Organisational process focus Plan/implement/deploy process improvements considering current needs.

Org. performance mgmt. Manage organisation performance proactively to meet business objectives

Org. process performance Establish/maintain a quantitative approach to process performance.

Organisational training Develop people, so they can perform their roles effectively and efficiently

Product integration Ensure that the product is assembled from its components and behaves properly

Project monitoring and control Understand project progress, so corrective actions can be taken when needed

Project planning Establish and maintain plans that define project activities

Process and product quality Objectively manage process and product compliance to standard

Quantitative project mgmt. Achieve established quality and process performance objectives

Requirements development Elicit, analyse and establish customer, product and component requirements

Requirements management Manage requirements and ensure alignment with plans and work products

Risk management Identify potential problems before they occur and mitigate adverse impacts

Supplier agreement mgmt. Manage the acquisition of products and services from suppliers

Technical solution Select, design, and implement solutions to requirements

Validation Demonstrate that product’s intended use is fulfilled in intended environment

Verification Ensure that selected work products meet their specified requirements
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parallel until there is enough information to choose

between them, as per SBCE) may be more effective.

In summary, abstract models like these can be useful to

frame analyses of the DDP on the macro-level. However,

they are rather conceptual in nature and may require sig-

nificant insight and interpretation to apply.

5.4 Macro-level MS/OR models

The final category of models concerns computational or

mathematical studies of factors governing processes on the

macro-level.

The first group of models in this category consider the

overlapping of two consecutive project stages or tasks.

These models are classified as macro-level because they

focus on managerial decisions without representing the

numerous tasks in a process flow. Much work on this topic

was inspired by Krishnan et al. (1997) who study how

preliminary transfer of information from an upstream stage,

such as product design, allows a downstream stage, such as

production design, to be started early. Because it is only an

estimate of the final value, the preliminary information will

be subject to one or more updates, each of which causes

downstream rework (Fig. 17). This is modelled as a curve

that defines the evolution of the upstream task’s output

towards a final value, and another defining how the sensi-

tivity of the downstream task to changes increases over

time. Krishnan et al. (1997) develop optimal overlapping

strategies considering the forms of the two curves. Loch

and Terwiesch (1998) further analyse the two-stage over-

lapping situation, focusing on the communication that

enables overlapping. Their model considers that holding

meetings to communicate more frequently during the

overlapping period reduces iteration impact, because each

change released by the upstream task will require more

work to be redone the later it is dealt with, since more of

the dependent work will be completed. However, meetings

also require time. Optimal policies for overlapping are

derived algebraically under these assumptions. Joglekar

et al. (2001) assume that each of the two overlapping tasks

generates ‘design performance’ at a fixed rate while also

reducing the performance generated by its partner, causing

rework to regain the prior level. They use algebraic

manipulations to show how the relative rates of perfor-

mance generation and the coupling strength between the

tasks determine the optimal overlap. Again focusing on two

tasks, Roemer and Ahmadi (2004) investigate the rela-

tionship between overlapping and crashing, i.e., increasing

work intensity to reduce duration while increasing effort.

They conclude that these approaches should be considered

together and that the intensity of work should follow a

certain pattern to minimise the rework caused by overlap-

ping. The models described above incorporate many sim-

plifying assumptions that assist with manipulating the

algebra. Other researchers study similar issues using Monte

Carlo simulation which allows study of more complex

problems involving more factors and variables. For

instance, the model developed by Bhuiyan et al. (2004)

focuses on how sequentially dependent process phases can

be overlapped to reduce development time at the risk of

causing iteration at the phase exit review. They show that

this risk can be mitigated by increasing the degree of

functional interaction between engineering functions

within each phase, although this causes more iteration

within the phases.

Second, some researchers take an MS/OR approach to

analyse the situations in which different macro-level pro-

cess structures are appropriate. For instance, Bhattacharya

et al. (1998) study to what degree a flexible process in

which a design specification is evolved by repeated user

feedback can be justified, considering that this may

increase product attractiveness and thus sales, but leaves

less time to optimise the design which may result in higher

production costs. Several factors that should influence the

choice of process structure are studied, including market

uncertainty, the firm’s appetite for risk, and the value of

information that can be gained from customer feedback.

Loch et al. (2001) consider when testing of design alter-

natives should be done in parallel (as per SBCE) allowing

quick convergence to a solution, or sequentially, which

allows for learning from each test to inform the next in a

process of iterative improvement. Their model shows that

parallel testing is most useful if the cost of tests is low or

the time required to complete each test is significant, and if

the tests are effective in revealing information about the
Fig. 17 Effects of overlapping DDP stages. Illustrates concepts

discussed by Krishnan et al. (1997)
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designs. Suss and Thomson (2012) develop a discrete-

event simulation model called the Collaborative Process

Model (CoPM) that represents an engineering design pro-

cess on three levels: a stage-gate structure; the activities

and their interdependencies within each stage; and the

actors or teams that carry out the activities. Among other

insights, Suss and Thomson (2012) use their model to show

that Scrum (an IID approach in which each iteration

involves a short period of intense communication followed

by a design review) is more effective than a traditional

staged process in cases of high uncertainty within the

process.

6 Discussion

6.1 Recap and summary of the DDP models

Sections 3, 4, 5 highlight that models of the design and

development process span a vast range of issues and per-

spectives. Work in the abstract and MS/OR categories

examines the DDP on a relatively conceptual level. The

foci of models in these categories range from the individual

designer’s problem-solving processes through to macro-

scale project processes. Although they offer useful insights

which can help to guide process improvement activities,

such models are usually too general to provide detailed,

implementation-level advice (and, we think, this is usually

not intended by the respective researchers).

On the other hand, approaches in the procedural and

analytical categories aim to directly support improvements

to the design and development process. Significant differ-

ences in philosophies and modelling assumptions are

apparent across these categories. In common with the

abstract and MS/OR approaches, none of the models or

even categories of models are agreed to adequately repre-

sent all aspects of the DDP. Thus, the modeller must select

an appropriate approach for the context at hand. It is hoped

that by providing an overview of the models and com-

menting on their advantages and limitations, the present

article may facilitate this task.

6.2 Relationships across the framework categories

In this article, we have chosen to organise DDP models

primarily according to their scope. This reflects the main

clustering of approaches in the literature, in the sense that

many articles’ bibliographies concentrate on work within

one of the three levels shown in Fig. 1. However, this is not

the only possible organisation and interdependencies do

exist between these levels. Micro-level models can provide

insight relevant to the meso-level, for instance, because

rework in meso-level processes is ultimately driven by

design decisions made by individuals—even though those

decisions’ effects may unfold over a long timescale if many

individuals and/or departments are involved. Similarly,

meso-level models provide insight into macro-level pro-

cess characteristics. For example, the patterns of informa-

tion flow between two departments such as design and test

will determine the level of overlapping that might be

appropriate between those departments, and whether a rigid

stage-gate model would be appropriate. Analyses that cross

the levels as we defined them seem to be relatively rare at

present. We suggest that teasing out links between the

levels could be a useful direction for further work. To give

just one example, insights from research into design

negotiation might present opportunities to improve the

probabilistic assumptions underlying treatments of iteration

in some meso-level analytical models.

6.3 DDP characteristics and implications for models

In the introduction to this article, a number of important

characteristics of the design and development process were

mentioned, in particular its iteration, novelty, and com-

plexity. These are now revisited to consider how the

models treat them and to identify implications for further

research.

6.3.1 Iteration

The iterative nature of design and development features

prominently in almost all the models reviewed. Wynn and

Eckert (2017) argue that there are many perspectives on

iteration and find that most approaches only emphasise a

few ‘‘stereotypes’’. The significance for the present article

is that DDP models tend to idealise complex iterative sit-

uations in a way that focuses attention on a few selected

issues. For example, the spiral model developed by Evans

(1959, Fig. 5) implies that iteration helps to converge on a

design, and may be desirable, while the Q-GERT model of

Taylor and Moore (1980, Sect. 4.2.1) indicates that itera-

tion is mainly caused when tasks reveal problems, and thus

is undesirable. Because each stereotype suggests a quite

different perspective on the causes, effects, and behaviours

of iteration, it is important to understand the iterative

characteristics of a real-world situation and select a model

that focuses on the appropriate stereotype(s) (Wynn and

Eckert 2017). A model that is poorly matched to the iter-

ative situation may not yield much insight and may draw

the focus of attention away from pertinent issues. Selecting

an appropriate model may be difficult if the modeller is not

aware of the range of approaches that are available; the

present article may be informative in this regard. Oppor-

tunities for further work on this topic include developing

methods to assess the iterative characteristics of real-world
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situations to match them to appropriate models, and

developing hybrid models that blend or nest the

stereotypes.

Considering analytical and MS/OR approaches in par-

ticular, we believe that some quite common assumptions

regarding iteration deserve further attention. First, many

methods require a modeller to specify activities, decision

points, or dependencies that can cause iteration to be

triggered. The choice of which triggers to include in a

model will be influenced by the practicalities of modelling,

and iteration may often appear in other places, or may

appear to be outside the level of detail of the model

(Browning 1998). One area for further work is to develop

methods to assess how iteration is triggered and which

triggers are important to incorporate in a process model. As

well as indicating where iteration may occur, many

approaches incorporate a mathematical model of when it is

triggered. This is most commonly stochastic, but the con-

stant and independent probabilities often used may not be a

good model of how iteration occurs in practice (Smith and

Tjandra 1998). One contributing factor is that choices are

available regarding how to manage iterations (Wynn 2007).

For example, companies may accept some problems so

they can release a design on time, with the intention to

work out those issues during production or after the design

is in service. Exploring the most effective ways to model

iteration initiation is, therefore, another area for further

work. Finally, as noted earlier, some simulation schemes

can suffer from logical issues related to iteration, such as

deadlock, if a model is not carefully formulated (Karniel

and Reich 2009). For all these reasons, it remains difficult

to adequately represent iterations in practice especially in

unstructured or nonroutine processes. We suggest that there

are opportunities for further work on how DDP models can

be used to support practice despite their limited fidelity, for

instance, using them in ways that recognise their limita-

tions (e.g., Kerley et al. 2011).

6.3.2 Novelty

Another challenge faced when developing models of the

DDP is that every project and design situation is in some

respect unique, or at least unique to its participants. Dif-

ferent models deal with this challenge in different ways.

Abstract, procedural, and MS/OR models describe the DDP

in a generic way expected to be valid in many different

contexts. However, as noted earlier, this may present dif-

ficulties for practical application. Many analytical models

are based on the principle that although each DDP is dif-

ferent, there is an underlying process architecture within

each company that remains essentially constant from one

product to the next, and that may be modelled. Thus, a

process model based on past experience may help to derive

insights for future DDPs in similar contexts. However, it

seems not entirely clear how process similarity should be

understood or assessed, nor what its implications for

modelling and analysis might be. In practice, processes

change over time, for instance as new technologies become

available and become integrated into the designs and as

new software tools are rolled out. In the development of

complex products such as aircraft, this change can occur on

a timescale that is significant relative to the project time-

scale. Because of this, further research to explore how

models can be most effective taking into account an

evolving process might prove to be useful. One possibility

is to map DDP models or model fragments to character-

istics of the situations in which they are valid, such that a

process can be progressively instantiated as design deci-

sions are made and/or can be adapted to a particular con-

text (e.g., Chung et al. 2002; Muller et al. 2007).

6.3.3 Complexity

We have already discussed insights into DDP complexity

revealed through several models. These include insights on

the interrelationships between the design process, the

properties of the emerging design, and the context into

which that design will be delivered (e.g., Gero and Kan-

nengiesser 2004); insights on the information flows that

emerge between participants as they coordinate their

response to inevitable unplanned events (e.g., Cohen

1992); insights on the impact of structural complexity in

task networks on design iteration and convergence (e.g.,

Braha and Bar-Yam 2007); and insights on the dynamic

complexity caused by multiple intertwined influence loops

as participants guide a project towards desirable outcomes

(e.g., Lyneis and Ford 2007). As well as generating

insights, models can help to manage DDP complexity by

presenting selected issues in a simplified way. At the same

time, when working with a model, attention is focused on

the issues that are emphasised. Knowledge of the full range

of models available is important not only to select an

appropriate approach for a given situation as suggested in

Sect. 6.3.1, but also to ensure awareness of how different

models might influence perceptions of the process (Wynn

2007).

Another issue relating to model complexity is that a

modeller must choose the scope and granularity of their

representation (Maier et al. 2017). This inevitably involves

simplifications, and the consequences may be especially

important to consider when seeking insights from mathe-

matical or computational models. For example, Kerley

et al. (2011) argue that a DDP simulation model should not

be viewed as an attempt to create a ‘‘perfect simulacrum’’,

but as a tool for ‘‘providing enough information to the

stakeholders to facilitate debate and support them in
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making evidence-based judgements about the feasibility

and consequences of implementing the suggested changes’’

(Kerley et al. 2011). A related consideration is whether

results and insights from numerical analysis can be

expected to converge as the level of detail in the model is

increased, or as the severity of simplifying assumptions is

reduced. For example, would a Task DSM clustering

algorithm yield the same insights if the same process were

modelled at different levels of abstraction, or by different

people? Future work to develop more systematic guidelines

to make appropriate choices while modelling might prove

useful to practitioners (Gericke et al. 2016).

A third set of issues relating to complexity in the context

of analytical approaches concerns the practical constraints

on constructing large models. Some authors have proposed

that these problems of scale can be addressed by devel-

oping process libraries from which case-specific models

can be more quickly assembled (Austin et al. 1999; Park

and Cutkosky 1999; Wynn et al. 2006). This appears to be

a promising approach for situations which can be decom-

posed hierarchically and in which the subprocess contents

are relatively routine. For example, the process library in

the ADePT method was found to account for more than

90% of the activities required in application case studies

(Austin et al. 1999). It should be noted that this work

focused on the construction sector, not engineering design.

Appropriate software support might also help to manage

large and complex models, for instance by generating fil-

tered views customised to the needs of each user. However,

these specialised tools are often not available in practice

(Eckert et al. 2017).

6.4 Process models in DDP practice

Research literature can sometimes seem to present a rather

theoretical view of models which may not fully reflect how

they are used in practice. In reality, companies do not use

any one model or modelling approach exclusively. Many

fragmentary models coexist in a company and their con-

tents can overlap to varying degrees (Eckert et al. 2017).

Models vary in terms of the approach or notation used, the

scope and level of detail, and the level of fidelity. There is

often no organised framework in which most models used

within a company are positioned, and if such a framework

exists, it may not be appropriately utilised by everyone.

Browning (2002) views this fragmentation of process

models as ‘‘extremely undesirable’’, suggesting that it may

contribute to difficulties in organising and coordinating a

process, with the consequence that information may not

flow to the right people in timely fashion.

Although undesirable, this situation is, for now, usually

the reality. People need to consider multiple DDP models

to find information about their processes, or may gain that

information by asking their colleagues and perhaps build-

ing their own models. The value of a model often lies in

helping people to frame and analyse a complex situation—

models must be interpreted by bringing them together with

knowledge of the application context, and simulated in the

minds of their users to understand their implications and

guide decisions (Andreasen et al. 2015). There is an

opportunity for further research to examine the properties

of this system of interactions between models and their

stakeholders in a company, and how those properties might

affect the coordination and performance of the DDP.

The different types of model are used in different

ways. Procedural models are typically evolved in com-

panies to meet their specific needs (Tomiyama et al.

2009). In particular, most firms customise the stage-gate

model to their processes and the customised version will

be familiar to most employees, although in a multi-year

program, it may not provide much guidance for day-to-

day activity. Other procedural models such as the PDCA

cycle are typically associated with particular improvement

initiatives in a company, and depending on the success of

the particular initiative might be accepted to a greater or

lesser degree. The main value of these models in practice

is arguably to assist in communicating methodological

insights to a large number of employees, and as such,

clarity of exposition may be one of their most important

characteristics.

In terms of analytical models, many large companies

have developed a set of process maps which, in some

sectors such as aerospace and automotive, are required

by regulatory authorities to demonstrate that the com-

pany can explain how its products are developed and

show that required process steps such as validation

activities are appropriately performed (Browning 2002).

The effort to keep this information up-to-date in the face

of changing processes and technology can be significant

and practice can deviate substantially from what these

models portray. Other analytical process models used in

practice are developed as an early step in the process

design or improvement initiatives to generate under-

standing of the process in focus. Such models, often

using notations such as BPMN, are essentially isolated,

because the initiatives that generate them are often very

limited in scope. As a result, they may not continue to

deliver benefit once those initiatives are finished. Some

analytical models such as task network simulation, sys-

tem dynamics, and DSM may find limited application in

a company but are often limited to trials driven by the

personal interest of individuals, while others such as

agent-based models and rule-based models remain mostly

in the research domain.

Finally, abstract and MS/OR models are arguably not

intended for direct application in industry and are probably
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not often used in that context, although the insights

developed from them may be of value to practitioners.

6.5 Some challenges of DDP modelling in practice

Whether it concerns a high-level procedural model or a

detailed analytical model, for a process modelling initia-

tive to impact beyond a few specialists, the models should

be easy to understand and deliver clear benefit. Even if

practitioners might in principle derive benefits from

models and modelling, in an industry context, there are

many pressures competing for time and attention. During

product development, modelling and improving processes

are often seen as non-critical activities and delivery of the

next program often takes priority. Process improvement

and its related modelling activities are seen by many

design personnel as tasks that can be left for later life-

cycle phases, for example for improving production pro-

cesses when ramping up production. Another issue is that

development projects can often seem quite ad-hoc, with

much attention devoted to chasing for information and

attention, and addressing issues and problems as they

emerge. Thus, from a practitioner’s perspective, many

DDP models can seem idealised and sterile and not rel-

evant to the day-to-day activities of the design engineers

who must participate in developing or implementing

them. Due to the difficulties of bringing such personnel

on board and the limited available time, modellers may

often choose the ‘low-hanging fruit’ and focus their

efforts on support processes such as engineering change

management which have a more repeatable nature and

often involve administrative instead of technical issues.

Another issue of great importance to practitioners is the

availability of tools for modelling. Large companies often

prescribe tools and process modelling notations to stan-

dardise the information that is generated. The benefits of

this approach include facilitating training, understanding,

and curation of models—but it also forces modellers to

work within a particular tool and notation that may not be

suitable for every purpose. The approach that is chosen is

often one of the main task precedence representations such

as BPMN or EPC which are mainly oriented towards

business process modelling and, arguably, are not ideal for

the DDP context due to its iteration, novelty, and com-

plexity. Many research approaches that might better

address these issues are not implemented in deployable

tools at all, and those that are both implemented and

available for download or purchase must compete against

the offerings of large established software suppliers.

Finally, DDP modelling and improvement requires an

understanding of engineering issues alongside skills such

as workshop facilitation and change management. This is

challenging work, but it is often perceived in companies as

non-critical, so it may be difficult to attract and retain

personnel with the ideal skill set.

6.6 Relationship of this article to earlier reviews

Our intention to contribute an integrating narrative,

combined with the space constraints of a journal article, led

us to focus on key publications rather than attempting a

complete listing of all work that relates to each framework

category. Throughout the text, we have provided pointers

to other literature reviews that provide focused analyses of

particular topics.

To demonstrate the relationship of this article to earlier

reviews, 30 useful reviews were identified and mapped

against the 12 categories of the framework depicted in

Fig. 1. The result, as shown in Table 3, demonstrates that

almost all reviews which we identified focus on a small

subset of the categories considered here. Although many of

these reviews offer comprehensive and insightful analyses

within their scope, the table shows that no prior article

maps the overall topology of the literature as done here.

More specifically, we found only three prior reviews that

cover more than 50% of the categories considered here. In

the first of the three, Eder and Weber (2006) focus on

comparing procedural and abstract models to the work of

Hubka, and do not cover the analytical or MS/OR cate-

gories (with very few exceptions). The second compre-

hensive review, published by Browning and Ramasesh

(2007), offers thorough coverage and analysis of process

models in product development and project management,

but contributions from design research are almost entirely

out-of-scope. Finally, Wynn (2007) discusses models in 10

of the 12 categories, but does not consider the substantial

contributions made by MS/OR models (with a single

exception). In addition, it may be noted that research in this

area has substantially developed in the years since these

reviews were published.

Overall, Table 3 provides a starting point for further

reading on specific topics, and also confirms that earlier

reviews each cover only a subset of the categories that we

identified. The present article has been written to address

this gap. It is hoped that our framework will provide a

useful integrating overview of the key ideas and will help

to articulate the value of individual DDP models consid-

ering the broad landscape of research in the area.

7 Concluding remarks

Process models and modelling approaches have been cre-

ated to address many different issues in the DDP. The

organising framework developed in this article, sum-

marised in Fig. 1, highlights the value of models and
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modelling in accentuating different aspects of the DDP and

maps the topology of the literature. Both research and

practice suggest that most situations may be usefully

described by more than one category of model. At the same

time, a model can provide insight on different levels

depending on how it is interpreted and applied. Each model

emphasises different elements from a web of intercon-

nected ideas, offering different terminology and different

visual depictions. In many cases, the perspectives can be

difficult to reconcile. We concur with Bahrami and Dagli

(1993) and others in recommending a pluralistic approach,

in which the DDP is simultaneously perceived from many

points of view, from the individual designer’s problem-

solving process through to the need for continuous

improvement. At the same time, it should be recognised

that some models represent conflicting philosophies. A

design and development process should be designed con-

sidering the requirements and constraints of its context

(Kolberg et al. 2014), and thus, not all models will be

relevant to every situation.

Many questions remain open to debate. Although a fully

integrated perspective on the design and development

process might be difficult to attain, we suggest that there

are numerous opportunities to selectively synthesise

insights across layers and categories of our framework.

Overall, it is hoped that the framework and review pre-

sented in this article may prove useful to researchers

seeking to position their work, as well as to educators and

Table 3 Thirty selected publications that incorporate useful reviews of design and development process models

Micro-level coverage Meso-level coverage Macro-level coverage R

Pr An Ab MS Pr An Ab MS Pr An Ab MS

Finger and Dixon (1989) U U U 3

Roozenburg and Cross (1991) U U U 3

Cross and Roozenburg (1992) U U U 3

Konda et al. (1992) U U U U U 5

Cross (1993) U U U U 4

Bahrami and Dagli (1993) U U 2

Blessing (1994) U U U U U U 6

Evbuomwan et al. (1996) U U U U 4

Smith and Morrow (1999) U U U U 4

Dubberly (2004) U U U U 4

Wynn and Clarkson (2005) U U U U U 5

O’Donovan et al. (2005) U U 2

Eder and Weber (2006) U U U U U U U 7

Wynn (2007) U U U U U U U U U U 10

Browning and Ramasesh (2007) U U U U U U U U 8

Lyneis and Ford (2007) U U 2

Howard et al. (2008) U U U U 4

Tomiyama et al. (2009) U U U U U U 6

Sharafi et al. (2010) U U U 3

Gericke and Blessing (2011) U U U U 4

Gericke and Blessing (2012) U U U U 4

Amigo et al. (2013) U U U 3

Mohd Saad et al. (2013) U 1

Andreasen et al. (2015) U U U U U U 6

Costa et al. (2015) U U U 3

Chakrabarti and Blessing (2015) U U U U U U 6

Browning (2016) U U 2

Bobbe et al. (2016) U U 2

Wynn and Eckert (2017) U U U 3

Eckert et al. (2017) U U U 3

The table provides a starting point for further reading. It also demonstrates that previously published reviews cover only subsets of the 12 model

categories considered in this article. A tick indicates that one or models from a category are reviewed in a publication

Pr procedural, An analytical, Ab abstract, MS MS/OR. These categories are defined in Table 1
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practitioners seeking an overview of the approaches and

perspectives that have been developed.
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Agogué M, Kazakçi A (2014) 10 years of C-K theory: a survey on the

academic and industrial impacts of a design theory. In:

Chakrabarti A, Blessing MLT (eds) An anthology of theories

and models of design: philosophy, approaches and empirical

explorations. Springer-Verlag, London, pp 219–235

Ahmadi R, Wang R (1999) Managing development risk in product

design processes. Oper Res 47(2):235–246

AitSahlia F, Johnson E, Will P (1995) Is concurrent engineering

always a sensible proposition? IEEE Trans Eng Manag

42(2):166–170

Al-Ashaab A, Golob M, Attia UM, Khan M, Parsons J, Andino A,

Perez A, Guzman P, Onecha A, Kesavamoorthy S, Martinez G,

Shehab E, Berkes A, Haque B, Soril M, Sopelana A (2013) The

transformation of product development process into lean envi-

ronment using set-based concurrent engineering: A case study

from an aerospace industry. Concurr Eng 21(4):268–285

Albers A, Braun A (2011) A generalised framework to compass and

to support complex product engineering processes. Int J Prod

Dev 15(1–3):6–25

Albers A, Reiss N, Bursac N, Richter T (2016) iPeM–integrated

product engineering model in context of product generation

engineering. Procedia CIRP 50:100–105

Altshuller G (1999) The innovation algorithm: TRIZ, systematic

innovation and technical creativity. Technical Innovation Center,

Inc., Worcester

Amigo CR, Iritani DR, Rozenfeld H, Ometto A (2013) Product

development process modeling: state of the art and classification.

In: Abramovici M, Stark R (eds) Smart product engineering:

proceedings of the 23rd CIRP Design Conference, Bochum,

Germany, March 11th–13th, 2013. Springer, Berlin Heidelberg,

pp 169–179

Andreasen MM (1980) Machine design methods based on a

systematic approach—contribution to a design theory. Disserta-

tion, Department of Machine Design, Lund University, Sweden

(in Danish)

Andreasen MM (2011) 45 years with design methodology. J Eng Des

22(5):293–332

Andreasen MM, Hein L (2000) Integrated product development. IPU,

Institute for Product Development, Technical University of

Denmark, Lyngby/Copenhagen

Andreasen MM, Hansen CT, Cash P (2015) Conceptual design:

interpretations, mindset and models. Springer International

Publishing, Cham, Switzerland

Antonsson E, Otto K (1995) Imprecision in engineering design.

J Mech Des 117:25–32

Archer LB (1965) Systematic method for designers. Council of

Industrial Design, London

Asimow M (1962) Introduction to design. Prentice Hall, Englewood

Cliffs, NJ

Aurisicchio M, Bracewell R (2013) Capturing an integrated design

information space with a diagram-based approach. J Eng Des

24(6):397–428

Austin S, Baldwin A, Li B, Waskett P (1999) Analytical design

planning technique: a model of the detailed building design

process. Des Stud 20(3):279–296

Austin S, Baldwin A, Li B, Waskett P (2000) Analytical design

planning technique (ADePT): a dependency structure matrix tool

to schedule the building design process. Constr Manag Econ

18(2):173–182

Bahrami A, Dagli CH (1993) Models of design processes. In: Sullivan

WG, Parsaei HR (eds) Concurrent engineering, contemporary

issues and modern design tools. Springer, Dordrecht, pp 113–126

Bartolomei JE, Hastings DE, de Neufville R, Rhodes DH (2012)

Engineering systems multiple-domain matrix: An organizing

framework for modeling large-scale complex systems. Syst Eng

15(1):41–61

Baxter D, Gao J, Case K, Harding J, Young B, Cochrane S, Dani S

(2007) An engineering design knowledge reuse methodology

using process modelling. Res Eng Des 18(1):37–48

Beauregard Y, Thomson V, Bhuiyan N (2008) Lean engineering

logistics: load leveling of design jobs with capacity considera-

tions. Can Aeronaut Sp J 54(2):19–30

Bhattacharya S, Krishnan V, Mahajan V (1998) Managing new

product definition in highly dynamic environments. Manag Sci

44(11):S50–S64

Bhuiyan N, Gerwin D, Thomson V (2004) Simulation of the new

product development process for performance improvement.

Manag Sci 50(12):1690–1703

Blessing LTM (1994) A process-based approach to computer-

supported engineering design. University of Twente, Enschede

Bobbe T, Kryzwinski J, Woelfel C (2016) A comparison of design

process models from academic theory and industry practice. In:

Marjanović D, Štorga M, Pavković N, Bojčetić N, Škec S (eds)
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man S (eds) Proceedings of the 20th International Conference on

Engineering Design (ICED 15), Milan, Italy, Jul 27–30, Design

Society, vol 2, pp 441–450

Cross N (1993) Science and design methodology: a review. Res Eng

Des 5(2):63–69

Cross N, Roozenburg N (1992) Modelling the design process in

engineering and in architecture. J Eng Des 3(4):325–337

Crowder RM, Robinson M, Hughes HP, Sim YW (2012) The

development of an agent-based modeling framework for simu-

lating engineering team work. IEEE Trans Syst Man Cybern Part

A Syst Hum 42(6):1425–1439

Cusumano MA, Selby R (1997) How Microsoft builds software.

Commun ACM 40(6):53–61

Danesh MR, Jin Y (2001) An agent-based decision network for

concurrent engineering design. Concurr Eng 9(1):37–47

Danilovic M, Browning TR (2007) Managing complex product

development projects with design structure matrices and domain

mapping matrices. Int J Proj Manag 25(3):300–314

DoD (2010) DoDAF architecture framework version 2.02. Tech. rep.,

US Department of Defense

Dori D (2002) Object-Process Methodology: a holistic systems

paradigm. Springer-Verlag, Berlin, Heidelberg

Dorst K, Cross N (2001) Creativity in the design process: co-

evolution of problem-solution. Des Stud 22(5):425–437

Dubberly H (2004) How do you design? A compendium of models.

Dubberly Design Office, San Francisco

Dym CL, Little P, Orwin EJ (2014) Engineering design: a project-

based introduction, 4th edn. Wiley, New York

Eckert CM, Clarkson PJ (2010) Planning development processes for

complex products. Res Eng Des 21(3):153–171

Eckert CM, Wynn DC, Maier JF, Albers A, Bursac N, Xin Chen HL,

Clarkson PJ, Gericke K, Gladysz B, Shapiro D (2017) On the

integration of product and process models in engineering design.

Des Sci 3(3):1–41

Eder WE (2011) Engineering design science and theory of technical

systems: legacy of Vladimir Hubka. J Eng Des 22(5):361–385

Eder WE, Weber C (2006) Comparisons of design theories. In: AEDS

2006 Workshop, Oct 27–28, Pilsen, Czech Republic

Eppinger SD, Browning TR (2012) Design structure matrix methods

and applications. MIT Press, Cambridge, MA

Eppinger SD, Whitney DE, Smith RP, Gebala DA (1994) A model-

based method for organizing tasks in product development. Res

Eng Des 6(1):1–13

Evans JH (1959) Basic design concepts. J Am Soc Naval Eng

71(4):671–678

Evbuomwan N, Sivaloganathan S, Jebb A (1996) A survey of design

philosophies, models, methods and systems. Proc Inst Mech Eng

Part B J Eng Manuf 210(4):301–320

Fernandes JMV (2015) Requirements change in complex product

development: Understanding causes, managing uncertainty and

planning for change. PhD thesis, Instituto Superior Técnico
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Kazakçi AO (2009) A formalization of CK design theory based on

intuitionist logic. In: Chakrabarti A (ed) ICORD 09: Proceedings

of the 2nd International Conference on Research into Design,

Bangalore, India, Jan 7–9, Design Society, pp 499–507

Kennedy BM, Sobek DK, Kennedy MN (2014) Reducing rework by

applying set-based practices early in the systems engineering

process. Syst Eng 17(3):278–296

Kennedy M (2008) Ready, set, dominate: Implement Toyota’s set-

based learning for developing products and nobody can catch

you. Oaklea Press, Richmond, VA

Kerley W, Wynn DC, Eckert C, Clarkson PJ (2011) Redesigning the

design process through interactive simulation: a case study of

life-cycle engineering in jet engine conceptual design. Int J Serv

Oper Manag 10(1):30–51

Klein M (1993) Supporting conflict management in cooperative

design teams. Group Decis Negot 2(3):259–278

Kolberg E, Reich Y, Levin I (2014) Designing winning robots by

careful design of their development process. Res Eng Des

25(2):157–183

Konda S, Monarch I, Sargent P, Subrahmanian E (1992) Shared

memory in design: a unifying theme for research and practice.

Res Eng Des 4(1):23–42

Kreimeyer M, Lindemann U (2011) Complexity metrics in engineer-

ing design: managing the structure of design processes. Springer-

Verlag, Berlin, Heidelberg

Krishnan V, Eppinger SD, Whitney DE (1997) A model-based

framework to overlap product development activities. Manag Sci

43(4):437–451

Kruger C, Cross N (2006) Solution driven versus problem driven

design: strategies and outcomes. Des Stud 27(5):527–548

Kusiak A, Wang J (1993a) Decomposition of the design process.

J Mech Des 115(4):687–695

Kusiak A, Wang J (1993b) Efficient organizing of design activities.

Int J Prod Res 31(4):753–769

Kusiak A, Larson TN, Wang J (1994) Reengineering of design and

manufacturing processes. Comput Ind Eng 26(3):521–536

Larman C, Basili VR (2003) Iterative and incremental development: a

brief history. Computer 36(6):47–56

Le HN (2013) A transformation-based model integration framework

to support iteration management in engineering design. PhD

thesis, University of Cambridge

Le Masson P, Dorst K, Subrahamanian E (2013) Special Issue on

Design Theory: history, state of the arts and advancements. Res

Eng Des 24(2):212–243
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