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We define a continuous time stochastic process such that each is a Ferguson-Dirichlet random

distribution. The parameter of this process can be the distribution of any usual such as the

(multifractional) Brownian motion. We also extend Kraft random distribution to the continuous

time case.

We give an application in classifiying moving distributions by proving that the above random

distributions are generally mutually orthogonal. The proofs hinge on a theorem of Kakutani.

1. Introduction

A random distribution (RD) is a measurable map from a probability space
(Ω, z,P) to the space P(V ) of all probability measures defined on a fixed mea-
surable set (V,V). This notion is needed when dealing with the description of the
distribution of random elements which are themselves probability distributions.
The interest of such descriptions is emphasized for example in the nice paper of
J.F.C. Kingman (1975) on random discrete distributions. Indeed there are many
situations where one is faced with observations modelized by probability distribu-
tions rather than real vectors. Various references are mentionned by Pitman and
Yor (1996) : models in ecology, in population genetics, in storage and search, prior
in nonparametric Bayesian statistics, zero sets of stochastic processes, asymptotic
distributions in number theory, representation of partition structures.

The motivation for the present work comes from a situation which is oftently
encountered nowadays.When having a very large data set with a huge number of
records described by an attribute, the analysis of this large set could turn out to
be of great complexity but also be not very meaningfully. The records are then
grouped into units according to a user specification, each unit being described by
the distribution of the attribute within the unit. It is clear that these units can be
considered as random elements which are themselves probability distributions.

We study here the finite mixture problem for a RD X : (Ω,P) −→P(V ). It
consists in estimating the distribution PX of X as a finite mixture, that is a convex
combination

∑
k=1,...,K pkPk, the Pk’s being distributions on P(V ) belonging to a

specific family. This generalizes the well-known case where the observations are real
vectors. Actually, as reported by B. Schweizer (2002), the idea of operating with
distributions as data is already explicit in K. Menger’s early writings. Our solution
answers a question posed by E. Diday in the frame of Symbolic Data Analysis.

The paper is organized as follows.
In section 2 we give some examples of distributions of RDs that we will use as

components of the mixture : Ferguson (1973, 1974), Dykstra and Laud (1981) and
Lo (1982), Kraft (1964). We show that these components are generally mutually
orthogonal, the proof hinging on a very nice theorem of Kakutani.

In Section 3 we will recall the mixture problem in Rp and some clustering-based
algorithms which estimate the solutions.
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Section 4 and 5 contains the method and the main result : the observations
are n distributions fi, the set V is split into a finite partition (Vk) and the above
algorithms are applied to the vectors fi(Vk) in order to estimate finite dimensional
mixtures. We then prove the convergence of these estimations as the partitions
are refined. Clusters of the n observations are given by the disjoint supports of the
components.

The proposed method differs from that of Antoniak (1974) and extends it to
normalized weighted gamma processes and Kraft ones.

In Section 6 we define two continuous time processes of random distributions.
The last section is devoted to an application in the classification of Internet flows.

2. Orthogonal random distributions

Let (Ω, z,P) be a probability space and P(V ) the set of all probability
measures defined on a measurable space (V,V). Let B be the smallest σ−field on
P(V ) such that the mappings Q −→ Q(A) defined on P(V ) are measurable for any
A ∈ V. If V is a complete separable metric space, then B is also the Borel σ−field
when P(V ) is topologized by weak convergence. In most of applications V will be
product space V1× ...×Vp but for sake of simplicity and without loss of generality,
we will suppose, throughout this paper, that V = [0, 1] with its standard uniform
probability measure λ.

Definition 1 A random distribution (RD) is a measurable map from (Ω, z) to
(P(V ),B).

If X : Ω −→ P(V ) is a RD, its distribution PX is then a probability measure on
P(V ). Le us mention some examples of RDs, starting with the case of a finite set.

2.1. Case of a finite set V . If V is a finite set with l = #V then P(V ) can
be identified to the set

{y = (y1, ..., yl), yj ≥ 0,
l∑

j=1

yj = 1}

and any RD to a random vector

X = (X1, ..., Xl) : (Ω,P) → Rl
+ such that

l∑
k=1

Xk = 1.

In that case, distributions on P(V ) can be obtained in considering the distri-
bution of a positive random vector divided by the sum of its coordinates. This
the case of standard Dirichlet distributions or, more generally, normalized weighted
gamma distributions which better encompass concrete situations.

2.1.1. Dirichlet distributions D(α1, ..., αl). Let α = (α1, ..., αl), with α1 >
0, ..., αl > 0, and let Z1, ..., Zl be l independent real random variables with gamma
distributions γ(α1, 1), ..., γ(αl, 1) respectively, where

γ(a, b)(x) =
1

Γ(a)
bae−bxxa−1I(x>0).

The Dirichlet distribution D(α1, ..., αl) is defined as the distribution of the ran-
dom vector (Z1

Z , ..., Zl

Z ) where Z = Z1 + ... + Zl.
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This distribution is singular w.r.t. Lebesgue measure since its support has
Lebesgue measure 0, however if l ≥ 2 then (Z1

Z , ..., Zl−1
Z ) has the following den-

sity

(2.1) d(α | y) =
Γ(α1 + ... + αl)
Γ(α1)...Γ(αl)

yα1−1
1 ...y

αl−1−1
l−1 (1−

∑
h=1,...,l−1

yh)αl−1ISl
(y)

where Sl denotes the simplex

(2.2) Sl = {y = (y1, ..., yl−1), yj ≥ 0,
l−1∑
j=1

yj ≤ 1}.

This completely determines D(α1, ..., αl) since Zl

Z = 1−
∑

h=1,...,l−1
Zh

Z .

2.1.2. Normalized weighted gamma D(α1, ..., αl;β). Let β ≥ 0 be a nonzero
positive function defined on R+ such that βγ(α, 1) is integrable. Then there exists
a constant cα(β) > 0 such that γβ(α, 1) defined by

γβ(α, 1)(x) = cα(β)β(x)γ(α, 1)(x)

is a density function.
The normalized weighted gamma distribution D(α1, ..., αl;β) is defined as the

distribution of the random vector (Z1
Z , ..., Zl

Z ) with independent Zi ∼ γβ(αi, 1) and
Z = Z1 + ... + Zl.

It is obviously seen that D(α1, ..., αl) = D(α1, ..., αl; 1).

2.2. Discrete Random Distributions.

2.2.1. Ferguson RDs. Dirichlet processes are interesting RDs introduced by
Ferguson (1973,1974) in fundamental papers on a Bayesian appproach to some
nonparametric problems.

Let α be a probability measure on V. A random distribution X : Ω −→ P(V )
is a Dirichlet process D(α) if for every k = 2, 3, ... and every measurable partition
B1, ..., Bk of V , the joint distribution of the random vector (X(B1), ..., X(Bk)) is a
Dirichlet distribution with parameters (α(B1), ..., α(Bk)).

Ferguson proved that this definition satifies the Kolmogorov criteria which yields
the existence of such random distributions. He also showed that X(ω) is a discrete
probability measure and that there exists an i.i.d sequence Vn,α of random variables

Vn,α ∼ α

such that the support of the distribution X(ω) is contained in the random set

{V1,α(ω), V2,α(ω), ...., Vn,α(ω), ...}.

Theorem 1 Suppose that PX =
∑K

s=1 psDs(αs;βs) is a simple mixture of nor-
malized weighted gamma processes where the αs’s are distinct probabilty measures
on [0, 1] equivalent to λ and βs > 0. Let Ss be the support of Ds(αs;βs) so that the
support of PX is ∪K

s=1Ss. Then

i) The finite-dimensional distributions of Ds(αs, βs) are equivalent.

ii) The distributions Ds(αs;βs) are mutually singular so that the Ss are disjoint.

Theorem 1 Suppose that PX =
∑K

s=1 psDs(αs;βs) is a simple mixture of nor-
malized weighted gamma processes where the αs’s are distinct probabilty measures
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on [0, 1] equivalent to λ and βs > 0. Let Ss be the support of Ds(αs;βs) so that the
support of PX is ∪K

s=1Ss. Then

i) The finite-dimensional distributions of Ds(αs, βs) are equivalent.

ii) The distributions Ds(αs;βs) are mutually singular so that the Ss are disjoint.

2.2.2. Lo RDs. Let α be a finite additive measure on V and let β > 0 on
R+ be an α−integrable function. A random distribution X : Ω −→ P(V ) is a
normalized weighted gamma process D(α;β) if for every k = 2, 3, ... and every
measurable partition B1, ..., Bk of V , the joint distribution of the random vector
(X(B1), ..., X(Bk)) is a normalized weighted gamma distribution with parameters
(α(B1), ..., α(Bk);β). This definition is equivalent to that of Lo (1982). A result
similar to Thm 2 holds for these RDs.

2.2.3. PY RDs. The paper by Pitman and Yor (1996) deals with an interesting
class of discrete RDs derived from random closed sets that have a property of
self-similarity. We don’t know however wether these RDs are generally mutually
orthogonals.

2.3. Continuous Random Distributions.

2.3.1. Kraft RDs. Kraft defined a RD such that the probability measure X(ω)
has a density w.r.t. the Lebesgue measure on [0, 1]. His construction hinges on a
set

Z = {Z k
2r

; r = 1, 2..., k = 1, 3, ..., 2r − 1}
of completely independent real random variables defined on (Ω, z,P) such that

0 ≤ Z k
2r
≤ 1

and

E(Z k
2r

) =
1
2
.

Let Fl be the sequence of random cumulative distribution functions (cdf) on
[0, 1] defined by induction as follows :

F1(0) = 0, F1(
1
2
) = Z 1

2
, F1(1) = 1

F1 is affine on [0,
1
2
) and [

1
2
, 1]

Fl(
k

2l
) = Fl−1(

k − 1
2l

)(1− Z k

2l
) + Fl−1(

k + 1
2l

)Z k

2l

Fl is affine on the dyadic intervals.
Fl has, except at k

2l , a derivative gl which is constant on the dyadic intervals. If
x is written as x =

∑∞
r=1

εr(x)
2r and kr(x) is defined by kr(x)

2r < x < kr(x)+1
2r then we

have

gl(x) = 2l
l∏

r=1

Z kr(x)+1
2r

1−εr(x)(1− Z kr(x)
2r

)εr(x).
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Let Bl denote the finite σ− algebra generated by the dyadic intervals [ k
2l ,

k+1
2l ), k =

0, ..., 2l−1, then gl is a P⊗λ− martingale w.r.t (z⊗Bl)l. If there exists a constant
C > 0 such that

(2.3) 2lvar(Z k

2l
) ≤ C

then there exists a cdf F , such that

(2.4) Fl(x) → F (x) and gl(x) → g(x) = F ′(x) as l → +∞,

As g is completeley determined by Z, we will use the following notation

g = Kraft(Z).

For technical reasons which will appear in the proofs, we will assume that the
distribution dk,l of Z k

2l
belongs to the exponential family and is equivalent to the

uniform distribution on [ k
2l ,

k+1
2l ) :

(2.5) dk,l is equivalent to uniform([
k

2l
,
k + 1

2l
))

Theorem 2
i) The finite-dimensional distributions of Kraft processes are equivalent

ii) Kraft(Z(s)) and Kraft(Z(t)) are mutually singular if s 6= t

iii) liml→∞tis(σl) = tis (= 1 or 0) and limn→∞lim`→∞ps(σl) = ps.

2.3.2. Brownian-based RDs. Let Bt = Bt(0, σ) be a standard centered Brownian
motion in dimesion one. Then, if f is a positive continuous function, f(Bt)∫ 1

0 f(Bs)ds

, 0 ≤ t ≤ 1 clearly defines a random probability density and thus a continuous RD
on [0, 1]. Taking f(x) = |x| or f(x) = exp(x) leads to special RDs.

Finally note that RDs can be easily obtained by randomizing the parameters

of any parametric distribution (e.g. 1√
2πσ(ω)

e
− (x−m(ω))2

2σ(ω)2 dx defines a Gaussian RD).
However even the finite dimensional distributions of such RDs need not be simple.

3. Mixtures in the real vector case

First recall the mixture problem when the observations are real vectors.
Let x1, x2, ..., xn ∈ Rp be n observations of a sample of size n from a random

vector X : (Ω,P) −→ Rp. The problem consists in estimating the distribution
PX of X when PX is supposed to be a simple mixture, that is a convex combina-
tion

∑
k=1,...,K pkPk, the distributions Pk belonging to a specific parametric family,

say the exponential family. Several methods have been proposed to estimate the
mixing weights pk and the parameters of the components Pk [see e.g., Pearson
(1894), Cooper (1964), Agrawala (1970), Quandt and Ramsey (1978), Makov and
Smith (1976)] but we will use here one of the most efficient method : S.A.E.M.
algorithm [ Celeux and Diebolt (1992)], a stochastic approximation of the popular
E.M. algorithm [Dempster, Laird and Rubin (1977)].

There also exists a second approach of this problem : determine K clusters from
the n observations so that the estimated distribution Pk of cluster k belongs to
the specified family, the number pk representing the probability of an individual to
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belong to cluster k [Scott and Symons (1971)]. We will use here an algorithm based
on dynamic clusters and proposed by Diday and Schroeder (1976).

The algorithms are summarized below.

3.1. S.A.E.M. Algorithm. This algorithm can estimate a mixture of density
functions belonging to the exponential family, meaning that they have the form :

h(x, a) = d(a)e(x) exp{aT b(x)}

where the parameter a is a vector with transpose aT , d(a) is a normalizing factor,
e and b are fixed but arbitrary functions.

The inputs are n vectors fi, i = 1, ..., n. The number of components is a given
integer K.

Let {γq} be a sequence of positive real numbers decreasing to zero at a suffi-
ciently slow rate, with γ0 = 1. Let c(n) be a treshold such that 0 < c(n) < 1 and
limn→∞c(n) = 0.

Simulation step : generate n random numbers t
(o)
ik (i = 1, ..., n) which represent

the initial posterior probability of cluster k = 1, ...,K having observed fi.

Stochastic step: generate multinomial numbers

eqi = (ek
qi, k = 1, ...,K)

of one draw of K categories with probabilities tqi1k,..., tqi1k so that all the ek
qi are 0

except one of them equal to 1.
We then get a partition Cq = (Cq1, ..., CqK) of the sample by letting

Cqk = {fi : ek
qi = 1}

If
∑

i=1,...,N ek
qi

N < c(n) for some k, then go to the simulation step (because Cqk

is too small)

Maximization step : estimate the mixing weights

p(q+1)k =
1
n

[(1− γq)
∑

i=1,...,n

tqik + γq

∑
i=1,...,n

ek
qi].

Estimate the parameters of the distribution density hqk of class Cqk

Estimation step : the density function hqk depending on a parameter akq,
update akq and tqik according to :

aq+1
k = (1− γq)

∑
i=1,...,n tqikb(fi)∑

i=1,...,n tqik
+ γq

∑
i=1,...,n ek

qib(fi)∑
i=1,...,n ek

qi

tq+1
ik =

p(q+1)kh(q+1)k(fi)∑
r=1...K p(q+1)rh(q+1)r(fi)

.

The mixture is then estimated since pqk, tqik and the density parameters converge
a.s. as q →∞ [Celeux, Diebolt (1992)].
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3.2. DS algorithm. Similarly a clustering algorithm [Diday and Schroeder
(1976)] can be applied to the vectors f1, ..., fn in order to get a partition into K
disjoint clusters :

Step 1 - Start with K arbitrary disjoint clusters
Step 2 - Estimate as above the distribution hk of each cluster k = 1, ...,K
Step 3 - Redefine clusters : affect each vector fi to a cluster j such that

hj(fi) = max
k

hk(fi)

Step 4 - Go to step 2 until the goodness of the clustering reaches a desired level.

Step 5 - Having obtained a good partition, the mixture is then estimated by∑
k=1,...,K pkhk where

pk =
#cluster k

n
.

4. Mixtures of discrete RDs

We now consider the mixture problem for a RD X : Ω −→ P(V ) where V
need not be finite. Let fi ∈ P(V ), i = 1, ...n, be the given observations from a
sample. Our method consists in first splitting V = [0, 1) into a dyadic partition

σl = (Vkl = [
k − 1

2l
,

k

2l
), k = 1, ..., 2l)

where l ≥ 2 is an integer, and then applying the preceding algorithms to the
probability vectors fi(V1l), ..., fi(Vkl), ..., fi(V2ll), i = 1, ...n, more precisely to the
vectors fi(V1l), ..., fi(Vkl), ..., fi(V2l−1l) as emphasized below.

Two problems then appear : the choice of the components and the stability of
the mixture when we refine the partitions.

We are going to prove that Ferguson and Lo RDs yield a solution to both prob-
lems in the discrete case.

Define the random vector X(σl) by

X(σl)(ω) = (X(ω)(V1l), ..., X(ω)(V2ll)).

It follows from the definition that if X ∼ D(α) is a Ferguson RD then X(σl)
∼ a finite dimensional Dirichlet D(α(V1l), ..., α(V2ll)) = Dσl(α). Similarly, if PX

is a simple mixture
∑K

s=1 psDs(αs;βs) of Lo RDs, then the distribution Pσl

X of the
random vector X(σl) is

∑K
s=1 psDσl

s (αs;βs).
Therefore if fi , i = 1, ..., n are n observations from X, we can apply S.A.E.M.

algorithm to the vectors fi(V1l), ..., fi(V2l−1l) in order to estimate the mixture∑K
s=1 psDσl

s (αs;βs). Indeed, we drop down the last coordinate of these vectors
in order to use the density on S2l given in formulae (1) in subsection. Note that
this density obviously belongs to the exponential family.

Now, as the number of iterations increases, the algorithm yields parameters tis,
coefficients ps and normalized weighted gamma distributions Gs denoted by tis(σl),
ps(σl) and Gs(σl), respectively, since they depend on σl.

The question we need to address is then : what is the behaviour of these finite-
dimensional mixtures when the partitions σl get refined (l → ∞) and do they
approximate the distribution of X when this last one is a simple mixture of nor-
malized weighted gamma processes ? Our main result answers positively to this
question and can be stated as follows :
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4.1. Main result. Theorem 3 Suppose that PX =
∑K

s=1 psDs(αs;βs) is a simple
mixture of normalized weighted gamma processes where the αs’s are distinct prob-
abilty measures equivalent to the Lebesgue measure on [0, 1] and βs > 0. Let Ss be
the support of Ds(αs;βs) so that the support of PX is ∪K

s=1Ss. Then there exists
measurable sets S

′

s ⊂ Ss with PX(Ss\S
′

s) = 0 such that if fi ∈ ∪K
s=1S

′
s , i = 1, ..., n,

then S.A.E.M. algorithm applied to the fi ’s and the σl ’s yields numbers tis(σl)
and ps(σl) such that

lim
l→∞

tis(σl) = 1 if fi ∈ S′s

lim
l→∞

tis(σl) = 0 if fi /∈ S′s

lim
n→∞

lim
l→∞

ps(σl) = ps.

A similar result holds for DS algorithm (see Section 5).

5. Mixtures of continuous RDs

We now consider the case of a RD X : Ω −→ P(V ) where the probability
measure X(ω) = f(ω).λ is absolutely continuous w.r.t. λ, with density f(ω). We
will assume that these density functions f lie in some standard function spaces B
where approximation by simple functions is possible (by simple function we mean
a function such that there exists a finite partition of [0, 1] into intervals with f
constant on each interval). Hence we can take B = C[0, 1] the usual Banach space
of continuous functions on [0, 1], B = Lq[0, 1] (1 ≤ q < ∞), B = D[0, 1] the usual
Skorohod space, and so on.

Let fi ∈B , i = 1, ..., n be the corresponding densities for the given observations
from a sample X(i), i = 1, ..., n. The appproximation assumption on B reduces the
mixture problem to the case of simple densities for which we propose the following
solution.

5.1. Simple densities. Assume that fi is constant on each interval of a par-
tition σl = (0 = x1 < x2 < ... < xl = 1) of [0, 1] (note that this is the case when we
deal with histograms). Refining all the partitions corresponding to the fi’s we may
suppose that theses functions are constant on a common partition σl = ([k−1

2l , k
2l ),

k = 1, ..., 2l) for some integer l.
Therefore we may and do assume that the random vector X is a mixture of

(g(s)
l , ..., g

(s)
l ), s = 1, ...,K where g

(s)
l is defined w.r.t a finite set Z(s) = {Z(s)

k
2r

;
r = 1, 2...l, k = 1, 3, ..., 2r − 1}. This means that

X =
K∑

s=1

1(U=us
)g(s)

l

where U is a discrete r.v, independent of the Z(s) and taking K distinct values
u1, ..., uK .

The following algorithm yields an estimation of the finite mixture.
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5.1.1. Algorithm. Compute gi,r = EBσr fi ∈ R2r

+ i = 1, 2, ..., n, r = 1, 2, ..., l,

where EBr denotes the conditional expectation w.r.t. Br.
Ccompute Zi = (Zi, k

2r
, k = 1, 3, .., 2r − 1) for r = 1, 2, ..., l

according to formulas (??), (??), (??) given in the proof of theorem 2 (Section
7).

Apply S.A.E.M. or D.S. algorithm to (Zi) in R2l

+ to get K clusters of these n
vectors, the components of the mixture having for distribution the product ⊗kdk,l.

The algorithm estimates the parameters of dk,l for each component s = 1, ...,K
and also the mixing weights ps. Then any discrete variable U such that P(U =
us) = ps and independent of the components yields the desired mixture.

5.2. Mixtures of Kraft processes. We will say that X is a mixture of Kraft
processes if there exists sequences Z(s) as the above Z and a discrete r.v. U ,
independent of the Z(s), taking K distinct values u1, ..., uK , such that

X =
K∑

s=1

1(U=us
)Kraft(Z(s))

P(U = us) = ps.

With the same notation as in theorem 1, the following theorem shows that algo-
rithm 4.3 estimates a mixture of Kraft processes :

Theorem 2
i) The finite-dimensional distributions of Kraft processes are equivalent

ii) Kraft(Z(s)
j ) and Kraft(Z(t)

j ) are mutually singular if s 6= t

iii) liml→∞tis(σl) = tis (= 1 or 0) and limn→∞lim`→∞ps(σl) = ps.

5.3. Weak convergence. We finally observe that the finite-dimensional mix-
tures also approximate weakly the distribution of X because the finite-dimensional
distributions of X converge weakly as seen in the proposition below.

For any integer l ≥ 2 let

Ul = {(u1, ..., ur..., ul) : ur ≥ 0 and
l∑

r=1

ur = 1}.

Let
σl = (0 = x1 < x2 < ... < xl = 1)

be a partition of [0, 1] such that

|σl| = max
i=1,...,l−1

|xi+1 − xi| → 0 as l → +∞

an let

Tσl
(g) = (

∫ x1

0

g(s)ds, ...,

∫ xl

xl−1

g(s)ds) ∈ Ul

for any positive g ∈B such that
∫ 1

0
g(s)ds = 1.
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The finite-dimensional distributions Pσl

Xj
= PXj

oT−1
σl

of Xj are probability mea-
sures on Ul defined by

Pσl

Xj
(A) = PXj

(T−1
σl

(A))

for any Borel set A ⊆ Ul.
For any u = (u1, ..., ur..., ul) ∈ Ul define hσl,u as the polygonal function
. taking the value ui

xl+1−xi
at xi for i = 1, ..., l − 1,

. taking the value ul

xl−xl−1
at xl = 1,

. affine between the points xi.

Then the weak convergence result can be stated as follows :

Proposition 1 If B = C[0, 1] or Lq[0, 1], the for any bounded continuous pos-
itive Ψ : B → C (the complex field), we have∫

Ul

Ψ(hσl,u)dP σl

Xj
(u) →

∫
g∈B

Ψ(g)dPXj (g)as ` →∞.

A similar result holds if B = D[0, 1], the usual Skorohod space (see the proof).

6. Continous time process of random distributions

6.1. Continuous time process of Ferguson RDs. Consider any standard
polish space F of real functions defined on an interval I ⊂ [0,∞), e.g. the space
C(I) (resp. D(I)) of continuous (resp. cadlag) functions. For any time t ∈ I, let πt

: x −→ x(t) denote the usual projection at time t from the space F to R. Recall that
πt maps any measure µ on F on a measure πtµ on R defined as πtµ(A) = µ(π−1

t (A))
for any Borel subset A of R.

The following theorem defines a continous time process (Xt) such that each Xt

is a Ferguson-Dirichlet random distribution.
Theorem 4 Let α be any finite measure on F , let X be a Ferguson-Dirichlet

random distribution D(α) and let Xt = πtX. Then the time continuous process
(Xt)t∈I is such that for each t ∈ I, Xt is a Ferguson-Dirichlet random distribution
D(αt) where αt = πtα.

If V (i) is any i.i.d. sequence on F such that V (i) ∼ α
α(F) and X(ω) =

∑∞
i=1 pi(ω)δV (i)(ω)

where (pi) has a Poisson-Dirichlet distribution PD(α(F)), then Xt(ω) =
∑∞

i=1 pi(ω)δV (i)(t)(ω).

Proof : Let k ∈ {1, 2, 3, ...} and A1, ..., Ak a measurable partition of R. Then
π−1

t (A1), ..., π−1
t (Ak) is a measurable partition of F so that, by definition of X, the

joint distribution of the random vector (X(π−1
t (A1)), ..., X(π−1

t (Ak))) is Dirichlet
with parameters (α(π−1

t (A1)), ..., α(π−1
t (Ak)). In other words (Xt(A1)), ..., Xt(Ak))

is Dirichlet with parameters (αt(A1), ..., αt(Ak)) and Xt ∼ D(αt).
A consequence of the definition of πt is that πt(

∑∞
i=1 µi) =

∑∞
i=1 πtµi for any

sequence of positive measures on F and πt(λµ) = λπt(µ) for any positive real num-
ber λ. Hence if V (i) is any i.i.d. sequence on F such that V (i) ∼ α

α(F) and X(ω) =∑∞
i=1 pi(ω)δV (i)(ω) where (pi) has a Poisson-Dirichlet distribution PD(α(F)), then

Xt(ω) = πt(X(ω)) =
∑∞

i=1 pi(ω)πt(δV (i)(ω)) =
∑∞

i=1 pi(ω)δV (i)(t)(ω), the last
equality being due to the fact that πt(δf ) = δf(t) as easily seen. In addition the
sequence V (i)(t) is i.i.d. with V (i)(t) = πt(Vt) ∼ πt( α

α(F) ) = 1
α(F)πt(α) = 1

αt(R)αt
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and (pi) has a Poisson-Dirichlet distribution PD(α(F)) = PD(αt(R)) so that the
preceeding expression of Xt(ω) is exactly the expression of a Ferguson-Dirichlet
random distribution D(αt) as a random mixture of random Dirac masses.

6.2. Continuous time process of Kraft RDs. Let Xt(ω) be Dirichlet as above.
Then Xt(ω)(A) is Beta for any subset A. As Kraft construction depends on Beta
distributions, we see that we can generalize the construction.

7. Application to Internet traffic

In his section we present an application of the preceding clustering method which
has been developped with K. Salamatian and A. Soule at the lip6 laboratory of Paris
VI university. The complete details can be found in Sigmetrics’05

Internet is nowadays a large highway network crossed everyday by the infor-
mations of millions of users throughout the world. Network users send packets of
information using various protocols such as UDP or TCP over IP.

7.1. Flows. Packet transmissions induce flows that are mixed up at routers to cre-
ate larger and larger aggregated flows that run from source to destination through
links. We define our flows as the sequence of packets going from a network pre-
fix announced through BGP (Border Gateway Protocole) to another BGP prefix.
Therefore every flow is characterized by a source BGP prefix and a destination
BGP prefix.

7.2. Classification purposes. At each instant of time, several thousands of such
flows may cross Internet backbone links and each one will have its specific behaviour
and characteristics. The objective here is to present a way of classifying these flows
for managing them.

The litterature have used widely of animal name as elephant, mice, tortoise,
dragon, etc, for addressing flows belonging to each class. We will not derogate
from this tradition and we consider our research as a safari where we want to hunt
different type of flow behaviour.

Classification can be used for several purposes. We describe here some obvious
ones.

First, classification enables us to give a concise and simple description of the
otherwisely random like traffic flows, in term of behavioural classes. Traffic flows
observed at specific point of network are described by means of characteristics of
classes rather than by characteristics of each particular flow.

Next, concerning more application oriented purposes, classification can ease the
burden of traffic engineering, but it can also concerns the distributed denial of ser-
vices (DDOS) by making easier intrusion detection. Indeed it suffices to apply the
principle of divide & conquer and to use the characteristic of each class. An exam-
ple of such classification is based on the so called Elephant and mice phenomenon.
Studies of the Internet traffic at the level of network prefixes, fixed length prefixes,
TCP flows, Autonomous System’s, and WWW traffic, have shown that in all cases
a very small percentage of flows carries the largest part of the information. This
phenomenon can be the base for a classification that will make traffic engineering
easier by using the fact that one need to manage only a small number of elephant
flows to solve most of network problems.
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7.3. Stable classes. Our aim is to investigate the existence of stable and mean-
ingful classes of flow with similar behaviour inside a network link. By stable we
mean that these classes should persistent for a large period of time, how large the
period of time being determined by an application of the classification.

7.4. Empirical histograms. Previous studies have tried to characterize a flow
by its mean rate over a period of time. However the mean rate is not a sufficient
parameter to characterize the behaviour of a flow. In this work we use the empirical
histogram as a criteria of classification of flows. We believe that this give a better
characterization of flow behaviour.

7.5. Dataset. The data used in this paper comes from packet traces collected in
the core of a major Tier-1 ISP network. Optical splitters are used in conjunction
with passive monitoring equipment to collect 44-byte headers from every IP packet
traversing monitored link. Monitoring equipment has been installed in three major
POPs in the USA. We use data two different OC-12 links, one in an east coast POP
and the other in a west coast POP, collected on July 24, 2001. The links used are
two hops away from the periphery of the network so that traffic towards specific
destinations exhibit sufficient level of aggregation. Our traces constitute 3 1/2 days
of continuous data.

Packet trace collection was accompanied by the collection of the BGP routing
tables at the corresponding POPs. Those BGP tables are default-free and contain
approximatively 120K entries. We calculate the volume of traffic headed towards
each BGP destination and computed the average bandwidth of each flow over 5
minute time intervals. We found that in any given measurement interval, approx-
imatively 90% of the network prefixes had no traffic travelling towards them. We
thus define a flow to be active if it transmits at least one packet during the measure-
ment interval.At each instant of time we have roughly 2000 flows in the observed
OC-12 links. Before classifying the data, the histograms are obtained over 24 hours
period (corresponding to 288 five minutes samples) for each flow observed during
the monitoring period.

7.6. Bins. The main point while transforming data from measured values to ran-
dom distributions is the choice of the bins center B. If one choose poorly the
centers then some bin could be empty and prevent the classification algorithm to
work. With this in mind we try to implement a good algorithm to find the cen-
ter which will guarantee that all bins will have a relatively reasonable number of
members. We use all measurement observed over the measurement period to find
the bin centers by an iterative process. First we set the two bin center to be the
min and max values of observed bandwidth among all flows. Then we cut the most
populated bin in two and recompute the cardinal of each bin. We continue split-
ting the most populated bin as long as we arrive to the desired number of bins. We
have used in this paper 12 bins. This leads to quasi-logarithmic bin centers. We
have observed that the classification remains unchanged when the number of bins
is greater than 12, confirming the theoretical result obtained in a preceding section.

These bin centers are used to derivate histogram for each flow observed over
the network. The classification procedure is applied to these histograms with a
predefined mixture of order K.

Richard Emilion, Afrika Statistika, Vol.1, n°1, 2005, pp.27-46
Process of Random Distributions : Classification and Prediction.

Afrika Statistika 38



13

At each instant of time we have roughly 2000 flows in the observed OC-12 links.
Before classifying the data, the histograms are obtained over 24 hours period (corre-
sponding to 288 five minutes samples) for each flow observed during the monitoring
period.

7.7. Classification with two classes. For two classes (K = 2), the loglikelihood
behaviour shows that globally the likelihood goes increasing and reach a maximum,
meaning that the algorithm converges. The oscillations are due to the stochastic
behaviour of the SAEM algorithm and their amplitudes go decreasing with γq going
to 0. Each run of the estimation algorithm takes around a couple of minutes, with
most of the time spent in the histogram generation phase.

At the end of the algorithm we find that 1142 (64%) are classified as class 1
and 658 (36%) flows belongs to class 2. The mean behaviour of the first class has
an exponential like behaviour that is seen by the linear alignement we have after
the second point. In that class, flows have with large probability (around 40%) a
bandwidth close to zero and the probability falls exponentially. On the other hand
flows that are in the second class experience larger values and are almost never
close to zero. This empirical classification is related to the well known elephant
and mice phenomenon. We therefore call the first class of flows the class of mices
and the second one the class of elephants. We have therefore find a way of detecting
elephant and mices without any a priori.

7.8. Classification with more classes. We have calibrate a 3 classes model as
well as a 4 classes model to our monitored network link. In the 3 classes scenario,
classes 2 and 3 results from splitting class 2 in the two classes scenario but class
3 is of interest. In the 4 classes scenario, the new class hase a very small number
of members and is meaningless. We conclude that the three classes classification is
sufficient.

8. Proofs

PROOF OF THEOREM 1 i).

Let X : (Ω, z,P) →P([0, 1]) be measurable, and let G be the σ−algebra on
P([0, 1]) generated by the mappings

ϕA : P([0, 1]) → [0, 1]

defined by
ϕA(P ) = P (A)

for any Borel set A in [0, 1] (i.e. G is the smallest σ−algebra for which all the ϕA

are measurable).
For any partition

σl = ([
k − 1

2l
,

k

2l
), k = 1, ..., 2l)

of [0, 1], let Gl be the σ−algebra generated by the mappings

ϕk = ϕ[ k−1
2l , k

2l ), k = 1, ..., 2l

so that we have
Gl ⊆ Gl+1 ⊆ G

and
G = ∨+∞

l=1 Gl.
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For any B ∈ Gl there exists Borel sets Ok in [0, 1] such that

B = {P ∈ P([0, 1]) : ϕk(P ) ∈ Ok , k = 1, ..., 2l}

= {P ∈ P([0, 1]) : P ([
k − 1

2l
,

k

2l
)) ∈ Ok , k = 1, ..., 2l}.

Let

αk = α([
k − 1

2l
,

k

2l
)), k = 1, ..., 2l

and
dl(α, y) = d((α1, ..., α2l)|(y1, ..., y2l−1))

where d is defined by (??) in Section 1.
If X is a Dirichlet process D(α) then

D(α)(B) = P{ω ∈ Ω : X(ω) ∈ B}

= P{ω ∈ Ω : X(ω)[
k − 1

2l
,

k

2l
) ∈ Ok , k = 1, ..., 2l}

= D(α1, ..., α2l−1)(O1 × ...×O2l)

=
∫

O0×...×O2l−1∩S2l

dl(α, y)dy1...dy2l−1.

Also observed that, if 1B denotes the indicator of B, then

1B = 1O1×...×O2l
(ϕ1, ..., ϕ2l) = 1O1×...×O2l−1∩S2l

(ϕ1, ..., ϕ2l−1)

since ϕ2l = 1− ϕ1 − ...− ϕ2l−1.
Thus

D(α)(B) =
∫

1O1×...×O2l−1∩S2l
(ϕ1, ..., ϕ2l−1)(P )dD(α)(P )

=
∫

S2l

1O1×...×O2l−1
dl(α, y)dy1...dy2l−1.

More generally for any Gl-measurable positive function f(ϕ1, ..., ϕ2l−1), with f
mesurable, positive and defined on S2l , we have∫

f(ϕ1, ..., ϕ2l−1)(P )dD(α)(P )

=
∫

S2l

f(y1, ..., y2l−1)dl(α, y)dy1...dy2l−1.

This implies that

D(α′)(B) =
∫

S2l

1O1×...×O2l−1
dl(α′, y)dy1...dy2l−1

=
∫

S2l

1O1×...×O2l−1

dl(α′, y)
dl(α, y)

dl(α, y)dy1...dy2l−1

=
∫

(1O1×...×O2l−1

dl(α′, .)
dl(α, .)

)(ϕ1, ..., ϕ2l−1)(P )dD(α)(P )

=
∫

(1B)(P )(
dl(α′, .)
dl(α, .)

)(ϕ1, ..., ϕ2l−1)(P )dD(α)(P ).
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This clearly shows that if α and α′ are equivalent to Lebesgue measure on [0, 1]
then the restriction Dl(α) of D(α) to Gl is equivalent to the restriction Dl(α′) of
D(α′) to Gl and

dDl(α′)
dDl(α)

(P ) =
dl(α′, .)
dl(α, .)

)(ϕ1, ..., ϕ2l−1)(P )(8.1)

=
Γ(α′1 + ... + α′2l)
Γ(α′1)...Γ(α′

2l)
Γ(α1)...Γ(α2l)

Γ(α1 + ... + α2l)

P ([0,
1
2l

))α′1−α1 ...P ([
2l − 2

2l
,
2l − 1

2l
))α′

2l−1
−α2l−1

(1−
∑

k=1,...,2l

P ([
k − 1

2l
,

k

2l
)))α′

2l−1

(1−
∑

k=1,...,2l

P ([
k − 1

2l
,

k

2l
)))1−α2l .

This yields the equivalence on Gl of Dl(α;β) and Dl(α′;β′), if β and β′ are
strictly positive functions. �

PROOF OF THEOREM 1 ii).
It is well-known and easy to prove that dDl(α

′;β′)
dDl(α;β) is a D(α;β)−martingale w.r.t.

(Gl)l.
If X is a Dirichlet process D(α) then it is proved in [Ferguson (1973)] that there

exists an i.i.d sequence Vn,α of random variables

Vn,α ∼ α

such that the support of the discrete probability measure X(ω) is contained in the
random set

{V1,α(ω), V2,α(ω), ...., Vn,α(ω), ...}.
But if α and α′ are different and equivalent to the uniform distribution λ on

[0, 1], then ∫ √
dα

dλ

dα′

dλ
< 1

by Cauchy-Schwarz inequality and(∫ √
dα

dλ

dα′

dλ

)n

→ 0 as n → +∞.

This implies that the product measures ⊗∞n=1α and ⊗∞n=1α
′ are mutually singular

by a theorem of Kakutani (see e.g., Hewitt and Stromberg p. 453).
Hence, if

Vn,α′ ∼ α′

is an i.i.d sequence, there exists two disjoint sets S and T in [0, 1]IN such that

P{ω ∈ Ω : {V1,α(ω), V2,α(ω), ...., Vn,α(ω), ...} ∈ S} = 1
P{ω ∈ Ω : {V1,α′(ω), V2,α′(ω), ...., Vn,α′(ω), ...} ∈ T} = 1.

Thus if Y is a Dirichlet process D(α′), we have

X(ω) ∈ {P ∈ P([0, 1]) : support of P ∈ S}
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and
Y (ω) ∈ {P ∈ P([0, 1]) : support of P ∈ T}

for a.a. ω. But as these two sets of probability measures are disjoint, D(α) and
D(α′) are mutually singular. The same holds for D(α;β) and D(α′;β′) for strictly
positive functions β and β′. �

PROOF OF THEOREM 2.

Fj,l has, except at k
2l , a derivative gj,l. If x is written as x =

∑∞
r=1

εr(x)
2r and

kr(x) is defined by kr(x)
2r < x < kr(x)+1

2r , then we have

gj,l(x) = 2l
l∏

r=1

Z kr(x)+1
2r

1−εr(x)(1− Z kr(x)
2r

)εr(x).

This implies that

(8.2) Z 1
2

=
1
2
gj,1(x) for 0 < x <

1
2

(8.3) Z 1
4

=
1
2

gj,2

gj,1
(x) for 0 < x <

1
4

(8.4) Z 3
4

=
1
2

gj,2(x)
gj,1(x)

for
1
2

< x <
3
4

and so on.
Moreover, gj,l is a P ⊗ λ− martingale w.r.t. (z ⊗ Bl)l, where Bl is the finite

σ−algebra generated by the dyadic intervals [ k
2l ,

k+1
2l ), k = 0, ..., 2l − 1.

As l → +∞, condition (??) implies that

Fj,l(x) → Fj(x) and gj,l = F ′j,l(x) → gj(x) = F ′j(x).

Observe now that Fj is a function of Zj = (Z k
2r ,j), say :

Fj = Ψj(Zj)

Moreover, if Z ′j = (Z ′k
2r ,j

) 6= Zj is a sequence having the same properties as Zj ,

then

(8.5) Ψj(Zj) = Ψj(Z ′j) ⇒ (Zj) = (Z ′j).

Indeed Fj = Ψj(Zj) determines gj and thus determines gj,l = Ez⊗Bl(gj) and (??
- ??- ??) imply that the gj,r ’s , r = 1, ...l completely determine Z k

2l
, k = 0, ..., 2l.

Now by (??) the distribution of Z k
2r ,j is equivalent to that of Z ′k

2r ,j
.

Therefore, if their derivatives w.r.t. Lebesgue mesure on [0, 1] are choosen so
that they satisfy Kakutani’s theorem condition, then the distribution of Zj (which
is the product of that of Z k

2r ,j ) and the distribution of Z ′j are mutually singular :
their support, say S(Zj) and S(Z ′j) respectively, are disjoint.

Thus the support of the distribution of Ψj(Zj), which is included in Ψj(S(Zj)),
is disjoint from the support of the distribution of Ψj(Z ′j), since (??) implies that

Ψj(S(Zj)) ∩Ψj(S(Z ′j)) = Ψj(S(Zj) ∩ S(Z ′j)) = ∅.

Thus two distinct Kraft processes Ψj(Zj) and Ψj(Z ′j) are mutually singular.
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On the other hand the distribution of Ez⊗Bl(Ψj(Zj)) and that of Ez⊗Bl(Ψj(Z ′j))
are equivalent since Ez⊗Bl(Ψj(Zj)) = gj,l is a function of (Zj, k

2l
, k = 0, ..., 2l) and

Ez⊗Bl(Ψj(Z ′j)) is a function of (Z ′
j, k

2l

, k = 0, ..., 2l).�

PROOF OF THEOREM 3.

In the S.A.E.M. algorithm, the random numbers toik , wich represent the initial
probability that individual i belongs to class k, does not depend on the dimension
l. Also note that the partition C0 and the numbers p0k > 0 in iteration 0 does not
depend on l.

As Gr and Gk are mutually singular if r 6= k, the martingale theorem implies
that

dGrl

dGkl
(P ) → 0 as l → +∞

for all P ∈ S′k ⊂ Sk with
Gk(Sk\S′k) = 0.

Observing that PX(Sk\S′k) =
∑K

s=1 psGs(Sk\S′k) = 0, and replacing P with fi

we see by (??) that for PX−almost all fi in Sk :

lim
l→+∞

G0rl(f∗i (σl))
G0kl(f∗i (σl))

= 0.

Then by step E of S.A.E.M algorithm 3.3.1.

1
t1ik(σl)

= 1 +
∑
r 6=k

p0rG0rl(f∗i (σl))
p0kG0kl(f∗i (σl))

→ 1.

Since t1ik(σl) +
∑

r 6=k t1ir(σl) = 1 and t1ir(σl) ≥ 0 we also get

t1ik(σl) → 1, t1ir(σl) → 0 if r 6= k for PX − almost all fi in Sk.

Interverting r and k we arrive at the announced result :

lim
l→+∞

t1ik(σl) = 1 for PX − almost all fi in Sk

and
lim

l→+∞
t1ik(σl) = 0 for PX − almost all fi in Sr , if r 6= k.

By step S of S.A.E.M. algorithm, we see that the partition C1 and the numbers
p1r are only determined by the numbers t1ik(σl).

Since
∑

i=1,...,n ek
1i

n ≥ c(n) (otherwise S.A.E.M. algorithm is reinitialized),we also

have
∑

i=1,...,n t1ki

n ≥ c(n) by taking expectations. Hence

p2k =
1
n

[(1− γq)
∑

i=1,...,n

t1ik + γq

∑
i=1,...,n

ek
1i] ≥ c(n)

and therefore p2r

p2k
≤ 1

c(n) . Hence the above limits also hold for t2ik(σl) and more

generally for tik(σl) = tQik(σl) (recall that pqk(σl) and tqk(σl) converge a.s. as
q →∞).

Since limq→∞ γq = 0 the above limits imply that

lim
l→∞

pk(σl) =

∑
i=1,...,n liml→∞ tik(σl)

n
=

∑
i=1,...,n I(X(i)∈Sk)

n
.
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But
X(1), ..., X(n) i.i.d. ∼ X

implies that

1
n

n∑
i=1

E(I(X(i)∈Sk)) =
1
n

n∑
i=1

P(X(i) ∈ Sk) = PX(Sk) = pk

and even that, for almost all observations,

lim
n→∞

lim
l→∞

pk(σl) = lim
n→∞

∑
i=1,...,n I(X(i)∈Sk)

n
= PX(Sk) = pk.

We conclude that the finite-dimensional mixture estimates well estimate a mixture
of gamma processes.�

PROOF OF THEOREM 3 for DS algorithm.

A similar result holds for the second algorithm 3.3.2.
Indeed step 1 trivially does not depend on l.
Following the preceding notations, let Gk(σl) be the density estimated in step 2.
By step 3 individual i is affected to class j if Gjl(fi(σl)∗) ≥ Gkl(fi(σl)∗) for all

k = 1, ...,K, or equivalently if Gjl(fi(σl)
∗)

Gkl(fi(σl)∗)
≥ 1.

But as seen above, for l large enough, we can consider that Grl(fi(σl)
∗)

Gkl(fi(σl)∗)
does not

depend on l since it is closed to 0 or +∞. Hence the clusters determined in step 3
can be considered as independent of l. The same trivially holds for steps 4 and 5.
�

PROOF OF PROPOSITION 1.

Clearly, the mapping t → hσl,t is continuous on Ul and therefore t → Ψ(hσl ,t)
is bounded continuous.

By definition of Pσl

Xj
we then have∫

Fl

Ψ(hσl,t)dP
σl

Xj
(t) =

∫
g∈C+[0,1]

Ψ(hσl,Tσl
(g))dPXj (g).

But hσl,Tσl
(g) is nothing but the polygonal function, say gσl

,

. taking the values
∫ xi+1

xi
g(s)ds

xi+1−xi
at the point xi of the subdivision, for i = 1, ..., l−1,

. taking the value
∫ xl

xl−1
g(s)ds

xl−xl−1
at xl = 1,

. affine between the points xi.
So, we obtain ∫

Fl

Ψ(hσl,t)dP
σl

Xj
(t) =

∫
g∈C+[0,1]

Ψ(gσl
)dPXj (g).

If B = C[0, 1], then the uniform continuity of any fixed g ∈ C+[0, 1] implies

lim
l→∞

gσl
= g

for the usual supremum norm in C+[0, 1], since |σl| = maxi=1,...,l−1 |xi+1 − xi| → 0
as l →∞.
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Hence liml→∞ Ψ(gσl
) = Ψ(g), and the announced result is a consequence of

Lebesgue dominated convergence theorem, since Ψ is bounded and PXj is a prob-
ability measure.

To prove the result if B = Lq, observe that the mapping

g → gσl
is linear and positive (g ≥ 0 ⇒ gσl

≥ 0)

and hence continuous in Lq. Moreover, for g continuous, liml→∞ gσl
= g for the

supremum norm and thus for the Lq[0, 1]−norm. Then, a standard approximation
argument yields liml→∞ gσl

= g in Lq[0, 1]−norm, for g ∈ Lq. The other points of
the proof in C[0, 1] apply in Lq[0, 1]. �

PROOF OF PROPOSITION 1 FOR SKOROHOD SPACES.

If B = D[0, 1], we need a different definition for gσl
. Given g ∈ D[0, 1] and l ≥ 1,

there exists a minimal subdivsion of [0, 1], say τl = (0 = t1 < t2 < ... < tkl
= 1),

such that

wg[ti, ti+1) = sup{|g(s)− g(t)|, s, t ∈ [ti−1, ti)} <
1
l
, i = 1, ..., kl − 1,

(apply lemma 1 p.110 in [Billingsley (1968)]).

Then, let gσl
= gτl

be the function in D[0, 1] which takes the value
∫ ti+1

ti
g(s)ds

ti+1−ti

over the interval [ti, ti+1). As sup{|gσl
(s)− g(t)|, s, t ∈ [0, 1]} < 1

l we have gσl
→ g

in the Skorohod topology and therefore Ψ(gσl
) → Ψ(g) as l →∞. �
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