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Abstract: Market demand places great emphasis in in-
dustry on product quality. Consequently, process moni-
toring and control have become important aspects of
systems engineering. In this article we detail the results
of a 2-year study focusing on the development of a con-
dition monitoring system for a fed-batch fermentation
system operated by Biochemie Gmbh in Austria. We also
demonstrate the suitability and limitations of current
state of the art technologies in this field and suggest
novel modifications and configurations to improve their
suitability for application to a fed-batch fermentation sys-
tem. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 74:

125–135, 2001.
Keywords: fault detection; fault diagnosis; fermentation;
multivariate statistical process control; principal compo-
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INTRODUCTION

When operating fermentation systems it is vitally important
to maintain operation within strict limits. There are two
main reasons why this is the case. First, biologically based
systems by nature are highly sensitive to abnormal changes
in operating conditions. To ensure that the maximum pos-
sible yield of product is obtained from the system it is
necessary to make sure that conditions within the fermentor
remain closely fixed around a prespecified “ideal” trajec-
tory. Second, for many compounds as part of the procedures
to guarantee product chemical consistency, regulatory au-
thorities (such as the FDA in the USA) demand proof that
consistent operation is adhered to. Without this the product
cannot be sold. In industrial fermentation systems, process
operators are typically employed to achieve consistent op-
eration through manual monitoring and control. The opera-
tor uses his experience and knowledge of the fermentation
process, together with information provided by supervisory
control systems, to detect potential problems and make
modifications when necessary. The importance of effective

operator control cannot be underestimated as the perfor-
mance of a fermentation is very much dependant upon the
ability to keep the system operating smoothly. A fermenta-
tion that is free from major upsets is likely to be more
productive than one subject to significant disturbances.
Therefore, the earlier a potential problem to the system can
be detected, the less severe its influence will be and the
resulting corrective action will consequently be more re-
strained.

Although operator control may be adequate in certain
situations it makes little direct use of the historical data that
is routinely gathered and logged. Historical data will typi-
cally contain information on high- and low-productivity
batches, as well as information on the consequences of per-
forming particular actions in response to problem situations.
It is possible therefore to develop simple rule-based struc-
tures that compare individual variables with historical rec-
ords. Any deviations that indicate reduced productivity
from the current batch can then be brought to the attention
of the operators. Rules themselves can be formulated
through the use of such methodologies as rule-induction
procedures and case-based reasoning (Leake, 1996). With
the rules formulated, it is relatively simple to implement
them, particularly with recent developments in real-time
knowledge-based systems, such as G2 from Gensym Ltd.
These approaches are fine in certain situations, such as final
productivity analysis. However, the problem when applying
the methods to on-line fermentation monitoring is the sheer
complexity of the system together with the need to account
for temporal patterns.

An alternative technique for monitoring batch processes
that also utilizes historical data is Statistical Process Control
(SPC) (Wetherill and Brown, 1991). Traditional univariate
SPC may be suitable for selected fermentation systems
(Hahn and Cockrum 1987; Vander Wiel et al., 1992), how-
ever, such processes in general pose a variety of problems
that make univariate SPC inappropriate. For example, many
variables may be recorded, necessitating the need for mul-
tiple charts to be interpreted, which can be difficult. Other
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problems include the fact that steady state is not achieved in
batch operation and deviations may be caused by interac-
tions between variables which may not appear on SPC
charts.

To overcome the problems associated with univariate
SPC, multivariate SPC (MSPC) techniques have been de-
veloped (Nomikos and MacGregor, 1995a; Wise and Gal-
lagher, 1996) and subsequently applied to batch-
fermentation systems. The aim of this work was to develop
a process monitoring system for a fed-batch fermentation
system operated by Biochemie in Austria. In developing the
system the capabilities of a variety of MSPC techniques
were compared and assessed. In addition, a number of
modifications to the existing technologies are described and
it is demonstrated how they can improve the monitoring
capabilities of the system. The utilization of artificial neural
networks (ANNs) to infer product quality measurements is
also detailed. This was required due to the problems asso-
ciated with making direct on-line measurements of quality.
The work with ANNs represents an initial study into the
development of a closed loop control system to regulate the
fermentation system.

This article is divided into several sections. First, we
describe the mathematical algorithms that were used in this
study. This is followed with a description of a number of
practical considerations that were investigated to make the
algorithms more suitable for batch fermentation systems.
Then, we detail the results of applying the algorithms to the
industrial fed-batch fermentation system and finally, outline
the important conclusions from the work.

For propriety reasons many details from the fermentation
process, including labels on graphs have been omitted.

COMPONENT TECHNOLOGIES

This article describes the on-line application of multivariate
statistical process control (MSPC) and artificial neural net-
work (ANN) techniques to a fermentation process. Before
the application is detailed a brief description of the algo-
rithms employed in this study is provided. These descrip-
tions assume some knowledge of the technologies, which, if
required, can be obtained from the publications detailed in
Table I which provide excellent introductions to the topics.

Multivariate Statistical Process Control

The main focus of this work was the application of MSPC
technologies to the industrial fermentation system. The

work concentrates on the application of principal compo-
nent analysis (PCA) and partial least squares (PLS), also
known as “projection to latent structures.” The basic con-
cepts of these algorithms are described in the following
sections. The algorithms were originally formulated for ap-
plication to continuous systems, however, it is explained in
a following section how simple data preprocessing proce-
dures can be employed to enable their application to batch
processes.

Principal Component Analysis

Principal component analysis is used to analyze the covari-
ance of a set of plant variables. The approach transforms a
matrix containingm measurements fromn process vari-
ables, [Z], into a matrix of mutually uncorrelated variables,
tk (wherek =; 1 to n) of lengthm. These variables, called
principal components (PCs), are transforms of the original
data into a new basis defined by a set of orthogonalloading
vectors,pk, of lengthn. The individual values of the prin-
cipal components are called “scores.” The transformation is
defined by

@Z# = (
k=1

np,n

tkpk
T + E (1)

The loadings are defined here as being orthonormal, and
so they become the eigenvectors of the data covariance
matrix,ZTZ. Thetk andpk pairs are ordered so that the first
pair capture the largest amount of variation in the data and
the last pair capture the least. In this way, it is generally
found that a small number of PCs (np) can account for much
of the power in the covariance matrix. The remaining power
constitutes the error termE. When Eq. (1) is applied to a
single vector of new process measurements,zT, the resulting
term E is called the “prediction error.” There are several
methods for determining the suitable value fornp. One
method is to continue to add PCs until the variation ex-
plained in the retained PCs exceeds a particular value, how-
ever, a more suitable approach, and the technique used in
this work, is to use cross validation (Wold, 1978).

By selecting a value ofnp lower thann the PCA algo-
rithm is able to project highly correlated process data into a
low-dimensional space defined by the principal compo-
nents. Control charts that are simple to interpret can then be
constructed using this data. The formulation of these charts
is described in the section on process monitoring using
PCA.

Partial Least Squares

Partial least squares is a tool suitable whenever plant vari-
ables can be partitioned into cause (X) and effect (Y) values.
The method may be used for regression or similarly, to
PCA, reduction of the effective dimensionality of data. The
approach works by selecting factors of cause variables in a
sequence that successively maximizes the explained covari-

Table I. References for further information.

Topic Reference

Principal Component Analysis Wise and Gallagher (1996)
Partial Least Squares Geladi and Kowalski (1986)
Multi-way Techniques Kourti and MacGregor (1995)
Artificial Neural Networks Willis et al (1991)
Radial Basis Functions Warnes et al (1998)
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ance between the cause and effect variables. Given a matrix
of cause data,X, and effect data,Y, a factor of the cause
data,tk, and effect data,uk, is evaluated, such that

X = (
k=1

np,nx

tkpk
T + E andY = (

k=1

np,nx

ukqk
T + F (2)

whereE and F are residual matrices,np is the number of
inner components that are used in the model andnx is the
number of causal variables. These equations are referred to
as the “outer relationships.” The vectorstk are mutually
orthogonal. These vectors anduk are selected so as to maxi-
mize the covariance between each pair, (tk, uk). Linear re-
gression is performed between thetkand theuk vectors to
produce the inner relationship, such that:

uk = bktk + «k

where bk is a regression coefficient, and«k refers to the
prediction error. The PLS method provides the potential for
a regularized model through selecting an appropriate num-
ber of latent variables,uk in the model (np). The number of
latent variables is typically made through the use of cross
validation.

The section on process monitoring on PLS explains how
this algorithm can be used to monitor the progress of a
process.

Multiway Multivariate Statistical Process Control

Conventional PCA and PLS are linear procedures and there-
fore limited in their effectiveness when applied to nonlinear
batch fermentation problems. Two options exist for improv-
ing the capabilities of the techniques when applied to batch
systems. The first is to develop nonlinear counterparts to
PCA and PLS and the second is to transform the batch data
in such a way as to remove the nonlinear characteristics.
Although nonlinear MSPC techniques exist and have been
applied successfully to fermentation systems (Dong and
McAvoy, 1996), the transformation of batch data has
proved to be a more effective option and was therefore
adopted in this study. The most common form of data trans-
formation, termed multiway PCA and PLS, was initially
proposed by Nomikos and MacGregor (1994). Since then,
other researchers have adopted the approach and applied it
to a variety of processes. For example, Gallagher et al.
(1996) applied the technique to monitor nuclear waste stor-
age vessels and Gregersen et al. (1997) investigated the
detection of faults in a fed-batch fermentation process.

Multiway Principal Component Analysis

The concept of multiway PCA is a relatively straightfor-
ward extension to the approach taken for continuous sys-
tems but deviations from mean trajectories rather than
steady state are considered. The following description to-
gether with Figure 1 explains the multiway approach to
PCA.

Selectmhistorical batches which all yielded high product
concentrations. These batches are referred to as “nominal”
batches and will be used for comparison purposes. The du-
ration of each batch is likely to differ and therefore the data
from each batch is considered only until the shortest run
length. Techniques exist which allow all the measured pro-
cess data to be used regardless of the shortest run length
(Lakshminarayanan et al., 1996). In this application how-
ever, the run lengths did not differ significantly and thus
using the reduced sized data sets was not considered to be a
problem.

The next step is to identify the,n, process variables that
are to be monitored. For each variable the mean trajectory
over all the nominal batches is calculated and subtracted
from each process measurement. This effectively removes
the major nonlinearity from the data and leaves a zero mean
trajectory for each variable.

Unfold the individual data matrices from each batch into
a single unfolded data matrix, as depicted in Figure 1. In this
Figure V1 refers to variable 1,V1t refers to the value of
variable 1 at timet and tend refers to the time at which the
batch finished. Finally, all columns of the unfolded data
matrix are standardized to unit variance. Principal compo-
nent analysis can now be applied to this unfolded data ma-
trix using two techniques:

1. Projection PCA
A PCA model is developed using the entire unfolded

data matrix, i.e., there is a loading variable calculated for
every measured process variable at each sampling in-
stant. The subsequent use of this model to monitor a
batch on-line poses the problem that it is necessary to
know the values of all process measurements through to
the end of the batch. This means that with the exception
of the end point of the batch, it is necessary to estimate
the future values of all the measured variables. The pre-
diction of future process values is normally referred to as
“filling up” the matrix and is typically achieved by as-
suming that either all future scaled process values remain
at the mean value of zero (filling method 1); or the future

Figure 1. Multi-way MSPC.
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process values remain at the current offset from the mean
value (filling method 2).

An alternative technique that has been utilized in this
work is to use the capability of PCA and PLS to handle
missing data (Nelson et al., 1996). Research work in this
area has tended to concentrate on using PCA and PLS to
infer process measurements at the current sampling in-
stant when a particular measurement is unavailable.
However, the same techniques can be used to fill up the
data matrix. The technique was employed in this work
and compared with the other approaches described above
(filling method 3).

2. Moving Window PCA
A PCA model is developed on a moving window of

data. For example at the 50th sampling instant, a PCA
model may be developed using data collected from the
41st to the 50th sampling instants. In this case, the mov-
ing window length would be said to be equal to 10. Such
a model effectively compares operating conditions over
the last few sample points with those experienced at the
same time in the nominal batches. The advantage of this
technique is that it does not require the values of future
measurements to be predicted. However, it does require
that the PCA model be re-evaluated at each sampling
point. Both PCA algorithms are applied and compared in
this study.

Multiway Partial Least Squares

The concept of multiway PLS is very similar to multiway
PCA. The unfolded data matrix represents the cause matrix
and is created in exactly the same way. The construction of
the effect matrix is problem dependent and is detailed in the
section below on process monitoring using partial least
squares.

Artificial Neural Networks

Artificial neural networks (ANNs) are mathematical func-
tions that provide a nonlinear description of the relationship
between cause and effect variables. Although many differ-
ing types of ANN exist (Lippman, 1987), they do possess
some common features. They are generally composed of
numerous process elements, termed nodes, which are ar-
ranged together to form a network. A common type of ANN
model used in many applications is the feedforward net-
work. This type of network comprises an input layer where
input information is presented to the network, one or more
hidden layers where neuron processing takes place and an
output layer from which the network outputs are obtained. It
is termed a feedforward network because the outputs from
one layer are fed-forward as inputs to the subsequent layer.
In such a network the processing element is one that weights
the input signals and then sums them together with a bias
term. The neuron output is then obtained by passing the
summed, weighted inputs through a nonlinear activation
function, such as the hyperbolic tangent. An alternative type

of neural network and the one chosen for this study is the
radial basis function (RBF) neural network.

The RBF networks utilize a clustering process on the
input data before presentation to the network and uses non-
linear activation functions that are locally tuned to cover a
region of the input space. The network structure consists of
an input layer, a single hidden layer containing the same
number of nodes as cluster centers, and an output layer. In
this application the hidden layer nodes are made up of sym-
metrical Gaussian density functions. The activation, and
hence, the output of the hidden units is dependent upon the
distance between the given input vector and the unit center.
The closer to the center the input lies, the higher the acti-
vation of the unit, i.e., the larger the value sent on to the
output layer in the network. Only the connections from the
hidden to the output layer are weighted, leading to a fast
training rate. This fast training rate means the neural net-
work models can be quickly developed, and the fixed layer
structure of the RBF network (i.e., only one hidden layer)
places a convenient restriction on topology selection when
compared to alternative network structures. An additional
property of RBF networks is that it is relatively easy to
introduce on-line calculation of confidence limits for the
model estimations, providing a measure of local reliability.

The training procedure for the RBFNs can be decom-
posed naturally into three distinct stages: (1) locating the
centers of the hidden layer radial units; (2) determining the
width of each radial unit; and (3) calculating the network
weights for interconnections between the radial basis layer
and the output layer. The scheme proposed by Moody and
Darken (1989) to perform the training is used in this work.
Further details of the precise methodology used for RBF
network construction and confidence-bound determination
can be found in Warnes et al. (1998).

Process Monitoring Using Principal
Component Analysis

Process monitoring is achieved with PCA by developing the
PCA model on example data from the process. The data
chosen for this stage should have been collected during
successful, high-yield fermentation runs and is referred to as
“nominal data.” The model developed with this data is later
recalled using on-line data and the consistency of this data
is assessed. Various approaches for assessing this consis-
tency have been suggested in the literature. In this and pre-
vious work (Goulding et al., 2000), it has been found that
for PCA the analysis should be applied separately to data
variation in the space of the principal components and in the
prediction errors.

Variation in the space of the principal components is
provided through theT2 statistic that is defined as:

T2 = (
k=1

np

tksk
−2tk

T (3)

wheresk
2 is the variance of thekth score.
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Variation in the prediction error is expressed as the
squared prediction error (SPE) and is defined asE2.

Control limits can be applied to theT2 and SPE charts
based on the assumption that the statistics follow a normal
and chi-squared distribution, respectively. These limits are
termed theT2 andQ limits, respectively, and a description
of how they are calculated is provided in Appendix A.

While a new batch is running, theT2 andSPEvalues can
be plotted. Any violations of the confidence limits should
indicate that the current batch is deviating from nominal
conditions. However, the manner in which it is deviating
from normality differs depending upon which chart is vio-
lating the confidence limits. Goulding et al. (2000) demon-
strated that changes in the relationships between variables,
such as that experienced if a sensor failed, tended to be
detected on theSPEchart, while changes in operating con-
dition, for example a grade change, were typically identified
on theT2 chart. There will be exceptions to this, for ex-
ample, a high-impact fault which significantly affects a
number of variables is likely to be detected on both theT2

andSPEcharts.
An important consideration when constructing theSPE

andT2 charts is setting the confidence limits. Most reported
applications tend to place 95% or 99% confidence limits on
the charts. However, experience shows that the correct set-
ting of the confidence limits is critical to the success of the
monitoring system. Process operators will quickly lose con-
fidence with a system that gives many false alarms, and
therefore the limits should be set so that such alarms are
minimized. This aspect is further detailed in the section on
application of PCA.

While highlighting abnormal conditions is very useful,
assigning the cause of the abnormalities is arguably even
more important. Technology in this aspect of MSPC is lim-
ited and is an area of significant research (Gertler et al.,
1999). In this work simple contribution charts were used to
indicate cause.

Contributions to theT2 statistic are obtained by taking the
gradient ofT2 with respect to each variable. The contribu-
tion to theSPEstatistic from a given variable is simply the
squared prediction error on that variable.

Process Monitoring Using Partial Least Squares

Partial least squares is a technique for determining a linear
relationship between cause and effect variables. Its advan-
tage over ordinary least squares is that it is capable of han-
dling large ill-conditioned matrices, as are typically encoun-
tered in batch systems. Previous work has demonstrated that
it can be used for process monitoring in two very different
ways. The first approach uses PLS as a prediction tool to
estimate the end concentration of biomass in the fermentor.
The second technique is very similar to PCA and involves
monitoring the inner latent variables produced by the algo-
rithm. In this study, it was found that the second approach
offered no tangible benefits over PCA and was therefore not
integrated into the final monitoring system (Lennox et al.,

1999). Using a PLS model to predict the final biomass
concentration was, however, found to be beneficial. The
PLS model acts as a classification system and can be used
to indicate if the current batch is more consistent with high-
or low-yield batches. Because it is used as a classifier it is
important that the model is developed using historical data
from both high- and low-yield batches. The construction of
the cause and effect matrices is relatively straightforward.
The cause matrix is identical to that used in multiway PCA
and the effect matrix is a column vector containing the final
product concentration from each of the historical batches.

Confidence limits can be placed around the PLS predic-
tion (Nomikos and MacGregor, 1995b) and if the PLS
model predicts that the required amount of biomass will not
be produced from the batch then a warning message can be
relayed to the operator.

Process Monitoring Using Artificial
Neural Networks

Previous research has demonstrated that ANNs can be used
as a non-linear counterpart to PCA and PLS algorithms, for
example, auto-associative ANNs (Kramer, 1992). In this
study, linear PCA and PLS have been found to provide
adequate results and therefore, ANNs have not been inves-
tigated in this capacity. However, the longterm plans for this
work are to provide automatic feedback control of biomass
production in the fermentor. It is anticipated that employing
ANNs within a model-based control system will provide a
suitable controller for this application. As a preliminary
study, ANNs have been employed as soft sensors to predict
the concentration of biomass in the fermentor during the
batch.

ON-LINE CONSIDERATIONS

Data Preprocessing

It is important that any monitoring system that is developed
be capable of handling common data problems such as noise
and outliers. Tham (1994) provides a thorough review of
data-handling procedures and the recommended techniques
suggested in his article have been successfully employed in
this work. These procedures involve filtering out noise us-
ing low-pass filters and detecting and removing outliers
through the identification of trends in the data.

Missing Data

A common problem in process systems is that some mea-
surements may not always be available. For example, a
faulty thermocouple may be withdrawn from service for the
duration of a batch. Such a situation would mean that it
would not be possible to apply any previously developed
PCA or PLS model that used this thermocouple measure-
ment to the current batch. In fact, any blank entries in the
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unfolded data matrix, which would result from a single
missing measurement, would render the PCA or PLS model
invalid during an on-line batch. In this application it was
considered likely that one or more process measurements
would be unavailable during a typical batch run. It was
therefore considered to be essential that this problem be
addressed.

Problems associated with missing data values have been
researched at length by Nelson et al. (1996). In their studies
they identified three methods for estimating missing data
values, each of which makes use of the predeveloped PCA
or PLS models. Each of these approaches was applied in this
work with mixed results. It was found that two of the meth-
ods, projection to the model plane and replacement by the
conditional mean created matrix singularity problems and
were unsuitable for this application. However, the single-
component regression technique was found to provide ac-
ceptable results. Complete details of these algorithms can be
found in Nelson et al. (1996).

Pre-Culture Data

The progress of a batch is dependent upon not only the
conditions in the fermentor, but also the conditions when the
biomass was in its pre-culture, or seed, stage. It is possible
to employ measurements taken in the pre-culture stage in
the monitoring system by simply appending the information
to the unfolded data matrix that is used in both the PCA and
PLS routines. Such information was not available in this
work and thus, has not been applied. However, Ignova et al.
(1999) have demonstrated how important information re-
garding the progress of the batch can be extracted from the
pre-culture data.

APPLICATION OF CONDITION MONITORING
TECHNOLOGIES TO THE
FED-BATCH FERMENTATION

The work detailed in this article represents the first phase of
an ongoing project to implement a condition-monitoring
system onto an industrial fed-batch fermentation system.
The aim of this work is to assess the suitability and benefits
of applying advanced monitoring technologies to the batch
process. Based upon the outcome of this phase of the work,
the next stage will be to apply the monitoring tools to a
research facility and test their performance over a period of
time. Based upon the results of this phase, the monitoring
system will be applied to the industrial fermentation system.

Application of Principal Component Analysis

A PCA model was developed from historical data from 10
high-yield industrial batches. The ability of this model to
monitor a number of subsequent batches was then deter-
mined. Some of these subsequent batches operated
smoothly while others were affected by disturbances.

Figure 2 displays the SPE for each of the 10 reference

batches. Based on this information, a 97% confidence limit
has been evaluated and also plotted. In this example the
unfolded data matrix has been filled using filling method 2.
A 97% confidence limit has been specified in this applica-
tion because at this level none of the nominal batches vio-
late the limit, thus reducing the potential for false alarms.

Figure 3 shows the SPE, along with 97% confidence
limits, for a particular test batch. During this fermentation
an intermittent drift on a sensor measurement was experi-
enced. This drift was most apparent between sample num-
bers 40–70 and 100–150. The SPE chart displayed in Figure
3 demonstrates that the PCA model has detected this fault
entering the system.

Further investigation of the PCA model showed that the
T2 limit was never exceeded during this batch and therefore,
the chart was unable to identify this fault. This result agrees
with the analysis in the section on process monitoring using
PCA. TheT2 chart is able to detect significant changes in
operation and high-impact faults. A fault such as this, a

Figure 2. SPE chart for nominal batches.

Figure 3. SPE chart for test batch.
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small drift on a sensor is unlikely to be detected in theT2

chart.
Section on multiway PCA described two alternative tech-

niques for filling up the unfolded data matrix. The suitabil-
ity of these techniques was compared with the results ob-
tained using filling method 2. Figure 4 shows the SPE chart
for the test batch investigated above, this time using filling
method 1. By using this technique the PCA model is no
longer able to identify the sensor fault. Similar reduction in
monitoring capabilities of this approach have been reported
by Lakshminarayanan et al. (1996) and Nomikos and Mac-
Gregor (1995a).

The reason for the reduction in performance using filling
method 1 can be explained by considering Figure 5. This
figure shows a particular process variable measurement re-
corded during a complete batch cycle (bold line). The batch
chosen in this example was a high-yield batch free from
process disturbances. Using the data collected up to sample
point 90, the value of the process variable between sample
times 91 and 180 has been inferred using each of the three
methods to fill up the unfolded data matrix. It is evident
from this figure that filling method 2 most accurately
matches the actual process measurement. Because the per-
formance of the process monitor will be dependent upon the
accuracy with which it fills the unfolded matrix, filling
method 2 would appear to be the more suitable in this ap-
plication.

Similar results were repeated in many other tests using
different variables and batches, confirming the suitability of
filling method 2.

The low-power principal components that are combined
to create the SPE chart capture relationships between the
process variables and as such, can be considered to be mod-
els of the system. The more accurate these models are the
more sensitive the SPE chart will be to abnormal process
conditions. The value of theQ limit, which in this work is
specified as being greater than the maximum SPE over all of
the nominal batches, provides a measure of the accuracy of

the low power PCA models. The lower theQ limit, the more
accurate the models are.

Figure 2 indicates that the sensitivity of the SPE is low at
the beginning and end of the batch and high during the
middle. The low sensitivity at the start is because so little
data is available from the batch and therefore the unfolded
data matrix is being filled with inaccurate data. The sensi-
tivity at the end of the batch is believed to be because the
relationships between the variables differ during the pro-
gression of the batch, for example, cell death phenomena
will affect the latter stages of the batch. Relationships be-
tween variables that are valid at the early stages of the batch
may not hold towards the end of the batch. To account for
this, it is possible to construct PCA submodels. Using this
technique, PCA models are constructed using data collected
from only part of the batch. For example, one PCA model
may be applied up to sample number 60, a second between
sample 60 and 150, and a third between 150 and 180.

Figure 6 compares theQ limit obtained using such a
submodel approach compared with that using a single PCA
model over the full duration of the batch. The figure shows
that the SPE and the correspondingQ limit using submodels
is significantly lower than that using the single PCA model.
This indicates that the SPE chart should be more sensitive to
process abnormalities, such as faults, if submodels are em-

Figure 4. SPE chart for test batch using filling method 1.

Figure 5. Inferred process measurement using various filling methods.

Figure 6. Effect of using sub-models.
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ployed and is therefore a more suitable method for process-
monitoring purposes. One minor drawback with using sub-
models is that theQ limit can increase sharply following the
change from one model to the next. This effect can be seen
most notably in Figure 6 at sample number 60.

The reason for this is the same as the high SPE experi-
enced at the start of the single model technique and is be-
cause so little data is available when filling up the unfolded
data matrix. To reduce this problem it is possible to con-
struct submodels that operate during particular periods but
are developed using data collected both before and during
the period. For example, a submodel that operates between
sample numbers 80 and 120 may actually be developed
using data collected between sample numbers 60 and 120.
Therefore, when the model is introduced at sample number
80 the data it uses to fill up the unfolded data matrix will be
more reliable.

The ability of PCA to handle missing data values is dem-
onstrated in Figure 7. The solid line in this chart shows the
SPE over the course of a batch.

Data collected from this batch was passed through the
PCA algorithm once more. However, this time the measure-
ment from a particular variable was set to be missing be-
tween samples 41 and 60 and 101 and 130. Using the single-
component regression method to replace the missing values
the SPE chart obtained for this batch is given by the dotted
line in Figure 7. It is evident from this chart that there is
very little difference between the two SPE values through
the duration of the batch and therefore in this particular
example, the routines for handling missing data values have
worked very well. Similar results to that displayed in Figure
7 were recorded from a number of subsequent missing data
tests involving other process variables and batches.

Further tests using the moving window PCA technique
showed that it produced similar results to those obtained
using the projection method with submodels. It is therefore
difficult to establish conclusions as to which is the more
suitable technique for this application. An advantage in us-
ing the moving window approach is that there are fewer
variables that require specifying, such as the number of
submodels and the periods over which these submodels
should be used. However, it was found that the moving

window approach required accurate specification of the
time delays, while the projection method was more robust to
this information.

Application of Partial Least Squares

As discussed earlier, it was found that monitoring the latent
variables of the PLS model gave no further insight into the
operation of the fermentation system than is available
through PCA. Therefore, in this study the inner relation-
ships in the PLS models were ignored and only the predic-
tion accuracy of the models was monitored.

Partial least squares’ models were developed to estimate
the final concentration of biomass in the fermentor. The aim
of this exercise is to use this estimate to categorize the
on-line fermentations into high- and low-yield production.

The PLS model was developed on historical data and
applied to a number of alternative batches. Figure 8 shows
an example of a PLS-monitoring chart. This chart shows the
final biomass concentration (solid line), estimated at each
sample time during the batch, 95% confidence limits
(dashed line) and the actual final concentration of biomass
(thin solid line). Details of the confidence limit calculations
can be found in Nomikos and MacGregor (1995b).

It can be seen from Figure 8 that for this batch, which
proceeded upset-free, the PLS estimate of the final product
concentration was reasonably accurate throughout. It is also
noticeable that the biomass estimate during the first half of
the run is relatively noisy and for the second half of the run
it is reasonably consistent. This is because at the start of the
batch most of the data in the unfolded data matrix has been
estimated and is therefore less reliable than in the later
stages of the batch.

The accuracy of the PLS model displayed in Figure 8 was
consistent with that produced for several other batches. This
level of accuracy makes the PLS model a useful tool for
monitoring the progress of the fermentation system for this
particular application.

Application of Neural Networks

The ability to formulate a relationship between on-line mea-
surements and off-line assays using a RBF network pro-

Figure 7. Effect of missing data. Figure 8. PLS monitoring chart.
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vides on-line estimates of performance. This information is
complementary to that provided by the MSPC methods. To
build the RBF model it is necessary to first select batches
for RBF network parameterization. The batch data require-
ments are similar to those for PLS-based modeling and re-
quire a wide coverage of operational experience to maxi-
mize the model coverage.

Figure 9 demonstrates the predictive capability of the
RBF network. Inputs to the network are on-line measure-
ments from the process and the output is the biomass level
measured in the laboratory from off-line samples. The net-
work was trained using a selected set of batches exhibiting
varying behavior spreading the region of operation. The
inputs to the network were chosen using a combination of
process knowledge and off-line verification of network be-
havior. The network topology was specified using cross-
validation to determine the topology that maximized the
predictive capability. Figure 9 shows the data that was used
to test the network behavior and it is important to note that
it did not feature in the training procedure. The crosses
represent off-line samples and the continuous line is the
network prediction. The dashed lines either side of this are
the 95% confidence bounds in prediction accuracy. It can be
seen that a good agreement between on-line prediction and
performance verified by off-line analysis is achieved. The
estimates are currently available to the process operator for
information purposes but in the longer term the option to
close the loop exists.

CONCLUSIONS AND FURTHER WORK

This article has provided details of a 2-year study aimed at
developing a condition monitoring system for a fed-batch
fermentation process. The primary conclusion from the
work is that existing technologies in the field of process
monitoring, such as PCA and PLS, provide a suitable tool
for the detection of process abnormalities.

Principal component analysis has been employed suc-
cessfully to detect and isolate process faults while PLS has
been applied to estimate final product composition in the
fermentor. The PLS estimate was shown to be sufficiently
accurate to enable it to categorize on-line batches into high
and low yield.

The integration of the PCA and PLS methods with infor-
mation from other sources such as inferences from RBF
networks serves to provide operators with a rich source of
operational assistance.

Described herein are many of the practical considerations
that have been encountered in this application. Such con-
siderations have ranged from data preprocessing issues to
computation problems.

The monitoring procedures developed in this work are
currently being applied to a research facility operated by
Biochemie. Subject to the success of trials conducted in this
facility the intention is to then transfer the monitoring sys-
tem to the industrial production equipment. Further analyti-
cal work that will be conducted during this time will focus
on assessing whether or not there are advantages in using
data collected during the pre-culture stage of the batch and
if advantages exist to determine the optimal way to exploit-
ing this information.

The authors would like to thank the members of the Control
Groups at the Universities of Newcastle-upon-Tyne and
Manchester for providing technical assistance during the course
of this work. Particular thanks are extended to Dr. Ming Tham.

NOMENCLATURE

bk Regression co-efficient from PLS
E error matrix from PCA
F error matrix from PCA and PLS
Fnp,r−l,a value of the F-distribution at thea% confidence limit for

np principal components andr samples
g function of the traces of the residual covariance matrix
h function of the traces of the residual covariance matrix
h0 function of the traces of the residual covariance matrix
k index for principal components and latent variables
m number of reference batches selected
n number of process variables
np number of principal components or latent variables re-

tained
nx number of cause variables
pk loading vector from PCA and PLS
qk loading vector for effect data from PLS
Q limit confidence limit forT2 values
Qa value forQ limit at the a% level of confidence
r number of samples in the matrixZ
SPE square prediction error
tk principal component or latent variable
T2 measure of the variation in the space of the principal

components
uk score vector for effect data in PLS
V residual covariance matrix
X matrix of cause data
Y matrix of effect data
z vector of new process data
Z matrix of process dataFigure 9. On-line biomass concentration estimation.
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Greek letters
a level of confidence
«k prediction error
mEmean ofE
sk

2variance of thekth principal component
ui trace ofV to the ith power
xh

2chi-squared variable

APPENDIX A

Statistical confidence limits forT2 are calculated using the
F-distribution as follows:

Ta
2 =

np~r − 1!

r − np
Fnp,r−1,a (A1)

wherer is the number of samples inZ, a is the confidence
limit, expressed as a fraction andnp is the number of prin-
cipal components retained in the model.

Confidence limits for the SPE chart are based upon the
chi-squared distribution (Jackson and Mudholkar, 1979).

Qa = u1F1 −
u2h0~1 − h0!

u1
2 + za

=2u2h0
2

u1
G

1

h0

(A2)

where:
Qa is the confidence limit for the SPE chart at thea% level.

u1 = trace~V!, u2 = trace~V2!, u3 = trace~V3!, h0 = 1 −
2u1u3

3u2
2

(A2)

V =
EET

r − 1
, a is the confidence limit(0–100%) andz is the

Normalvariable.

The calculation of traces of powers of the residual matrix
can become impractical with large data sets. This is par-
ticularly relevant in applying these techniques to batch sys-
tems as the control limits and PCA models are often calcu-
lated at each sampling instant. Where the calculations may
be excessive it is possible to employ the confidence limits
proposed by Box (1954) and given by:

Qa = gxh,a
2 (A4)

where:xh
2 is the chi-squared variable,g =

u2

u1
andh =

u1
2

u2

g andh can be approximated by matching moments (Nomi-
kos and MacGregor, 1995a) as shown below.

g =
sE

2

mE
, h =

2mE
2

sE
2 , sE andmE refer to the standard deviation

and mean ofE.

Figure A1 shows a comparison of the confidence limits
produced using the trace of the residual matrix compared
with those obtained by matching moments. The graph indi-
cates that there is very little difference between the two

techniques and that if large data sets are encountered (they
weren’t in this application) then the matching moments al-
gorithm can be used as an alternative. Care should be taken
when using this algorithm as errors can be introduced if
outliers are present in the data (Nomikos and MacGregor,
1995a).
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