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SUMMARY 

Finish machining of hardened steel is receiving increasing attention as an 

alternative to the grinding process, because it offers comparable part finish, lower 

production cost, shorter cycle time, fewer process steps, higher flexibility and the 

elimination of environmentally hazardous cutting fluids. In order to demonstrate its 

economic viability, it is of particular importance to enable critical hard turning processes 

to run in optimal conditions based on specified objectives and practical constraints.  

 

In this dissertation, a scientific and systematic methodology to design the optimal 

tool geometry and cutting conditions is developed. First, a systematic evolutionary 

algorithm is elaborated as its optimization block in the areas of: problem representation; 

selection scheme; genetic operators for integer, discrete, and continuous variables; 

constraint handling and population initialization. Secondly, models to predict process 

thermal, forces/stresses, tool wear and surface integrity are addressed. And then hard 

turning process planning and optimization are implemented and experimentally validated. 

Finally, an intelligent advisory system for hard turning technology by integrating 

experimental, numerical and analytical knowledge into one system with user friendly 

interface is presented. The work of this dissertation improves the state of the art in 

making tooling solution and process planning decisions for hard turning processes.   

 xxvi



 

CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction and Objective 

Machined parts of hardened steel are high performance components with critical 

functions, which are often loaded near their physical limits (Tonshoff 2000). Therefore, 

geometrical tolerance and surface integrity are critically important for those steel 

components, such as bearings, gears, shafts, dies and molds. They have to be thermally 

hardened to the desired mechanical properties and must be finished in the hardened state 

in order to maintain surface integrity, dimensional accuracy, and shape. Such finishing 

process is usually undertaken by grinding. However, with the advent of Polycrystalline 

Cubic Boron Nitride (PCBN) cutting tools, hard turning has the potential to replace the 

grinding process, as it provides lower production cost, shorter cycle time, fewer process 

steps, and higher flexibility in machining the complex workpiece geometry. It can also be 

more environmentally friendly by eliminating hazardous cutting fluids while still offering 

the comparable surface integrity.  

However, there are still several fundamental issues to be solved in order for hard 

turning to be a viable technology. Rapid tool wear remains an impediment to the process 

being economically viable due to high cost of CBN cutting tools and the tool change 

down time. Another issue is related with surface integrity. A hard and brittle white layer 
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will be generated at the machined surface under certain conditions which is detrimental to 

part performance. Additionally, tensile residual stress will tend to be present in the 

machined surface and subsurface, which will greatly reduce the part fatigue life. 

Therefore, it is vital to enable critical hard turning processes to run in optimal conditions 

to achieve longer tool life with satisfactory surface integrity.   

 Various experimental, numerical, and analytical studies of hard turning have 

been made available; however they are fragmented and uncorrelated pieces of 

information that cannot be used for process planning in an effective manner. A suitable 

modeling scheme that integrates existing experimental, numerical and analytical 

knowledge into process planning and optimization is desired.  

Furthermore, optimization of the hard turning process remains very challenging in 

view of the following four issues. First, models of the hard turning process are very 

complex and some are highly non-linear, non-explicit and not analytically differentiable 

with the design variables, all of which renders traditional non-linear optimization 

methods difficult to apply (Rao 1996). For example, an explicit analytical expression 

relating tool wear to both cutting condition and tool geometry is not available. Tool flank 

wear length is calculated iteratively by numerical integration from the tool flank wear 

rate model which is a function of cutting condition, tool geometry and process 

information (cutting temperature, stress) while process information should be updated 

with the progress of the tool wear. Additionally, no comprehensive analytical models for 

white layer formation and residual stress distribution are readily available. They are 

predicted from the Back Propagation Neural Network constructed based on the 
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experimental data in this study. Secondly, some of the prediction models are 

computationally expensive, such as the 3-D cutting forces which are calculated based on 

the modified Oxley’s predictive machining theory, in which shear angle has to be 

determined iteratively from 5  to by a step size of 0.1 for every cutting condition and 

tool geometry based on minimum force principle. An efficient and robust search strategy 

is needed in order to locate the optimal solution in such a computationally expensive 

problem. Thirdly, some design variables have to be chosen from integer/discrete values, 

such as tool geometry (rake angle, clearance angle, edge preparation, and nose radius). 

Generally, it is more economical to choose the standard design from the tool maker’s 

catalog. Hence, integer programming is involved. Fourthly, hard turning process 

optimization is under constraints of surface quality and machine capability, which make 

the feasible space small and relatively sparse; extra care has to be taken in order to search 

for the feasible and optimal solution.  

° 45° °

Despite the active research and progress in global optimization in recent years, it 

is fair to say that no efficient solution procedure is in sight for the general nonlinear 

problems. Instead a code that fits the problem we are solving should be 

selected/developed. Therefore a general optimization scheme which takes the 

characteristics of the hard turning process and general machining processes into 

consideration is desired.  

The objective of this dissertation is to develop a scientific, systematic and reliable 

methodology to design optimal tool geometry (edge preparation, rake angle, clearance 

angle and tool nose radius, etc.) and cutting condition (cutting speed, feedrate, and depth 
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of cut) to achieve specified process performance goals under the satisfactory surface 

finish (surface roughness, white layer thickness and residual stress distribution) and any 

other practical constraints, such as tool wear, available horsepower, dynamic stability for 

the hard turning process. In achieving this goal, this study includes: (1) Development of a 

Mixed Integer Evolutionary Algorithm (MIEA). (2) Development of suitable models to 

integrate experimental, numerical, and analytical knowledge into hard turning process 

planning and optimization. (3) Development of an Intelligent Advisory System for hard 

turning technology.  

This research offers a general solution for hard turning process planning and 

optimization and also a general solution for various machining processes, such as milling 

and grinding processes. It allows the industry to design the tool geometry and optimize 

cutting parameters over an extended range of tool designs and process configurations, 

thereby maximizing process agility and competitiveness, which are crucial for hard 

turning to be a viable technology. 

 

1.2 Hard Turning Process 

The hard turning process is to turn material whose hardness is higher than 45 

HRC. Most hard turning applications involve turning of hardened steels (Konig, 1984). 

There are great demands for the application of the hardened steels in bearings, camshafts, 

gearshafts, cutting tools, dies, molds, etc due to their improved strength and wear 

resistance, which involve 30 - 35 billion US$ per year in the United States alone. Those 
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hardened steels are finished mostly by grinding nowadays. However, with the advent of 

new cutting tool technology and machine tool systems, finish cutting of hardened steel 

has become a reality and a topic of high interest for today’s industrial production and 

scientific research.  

Hard turning differs from conventional turning because of the workpiece material, 

the cutting tools required, the cutting conditions applied and the chip formation 

mechanism. The common characteristics of hard turning are summarized in the 

following.   

Cutting Tools: 

Due to hard material’s characteristics, the applicable cutting tool should meet the 

following requirements:  high indentation hardness, high hardness to modulus ratio, high 

thermal conductivity, high abrasive wear resistance and high thermal physical and 

chemical stability (Tonshoff 2000). The most often applied cutting tool materials for hard 

turning and face milling operations are Al2O3/TiC ceramics, polycrystalline cubic boron 

nitride (PCBN) and CBN composite tools. PCBN tools have higher fracture toughness, 

higher thermal conductivity and low thermal expansion coefficient, favorable in 

interrupted cutting operations, all of which have made PCBN the most widely used tool 

material for hard turning applications. Though polycrystalline cubic diamond (PCD) tools 

exhibit excellent wear resistance and higher hardness than PCBN tools, PCD tools diffuse 

rapidly to the steel workpiece due to the carbon composite, especially in high temperature 

hard turning process.  
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PCBN tools are formed by sintering CBN particles mixed with cobalt, TiC, TiN 

or other materials. In general there are two categories of PCBN tools: High CBN content 

tools which consist of 90% volume of CBN grains with metallic binders (e.g., cobalt); 

Low CBN content tools which consist of 50-70%volume of CBN grains with ceramic 

binders (e.g., TiC, TiN).  

Workpiece Material 

 The hardness of workpiece materials is generally higher than 45 HRC with high 

indentation hardness, high abrasiveness, low ductility, high value of the hardness over E-

modulus ratio (Nakayama 1998). Among them, hardened AISI 52100, 1053 and 1070 are 

studied. Hardened AISI 52100 is the most widely used bearing steel; its machinability has 

been extensively studied by numerous researchers. Hardened AISI 1070 and AISI 1053 

have many applications in the automotive industry; however few efforts have been 

devoted to studying their machinability in the hardened state.    

Tool Geometry 

Cutting tool materials used for hard turning, such as PCBN tool inserts, have 

extremely high indentation hardness and high thermal stability. However they are also 

brittle and prone to fracture. Hence a large negative rake angle with special edge 

preparation is applied to strengthen the tool edge. Chamfered or honed edges are typical 

for edge preparation. A large nose radius is adopted to improve the surface roughness. 

Cutting Condition: 
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The typical cutting conditions for finish turning of hardened steels with low CBN 

tool inserts are listed below; these will be used in most practical hard turning 

applications. 

Cutting Speed 91.2 - 183 m/min (300 - 600 sfpm) 

Feed Rate  0.052 – 0.152 mm/rev (0.002 - 0.006 in/rev) 

Depth of Cut 0.101 – 0.305 mm (0.004 - 0.012 inch) 

Chip formation mechanism: 

Segmental chips (also called saw-tooth chips) are formed during machining of 

hardened steel under certain cutting conditions, as shown in Figure 1-1 for hard turning 

of AISI 1053 (58 – 60 HRC) with Kennametal KB5625 low CBN tool inserts. The tool 

has a negative 20o chamfer angle and 0.8 mm nose radius. For the left hand case, the 

cutting speed is 4.573 m/s, the depth of cut is 0.1270 mm and the feed rate is 0.2032 

mm/rev and for the right hand case, the cutting speed is 2.541 m/s, the depth of cut is 

0.1270 mm and the feed rate is 0.2032 mm/rev. 

    

Figure 1-1 Chip morphology in hard turning of hardened AISI 1053  
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Tool Wear 

Abrasion, adhesion, diffusion and the chemical reactions are dominant wear 

mechanisms in hard turning with the main wear pattern of:  flank wear, crater wear, 

thermal shock, cracking, notching wear and chipping (Chou 1994, Huang 2002).    

PCBN is the cutting tool material with the longest possible tool life. PCBN tool 

wear rate depends on three main factors: 1) Tool material composition: CBN particle 

size, CBN content, binder materials and applied coating material, coating thickness. 2) 

Tool geometry: rake angle, edge preparation (Chamfer length and angle for chamfer 

tools, hone radius for honed tool), and nose radius. 3) Cutting condition: feed rate, depth 

of cut, cutting velocity.  

Documentation shows that for high stock removal rate operations (roughing), high 

CBN content tools give longer lives. For finish hard turning, low CBN tools will yield a 

longer tool life and consistently better surface finishes.  

Surface Integrity 

The hard turning process, an alternative to the grinding process, must provide 

acceptable dimensional tolerance, form accuracy and surface integrity. White layer 

formation and tensile residual stress profiles are two major undesired surface damages 

from the hard turning process.    

Surface Roughness 

Surface roughness is greatly affected by cutting conditions (feed rate, cutting 

speed and depth of cut), tool geometry (edge preparation, tool nose radius, tool 

orientation) and tool wear in finish hard turning process. Among them, feed rate and tool 
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nose radius are believed to be the most dominant control factors. In finish hard turning, 

feed rate applied is generally very small and is as the same scale as the tool nose radius or 

even smaller. The ploughing effect and material side-flow effect are pronounced at such 

cutting conditions, which pose difficulty in predicting machined surface roughness.    

White Layer  

A featureless, hard and brittle white layer will present at the machined surface 

under certain hard turning conditions. The white layer consists of 30% martensite and 

almost 70% austenite while bulk material was composed of approximately 75% 

martensite and 25% austenite (Tonshoff 1996). It is significantly harder than the bulk 

material. A dark “overtempered” layer was observed immediately below the white layer 

produced. A typical white layer from hard turning can be seen in Figure 1-2. 
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Figure 1-2 Typical white layer (Tonshoff et al. 1995)  
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White layer formation results from complex mechanical, thermal and 

metallurgical processes. Three main mechanisms responsible for white layer formation 

are suggested (Griffiths 1987, Ramesh 2002): (1) mechanical grain refinement arising 

from severe plastic deformation, (2) thermally-induced phase transformation due to high 

cutting temperature, (3) surface reaction with the environment.   

White layer is believed to be detrimental to the part performance and can affect its 

tribological performance, corrosion resistance and fatigue life. Hence, it is vital to 

understand the white layer formation and to minimize its thickness during the hard 

turning process. 

Residue Stress 

The residual stress profile attributes, including both magnitude and direction 

along the depth below workpiece surface, are known to significantly affect component 

fatigue life. Generally, residual stress profiles are compressive at machined surfacew or 

subsurfacew with fresh tool and changes to tensile at certain flank wear. Figure 1-3 

shows the trend of residual stress with increased tool wear. As can be seen, increased tool 

wear typically results in larger residual tensile stresses near the surface.        
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Figure 1-3 Residual stress patterns in hard turned components (Tonshoff et al. 1995) 

There are five main factors that could drastically affect the residual stress 

distribution in finish hard turning: 1. insert grade, 2. tool geometry, including nose radius 

and edge preparation (chamfer angle and length, hone radius), 3. cutting parameters, 

including cutting speed, feed rate and depth of cut, 4. tool wear progression, 5. workpiece 

materials. Other factors that could also have a bearing include the type of cooling 

method, tool orientation, such as rake angle and clearance angle, etc. 

1.3 Optimization Techniques in Machining Processes 

In 1907, F. W. Taylor recognized the problem of economic (optimum) cutting 

conditions for metal-cutting in his pioneering work “On the Art of Cutting Metals.” Since 

then, optimization of machining processes remains an ongoing activity, as evidenced by 
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the optimization studies that were carried out over the last century (Ermer 1997). Several 

optimization techniques have been employed for the machining process optimization 

since the introduction of computers to machining systems.  

1.3.1 Linear Programming 

Linear programming was used in the early stage of machining process 

optimization (Ermer and Patel 1974, Milner 1976) in which objective functions and 

various constraints were expressed as empirical power equations and logarithms were 

used to linearize the key relationships. Goal programming as a special type of linear 

programming has been applied in machining process optimization (Sundaram 1978, 

Phillipson & Ravindran 1978, Fischer 1989). Goal programming seeks to minimize the 

deviations between the preset goals and the actual results to be obtained according to the 

assigned priorities. All the goals can be incorporated into the objective function by 

assigning different priorities for each of the goals to meet. It is a good technique to 

simplify the problem to a single objective linear programming problem that fulfills the 

multiple, conflicting objectives, which are subject to complex environment constraints. 

However, linear programming can only deal with the linear equations. All non-linear 

equations have to be able to transfer to linear equations.  

1.3.2 Non-Linear Programming 

Non-linear programming has been extensively applied for more general non-

linear machining optimization problems. Geometric Programming (GP), one of the non-

linear optimization techniques, has been extensively adopted (Walvekar 1970, Phillips 
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1970, Ermer 1972, Eskicioglu et al. 1985, Tsai 1986, Gopalakrishnan & Al-Khayyal 

1991). In Geometric Programming (GP), the constrained models are converted into a dual 

geometry programming formulation and then into an unconstrained nonlinear 

programming formulation. The geometric programming approach furnished a unique 

insight into how the optimizing criterion is distributed among its components for a given 

set of input parameter values (Ermer 1997). The major disadvantage of the method is that 

it requires the objective function and the constraints in the form of polynomials (Rao 

1996) and expressed in the general form of the GP and transformed to the corresponding 

dual objective function. Furthermore additional techniques are needed to solve the 

problem according to the degree of difficulty of the GP problem. The degree of difficulty 

increases with the number of constraints in GP. GP skill will meet difficulty in dealing 

with the flexible constraints in machining problems. Machining process optimization 

with very limited constraints has been studied by most of the researchers to keep the 

work down to one degree of difficulty. 

Traditional non-linear optimization techniques have also been extensively used.  

Armarego et al. (1993 and 1994) developed computer-aided optimization analysis and 

strategies for single-pass peripheral milling and multipass rough peripheral and end-

milling on NC/CNC and conventional machine tools. A combination of mathematical 

optimization analyses and limited numerical search techniques were used to arrive at the 

global optimal solution for nonlinear milling problems. Jang D. Y. (1992) developed a 

unified optimization approach for the selection of the machining parameters (cutting 

speed, feed, and depth of cut) to provide the maximum metal removal rate. Powell’s 
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unconstrained method with the exterior penalty function was employed to solve the non-

linear constrained optimization problem. The exterior penalty function needs lots of 

penalty parameters; it is very difficult to choose those parameters to suit the problem. 

Wen et al. (1992) adopted the successive quadratic programming method to solve the 

non-linear off-line optimization scheme for a surface grinding process. Xiao et al. (1992) 

applied an iterative Newton’s method for a non-linear internal cylindrical plunge grinding 

process. Jha (1995) used the generalized reduced gradient method to optimize the tool 

geometry and cutting conditions in plain milling process. Jha’s is one of the very few 

works where the cutter’s tool geometry and the cutting conditions are optimized 

simultaneously.  

The traditional non-linear optimization techniques are mostly gradient-based and 

possess many limitations in application to today’s complex machining models. Secondly, 

they cannot deal with integer/discrete design variables directly; integer design variables 

have to be approximated from continuous values. This simple rounding procedure often 

fails completely, resulting in either a suboptimal design or in some cases, even generating 

an infeasible design. Furthermore, a judicious choice of an initial starting point in the 

design space is required; otherwise those methods are very likely to get trapped in a local 

optimum. This can be a severe drawback in optimization of machining processes whose 

models are highly non-linear. Yet, as the machining processes get more and more 

complex, the process models are possibly discontinuous, not analytically differentiable, 

or non-explicit. The gradient-based non-linear optimization techniques have difficulty in 
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solving those optimization problems; one must resort to non-systematic optimization 

techniques, i.e., Evolutionary Algorithm. 

Groover (1975) used Monte Carlo simulation to study the machining economic 

problems considering tool wear and surface roughness. Monte Carlo simulation is one of 

the stochastic optimization methods. This method is nothing more than a simple random 

search method that keeps track of the best. Evolutionary Algorithm (EA) is a more 

“enhanced” version of the Classical Monte Carlo method, whose ability to get the optimal 

solutions is much more powerful than Monte Carlo method. 

1.3.3 Evolutionary Algorithm 

Evolutionary Algorithms (EAs) have received a great deal of attention regarding 

their potential as optimization techniques for highly non-linear, ill-behaved complex 

engineering problems. There are three different mainstream evolutionary algorithms 

(EA): Genetic Algorithms (GA), Evolutionary Strategies (ES) and Evolutionary 

Programming (EP). The biological background, the relation to artificial intelligence, the 

relation to global optimization and the computational complexity of the global 

optimization problem are the four important aspects of EA (Back 1996). Algorithms are 

formulated in a language obtained by mixing pseudo code and mathematical notations. 

These are: A population of individuals which is manipulated by genetic operators – 

especially mutation and recombination, but others may also be incorporated – and 

undergoes a fitness based selection process, where fitness of an individual depends on its 

quality with respect to the optimization task (Back 1996). 
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EAs have been applied successfully in the area of engineering optimization (Lin 

and Hajela 1992, Wu and Chow 1995, Back and Schutz 1995, Gen and Cheng 2000) and 

also in optimization problems of machining processes. Strenkowski et al. (1997) applied 

Genetic Algorithm (GA) for the optimal selection of cutting tools and operating 

conditions for end milling process. Lee C. W. (2000) used Evolutionary Strategies (ES) 

in selecting the optimal grinding and dressing conditions for grinding processes. However 

despite of their great potential for locating the global optimum in challenging problems, 

EAs have not found much application in optimization problems of machining processes.          

EA has advantages over other conventional optimization methods due to the 

following features: 

(1) EA is a population based algorithm. It starts with a population of search points 

instead of a single point. It gives more robustness in finding the global optimum. The 

performance of most traditional methods greatly depends on the judicious choice of an 

initial point and is easier to track to the local optimum.          

(2) EA uses direct search technique. It does not need derivative information from 

the objective function and constraints for the search.  

(3) EA is not a simple random and grid search method, it employs the principle of 

nature evolution to search stochastically and deterministically toward global optimum.   

Genetic Algorithm (GA) is the most popular EA and has been actively used in 

various application areas, and shown successful results. GA is computationally suitable 

for integer (discrete) variables due to its inherent ability of binary representation. GA has 

higher flexibility to handle constraints and thus is especially suitable to solve constrained 
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manufacturing optimization problems. Hence, GA is chosen as the platform method in 

this research for hard turning process optimization and the general machining process 

optimization.   

However other EAs also have their own unique advantages. For example the 

continuous design variables in ES can be represented by real-valued (floating point) 

variables. The conventional GA uses bit-string to represent problem domains. All design 

variables in each optimization problem have to be encoded into a long binary 

chromosome for binary genetic operators and decoded back to the real variables for 

function evaluations in each generation. An excessively long binary string is required for 

a high resolution, high dimension optimization problem, thereby lowering the efficiency 

and accuracy of the algorithm. The desirable components in the other EA should be 

incorporated into GA, making it possible for the GA to obtain the best solution for the 

general machining optimization problems.  

A real-coded GA is proposed (Wright 1991, Eshelman & Schaffer 1992) and has 

been proven to ensure faster convergence than the traditional bit-string GA in numerical 

optimization (Michalewicz 1996). Unfortunately, a systematic method which is able to 

deal with mixed integer, discrete, and continuous design variables and with boundary, 

inequality and equality constraints, has not been formulated. 

There also exist some other stumbling blocks before GA can be effectively 

applied to the machining process optimization.  

First, the conventional GA lacks local fine-tuning capabilities. GA can reach the 

global optimal region very quickly but it needs a better scheme to improve GA’s local 
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search ability after it converges to the global optimal region. One of the most common 

forms of genetic local search is the hybrid genetic algorithm. With the hybrid approach, 

local optimization is applied to each newly generated offspring to move it to a local 

optimum before injecting it into the population. The heavy computational load required 

to move each offspring to a local optimum is prohibitive for most machining problems 

due to their computationally expensive function evaluation.  

Yet another stumbling block of conventional GA is its lack of any self-adaptation 

mechanism to solve its own parameterization problem, as well as the lack of theoretically 

confirmed knowledge about the choice of those parameters available (Back 1996). GA is 

a stochastic technique and its behavior is still, in many aspects, not well understood.  

Hard turning process optimizations are constrained problems as well as a vast 

majority of machining processes. Another difficulty to overcome for GA is how to deal 

with those nonlinear constraints, though it is a common challenge to all optimization 

methods. Those constraints normally make the feasible space small and quite sparse in 

the whole search space, and it is difficult to make any pre-assumption about the feasible 

space while a genetic operator often yields infeasible offspring. An effective constraint 

handling method is required in order to prevent “premature” and “slow convergence” 

when GA is used for hard turning process planning and optimization. 

Hence, further research on extension and implementation of the evolutionary 

algorithm based on GA is required for the complex hard turning process and other 

general machining process optimization. 
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1.3.4 Handling Constraints Using Genetic Algorithms 

During the last two decades, several methods have been proposed for handling 

constraints in GAs. They can be roughly classified into the categories of rejecting 

methods, repairing methods, and penalty methods.  

 

The rejecting method is the simplest method to deal with the constraints by 

discarding any solutions in the initial population and offspring that violate the constraints. 

The rejecting method has proven to be the least effective and the least stable even with 

time consuming rejection scheme from numerical experiment (Michalewicz 1996a). 

Some infeasible solutions in the population are helpful because they can drive the search 

across infeasible regions to arrive at the optimum point.  

 

Both the repairing methods and the penalty methods keep a certain number of 

infeasible solutions in the population to facilitate the genetic search in both feasible and 

infeasible regions.  Repairing methods convert infeasible solutions back to feasible 

solutions through a repair procedure. It can be ineffective to perform such conversions in 

highly constrained and computationally expansive problems with small and sparse 

feasible space. Penalty methods are perhaps the most common technique used in GA. 

This technique transforms a constrained problem into an unconstrained one by penalizing 

the infeasible solutions with a penalty function or by applying different evaluation 

schemes to feasible and infeasible solutions. 

There are different methods where penalty functions differ in some important 

details. They can be classified as:  “Problem dependent” or “Problem independent.” A 
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“Problem dependent” method involves a number of penalty parameters. Careful tuning of 

those parameters for each problem is necessary in order to ensure convergence to correct 

answers. The problem dependent property of those methods remains a key disadvantage. 

“Feasible superior” (Powell and Skolnick 1993, Schoenauer and Xanthakis 1993) or “No 

feasible superior” (Homaifar et al. 1994, Joines and Houch 1994, Michalewicz and Attia 

1994): the “Feasible superior” method makes every feasible solution better than every 

infeasible solution. A feasible “optimal” solution is guaranteed at the end of the search. 

The “No feasible superior” method will suffer when the “reward” of infeasible solution is 

higher than the “penalty”. “Static” (Homaifar et al. 1994) or “dynamic” (Joines and 

Houch 1994, Michalewicz and Attia 1994): The penalty keeps constant from generation 

to generation for the static method, while the penalty changes with the generation for the 

dynamic one.  

There are a number of other interesting methods which have been reported such 

as the adaptive method (Hadj-Alouane and Bean 1992), the co-evolutionary method 

(Paredis 1994) and the decoder-based method (Koziel and Michalewicz 1999). 

Unfortunately, those methods are either convoluted, involving lots of transformation, or 

are difficult to implement and are computationally expensive as far as complex 

machining processes are concerned. There is still a need for a systematic and efficient 

constraint handling method in GA to optimize the complex machining process by taking 

the characteristics of the specific problems under consideration. 
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1.4 Design of Cutting Condition and Tool Geometry  

For a given tool and workpiece material combination, tool geometry and cutting 

conditions in hard turning can be optimized based on specified performance goals (such 

as minimum cost per part, maximum production rate, finest surface finish, etc). To solve 

this specification, many efforts have been devoted throughout the history of machining. 

Unfortunately most of the model-based machining process optimization studies seek only 

the optimal cutting conditions or only the optimal tool geometry based on laborious 

experiments and/or time-consuming FEM methodology (Mayer 1974, Shintani 1989, 

Dawson 1999, Bouzakis 2000).  There is very little work done to optimize the tool 

geometry together with the cutting condition to assess the feasibility of the process and to 

achieve specified performance goals. Traditionally cutting tools are designed by 

empirical relationships, which is a very inefficient approach (Jha 1995). The tooling 

solution and process planning decision should be made in a systematic manner by 

computing all design parameters simultaneously so that interrelationships and 

interactions of all design parameters can be taken into account.   

Furthermore, Taylor’s tool life equation has been extensively used as a tool life 

governing equation to decide how many parts can be cut before the tool insert is changed. 

However, several factors may limit tool life and therefore affect machining cost. In finish 

hard turning, surface integrity (surface roughness, white layer thickness and residual 

stress distribution) is often of great concern because of its impact on product 

performance. Tool life is often limited by part surface integrity. Surface integrity together 

with tool wear (flank wear and crater wear) should be used as a tool life criterion. 
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In light of the discussed shortcomings in machining process optimization scheme, 

a scientific, systematic and reliable methodology to design optimal tool geometry and 

cutting conditions within permissible space for given tool-workpiece combination is 

needed.  

1.5 Organization of This Dissertation 

The major focus of this dissertation is model-based hard turning process planning 

and optimization. The finished research is arranged as in Figure 1-4. Chapter 1 is the 

introduction and literature review to give the background of the focused topic and point 

out the motivation and objective. Chapter 2 and Chapter 3 are the major foundation for 

the focused research. In Chapter 2, the proposed optimization algorithm, a Mixed Integer 

Evolutionary Algorithm, is described to address the underlying drawbacks when Genetic 

Algorithm is applied to the hard turning process optimization problems. In Chapter 3, the 

hard turning process models - including thermal model, force model, tool wear model and 

surface integrity models - are presented to provide the indispensable process information 

for hard turning process planning and optimization. Implementation and validation of the 

model-based hard turning process planning and optimization, using the proposed 

optimization algorithm in Chapter 2 and the developed hard turning process models in 

Chapter 3, are presented in Chapter 4. Chapter 5 is devoted to developing an intelligent 

advisory system of hard turning process with user friendly interface, which can be used to 

predict the process variables, design the tool geometry and optimize the cutting 

conditions to help critical hard turning processes run in the optimal conditions. Chapter 6 
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is the closure of this dissertation, in which the major contribution are summarized and 

future work is recommended.  

 

Introduction & Background 

(Chp. 1) 

   
 Optimization Algorithm (MIEA) 

(Chp. 2) 

Hard Turning Process Models 

(Chp. 3) 

Intelligent Advisory System for Hard Turning Processes (IAS101) 

 (Chp. 5) 

Summary and Recommendations 

(Chp. 6) 

Hard Turning Process Planning and Optimization 

(Chp. 4) 

Process Optimization for Machining of Hardened Steels 

 

Figure 1-4 The structure of the dissertation  
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CHAPTER II  

OPTIMIZATION ALGORITHM 

2.1 Introduction 

Machining process optimization not only remains an ongoing activity but also is 

becoming increasingly important in industry in the drive for reduced cycle time and agile 

manufacturing. Extensive literature exists on optimization of machining processes (Ermer 

1997). Linear programming was used in the early stage of machining process 

optimization (Ermer and Patel 1974, Milner 1976), which can only deal with the linear 

equations. Non-linear programming has been extensively applied for more general non-

linear machining optimization problems. Geometric Programming (GP), as one of the 

non-linear optimization techniques, has been widely adopted (Walvekar 1970, Phillips 

1970, Ermer 1972, Eskicioglu et al. 1985, Tsai 1986, Gopalakrishnan and Al-Khayyal 

1991). Its major disadvantage lies in its requirement that the objective function and 

constraints be in the form of polynomials. Traditional gradient-based optimization 

techniques have also been extensively used. For example, the successive quadratic 

programming method (Wen et al. 1992) and an iterative Newton’s method (Xiao et al. 

1992) were applied to optimize grinding processes; the generalized reduced gradient 

method (Jha 1995) was used to optimize tool geometry and cutting condition in plain 

milling processes.  
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However models of the hard turning process are very complex and some are 

highly non-linear, non-explicit and not analytically differentiable. The gradient-based 

non-linear optimization techniques have difficulty in solving this optimization problem; 

one must resort to non-systematic optimization techniques, i.e., Evolutionary Algorithms.  

Currently, there are three different mainstreams in EA: Evolutionary Strategies 

(ES), Genetic Algorithms (GA) and Evolutionary Programmings (EP). GA has been 

applied to cutting tool and parameter selection for end milling (Strenkowski 1997). 

Another EA approach, evolutionary strategy, was investigated for optimization in 

grinding process optimization (Lee 2000). 

Genetic Algorithm (GA) is selected as the platform method in this study due to its 

inherent nature in dealing with integer variables and its flexibility in handling constraints. 

However, GA still has its own drawbacks when it is applied to machining process 

optimization, including the lack of efficiency due to its binary representation scheme for 

continuous design variables, a lack of local fine-tuning capabilities, a lack of self-

adaptation mechanism, and a lack of an effective constraint handling method. 

The objective of this chapter is to develop a novel and systematic evolutionary 

algorithm based on Genetic Algorithm to address the above mentioned drawbacks when 

GA is applied to hard turning process planning and optimization. First, a general form of 

machining process optimization is mathematically formulated and its related 

terminologies are defined. Subsequently, the proposed Mixed Integer Evolutionary 

Algorithm (MIEA) is elaborated in the areas of problem representation; selection scheme; 

genetic operators for integer, discrete, and continuous design variables; constraint 
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handling method; and population initialization. Finally, the developed scheme is applied 

to twelve numerical cases and two machining problems to measure its performance.    

2.2 Problem Formulation 

A general machining process optimization problem can be characterized as a 

constrained, nonlinear programming problem with mixed-integer-discrete-continuous 

design variables. The general form of machining process optimization can be 

mathematically formulated as below: 

Minimize:  

( ),  nf X X ∈ ⊆ ⊆F S , 

{ } { }1,... , ,c i d

nX x x X X X= =  

Subject to (constraints): 

 1) Boundary constraints: 

,  for ,c i
i i i iL x U x X X≤ ≤ ∈  

{ }( )(1) (2), ,... ,  for id d
i i i i ix x x x x X∈ ∈  

 2) Inequality and equality constraints: 

( ) 0,  1, 2,...jg X j k≥ =  

( ) 0,  1, 2,...jh X j k k m= = + +  

( )f X  is the objective function, which can be cost per part, production rate, 

surface integrity, material removal rate, tool life, etc or any combination of them. X : is 

the n-dimensional design vector to be optimized, including continuous design 
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variables cX , such as feed rate, depth of cut, and cutting speed; integer design variables 

iX , such as number of part cut per insert and grinding wheel diameter; and discrete 

design variables dX , such as tool rake angle, tool clearance angle, and tool nose radius.  

⊆

The problem usually is subject to boundary constraints for design variables and to 

inequality and equality constraints for process outputs.  is the inequality 

constraint, such as surface roughness, dimensional accuracy, cutting force and maximum 

available horsepower,  is the equality constraint, such as the desired part size and 

grinding power. 

( )jg X

( )jh X

In general, the space  includes legal space and illegal space. Legal 

Space  also refers to the search space, in which variables are restricted only by the 

boundary constraints. Any solution

n

nS

X ∈S is a legal solution. Legal space includes 

feasible space and infeasible space. Illegal space 
c n= −S  S  is the space out of the 

legal space. Any solution is an illegal solution. Feasible space is where 

design variables not only satisfy the boundary constraints but also satisfy all the 

inequality and equality constraints in the problem. Any solution is a feasible 

solution. Infeasible space 

cSX ∈

c

⊆F S

∈FX

= −F S

X ∈

F

cF

is the space inside the search space and outside 

the feasible space. Any solution  is an infeasible solution.  

Figure 2-1 illustrates all the related spaces and solutions in a two dimensional 

problem, where (x, a, b, c, d) are feasible solutions, (e, f, g, h, k) are legal but infeasible 

solutions, they are both in legal space (search space) while the optimum solution is ‘x’. (l, 

m) are illegal solutions.  
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Inasmuch as a maximization problem can be easily transformed to a minimization 

problem by minimizing ( )( )f X− , only minimization problems are discussed in this 

study. 

 

Figure 2-1 Legal space vs. illegal space and feasible space vs. infeasible space 

2.3 Mixed-Integer Evolutionary Algorithm (MIEA)  

A novel and systematic scheme of a Mixed-Integer Evolutionary Algorithm 

(MIEA) has been developed. The primary characteristics of this MIEA can be 

summarized as: 

• The design variables are represented by the natural data types to implement one-

gene-one-variable correspondence without additional encoding and decoding 

scheme.  A gene corresponds to a real variable and a chromosome is a vector of 
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integer, discrete, and continuous variables. Hence, the genetype space is moved to 

be the same as the phenotype space, facilitating application to the general 

machining process optimization and increasing the algorithm’s efficiency and 

effectiveness. 

• Binary implementation is combined with the floating point implementation to deal 

with integer (discrete) and continuous design variables respectively and to take 

advantage of both bit representation of GA and real-valued representation of ES. 

Adaptive mutation and crossover is proposed for integer (discrete) variables, 

while non-uniform mutation with local tuning capability and uniform crossover is 

adopted for continuous variables.  

• Tournament selection with elitism is used as the selection scheme to achieve a 

suitable balance between population diversity and selective pressure while 

tracking the best solution at each generation.  

• A new integrated constraint handling method is proposed to propel search toward 

the feasible and optimal direction. It is computationally efficient, simple, and easy 

to implement. No additional penalty parameters are needed and a feasible solution 

is guaranteed. 

• α µ(,)-population initialization is used to help distribute the initial population 

uniformly in the whole search space. 

The new scheme of MIEA will be illustrated in detail in the areas of: selection 

scheme; problem representation; genetic operators for integer, discrete, and continuous 

variables; constraint handling method; and population initialization.  
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2.3.1 Selection Scheme 

There are two important issues in the evolution process of the genetic search: 

population diversity and selective pressure. These two factors are strongly related and it 

is important to strive for a balance between them. A selection scheme attempts to achieve 

this goal (Back 1996, Michalewicz 1996). In this work, tournament selection as Equation 

(2-1) has been adopted:  

 

1

1
(( 1) ( ) )

1,  {1,..., }

q q

i q

u

i

i

p i i

p i

µ µ
µ

µ
=

= − + − −

= ∈∑
 (2-1) 

where µ  is the population size,   is the rank of a solution’s fitness, and  is the 

tournament size.  

i q

The whole selection scheme works as follows: All the solutions occurring in a 

population { }1 2( ) ( ), ( )... ( )P t X t X t X tµ= are sorted with respect to their fitness values 

(calculated from the evaluation function). A probability value ( ip ) is assigned to that 

individual based on Equation (2-1). This value maps to the area of the roulette wheel 

proportionally. Successive pairs of parents are drawn stochastically by spinning the 

marble of the roulette wheel.  

Back (Back 1996) has systematically investigated the optimal selection scheme 

using a meta-evolutionary algorithm for problems with boundary constraints only. 
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Tournament selection with q =20 prevails over the other selection schemes. However 

when tournament selection is applied to the problem with boundary constraints together 

with inequality and equality constraints, tournament size q =20 imposes too high 

selection pressure to feasible solutions for some problems when a feasible superior 

scheme is also adopted in the algorithm. In MIEA, tournament size q =8 is selected as its 

default setting based on the preliminary numerical investigation of this study.  

Elitist election, which always copies the most-fit solution into the next generation, 

has been used to enhance the performance of MIEA. 

2.3.2 Problem Representation and Genetic Operators  

The design variables are represented directly by the natural data types (such as 

“int” type for integer variables and “float” or “double” type for continuous variables in 

c/c++) to implement one-gene-one-variable correspondence. Hence, a gene corresponds 

to a real variable and a chromosome is a vector of integer, discrete, and continuous 

variables; This is represented by a genotype data structure in c++ as shown in Figure 2-2. 

The array XI[I_SIZE] represents the integer and discrete design variables and the array 

XC[C_SIZE] represents the continuous design variables, and fit represents the fitness of 

this design.  
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struct genotype    
 { 
  int XI[I_SIZE];      
  float  XC[C_SIZE];     
  float fit; 

};  

Figure 2-2 Data structure to represent the design variables 

This natural representation moves GA closer to the problem space in line with the 

principle of ES and EP. Crossover is applied to each design variable instead of one long 

binary string; hence crossover points automatically increase with increase in the 

problem’s dimension.  

The real-coded GA has been championed as opposed to the traditional binary-

coded GA in numerical optimization (Goldberg 1990, Wright 1991, Eshelman 1993, 

Michalewicz 1996). However binary representation naturally deals with the integer 

variables. Hence, the binary implementation is kept for integer and discrete design 

variables while the floating point implementation is adopted for continuous design 

variables. In MIEA, the default mutation rate is set to 30% and the default crossover rate 

is 90% for all genetic operators based on the numerical experiments of this study.  
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Integer and discrete design variables 

It is accepted by most researchers that discrete variables are mapped to the integer 

variables, so as to transfer discrete variables to integer variables. For example, if a 

discrete variable can take 10 discrete values as below, then the corresponding set of 

integer values will be: 

{ } { }⇒0.90,0.95,1.04,1.18,1.28,1.32,1.40,1.50,1.62,1.73 0,1,2,3,4,5,6,7,8,9  

Also, if an integer variable has lower and upper bounds such as 112 to 160; a 

mapping system from 0 to 47 is used. 

Binary implementation is kept for integer and discrete design variables due to its 

inherent nature to represent the integer variables. A natural data type is used to represent 

each integer/discrete variable (such as “int” in c++ is used in this work which consists of 

32 bits). 

However, this scheme will lead to redundant bits in the gene. The valid number of 

bits needed to represent an integer can be calculated as , which is the smallest number 

that satisfies ,  for integer variables, n is the number of discrete 

values for discrete variables. The remaining 

m

2 1≥ +m
n (= −

U
n X X )

L

(32 )− m  is the redundant bits in the gene. An 

example is shown in Figure 2-3 for integer variable [0, 47], where the valid number of 

bits is 6, and the remaining 26 bits are redundant bits.  
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Figure 2-3 Integer representation for [0-47] 

These redundant bits are not needed to represent that integer and will lead to 

undesired redundant mapping violating the “no redundancy principle”. They will also 

introduce useless mutation and crossover operations when the mutation bit and crossover 

point are chosen within those redundant bits. Figure 2-4 illustrates an example of a 

useless crossover operation where the offspring remain the same as the parents after the 

crossover operation. Figure 2-5 demonstrates an example of useless mutation where an 

out-of-boundary integer is expected after the mutation operation. Those useless genetic 

operators will decrease the performance of the one-gene-one-variable scheme worse than 

the encoding and decoding method.  

Parent1 (35):        0000000000 | 00000000100011

Parent2 (17):        0000000000 | 00000000010001

                                                crossover point

Offspring1 (35):   0000000000 | 0000000010001

↑

1

Offspring2 (17):   0000000000 | 00000000010001

 

Figure 2-4 Demonstration of useless crossover 
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Befeore mutation (35):    000000000 0 00000000100011

                                                          mutation bit↑

)m

After mutation (16419) :  0000000001 00000000100011

 

Figure 2-5 Demonstration of useless mutation 

Mutation and crossover adapted to this valid number of bits ( ) are designed for 

integer/discrete variables. The mutation bit and crossover point are selected by: 

 while leaving redundant bits unchanged as shown in Figures 2-6 and 2-7. 

The proposed method achieves the same working principle as the encoding and decoding 

method where the valid bits of all the integers are coded to one long binary string and at 

the same time makes the one-gene-one-variable scheme effective for mixed-integer 

problems.  is a uniform random number between 

m

(int [0,1]*r

[0,1r ] [ ]0, 1 and it is assigned anew each 

time. 

Parent1 (35):         00000000000000000010 | 0011

Parent2 (17):         00000000000000000001 | 0001

                                              crossover point

Offspring1 (33):    00000000000000000010 | 000

↑

1  

Offspring2 (19):    00000000000000000001 | 0011

 

Figure 2-6 Demonstration of adaptive crossover 
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Befeore mutation (35):   000000000000000000100 011

                                                              mutation bit ↑

After mutation (39):       000000000000000000100111

 

Figure 2-7 Demonstration of adaptive mutation 

The proposed method was applied to a gear train design problem as formulated 

below: 

Minimize: 

2

1 2
1 2 3 4

3 4

*1
( ,  ,  ,  )

6.931 *

t t
f t t t t

t t

 
= − 

 
 

Subject to:  40 60,  1,...4it i≤ ≤ =

The results were shown in Table 2-1 and were compared with the one where 

adaptive crossover and mutation were not applied. They were reported out of ten 

independent runs. Both of them run for 1000 generations with 100 population size. As 

can be seen that the algorithm with adaptive crossover and mutation achieves smaller 

objective value than the one without adaptive crossover and mutation. There are other 

two advantages of the proposed scheme. First, the different encoding and decoding 

schemes for the different problems are no longer needed; hence application to different 

problems is much easier. Secondly, all integer/discrete variables need not to encode to a 

long binary string for genetic operations and then decode back to individual 
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integer/discrete variables for function evaluation in each generation; thus efficiency and 

effectiveness are increased. 

There are still  excessive binary strings when . This excessive 

mapping is dealt with by an “Even-Excessive-Distribution” method which will be 

discussed later.  

(2 )
m

n− 2
m

n +≠ 1

Table 2-1 Optimal solution of the gear train design 

Items Optimal solution Type of Variable 

 W Adaptive W/O Adaptive  

1t  19 13 Integer 

2 t  16 30 Integer 

3t  43 53 Integer 

4t  49 51 Integer 

( )f T  122.7 10−×  23.08 1210−×   

 

Continuous design variables 

Non-uniform mutation and uniform crossover have been combined as the genetic 

operator for the continuous variables.  

Non-uniform Mutation 

A special dynamic bounded mutation with local fine tuning capability named non-

uniform mutation has been adopted (Michalewicz 1996). The following is suggested:  

  (2-2) ' ( , )  if [0,1] 0.5

( , )  if [0,1] 0.5
i i i

i
i i i

x t U x r
x

x t x L r





+ ∆ − ≤
=

− ∆ − >
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 ( , ) * 1 [0,1] Tt y y r  
 
 

∆ = −  (2-3) 
1

b
t 

 − 
 



( , )t y∆  returns a value in the range of [0  such that the value of , ]y ( , )t y∆  

becomes smaller with increasing generation. This operator searches globally at the early 

stage and locally at the later stage. t  is the current generation number,  T  is the 

generation size,  b is a system parameter ( =5 is recommended by Michalewicz 1996).  

Mutation will operate for each design variable if a random number  is smaller than 

the mutation rate.  

b

[0,1]r

Uniform Crossover 

Uniform crossover is set as the default crossover operator for continuous design 

variables in this work. A float variable is a 32-bit value and a double is a 64-bit value 

according to IEEE standard. A one point crossover will operate for each variable/gene if 

a random number  is smaller than the crossover rate. The crossover point is 

selected by: , 

[0,1]r

( ),1]*r mint [0 32m =  for float type and 64m =  for double type as shown 

in Figure 2-8. 
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Figure 2-8 Crossover point for the continuous variable 

Real-valued crossovers, such as arithmetical crossover, flat crossover, and 

heuristic crossover are extensively used for numerical optimization. They uniformly pick 

a value that lies between two points (A & B) which contain the two parents ( 1x  & 2x ) as 

shown in Figure 2-9 for 1-D problem. The real-valued crossovers are also implemented in 

MIEA and compared with the uniform crossover. They are “assumed” to be more 

powerful as the crossover operator than the uniform crossover (Schwefel 1981, Wright 

1991, Davis 1991). However, as shown in Table 2-2 by five test cases, the real-valued 

crossover has a much lower performance than that of the uniform crossover when 

combined with non-uniform mutation. Those five test cases are detailed in Appendix A.1. 

Radcliffe’s (1991) flat crossover was chosen as the real-valued crossover in this 

comparison. The results were reported out of ten independent runs. G1, G2, G5 and G10 

run for 2000 generations with 175 population size and G6-2 run for 10,000 generations 

with 175 population size. G6-2’s global maximum is unknown; 0.833194 is the best 

result ever reported from the literature.  
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Table 2-2 Results summery on five test cases 

TC  Exact opt. Crossover Best Average Worst 

Uniform -15.0000 -15.0000 -15.0000 G1 Minimize -15.0000 

Real -12.8799 -12.7207 -12.5623 

Uniform 7057.38 7250.67 7560.88 G2 Minimize 7049.33 

Real 8619.49 19445.14 26111.17 

Uniform 24.606 24.723 24.889 G5 Minimize 24.036 

Real 25.554 25.932 26.237 

Uniform 0.835202 0.826909 0.795825 G6-2* Maximize 0.833194 

Real 0.443750 0.441113 0.439214 

Uniform -6961.807 -6960.801 -6954.905 G10 Minimize -6961.814 

Real -6879.350 -6812.379 -6706.242 

 

Hence, non-uniform mutation with uniform crossover forms a very powerful 

genetic operator for continuous design variables. There are two main reasons why 

uniform crossover outperforms real-valued crossover when combined with non-uniform 

mutation. 

First, real-valued crossovers are mostly proposed and tested for the problem with 

boundary constraints only. They are much less effective when applied to the problem 

with inequality “  type” and equality “  type” constraints due to their convex 

combination characteristic. In highly constrained optimization problems, the feasible 

space is usually small and sparse in the whole search space. A randomly generated initial 

population is mostly located in infeasible space. This convex combination crossover has 

lower ability to generate feasible solutions from infeasible solutions; hence it cannot 

drive the search towards feasible direction.   

g h

Secondly, non-uniform mutation is achieving the same power of the real-valued 

crossover for increasingly focusing search. The only differences between non-uniform 
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mutation and real-valued crossover are (1) “Step size”: it is self adapted by extent of 

convergence for real-valued crossover and by the generation for non-uniform mutation. 

(2) “Perturbation size”: 1x  will be perturbed by a region of [ ,  for real-valued 

crossover and a region of [ , for non-uniform mutation to generate an offspring 

as shown in Figures 2-9 and 2-10, where 

1 2
 ( 1)− +r I r I ]

]
1 1 2 2

 −r I r I

2 1
= −x xI , 

1 1
( , )= −∆ x LBI g , 

. Hence, real-valued crossover is one kind of special mutation operator 

and its power as crossover operator is very weak.  

2
( , )= ∆ −B xI g U

1

 

1x
 

1
x

2x

I1r I 2r I

 
1x  

LB  
 

1x

UB 
1x A   

1x B  
 

Figure 2-9 Real-valued crossover in a one-dimensional problem 

 
2 2r I

1x
 

1x

UB
 

1x  

LB   
1x A   

1x B  
 

1 1r I

Figure 2-10 Non-uniform mutation in a one-dimensional problem 
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2.3.3 Integrated Constraint Handling 

Boundary constraints 

An “Even-Excessive-Distribution” method is proposed for boundary constraints. 

Due to the nature of the GA, the initial population was randomly generated in a given 

interval < , U  >. Hence, the initial population will be located in legal/search space. If 

any variable generated by the genetic operators is out of the boundary, which is defined 

as an illegal solution/offspring, a random value within the boundary will be reassigned to 

that variable. By this random reassigning scheme, the total effect will even out the 

distribution of out-of-boundary values back to legal/search space. All the boundary 

constraints are naturally satisfied and the search is implemented in legal space/search 

space.  

iL i

Equality and inequality constraints  

The inequality “  type” and equality “  type” constraints make the feasible 

space different from the search space and determine the ratio 

g h

ρ  between the feasible 

space and the search space where /=ρ F S . A feasible superior, problem independent 

penalty scheme is proposed as below: 

 

1 1

( )
( ) ,                                                 if 

( , )
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( )

All objective values are scaled to [-1, 1] by dividing the range of the objective 

values in that generation: ( , )F X t . 
1

( )
m

j

j

p X
=

∑

)t
1

m

j

j

 is the ‘amount’ of infeasibility of an 

infeasible solution and is normalized by the maximum ‘amount’ of infeasibility among all 

the solutions in that generation: . ( ,P X ( )Xϕ
=

∑  is the number of constraints violated 

by an infeasible solution and is normalized by the maximum number of constraints 

violated among all the solutions in that generation: ( , )ψ X t . ( )jp X  and ( )j Xϕ  are 

computed by a conditional operator: ? :d c a b= . The meaning of this operator is: if  is 

true; then ; otherwise

c

d a= d b= .  
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Hence, feasible solutions are evaluated by their objective values only and 

infeasible solutions are evaluated by their objective values and ‘fit’ extent. The lower the 

number of constraints violated, the “fitter” they are; the smaller ‘amount’ of infeasibility 

in terms of the degree of constraint violated, the “fitter” they are. The ‘fit’ extent can be 

equally evaluated by the number of constraints violated and the amount of infeasibility 

for infeasible solutions through normalization.  

The equality constraints h X( ) 0j = will be replaced by the inequality constraints 

of ( )jh X ε≤ . The variable ε  is an infinitesimal number, which can be given explicitly 

or be determined from the precision requirement in each problem. For example in 

precision grinding of Hydraulic Lash Adjuster Body (HLA), the desired bore diameter is 

9.2484mm with the dimensional tolerance of 0.0025mm± . This requirement can be 

transformed to an equality constraint as in Equation (2-9):   

 9.2485 0D − =  (2-9) 

With the given tolerance, this equality constraints can be relaxed to an inequality 

constraint as in Equation (2-10) with ε  value equals 0.0025. 

 9.2485 0.0025D − ≤  (2-10) 
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The significant digit requirement will be determined and will be used for all the 

continuous design variables. ε  can also be estimated from this significant digit 

requirement. For example, if the significant digit requirement is 6, then 10 6eε = − . 

By the aid of normalization, all feasible solutions distribute in [-1, 1]. A value of 2 

is “purposely” added to all infeasible solutions to distribute infeasible solutions to (1, 5] 

as shown in Figure 2-11. Hence all the feasible solutions are better than any infeasible 

solutions, that is, a feasible superior condition is ensured.       

 

Figure 2-11 Fitness distribution of a population 

A feasible superior scheme is preferred for machining process optimization for 

two reasons. First, a feasible “optimal” solution is a basic requirement for manufacturing 

processes. Penalty too “heavy” will no longer be equivalent to rejecting methods when 

“ranking or tournament selection” is used because selection is based on its “rank” instead 

of its evaluation value. Secondly, the randomly generated initial population is mostly 

located in the infeasible space due to the small and sparse feasible space in constrained 

manufacturing problems. “Feasible superior” methods will drive the genetic search 
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toward the feasible direction because a feasible solution has superior probability to 

survive. 

 

It is very possible for infeasible solutions to provide better information than some 

feasible ones about the “feasible global optimal” solution. But a penalty function based 

on how much information a solution contains about the “unknown feasible global 

optimal” solution will be too difficult to formulate. So the penalty strategy in this work is 

not based on how much information a solution contains about the “feasible global 

optimal” solution, but on how well it can help genetic search to move toward the feasible 

direction. 

Feasible superior method is also implemented in Powell & Skolnick’s (1993) 

method. A different strategy is used to evaluate two infeasible solutions from this study. 

As the most penalty methods, the Powell & Skolnick method evaluates two infeasible 

solutions based only on the amount of infeasibility. The number of violations should be 

equally considered as one of the important indexes to evaluate infeasible solutions. The 

reason is that not all the design variables are involved in every constraint, when fewer 

constraints are violated; fewer variables need to be repaired for this infeasible solution to 

be feasible. They have better chance to generate feasible solutions in the next generation, 

so as to help the genetic search toward feasible direction.  

2.3.4 Population Initialization  

As are most of the “feasible superior” penalty methods, the proposed penalty 

method is very sensitive to the pressure of a single feasible solution in the initial 
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population. However, it is very possible that there is no single feasible solution in a 

randomly generated initial population for highly constrained manufacturing problems. It 

is found from this work’s numerical tests that when no single solution is feasible in the 

initial population, genetic operators have difficulty in generating any feasible solution 

automatically, and the program will end with a premature infeasible solution. It is 

“reasonable” because GA has no knowledge of feasible solutions when no feasible 

solution exists in the initial population. The initial population should be uniformly 

distributed in the whole search space in order to provide enough problem knowledge to 

the GA. Hence, it is necessary to enforce at least one solution to be feasible in the initial 

population.  

An α µ(,)-population initialization scheme is proposed, where µ  is the 

population size andα  is the number of solutions forced to be feasible in the initial 

population. Population initialization should not take too much time. The size of α  has to 

be chosen by trading off between efficiency and effectiveness.  Initialization time will 

increase and sometimes important information in the infeasible space may be lost when 

too many solutions are forced to be feasible in the initial population while 1α =  is 

necessary. In this work 1α = has been used. The initialization scheme is shown in Figure 

2-12. 
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i=1 to α  

do {initialize 1 2: ( , ... )i i i inX x x x= ;} 

while ( iX ∉F ); 

for i= 1α +  to µ  

{initialize 1 2: ( , ... )i i i inX x x x= ;} 
 

Figure 2-12 Initialization scheme  

2.3.5 Other Components 

Random Numbers 

 Genetic Algorithm relies on vast quantities of random values where thousands 

and thousands of random values need to be generated. A pseudo-random number 

generator with very unpredictable and large repetition cycle will greatly help the genetic 

algorithm’s performance. One of the pseudo-random number generators, a uniform 

deviate generator from Ladd (1995), has been adopted in this work. 

Significant Digits 

It is common in engineering that a value is only accurate to a certain number of 

significant digits. In order to prevent the error from accumulating, all variables are set to 

a specific number of significant digits. The number of significant digits can be 

determined online for different precision requirements of each problem in MIEA. 
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2.3.6 Algorithm 

The flowchart of MIEA is shown in Figure 2-13. At generation t , the initial 

population is randomly generated while forcing 

0=

α  individuals to be feasible.  The fitness 

values of the initial population are evaluated and sorted.  A probability is assigned to each 

individual based on tournament selection. At each generation t, the best solution from the 

previous generation is copied to the current generation first. And then genetic operators 

are applied respectively for integer/discrete and continuous design variables to obtain an 

offspring population. For each interger/discrete design variable, adaptive crossover and 

mutation are performed, then the boundary constraint is checked, if the boundary 

constraint is violated, a random value within the boundary will be reassigned to that 

variable. For each continuous design variable, uniform crossover is performed and the 

boundary constraint is checked, then the non-uniform mutation is performed. The 

offspring populations’ fitness values are again evaluated and sorted.  A probability value 

will be reassigned to each individual in the offspring based on the tournament selection. 

The process will continue until the stopping criterion is met, which is given by the 

predefined maximum number of generations.  
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α
1 2: ( , ... )i i i inX x x x=

iX ∉F
1α + µ

1 2: ( , ... )i i i inX x x x=

ip

ip

t:=0;  
Initialize the initial population 

i=1 to  

do {initialize ;} 

while ( ); 

for i=  to  

{initialize ;} 

Evaluate & sort the fitness of the initial population 

Assign  based on tournament selection to the initial population 

While stopping condition is not met, do 
 Copy elitist solution 
 Do until µ  offspring are obtained: 

 for each integer/discrete design variable 
   Adaptive Crossover 

Adaptive Mutation 

Check for boundary constraint 

 end 
 for each continuous design variable 
   Uniform Crossover 

Check for boundary constraint 

   Non-uniform Mutation 

 end 
end 
Evaluate & sort the fitness of the offspring 

Assign  based on tournament selection to the offspring 

t: =t + 1; 
end 

Figure 2-13 Mixed Integer Evolutionary Algorithm (MIEA) 

 50



 

2.4 Application of MIEA to Numerical Cases 

The performance of the developed MIEA algorithm has been measured by twelve 

numerical test cases from (Michalewicz 1996, Michalewicz and Schoenauer 1996) which 

are listed in Appendix A.1. As reported from Michalewicz and Schoenauer (1996) and 

shown in Table 2-3, twelve test cases are chosen due to: 1. the type of the objective 

functions f ; 2. the number of variables; 3. the number and type of constraints of each 

category (linear inequalities , nonlinear equalities  and nonlinear inequalities ); 

4. the number of active constraints a  at the optimum; and 5. the ratio

n

LI NE NI

ρ  between the sizes 

of the feasible space and the whole search space: /F S . ρ  was determined 

numerically by generating 1,000,000 random points from search space  and checking 

whether or not they belong to feasible space . They offer a handy collection for 

preliminary tests of optimization algorithms, especially for its constraint handling 

capabilities.  

S

F

In this work, the population size was chosen to be 175 and all the test cases were 

run for 2000 generations (except for G6, G7) in order to achieve the same function 

evaluation trials as those of Michalewicz’s (1996) for comparison. G6-1 (20 variables) 

and G6-2 (50 variables) were run with 175 population size for 10,000 generations and G7 

was run with 10 population size for 30,000 generations. The results are shown in Table 2-

4, which reports the best, the average, and the worst results; standard deviation; and 

average execution time in seconds out of 10 independent runs. Feasibility is guaranteed 

for all the results because the feasible superior scheme is applied in the algorithm. 
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Table 2-3 Summary of twelve test cases  

  

TC n  Type of  f  ρ  LI NE

 

NI

 

a  

G1 13 quadratic 0.0111% 9 0 0 6 
G2 8 linear 0.0010% 3 0 3 6 
G3 7 polynomial 0.5121% 0 0 4 2 
G4 5 nonlinear 0.0000% 0 3 0 3 
G5 10 quadratic 0.0003% 3 0 5 6 

G6-1 20 nonlinear 99.8474% 0 0 2 1 
G6-2 50 nonlinear 99.8474% 0 0 2 1 
G7 20 polynomial 0.0000% 0 1 0 1 
G8 5 quadratic 52.1230% 0 0 6 2 
G9 4 cubic 0.0000% 2 3 0 3 
G10 2 cubic 0.0066% 0 0 2 2 
G11 2 nonlinear 0.8560% 0 0 2 0 
G12 2 quadratic 0.0000% 0 1 0 1 

 

Table 2-4 Summery of results on twelve test cases 

TC  Exact opt. Best Average Worst Standard 
Deviation 

Execution 
Time (s) 

G1 Minimize -15.000 -15.000 -15.000 -15.000 0.0 10.433 

G2 Minimize 7049.331 7057.38 7250.669 7560.88 160.348 8.613 

G3 Minimize 680.630 680.640 680.6549 680.696 0.0172 9.467 

G4 Minimize 0.054 0.0540 0.0648 0.0982 0.0165 8.790 

G5 Minimize 24.036 24.606 24.723 24.889 0.0989 13.342 

G6-1* Maximize 0.803553 0.803617 0.798108 0.792601 0.0058 32.374 

G6-2* Maximize 0.833194 0.835202 0.826909 0.795825 0.0117 386.248 

G7* Maximize 1.0 1.00048685 1.0003522 1.0000958 0.000125 8.732 

G8 Minimize -30665.5 -30665.53 -30665.51 -30665.48 0.0271 6.810 

G9 Minimize 5126.4981 - - - - - 

G10 Minimize -6961.814 -6961.807 -6960.801 -6954.905 2.2752 3.3326 

G11 Maximize 0.095825 0.095825 0.095825 0.095825 0.0 3.410 

G12* Minimize 0.7500045 0.7490002 0.7591698 0.8005944 0.01658 3.285 

 

As can be seen from Table 2-4, the proposed scheme is able to find the best 

solutions very close to the known global optimal solution for all the test cases (except the 
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test case G9) with small standard deviation and within a very short computational time. 

The proposed constraint handling scheme outperforms all the other six methods listed in 

Michalewicz’s book (1996) for test case G1 – G5; it also works better than those found in 

the literature (Hadj-Alouane and Bean 1992, Myung 1995, Koziel and Michalewicz 

1999) for most test cases. 

The proposed method has difficulty for the test case G9 as well as the other 

methods (Koziel and Michalewicz 1999). Joines and Houck (1994) gave a value of 

5126.6653 of the objective function. But no solution was fully feasible due to the three 

equality constraints in the test case G9. The feasible space of G9 is extremely small. 

There is not a solution feasible within 1,000,000,000 randomly generated points even 

though three equality constraints have been relaxed to be ( ) 0.0001jh X ≤  . Therefore it 

has difficulty in finding a feasible solution in population initialization; however without a 

feasible solution in the initial population, the problem ends with a premature infeasible 

solution.  

The best solutions for test cases G7 and G12 are better than the known global 

optimum. The reason is the relaxation of the equality constraints to the inequality 

constraints. As detailed above, the equality constraints ( ) 0jh X =  will be replaced by the 

inequality constraints of ( )jh X ε≤ . The value of ε  determines the relaxation extent of 

the equality constraints and also affects the final optimal solutions. 0.0001ε =  has been 

used for the equality constraints in test case G7 and G12. 
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Worthy of mention is the test case G6. G6 is to maximize a function as shown in 

Equation (2-11): 

 

4 2

1 1
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cos ( ) 2 cos ( )
6( )
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with the constraints of:  
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ii
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=
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G6’s global maximum is unknown. As shown in Figure 2-14 for n=2 case where 

infeasible solutions were assigned value zero, it is a difficult problem on which no known 

methods gave satisfactory results (Michalewicz and Schoenauer 1996).  
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Figure 2-14 The graph of G6 for n=2 (Michalewicz and Schoenauer 1996) 

The MIEA gave outstanding results. For the case n=20 (G6-1), it reached the 

value of 0.803617, which is better than the best value ever found (Keane (1994) gave a 

best value of 0.76 and Michalewicz (1996) gave a best value of 0.803553) with the 

optimal solution of:  

* {3.16043258, 3.12754512, 3.09359360, 3.06049466, 3.02768564, 2.99235296,

         2.95944715, 2.92219949, 0.49483365, 0.48731905, 0.48034167, 0.47483969,

         0.47307324, 0.46573946, 0.46269602, 

X =

0.45579949, 0.45373166, 0.44978923,

        0.44504631, 0.44064420}

 

Similarly, for n=50 (G6-2), it reached the value of 0.8352, which is also better than the 

best value ever reported (best values of 0.8332 and 0.8348 have been reported 

respectively (Michalewicz 1996)) with the optimal solution of: 

 55



 

* {6.28234386, 3.16757345, 3.15456867, 3.14324331, 3.12941480, 3.11366415,X =
         3.10167003, 3.08602786, 3.07424927, 3.06255317, 3.04743624, 3.03712273,

         3.02034664, 3.00651383, 3.00001884, 2.97560692, 2.96612120, 2.95461059,

         2.93431211, 2.92233706, 0.49643144, 0.48006836, 0.49415991, 0.46941942,

         0.47801661, 0.47702739, 0.47604510, 0.47386724, 0.47658002, 0.46413743,

         0.47684807, 0.46653312, 0.47030780, 0.45434538, 0.45569429, 0.45161772,

         0.45535612, 0.44744486, 0.45442498, 0.44980237, 0.44996986, 0.45574158,

         0.44432029, 0.44588098, 0.43479106, 0.44538400, 0.45508292, 0.44191003,

         0.44009739, 0.43020955}  

The ratio of the feasible solution size to the population size and the best function 

value changing with the generations for test cases G2 and G5 are shown in Figure 2-14 

and Figure 2-15 and for test cases G6 and G7 are shown in Figure 2-16. It can be clearly 

seen that the penalty scheme used in this study ensures searching toward not only a 

feasible direction but also an optimal direction, which is the most promising direction 

desired.   

As shown in Table 2-2, for test cases G2, G4, G5, G7, and G12, the ratio ρ  

between the sizes of the feasible space and the whole search space are very small. It is not 

surprising to find that no single solution is feasible in the randomly generated initial 

population. Further feasible solutions are very difficult to generate by genetic operator 

when no single solution is feasible. When one solution is forced to be feasible in the 

initial population, more and more feasible solutions will be generated due to the applied 

penalty method and tournament selection, as shown in Figures 2-15, 2-16 and 2-17. It 

does not help to force more solutions to be feasible in the initial population; it merely 

takes more initialization time, because at the second generation the population came back 
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to only one feasible solution (one solution can be kept feasible at the second generation 

due to the elitism selection) and the same search procedure happened with α =1. 

 

Figure 2-15 The ratio (%) of the feasible solution size to the population size (175) and the 

best objective function value with the generation for test cases G2 

 

Figure 2-16 The ratio (%) of the feasible solution size to the population size (175) and the 

best objective function value with the generation for test cases G5 

 57



 

              

Figure 2-17 The ratio (%) of the feasible solution size to the population size (175) and the 

best objective function value with the generation for test cases G6-2 and G7 

2.5 Application of MIEA to General Machining Processes 

2.5.1 Application to a Unified Metal Cutting Problem 

Jang D. Y. (1992) developed a unified optimization approach for selecting the 

machining parameters that provide the maximum material removal rate. The optimization 

problem was constrained by surface integrity, the surface residual stress distribution, 

condition for continuous chip formation, tool failure constraints, including tool fracture, 

tool plastic deformation, tool flank wear, and tool crater wear constraints. They can be 

formulated as follows: (Refer to Appendix A.2 and Jang 1992 for detailed models used in 

this example.) 

Maximize: 

 ( , , , ) * *=F V d f R V d f  
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Subject to: 

    Speed (continuous): 0 300 (m/min)≤ ≤V  

    Depth of Cut (continuous): 0 3 (mm)≤ ≤d  

    Feed (continuous): 0 0.7 (mm/rev)≤ ≤f  

    Tool edge radius (discrete): 0.1 0.3 (mm)≤ ≤R  

    Surface Roughness: max given≤h h  

    Dimensional Accuracy: given≤δ δ  

    Surface compressive stress:  given≥cσ σ  

    Depth of the pre-compressed layer: d d  given≥c

    Continuous chips without a built-up edge: 3≥nfV C  

    Tool flank wear constraints: 2 1≤L L  

    Tool-chip interface temperature: softening≤CT T  

    Tool fracture constraints: 1 max≤σ σ  

    Tool plastic deformation constraints: pz m≤ axT T  

The design variables are the cutting speed V , depth of cut , feed 

rate , and tool edge radius . In this work, tool edge radius is treated as a 

discrete design variable, which can be selected from 11 discrete values, {0.1, 0.12, 0.14, 

0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3}, instead of a fixed value in Jang’s work.  

(m/min) d (mm)

 (mm)f R (mm)

Jang applied Powell’s unconstrained method with the exterior penalty function to 

solve this problem. The optimal result from Jang is verified to be an infeasible result, 
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where surface roughness and surface compressive stress constraints are violated. In this 

work, those two constraints are relaxed to be the same as the work of Jang’s and the 

optimization results are compared in Table 2-5. The MIEA method achieves better results 

than those of Jang. 

Table 2-5 Comparison between the optimum solution for fine cutting 

 

 Constraints Jang (1992) MIEA  Type of 

Variable 

Feed rate  
(mm/rev) 

0 0.7≤ ≤f  0.12 0.12   continuous 

Cutting Speed 
(m/min) 

0 300≤ ≤V  217 210.307   continuous 

Depth of cut  
(mm) 

0 3≤ ≤d  2.8 3.0 continuous 

Tool edge radius 
(mm) 

0.1 0.3≤ ≤R  0.3 (fixed) 0.3 
(optimal) 

discrete 

pz
( )°T C  

pz
830≤ °T C  405.7 406.2555    

c
( )°T C  1100≤ °

C
T C  1074.2 1063.3462    

1
L  

2 1
≤L L  2.28e-005 2.21e-005  

2
L   6.51e-014 5.10e-014  

1
( )MPaσ  

1
550≤σ  33.7457 32.3362    

c
d  0.04≥

c
d  0.044 0.0436    

c
( )MPaσ  72.43

c
σ ≥ −  -72.43 -72.43  

max
( )h mµ  

max
5.89h ≤  5.89 5.89  

( )mδ µ  5≤δ  4.5998 4.8007  

MRR
3

(mm /min)   72912 75709    

 

The advantage of the proposed scheme can be further found in the other two 

aspects: First, the traditional non-linear optimization methods, such as the Powell 

method, require a good initial point; otherwise the algorithm is very likely trapped in a 
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local optimal solution. The MIEA is a population-based algorithm; a judicious choice of 

an initial point is not required. Secondly, the exterior penalty function used in Jang’s 

method needs lots of penalty parameters and careful tuning of those parameters is 

necessary; otherwise this method can easily come up with an infeasible solution or can 

terminate prematurely. Additionally, it will suffer when the “reward” of an infeasible 

solution higher than its “penalty” and the program will always end with an infeasible 

solution. The proposed MIEA, on the other hand, uses a problem independent, feasible 

superior penalty scheme; no additional penalty parameters are required and a feasible 

optimum is guaranteed.  

2.5.2 Application to a Generalized Surface Grinding Problem 

Vishnupad and Shin (1998) have developed a set of generalized models of the 

grinding process including maximum chip thickness, tangential force, grinding power, 

surface roughness, grinding ratio (G-ratio), effective dullness and grinding temperature 

for Generalized Intelligent Advisory System (GIGAS). Lee (2000) optimized surface 

grinding processes based on those generalized models.  One of the applications is to 

minimize the total grinding cost using rough grinding and finish grinding. The problem 

was constrained by the available power and G ratio in rough grinding and G ratio, 

maximum residual stress and surface finish in finish grinding.  It can be formulated as 

follows:  

Minimize Grinding Cost:  
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  ( , , , , ) ( , , , , )= +t r w t d r d f w t d f dC C v s a n N C v s a a N

( )
3600 1000

       
60 1000

w t

d t s sd d
s s

d d d td

v s a

a a b dt CM
C C

N N N N

π

    
    

+ 
× + × + + × 

 

w e w e

w w

L L b bM T
C

Tb L

G

    + +
= × × +

 

C  is the grinding cost correspondence to  for roughing cost and C  for 

finishing cost. Similarly, T  and  are the total thickness to remove and the depth of cut 

correspondence to T  and  for roughing and 

rC f

a

r ra fT  and fa  for finishing.  

Subject to: 

 0.10 0.30wv≤ ≤  

0.5 2.3ts≤ ≤

12.7 50.8da

 

≤ ≤

0.01 0.046ra

 

≤ ≤

0.01 0.046fa

 

 ≤ ≤
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Rough Grinding: 

Power:   *( ) ,       1, 2,... dP k P k N≤ =

G ratio:  *G G≥

Finish Grinding: 

Surface Roughness: *( )a aR k R≤  

Residual Stress:  *( )       1, 2,...r rk kσ σ≤ = dN

G ratio:   *G G≥

The detail models for surface roughness, grinding force and power, residual 

stress, and G ratio are listed in appendix A.3 or refer to (Lee 2000) for further details. The 

design variables in rough grinding include workpiece speed v (m/s),  crossfeed (mm), 

dressing depth a  (um), the number of grinding passes , the number of workpieces 

between dressing  and the design variables in finish grinding include workpiece speed 

(m/s), crossfeed (mm), dressing depth  (um), depth of cut 

w ts

d rn

dN

swv t da fa (mm) and the 

number of workpieces between dressing . dN

The population size was set to be 200 and the model was run for 1000 

generations. It took around 7 seconds when run on the Pentium 4 personal computer. The 

optimization results are listed in Tables 2-6 and 2-7.  

Evolutionary Strategy (ES) was used by Lee (2000) for this problem and achieved 

different optimal results. The results are not comparable to this work due to the different 

models for the accumulated sliding length (A-15, A-16) used. Those two models are not 

presented in (Lee 2000) and were cited from (Malkin 1976) in this study. The same  
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Table 2-6 Optimal variables for minimization of grinding cost 

 

Operation Design Variable Value Type of Variable 

 
wv (m/s) 0.1935 continuous 

 
ts (mm) 2.3 continuous 

Roughing 
da (um) 50.8 continuous 

 
ra  (mm) 0.0333 continuous 

 
rn  3 Integer 

 
dN  36 Integer 

 
wv (m/s) 0.30 continuous 

Finishing 
ts (mm) 2.2675 continuous 

 
da (um) 15.7423 continuous 

 
dN  37 Integer 

 

Table 2-7 Optimization results for minimization of grinding cost 

 

Operation Process Output Constrain Value Grinding 
Cost ($/pc) 

Total Cost 
($/pc) 

 (1)P  (W) 343   

Roughing (
d

P N )  (W) 400 0.6807  

 G ratio 61.388  1.3168 

 (1)
a

R  0.60   

Finishing (1)
r

σ  390.2 0.6361  

 ( )
r d

Nσ  400   

 G ratio 122.2846   

 

constraints were active in both results. The computational efficiency of Lee’s method was 

expected to be compromised by the time consuming rejection scheme used to handle the 

constraints. Michalewicz (1996) reported that the rejecting method needed more 

computational time, and it had effectiveness and stability issues. The rejecting method 
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will meet difficulty in highly constrained machining problems whose feasible space is 

small and sparse while randomly generated initial populations are mostly located in 

infeasible space and a normal genetic operator often yields infeasible offspring. 

2.6 Conclusion and Discussion 

A novel and systematic optimization scheme based on GA for hard turning 

process planning and optimization has been proposed.  The strengths of this Mixed 

Integer Evolutionary Algorithm (MIEA) are:  

The design variables are represented by the natural data types to implement a one-

gene-one-variable scheme; excessivly long binary strings are no longer needed in 

representing the design variables. This natural representation moves GA closer to the 

problem space in line with the principle of (ES) and (EP). Consequently, different 

encoding and decoding schemes for different machining problems are no longer needed; 

efficiency and effectiveness are increased and application to different machining 

problems becomes easy.  

Binary implementation is combined with the floating point implementation to deal 

with integer (discrete) and continuous design variables respectively and to take advantage 

of both bit representation of GA and real-valued representation of ES. Adaptive mutation 

and crossover is designed for integer variables, while non-uniform mutation with uniform 

crossover is adopted for continuous variables. The number of crossover points 

automatically increases with the problems’ dimension. Tournament selection with elitism 
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is used as the selection scheme to strive a balance between population diversity and 

selective pressure.  

A new integrated constraint handling method powered by α µ,)-( population 

initialization is developed. The boundary constraints are handled by an “Even-Excessive-

Distribution” Method. The equality and inequality constraints are handled by a new 

feasible superior, problem independent penalty technique. At least one solution is forced 

to be feasible in the initial population in order to uniformly distribute the initial 

population to the whole search space for highly constrained machining problems.  

Twelve numerical cases show that the proposed procedure outperforms the other 

constraint handling methods. The comparison is not really fair due to the different 

population initialization, the different selection scheme, and the different genetic operator 

used, but on the other hand the proposed approach in this work as a systematic scheme 

has shown its great performance. It searches toward not only the feasible direction but 

also the optimal direction, which is the most promising direction desired. The proposed 

scheme has also successfully applied to a unified metal cutting problem and a generalized 

grinding problem. It has shown higher performance and higher computational efficiency 

than the other methods, such as Powell’s unconstrained method with the exterior penalty 

function and evolutionary strategy (ES). 
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CHAPTER III  

HARD TURNING PROCESS MODELS 

3.1 Introduction 

Good process models in hard turning are desired in model-based process planning 

and optimization. In this chapter, hard turning process models including cutting 

temperature, 3-D oblique cutting force, tool wear rate and surface integrity (white layer 

thickness, residual stress profiles and surface roughness) are presented and some 

associated coefficients are systematically calibrated by experiments. 

Average temperatures along rake face and flank face are calculated from three 

major heat sources: primary heat source from the shear zone, secondly heat source from 

the friction zone along chip-tool interface, and third heat source from the rubbing zone 

along workpiece-tool interface. 

Total 3-D oblique cutting forces are obtained as the sum of forces due to chip 

formation and forces due to tool wear. 3-D oblique cutting geometry will be transformed 

to equivalent 2-D cutting geometry first. Then based on the equivalent 2-D cutting 

geometry, forces due to chip formation are predicted from the modified Oxley’s 

orthogonal machining theory and forces due to flank wear are computed from the 

Waldorf’s 2-D worn tool force model. Finally 3D oblique cutting force components 

decompose from total 2-D force components based on the tool geometry and coordinate 
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transformation. A Johnson-Cook equation is used as workpiece material constitutive 

equation and its constants are determined from the machining tests. 

Tool flank wear is estimated based on the Huang and Liang’s (2004a) unified 

flank wear rate model. The wear volume loss of the tool insert due to three main wear 

mechanisms in the hard turning: abrasion, adhesion and diffusion are considered and the 

flank wear rate is modeled according to the relationship between the wear volume loss 

and the cutting geometry in the 3-D oblique hard turning.  

Surface roughness is simply approximated by the Armarego and Brown (1967) 

model. However white layer formation and residual stress distribution are the products of 

complex mechanical, thermal and metallurgical processes, and it is non-trivial to develop 

the comprehensive physical/analytical models for them while modeling with 

experimentally gained knowledge can be more effective. Due to the complex nature of 

the inputs (type of coolant, insert grade, insert nose, clearance angle, rake angle, edge 

preparation, speed, feed, depth of cut, tool flank wear etc.) and outputs (white layer 

thickness, residual stress distribution), traditional regression curve fitting methods or pure 

empirical methods are not able to build up the desired relationships between process 

input and output variables. Artificial neural networks (ANNs) based on non-linear 

connectivity have emerged as promising technologies to provide an alternative way of 

modeling complex systems and processes using the experimental or practical knowledge, 

whose prediction capability could be higher than the traditional regression methods or 

pure empirical methods. Among many ANNs, back propagation neural network (BPNN) 

has been selected to model the white layer formation and residual stress distribution due 
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to its simplicity and its ability to approximate arbitrary nonlinear functions. The models 

developed based on ANNs are named as the intelligent models in this study in order to 

distinguish them from the analytical models. 

Tool flank wear is one of the most important inputs in predicting the surface 

integrity information and is a process output itself.  Hence a model with hierarchical 

structure which consists analytical models and BPNN models is required in predicting 

white layer thickness and residual stress profiles.  

Hard turning of hardened AISI 52100 bearing steels has been extensively studied 

by numerous researchers. Hardened AISI 1053 is also one of the widely used hardened 

steels; unfortunately little effort has been devoted to study its machinability. Dry turning 

of hardened AISI 1053 was performed in this study and its associated material properties 

were identified.   

 

3.2 Thermal Models 

Cutting temperatures have a controlling influence on the tool wear rate and a 

significant effect on the machined part’s performance. Hence understanding the 

temperature behavior in machining is important. There are three major heat sources 

responsible for the conversion of energy into heat in metal cutting as shown in Figure 3-

1: the primary heat source (heat source from the shear zone), the secondary heat source 

(heat source from the friction zone) along the chip-tool interface (tool rake face), and the 

third rubbing heat source along the workpiece-tool interface (tool flank face).  
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Figure 3-1 Three heat sources in metal cutting (after Huang 2002) 

Average temperature along rake face T  can be calculated from those three 

major heat sources based on the proposed methods from Boothroyd and Oxley 

(Boothroyd 1963, Boothroyd, et al. 1967, Oxley 1989):  

ra

−

 0ra sz MT T T T Tψ
−

VB= + ∆ + ∆ + ∆  (3-1) 

where  is the temperature rise due to the primary heat source: SZT∆
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* *

(1 ) s s
sz

c

F V
T

CV a t

β
ρ
−

∆ =  (3-2) 

MT∆  is the maximum temperature rise in the chip due to the secondary heat source, it can 

be estimated from the average temperature rise in the chip due to the secondary heat 

source : cT∆

 

1/ 2

2ln 0.06 0.195 0.5ln
 ∆   = − +    ∆     

M T

C

T R t

T h
δ 2 


TR t

h
 (3-3) 

 
* *c

cCV a tρ
chipFV

T∆ =   (3-4) 

VBT∆  is the temperature rise due to the third rubbing heat source: 

 
* *

CW c
VB

c

F V
T

CV a tρ
Γ

∆ =  (3-5) 

CWF  is the rubbing force along the workpiece-tool interface.  is the 

proportion of heat from the third rubbing zone transported by the chip. A value of 0.4 has 

been used in this study based on the result obtained by Boothroyd (1963).  

 (0 1)Γ < Γ ≤

Average temperature along flank face fT
−

 is calculated as a ratio of the average 

temperature along rake face: 

 71



 

 f raT T
− −

= ϒ  (3-6) 

Boothroyd (1963) and Boothroyd et al. (1967) showed a ratio of 0.82 to 0.95 (in Kelvin) 

from experimental measurements in orthogonal cutting of a tubular workpiece. Huang 

(2002) reported a value of 0.75 to 0.82 (in Kelvin) for various turning cases. A value of 

0.80 (in Kelvin) is used in this study. 

Figure 3-2 and Figure 3-3 shows the temperature prediction for the typical hard 

turning process. Hardened AISI 52100 of hardness 60 – 64 HRC and low CBN tools are 

used in those predictions with the tool geometry: the effective rake angle -25o, the 

clearance angle 5o and the nose radius 0.8mm. Figure 3-2 is the predicted average 

temperatures along the rake face with various cutting speeds for three different depths of 

cut with fresh tool, where feed rate is fixed at 0.127 mm/rev. Figure 3-3 is the predicted 

average temperatures along the flank face with various tool flank wear lengths for three 

different depths of cut, where cutting speed is fixed at 2.287 m/s and feed rate is fixed at 

0.1016 mm.  
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Figure 3-2 Average temperatures along the rake face  
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Figure 3-3 Average temperatures along the flank face with the progress of flank wear 

3.3 Force Models 

Force modeling under hard turning conditions is important for thermal modeling, 

wear rate modeling, chatter prediction, and tool condition monitoring. The hard turning 

process is normally 3-D oblique cutting with large negative rake angle and large nose 

radius. The total cutting force generally consists of three components: force due to chip 

formation, force due to ploughing and force due to sliding (which is the force due to tool 

wear). Total 3-D oblique cutting forces are estimated as the sum of forces due to chip 

formation and forces due to tool wear in this study. The magnitude of the plowing 
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component is usually negligible in comparison with the chip-formation component in 

turning process.    
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Figure 3-4 The flow chart for 3-D oblique cutting force simulation under hard turning 
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Figure 3-4 shows the computational procedure for the total 3-D oblique cutting 

forces under the hard turning condition. Given 3-D tool geometry and cutting conditions 

together with the known workpiece and tool material properties, 3-D oblique cutting 

geometry and cutting conditions will be transformed to the equivalent 2-D cutting 

geometry and cutting conditions, and then forces due to the chip formation and forces due 

to flank wear will be computed respectively and will be superimposed together to get the 

total tangential cutting force and thrust cutting force. Finally the total forces in 2-D 

equivalent cutting geometry will be decomposed to the 3-D cutting forces based on the 

tool geometry and coordinate transformation. The computation procedures will be 

detailed as follows.  

3.3.1 Equivalent 2-D Oblique Cutting Geometry and Condition for 3-D Oblique 

Cutting 

The equivalent 2-D cutting geometry, including the equivalent cutting edge 

normal rake angle *

nα , the equivalent inclination angle i , and the equivalent side cutting 

edge angle C  can be calculated from 3-D oblique cutting geometry transformation 

models as documented in (Oxley 1989, Arsecularatne et al. 1995, Arsecularatne et al. 

2000): 

*

*

s

  (3-7) * 1 ' '

0 0sin (cos sin sin sin cos )ni iη η α−= − i
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' *
* 1 0sec sin sin

sin
i iηα −  −

=  


' *

0tan cos
n

iη  (3-8) 



 

  (3-9) *

s 0sC C η= +

*

The equivalent chip flow angle is estimated based on Stabler’s flow rule (Stabler 

1951) as in Equation (3-10): 

 *

c iη =  (3-10) 

Then the equivalent undeformed chip thickness t and width of cut can be calculated 

by: 

* *w

 * * *cos ,   / cos *

s st f C w d C= =  (3-11) 

3.3.2 Forces due to Chip Formation 

Based on the equivalent 2-D cutting geometry ( *

nα , and ) and cutting 

conditions ( and w ), Oxley’s predictive 2-D orthogonal cutting force method is 

modified to predict the tangential cutting force  and the thrust cutting force  due to 

chip formation as documented in APPENDIX B in detail.  

*i *

sC

*t *

CF QF

Hence the 3-D oblique cutting forces acting in the cutting ( ), axial ( ) and 

radial ( ) directions for the fresh tool can be calculated respectively from the 2-D 

orthogonal force components as follows: 

cP aP

rP
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  (3-12) * * *,    cos sin ,    sin cosc C a Q s r s r Q s rP F P F C F C P F C F C= = + = − *

s

where: 

 

* * * * * *

* * * *

(sin cos sin tan ) cos tan

sin sin tan cos

C n c Q

r

n c

F i i F
F

i i

n cα η α
α η

− −
=

+

η

x

 (3-13) 

3.3.3 Forces due to Flank Wear 

The force components due to flank wear, that is, the forces due to sliding, are 

modeled based on the equivalent 2-D cutting geometry as well: 

 ,  (3-14) 
0

( )
VB

CW c wF l x dτ= ∫ x
0

( )
VB

QW c wF l x dσ= ∫

in which ( )w xτ , ( )w xσ  are computed based on Waldorf’s worn tool force model 

(Waldorf 1996, Waldorf et al. 1998) and are detailed in APPENDIX C.  is the cutting 

edge contact length “EFG” as shown in Figure 3-5, which can be calculated as (Huang 

and Liang 2005): 

cl
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Figure 3-5 Cutting geometry under typical hard turning condition (after Huang 2002) 

  (3-15) -1 -1

1 2 2 1  cos ( /(2 )),     - sin (( - ) / ),   ( - )cf R R doc R l Rθ θ π θ θ= = =

*

3.3.4 Total 3-D Oblique Forces  

The total 2-D orthogonal force components are the summation of the forces due to 

chip formation when the tool is fresh and the forces due to flank wear, that is: 

  (3-16) _ _
,  

C t C CW Q t Q QW
F F F F F F= + = +

Thereafter, the total cutting forces acting in the cutting ( ), axial ( ) and 

radial ( ) directions can be decomposed from the total 2-D orthogonal force 

components as follows: 

_c tP _a tP

_r tP

  (3-17) * * *

_ _ _ _ _ _ _ _,    cos sin ,    sin cosc t C t a t Q t s r t s r t Q t s r t sP F P F C F C P F C F C= = + = −
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where: 

 

* * * * * *

_

_ * * * *

(sin cos sin tan ) cos tan

sin sin tan cos

C t n c Q t n

r t

n c

F i i F
F

i i

_ cα η α
α η

− −
=

+

η
 (3-18) 

The shear angle and the shear flow stress will be determined from the established 

force model as well. The other process information, such as heat intensity of the rubbing 

heat source ( q ), and the average stress (r σ ) along the worn tool face could be computed 

as in Equation (3-19) and (3-20): 

 CW c
r

c

F V
q

VBl
=  (3-19) 

 
cVBl

 (3-20) CWFσ =

_ *c t cP P V

Based on the estimated cutting forces, the cutting power can be simply obtained as in 

Equation (3-21): 

 =  (3-21) 
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3.3.5 Constitutive Equation of Workpiece Material 

The constitutive equation of hardened steels is represented by the Johnson-Cook 

equation (Johnson and Cook 1983) as in equation (3-22): 

 ( ) 1 ln 1

m

n r

o m r

T T
A B C

T T

εσ ε
ε

    −= + + −   −   


 

 (3-22) 

This constitutive model could capture the strain hardening behavior, strain rate 

effect and softening at high temperature of the hardened steels under the high strain, high 

strain rate and high temperature machining conditions.  

Its constants ( ,  ,  ,  ,  A B C m n ) are determined based on the machining tests by 

minimizing the least square errors between the predicted and experimental force 

components for the forces due to chip formation only. 

3.3.6 Experimental Results 

A series of experiments was performed to determine the unknown Johnson-Cook 

parameters of AISI 1053 with hardness of 58 - 60 HRC and to verify the proposed force 

models in finish hard turning process. 

Dry turning of hardened 1053 was performed on a horizontal lathe (Hardinge T-

42) with Kennametal low CBN tool inserts (KB5625). The tool holder was a Kennametal 

DCLNR – 164C which provides a 5 o side cutting-edge angle, a 5 o end cutting-edge 
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angle, a negative 5 o back rake angle, and a negative 5 o side rake angle. A kistler 9257B 

dynamometer was mounted on the tool post to measure the 3-D oblique cutting forces.  

Determination of the workpiece material properties 

KB5625 (Kennametal CNGA432S0420) has a nose radius of 0.8mm, a chamfer 

length of 0.1mm, and a negative chamfer angle of 20o. Hence the effective rake angle is - 

25 o, and inclination angle is -5 o. 

Test matrix as shown in Table 3-1 is used to calibrate the unknown constants of 

the Johnson-Cook Equation ( ) for hardened AISI 1053. They are 

determined by minimizing the least square errors between the measured 3-D cutting 

forces and predicted 3-D cutting forces for the fresh tool as shown in Equation (3-23): 

,  ,  ,  ,  A B C m n

 ( ) ( ) ( )2 2

, , , , , ,min c m c p a m a p r m r pP P P P P P
  − + − + −    

∑
2

 (3-23) 

Table 3-1 Calibration test matrix  

Speed 

(m/s) 
Feed 

(mm/rev) 
DOC 

(mm) 

T1 2.033 0.076 0.127 

T2 2.033 0.127 0.127 

T3 2.541 0.076 0.127 

T4 2.541 0.127 0.127 
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The established force model requires several other physical constants for 

workpiece and cutting tool material. These are given in Table 3-2.  

Table 3-2 Physical properties of workpiece and cutting tool 

 Low PCBN tool 
(Shatla 2001) 

AISI 1053 
(HRC 58 - 60) 

Density ( /  3Kg m ) 4370.1 7870 

Thermal conductivity ( / )W m k⋅  44 51.9 - 0.0298T  

Specific heat capacity ( / )J Kg k⋅  750 486 0.504T+  

 ( )mT k   1760 

 

The resulting Johnson-Cook constants for hardened AISI 1053 are given in Table 3-3.  

Table 3-3 Resulting Johnson-Cook constants for hardened AISI 1053 

A = 447.6 (MPa) 
B = 69.1   (MPa) 
n = 0.453 
C = 0.030 
m = 2.978 

 

Further experiments as shown in Table 3-4 have been conducted to verify the 

established force model with fresh tool inserts based on the determined Johnson-Cook 

constants for hardened AISI 1053. The comparisons are shown in Figure 3-6, 3-7 and 3-

8.  
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Table 3-4 Verification test matrix 

 Speed 

(m/s) 
Feed 

(mm/rev) 
DOC 

(mm) 

V1 1.524 0.102 0.102 

V2 1.524 0.152 0.152 

V3 2.287 0.051 0.102 

V4 2.287 0.102 0.152 

V5 3.049 0.051 0.152 

V6 3.049 0.152 0.102 

 

As listed in Table 3-5, the average error for cutting force prediction is 8.2%; that 

for radial force prediction is 22.7% and that for axial force prediction is 15.4%.  

Maximum prediction errors up to 21.2%, 44.0% and 32.1% for cutting, radial and axial 

force respectively occur for test case V3 where feed rate and depth of cut is very small, 

which are 0.051mm/rev (0.002ipr) and 0.102mm (0.004inch) respectively. Relatively 

large prediction errors up to 13.2%, 33.1% and 18.1% happen for test case V5, where 

feed rate is very small, which is 0.051mm/rev (0.002ipr). When the tool with large nose 

radius and large negative rake angle is used with very small values of feed rate and depth 

of cut as in test cases V3 and V5, the ploughing effect is rather pronounced and 

contributes a large portion of the total cutting forces. Unfortunately the force components 

due to the ploughing effect are not addressed in the established force model.  
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Figure 3-6 Cutting force comparison when turning hardened 1053 steel  
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Figure 3-7 Radial force comparison when turning hardened 1053 steel 
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Figure 3-8 Axial force comparison when turning hardened 1053 steel 

Table 3-5 Prediction errors for the verification tests 

Pc Pr Pa 

 
Error (%) Error (%) Error (%) 

V1 9.4 22.4 14.1 

V2 0.2 1.5 13.8 

V3 21.3 44.9 32.1 

V4 4.3 15.9 2.5 

V5 13.2 33.2 18.2 

V6 1.2 18.7 11.9 

Average 8.3 22.7 15.4 

 

Validation for the total cutting forces  

Total cutting forces with the progress of flank wear were measured for cutting 

conditions of: cutting velocity = 2.287 m/s, feed rate = 0.051 mm/rev, and depth of cut = 

0.1016 mm.  KB5625 (Kennametal CNGA434S0420) is used which has nose radius of 

1.6 mm, chamfer length of 0.1mm, and negative chamfer angle of 20o. Tool wear is 

 86



 

measured by a Zygo NewView 200 microscope. The total cutting forces including forces 

due to the chip formation and forces due to the flank wear. The estimated cutting, radial 

and axial forces are 25.4N, 32.4N, 6.8N respectively with the fresh tool. And the 

measured and predicted total cutting forces with the progress of flank wear are shown in 

Figure 3-9, 3-10 and 3-11 where experimental data are given by circles and model 

predictions by lines.  

Another case is shown in Figure 3-12 with the same tool geometry and cutting 

conditions of: cutting velocity = 1.601 m/s, feed rate = 0.127 mm/rev, and depth of cut = 

0.1016 mm. The estimated cutting, radial and axial forces are 63N, 82N, 15N 

respectively with the fresh tool. 

Overall, the developed model gives reasonably good results. However the forces 

at larger flank wear are all underestimated. One of the error sources could be 

accumulated from the tool wear measurements.   
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Figure 3-9 Total tangential cutting forces with the progress of flank wear (cutting 

velocity = 2.287 m/s, feed rate = 0.051 mm/rev, and depth of cut = 0.1016 mm)  
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Figure 3-10 Total radial forces with the progress of flank wear (cutting velocity = 2.287 

m/s, feed rate = 0.051 mm/rev, and depth of cut = 0.1016 mm) 
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Figure 3-11 Total axial forces with the progress of flank wear (cutting velocity = 2.287 

m/s, feed rate = 0.051 mm/rev, and depth of cut = 0.1016 mm)  
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Figure 3-12 Total cutting forces with the progress of flank wear (cutting velocity = 1.601 

m/s, feed rate = 0.127 mm/rev, and depth of cut = 0.1016 mm)  
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3.4 Tool Wear Models 

3.4.1 Computational Procedure  

With the process information predicted by the thermal model and overall cutting 

force model, the tool flank wear rate can be estimated for every specific tool flank wear 

length as Equation (3-24) from Huang and Liang (2004a). The wear volume loss of the 

tool insert due to three main wear mechanisms in the hard turning: abrasion, adhesion and 

diffusion are considered and the flank wear rate is modeled according to the PCBN tool 

geometry.  

 
1

273(cot tan )

( tan )

Q

f f

K
n

aT Ta
abrasion c adhesion c diff cn

t

HR
K K V VB K e V K V VBe

dt VB R H

γ α σ σ
γ

− −−−
+

  +  = + +  −    

dVB
  

  (3-24) 

Based on the flank wear rate model, flank wear length can be predicted as the 

initial value problem as in Equation (3-25). Initial flank wear length after the break-in 

period is assumed to be 10 mµ . 

 1 , , , cutting condition, tool geometryn nn n n

dVB
VB VB VB T t

dt
σ

− −

+
 = + ∆ 
 

 (3-25) 

 90



 

Figure 3-13 shows a unified approach for flank wear prediction. Knowing the tool 

and workpiece material properties (including Johnson-Cook constants and the calibrated 

wear coefficients), cutting condition, and tool geometry; process information (including 

shear angle, the shear flow stress, the normal stress, the rubbing heat source, average 

cutting temperature along flank face, etc) can be predicted from the established thermal 

and force models. With all this information, flank wear rate can be estimated based on the 

wear rate model as Equation (3-24) and new flank wear length can be predicted after a 

time interval as Equation (3-25). Non-uniform time steps should be applied to 

compensate non-uniform wear rate during the whole tool life. Inasmuch as the new flank 

wear length will be fed back to the thermal and force models to update the process 

information due to the progression of the tool wear, a new wear rate can be estimated 

based on the updated process information and new flank wear length. The iteration goes 

on until the end of the cutting to get a final flank wear length.  
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Figure 3-13 The unified approach for the flank wear prediction 
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3.4.2 Calibration for Wear Coefficients  

The coefficients of the wear rate model ( ) are not 

general and should be determined for any workpiece and tool insert combination. They 

can be calibrated from the experiment by minimizing the least square errors between the 

predicted and measured tool wear data. 

,abrasionK ,adhesionK  ,diffK ,a QK

Three cutting tests as shown in Table 3-6 are performed to calibrate the unknown 

wear coefficients for hardened AISI 1053 with hardness 58 – 60 HRC and Kennametal 

low CBN tool insert KB5625. KB5625 tool inserts with geometry specified as 

CNGA432S0420, CNGA433S0420 and CNGA434S0420 were used for test case 1, 2 and 

3 respectively. All three inserts have -20o and 0.1mm wide edge chamfer with different 

tool nose radius of 0.8mm, 1.2mm and 1.6mm. The tool holder was a Kennametal 

DCLNR – 164C. Turning without cutting fluid was performed on a horizontal lathe 

(Hardinge T-42).  The flank wear progressions are measured at each test case with a Zygo 

NewView 200 optical microscope.   

Table 3-6 Calibration cutting tests for wear coefficient calibration 

Tool Geometry Cutting Condition   

Chamfer 
angle 

Insert nose 
(mm) 

Cutting speed 
(m/s) 

Feed rate 
(mm/rev) 

Depth of cut 
(mm) 

1 20 0.8 3.05 0.102 0.152 

2 20 1.2 1.52 0.152 0.203 

3 20 1.6 2.29 0.051 0.102 
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Figure 3-14 A typical curve of flank wear progression with the cutting time 

The unknown coefficients of the flank wear rate model are determined by 

minimizing the least square errors between the measured wear rates and predicted wear 

rates at the different flank wear lengths as in Equation (3-26). Figure 3-14 shows a typical 

curve of flank wear progression with cutting time. There are three stages of the tool wear 

behavior: transient, steady state and unstable. In the transient stage, wear rate is relatively 

high. In the steady state, wear rate becomes approximately constant. And in the unstable 

stage, wear rate rises abruptly where temperature at the trailing end of the wear land 

reaches the thermal softening point of the workpiece material (Shaw 2002). In finish hard 

turning, the tool usually fails before the unstable stage due to the chipping or broken 

conditions. The wear data collected in the transient period could vary quite a lot and those 

in the steady state are more repeatable. Hence only the wear rate data in the steady state 

are used to calibrate the wear coefficients in this study. 
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2

, ,

min
VB m VB p

dVB dVB

dt dt

      −     
       

∑  (3-26) 

The calibrated wear coefficients for hardened AISI 1053 with KB5625 tool are 

listed in Table 3-7.  

Table 3-7 Calibrated wear coefficients 

abrasionK  2.2638e-8 

adhesionK  8.3046e-15 

 diffK  1.9580e+7 

a  2.5385e-3 

QK  20304 

 

The predicted flank wear progressions and wear rates (only wear rate  values on 

steady state are listed) are compared with the measured ones based on the calibrated wear 

coefficients for test case 1, 2, and 3 in Figure 3-15, where triangular markers represent 

the measurements and solid lines represent the predictions. 
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Figure 3-15 The comparison of measured and predicted flank wear and wear rate for test 

case 1, 2, and 3 (from top to bottom) based on the calibrated wear coefficients 
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3.5 Surface Integrity Models 

3.5.1 Surface Roughness 

In most hard turning applications, cutting takes place only along the tool nose 

radius, hence the surface roughness ( Ra ) equation from (Armarego and Brown 1967) is 

adopted: 

 
2

32

f
Ra

R
≈  (3-27) 

Dawson (2002) proved its validity in predicting surface roughness during hard 

turning of AISI 52100 in his experimental work. Additionally, it is assumed that the 

surface roughness will not deteriorate with the progress of the tool wear.  

3.5.2 White Layer Formation and Residual Stress Distribution 

Experimental data for white layer formation and residual stress distribution from 

the industrial site (Delphi Corporation) were used in this work to establish the BPNN 

models. In this section, back propagation neural network will be introduced first, and then 

the details of the experimental procedures in the industrial site and modeling schemes for 

both white layer thickness and residual stress profile prediction are presented. Prediction 

results are discussed and compared with the experimental results. Finally, a hierarchical 

modeling scheme needed in predicting surface integrity information is illustrated.   
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Back propagation neural network (BPNN)  

The back propagation algorithm as a learning procedure executes the model 

training equations based on iterative processes, and thus can be easily implemented on a 

computer (Kartalopoulos 1996).  

BPNN with biases, an input layer, a sigmoid hidden layer, and a linear output 

layer are capable of approximating any function with a finite number of discontinuities 

(Mathworks, 2002). Hence a general topology of the network including an input layer 

(the inputs to the network), a hidden layer with sigmoid transfer function and an output 

layer (the outputs from the network) with linear transfer function as shown in Figure 3-16 

is selected in this study. 1f  represents a sigmoid transfer function and 2f  represents a 

linear transfer function. This general topology has R  inputs (input neurons),  neurons 

in the hidden layer and  output (output neurons).  are the connection weights 

between input layer and hidden layer and  are the connection weights between hidden 

layer and output layer. b  and  are the bias for the first and second layers, which are 

set as zero in this study. 

1S

2S

1

j

1,

1

,i jw

2

,i jw

2

jb

... 2 Rp p p  are the R inputs. Here the superscript represents the 

layer number and the subscript represents the neuron number. 

The output from the neuron j  in the hidden layer is: 
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Figure 3-16 A general topology of BPNN with input layer, one hidden layer and output 

layer (after Mathworks 2002) 

  (3-28) ( )1 1 1

1 ,    1, 2...j ja f n j S= =

1 1 1 1where    ,    1, 2...
R

n w p b j S= + =∑  ,

1

j i j i j

i=

And output j from the output layer is:  

 ( )2 2

2 ,    1, 2...j ja f n j S= = 2  (3-29) 
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1

2 2 1 2 2where   ,    1, 2...
S

n w a b j S= + =∑ ,

1

j i j i j

i=

2

ja  are the actual outputs from the BPNN. n  and  are defined as the potentials of 

neuron j at the first and second layer respectively. 

1

j

2

jn

The connection weights:  and j  and the biases  and b  (if applied) are 

randomly generated initially, hence the actual output from BPNN will be very far from 

the desired output. Those connection weights and biases will be updated during the BNPP 

training session in order to achieve the most desirable output from the network, which is 

also referred to the learning process (biases are set as zero in this study).   

1

,i jw 2

,iw 1

jb 2

j

During the model training session, a pair of sample patterns is applied: ( ),k kX T ,  

where kX  is the input pattern and T  the target/desired output pattern. They can be 

represented as: 

k

2

1 1( ) ( )

. .

. ,    .

. .

( ) ( )

k k

R S

p k t

X T

k

p k t k

  
  
  
  = =
  
  
     

  

The input pattern is presented to the first layer (input layer) and is processed to 

the hidden layer by a linear combination followed with a sigmoid transfer function to 

produce an output which in turn becomes an input to the neurons of output layer to obtain 
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the actual output. The difference between the actual output and the desired output yields 

an error signal. This error signal depends on the connection weights and biases used in 

the network layers. The main purpose of the learning process is to minimize this error by 

updating the values of those weights. The algorithm recalculates the weights at the last 

layer and continues computing the error and updating weights moving backward, toward 

the input layer, until the input layer is reached (Back-Propagation Learning). The training 

for all input-output patterns will be repeated until the error between the actual output 

from the neural network and the desired output diminishes to a specified bound or other 

stopping criteria are met.  

The weights of BPNN are updated based on a gradient descent algorithm, as in 

Equation (3-27). The other standard optimization techniques have been used in BPNN as 

well, such as conjugate gradient and Newton methods.  

 q

ij q

ij

E
w

w
λ ∂

∆ = −
∂

 (3-30) 

Where  for the topology used in this study. 1,2q = λ  is the learning rate with 

value 0 1λ< <

,k

.  is the error function, which is defined as in Equation (3-31) for a 

pattern ( )

E

kX T : 

 

2

2

1

1
( ) ( ( ))

2

S

r r

r

E k a t k
=

= −∑ 2  (3-31) 
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Hence the weights could be updated based on the partial derivative of the error 

function, which can be analytically obtained by the generalized chain rule as detailed 

below: 

 

q

j

q q

ij j ij

nE E

w n wq

∂∂ ∂
=

∂ ∂ ∂
 (3-32) 

Substitute Equation (3-32) back to the Equation (3-30): 

 

q

jq

ij q

j i

nE
w

n w
λ

q

j

∂∂
∆ = −

∂ ∂
 (3-33) 

Where the first part as in Equation (3-34) is defined as the error signal:  

 q

j q

j

E

n
ψ ∂

= −
∂

 (3-34) 

The second part gives:  

 

( 1)

( 1) ( 1)

1

( )

qq k
j q q q

rj r iq q
rij ij

n
w a a

w w

−

− −

=

∂ ∂
=

∂ ∂ ∑ =  (3-35) 

The error term can be computed using the chain rule: 
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As , the second term of gives: ( )q

j q ja f n= q )(q

jψ
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∂
=
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 (3-37) 

The first term 
q

j

E

a

∂
∂

has two possible computations based on the given topology in 

this study: 

2q =  

 

2

2 2 2

2 2
1

1
( ( ( )) ) (
2

S

r r j j

rj j

E
a t k a t k

a a =

∂ ∂
= − =

∂ ∂ ∑ )−

2

j

 (3-38) 

Then:  

 2 2

2( ( ) ) '( )j j jt k a f nψ = −  (3-39) 

Hence:  

  (3-40) 2 2

2( ( ) ) '( )ij j j j iw t k a f nλ∆ = − 2 1a
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1q =  

In order to use the error terms of layer 2q = , we can write: 
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 (3-41) 

Then, 

 

2

1 2 2

1

1

( ) '(
S

j r jr

r

W f a1 )jψ ψ
=

= ∑  (3-42) 

And,  

  (3-43) 

2

(1) (2) (2) (1)

1

1

( ) '( )
S

ij r jr j i

r

w w f nλ ψ
=

∆ = ∑ ( )p k

Hence, the connection weights will be updated based on Equation (3-40) and (3-

43). The number of neurons in the hidden layer and the value of the learning rate are 

selected in order to minimize the model’s training and verification error as in equation (3-

44): 
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= − + −∑ ∑  (3-44) 

White layer formation 

Experimental Procedure 

Inner Diameter (ID) bore finish turning of inner rings was carried out in a vertical 

turning center on hardened AISI 52100 bearing steel with hardness of HRC 60 to 62. The 

bore diameter was 41 mm and length was 15 mm. The depth of cut was fixed to be 0.25 

mm. There are five main factors that could drastically affect the white layer formation in 

finish hard turning: 1 Insert grade 2 tool geometry, including rake angle, clearance angle, 

nose radius and edge preparation (chamfer length and angle for chamfered tool and hone 

radius for honed tool); 3 cutting conditions, including cutting speed, feed rate and depth 

of cut; 4 tool wear progression; 5 type of cooling method. Consequently, eight factors 

including type of cooling method (two levels, represented as A1 and A2), insert grade 

(three levels, represented as B1, B2 and B3), insert nose (three levels, represented as C1, 

C2 and C3), clearance angle (three levels, represented as D1, D2 and D3), rake angle 

(two levels, represented as E1 and E2), edge preparation (three levels, represented as F1, 

F2 and F3), cutting speed (three levels, represented as G1, G2 and G3, where 

G1<G2<G3), and feed rate (three levels, represented as H1, H2 and H3, where 

H1<H2<H3), are selected as control factors and tool wear is considered as a noise factor 

at two levels (fresh and worn). L18 (2137) orthogonal matrix is used as experimental 
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Table 3-8 Experimental design matrix (L18) 
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Factors 1 2 3 4 5 6 7 8 9 

1 F A1 B1 C1 D1 E1 F1 G1 H1 10 

2 W A1 B1 C1 D1 E1 F1 G1 H1 261.9 

3 F A1 B1 C2 D2 E2 F2 G2 H2 10 

4 W A1 B1 C2 D2 E2 F2 G2 H2 445.4 

5 F A1 B1 C3 D3 E1 F3 G3 H3 10 

6 W A1 B1 C3 D3 E1 F3 G3 H3 339.4 

7 F A1 B2 C1 D1 E2 F2 G3 H3 10 

8 W A1 B2 C1 D1 E2 F2 G3 H3 480.8 

9 F A1 B2 C2 D2 E1 F3 G1 H1 10 

10 W A1 B2 C2 D2 E1 F3 G1 H1 397.8 

11 F A1 B2 C3 D3 E1 F1 G2 H2 10 

12 W A1 B2 C3 D3 E1 F1 G2 H2 397.2 

13 F A1 B3 C1 D2 E1 F3 G2 H3 10 

14 W A1 B3 C1 D2 E1 F3 G2 H3 386.9 

15 F A1 B3 C2 D3 E2 F1 G3 H1 10 

16 W A1 B3 C2 D3 E2 F1 G3 H1 558 

17 F A1 B3 C3 D1 E1 F2 G1 H2 10 

18 W A1 B3 C3 D1 E1 F2 G1 H2 308.7 

19 F A2 B1 C1 D3 E1 F2 G2 H1 10 

20 W A2 B1 C1 D3 E1 F2 G2 H1 486.8 

21 F A2 B1 C2 D1 E1 F3 G3 H2 10 

22 W A2 B1 C2 D1 E1 F3 G3 H2 455.6 

23 F A2 B1 C3 D2 E2 F1 G1 H3 10 

24 W A2 B1 C3 D2 E2 F1 G1 H3 340.7 

25 F A2 B2 C1 D2 E1 F1 G3 H2 10 

26 W A2 B2 C1 D2 E1 F1 G3 H2 570.2 

27 F A2 B2 C2 D3 E1 F2 G1 H3 10 

28 W A2 B2 C2 D3 E1 F2 G1 H3 287.9 

29 F A2 B2 C3 D1 E2 F3 G2 H1 10 

30 W A2 B2 C3 D1 E2 F3 G2 H1 527.8 

31 F A2 B3 C1 D3 E2 F3 G1 H2 10 

32 W A2 B3 C1 D3 E2 F3 G1 H2 447.6 

33 F A2 B3 C2 D1 E1 F1 G2 H3 10 

34 W A2 B3 C2 D1 E1 F1 G2 H3 491.9 

35 F A2 B3 C3 D2 E1 F2 G3 H1 10 

36 W A2 B3 C3 D2 E1 F2 G3 H1 1113.8 
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Table 3-9 Confirmation run 
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Factors 1 2 3 4 5 6 7 8 9 

1 F A1 B1 C3 D1 E1 F1 G1 H3 10 

2 W A1 B1 C3 D1 E1 F1 G1 H3 228.7 

3 F A1 B3 C3 D1 E1 F2 G1 H3 10 

4 W A1 B3 C3 D1 E1 F2 G1 H3 206.1 

                   Where: “F” means fresh tool and “W” means Worn tool 

 

layout based on Taguchi Method as shown in Table 3-8. Additional two tests were 

carried out as confirmation runs/validation cases as in Table 3-9.   

There are a total of 20 runs. In each run, 100 pieces were cut with 5 paths. White 

layer thickness was measured after 1st and 500th cuts using optical microscope and tool 

wear was measured after 500th cut using a SmartScope Flash video gage. Tool flank wear 

VB = 10 was assumed after the 1mµ st cut. The machined surface in each test is sectioned, 

mounded, polished and etched in order to reveal the microstructure for white layer 

measurement. The thickness of the white layer is not uniform and its depth was measured 

at several points along the machined surface to get an average value. 

Modeling Scheme 

A general topology structure with input layer, one hidden layer, and the output 

layer as stated in previous section is used in this model. There are nine 

inputs { }1 2 3 4 5 6 7 8 9, , , , , , , ,=X x x x x x x x x x to represent cooling method, insert grade, insert 
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nose radius, clearance angle, rake angle, edge preparation, cutting speed, feed rate and 

tool flank wear and one outputs O 1{ }o= to represent white layer thickness (WL). All 

inputs and outputs need to be normalized within (-1, +1) to facilitate the convergence. 

There are 36 training sample patterns and 4 verification sample patterns.  

First, the initial connection weights will be generated randomly, and then BPNN 

will be trained with 36 experimental data (input-output pattern) to update the connection 

weights to achieve the desired output. After the system has been successfully trained, the 

final weights will be established and stored. Then, the established model will be verified 

by the remaining 4 verification data to check its generalization capability.  

Results and Analysis  

The actual output from the established BPNN model for the training samples 

(Experiment 1 to 18) and the verification samples (Experiment 19 – 20) of worn tools are 

shown in Figure 3-17, where the results from linear regression are included as well for 

comparison. The overall prediction including training data sets and verification data sets 

have 12.4% error for intelligent model and 24.5% error for linear regression model. 

Hence the intelligent model based on BPNN achieves higher performance than the 

traditional linear regression method.  
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Figure 3-17 Comparison between the experimental and prediction results 

White Layer Thickness Prediction Toolbox 

Based on the established intelligent model, a white layer thickness prediction 

toolbox has been built for future predictions. Its interface is shown in Figure 3-18. Both 

“Linear regression” and “Intelligent prediction” methods have been integrated in this 

toolbox. Any combination of “Type of Coolant”, “Insert Grade”, “Nose Radius”, 

“Clearance Angle”, “Rake Angle”, “Tool Strength”, “Speed” “Feed” and “Flank wear 

length” can be selected to predict the possible white layer thickness. When linked to the 

database where new experimental or practical data are stored, the BPNN model can be 

retrained based on the new available data to improve its prediction fidelity.     
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Figure 3-18 White layer thickness prediction toolbox 

Residual stress distribution 

Experimental Procedure 

Outer Diameter cuttings were performed in a vertical turning center. AISI 1053 

and AISI 1070 bearing steels were used as machining specimens. Both AISI 1053 and 

AISI 1070 were induction hardened to 58 ~ 62 HRC prior to machining. Two types of 

low CBN content inserts (CBN KDO50 and CBN KB5625) were used in the experiment. 

There are nine factors considered in the experiment: cooling methods (three levels, 

represented as A1, A2, A3), workpiece material (AISI 1053 and AISI 1070), insert grade 
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(CBN KDO50 and CBN KB5625), nose radius (two levels, represented as B1, B2), edge 

preparation – chamfer angle (three levels, represented as C1, C2, C3), cutting speed 

(three levels, represented as D1, D2, D3), feed rate (three levels, represented as E1, E2, 

E3), depth of cut (three levels, represented as F1, F2, F3) and tool flank wear. It is very 

important to have an appropriate experimental design in order to minimize the number of 

runs and meanwhile train the ANN with enough information to explore the permissible 

ranges for all the inputs. Experimental design using the Taguchi Method has been 

adopted in this work as shown in Table 3-10. 

Circumferential ( ) and longitudinal (Cσ Lσ ) residual stresses were measured 

using X–ray diffraction techniques with a Proto XRD 3000 Residual Stress Analyzer. 

Stresses were read at five depths (0, 5.08, 12.70, 25.40, 50.80 mµ ) along the workpiece. 

Residual stress profiles were approximated using smooth lines through those five points. 

There are a total of 12 runs. For each run, circumferential and longitudinal 

residual stress profiles were measured at fresh tool (after cutting the first piece, tool flank 

wear VB = 10 was assumed) and worn tool (after cutting 150 pieces, tool flank wear 

was measured using a SmartScope flash video gage). Thus, there are a total of 23 

experimental data points available (one experimental data point was failed due to early 

tool breakage), where 21 data points (runs 1,2,3,4,5,6,7,8,9,10,11) will be used as the 

training samples in the BPNN, and 2 data points (run 12 fresh and worn) will be used for 

model verification. 

mµ
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Table 3-10 Experimental design matrix 

Coolant Workpiece Tool Insert Tool Nose Chamfer Cutting Speed Feed Rate DOC Flank Wear

Radius Angle (SFPM) (in/rev) (inch) (um)

Factors 1 2 3 4 5 6 7 8 9

1 F A1 1053 CBN  KD050 B1 C1 D1 E2 F2 10

W A1 1053 CBN  KD050 B1 C1 D1 E2 F2 139

2 F A2 1070 CBN  KD050 B1 C2 D2 E1 F1 10

W A2 1070 CBN  KD050 B1 C2 D2 E1 F1 205

3 F A3 1053 CBN  KD050 B1 C3 D3 E3 F3 10

W A3 1053 CBN  KD050 B1 C3 D3 E3 F3 326

4 F A2 1053 CBN  KD050 B2 C3 D1 E2 F1 10

W A2 1053 CBN  KD050 B2 C3 D1 E2 F1 116

5 F A3 1053 CBN  KD050 B2 C1 D2 E1 F3 10

W A3 1053 CBN  KD050 B2 C1 D2 E1 F3 386

6 F A1 1070 CBN  KD050 B2 C2 D3 E3 F2 10

W A1 1070 CBN  KD050 B2 C2 D3 E3 F2 168

7 F A3 1053 CBN  KD5625 B1 C2 D1 E1 F2 10

W A3 1053 CBN  KD5625 B1 C2 D1 E1 F2 485

8 F A1 1053 CBN  KD5625 B1 C3 D2 E3 F1 10

W A1 1053 CBN  KD5625 B1 C3 D2 E3 F1 184

9 F A2 1070 CBN  KD5625 B1 C1 D3 E2 F3 10

W A2 1070 CBN  KD5625 B1 C1 D3 E2 F3 897

10 F A2 1053 CBN  KD5625 B2 C2 D1 E3 F3 10

W A2 1053 CBN  KD5625 B2 C2 D1 E3 F3 322

11 F 3 1070 CBN  KD5625 B2 C3 D2 E2 F2 10

W A3 1070 CBN  KD5625 B2 C3 D2 E2 F2 failed

12 F A1 1053 CBN  KD5625 B2 C1 D3 E1 F1 10

W A1 1053 CBN  KD5625 B2 C1 D3 E1 F1 193  

Where: “F” means fresh tool and “W” means Worn tool 

 

Modeling Scheme 

The modeling scheme is shown in Figure 3-19. Longitudinal ( Lσ ) and 

circumferential ( σ ) residual stresses have been measured at five depths in the 

experiment to approximate the residual stress profiles. The behavior of the residual stress 

is different at different depths along the workpiece. In order to precisely describe the 

behavior of the residual stress distribution along the workpiece depth, five sub-BPNNs 

have been adopted to learn the different behavior at the different depths. Each BPNN 

predicts one σ  and at one depth, five 

C

C Lσ Cσ  and Lσ are predicted for five different 
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depths. Longitudinal (σ ) and circumferential (L Cσ ) residual stress profiles are generated 

using smooth lines through those five data points.   

{

A general topology structure with input layer, one hidden layer, and the output 

layer is selected. There are nine inputs }1 2 3 4 5 6 7 8 9, , , , , , , ,=X x x x x x x x x x

1 2{ ,=O o o

to represent 

cooling method, workpiece material, insert grade, tool nose radius, chamfer angle, cutting 

speed, feed rate, depth of cut and tool flank wear; and two outputs to represent 

 and σ . All inputs and outputs need to be normalized within (-1, +1) to facilitate the 

convergence. There are 21 sample patterns to train each sub BPNN. The other 2 sample 

patterns (run 12) are reserved for model verification. 

}

Cσ L

Each BPNN will be trained using experimental data (input-output pattern), which 

is referred to the learning process. After the system has been successfully trained, the 

final weights will be established and stored. Circumferential ( Cσ ) and longitudinal ( Lσ ) 

residual stress profiles can be predicted based on the finalized/stored weights. 
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Figure 3-19 Intelligent modeling scheme 

Results and Analysis  

The optimal number of neurons in the hidden layer and the learning rate, the sum 

of the absolute training errors and percentage errors for each BPNN are shown in Table 

3-11. The sum of the absolute errors and percentage errors from linear regression 

methods are included as well for comparison. BPNN models achieve much smaller errors 

at all the depths than those of the linear regression methods, especially at the depth 1 and 

2 where tensile residual stresses tend to be generated. The proposed BPNN method is 
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able to identify the tensile residual stresses generated at the workpiece surface while 

linear regression method has difficulty in predicting the tensile residual stresses.  

Table 3-11 Training results for each BPNN 

 

BPNN Linear regression  Number 
of neurons 

Learning 
rate Sum 

errors 
Percentage 
errors (%) 

Sum 
errors 

Percentage 
errors (%) 

Depth 1 9 0.75 110.156 9.7 438.774 38.9 

Depth 2 12 0.35 131.556 8.0 550.715 33.3 

Depth 3 11 0.4 147.663 6.7 325.415 14.9 

Depth 4 9 0.9 138.927 5.5 172.711 6.8 

Depth 5 16 0.65 94.286 3.2 104.602 3.6 

 

The trained circumferential (CRS) and longitudinal (LRS) residual stress profiles 

(dotted curve) from the BPNN are compared with the experimental profiles (solid curve) 

as shown in Figure 3-20 for test cases: run 6 and run 7 and Figure 3-21 for test case: run 

9. The results (dashed curve) from linear regression method are also included in the 

figure for comparison. The trained BPNN system and the established linear regression 

model are used to predict the residual stress profiles for run 12. The results are compared 

in Figure 3-22. All the results shown in the figures are normalized to a fixed value. 
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Figure 3-20 Training results for test cases: run 6 and run7: measured residual stress 

profiles (solid lines), prediction by intelligent model (dotted lines) and prediction by 

regression model (dashed lines) 
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Figure 3-21 Training results for test case: run 9: measured residual stress profiles (solid 

lines), prediction by intelligent model (dotted lines) and prediction by regression model 

(dashed lines) 
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Figure 3-22 Verification results for run 12: measured results (solid lines), prediction by 

intelligent model (dotted lines) and prediction by regression model (dashed lines) 

Residual stress profiles predicted from the intelligent model are sufficiently 

accurate for all the cases and have much higher performance relative to the linear 

regression model.  

BPNN1 has been used to predict the surface residual stress; its prediction results 

are tabulated in Table 3-12 for worn tools, including the training cases and the 

verification cases (run 12, which are bolded in the table). Results from the linear 

regression are included as well for comparison. As can be seen from the table, the 

proposed model can precisely predict surface residual stress with 7.8% error in 

circumferential residual stress and 8.1% error in longitudinal residual stress, while the 

 117



 

linear regression model has 1111.4% error in circumferential residual stress and 20.6% 

error in longitudinal residual stress. 

Table 3-12 Surface residual stress prediction (normalized) 

 Circumferential (worn tool) Longitudinal (worn tool) 

Run 
Case Experiment 

Model 
Prediction 

Regression 
Prediction Experiment

Model 
Prediction 

Regression
Prediction

1 0.1167 0.1585 -0.1611 -0.3537 -0.2955 -0.4349 

2 -0.3357 -0.2747 -0.1105 -0.5940 -0.5581 -0.5147 

3 -0.4260 -0.2775 -0.4390 -0.4097 -0.3360 -0.3264 

4 -0.0180 0.0783 -0.1949 -0.2935 -0.2831 -0.4635 

5 0.0915 0.1465 0.1001 -0.7105 -0.8050 -0.5581 

6 0.3313 0.4207 -0.0669 0.2562 0.1469 -0.0205 

7 -0.1483 -0.1317 0.0074 -0.8356 -0.9397 -0.6200 

8 0.0469 0.0521 -0.3937 -0.1470 -0.2523 -0.2694 

9 0.7072 0.6949 0.9581 0.3236 0.1352 0.2583 

10 0.0600 0.0486 -0.1491 -0.1767 -0.2496 -0.2445 

12 0.3231 0.3134 -0.1147 -0.4156 -0.4811 -0.5729 

Error 

(%)  7.8 1111.4  8.1 20.6 

 

Tool flank wear is found to be the most critical factor affecting the residual 

stresses. Tool insert type and tool geometry are found to be very strong effect factors 

while workpiece material and cutting condition are found to be weaker effect factors on 

the residual stress distribution. Residual stresses tend to be tensile with the progression of 

the tool flank wear. With the proposed intelligent model, the onset of the tensile residual 

stress for the specific conditions can be predicted. As shown in Figures 3-23 and 3-24, 

two cases have been studied.  
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Case study 1 is dry turning of hardened AISI 1053 with KB5625 low CBN tool 

insert. The tool has nose radius of 0.8 mm, negative chamfer angle of 15o, back rake 

angle of -5o, and clearance angle of 5o. Cutting Condition is cutting speed 1.524 m/s, feed 

rate 0.1016 mm/rev and depth of cut 0.1016 mm. Flank wear is 149 µ at the onset of 

the tensile residual stress. Case study 2 is dry turning of hardened AISI 1070 with 

Kennametal KD050 low CBN tool insert. The tool has nose radius of 1.6 mm, negative 

chamfer angle of 20

m

o, back rake angle of -5o, and clearance angle of 5o. Cutting Condition 

is cutting speed 2.287 m/s, feed rate 0.1524 mm/rev and depth of cut 0.2032 mm. Flank 

wear is 98 µ at the onset of the tensile residual stress. Therefore with integrated tool 

flank wear model, it is possible to predict the quantity of the pieces cut before the onset 

of the tensile residual stress at the workpiece surface.  
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Figure 3-23 Onset of tensile residual stress for case study 1 

 119



 

-1.5

-1

-0.5

0

0 20 40

Depth (um)

S
tr

e
s
s

 

0.5

60

Circumferential
Longitudal

Figure 3-24 Onset of tensile residual stress for case study 2 

Residual Stress Profile Prediction Toolbox 

An easy-to-use prediction toolbox, as illustrated in Figure 3-25, has been designed 

with the developed intelligent model embedded. When linked to a database, the 

embedded intelligent model can be automatically retrained with accumulated 

experimental and practical process data stored in the database to further improve its 

prediction capability. The developed toolbox can not only be used to study the residual 

stress distribution for certain process setting, but can also be used for machining quality 

online control.  
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Figure 3-25 The prediction toolbox for residual stress profile 

Hierarchical modeling scheme 

Tool flank wear is one of the inputs in the established BPNN models to predict 

the white layer thickness and residual stress profiles, which is also a process output in 

itself and should be predicted in the simulation. A flank wear prediction model as 

presented in Section 3.4 should be integrated in predicting white layer thickness and 

residual stress profiles. Hence a model with hierarchical structure which consists of 

analytical models and BPNN models as shown in Figure 3-26 is required.  

 121



 

Given workpiece material and tool insert type together with the tool geometry 

(clearance angle, back rake angle, insert nose radius and edge preparation) and cutting 

conditions (cutting speed, feed rate and depth of cut), tool flank wear can be estimated 

based on the unified approach detailed in Section 3.4, and then the predicted flank wear 

length will be used as one of the inputs to the BPNN models together with the other 

process inputs (tool geometry and cutting condition) to predict the white layer thickness 

and residual stress profiles. 
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Figure 3-26 A hierarchical modeling structure  
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3.6 Conclusion 

Hard turning process models are indispensable in providing the process 

information in process planning and optimization. In this chapter, hard turning process 

models, including thermal model, 3-D oblique cutting force model, tool wear rate model 

and surface integrity models (including surface roughness, white layer thickness, and 

residual stress profiles) are addressed.  

Average temperatures along rake face and flank face are calculated from three 

major heat sources in metal cutting. 3-D oblique cutting forces are modeled by taking 

modified Oxley’s machining theory and Waldorf’s worn tool force model as its kernel. A 

unified approach in modeling the CBN tool flank wear rate from Huang et al. (Huang and 

Liang 2004a) is used to estimate the tool flank wear progression in hard turning. Surface 

roughness is determined by feed rate and tool nose radius. BPNN models are constructed 

based on the experimentally accumulated knowledge in predicting the white layer 

thickness and residual stress profiles; the prediction results from BPNN models match the 

experimental results well, and much higher performance relative to the conventional 

linear regression method has been achieved. A hierarchical structure is needed in 

prediction white layer thickness and residual stress profiles to integrate the tool wear 

information. Dry turning of hardened AISI 1053 with KB5625 tool inserts is performed 

on a horizontal lathe in order to determine its Johnson-Cook parameters and wear 

coefficients. 
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CHAPTER IV  

HARD TURNING PROCESS PLANNING AND OPTIMIZATION 

4.1 Introduction 

The objective of hard turning process optimization is to design optimal tool 

geometry (edge preparation, rake angle, clearance angle, tool nose radius, etc) and cutting 

condition (cutting speed, federate, and depth of cut) to achieve specific performance 

goals (such as minimum cost per part, maximum production rate) with satisfactory 

surface finish (surface roughness, white layer thickness and residual stress distribution) 

and any other practical constraints in finish hard turning processes. 

Based on the developed optimization algorithm in Chapter 2 and process models 

in Chapter 3, two case studies have been implemented for finish hard turning process 

planning and optimization. The first case is to achieve minimum cost per part and 

maximum production rate simultaneously in outer diameter finish turning of hardened 

AISI 52100. The second case is to achieve maximum material removal rate, minimum 

tool wear, and best surface finish simultaneously in finish turning of hardened AISI 1053. 

The optimal process conditions determined for the second case are verified by 

experiments in order to demonstrate the capability and feasibility of the developed 

methodology.  
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The overall framework of process optimization is shown in Figure 4-1. Given 

material properties of workpiece and tool together with initial randomly generated cutting 

conditions and tool geometries, cutting temperatures and 3D oblique cutting forces will 

be predicted. Tool flank wear length can be calculated based on the process information 

estimated from the thermal and force models. Experimental knowledge from the 

experimental database will be used to train the BPNN in order to establish the process 

models for white layer thickness and residual stress profile prediction. Based on the 

specified process performance goals, further cutting conditions and tool geometries will 

be generated from the optimization algorithm to search for the optimal cutting condition 

and tool geometry until the stopping criteria are met. Finally, optimal cutting condition 

and tool geometry will be reached and process information such as cost per part, cycle 

time per part, final tool wear, and surface integrity (surface roughness, white layer 

thickness, and residual stress profile) will be given. 
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Figure 4-1 Overall process optimization flow chart 

4.2 Case Study 1 

Process optimization of inner ring outer diameter (OD) finish hard turning with 

low CBN tool insert (Kennametal KB5625) is studied here. The inner ring is made of 

hardened AISI 52100 steel with hardness 60 – 64 HRC, a diameter of  (mm), and a D
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length of (mm). Required stock removal (depth of cut ) is 0.25mm. The objective 

is to design the optimal cutting condition (cutting speed V  and federate

L doc

c
f ), tool 

geometry (back rake angle α , chamfer angle ϕ , clearance angle γ and tool nose radius 

R ) and the number of parts cut per insert  to achieve minimum cost per part and 

maximum production rate.  

N

The material properties for hardened AISI 52100 are listed in Table 4-1. The 

parameters of Johnson-Cook model for AISI 52100 from Dawson (2002) are used. They 

were determined by minimizing the least square errors between the measurements in 

orthogonal machining tests and the predictions from the modified Oxley’s 2-D 

orthogonal model. The wear coefficients for hardened 52100 bearing steel with KB5625 

tool insert were recalibrated with the experimental data from Huang (2002) based on the 

method elaborated in Section 3.2.3, the reference temperature is defined as 300k.  

The wear coefficients calibrated by Huang (2004a) for hardened 52100 and 

KB5625 tool insert are not readily applicable here. The main reason is due to the different 

thermal and force models applied in Huang’s work and in this study. Hence different 

process information is estimated which are the inputs to the flank wear prediction model. 

Large prediction errors can be expected when using wear coefficients from Huang 

(2004a), which were calibrated based on his thermal and force models. Those wear 

coefficients should be recalibrated based on the thermal and force models used in this 

study to maintain consistency. A better calibration scheme should be applied to avoid this 

unsystematic scheme.        
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Table 4-1 Material properties of AISI 52100  

Specific heat capacity ( / )J Kg k⋅   475 0.504T+  

Thermal conductivity ( / )W m k⋅  46.6 - 0.0298T  

Density  3( /Kg m ) 7827  

Melting point  (  )k 1760 

A ( )MPa 688.2  

B ( )MPa 150.8 

C 0.043 

m 2.779 

Parameters of Johnson-
Cook Model (Dawson, 
2002) 

n 0.336 

abrasionK  4.4286e-7 

adhesionK  6.8356e-16 

 diffK  3.7779e+7 

a  7.0689e-3 

Wear Coefficients with 
Kennametal KB5625 
tool insert 

QK  509050 

  

The optimization is subject to several constraints. First, tool geometry could be 

selected only from several discrete values which are listed as the standard design from 

Kennametal’s category. The cutting condition is subjected to the recommended range for 

practical finish hard turning applications. The process is also constrained by the required 

surface integrity (surface roughness, white layer thickness, and residual stress), maximum 

allowable tool flank wear and available horsepower.  

Tool life is mainly determined by the tool flank wear criteria (Groover 1975, 

Huang 2004c) or Taylor’s generalized equation (Ermer 1987, Gopalakrishnan 1991, 

Dawson 2002), and the number of parts cut per insert is computed directly from the tool 

life. However, several factors may limit the tool life and therefore affect machining cost. 

In a finishing process, surface integrity (surface roughness, white layer thickness, and 
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residual stress) is often of great concern because of its impact on product performance. A 

tool insert should be changed when a chipping or broken condition happens or when it 

cannot generate desired surface integrity before the tool fails. Hence, the number of parts 

cut per insert  should be determined by maximum allowable tool flank wear length and 

required surface integrity.  

N

The optimization problem can be formulated as: 

Minimize:  

* *
( , , , , , , ) 0.5 0.5

p t
c

p t

C t
f R V f N

C t
α ϕ γ = +

 

 
N

 (4-1) ' '( ) t
p m w t

C
C C C t= + +

 
machf N

 (4-2) mach ct
t load

t t
t t= + +

 
1000 c

mach

DL
t

fV
 (4-3) 

π
=

Subject to: 

1.5244(m/s)/300(sfpm) 3.0488(m/s)/600(sfpm)cV≤ ≤  
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0.0508(mm/rev)/0.002(ipr) 0.1524 (mm/rev)/0.006(ipr)f≤ ≤  

{ }0.4mm, 0.8mm, 1.2mm, 1.6mmR ∈  

{ }o o0 ,  -5α ∈  

{ }o o o0 , -15 , -20ϕ ∈  

{ }o o o o o o o o5 , 8 , 10 ,12 , 16 , 20 ,25 , 30γ ∈

*VB≤

*

a a

 

Flank wear length: VB  

Surface roughness:   R R≤

*( )k WL≤

*

max ( )C Ck

White layer thickness:  WL  

Maximum circumferential residual stress:   σ σ≤

*

max ( )L LkMaximum longitudinal residual stress:   σ σ≤

*( )P k PHorse Power:  ≤  
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where   1, 2,...k N=  

The parameter values used for this optimization problem are listed in Table 4-2. 

The population size was chosen to be 100 and run for 1000 generations. The residual 

stress models were established only for hardened AISI 1053 and AISI 1070, which is 

used to predict the residual stress profiles for hardened AISI 52100 as well.  

The optimal values of the design variables are listed in Table 4-3 and the process 

outputs of the optimal design are listed in Table 4-4. Predicted circumferential and 

longitudinal residual stress profiles for the last workpiece ( ) (before the tool change) 

are shown in Figure 4-2.  

N

Though the process models are computationally expensive, the proposed Mixed-

Integer Evolutionary Algorithm has excellent search capability and computational 

efficiency. It took around 11.23 minutes when run on a Pentium 4 personal computer. 

The Evolutionary Strategy with rejecting constraint handling method which has been 

applied in grinding process optimization by Lee and Shin (2000) will be very ineffective 

in this problem with computationally expensive process evaluation. Numerous solutions 

have to be generated and evaluated in order to find one feasible offspring with rejecting 

constraint handling method for this highly constrained problem.  

 

 

 131



 

Table 4-2 Parameters used for this optimization problem 

Symbol Definition Value 

D  Diameter of Inner Ring (mm) 50.518 

L  Length of Inner Ring (mm) 20 
*

pC  Target cost per part ($/pc) 10 

*

tt  Target cycle time per part (min/pc) 10 

'

mC  Machine related cost ($/min) 0.3472 

'

wC  Labor related cost ($/min) 0.7 

tC  Cost of a single cutting edge ($/edge) 23 

loadt  Loading time (min/part) 0.75 

machf  Fraction of active machining time once loaded 
(%) 

75 

ctt  Tool change time (min) 1.5 

*VB  Maximum flank wear length allowed ( mµ ) 250 
*

aR  Maximum surface roughness allowed ( mµ ) 0.8 

*WL  Maximum white layer thickness allowed ( mµ ) 3 
*

Cσ  Maximum circumferential residual stress 
allowed (MPa) 

0 

*

Lσ  Maximum longitudinal residual stress allowed 
(MPa) 

0 

*P  Maximum horsepower  allowed (W) 1119 

 

Table 4-3 Optimal design variable values 

Design Variable Value Type of 
Variable 

Rake angle α  5°−  Discrete 

Chamfer angle ϕ  20°−  Discrete 

Clearance angle γ  30°  Discrete 

Nose radius R  1.2mm Discrete  

Cutting speed  cv 600(sfpm)/3.0488(m/s) Continuous 

Federate f  0.006(ipr)/0.1524(mm/rev) Continuous 

N  560 Integer 
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Table 4-4 Optimization results  

Process Output Constraint 
Value 

Process Output Constraint 
Value 

(1)P  (W) 618.15 
max ( )C Nσ  (Mpa) -0.79 

( )P N  (W) 836.72 
max (1)Lσ  (Mpa) -38.56 

VB ( mµ ) 229.82 
max ( )L Nσ  (Mpa) -20.21 

aR  ( mµ ) 0.605 3( / miMRR mm n) 6969.5 

(1)WL ( mµ ) 0 Objective 0.094637 

( )WL N  ( mµ ) 1.42 Cost per part 
($/pc) 

0.9883 

max (1)Cσ  (Mpa) -138.21 Cycle Time 
(min/pc) 

0.9045 
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Figure 4-2 Predicted circumferential and longitudinal residual stress profiles for the last 

workpiece  

The optimal chamfer angle and tool nose radius given in this work are comparable 

with the experimental results from Shintani et al. (1989). Shintani et al. investigated the 

optimal CBN tool geometry: the angle of negative land (negative chamfer angle), the 

width of negative land, the nose radius and the honing radius for fine turning of 
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carburized steel bar on the basis of tool life. Tool flank wear length and surface 

roughness were used as tool life criteria, respectively. The same constraints have been set 

for the tool flank wear length and surface roughness in this work. It was found in Shintani 

et al. (1989) that tool life indicated by both tool flank wear and surface roughness first 

increased as negative chamfer angle was increased until the chamfer angle reached 30-

35o and then decreased as negative chamfer angle continued to increase. It is reasonable 

to find the optimal rake angle as -5o and chamfer angle as -20o in this work. Tool life 

indicated by tool flank wear increased as nose radius was increased and remained 

constant for nose radius larger than 0.8mm, while tool life indicated by surface roughness 

reached a maximum when nose radius was 0.8mm. Optimal nose radius in this work is 

found to be 1.2mm, because white layer thickness and residual stress distribution of the 

finished surface are also considered as factors limiting the tool life, including surface 

roughness. Larger nose radius was found to produce smaller white layer thickness and 

better residual stress profiles.  

Liu and Mittal (1998) optimized the cutting condition (speed, feed, and depth of 

cut) to achieve the maximum fatigue life and maximum material removal rate for rolling 

contact under the constraint of surface roughness in superfinish hard turning of through 

hardened 52100 steel. The optimal cutting speed is mostly 600 – 650 sfpm for different 

roller bearing applications as selected from 200sfpm to 650sfpm; this is comparable to 

the optimal speed (600sfpm) in this work. The optimal feed is mostly 0.0005 – 0.001 ipr 

as selected from 0.0005ipr to 0.005ipr; which deviate from the optimal feed (0.006 ipr) in 

this work. 
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4.3 Case Study 2 and Experimental Verification 

The main purpose of this case study is to check and establish the validity of the 

developed methodology for hard turning process optimization by experiment. The 

process used for experimental validation is finish turning of hardened AISI 1053 (58 – 60 

HRC) with Kennametal low CBN tool KB5625. The length of cut is 25.4 mm/1 inch and 

initial bar diameter is 48.00 mm/1.890 inch. The objective is to select the optimal tool 

geometry (chamfer angle ϕ  and tool nose radius R ) and cutting condition (cutting speed 

 and federatecV f ) to achieve maximum material removal rate, minimum tool wear and 

best surface finish (considering surface roughness only) after turning 100 passes. The 

back rake angle is -5o, clearance angle is 5o and depth of cut is 0.1016mm.  

The problem can be mathematically formulated as: 

Minimize:  

1 2 3( , , , ) * * *c t t t

MRR VB Ra
f R V f w w w

MRR VB Ra
ϕ = − + +  

Subject to: 

1.5244(m/s)/300(sfpm) 3.0488(m/s)/600(sfpm)cV≤ ≤  

0.0508(mm/rev)/0.002(ipr) 0.1524 (mm/rev)/0.006(ipr)f≤ ≤  
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{ }0.8mm, 1.2mm, 1.6mmR ∈  

{ }o o o0 , -15 , -20ϕ ∈

320 /

 

Material Removal Rate:  MRR mm s≥

250 mFlank wear length: VB  µ≤

Surface roughness:   1.2aR mµ≤

1w ,  and  are the weighting factors, 2w 3w 1 1.0w = , ,  were 

chosen in this case study. 

2 1.0w = 3 1.0w =

tMRR , VB  and t tRa  are the target material removal rate, flank 

wear limitation and surface roughness limitation respectively. They are selected to be:  

350 / ,  250 ,  1.5t t tMRR mm s VB m Ra mµ µ= = =  

The overall experimental validation scheme is shown in Figure 4-3. First total of 

nine cutting tests designed based on Taguchi Method as in Table 4-5 were performed in 

the experiment. Cutting force, tool wear and surface roughness will be monitored and the 

measured results will be compared with the prediction results from the prediction models 

used in the optimization scheme. If the results do not match, prediction models will be 

recalibrated/recorrected to match the measured results. Thus the evaluation for the 
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validity of the process planning and optimization methodology affected by process 

models can be minimized. After that, optimal design will be computed based on the re-

corrected prediction models using the developed optimization algorithm. The constraints 

will be tightened by taking the prediction errors under consideration to ensure the 

feasibility of the optimal solution. The optimal solution from the simulation will be run 

experimentally and its experimental results will be compared with the other nine 

experimental results based on the specified process performance goals used in the 

optimization scheme to verify its optimality.  
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Figure 4-3 The experimental validation scheme for process optimization 
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Table 4-5 The test matrix for optimization validation  

TC# Insert 
Type 

Chamfer 
Angle 

Insert 
Nose 
(mm) 

Cutting 
Speed 
(m/s) 

Feed 
Rate 

(mm/rev) 

Depth of 
Cut  

(mm) 

TC1 CNGA432S 0 0.8 1.524 0.0508 0.1016 

TC2 CNGA433S 0 1.2 2.287 0.1016 0.1016 

TC3 CNGA434S 0 1.6 3.049 0.1524 0.1016 

TC4 CNGA432S0415 15 0.8 2.287 0.1524 0.1016 

TC5 CNGA433S0415 15 1.2 3.049 0.0508 0.1016 

TC6 CNGA434S0415 15 1.6 1.524 0.1016 0.1016 

TC7 CNGA432S0420 20 0.8 3.049 0.1016 0.1016 

TC8 CNGA433S0420 20 1.2 1.524 0.1524 0.1016 

TC9 CNGA434S0420 20 1.6 2.287 0.0508 0.1016 

 

The validation scheme including experimental procedure, prediction verification, 

model recalibration/recorrection and optimal design validation will be presented as 

follows.   

4.3.1 Experimental Procedure 

Finish dry turning was performed on a horizontal lathe (Hardinge T-42). Solid 

bars of AISI 1053 with 152.4 mm/6 inch length and 48.56 mm/1.912 inch diameter were 

used, which have been through hardened to 60 HRC. All bars were first clean cut to 

48.00 mm/1.890 inch to remove the scale from heat treatment and initial out-of-

roundness. Then the turning was carried out for 20 passes for every inch length (25.4 

mm) at the 0.004inch (0.1016mm) depth of cut up to total five inches. Hence there were a 

total of 100 passes at 1 inch length of cut. The diameter of the bar was reduced from 

1.890 inch/48.00mm to 1.730 inch/43.94mm.   
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3-D oblique cutting forces were recorded with a kistler 9257B dynamometer. 

Surface roughness was measured with a contact profilometer and tool flank wear was 

measured with a surface microscope (Zygo New View 200). They were all monitored 

after cutting 2, 4, 7, 10, 20, 40, 60, 80 and 100 passes.        

Hardness Testing 

Solid bars of AISI 1053 were through hardened to 60 HRC. Unavoidably, the 

hardness achieved is uneven from the outer surface toward the middle of the bar. 

Hardness tests on the material were performed with Micromet 2100 series Microhardness 

Tester to check the hardness consistency from the outer diameter to the diameter of 

41.91mm/1.650 inch.  

 Microhardness Tester has two operation modes: Vickers (HV) and Knoop (HK) 

operation. Vickers (HV) operation is selected with applied load of 2000gf. The measured 

value will be converted to HRC scale and displayed in the screen. Readings were taken at 

four different diameters for five times and the testing values are shown in Table 4-6. 

Table 4-6 Averaged hardness readings of AISI 1053 solid bar 

Diameter 
(mm/inch) 

#1 #2 #3 #4 #5 Average  
(HRC) 

48.13/1.895 59.8 59.2 60.1 59.5 58.9 59.5 

45.34/1.785 60.2 59.9 57.5 57.1 58.0 58.5 

43.94/1.730 57.6 59.7 58.3 56.4 58.4 58.1 

41.96/1.652 54.0 52.1 57.0 54.8 55.3 54.6 
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As can be seen, hardness values are within the target values (58 to 60 HRC) from 

the outer diameter to the diameter of 43.94 mm/1.730 inch. Hence, the solid bars were 

turned from diameter 48.00 mm/1.890 inch down to 43.94mm/1.730 inch only in order to 

keep the hardness within the target values.    

4.3.2 Model Verification and Recalibration 

Model Verification for Cutting Force 

 The measured 3-D cutting forces are compared with the predicted values for those 

nine test cases at the second pass (flank wear was assumed to be 20 um for all the cases) 

in Figure 4-4, 4-5 and 4-6. 
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Figure 4-4 Cutting force comparison when turning hardened 1053 steel  
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Figure 4-5 Radial force comparison when turning hardened 1053 steel 
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Figure 4-6 Axial force comparison when turning hardened 1053 steel 

The prediction values match the measured ones very well (the force data for test 

case #5 were not measured) with the average error for cutting force prediction 7.7%, 

radial force prediction 20.2% and axial force prediction 20.9%. Prediction errors increase 

at the smaller value of feed rate where plouing effect pronounces.  
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Model Verification for Tool Wear 

 The calibrated wear coefficients for hardened AISI 1053 with KB5625 low CBN 

insert in Section 3.2 are used to predict the flank wear progression. The predicted results 

are compared with the measured ones in Figure 4-7, where triangular is the measurements 

and solid line is the predictions. As suggested from those Figures, the calibrated flank 

wear model predicts the tool flank wear progression pretty well. The average prediction 

error of the final flank wear length after cutting 100 passes of all the test cases is 10.3%. 
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Figure 4-7 The comparison of flank wear progression for test cases 1, 3, 4, 5, 6, 7, 8, 9 

(from top to bottom and from left to right)  
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Model Verification and Recalibration for Surface Roughness 

Surface roughness was monitored with the progression of the tool wear for each 

test. The measured results are shown in Figure 4-8. For test case 4, 6, 8, and 9, surface 

roughness increases with the progression of tool wear at early stage and reaches to a 

relatively stable value at later stage. For test case 3 and 7, surface roughness remains 

relatively constant with the progression of tool wear. However for test case 1 and 5, 

surface roughness first decreases with the progression of tool wear and increases after a 

certain flank wear value. Hence, the variation of surface roughness with the progression 

of tool wear varies from the case to case and the assumption where surface roughness 

will not deteriorate with the progression of tool wear is not valid.   

Additionally, as shown in Figure 4-9, the measured surface roughness values 

greatly deviate from the model prediction from Equation (3-27), where the initial and 

average surface roughness from the measurement are compared with the prediction 

results. Consequently, the model for surface roughness needs to be recorrected in order 

for predicted values to match the measured results better. The major focus herein is to 

verify the optimization results from the developed methodology instead of building an 

accurate prediction model. Therefore, an empirical model is simply built based on those 

eight experimental results as shown in Equation (4-4), where average surface roughness 

values during the hard turning are used: 

 0

x y z

cRa R f R V=  (4-4) 

 144



 

0.5

0.6

0.7

20 40 60 80 100 120 140

Flank wear length (um)

R
a
 (

u
m

)

0.8

0.7

0.9

1.1

1.3

20 40 60 80 100 120

Flank wear length (um)

R
a
 (

u
m

)

1.5

 

1.2

1.3

1.4

1.5

1.6

1.7

20 40 60

Flank wear length (um)

R
a
 (

u
m

)

0.2

0.3

0.4

0.5

0.6

20 60 100 140 180

Flank wear length (um)
R

a
 (

u
m

)

 

0.7

0.8

0.9

1.0

40 60 80 100 120

Flank wear length (um)

R
a
 (

u
m

)

0.7

0.9

1.1

1.3

1.5

40 60 80 100 120 140

Flank wear length (um)

R
a
 (

u
m

)

 

0.7

0.9

1.1

1.3

1.5

0 20 40 60 80 100

Flank wear length (um)

R
a
 (

u
m

)

0.4

0.6

0.8

1.0

1.2

40 60 80 100 120 140 160

Flank wear length (um)

R
a
 (

u
m

)

 

Figure 4-8 Measured surface roughness with flank wear progression for test case 1, 3, 4, 

5, 6, 7, 8, 9 (from left to right and from top to bottom)  
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The values of 0R , x , ,  were determined to be 2.474, 0.503, -0.143, 0.420. 

The empirical model implicates that not only feed rate and tool nose radius will affect 

surface roughness but cutting speed also plays a critical role. Prediction results from the 

recalibrated model are also compared with measured results in Figure 4-9, which match 

the experimental data much better with average prediction error of 14.1%.      
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Figure 4-9 The comparison of measured and predicted surface roughness for test case 1, 

3, 4, 5, 6, 7, 8, 9   

4.3.3 Optimal Results and Experimental Validation 

The developed mixed integer evolutionary algorithm was applied to solve the 

optimization problem in this case. The developed and recalibrated process models and the 

related coefficients in finish turning of hardened AISI 1053 with KB5625 were used. In 
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order to ensure the feasibility of the optimal results, tool wear and surface roughness 

constraints are tightened by taking the model prediction error into consideration. For 

example, the required surface roughness should be smaller than 1.2 mµ , and there is an 

average 14.1% prediction error from the model used in the optimization scheme. In order 

to ensure part surface roughness smaller than the required value, the surface roughness 

constraint is tightened to be: 1.2/(1+0.141) =1.0 mµ . Similarly, tool flank wear constraint 

is tightened to be 250/(1+0.1) ≈  227 mµ .         

The optimal results from the simulation are shown in Table 4-7. The surface 

roughness constraint is an active constraint which will limit the selection of tool nose 

radius, cutting speed and federate.  

Table 4-7 Optimization results for case study 2 

Design Variable Optimal Value 

Nose Radius Nose 4 (1.6 mm) 

Chamfer Angle -  20°

cV  315 (sfpm)/1.6006 (m/s) 

f  0.005 (ipr)/0.1270 (mm/rev) 

 

The simulated optimal results were compared with the other eight non-optimal 

conditions listed in Table 4-5, the comparison results are shown in Table 4-8 (Chatter 

happened at test case #2 after cutting several passes, hence comparison for this test case 

were not included). As can be seen, the predicted process output matches the 

experimental results fairly well. In the simulation, test cases 3, 4, 6, 7, 8 achieve smaller 
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objective values; however they are all infeasible solutions. The test cases 3, 4, 7, 8 violate 

the surface roughness constraints both in simulation and experiment, test case 6 violate 

the constraint for required material removal rate.      

The predicted optimal results had distinguished to be optimal not only in the 

simulation but also in the experiment. Hence the reliability and validity of the proposed 

methodology for hard turning process planning and optimization are proved 

experimentally.  
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Table 4-8 Results of experimental validation for case study 2 

Objective 
Condition Process Output Predicted Experiment 

Predicted Experiment 

MRR ( ) 3 /mm s 20.7 20.7 

 ( )VB mµ  91.4 83.4 Optimal 

 ( )Ra mµ  0.998 1.198 

0.6180 0.7192 

MRR ( ) 3 /mm s 7.9 7.9 

 ( )VB mµ  152.9 142.9 TC1 

 ( )Ra mµ  0.681 0.628 

0.9076 0.8332 

MRR ( ) 3 /mm s 47.2 47.2 

 ( )VB mµ  96.3 116.5 TC3 

 ( )Ra mµ  1.434 1.326 

0.3972 0.4058 

MRR ( ) 3 /mm s 35.4 35.4 

 ( )VB mµ  91.2 85.0 TC4 

 ( )Ra mµ  1.403 1.650 

0.5921 0.7322 

MRR ( ) 3 /mm s 15.7 15.7 

 ( )VB mµ  178.2 177.8 TC5 

 ( )Ra mµ  0.860 0.603 

0.9721 0.7986 

MRR ( ) 3 /mm s 15.7 15.7 

 ( )VB mµ  91.2 110.0 TC6 

 ( )Ra mµ  0.874 0.882 

0.6335 0.7130 

MRR ( ) 3 /mm s 31.5 31.5 

 ( )VB mµ  114.8 138.3 TC7 

 ( )Ra mµ  1.291 1.210 

0.6899 0.7306 

MRR ( ) 3 /mm s 23.6 23.6 

 ( )VB mµ  86 95.0 TC8 

 ( )Ra mµ  1.117 1.229 

0.6167 0.7273 

MRR ( ) 3 /mm s 11.8 11.8 

 ( )VB mµ  172.6 160.0 TC9 

 ( )Ra mµ  0.731 0.804 

0.9417 0.9398 
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4.4 Conclusion  

Process planning and optimization is crucial to help establish the economic and 

quality viability of hard turning process as a potential replacement for grinding. Based on 

the developed optimization algorithm in Chapter 2 and the process models in Chapter 3, 

two case studies have been implemented in this Chapter. Kennametal KB5625 low CBN 

tool insert is used for both case studies.  

First case is to design tool geometry and select cutting conditions for inner ring 

outer diameter (OD) finish hard turning to achieve minimum cost per part and maximum 

production rate. The inner ring is made of hardened AISI 52100 steel with hardness 60 – 

64 HRC. The optimal results for this case study showed its rationality by comparing with 

the other documented experimental and analytical work.  

Second case is to optimize the finish hard turning of hardened AISI 1053 with 

hardness of 58 – 60 HRC. The main purpose of this case study is to check the validity of 

the developed methodology by experiment. In the evaluation, both optimal and other nine 

non-optimal conditions were performed experimentally. Cutting force, tool wear and 

surface roughness were monitored in the experiments. The prediction results for cutting 

force components and tool wear progression match the experimental results pretty well; 

however surface roughness prediction greatly deviates from the measured values. An 

empirical model was reestablished for surface roughness and the optimal result was 

obtained based on the reestablished surface roughness model. The predicted optimal 

results had distinguished to be optimal not only in the simulation but also in the 
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experiment. Hence the reliability and validity of the proposed methodology for hard 

turning process planning and optimization are proved experimentally.  

It is also demonstrated that the proposed Mixed Integer Evolutionary Algorithm 

has excellent search capability and computational efficiency for the mixed-integer, highly 

constrained, highly non-linear, non-explicit, and not analytically differential optimization 

problems presented in hard turning process planning and optimization.  
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CHAPTER V  

INTELLIGENT ADVISORY SYSTEM FOR HARD TURNING 

PROCESSES 

5.1 Introduction  

An intelligent advisory system, named IAS101, for hard turning process planning 

and optimization is developed as shown in Figure 5-1. The goal of the developed system 

is to consolidate all the accumulated knowledge and data (including experimental, 

numerical and analytical knowledge) gathered from the NIST-ATP Project entitled 

“Enabling Technologies for Lean Manufacturing of Critical Hardened Steel 

Applications” into one user-friendly software package with prediction and optimization 

functions which could be used to predict the hard turning process variables and to help 

run critical hard turning processes in an optimal manner given specific objectives and 

practical constraints.  

The current Intelligent Advisory System has two modules: a prediction module 

and an optimization module. A training module and a database module are separated 

modules and have not been integrated into system yet. Some of the advantages of IAS101 

are: 

 simplicity and easy to use, 
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 running in a PC environment, 

 a very short calculation time for both process prediction and optimization, 

 allowing for the customized tool insert and workpiece material selection, 

 allowing for the use of customized tool geometry and cutting conditions, 

 predicting the hard turning process variables needed in practice, and 

 generating the results in organized format and with graphics in case of predicted 

residual stresses’ profiles (stress vs. depth). 

 

Figure 5-1 Intelligent Advisory System for Hard Turning Process 

The functionality of the developed system is limited by the available knowledge 

and data. The current system could easily be extended to a more comprehensive system 

once more knowledge and data are accumulated to predict hard turning process 
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performance. In the mean time, IAS101’s major functions have already been 

implemented for most commonly used workpiece materials and tool inserts.   

5.2 Intelligent Advisory System  

The structure of the IAS101 program is illustrated in Figure 5-2 and Figure 5-3. 

The program has two major functions: prediction and optimization. Input parameters for 

the prediction module are: tool insert grade (or user defined tool insert), workpiece 

material (or user defined workpiece material), wear coefficients for this combination of 

tool insert and workpiece material, tool geometry (insert nose radius, edge preparation, 

rake angle, and clearance angle), cutting condition (cutting speed, feed rate and depth of 

cut), process condition (length of cut, part diameter, number of part to be cut). The 

outputs from the prediction module are: cutting temperature, 3-D cutting force 

components, tool flank wear, surface roughness, white layer thickness, circumferential 

and longitudinal residual stress profiles.  

The input parameters required for the optimization module are: tool insert grade 

(or user defined tool insert), workpiece material (or user defined workpiece material), 

wear coefficients for this combination of tool insert and workpiece material, process 

condition (length of cut, part diameter), boundary constraints for cutting condition, 

available tool geometry (the standard tool geometries from Kennametal tool catalog are 

listed in current IAS101 system), process requirements and practical constraints 

(including maximum allowable tool crater wear, tool flank wear, surface roughness, 

white layer thickness; available horsepower; required residual stress profiles), economic  

 154



 

 

IAS101

Prediction Module Optimization Module 

Input Parameters 

for Prediction 

Output Parameters 

from Prediction

Tool 

Workpiece 

Process Parameters 

Tool Insert 

Tool Geometry 

Workpiece Material 

Wear Coefficients 

Cutting Condition 

Process Condition 

Prediction

Cutting Force  

Cutting Temperature 

Tool Flank Wear 

Surface Roughness 

White Layer Thickness 

Residual Stress Profiles 

 

Figure 5-2 Flow chart for Intelligent Advisory System (prediction module) 
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Figure 5-3 Flow chart for Intelligent Advisory System (optimization module) 

parameter settings for specific hard turning process, parameter settings for mixed integer 

evolutionary algorithm.  

Prediction module and optimization module in IAS101 will be elaborated in the 

following sections. 
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5.2.1 Prediction Module 

Input parameters for prediction 

There are two submenus under the Prediction Menu: Set Prediction Parameters 

and Predict. When Set Prediction Parameters is selected, a dialog as shown in Figure 5-4 

will pop up for users to enter the input parameters for prediction.  

 

Figure 5-4 Dialog window to set prediction parameters for prediction module 

The predefined tool inserts are limited to four: 
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 Kennametal KB5625 (coated low CBN 65%), 

 Kennametal KD050 (low CBN 50%), 

 Kennametal KD120 (high CBN 93%), 

 Sumitomo BN250 (low CBN 60%) or 

For other tool insert grades, “User Defined” tool should be selected from the 

dialog. After tool insert grade is selected or defined, tool geometry should be specified, 

including too nose radius, chamfer angle, back rake angle and clearance angle.  

The user can choose one of three predefined workpiece materials (AISI-52100, 

AISI-1053, AISI-1070) available in the program or use a “User Defined” material in 

which the users are required to identify some material properties (specific heat, thermal 

conductivity, density, melting point, and Johnson-Cook parameters for Material 

Constitutive Equation) as shown in Figure 5-5.  

Those three predefined workpiece materials are selected due to their widespread 

use and industrial significance, which are valid only for hardness values ranging from 58 

to 62 HRC. Hardness properties and the chemical composition of the workpiece material 

are not explicitly specified but are reflected in the constitutive equation (the Johnson-

cook equation). As a result, the Johnson-Cook parameters are uniquely determined by the 

specific workpiece material and hardness combination.  Consequently, different Johnson-

cook parameters might associate with the same workpiece material having a different 

hardness value.   

The user should enter the coefficients ( ) of the 

wear rate model as in Equation (3-24). They are required to calculate the tool flank wear 

,abrasionK ,adhesionK  ,diffK ,a
QK
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and are uniquely determined by the combination of the workpiece material and cutting 

tool materials. They could be determined from the machining tests.  

 

Figure 5-5 User defined workpiece material 

In order to build up a comprehensive advisory system, a database could be further 

embedded into the system to store the calibrated wear coefficients for the specific 

workpiece and tool combinations. When the user selects a workpiece material and a tool 

insert, wear coefficients will be automatically extracted from the database.  
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After entering cutting tool and workpiece information, process parameters should 

be specified. The parameters include cutting conditions: cutting speed (m/s), feed rate 

(mm/rev), and depth of cut (mm) and process conditions: length of cut (mm), 

workpiece diameter  (mm), and number of parts to be cut ( ). Figure 5-6 and Figure 

5-7 include definition for the cutting conditions and the process conditions.  

L

D N

 

Figure 5-6 Cutting speed (Vc), feed rate (Feed), and depth of cut (doc) (After OSU report 

2005) 
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Figure 5-7 Definition of length of cut (L) and workpiece diameter (D) (after OSU internal 

report 2005) 

With the process parameters defined, total cutting time can be computed as in 

Equation (5-1), which will be used in predicting tool flank wear in the system.  

 _ *
1000

m t

c

DL
t

fV
N

π
=  (5-1) 

Output parameters from prediction 

After all the input parameters for prediction are defined, the user can select 

Predict to predict one process variable or all the process variables as listed in Figure 5-8. 

Cutting temperature, 3D oblique cutting force components, tool flank wear, surface 
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roughness and white layer thickness will be generated in the output window. An excel 

window will be automatically activated to display the circumferential and longitudinal 

residual stress profiles graphically at the end of computation. The outputs from the 

IAS101 system are shown in Figure 5-9 and 5-10 for all the process variables when input 

parameters are selected as in Figure 5-4.   

 

Figure 5-8 Selection menus for process prediction 
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Figure 5-9 The output window for process prediction 
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Longitudinal Residual Stress Profile
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Figure 5-10 Residual stress profiles predicted from IAS101 

5.2.2 Optimization Module  

Input parameters for process optimization 

There are two submenus under the Optimization Menu: Set Optimization 

Parameters and Optimize. When Set Optimization Parameters is selected, a dialog as 

shown in Figure 5-11 will pop up for users to enter the input parameters for process 

optimization. 
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Figure 5-11 The dialog window to set optimization parameters for optimization module 

The task of process planning and optimization is to design the tool geometry and 

optimize cutting conditions for given tool and workpiece materials in the current IAS101 

system. Therefore cutting tool, workpiece material, the wear coefficients associated with 

this tool and workpiece combination should be specified as in the prediction module. 

Process conditions including length of cut, workpiece diameter should also be defined. 

The number of parts to be cut per insert can be fixed or can be a design variable 

determined based on the process objectives.  
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Cutting conditions including cutting speed, feed rate, and depth of cut can be 

fixed at certain values or can be selected as the design variables to be optimized. Lower 

bound and upper bound should be defined for each design variable. Similarly, tool 

geometry including tool nose radius, rake angle, chamfer angle, and clearance angle can 

be fixed at certain values or can be designed from available selections.  

Other quality constraints including surface roughness, white layer thickness and 

residual stress profiles and practical constraints including maximum allowable tool flank 

wear and tool crater wear should be specified.  

Process economic settings should be determined which are the basis for process 

planning and optimization. Those parameters include: loading time per part, tool change 

time, fraction of active machining time once loaded, cost of each cutting edge (some tool 

inserts have two cutting edges), machine related cost which is calculated based on the 

equipment cost and the associated investment loss and normalized in minutes, labor 

related cost which is calculated based on the average operator wage and the additional 

cost of non-salary benefits and normalized in minutes.  

A Mixed Integer Evolutionary Algorithm as developed in Chapter 2 is embedded 

in IAS101 system as the optimization engine. MIEA related parameters should be 

entered. Default values are recommended for some of the parameter settings in Chapter 2. 

The algorithm parameters are defined as follows: 

Generation:  Total iteration numbers in finding the optimal solution   

Population Size:  The number of solutions in each generation  

Feasible Size:  The number of solutions enforced to be feasible in the initial  
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population, a value of “1” is recommended as its default 

setting 

Report Freq: Report Frequency, how often the software will print out the 

result during the search (e.g. every 50 generations) so that the 

user can see the searching progress 

Sig Digits:  Significant Digits, the number of significant digits for each 

continuous variable 

Mutation Rate: Mutation rate used in the genetic operator, 30% is 

recommended as its default value 

Crossover Rate:  Crossover rate used in the genetic operator, 90% is 

recommended as its default value 

Selection Operator:  Selection operator used in the algorithm, tournament 

selection with elite selection is set as its default setting.  

The default settings for generation number and the population size are not given. 

The general guidelines for those two parameters are: for highly constrained problem, the 

population size should be set higher in order to distribute the initial population to the 

whole search space. And the generation number should be set according to the problem’s 

difficulty degree. 

Output parameters from optimization 

After all the parameters for process optimization are defined in the “Set 

Optimization Parameters” window, the user can select Optimize for process optimization. 

First a dialog as shown in Figure 5-12 will pop up for users to select a process objective. 
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Currently only three objectives are included: Minimum cost per part, Maximum 

production rate or both of them based on a weighting function. However the system can 

be easily extended to integrate any process objectives, such as finest surface finish, 

longest tool life, and minimum white layer thickness.    

 

Figure 5-12 Dialog for process objective selection 

The optimal cutting condition and tool geometry, number of part cut per insert, 

cost per part, cycle time per part, tool flank, surface roughness, and white layer thickness 

will be generated in the output window. An excel window will be automatically activated 

to display the circumferential and longitudinal residual stress profiles graphically at the 

end of simulation.  

5.3 Conclusion and Discussion 

An intelligent advisory system for hard turning process, named IAS101, has been 

developed with prediction and optimization functions. The developed system can help 
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predict the process variables and enable critical hard turning processes to run in optimal 

conditions based on specific objectives and practical constraints; ultimately it will greatly 

help the hard turning technology be a viable technology.    

The developed Intelligent Advisory System offers a very good approach for hard 

turning process planning and optimization by integrating experimental, numerical and 

analytical knowledge into one system with user friendly interface. However current 

system is far from a comprehensive system, its functionality is partially implemented 

only. Additionally, the training module and the database module have not been integrated 

yet. Nevertheless, the current system could easily be extended to a more complete system 

once more knowledge and data are accumulated to predict hard turning process 

performance.   

IAS101 has been rigorously evaluated by the ERC/NSM (the Engineering Research 

Center for Net Shape Manufacturing) research team of Ohio State University (Tapia et al. 

2005) and the results are very reasonable.  
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CHAPTER VI  

ACHIEVEMENTS AND RECOMMENDATION 

6.1 Achievements 

The objective of this dissertation is to enable critical hard turning processes to run 

in optimal conditions to ensure the economic and quality viability of the hard turning 

technology. Ultimately the goal is to help hard turning to be a successful alternative to 

grinding processes and to be widely adopted in industry. In order to achieve this goal, a 

scientific, systematic and reliable methodology is developed to guide the tool geometry 

design and to optimize the cutting conditions to achieve the specified process 

performance goals under the satisfactory surface integrity and any other practical 

constraints is developed. This section summarizes the achievements of this dissertation.    

6.1.1 Summery and Conclusion 

Background, motivation and objective of the focused research are introduced in 

Chapter 1. The characteristics of the hard turning process are summarized there. The 

optimization techniques which have been applied in the machining process optimization 

are reviewed. The underlying drawbacks about the existing optimization algorithms are 

discussed and the motivation for further research on extension and implementation of the 

 170



 

optimization algorithm are addressed. Efforts to design optimal tool geometry and cutting 

condition for machining processes are also briefly reviewed.   

Chapter 2 and Chapter 3 are the major foundation of this dissertation. In Chapter 

2, a general form of machining process optimization is mathematically formulated and its 

related terminologies are defined; then the proposed Mixed Integer Evolutionary 

Algorithm (MIEA) is elaborated in the areas of problem representation; selection scheme; 

genetic operators for integer, discrete, and continuous variables; constraint handling 

method; and population initialization. The improved algorithm has been successfully 

applied to twelve numerical cases and two machining problems. The best solutions found 

for twelve numerical cases are all very close to the known global optimum (except the 

test case G9) and are located within a very short computational time. The proposed 

constraint handling scheme outperforms most of the other methods reviewed by 

Michaelwicz (1996). It has also demonstrated higher performance and higher 

computational efficiency than the other optimization methods when applied to those two 

machining process problems.  

In Chapter 3, hard turning process models - including the thermal model, 3-D 

oblique cutting force model, tool wear rate model and surface integrity models (surface 

roughness, white layer thickness, and residual stress profiles) - are addressed. Average 

temperatures along rake face and flank face are calculated considering the tool wear 

effects. 3-D oblique cutting forces are modeled by taking the modified Oxley’s 

machining theory and the Waldorf’s worn tool force model as its kernel. A unified 

approach in modeling the CBN tool flank wear rate developed by Huang is used to 
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estimate the tool flank wear progression in hard turning. Surface roughness is determined 

by feed rate and tool nose radius. Intelligent models for the white layer thickness and 

residual stress distribution are constructed from the experimental data based on Back 

Propagation Neural Networks. Some of the models are experimentally calibrated and 

verified in machining hardened AISI 1053 (hardness 58 - 60 HRC) using Kennametal 

KB5625 low CBN tools.   

Based on the developed optimization algorithm in Chapter 2 and hard turning 

process models in Chapter 3, two hard turning process optimization cases are 

implemented in Chapter 4. The first case is to design the optimal tool geometry (back 

rake angle, chamfer angle, clearance angle and tool nose radius) and cutting conditions 

(cutting speed and federate) to achieve minimum cost per part and maximum production 

rate in outer diameter finish turning of hardened AISI 52100 under the constraints of the 

required surface integrity (including surface roughness, white layer thickness, and 

residual stress distribution), maximum allowable tool flank wear and available 

horsepower. The optimal results for this case showed its rationality by comparing with 

the other documented experimental and analytical work. The main purpose of the second 

case is to check and establish the validity of the developed methodology for hard turning 

process optimization by experiment. The objective is to optimize the finish hard turning 

of hardened AISI 1053 to achieve maximum material removal rate, minimum tool wear 

and best surface finish (considering surface roughness only) after turning 100 passes. The 

predicted optimal design is compared with the other eight non-optimal designs 

experimentally and distinguishes itself to be optimal not only in the simulation but also in 
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the experiment. Hence the reliability and validity of the proposed methodology for hard 

turning process planning and optimization are proved.   

An intelligent advisory system for hard turning process, named IAS101, has been 

introduced in Chapter 5. It has a prediction module and an optimization module. The 

developed system offers a very useful tool for hard turning process planning and 

optimization by integrating experimental, numerical and analytical knowledge into one 

system with user friendly interface. It can help predict the process variables, and it 

enables critical hard turning processes to run in optimal conditions based on the specified 

objectives and the practical constraints; ultimately it will help the hard turning technology 

to be a viable technology.     

Chapter 6 is a concluding section of this dissertation. First, a summery is outlined 

for each chapter in this dissertation. Then achievements of this dissertation are listed and 

recommendations to further improve state of the arts of the focused research are given.   

6.1.2 Achievements  

This dissertation provides a scientific, systematic and reliable methodology for 

hard turning process planning and optimization. The proposed methodology improves the 

state of the art in making tooling solution and process planning decisions for hard turning 

processes. Furthermore, the proposed methodology can be easily extended to today’s 

complex manufacturing process planning and optimization. The main achievements in 

this dissertation are listed as follows:   
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On Optimization Algorithm (Chapter 2) 

• Developed adaptive mutation and crossover operators in dealing with 

integer/discrete design variables to implement a one-gene-one-variable 

scheme for mixed-integer optimization problems in GA 

• Developed a feasible superior and problem-independent constraint 

handling method in GA to drive search toward the optimal and feasible 

direction 

• Proposed an α µ,)-( population initialization scheme to help distribute the 

initial population uniformly in the whole search space 

• Implemented a systematic optimization algorithm (Mixed Integer 

Evolutionary Algorithm) based on GA which addresses the underlying 

drawbacks of GA in solving hard turning process optimization problems   

On Hard Turning Process Models (Chapter 3) 

• Implemented a 3-D oblique cutting force model under practical hard 

turning conditions to provide high fidelity process thermal and stress 

information  

• Constructed intelligent models based on BPNN to take advantage of the 

experimental knowledge for white layer thickness and residual stress 

prediction 
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• Proposed a hierarchical modeling structure which consists of analytical 

models and BPNN models to predict white layer thickness and residual 

stress profiles 

• Identified the machinability and material properties for hardened AISI 

1053 steels experimentally 

On Hard Turning Process Planning and Optimization (Chapter 4) 

• Implemented an analytical approach to guide the tool geometry design and 

the cutting condition selection based on the specified objectives and the 

practical constraints 

• Experimentally verified the developed methodology for hard turning 

process planning and optimization 

On System Development and Integration (Chapter 5) 

• Developed an Intelligent Advisory System for hard turning process with a  

user friendly interface; experimental, numerical and analytical knowledge 

are consolidated in one system with prediction and optimization functions     

6.2 Recommendations for Future Work 

The developed methodology and implemented system could be further improved. 

Recommendations for future work are given as follows: 

Probability and uncertainty 
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The hard turning process, as well as the general machining process, is not a 

deterministic process but a process with certain probabilities and uncertainties. Such 

probability and uncertainty characteristics should be carefully addressed in the process 

models and integrated in process planning and optimization. For example, the prediction 

from a model can be an average value plus a certain degree of standard deviation instead 

of a deterministic value.      

Model improvement 

Hard turning process models provide indispensable process information for 

process planning and optimization. The selected/developed models have been integrated 

in the Intelligent Advisory System. The prediction capabilities of the Intelligent Advisory 

System (IAS101) have been rigorously evaluated by the ERC/NSM (the Engineering 

Research Center for Net Shape Manufacturing) research team of Ohio State University 

(Tapia et al. 2005). The future improvement for the process models can be given based 

on this evaluation: 

The experimental results from Dawson (2002), Ramesh (2002), Huang (2002), 

Thiele (2002), and Chou (2004), (with total 36 experimental sets), are used to evaluate 

IAS101’s capability to predict the cutting force. Average prediction errors from IAS101 

for all 3D fresh and worn cutting forces are within 15%. Maximum errors up to 35% 

occur when small values of feed rate and depth of cut were used. The total cutting force 

consists of three components: force due to chip formation, force due to ploughing and 

force due to sliding (which is the force due to tool flank wear). However force due to 

ploughing is assumed to be negligible in this study.  
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A cutting tool with large nose radius and large negative chamfer angle is 

commonly used in hard turning, when feed rate and depth of cut are relatively small; the 

ploughing effect is rather pronounced and contributes a significant portion of the total 

cutting forces. The prediction accuracy could be further improved; the force components 

due to ploughing should be carefully addressed for those situations when small values of 

feed rate and depth of cut are used.  

BPNN models for white layer formation and residual stress distribution were 

trained based on the limited experimental data. Unavoidably, those experimental data 

contained a large amount of noise. Overfitting is very likely to happen in the training 

process when one wants to train an over-sized neural network with a limited supply of 

data. The problem becomes even worse for data with a large amount of noise. The 

overfitting is that when the error on the training set has been minimized to a very small 

value, but the established model performs poorly on the unknown data (Mathwork 2002). 

A regulation technique should be integrated in the training process to improve the 

model’s generation capability.  

During the experimental verification for the proposed optimization scheme in 

Section 4.3, the measured surface roughness values greatly deviated from the model 

prediction and the variation of surface roughness with the progression of tool wear varied 

from case to case. A rough empirical model was reestablished in order for predicted 

values to match the measured results better. A comprehensive surface roughness model 

should be constructed which is able to compensate the effects for special cutting 
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condition and tool geometry in the hard turning and to account for its variation with the 

tool wear.    

Intelligent Advisory System 

In this study, all the accumulated knowledge was integrated to one system, which 

provides a very useful tool to make the tooling solutions and process planning decisions. 

However significant efforts should be further devoted to complete this system.  

Currently, the system only has a prediction module and an optimization module, a 

training module and a database module should be further integrated to the system and to 

be linked together. Hence the system could not only serve for off-line optimization but 

also for on-line optimization. When more experimental data or practical data are 

available, they will be stored in the database. The training module will be automatically 

triggered whenever there is more data/knowledge available, and the prediction module 

will be updated. Process planning decisions will be made based on the updated prediction 

models. Such a system could also serve as an adaptive control system to achieve the best 

process performance for any particular hard turning process.  

The functionality of the developed system is partially implemented; process 

models have not been available to all the commonly used tool inserts and workpiece 

material in hard turning application yet. More experiments/knowledge should be 

performed/accumulated in order to have a comprehensive advisory/expert system for 

practical hard turning applications and to eventually help hard turning technology to be a 

viable technology.   
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APPENDIX A 

TEST CASES 

A.1 Twelve Numerical Cases (Michalewicz and Schoenauer 1996) 

G1: 

Minimize: 

4 12

1 2 3 4 1 5
1( ) 5 5 5 5 5 i ii i

G X x x x x x x
= =

= + + + − −
3∑ ∑  

Where:  

; 

130 1,  1,...,9;  0 100,  10,11,12;  0 1;i ix i x i x≤ ≤ = ≤ ≤ = ≤ ≤

1 2 10 112 2 10x x x x+ + + ≤ 1 3 10 122 2 10x x x x+ + + ≤

2 3 11 122 2 10;x x x x+ + + ≤ 1 108 0;x x

; 

 − + ≤ 2 118 0x x − + ≤

4 5 102 0x x x− − + ≤ 6 7 112 0x x x

; ; 

; 

3 128 0x x− + ≤

− − + ≤ 8 9 122 0x x x; − − + ≤  

The problem has its global minimum at: , 

whereG X . 

* {1,1,1,1,1,1,1,1,1,3,3,3,1}X =

1( *) 15= −

 

G2: 

Minimize: 
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1 22( )G X x x x3= + +  

Where:   1100 10000;  1000 10000,  2,3;  10 1000,  4,...8;  i ix x i x i≤ ≤ ≤ ≤ = ≤ ≤ =

4 61 0.0025( ) 0x x− + ≥ 5 7 40.0025( ) 0x x x; 1− + − ≥

1 83333.333 0x + ≥

41250 0x+ ≥ 3 8 1250000x x

; 1 0 ; 

; 

; 

8 5.01( ) 0x x− −

3 5 52500 0x x x

≥

1 6 4833.33252x x x− −

2 7 5 2 41250x x x x x− −

100

− − + ≥  

The problem has its global minimum at: 

, 

whereG X . 

* {579.3167,1359.943,5110.071,182.0174,295.5985,217.9799,286.4162,395.5979}X =

2( *) 7049.330923= −

 

G3: 

Minimize: 

2 2 4 2 6 2 4

1 2 3 4 5 6 7 6 7 63( ) ( 10) 5( 12) 3( 11) 10 7 4 10 8G X x x x x x x x x x x x= − + − + + − + + + − − − 7  

Where:  10 10,  1,...7;ix i− ≤ ≤ =

 127  2822 4 2

1 2 3 4 52 3 4 5 0;x x x x x− − − − − ≥ 2

1 2 3 4 57 3 10 0x x x x x− − − − + ≥

2 2 2

1 2 1 2 3 6 74 3 2 5 11x x x x x x x

; 

; 2 2

1 2 6 7196 23 6 8 0x x x x− − − + ≥ 0− − + − − + ≥  

The problem has its global minimum at: 

, 

whereG X . 

* {2.330499,1.951372, 0.4775414,4.365726, 0.6244870,1.038131,1.594227}X = − −

3( *) 680.6300573=
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G4: 

Minimize: 

51 2 3 44( ) x x x x xG X e=  

Where:  2.3 2.3,  1, 2;ix i− ≤ ≤ = 3.2 3.2,  3, 4,5;ix i− ≤ ≤ =

2 10= 2 3 4 55 0;x x x x

 

; 2 2 2 2

1 2 3 4 5x x x x x+ + + + − = 3 3

1 2 1x x+ = −  

The problem has its global minimum at: 

, 

whereG X . 

* { 1.717143,1.595709,1.827247, 0.7636413, 0.7636450}X = − − −

4( *) 0.0539498478=

 

G5: 

Minimize: 

2 2 2 2

1 2 1 2 1 2 3 4 5

2 2 2 2 2

6 7 8 9 10

5( ) 14 16 ( 10) 4( 5) ( 3)

               2( 1) 5 7( 11) 2( 10) ( 7) 45

G X x x x x x x x x x

x x x x x

= + + − − + − + − + −

+ − + + − + − + − +

2

 

Where:   10 10,  1,...10;ix i− ≤ ≤ =

1 2 7 8105 4 5 3 9 0x x x x− − + − ≥

2 2

1 23( 2) 4( 3) 2x x− − − − −

; 

; 2

3 47 120 0x x+ + ≥ 1 2 7 810 8 17 2 0;x x x x− + + − ≥  

 181



 

2 2

1 2 1 2 5 62( 2) 2 14 6 0x x x x x x− − − + − + ≥ ; 8 21 2 9 105 2 12x x x x 0;− − + + ≥

0;≥

.375927}

   

 2 2

1 2 3 45 8 ( 6) 2 40 0;x x x x− − − − + + ≥

2

1 2 9 103 6 12( 8) 7 0;x x x x− − − + ≥

2 2 2

1 2 5 60.5( 8) 2( 4) 3 30x x x x− − − − − + +

, 2.363683,5.095984,0.9906548,

1.430574,1.321644,9.828726,8.280092,8

24.3062091=

4 2cos ( )i i1

1

cos ( ) 2
6( )

n

i

n

i

x x
G X =

=

−
= ∑

∑

0 10ix< < 1,...,i n=

1
0.75

n

ii
x

=
>∏ 1

7.5
n

ii
x n

=
<∑

 

  

The problem has its global minimum at: 

, 

whereG X . 

* {2.171996

                   

X =

5( *)

 

G6: 

Maximize: 

1

2

n

i

iix

=∏
 

Where:  ,  

;  
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The function G6’s global maximum if unknown. For 20n = (G6-1), the best solution 

found in this work is G X  with 

 

*6( ) 0.80361664=

         2.95944715, 2.92219949, 0.49483365, 0.48731905, 0.48034167, 0.47483969,

         0.47307324, 0.46573946, 0.46269602, 

}

* {3.16043258, 3.12754512, 3.09359360, 3.06049466, 3.02768564, 2.99235296,X =

0.45579949, 0.45373166, 0.44978923,

        0.44504631, 0.44064420

For (G6-2), the best solution found in this work is G X  with 

 

50n =

{6=

*6( ) 0.83520228  =

2.97560692, 2.96612120, 2.95461059,

* .28234386, 3.16757345, 3.15456867, 3.14324331, 3.12941480, 3.11366415,

         3.10167003, 3.08602786, 3.07424927, 3.06255317, 3.04743624, 3.03712273,

         3.02034664, 3.00651383, 3.00001884, 

X

         2.93431211, 2.92233706, 0.49643144, 0.48006836, 0.49415991, 0.46941942,

         0.47801661, 0.47702739, 0.47604510, 0.47386724, 0.47658002, 0.46413743,

         0.47684807, 0.46653312, 0.47030780, 0.45434538, 0.45569429, 0.45161772,

         0.45535612, 0.44744486, 0.45442498, 0.44980237, 0.44996986, 0.45574158,

         0.44432029, 0.44588098, 0.43479106, 0.44538400, 0.45508292, 0.44191003,

         0.44009739, 0.43020955}

 

G7: 

Maximize: 

( ) 1
7( )

n n

ii
G X n x

=
= ∏  

Where:  0 1,  1,..., ;ix i n≤ ≤ =  

2

1
1

n

ii
x

=
=∑  
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n = 20 is used in this paper. The problem has its global maximum at: * 1 1
{ ,..., }X

n n
= ,  

whereG X . 7( *) 1=

 

G8:  

Minimize: 

2

3 1 5 18( ) 5.3578547 0.8356891 37.293239 40792.141G X x x x x= + + −  

Where:   1 278 102,  33 45,  27 45,  3, 4,5;ix x x i≤ ≤ ≤ ≤ ≤ ≤ =

  2 5 1 4 3 50 85.334407 0.0056858 0.0006262 0.0022053 92;x x x x x x≤ + + − ≤

≤

2

  2

2 5 1 2 390 80.51249 0.0071317 0.0029955 0.0021813 110;x x x x x≤ + + + ≤

  3 5 1 3 3 420 9.300961 0.0047026 0.0012547 0.0019085 25x x x x x x≤ + + +

The problem has its global minimum at: , 

whereG X . 

* {78.0,33.0,29.995,45.0,36.776}X =

8( *) 30665.5= −

 

G9: 

Minimize: 

3 3

1 1 29( ) 3 0.000001 2 0.000002 / 3G X x x x x= + + +  

Where:   0 1200,  1, 2;  -0.55 0.55,  3, 4;i ix i x i≤ ≤ = ≤ ≤ =
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4 3 0.55 0x x− + ≥ ; 3 4 0.55 0x x− + ≥

3 4) 1000sin(x x+ −

; 

; 1x

2x

1000sin( 0.25− − 0.25) 894.8 0− + − =

  3 3 41000sin( 0.25) 1000sin( 0.25) 894.8 0x x x− + − − + − =

  4 4 31000sin( 0.25) 1000sin( 0.25) 1294.8 0x x x− + − − + =

The problem has its global minimum at: 

, whereG X . * {679.9453,1026.067,0.1188764, 0.3962336}X = − 9( *) 5126.4981=

 

G10: 

Minimize: 

3 3

1 210( ) ( 10) ( 20)G X x x= − + −  

Where:   1 213 100;  0 100;x x≤ ≤ ≤ ≤

  2 2

1 2( 5) ( 5) 100 0;x x− + − − ≥ 2 2

1 2( 6) ( 5) 82.81 0x x− − − − + ≥ ;  

The problem has its global minimum at: , 

whereG X . 

* {14.095,0.84296}X =

10( *) 6961.81381= −

 

G11: 

Maximize: 

 185



 

3

1 2

3

1 1 2

sin (2 )sin(2 )
11( )

( )

x x
G X

x x x

π π
=

+
 

Where:   1 20 10;  0x x≤ ≤ ≤ ≤ 10;

0  1 (2

1 2 1 0;x x− + ≤ 2

1 2 4)x x− + − ≤  

The problem has its global maximum withG X11( *) 0.095825= . 

 

G12: 

Minimize: 

2 2

1 212( ) ( 1)G X x x= + −  

Where:   1 1,  1, 2;ix i− ≤ ≤ =

   2

2 1 0x x− =

The problem has its global minimum at: , 

whereG X . 

* { 0.70711,0.5}X = ±

12( *) 0.75000455= −
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A.2 A Unified Metal Cutting Problem (Jang D. Y. 1992) 

Dimensional accuracy:  

  (A-1) 0.9707 0.4905 0.2848100.66 f d Vδ −=

Compressive surface residual stress:  

  (A-2) 0.7525 0.1797 0.3962 0.38282284.32c f d V Rσ − − −= −

Maximum depth with compressive residual stress:  

  (A-3)0.67205 0.05849 0.0909 0.316520.1739cd f d V R−=  

Peak to valley surface roughness:  

  (A-4)2

max 124.3 /h f= R  

Flank wear rate caused by adhesion:  

  (A-5)6 0.25 0.055

1 0.0792 10 (25 13 )L V V−= × × + L  

Flank wear rate caused by diffusion:  
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  (A-6)6 0

2 0.137 10 exp( 20000 /(298 13 ))L V VL −= × × − + .25 0.5L  

Crater wear temperature:  

  (A-7)0.2761 0.2874 0.0217457.44cT V f d −=  

Tool tensile stress:  

  (A-8)1.3466 1.3610

1 0.3875 f Vσ =  

Plastic deformation temperature of the tool: 

  (A-9) 0.036 0.0376 0.0025453.53pzT V f d− −=

A.3 A Generalized Surface Grinding Problem (Lee 2000) 

Surface Roughness: 

 0

z

x y w t
a d d

s s

v s
R R s a

v b

γ
   

=    
   

 (A-10) 

0R , x, y, z, γ  are determined from the experiment, where: 0 12.9R = , , 0.54x = 0.34y = , 

, 0.38z = 0.43γ =  
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Grinding Force and Power: 

 t sP F v=  (A-11) 

 
1/ 24

( )w wv a v
F p A adµ µ

 
= +

1 1

c

i l

1t ch s

s s sv d v
 
 

 (A-12) 

  (A-13) p A p A Pl= +

1 0 1 ln( )i d  (A-14) p A P P a= −

 
2

s

s wd vπ
 (A-15) 1/ 2( )= s gv l

l ad

 ( )* * *
 +

= +  w e

 
g w e

ts
d

b b
l L L n N  (A-16) 

Where: , c are 0.0143 and 2.86 respectively. lP µ , ,  are determined from the 

experiment, they are

0P 1P

0.43µ = , 0 65600P = , 1P 10300= , l  is the sliding length.  

Residual Stress: 

 1

r

r R eσ =  (A-17) 
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where: t s

w

F v
e

v
= , 1R ,  are determined from the experiment, where: , r 1 6.8R = 0.63r =  

G Ratio: 

 1

g

eq
G G h

−=  (A-18) 

1G ,  are determined from the experiment, where:Gg 1 13.0= , 0.90g =  

Symbol Definition 

da  Dressing depth, ( mµ ) 

A  Fraction of flat area on the grinding wheel 

iA  Initial fraction of flat area on the grinding wheel 

c  Constant 

tF  Tangential grinding force, (N) 

g  Exponent for G-ratio model 

1G  Constant for the G-ratio model 

eqh  Equivalent chip thickness, ( mµ ) 

L  Maximum permissible wear land length 

l  Accumulated sliding length after dressing, (m) 

1p  Constant for the contact stress 

0P ,  1P Constants for the force model 
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lP  Constant 

r  Constant for the residual stress model 

0R  Constant for the surface roughness model 

1R  Constant for the residual stress model 

x , ,  y z Exponent for the surface roughness model 

δ  Exponent for the surface roughness model 

γ  Exponent for the surface roughness model 

µ  Friction coefficient 

chµ  Chip formation energy (J/mm3) 
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APPENDIX B 

MODIFIED OXLEY’S MACHINING THEORY (OXLEY 1989) 

Based on the geometric model in orthogonal cutting as shown in Figure B-1, the 

chip thickness , length of shear zone l , shear velocity ct sV  and chip velocity V  can be 

obtained as in Equation (B-1), where shear angle 

chip

φ  will need to be determined iteratively 

as explained later, t  is the undeformed chip thickness, α  is the effective rake angle, V  

is the cutting speed.  

c

 

cos( )

sin

sin

cos

cos( )

sin

cos( )

c

s c

chip c

t
t

t
l

V V

V V

φ α
φ

φ
α

φ α
φ

φ α

−
=

=

=
−

=
−

 (B-1) 

The shear strain ABγ , shear strain rate ABγ  and their effective strain ABε  and strain 

rate ABε  along the shear zone AB is computed as in Equation (B-2), where strain rate 

constant c  will need to be determined iteratively as explained later.  
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1 cos
,  

2 sin cos( )

,  
3 3

s
AB AB

AB AB
AB AB

V
c

l

αγ γ
φ φ α

γ γε ε

= =
−

= =
 (B-2) 

Temperature along the shear zone AB is estimated as  

 0AB SZT T Tη= + ∆  (B-5) 

The shear flow stress along AB can be calculated from the Johnson-Cook 

equation: 

 ( )1
1 ln 1

3 3

m

nAB AB AB r
AB AB

o m r

T T
k A B C

T T

σ εε
ε

    −= = + + −   −   


 

w

 (B-3) 

Thus the shear force along AB can be obtained accordingly, where  is width of cut.  w

 S ABF k l=  (B-4) 

The angle between the resultant cutting force R and shear zone AB is given as 

below referring to (Huang 2002): 

 1tan 1 2( )
4

AB

AB

c I

k

γπθ φ− 
= + − −

 


  (B-6) 
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Based on the geometric model, the friction angle can be obtained as:  

 β θ α φ= + −  (B-7) 

Now referring to the cutting force circle as shown in Figure B-1, the resultant 

force R , friction force along the tool chip interface, normal force  perpendicular to it, 

cutting force  and thrusting force  all can be calculated with known shear force  

and force angles as: 

F N

CF QF SF

 

/ cos

/ sin

/ cos

cos( )

sin( )

S

C

Q

R F

F R

N R

F R

F R

θ
β
β
β α
β α

=
=
=
= −

= −

 (B-8) 

With knowing k , the normal stress on the tool face at B can be given by: AB

 ' 2
1 2

2
AB

N AB

AB

c I
k

k

γπσ α
 

= + − −
 

  (B-9) 

By balancing the moment about point B, the tool chip contact length h is 

calculated referring to (Huang 2002): 
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sin

1
cos sin

3 1 2( )
4

AB

AB

AB

AB

c I

kt
h

c I

k

γ
θ

β φ γπ φ

 
 
= +  

+ − −     


  (B-10) 

The stress distribution is assumed uniform along the tool-chip interface. The shear 

flow stress intτ , normal stress Nσ , strain rate intγ  and its effective strain rate intε  at the 

tool-chip interface now can be calculated as below in Equation (B-11). Here the ratioδ of 

thickness of tool-chip interface plastic zone to chip thickness will need to be determined 

iteratively as explained later.  

 

int

int

2

int int

=

/ 3

N

F

hw

N

hw

V

t

τ

σ

γ
δ

ε γ

=

=

=

 (B-11) 

And the shear flow stress adjacent to the tool chip interface can also be calculated 

from the Johnson-Cook equation as (Huang 2002): 

 int int int
int

1
1 ln 1

3 3

m

r

o m r

T T
k A C

T T

σ ε
ε

    −= = + −   −   


 

 (B-12) 
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Where temperatureT at the tool-chip interface is calculated as in Equation (B-13): int

 int 0 szT T T TMψ= + ∆ + ∆  (B-13) 

The relationships discussed above can not be utilized without knowing the shear 

angleφ , strain rate constant C and the ratio of thickness of tool-chip interface plastic zone 

to chip thicknessδ . The shear angle φ  is determined iteratively from to  at the step 

size of  until the calculated interface shear stress

5° 45°

0.1°
intτ and the chip material shear flow 

stress is equal. The strain rate constant C is searched to satisfy:intk Nσ = '

Nσ . And the ratio 

of thickness of tool-chip interface plastic zone to chip thicknessδ  is determined by 

minimum force principle, the detail flow chart are shown in Figure B-2 (from Dawson 

2002). 

 

Figure B-1 Cutting force circle and geometric model in orthogonal cutting (Liang 2002) 
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Figure B-2 Flow chart detailing the modified Oxley’s method
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APPENDIX C 

WALDORF’S WEAR FORCE MODEL  

(ADOPTED FROM (HUANG 2002)) 

The force components due to flank wear in orthogonal cutting can be calculated 

as:  

 ,  (C-1) 
0

( )
VB

CW wF w x dτ= ∫ x
0

( )
VB

QW wF w x dσ= ∫ x

To estimate the forces due to flank wear, the flank normal stresses wσ  and shear 

stress wτ  must be properly modeled first. The results based on the slip-line field as 

proposed by Waldorf (Waldorf, 1996) and Waldorf el al. (Waldorf el al. 1998) are briefly 

reviewed here. For small flank wear length, there is only elastic contact between the tool 

flank and the workpiece. Due to the high temperature and stress on the flank of the tool, 

there is a critical flank wear length, VB , at which plastic flow is initiated at the front of 

the wear land. For this case, if VB , purely elastic contact is present, but if 

, plastic flow of the workpiece is present at the front edge of the wear land, the 

elastic contact will also be present at the back of the wear land.  

*

< *VB

*VBVB >
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Given shear flow stress  and shear angle k φ , if only elastic contact exists 

between the tool flank face and the workpiece, the tool tip stresses wσ  and wτ  can be 

modeled as:  

 

2

0

0
0

0

0

0

( )  for  0

,      for 0 1

( )

,  for 1  

w

w

w

VB x
x x

VB

x VB

x

VB x VB

σ σ

ττ
σ

τ
τµσ
σ

− = < 
 

  
< < −     = 

  − < <   
 

VB<

 (C-2) 

Where: 

0 0

1 1

1 2 2 2 sin(2 2 ) ,   cos(2 2
2

sin ( 2 sin( )sin( )),    0.5cos ( )p p p

k k

m

π
)

p

σ ρ φ γ γ φ τ γ φ

γ η φ ρ η η− −

 = + − − + + − = −  

= + − =

 

The variable m  is the friction factor at the cutting edge of the tool, and it is 

assumed to be unity due to the adhesive nature of contact at the tool cutting edge. The 

variable 

p

ρ  is the prow angle of the workpiece directly in front of the tool and can be 

taken as zero as suggested by Waldorf.  

If VB , the tool tip stress *VB> wσ  and wτ  can be modeled as:  
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 (C-3) 

where: 

1

0 01 2 2 sin(2 ) ,   cos(2 ),   =0.5cos ( ) 
2

w w w wk k
πσ ρ η η τ η η − = + − + + =  

wm  

The term , which is the slip-line field angle for friction on the flank wear land, is 

similar to the friction factor at the tool cutting edge and is also assumed by Waldorf to be 

close to unity.  

wm
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