
 Open access Reference Entry DOI:10.1002/0471028959.SOF250

Process Models in Software Engineering — Source link

Walt Scacchi

Institutions: University of California, Irvine

Published on: 15 Jan 2002

Topics: Software construction, Social software engineering, Personal software process, Software development and
Package development process

Related papers:

 Encyclopedia of software engineering

 A spiral model of software development and enhancement

 Extreme Programming Explained: Embrace Change

 Software Engineering: A Practitioner's Approach

 Managing the development of large software systems

Share this paper:

View more about this paper here: https://typeset.io/papers/process-models-in-software-engineering-
3x5qvbxlt2

https://typeset.io/
https://www.doi.org/10.1002/0471028959.SOF250
https://typeset.io/papers/process-models-in-software-engineering-3x5qvbxlt2
https://typeset.io/authors/walt-scacchi-36ftq0ydm4
https://typeset.io/institutions/university-of-california-irvine-3ptiah2u
https://typeset.io/topics/software-construction-3b0bx0uv
https://typeset.io/topics/social-software-engineering-2cgo6t19
https://typeset.io/topics/personal-software-process-s0lu9s5y
https://typeset.io/topics/software-development-1vxoqmyk
https://typeset.io/topics/package-development-process-3m4apxpk
https://typeset.io/papers/encyclopedia-of-software-engineering-3o9jgs2uir
https://typeset.io/papers/a-spiral-model-of-software-development-and-enhancement-1pnp0p8cci
https://typeset.io/papers/extreme-programming-explained-embrace-change-bu7gfti9qv
https://typeset.io/papers/software-engineering-a-practitioner-s-approach-49fjpw61ye
https://typeset.io/papers/managing-the-development-of-large-software-systems-1zl45s18on
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/process-models-in-software-engineering-3x5qvbxlt2
https://twitter.com/intent/tweet?text=Process%20Models%20in%20Software%20Engineering&url=https://typeset.io/papers/process-models-in-software-engineering-3x5qvbxlt2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/process-models-in-software-engineering-3x5qvbxlt2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/process-models-in-software-engineering-3x5qvbxlt2
https://typeset.io/papers/process-models-in-software-engineering-3x5qvbxlt2

1

Process Models in Software Engineering

Walt Scacchi, Institute for Software Research, University of California, Irvine

February 2001

Revised Version, May 2001, October 2001

Final Version to appear in, J.J. Marciniak (ed.), Encyclopedia of Software Engineering, 2
nd

Edition, John Wiley and Sons, Inc, New York, December 2001.

Introduction

Software systems come and go through a series of passages that account for their inception,

initial development, productive operation, upkeep, and retirement from one generation to

another. This article categorizes and examines a number of methods for describing or modeling

how software systems are developed. It begins with background and definitions of traditional

software life cycle models that dominate most textbook discussions and current software

development practices. This is followed by a more comprehensive review of the alternative

models of software evolution that are of current use as the basis for organizing software

engineering projects and technologies.

Background

Explicit models of software evolution date back to the earliest projects developing large software

systems in the 1950's and 1960's (Hosier 1961, Royce 1970). Overall, the apparent purpose of

these early software life cycle models was to provide a conceptual scheme for rationally

managing the development of software systems. Such a scheme could therefore serve as a basis

for planning, organizing, staffing, coordinating, budgeting, and directing software development

activities.

Since the 1960's, many descriptions of the classic software life cycle have appeared (e.g., Hosier

1961, Royce 1970, Boehm 1976, Distaso 1980, Scacchi 1984, Somerville 1999). Royce (1970)

originated the formulation of the software life cycle using the now familiar "waterfall" chart,

displayed in Figure 1. The chart summarizes in a single display how developing large software

systems is difficult because it involves complex engineering tasks that may require iteration and

rework before completion. These charts are often employed during introductory presentations,

for people (e.g., customers of custom software) who may be unfamiliar with the various

technical problems and strategies that must be addressed when constructing large software

systems (Royce 1970).

These classic software life cycle models usually include some version or subset of the following

activities:

� System Initiation/Planning: where do systems come from? In most situations, new

2

feasible systems replace or supplement existing information processing mechanisms

whether they were previously automated, manual, or informal.

� Requirement Analysis and Specification: identifies the problems a new software system is

suppose to solve, its operational capabilities, its desired performance characteristics, and

the resource infrastructure needed to support system operation and maintenance.

� Functional Specification or Prototyping: identifies and potentially formalizes the objects

of computation, their attributes and relationships, the operations that transform these

objects, the constraints that restrict system behavior, and so forth.

� Partition and Selection (Build vs. Buy vs. Reuse): given requirements and functional

specifications, divide the system into manageable pieces that denote logical subsystems,

then determine whether new, existing, or reusable software systems correspond to the

needed pieces.

� Architectural Design and Configuration Specification: defines the interconnection and

resource interfaces between system subsystems, components, and modules in ways

suitable for their detailed design and overall configuration management.

� Detailed Component Design Specification: defines the procedural methods through which

the data resources within the modules of a component are transformed from required

inputs into provided outputs.

� Component Implementation and Debugging: codifies the preceding specifications into

operational source code implementations and validates their basic operation.

� Software Integration and Testing: affirms and sustains the overall integrity of the

software system architectural configuration through verifying the consistency and

completeness of implemented modules, verifying the resource interfaces and

interconnections against their specifications, and validating the performance of the

system and subsystems against their requirements.

� Documentation Revision and System Delivery: packaging and rationalizing recorded

system development descriptions into systematic documents and user guides, all in a

form suitable for dissemination and system support.

� Deployment and Installation: providing directions for installing the delivered software

into the local computing environment, configuring operating systems parameters and user

access privileges, and running diagnostic test cases to assure the viability of basic system

operation.

� Training and Use: providing system users with instructional aids and guidance for

understanding the system's capabilities and limits in order to effectively use the system.

� Software Maintenance: sustaining the useful operation of a system in its host/target

environment by providing requested functional enhancements, repairs, performance

3

improvements, and conversions.

What is a software life cycle model?

A software life cycle model is either a descriptive or prescriptive characterization of how

software is or should be developed. A descriptive model describes the history of how a particular

software system was developed. Descriptive models may be used as the basis for understanding

and improving software development processes, or for building empirically grounded

prescriptive models (Curtis, Krasner, Iscoe, 1988). A prescriptive model prescribes how a new

software system should be developed. Prescriptive models are used as guidelines or frameworks

to organize and structure how software development activities should be performed, and in what

order. Typically, it is easier and more common to articulate a prescriptive life cycle model for

how software systems should be developed. This is possible since most such models are intuitive

or well reasoned. This means that many idiosyncratic details that describe how a software

systems is built in practice can be ignored, generalized, or deferred for later consideration. This,

of course, should raise concern for the relative validity and robustness of such life cycle models

when developing different kinds of application systems, in different kinds of development

settings, using different programming languages, with differentially skilled staff, etc. However,

prescriptive models are also used to package the development tasks and techniques for using a

given set of software engineering tools or environment during a development project.

Descriptive life cycle models, on the other hand, characterize how particular software systems

are actually developed in specific settings. As such, they are less common and more difficult to

articulate for an obvious reason: one must observe or collect data throughout the life cycle of a

software system, a period of elapsed time often measured in years. Also, descriptive models are

specific to the systems observed and only generalizable through systematic comparative analysis.

Therefore, this suggests the prescriptive software life cycle models will dominate attention until

a sufficient base of observational data is available to articulate empirically grounded descriptive

life cycle models.

These two characterizations suggest that there are a variety of purposes for articulating software

life cycle models. These characterizations serve as a

� Guideline to organize, plan, staff, budget, schedule and manage software project work

over organizational time, space, and computing environments.

� Prescriptive outline for what documents to produce for delivery to client.

� Basis for determining what software engineering tools and methodologies will be most

appropriate to support different life cycle activities.

� Framework for analyzing or estimating patterns of resource allocation and consumption

during the software life cycle (Boehm 1981)

� Basis for conducting empirical studies to determine what affects software productivity,

cost, and overall quality.

4

What is a software process model?

In contrast to software life cycle models, software process models often represent a networked

sequence of activities, objects, transformations, and events that embody strategies for

accomplishing software evolution. Such models can be used to develop more precise and

formalized descriptions of software life cycle activities. Their power emerges from their

utilization of a sufficiently rich notation, syntax, or semantics, often suitable for computational

processing.

Software process networks can be viewed as representing multiple interconnected task chains

(Kling 1982, Garg 1989). Task chains represent a non-linear sequence of actions that structure

and transform available computational objects (resources) into intermediate or finished products.

Non-linearity implies that the sequence of actions may be non-deterministic, iterative,

accommodate multiple/parallel alternatives, as well as partially ordered to account for

incremental progress. Task actions in turn can be viewed a non-linear sequences of primitive

actions which denote atomic units of computing work, such as a user's selection of a command or

menu entry using a mouse or keyboard. Winograd and others have referred to these units of

cooperative work between people and computers as "structured discourses of work" (Winograd

1986), while task chains have become popularized under the name of "workflow" (Bolcer 1998).

Task chains can be employed to characterize either prescriptive or descriptive action sequences.

Prescriptive task chains are idealized plans of what actions should be accomplished, and in what

order. For example, a task chain for the activity of object-oriented software design might include

the following task actions:

� Develop an informal narrative specification of the system.

� Identify the objects and their attributes.

� Identify the operations on the objects.

� Identify the interfaces between objects, attributes, or operations.

� Implement the operations.

Clearly, this sequence of actions could entail multiple iterations and non-procedural primitive

action invocations in the course of incrementally progressing toward an object-oriented software

design.

Task chains join or split into other task chains resulting in an overall production network or web

(Kling 1982). The production web represents the "organizational production system" that

transforms raw computational, cognitive, and other organizational resources into assembled,

integrated and usable software systems. The production lattice therefore structures how a

software system is developed, used, and maintained. However, prescriptive task chains and

actions cannot be formally guaranteed to anticipate all possible circumstances or idiosyncratic

5

foul-ups that can emerge in the real world of software development (Bendifallah 1989, Mi 1990).

Thus, any software production web will in some way realize only an approximate or incomplete

description of software development.

Articulation work is a kind of unanticipated task that is performed when a planned task chain is

inadequate or breaks down. It is work that represents an open-ended non-deterministic sequence

of actions taken to restore progress on the disarticulated task chain, or else to shift the flow of

productive work onto some other task chain (Bendifallah 1987, Grinter 1996, Mi 1990, Mi 1996,

Scacchi and Mi 1997). Thus, descriptive task chains are employed to characterize the observed

course of events and situations that emerge when people try to follow a planned task sequence.

Articulation work in the context of software evolution includes actions people take that entail

either their accommodation to the contingent or anomalous behavior of a software system, or

negotiation with others who may be able to affect a system modification or otherwise alter

current circumstances (Bendifallah 1987, Grinter 1996, Mi 1990, Mi 1996, Scacchi and Mi

1997). This notion of articulation work has also been referred to as software process dynamism.

Traditional Software Life Cycle Models

Traditional models of software evolution have been with us since the earliest days of software

engineering. In this section, we identify four. The classic software life cycle (or "waterfall chart")

and stepwise refinement models are widely instantiated in just about all books on modern

programming practices and software engineering. The incremental release model is closely

related to industrial practices where it most often occurs. Military standards based models have

also reified certain forms of the classic life cycle model into required practice for government

contractors. Each of these four models uses coarse-grain or macroscopic characterizations when

describing software evolution. The progressive steps of software evolution are often described as

stages, such as requirements specification, preliminary design, and implementation; these usually

have little or no further characterization other than a list of attributes that the product of such a

stage should possess. Further, these models are independent of any organizational development

setting, choice of programming language, software application domain, etc. In short, the

traditional models are context-free rather than context-sensitive. But as all of these life cycle

models have been in use for some time, we refer to them as the traditional models, and

characterize each in turn.

Classic Software Life Cycle

The classic software life cycle is often represented as a simple prescriptive waterfall software

phase model, where software evolution proceeds through an orderly sequence of transitions from

one phase to the next in order (Royce 1970). Such models resemble finite state machine

descriptions of software evolution. However, these models have been perhaps most useful in

helping to structure, staff, and manage large software development projects in complex

organizational settings, which was one of the primary purposes (Royce 1970, Boehm 1976).

Alternatively, these classic models have been widely characterized as both poor descriptive and

prescriptive models of how software development "in-the-small" or "in-the-large" can or should

occur. Figure 1 provides a common view of the waterfall model for software development

attributed to Royce (1970).

6

Figure 1. The Waterfall Model of Software Development (Royce 1970)

Stepwise Refinement

In this approach, software systems are developed through the progressive refinement and

enhancement of high-level system specifications into source code components (Wirth 1971, Mili

1986). However, the choice and order of which steps to choose and which refinements to apply

remain unstated. Instead, formalization is expected to emerge within the heuristics and skills that

are acquired and applied through increasingly competent practice. This model has been most

effective and widely applied in helping to teach individual programmers how to organize their

software development work. Many interpretations of the classic software life cycle thus subsume

this approach within their design and implementations.

Incremental Development and Release

Developing systems through incremental release requires first providing essential operating

functions, then providing system users with improved and more capable versions of a system at

regular intervals (Basili 1975). This model combines the classic software life cycle with iterative

enhancement at the level of system development organization. It also supports a strategy to

7

periodically distribute software maintenance updates and services to dispersed user communities.

This in turn accommodates the provision of standard software maintenance contracts. It is

therefore a popular model of software evolution used by many commercial software firms and

system vendors. This approach has also been extended through the use of software prototyping

tools and techniques (described later), which more directly provide support for incremental

development and iterative release for early and ongoing user feedback and evaluation (Graham

1989). Figure 2 provides an example view of an incremental development, build, and release

model for engineering large Ada-based software systems, developed by Royce (1990) at TRW.

Elsewhere, the Cleanroom software development method at use in IBM and NASA laboratories

provides incremental release of software functions and/or subsystems (developed through

stepwise refinement) to separate in-house quality assurance teams that apply statistical measures

and analyses as the basis for certifying high-quality software systems (Selby 1987, Mills 1987).

Industrial and Military Standards, and Capability Models

Industrial firms often adopt some variation of the classic model as the basis for standardizing

their software development practices (Royce 1970, Boehm 1976, Distaso 1980, Humphrey 1985,

Scacchi 1984, Somerville 1999). Such standardization is often motivated by needs to simplify or

eliminate complications that emerge during large software development or project management.

From the 1970's through the present, many government contractors organized their software

development activities according to succession of military software standards such as MIL-STD-

2167A, MIL-STD 498, and IEEE-STD-016. ISO12207 (Moore 1997) is now the standard that

most such contractors now follow. These standards are an outgrowth of the classic life cycle

activities, together with the documents required by clients who procure either software systems

or complex platforms with embedded software systems. Military software system are often

constrained in ways not found in industrial or academic practice, including: (1) required use of

military standard computing equipment (which is often technologically dated and possesses

limited processing capabilities); (2) are embedded in larger systems (e.g., airplanes, submarines,

missiles, command and control systems) which are mission-critical (i.e., those whose untimely

failure could result in military disadvantage and/or life-threatening risks); (3) are developed

under contract to private firms through cumbersome procurement and acquisition procedures that

can be subject to public scrutiny and legislative intervention; and (4) many embedded software

systems for the military are among the largest and most complex systems in the world (Moore

1997). Finally, the development of custom software systems using commercial off-the-shelf

(COTS) components or products is a recent direction for government contractors, and thus

represents new challenges for how to incorporate a component-based development into the

overall software life cycle. Accordingly, new software life cycle models that exploit COTS

components will continue to appear in the next few years.

8

Figure 2. An Incremental Development, Build, and Release Model (Royce 1990)

9

In industrial settings, standard software development models represent often provide explicit

detailed guidelines for how to deploy, install, customize or tune a new software system release in

its operating application environment. In addition, these standards are intended to be compatible

with provision of software quality assurance, configuration management, and independent

verification and validation services in a multi-contractor development project. Early efforts in

monitoring and measuring software process performance found in industrial practice appear in

(Humphrey 1985, Radice 1985, Basili 1988). These efforts in turn help pave the way for what

many software development organizations now practice, or have been certified to practice,

software process capability assessments, following the Capability Maturity Model developed by

the Software Engineering Institute (Paulk 1995) (see Capability Maturity Model for Software).

Alternatives to the Traditional Software Life Cycle Models

There are at least three alternative sets of models of software development. These models are

alternatives to the traditional software life cycle models. These three sets focus of attention to

either the products, production processes, or production settings associated with software

development. Collectively, these alternative models are finer-grained, often detailed to the point

of computational formalization, more often empirically grounded, and in some cases address the

role of new automated technologies in facilitating software development. As these models are

not in widespread practice, we examine each set of models in the following sections.

Software Product Development Models

Software products represent the information-intensive artifacts that are incrementally constructed

and iteratively revised through a software development effort. Such efforts can be modeled using

software product life cycle models. These product development models represent an evolutionary

revision to the traditional software life cycle models (MacCormack 2001). The revisions arose

due to the availability of new software development technologies such as software prototyping

languages and environments, reusable software, application generators, and documentation

support environments. Each of these technologies seeks to enable the creation of executable

software implementations either earlier in the software development effort or more rapidly.

Therefore in this regard, the models of software development may be implicit in the use of the

technology, rather than explicitly articulated. This is possible because such models become

increasingly intuitive to those developers whose favorable experiences with these technologies

substantiate their use. Thus, detailed examination of these models is most appropriate when such

technologies are available for use or experimentation.

Rapid Prototyping and Joint Application Development

Prototyping is a technique for providing a reduced functionality or a limited performance version

of a software system early in its development (Balzer 1983, Budde 1984, Hekmatpour 1987). In

contrast to the classic system life cycle, prototyping is an approach whereby more emphasis,

activity, and processing are directed to the early stages of software development (requirements

analysis and functional specification). In turn, prototyping can more directly accommodate early

10

user participation in determining, shaping, or evaluating emerging system functionality.

Therefore, these up-front concentrations of effort, together with the use of prototyping

technologies, seeks to trade-off or otherwise reduce downstream software design activities and

iterations, as well as simplify the software implementation effort. (see Rapid Prototyping)

Software prototypes come in different forms including throwaway prototypes, mock-ups,

demonstration systems, quick-and-dirty prototypes, and incremental evolutionary prototypes

(Hekmatpour 1987). Increasing functionality and subsequent evolvability is what distinguishes

the prototype forms on this list.

Prototyping technologies usually take some form of software functional specifications as their

starting point or input, which in turn is simulated, analyzed, or directly executed. These

technologies can allow developers to rapidly construct early or primitive versions of software

systems that users can evaluate. User evaluations can then be incorporated as feedback to refine

the emerging system specifications and designs. Further, depending on the prototyping

technology, the complete working system can be developed through a continual revising/refining

the input specifications. This has the advantage of always providing a working version of the

emerging system, while redefining software design and testing activities to input specification

refinement and execution. Alternatively, other prototyping approaches are best suited for

developing throwaway or demonstration systems, or for building prototypes by reusing part/all

of some existing software systems. Subsequently, it becomes clear why modern models of

software development like the Spiral Model (described later) and the ISO 12207 expect that

prototyping will be a common activity that facilitates the capture and refinement of software

requirements, as well as overall software development.

Joint Application Development (JAD) is a technique for engaging a group or team of software

developers, testers, customers, and prospective end-users in a collaborative requirements

elicitation and prototyping effort (Wood and Silver 1995). JAD is quintessentially a technique

for facilitating group interaction and collaboration. Consultants often employ JAD or external

software system vendors who have been engaged to build a custom software system for use in a

particular organizational setting. The JAD process is based on four ideas:

 1.People who actually work at a job have the best understanding of that job.

 2.People who are trained in software development have the best understanding of the

possibilities of that technology.

 3. Software-based information systems and business processes rarely exist in isolation --

they transcend the confines of any single system or office and effect work in related departments.

People working in these related areas have valuable insight on the role of a system within a

larger community.

 4.The best information systems are designed when all of these groups work together on a

project as equal partners.

Following these ideas, it should be possible for JAD to cover the complete development life

cycle of a system. The JAD is usually a 3 to 6 month well-defined project, when systems can be

11

constructed from commercially available software products that do not require extensive coding

or complex systems integration. For large-scale projects, it is recommended that the project be

organized as an incremental development effort, and that separate JAD's be used for each

increment (Wood and Silver 1995). Given this formulation, it is possible to view open source

software development projects that rely on group email discussions among globally distributed

users and developers, together with Internet-based synchronized version updates (Fogel 1999,

Mockus 2000), as an informal variant of JAD.

Assembling Reusable Components

The basic approach of reusability is to configure and specialize pre-existing software

components into viable application systems (Biggerstaff 1984, Neighbors 1984, Goguen 1986).

Such source code components might already have associated specifications and designs

associated with their implementations, as well as have been tested and certified. However, it is

also clear that software domain models, system specifications, designs, test case suites, and other

software abstractions may themselves be treated as reusable software development components.

These components may have a greater potential for favorable impact on reuse and semi-

automated system generation or composition (Batory et al., 1994, Neighbors 1984). Therefore,

assembling reusable software components is a strategy for decreasing software development

effort in ways that are compatible with the traditional life cycle models.

The basic dilemmas encountered with reusable software componentry include (a) acquiring,

analyzing and modeling a software application domain, (b) how to define an appropriate

software part naming or classification scheme, (c) collecting or building reusable software

components, (d) configuring or composing components into a viable application, and (e)

maintaining and searching a components library. In turn, each of these dilemmas is mitigated or

resolved in practice through the selection of software component granularity.

The granularity of the components (i.e., size, complexity, and functional capability) varies

greatly across different approaches. Most approaches attempt to utilize components similar to

common (textbook) data structures with algorithms for their manipulation: small-grain

components. However, the use/reuse of small-grain components in and of itself does not

constitute a distinct approach to software development. Other approaches attempt to utilize

components resembling functionally complete systems or subsystems (e.g., user interface

management system): large-grain components. The use/reuse of large-grain components guided

by an application domain analysis and subsequent mapping of attributed domain objects and

operations onto interrelated components does appear to be an alternative approach to developing

software systems (Neighbors 1984), and thus is an area of active research.

There are many ways to utilize reusable software components in evolving software systems.

However, the cited studies suggest their initial use during architectural or component design

specification as a way to speed implementation. They might also be used for prototyping

purposes if a suitable software prototyping technology is available.

Application Generation

Application generation is an approach to software development similar to reuse of

12

parameterized, large-grain software source code components. Such components are configured

and specialized to an application domain via a formalized specification language used as input to

the application generator. Common examples provide standardized interfaces to database

management system applications, and include generators for reports, graphics, user interfaces,

and application-specific editors (Batory, et al. 1994, Horowitz 1985).

Application generators give rise to a model of software development whereby traditional

software design activities are either all but eliminated, or reduced to a data base design problem.

The software design activities are eliminated or reduced because the application generator

embodies or provides a generic software design that should be compatible with the application

domain. However, users of application generators are usually expected to provide input

specifications and application maintenance services. These capabilities are possible since the

generators can usually only produce software systems specific to a small number of similar

application domains, and usually those that depend on a data base management system.

Software Documentation Support Environments

 Much of the focus on developing software products draws attention to the tangible software

artifacts that result. Most often, these products take the form of documents: commented source

code listings, structured design diagrams, unit development folders, etc. These documents

characterize what the developed system is suppose to do, how it does it, how it was developed,

how it was put together and validated, and how to install, use, and maintain it. Thus, a collection

of software documents records the passage of a developed software system through a set of life

cycle stages.

It seems reasonable that there will be models of software development that focus attention to the

systematic production, organization, and management of the software development documents.

Further, as documents are tangible products, it is common practice when software systems are

developed under contract to a private firm, that the delivery of these documents is a contractual

stipulation, as well as the basis for receiving payment for development work already performed.

Thus, the need to support and validate conformance of these documents to software development

and quality assurance standards emerges. However, software development documents are often a

primary medium for communication between developers, users, and maintainers that spans

organizational space and time. Thus, each of these groups can benefit from automated

mechanisms that allow them to browse, query, retrieve, and selectively print documents (Garg

and Scacchi, 1989, 1990). As such, we should not be surprise to see construction and deployment

of software environments that provide ever increasing automated support for engineering the

software documentation life cycle (e.g., Penedo 1985, Horowitz 1986, Garg and Scacchi, 1989,

1990), or how these capabilities have since become part of the commonly available computer-

aided software engineering (CASE) tools suites like Rational Rose, and others based on the use

of the Unified Modeling Language (UML).

Rapid Iteration, Incremental Evolution, and Evolutionary Delivery

There are a growing number of technological, social and economic trends that are shaping how a

new generation of software systems are being developed that exploit the Internet and World

13

Wide Web. These include the synchronize and stabilize techniques popularized by Microsoft and

Netscape at the height of the fiercely competitive efforts to dominate the Web browser market of

the mid 1990's (Cusumano and Yoffie, 1999, MacCormack 2001). They also include the

development of open source software systems that rely on a decentralized community of

volunteer software developers to collectively develop and test software systems that are

incrementally enhanced, released, experienced, and debugged in an overall iterative and cyclic

manner (DiBona 1999, Fogel 1999, Mockus 2000). The elapsed time of these incremental

development life cycles on some projects may be measured in weeks, days, or hours! The

centralized planning, management authority and coordination imposed by the traditional system

life cycle model has been discarded in these efforts, replaced instead by a more organic,

participatory, reputation-based, and community oriented engineering practice. Software

engineering in the style of rapid iteration and incremental evolution is one that focuses on and

celebrates the inevitability of constantly shifting system requirements, unanticipated situations of

use and functional enhancement, and the need for developers to collaborate with one another,

even when they have never met (Truex 1999). As such, we are likely to see more research and

commercial development aimed at figuring out whether or how software process models can

accommodate rapid iteration, incremental evolution, or synchronize and stabilize techniques

whether applied to closed, centrally developed systems, or to open, de-centrally developed

systems.

Program Evolution Models

In contrast to the preceding four prescriptive product development models, Lehman and Belady

sought to develop a descriptive model of software product evolution. They conducted a series of

empirical studies of the evolution of large software systems at IBM during the 1970's

(Lehman1985). (see Software Evolution) Based on their investigations, they identify five

properties that characterize the evolution of large software systems. These are:

1. Continuing change: a large software system undergoes continuing change or becomes

progressively less useful

2. Increasing complexity: as a software system evolves, its complexity increases unless

work is done to maintain or reduce it

3. Fundamental law of program evolution: program evolution, the programming process,

and global measures of project and system attributes are statistically self-regulating with

determinable trends and invariances

4. Invariant work rate: the rate of global activity in a large software project is statistically

invariant

5. Incremental growth limit: during the active life of a large program, the volume of

modifications made to successive releases is statistically invariant.

However, it is important to observe that these are global properties of large software systems, not

causal mechanisms of software development. More recent advances in the study of program

evolution can be found elsewhere in the article by Lehman and Ramil (See Software Evolution

14

chapter).

Software Production Process Models

There are two kinds of software production process models: non-operational and operational.

Both are software process models. The difference between the two primarily stems from the fact

that the operational models can be viewed as computational scripts or programs: programs that

implement a particular regimen of software engineering and development. Non-operational

models on the other hand denote conceptual approaches that have not yet been sufficiently

articulated in a form suitable for codification or automated processing.

Non-Operational Process Models

There are two classes of non-operational software process models of the great interest. These are

the spiral model and the continuous transformation models. There is also a wide selection of

other non-operational models, which for brevity we label as miscellaneous models. Each is

examined in turn.

The Spiral Model. The spiral model of software development and evolution represents a risk-

driven approach to software process analysis and structuring (Boehm 1987, Boehm et al, 1998).

This approach, developed by Barry Boehm, incorporates elements of specification-driven,

prototype-driven process methods, together with the classic software life cycle. It does so by

representing iterative development cycles as an expanding spiral, with inner cycles denoting

early system analysis and prototyping, and outer cycles denoting the classic software life cycle.

The radial dimension denotes cumulative development costs, and the angular dimension denotes

progress made in accomplishing each development spiral. See Figure 3.

Risk analysis, which seeks to identify situations that might cause a development effort to fail or

go over budget/schedule, occurs during each spiral cycle. In each cycle, it represents roughly the

same amount of angular displacement, while the displaced sweep volume denotes increasing

levels of effort required for risk analysis. System development in this model therefore spirals out

only so far as needed according to the risk that must be managed. Alternatively, the spiral model

indicates that the classic software life cycle model need only be followed when risks are greatest,

and after early system prototyping as a way of reducing these risks, albeit at increased cost. The

insights that the Spiral Model offered has in turned influenced the standard software life cycle

process models, such as ISO12207 noted earlier. Finally, efforts are now in progress to integrate

computer-based support for stakeholder negotiations and capture of trade-off rationales into an

operational form of the WinWin Spiral Model (Boehm et al, 1998). (see Risk Management in

Software Development)

Miscellaneous Process Models. Many variations of the non-operational life cycle and process

models have been proposed, and appear in the proceedings of the international software process

workshops sponsored by the ACM, IEEE, and Software Process Association. These include fully

15

interconnected life cycle models that accommodate transitions between any two phases subject to

satisfaction of their pre- and post-conditions, as well as compound variations on the traditional

life cycle and continuous transformation models. However, reports indicate that in general most

software process models are exploratory, though there is now a growing base of experimental or

industrial experience with these models (Basili 1988, Raffo et al 1999, Raffo and Scacchi 2000).

Figure 3.The Spiral Model diagram from (Boehm 1987)

Operational Process Models

 In contrast to the preceding non-operational process models, many models are now beginning to

appear which codify software engineering processes in computational terms--as programs or

16

executable models. Three classes of operational software process models can be identified and

examined. Following this, we can also identify a number of emerging trends that exploit and

extend the use of operational process models for software engineering.

Operational specifications for rapid prototyping. The operational approach to software

development assumes the existence of a formal specification language and processing

environment that supports the evolutionary development of specifications into an prototype

implementation (Bauer 1976, Balzer 1983, Zave 1984). Specifications in the language are coded,

and when computationally evaluated, constitute a functional prototype of the specified system.

When such specifications can be developed and processed incrementally, the resulting system

prototypes can be refined and evolved into functionally more complete systems. However, the

emerging software systems are always operational in some form during their development.

Variations within this approach represent either efforts where the prototype is the end sought, or

where specified prototypes are kept operational but refined into a complete system.

The specification language determines the power underlying operational specification

technology. Simply stated, if the specification language is a conventional programming

language, then nothing new in the way of software development is realized. However, if the

specification incorporates (or extends to) syntactic and semantic language constructs that are

specific to the application domain, which usually are not part of conventional programming

languages, then domain-specific rapid prototyping can be supported.

An interesting twist worthy of note is that it is generally within the capabilities of many

operational specification languages to specify "systems" whose purpose is to serve as a model of

an arbitrary abstract process, such as a software process model. In this way, using a prototyping

language and environment, one might be able to specify an abstract model of some software

engineering processes as a system that produces and consumes certain types of documents, as

well as the classes of development transformations applied to them. Thus, in this regard, it may

be possible to construct operational software process models that can be executed or simulated

using software prototyping technology. Humphrey and Kellner describe one such application and

give an example using the graphic-based state-machine notation provided in the

STATECHARTS environment (Humphrey 1989).

Software automation. Automated software engineering (also called knowledge-based software

engineering) attempts to take process automation to its limits by assuming that process

specifications can be used directly to develop software systems, and to configure development

environments to support the production tasks at hand. The common approach is to seek to

automate some form of the continuous transformation model (Bauer 1976, Balzer 1985). In turn,

this implies an automated environment capable of recording the formalized development of

operational specifications, successively transforming and refining these specifications into an

implemented system, assimilating maintenance requests by incorporating the new/enhanced

specifications into the current development derivation, then replaying the revised development

toward implementation (Balzer 1983b, Balzer 1985). However, current progress has been limited

to demonstrating such mechanisms and specifications on software coding, maintenance, project

communication and management tasks (Balzer 1983b, Balzer 1985, Sathi 1985, Mi 1990,

Scacchi and Mi 1997), as well as to software component catalogs and formal models of software

17

development processes (Ould 1988, Wood 1988, Mi 1996). Last, recent research has shown how

to combine different life cycle, product, and production process models within a process-driven

framework that integrates both conventional and knowledge-based software engineering tools

and environments (Garg 1994, Heineman 1994, Scacchi and Mi 1997).

Software process automation and programming. Process automation and programming are

concerned with developing formal specifications of how a system or family of software systems

should be developed. Such specifications therefore provide an account for the organization and

description of various software production task chains, how they interrelate, when then can

iterate, etc., as well as what software tools to use to support different tasks, and how these tools

should be used (Hoffnagel 1985, Osterweil 1987). Focus then converges on characterizing the

constructs incorporated into the language for specifying and programming software processes.

Accordingly, discussion then turns to examine the appropriateness of language constructs for

expressing rules for backward and forward-chaining, behavior, object type structures, process

dynamism, constraints, goals, policies, modes of user interaction, plans, off-line activities,

resource commitments, etc. across various levels of granularity (Garg and Scacchi 1989, Kaiser

1988, Mi and Scacchi 1992, Williams 1988, Yu and Mylopoulus 1994),. This in turn implies that

conventional mechanisms such as operating system shell scripts (e.g., Makefiles on Unix) do not

support the kinds of software process automation these constructs portend.

Lehman (1987) and Curtis and associates, (1987) provide provocative critiques of the potential

and limitations of current proposals for software process automation and programming. Their

criticisms, given our framework, essentially point out that many process programming proposals

(as of 1987) were focused almost exclusively to those aspects of software engineering that were

amenable to automation, such as tool sequence invocation. They point out how such proposals

often fail to address how the production settings and products constrain and interact with how the

software production process is defined and performed, as revealed in recent empirical software

process studies (Bendifallah 1987, Curtis, et al., 1988, Bendifallah 1989, Grinter 1996).

Beyond these, the dominant trend during the 1990's associated with software process automation

was the development of process-centered software engineering environments (Garg 1996).

Dozens of research projects and some commercial developments were undertaken to develop,

experiment with, and evaluate the potential opportunities and obstacles associated with software

environments driven by operational software process models. Many alternative process model

formalisms were tried including knowledge-based representations, rule-based schemes, and

Petri-net schemes and variations. In the early 1990's, emphasis focused on the development of

distributed client-server environments that generally relied on a centralized server. The server

might then interpret a process model for how to schedule, coordinate, or reactively synchronize

the software engineering activities of developers working with client-side tools (Garg et al 1994,

Garg 1996, Heineman 1994, Scacchi and Mi 1997). To no surprise, by the late 1990's emphasis

has shifted towards environment architectures that employed decentralized servers for process

support, workflow automation, data storage, and tool services (Bolcer 1998, Grundy 1999,

Scacchi and Noll 1997). Finally, there was also some effort to expand the scope of operational

support bound to process models in terms that recognized their growing importance as a new

kind of software (Osterweil 1987). Here we began to see the emergence of process engineering

environments that support their own class of life cycle activities and support mechanisms (Garg

18

and Jazayeri 1996, Garg et al 1994, Heineman 1994, Scacchi and Mi 1997, Scacchi and Noll

1997).

Emerging Trends and New Directions

In addition to the ongoing interest, debate, and assessment of process-centered or process-driven

software engineering environments that rely on process models to configure or control their

operation (Ambriola 1999, Garg and Jazayeri 1996), there are a number of promising avenues for

further research and development with software process models. These opportunities areas and

sample direction for further exploration include:

� Software process simulation (Raffo et al, 1999, Raffo and Scacchi 2000) efforts which seek

to determine or experimentally evaluate the performance of classic or operational process

models using a sample of alternative parameter configurations or empirically derived process

data (cf. Cook and Wolf 1998). Simulation of empirically derived models of software

evolution or evolutionary processes also offer new avenues for exploration (Chatters,

Lehman, et al., 2000, Mockus 2000).

� Web-based software process models and process engineering environments (Bolcer 1998,

Grundy 1998, Penedo 2000, Scacchi and Noll 1997) that seek to provide software

development workspaces and project support capabilities that are tied to adaptive process

models. (see Engineering Web Applications with Java)

� Software process and business process reengineering (Scacchi and Mi 1997, Scacchi and

Noll 1997, Scacchi 2000) which focuses attention to opportunities that emerge when the

tools, techniques, and concepts for each disciplined are combined to their relative advantage.

This in turn is giving rise to new techniques for redesigning, situating, and optimizing

software process models for specific organizational and system development settings

(Scacchi and Noll 1997, Scacchi 2000). (see Business Reengineering in the Age of the

Internet)

� Understanding, capturing, and operationalizing process models that characterize the practices

and patterns of globally distributed software development associated with open source

software (DiBona 1999, Fogel 1999, Mockus 2000), as well as other emerging software

development processes, such as extreme programming (Beck 1999) and Web-based virtual

software development enterprises or workspaces (Noll and Scacchi 1999,2001, Penedo

2000).

Conclusions

The central thesis of this chapter is that contemporary models of software development must

account for software the interrelationships between software products and production processes,

as well as for the roles played by tools, people and their workplaces. Modeling these patterns can

utilize features of traditional software life cycle models, as well as those of automatable software

process models. Nonetheless, we must also recognize that the death of the traditional system life

cycle model may be at hand. New models for software development enabled by the Internet,

19

group facilitation and distant coordination within open source software communities, and

shifting business imperatives in response to these conditions are giving rise to a new generation

of software processes and process models. These new models provide a view of software

development and evolution that is incremental, iterative, ongoing, interactive, and sensitive to

social and organizational circumstances, while at the same time, increasingly amenable to

automated support, facilitation, and collaboration over the distances of space and time.

References

Ambriola, V., R. Conradi and A. Fuggetta, Assessing process-centered software engineering

environments, ACM Trans. Softw. Eng. Methodol. 6, 3, 283-328, 1997.

Balzer, R., Transformational Implementation: An Example, IEEE Trans. Software Engineering,

7, 1, 3-14,1981.

Balzer, R., A 15 Year Perspective on Automatic Programming, IEEE Trans. Software

Engineering, 11,11,1257-1267, 1985.

Balzer, R., T. Cheatham, and C. Green, Software Technology in the 1990's: Using a New

Paradigm, Computer,16,11, 39-46, 1983.

Basili, V.R. and H.D. Rombach, The TAME Project: Towards Improvement-Oriented Software

Environments, IEEE Trans. Soft. Engr., 14, 6, 759-773, 1988.

Basili, V. R., and A. J. Turner, Iterative Enhancement: A Practical Technique for Software

Development, IEEE Trans. Software Engineering, 1,4, 390-396, 1975.

Batory, D., V. Singhal, J. Thomas, S. Dasari, B. Geraci, M. Sirkin, The GenVoca model of

software-system generators, IEEE Software, 11(5), 89-94, September 1994.

Bauer, F. L., Programming as an Evolutionary Process, Proc. 2nd. Intern. Conf. Software

Engineering, IEEE Computer Society, 223-234, January, 1976.

Beck, K. Extreme Programming Explained, Addison-Wesley, Palo Alto, CA, 1999.

Bendifallah, S., and W. Scacchi, Understanding Software Maintenance Work, IEEE Trans.

Software Engineering, 13,3, 311-323, 1987.

Bendifallah, S. and W. Scacchi, Work Structures and Shifts: An Empirical Analysis of Software

Specification Teamwork, Proc. 11th. Intern. Conf. Software Engineering, IEEE Computer

Society, 260-270, 1989.

Biggerstaff, T., and A. Perlis (eds.), Special Issues on Software Reusability, IEEE Trans.

Software Engineering, 10, ,5, 1984.

Boehm, B., Software Engineering, IEEE Trans. Computer, C-25,12,1226-1241, 1976.

Boehm, B. W., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, N. J., 1981

20

Boehm, B., A Spiral Model of Software Development and Enhancement, Computer, 20(9), 61-

72, 1987.

Boehm, B., A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy, Using the WinWin Spiral

Model: A Case Study, Computer, 31(7), 33-44, 1998.

Bolcer, G.A., R.N. Taylor, Advanced workflow management technologies, Software Process--

Improvement and Practice, 4,3, 125-171, 1998.

Budde, R., K. Kuhlenkamp, L. Mathiassen, and H. Zullighoven, Approaches to Prototyping,

Springer-Verlag, New York, 1984.

Chatters, B.W., M.M. Lehman, J.F. Ramil, and P. Werwick, Modeling a Software Evolution

Process: A Long-Term Case Study, Software Process-Improvement and Practice, 5(2-3), 91-102,

2000.

Cook, J.E., and A.Wolf, Discovering models of software processes from event-based data, ACM

Trans. Softw. Eng. Methodol. 7, 3 (Jul. 1998), 215 - 249

B. Curtis, H. Krasner, V. Shen, and N. Iscoe, On Building Software Process Models Under the

Lamppost, Proc. 9th. Intern. Conf. Software Engineering, IEEE Computer Society, Monterey,

CA, 96-103, 1987.

Curtis, B., H. Krasner, and N. Iscoe, A Field Study of the Software Design Process for Large

Systems, Communications ACM, 31, 11, 1268-1287, November, 1988.

Cusumano, M. and D. Yoffie, Software Development on Internet Time, Computer, 32(10), 60-

69, 1999.

Distaso, J., Software Management--A Survey of Practice in 1980, Proceedings IEEE, 68,9,1103-

1119, 1980.

DiBona, C., S. Ockman and M. Stone, Open Sources: Voices from the Open Source Revolution,

O'Reilly Press, Sebastopol, CA, 1999.

Fogel, K., Open Source Development with CVS, Coriolis Press, Scottsdale, AZ, 1999.

Garg, P.K. and M. Jazayeri (eds.), Process-Centered Software Engineering Environment, IEEE

Computer Society, pp. 131-140, 1996.

Garg, P.K., P. Mi, T. Pham, W. Scacchi, and G. Thunquest, The SMART approach for software

process engineering, Proc. 16th. Intern. Conf. Software Engineering, 341 - 350,1994.

Garg, P.K. and W. Scacchi, ISHYS: Design of an Intelligent Software Hypertext Environment,

IEEE Expert, 4, 3, 52-63, 1989.

Garg, P.K. and W. Scacchi, A Hypertext System to Manage Software Life Cycle Documents,

IEEE Software, 7, 2, 90-99, 1990.

21

Goguen, J., Reusing and Interconnecting Software Components, Computer, 19,2, 16-28, 1986.

Graham, D.R., Incremental Development: Review of Non-monolithic Life-Cycle Development

Models, Information and Software Technology, 31, 1, 7-20, January,1989.

Grundy, J.C.; Apperley, M.D.; Hosking, J.G.; Mugridge, W.B. A decentralized architecture for

software process modeling and enactment, IEEE Internet Computing , Volume: 2 Issue: 5 , Sept.-

Oct. 1998, 53 -62.

Grinter, R., Supporting Articulation Work Using Software Configuration Management, J.

Computer Supported Cooperative Work,5, 447-465, 1996.

Heineman, G., J.E. Botsford, G. Caldiera, G.E. Kaiser, M.I. Kellner, and N.H. Madhavji.,

Emerging Technologies that Support a Software Process Life Cycle. IBM Systems J.,

32(3):501-529, 1994.

Hekmatpour, S., Experience with Evolutionary Prototyping in a Large Software Project, ACM

Software Engineering Notes, 12,1, 38-41 1987

Hoffnagel, G. F., and W. Beregi, Automating the Software Development Process, ,IBM Systems

J.,24 ,2 1985 ,102-120

Horowitz, E. and R. Williamson, SODOS: A Software Documentation Support Environment--Its

Definition, IEEE Trans. Software Engineering, 12, 8, 1986.

Horowitz, E., A. Kemper, and B. Narasimhan, A Survey of Application Generators, IEEE

Software, 2,1 ,40-54, 1985.

Hosier, W. A., Pitfalls and Safeguards in Real-Time Digital Systems with Emphasis on

Programming, IRE Trans. Engineering Management, EM-8, June, 1961.

Humphrey, W. S., The IBM Large-Systems Software Development Process: Objectives and

Direction, ,IBM Systems J., 24,2, 76-78, 1985.

Humphrey, W.S. and M. Kellner, Software Process Modeling: Principles of Entity Process

Models, Proc. 11th. Intern. Conf. Software Engineering, IEEE Computer Society, Pittsburgh,

PA, 331-342, 1989.

Kaiser, G., P. Feiler, and S. Popovich, Intelligent Assistance for Software Development and

Maintenance, IEEE Software, 5, 3, 1988.

Kling, R., and W. Scacchi, The Web of Computing: Computer Technology as Social

Organization, Advances in Computers, 21, 1-90, Academic Press, New York, 1982.

Lehman, M. M., Process Models, Process Programming, Programming Support, Proc. 9th.

Intern. Conf. Software Engineering, 14-16, IEEE Computer Society, 1987.

Lehman, M. M., and L. Belady, Program Evolution: Processes of Software Change, Academic

Press, New York, 1985

22

MacCormack, A., Product-Development Practices that Work: How Internet Companies Build

Software, Sloan Management Review, 75-84, Winter 2001.

Mi, P. and W. Scacchi, A Knowledge Base Environment for Modeling and Simulating Software

Engineering Processes, IEEE Trans. Knowledge and Data Engineering, 2,3, 283-294, 1990.

Mi, P. and W. Scacchi, Process Integration for CASE Environments, IEEE Software, 9,2,

March,45-53,1992.

Mi, P. and W. Scacchi., A Meta-Model for Formulating Knowledge-Based Models of Software

Development. Decision Support Systems, 17(4):313-330, 1996.

Mili, A., J. Desharnais, and J.R. Gagne, Formal Models of Stepwise Refinement of Programs,

ACM Computing Surveys, 18, 3, 231-276, 1986.

Mills, H.D., M. Dyer and R.C. Linger, Cleanroom Software Engineering, IEEE Software, 4, 5,

19-25, 1987.

Mockus, A., R.T. Fielding, and J. Herbsleb, A Case Study of Open Software Development: The

Apache Server, Proc. 22nd. International Conf. Software Engineering, Limerick, IR, 263-272,

2000.

Moore, J.W., P.R. DeWeese, and D. Rilling, "U. S. Software Life Cycle Process Standards,"

Crosstalk: The DoD Journal of Software Engineering, 10:7, July 1997

Neighbors, J., The Draco Approach to Constructing Software from Reusable Components, IEEE

Trans. Software Engineering, 10, 5, 564-574, 1984.

Noll, J. and W. Scacchi, Supporting Software Development in Virtual Enterprises, Journal of

Digital Information, 1(4), February 1999.

Noll, J. and W. Scacchi, Specifying Process-Oriented Hypertext for Organizational Computing,

J. Network and Computer Applications, 24(1):39-61, 2001.

Osterweil, L., Software Processes are Software Too, Proc. 9th. Intern. Conf. Software

Engineering, 2-13, IEEE Computer Society, 1987.

Ould, M.A., and C. Roberts, Defining Formal Models of the Software Development Process,

Software Engineering Environments, P. Brererton (ed.), Ellis Horwood, Chichester, England, 13-

26, 1988.

Paulk, M.C., C.V. Weber, B. Curtis, The Capability Maturity Model: Guidelines for

Improving the Software Process, Addison-Wesley, New York, 1995.

Penedo, M.H., An Active Web-based Virtual Room for Small Team Collaboration, Software

Process --Improvement and Practice, 5,4,: 251-261, 2000.

Penedo, M.H. and E.D. Stuckle, PMDB--A Project Master Database for Software Engineering

Environments, Proc. 8th. Intern. Conf. Soft. Engr., IEEE Computer Society, Los Alamitos, CA,

23

150-157, 1985.

R. Radice, N.K. Roth, A.C. O'Hara and W.A. Ciarfella, A Programming Process Architecture.

IBM Systems Journal, 24(2), 79-90, 1985.

Raffo, D. and W. Scacchi, Special Issue on Software Process Simulation and Modeling, Software

Process--Improvement and Practice, 5(2-3), 87-209, 2000.

Raffo, D., W. Harrison, M.I. Kellner, R. Madachy, R. Martin, W. Scacchi, and P. Wernick,

Special Issue on Software Process Simulation Modeling, Journal of Systems and Software, 46(2-

3), 89-211, 1999.

Royce, W. W., Managing the Development of Large Software Systems, Proc. 9th. Intern. Conf.

Software Engineering, ,IEEE Computer Society, 1987 ,328-338 Originally published in Proc.

WESCON, 1970.

Royce, W., TRW's Ada Process Model for Incremental Development of Large Software

Systems, Proc. 12th. Intern. Conf. Software Engineering, Nice, France, 2-11, IEEE Computer

Society, 1990.

Sathi, A., M. S. Fox, and M. Greenberg, Representation of Activity Knowledge for Project

Management, IEEE Trans. Patt. Anal. and Mach. Intell., 7,5,531-552, 1985.

Scacchi, W., Managing Software Engineering Projects: A Social Analysis, IEEE Trans. Software

Engineering, SE-10,1, 49-59, January, 1984.

Scacchi, W., Understanding Software Process Redesign using Modeling, Analysis and

Simulation. Software Process --Improvement and Practice 5(2/3):183-195, 2000.

Scacchi, W. and P. Mi., Process Life Cycle Engineering: A Knowledge-Based Approach and

Environment, Intelligent Systems in Accounting, Finance, and Management, 6(1):83-107, 1997.

Scacchi, W. and J. Noll, Process-Driven Intranets: Life Cycle Support for Process

Reengineering, IEEE Internet Computing, 1(5):42-49, 1997.

Selby,R.W., V.R. Basili, and T. Baker, CLEANROOM Software Development: An Empirical

Evaluation, IEEE Trans. Soft. Engr., 3, 9, 1027-1037, 1987.

Somerville, I. Software Engineering (7
th

. Edition), Addison-Wesley, Menlo Park, CA, 1999.

Truex, D., R. Baskerville, and H. Klein, Growing Systems in an Emergent Organization,

Communications ACM, 42(8), 117-123, 1999.

Winograd, T. and F. Flores, Understanding Computers and Cognition: A New Foundation for

Design, Ablex Publishers, Lexington, MA, 1986.

Williams, L., Software Process Modeling: A Behavioral Approach, Proc. 10th. Intern. Conf.

Software Engineering, IEEE Computer Society, 174-200, 1988.

24

Wirth, N., Program Development by Stepwise Refinement, Communications of the ACM,14,4,

221-227, 1971.

Wood, J. and D. Silver, Joint Application Development, Wiley and Sons, Inc. New York, 1995.

Wood, M., and I. Sommerville, A Knowledge-Based Software Components Catalogue, Software

Engineering Environments, Ellis Horwood, P. Brererton (ed.), Chichester, England, 116-131,

1988.

Yu, E.S.K. and J. Mylopoulos, Understanding "why" in software process modelling, analysis,

and design, Proc. 16th. Intern. Conf. Software Engineering, 159 -168, 1994.

Zave, P., The Operational Versus the Conventional Approach to Software Development,

Communications of the ACM, 27, 104-118, 1984.

