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PROCESS PARAMETER PREDICTION VIA MARKOV

MODELS OF SUB-ACTIVITIES

Lino G. Marujo1 and Raad Y. Qassim2

Abstract. This work aims to fill a lacunae in the project-oriented
production systems literature providing a formal analytic description
of the rework effects formulae and the determination of the extended
design time due to a certain degree of overlapping in a pair of activities.
It is made through the utilization of concepts of workflow construction
with hidden (semi) Markov models theory and establishing a way to
disaggregate activities into sub-activities, in order to determine the ac-
tivity parameters used by the project scheduling techniques. With the
aim to make a correlation between the entropy of the state transitions
and the probability of changes, the information theory is also used, and
the concept of impact caused by the probability of changes is provided.
Numerical examples are shown for the purpose to demonstrate the ap-
plicability of the concepts developed, and one example of overlapping
of two activities is shown. The original contributions of this work are
shown on the last section.

Keywords. Activity parameters, sub-activities Markov model, en-
tropy, project scheduling parameters, rework estimation.
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1. Introduction

The increasing importance of agility and flexibility to time-to-market required
by the companies, has been reflected on the growth in the product development and
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manufacturing processes’ speed up techniques, in order to deliver new products or
changing existing products faster than the competition, forcing the companies to
establish a way to produce ordered products more efficiently and fast. These char-
acteristics are more latent on engineer-to-order environment, where the starting
mechanism to execution or manufacturing, is the execution agreement, instead of
a replenishment point in inventory records, for example certain types of industries
such as: aeronautics, naval or civil construction. Hence, new methods of project
schedule acceleration have risen as overlapping and crashing. For example, as the
development of concepts is actually finished before the beginning of construction,
a certain degree of overlapping of these two activities results in the shortening
of the total project lead-time. Therefore, starting the execution phase before the
total completion of concept development, should also result in an augmented num-
ber of changes and, consequently, productivity looseness, increasing the costs and
spending additional time to accommodate possible changes required. This latent
rework necessity appears on a low level activity, or detailed one, where this activity
is broken into small parts, called sub-activities, forming a workflow model, which
describes the sequences and the dependence path of tasks, in an atomic view of
the project [31], where the activity parameters can be evaluated, before and after
the application of acceleration techniques.

1.1. Work outline

This work is organized as follows: in the second section, is explained the concepts
of the transition of the activity level to sub-activity one, making an extended re-
view of literature concerning the hidden (semi) Markov models applied to workflow
constitution, followed by a review of the concepts of workflow model’s construc-
tion under some type of restrictions. And finally, a review on the state-of-art of
the overlapping strategy to shrink project lead-time is conducted. The problem
statement is delineated in the third section. The fourth section treats the rela-
tionship existing between the macro level and the micro level of activities and are
applied the concepts of hidden semi-Markov models to establish a way to make this
transition. An algorithm is proposed to determine the best hidden semi-Markov
model that describes the workflow, and the calculations of activity parameters.
In the fifth section, a stochastic model to evaluating the rework fraction of a pair
of overlapped activities is developed. In the sixth section, a numerical example is
provided to demonstrate the validity of proposed model and its results. In the last
section, some conclusions and statements are done.

2. Literature review

2.1. The transition of the activity level to the sub-activity level

The organizations, nowadays, have to manage their business process as a
project-oriented view, therefore, a question arose from this procedure: how to
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manage what is occurring on an operational level of each activity on projects-
oriented process? Based on this question, a number of methods have been applied
to aggregate and disaggregate activities to support the high level of management
while managing the projects via milestones, or critical events to the development
of these projects. However, a macro vision of the process conducts to an increased
probability of hiding imperfections and deviations on the execution of the tasks,
incurring on overruns of costs and time. These deviations do not occur on an
aggregate level of management, excepting those caused by management errors,
rather, they occur due to deviations of the execution level sub-activities’s level on
the operational level, which can be represented through workflow models. More-
over, to do this evaluation, a method to disaggregate and further aggregate activ-
ities’ parameters must be established to support a better project-oriented process
management.

An approach to perform that analysis described above, is to schedule all ac-
tivities simultaneously, but, to large project-oriented systems, this approach is
computationally prohibitive [16]. In this way, researchers have been explored ap-
proaches of activities’ aggregation and disaggregating to reduce the size of alloca-
tion problems.

Agrawal and Gunopulos [1] presented an approach for a system that constructs
the process from logs of past, unstructured executions of the given process. The
graph produced, conforms to the dependencies and path executions present in the
log. By providing models that capture the previous executions of the process, this
technique allows an easier introduction of a workflow system, also the evaluation
and evolution of the existing process models. Hence, the detailed level of an activity
is modeled as a hidden Markov model (HMM), being represented as an acyclic
graph G = {V, E} with each node v ∈ V being the emission symbol of the hidden
state, representing the tasks that are being performed, and the set of edges e ∈ E,
representing the state symbols transitions. Each sub-activity i is allocated exactly
to one activity, namely i ∈ p. The activities are decomposed on sub-activities, with
a source node and a finish node, both added to observed emission, establishing the
beginning and the end of the activity, following a workflow that will deliver the
same output required for the project activity.

Furthermore, the latent necessity of rework is shown only on a basic level, i.e.

sub-activities, organized into workflows, describing the sequence and the interde-
pendency of these, in an atomic view of the project [31], because the nature of
the process interdependency [34] and the randomness of the symbol emissions. A
hidden Markov model can be defined as:

Definition 2.1. Let be any set of states, not directly observed (k1, . . . , kn), with
k1k2 . . . kn, so P [Skn

� an|Sn1
= a1, Sk2

= a2 . . . Skn−1
= an−1] = P [Skn

�

an|Skn−1
= an−1], and a set of symbols V = {vi, . . . , vn}, each of them with it

inherent probability of emission B = (bi(Ki)), the stochastic process is called a
Hidden Markov Model.

Therefore, the sub-activities workflow is not, actually, a linear series of states,
but it can contain variations due to operational constraints that the workers or the
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Table 1. Correlation between workflow model and HMM.

Mathematical
Workflow model HMM

representation
Sub-activity Node State K

Type of task performed Emitted symbol s

Set of sequences
Graph (event trace) (realizations observed) E

of emitted symbols

Task duration† State durations δ

† In models where the durations cannot be determined, it is utilized the semi-markovian
model, i.e., where the duration is a probability density function, actually following a
triangular distribution.

actors faced at the moment of performing these tasks in the shop floor. Herbst [18]
explains the reason of the difficult to obtain a workflow model that describes
one operation is due to the fact of the knowledge needed to define it is spread
throughout the organization. It is recorded into the actor’s minds whom are ac-
tively involved with the execution of sub-activities, and these actors, focused on
the shop floor activities and targets, have no time to spend on making a formal
modeling of operations workflows.

The hidden Markov models (HMM), as introduced by Rabiner [32], are char-
acterized by a stochastic state sequence, K = {1, . . . , Kn}, where the probability
of each state is dependent only on the immediately previous event, and the states
are not directly observed, but through symbols that characterize it. The exact
instant that this state occurs is hidden, i.e., there is a probability of the state’s
occurrence into a determined time interval, associated to symbols emitted by each
state, and the transitions probabilities between them. On Table 1 can be observed
the existing relations between a workflow model and an HMM [20].

An HMM can be visualized as an oriented graph, with the nodes describing
the states with the emitted symbols, and the edges representing the state symbol
transitions. Hence, the behavioral aspects of sequential workflow models (which
are the atomic views of the project activities), can be mapped as an HMM, where
the model will describe the flow in which the work is performed (see [5,19,20,38]).

The relationship between a node ki and the respective task vi, is deterministic
in each branch of the graph, but in the final workflow model, there are emission
probabilities represented by the emission probability bi(ki). However, to take into
account the called multiple node problem, the alike task could occur more than
once into the workflow model, i.e., due to unnecessary forced repetitions, reworks,
lack of information, and so on.

Although the HMM can be a simple and efficient model to identify sequential
data, authors suggest some limitations when the activities become more complex,
or the activities show a long term temporal dependency [12,27], but it is not rele-
vant to the present study, because the short term of the activities studied. To deal
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with these limitations, two extensive classes of HMM have been proposed. The
first one introduces complementary models to the basics HMM with a hierarchical
structure, with the purpose to explore the natural hierarchic organization of the
human being (e.g. see [7,13,26]). The second extension, adopts semi-Markov mod-
els and introduces their hidden variables, namely the duration probability of each
state [28, 30]. In these models, is assumed that a state remains unaltered by any
random time duration before changes to another state. For each state, a duration
probability distribution is given to characterize the behavior of such duration.

2.2. Constrained workflow models of sub-activities

On another hand, these techniques are complemented by the introduction of
some constraints on the execution processes of sub-activities. Many workflow ap-
plications often have time constraints such that each processing of a workflow of
sub-activities needs to be finished within its deadline. Son and Kim [37] address
a suitable scheme that can maximize the number of workflow instances satisfy-
ing the given deadline. They first present a method to find out a set of critical
activities where an activity is one whose delay of completion directly affects the
overall processing time of a workflow. Since each critical activity has a certain
number of servers to be processed, for the sufficient processing capacity, we then
develop a method to determine the minimum number of servers for the critical
activity such that this activity should be finished without delay for a given in-
put arrival rate. Li and Fan [25] provide a range of six-time constraints and the
method for identify the critical path of a workflow process is given accordingly.
However, the constraints of a workflow model of sub-activities are not restricted
to time constraints. Crampton [10] provides a model of constrained workflow sys-
tems and develops a systematic algebraic method for combining constraints and
authorization information. van Hee et al. [17] investigate a resource management
policy that allocates resources based on the number of available resources only,
and formulate a condition on resources requesting process, called solidity based on
the use of Petri Nets.

Another kind of constraints can be seen in [36] where the HMM represents a
robot navigation plan, with a framework that incorporating readily available odo-
metric information and geometrical constraints. The automated workflow com-
position is analyzed by [11, 42] where they propose the use of Markov Decision
Processes (MDPs) to model workflow composition, to account for the uncertainty
over the environmental model.

2.3. Overlapping strategy of shortening project lead-time

The overlapping strategy of activities with a view to reducing the project lead
time has been studied in the context of project scheduling and new-product de-
velopment. Browning et al. [6] provide a review of work on modeling product
development process (see also [3]). Krishnan [23] provides a framework to help
designers or managers to decide when and how to overlap the activities reducing
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product development lead time while ensuring that the adverse effects on product
quality and development effort are minimized, and presents a way to determine
how to disaggregate design information and overlap consecutive stages based on
the evolution and sensitivity properties of the information exchanged [24].

The information dependencies between development tasks constitute the
information-processing view of the development processes, and can be modeled
as a Markov chain [2] and arranged into a Design Structure Matrix [9, 27]. The
overlapping strategy differs from the sequential approach in that it allows the
downstream project stages to start before preceding upstream stages have final-
ized their works [3]. In the way to make the project faster and cheaper, the man-
agers have noticed important advances in project management, and one of the
most useful and popular technique is overlapping. As a result, the duration of in-
dividual activities actually increases through overlapping, while the total project
lead-time decreases because working concurrently on different activities. Thereby,
overlapping utilizes incomplete information, it requires that project stages start
their work assuming a certain amount of work done with a quality lower than
what was specified, forcing some stages of the system to be reworked, which is
often needed to accommodate unforeseen upstream stages. Time-cost trade-offs
are extensively discussed in the project schedule literature, where activities can
be shortened (crashed) at additional costs. Because both crashing of activities
and overlapping aim reducing completion times, they can be considered to alter
nativities or complements to each other.

Nicoletti and Nicolo [31] developed a linear programming model with a view to
maximizing information flow in concurrent engineering projects. Chakravarty [8]
makes analysis of single and multiple overlap properties and its impacts on cost
functions.

Ford and Sterman [14] state that concurrent development not only increases
the vulnerability of projects to changes and errors requiring to rework, but also
increases the fraction of work released that will require changes. Roemer and
Ahmadi [33] present a cost minimization model for the simultaneous crashing and
overlapping of activities in a project consisting of activities in series, analyzing the
impact of different evolution/sensitivity parameters. Zhang, Qiu and Zhang [41]
establish a method to measure the coupled strength of tasks and to calculate the
gross workload, determining the best sequence of coupled tasks based on task
output influence ratio, parameter change ratio and parameter feedback.

Gerk and Qassim [15], provide a mixed integer nonlinear programming model
for the acceleration of projects, employing the simultaneous crashing, overlapping,
and substitution of project activities, with the assumption that the rework fraction
caused by overlapping rates was previously known.

2.4. Information flow

In the Information Theory context, the idea of information flow aims to measure
the amount of information that flows from a state X to a state Y during to the
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execution of a certain process. In a general view, the presence of a problem is
an uncertainty state. Hence, a problem can be treated as a term of its inherent
uncertainty, defined as the uncertainty before it and the uncertainty after it.

The process uncertainty of information is expressed by H(X, Y ), i.e. the conjoint
entropy and can be determined as defined by Shannon [35] as:

H(X, Y ) = −
∑

x, y

px, y log(px, y).

The entropy measures the internal degree of ordination in the message’s structure
produced by the state X to state Y . As greater as these ordination, as low will be
the randomness, and, therefore, lowest the H value. Hence, the information flow
is characterized by the communication channel, the intrinsic information flowed
into these channel and its entropy measure. The communication channel can be
represented by a communication network topology, or by a minor part of it, i.e. a
sub-net, actually described by an oriented graph G = {V, E}, where V is the set
of vertices and E is the set of arcs, defining the information flow directions and
the nodes where it was generated or where it must reach [2].

3. Problem statement

In this Section, a precise problem statement is provided for a pair of problems
under consideration. It is assumed that an activity may be described within a
triangular distribution pattern at the macroscopical level, with which a number
of stochastic sub-activities realisations may be associated at the microscopic level.
The principal objective is the prediction of activity attributes at the macroscopic
level, such as duration and rework times, from probabilistic properties of the con-
stituent sub-activity set at the microscopic level. In the following, the framework
presented by Nicoletti and Nicolò [31] is adopted for the decomposition of an ac-
tivity into its constituent sub-activities, with one important difference: whilst the
authors assume that for each activity there exists one and only one set of sub-
activities, in this paper this assumption is relaxed by allowing a set of microscopic
realisations of sub-activities for each macroscopic activity.

3.1. Single activity duration

Given an activity at the macroscopic level and the corresponding sub-activity
constituent set and its realization at the microscopic level, find the maximum,
minimum, and the most probable duration time of the activity at the macroscopic
level.

3.2. Rework time due to activity overlapping

Given a pair of activities and the overlapping times of the activity pair at
the macroscopic level, and the corresponding respective constituent sets and their
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realizations at the microscopic level, find the maximum, minimum, and most prob-
able rework time due to the overlapping of the activity pair.

3.3. Premises

There are some premises adopted in this work, as follows:

• The activities on a macro level, have deterministic characteristics.
• Each activity can only be concluded, when a certain number of discrete states

has been completed, which are the sub-activities, but they are not observable
in a direct way, but through a set of emitted symbols, characterizing a Hidden
Semi-Markov Model.

• The duration time of each sub-activity is a weighted average, defined as the
relation with the number of emitted symbols, which characterize the states,
and has three dimensions: optimistic, most likely and pessimistic.

• The hidden semi-Markov model of the downstream activity does not affect the
upstream activity, indeed, there is no feedback influencing the probability of
change, nor the impact of change into the current aggregate activity.

• The overlapping only occurs between two adjacent activities.
• The physical and financial resources are unbounded, but they constitute an

important area of study of project management theory.

4. Single activity model

4.1. Notations

• p denotes the aggregate upstream activity;
• q denotes the aggregate downstream activity;
• i denotes the disaggregate anterior task;
• j denotes the disaggregate posterior task;
• K = {1, . . . , |Kn|} denotes the set of (hidden) states;
• V = {v1, . . . , vn} denotes the set of tasks performed or emissions symbols;
• A = (aij) = P [St + 1 = kj |St = ki], with 1 � i, j � N denotes the matrix of

transitions probabilities;
• B = (bi(k)) = P [emission of Vk on time t|St = Ki], with 1 � i � N are the

probabilities of emitting each symbol;
• π = πi, πi = P [Si = ki] with 1 � i � N are the initial probabilities;
• St denotes the state on time t;
• P (V |M) denotes the probability of the sequence V follow the model M ;
• P ∗(V |M) denotes the most likely sequence path of V in the model M ;
• G = {V, E} denotes the graph G with the edges E = {e1,2, . . . , en−1,n} and

the nodes V , representing the set of accomplishments observed;
• βinc = {V, E} denotes the incidence matrix of graph G, where:

∃ek = (i, j)if {ei,k = +1, er,k = 0, ∀r �= i, j, ej,k = −1
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• Dur(V |M) = (dij) denotes the duration parameters of the sequence of tasks;
• NumObs denotes the number of observed sequences of symbols related to the

sub-activities level;
• τp denotes the completion state of activity p;
• Tp denotes the total length of time of activity p;
• δi denotes the duration of each task, in a micro level;
• Dp denotes the state which task i is completed;
• pij denotes the probability of change for each state transition ei,j , related to

the entropy of the process;
• sij(Ki) represents the amount of impact due to changes in the previous task i,

in amount of time;
• Edtq denotes the amount of extended design time, in time units;
• Lq denotes the fraction of rework needed in activity q, due to overlapping.

On an elementary level, where the activities are detailed, described as sub-activities
i, j, even though hidden to the project managers, it follows a strict precedence
relation, following a defined order, in which the set of tasks when aggregated
represents the activity on a macro level, called activity p, q.

Assumption 4.1. The relationship between the activity and the sub-activities,
exists when these ones have in sub-activities in a determined order, produces the
same targeted output, and, for this instance, the work only flows to another activity
if the output of that sub-activity has had reached.

It must be observed, however, that in the environment described previously,
there is no overlapping of activities p, q, the view is focused on one project activity
isolated.

Assumption 4.2. The macro activity is deterministic and can contain various
sub-activities, but one sub-activity only can be allocated into one macro activity.

The detailed level of an activity is modeled as a hidden Markov model (HMM),
being represented as an acyclic graph G = {V, E} with each node v ∈ V being the
emission symbol of the hidden state, representing the tasks are being performed,
and the set of edges e ∈ E, representing the state symbol transitions. Each sub-
activity i is allocated to exactly one activity, namely i ∈ p. The activities are
decomposed on sub-activities, with a source node and a finish node, both added
to observed emission, establishing the beginning and the finish of the activity,
following a workflow model.

To establish an execution model of sub-activities, an inductive approach to
construct workflows is proposed, following the four phases below:

1. Detailed activities execution phase – in this phase the sub-activities are per-
formed using a provided generic model to guide the activities’ development.
In situations not described by the general model, the actors execute the sub-
activities needed and make registrations of the sequences generated, that are
the learning of each one about the process.
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2. Workflow induction phase – in this phase a machine learning compound inducts
the workflow, with the symbols of tasks recorded in previous phase, describing
consistently the observations. The workflow is, hence, a description of how ac-
tually the job is performed, and not how the job should be done, according to
the specific goals of that process.

3. Analysis and improvement of the workflow – as the common practice is not
necessarily the better practice, the model must be analyzed and improved. This
is performed by experts on the process, who can verify the conjoint probabilities
of each sequence generated into the same workflow, what can be named as a
modified Viterbi algorithm, introduced by Stolcke [38].

4. Determination of the project activity duration and best path – after finding the
most likely sequence provided by the workflow inducted by the Stolcke’s algo-
rithm, or merge algorithm for an HMM, now the evaluation of the shorter dura-
tion, or optimistic duration of activity Duropt(V

∗|M), the most likely duration
of aggregate activity, Dur(V |M), as well as the longer duration or pessimistic
Durmax(V |M), and the probability of rework inherent to this activity, based
on the hidden semi-Markov models, using the durations of the states.

4.2. The merge algorithm for a single activity HMM

In this section, an algorithm has been developed to merge state symbols, based
on graph theory, where the incidence matrix βinc gives the path to joint identical
emission symbols that represent the same task. Stolcke [38] have described the al-
gorithm that inducts the structure and the transition probabilities of the emissions
in an HMM, for a given observation series of shop floor realizations. The algorithm
inputs are the sequential observations arranged into a graph, where the incidence
matrix can be read (see Fig. 1), where each NumObs represents the number of
observed realizations in shop floor by the process actors, so the graph sequence is
divided proportionally (1/NumObs) in the quantity of observations made.

Applying the merge algorithm on the incidence matrix, the HMM that better
describes the hidden workflow is given by the algorithm resulting on the graph
shown in Figure 2.

The merge algorithm works as follows:

1. First, for a pair of emissions i, j, let an arc being connecting it, i.e. i → j, it
will be marked with a + 1 for i, and from i to j will be marked with a− 1 in j;

2. For each symbol emitted, the +1 are summed and stored on a variable called
NumPos, and for the same symbol the −1 are summed and stored on a variable
called NumNeg;

3. After these phases, the new probability of transition, NewProbT rans, between
two emissions, can be obtained dividing the original probability, i.e. the initial
probability 1.0, by the number of positive arcs leaving each symbol;

4. With these results, the transition matrix is updated through a multiplication
of the NewProbT rans by the NumNeg;
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Algorithm 1 Merge 

Require: Incidence matrix βinc 

For i = 1 to m 

For j = 1 to n 

  NumPos = Σi Σj bi,k; for all bi,k = 1  

  NewProbTrans = 1/NumPos;      

  NumNeg = Σi Σj bj,k; for all bj,k = -1; 

End For 

End For 

For i = 1 to m 

For j = 1 to n 

ai,j = NewProbTrans × NumNeg; 

End For 

End For 

Figure 1. The description of the Merge Algorithm.

Figure 2. Graph describing the sequence of observed symbols.

5. The updated transition matrix explains how the emissions are observed
throughout time, and the emission’s probability for each state, that is hidden,
not directly observed.

After the transitions matrix has been obtained from a series of observations, we can
evaluate the activity progress, the rework probability fraction, and the probability
of a given sequence, as the expression (4.1):

Pr(rework)p =
∏

i

∏

j

aij ∀i � j. (4.1)
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Figure 3. Graph describing the workflow of an activity.

Expression (4.1) performs the evaluation of lower-triangular section of the tran-
sitions matrix, and returns the conjoint probability of each state emits the same
output symbol task more than once.

In order to calculate the probability of a given sequence of states, we must follow
the expression:

P (vi, vi+1 . . . vk . . . vj , vf |M) = p(vi → vi+1) · p(vi+1 · · · → vk)

× p(vk · · · → vj) · p(vj → vf ). (4.2)

4.3. The parameter determination of the hidden semi-Markov model

for a single activity

The model calculates the optimistic duration of an activity Duropt(V
∗|M), the

most likely duration of aggregate activity, Dur(V |M), represented by the weighted
average of probabilities with the inner duration of each emission. Furthermore, can
be calculated the longest duration, or pessimistic, Durmax(V |M), that is the du-
ration of activity and the impact of the probable rework on the sequence, obeying
the expressions (4.3)–(4.5).

Duropt(V
∗|M) =

∑

i

∑

j

aij · δi ∀i, j ∈ V ∗ (4.3)

Dur(V |M) =

∑

i

∑

j

aij · δi

∑

i

∑

j

aij

∀j = i + 1 (4.4)

Durmax(V |M) = Dur(V |M) +

∑

i

∑

j

aij · δi

∑

i

∑

j

aij

∀j � i. (4.5)



PROCESS PARAMETER PREDICTION VIA MARKOV MODELS 315

5. Multiple activities model

Given two activities, which have been modeled as a hidden Markov model, with
a certain grade of overlapping ypq, we define:

1. Completion state of an activity (Dp). It determines with how many states
the activity will be concluded. It can be represented also, by the final state
number, that has been added to the observations’ records.

2. Evolution state of an activity τp. It denotes the evolution of a given activity
related to a certain degree of overlapping, and it is measured in terms of quantity
of states. To be more conservative, it must be represented by the lower integer
of the fraction.

τp =

⌊(

1 −
ypq

Dur(V |Mp)

)

· Dp

⌋

(5.1)

where ypq denotes the fraction of overlapping of q on p.

3. Probability of changes (Ppq). It expresses the probability of a given sub-
activity contained in p suffers any parameter modification, when the states are
being visited [(ki−1 · δ, ki · δ)] affecting the succeeding activity q.

Let the activity p be a set of states {k1 . . . kp}, the probability of change of each
pair of states can be derived from the information entropy concept, introduced
by Shanon (see [4,21,22,29,35]), where there is an intrinsic relationship between
the information entropy H and the probability of change pij(ki), so,

H(ki) = −

n
∑

a

pi(ki) log pi(ki)· (5.2)

The summation only has validity of within the state Dp−1, because on last state,
Dp, whole information is available, and to a hidden state transition, where time
is a continuous function, let

H(ki kj) =

Dp−1
∑

k=1

H(ki) (5.3)

and

Ppq (ki) =
H(ki)

Dp−1
∑

k=1

H(ki)

· (5.4)

4. Amount of impact of changes (Spq(ki)). It determines the quantity of
time units needed to accommodate the changes of parameters with probability
pij(ki).

Spq(ki) = Ppq(ki) ·

n
∑

i

δi · pij , ki ∈ {1 . . .Di − 1}. (5.5)
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Figure 4. A pair of observations sequences of Block 1.

5. Extended design time (Edtq). It is influenced by the information entropy
transmitted between activities. It can be determined as the summation of the
amount of impact of changes of each state, in time units.

Edtq =

kj=Dp
∑

ki=τp

sij(ki), τp � Dp. (5.6)

6. Fraction of rework (Lq). It determines the fraction of rework needed by the
activity q that has overlapped the previous activity p in a certain amount of
overlapping ypq. It is a fraction of the extended design time and the duration
of most likely duration Dur(V |Mq) of activity q.

Lq =
Edtq

Dur(V |Mq)
· (5.7)

For some authors, the fraction of rework is obtained through experts interviews
or in an empiric way [39–41].

6. Results

6.1. Obtaining a workflow model from a set of observations

of a single activity

Let an activity called Block 1, where the observations graph has two branches of
recorded realizations, called sub-activities, as viewed in Figure 4. After the input
graph of the block, the merge algorithm defines the new workflow model, through
the incidence matrix of Graph 1, βinc1

(Fig. 5).

To apply the merge algorithm to find the HMM that better describes the se-
quences of sub-activities, the input of the model, i.e. the new transition matrix,
can be viewed on Table 2.

For the first macro activity, the calculus is demonstrated in the Appendix 1.
Obtaining the transition probability matrix shown at Table 2.
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Figure 5. A spreadsheet format of the incidence matrix βinc1
.

Table 2. The probability transitions for Block 1.

vi a b c d e f g h vf

vi 1.00
a 1.00
b 0.75 0.25
c 0.25 0.50 0.25

A1 = d 1.00
e 0.33 0.67
f 0.50 0.50
g 1.00
h 1.00
vf

Figure 6. The HMM that represents the workflow for Block 1.

The HMM that describes the workflow model for Block 1 is shown on Figure 6.
It shows the hidden states (K1 = {Vi, A, B, C, D, E, F, G, H, Vf }) and the symbols
emitted with its probability of occurrence.

After the workflow model has been found, the rework probability and the
time parameters of activity Block 1 and Block 2 must be calculated. The rework



318 L.G. MARUJO AND R.Y. QASSIM

Figure 7. A series of observations realized in shop floor for Block 2.

Figure 8. A spreadsheet format of the incidence matrix βinc2.

probability is calculated with the lower-triangular matrix (see Tab. 2), from the
transitions probability matrix A1.

Given the duration parameters for each activity, ∆ = (2.08, 1.97, 1.98, 1.90,
2.03, 1.96, 1.86, 2.02, 2.13) in time units obtained by Monte Carlo method, the most
likely duration of the activity Block 1. The maximum duration can be obtained
with the sum of the most probable duration and the multiplication of the lower-
triangular matrix.

For a second activity called Block 2 (see Fig. 7), let be four series of observations
grouped into graph G2, the same calculations must be done in order to evaluate
the rework probability and the duration parameters.

With these sequences of observations, can be extracted the incidence matrix,
βinc2, shown in Figure 8.

Applying the merge algorithm the transition probability matrix can be found,
and describes the workflow model to Block 2 realizations, as shown on Table 3.

The HMM that describes the workflow model for Block 2 is shown on Figure 9.
It shows the hidden states (K2 = {Vi, A, B, C, Vf}) and the symbols emitted with
its probability of occurrence.

After finding the workflow model, the rework probability and the time param-
eters of this activity Block 2 should be determined. The rework probability is
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Table 3. The probability transitions for Block 2.

vi a b c vf

vi 1.00
a 0.75 0.25

A2 = b 1.00
c 0.40 0.20 0.40
vf

Figure 9. The HMM that represents the workflow for Block 2.

Table 4. The model results for Block 1, 2.

Activity Parameter Block 1 Block 2
Pr(rework)i 0.04 0.08

P (bestpath|Mi) 0.13 0.30
Dur(V |Mi) 16.05 t.u. 15.69 t.u.

Durmax(V |Mi) 18.03 t.u. 19.59 t.u.
Duropt(V |Mi) 14.90 t.u. 15.64 t.u.

calculated with the lower-triangular matrix, from the transition probability ma-
trix A2 (Tab. 3).

The results are shown on Table 4.

6.2. Analysis of the overlapping effects for multiple activities

Let a certain grade of overlapping of Block 2 on Block 1, y12 = 5 time units
(t.u.), the impact of changes on Block 2 should be calculated, as the Block 1 has
not been finished yet, and the information to flow to Block 2 is incomplete. Table 5
shows the results of the multiple activity model.
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Table 5. The multiple activity model results for an overlapping
grade of y12 = 5 t.u.

Activity parameter Value Unit
Overlapping length 6–9 states

τ1 6 states
D1 9 states

H (6) 0.2754
H (7) 0.3010

H (8) = H(9) 0
H (6, 9) 0.5764
P (6) 0.4778
P (7) 0.5222

P (8) = P (9) 0
δ6 1.9666 t.u.
δ7 1.9150 t.u.

s (6) 0.9396 t.u.
s (7) 1.0000 t.u.
Edt2 1.9396 t.u.

Dur (V |M2) 15.698 t.u.
L2 0.1236

7. Sensitivity analysis

This session investigates the interdependencies between the main variables in-
volved in overlapping activities and evaluate the theory developed. In Figure 10 it
can be seen that as the degree of overlap between two activities increases, decreases
the amount of activity supplemented by the predecessor states.

Related to the degree of overlap and the amount of entropy, which can be
observed that increases as it grows, because the greater the amount of states not
yet completed increase the uncertainty in the overlap and hence the greater the
entropy. It should be noted that in Figure 11 in some states where only one symbol
is given no increased entropy, because it is zero.

The entropy decreases due to the state of completion of an activity as the higher
the available information to be passed on to the successor activity, the greater the
likelihood of success of the process, or less need for rework.

It is concluded that the degree of overlap decreases if the state of completion
increases, as the entropy value influences, through which the quantity of emitted
symbols in each state affects the need to rework to accommodate changes due to
the uncertainty of the process. As the degree of overlap decreases and increasing
the state of completion of the activity, decreases the need for rework, as shown in
Figure 12.
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Figure 10. Relationship between the overlapping amount (ypq)
and the completed state (τp).

Figure 11. Relation between overlapping and the entropy.
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Figure 12. The decreasing of rework necessity as the the evolu-
tion of the completed states.

8. Conclusions and suggestions

In the present work has been presented that the project management area, more
specifically the shortening techniques of project schedule are already an increasing
field of research, based on the last researches [41]. Furthermore, could be observed
that the project activities had been considered on a macro level, instead of its
micro level, where the tasks have been realized, characterized by state sequence
emissions, described as a hidden semi-Markov model.

A disaggregation model was developed to project-oriented production systems,
using the observations done in the sub-activities developments by the actors of the
process. The model has been obtained from a framework of steps to acquire and
analyze data of the observations and derived through operations on the incidence
matrix of a graph that describes each set of observations that produce a same
output.

The aggregate activities of a project are formed by sub-activities, that give the
information needed to establish a way to determine the optimistic, most likely and
pessimistic duration of an activity. Furthermore, provides a model to establish the
most likely sequence of operations, or tasks, that should be performed in order to
accomplish the optimistic duration, and also the probability of inherent rework.
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To support the development of the stochastic model that aims to evaluate the
probability of changes and its impact on the duration of activity, two aspects have
been analyzed:

• The first one is to determine the state, or sub-activity, where the activity over-
lapped is when the succeed activity starts with a certain degree of overlapping,
so the evaluation of the probability of changes is done.

• The second evaluates the impact of change in each state and how to quantify
this impact onto macro activity, obtaining the extended design time and the
fraction of rework.

The model was demonstrated through a numerical example with two activities,
analyzing its parameters of duration, its workflow models and the interaction be-
tween them.
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[31] S. Nicoletti and F. Nicoló, A concurrent engineering decision model: management of the

project activities information flows. Int. J. Prod. Econ. 54 (1998) 115–127.
[32] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech

recognition. Proc. IEEE 77 (1989) 257–286.
[33] T.A. Roemer, R. Ahmadi and R.H. Wang, Time-cost trade-offs in overlapped product de-

velopment. Oper. Res. 48 (2000) 858–865.
[34] T.L. Saaty and J.M. Alexander, Thinking with Models: Mathematical Models in the Physical,

Biological and Social Sciences. Pergamon-Press (1981).
[35] C.E. Shannon, A mathematical theory of communications. The Bell Systems Technical

Journal 27 (1948) 379–423, 623–656.
[36] H. Shatkay and L.P. Kaelbling, Learning geometrically-constrained hidden Markov models

for robot navigation: bridging the topological-geometrical gap. J. Artificial Intelligence Res.
16 (2002) 167–207.

[37] J.H. Son and M.H. Kim, Improving the performance of time-constrained workflow process-
ing. J. Syst. Softw. 58 (2001) 211–119.

[38] A. Stolcke, Bayesian Learning of Probabilistic Language Models (1994).
[39] A.A. Yassine, R.S. Sreenivas and J. Zhu, Managing the exchange of information in product

development. Eur. J. Oper. Res. 184 (2008) 311–326.
[40] A.A. Yassine, D.E. Whitney and T. Zambito, Assessment of rework probabilities for simu-

lating product development processes using the design structure matrix. In ASME (2001).
[41] H. Zhang, W. Qiu and H. Zhang, An approach to measuring coupled tasks strength and

sequencing of coupled tasks in new product development. Concurr. Eng.: Res. Appl. 14

(2006) 305–311.
[42] H. Zhao and P. Doshi, Composing nested web processes using hierarchical semi-Markov

decisioxn processes. In AAAI (2006).


	Introduction
	Work outline

	Literature review
	The transition of the activity level to the sub-activity level
	Constrained workflow models of sub-activities
	Overlapping strategy of shortening project lead-time
	Information flow

	Problem statement
	Single activity duration
	Rework time due to activity overlapping
	Premises

	Single activity model
	Notations
	The merge algorithm for a single activity HMM
	The parameter determination of the hidden semi-Markov model for a single activity

	Multiple activities model
	Results
	Obtaining a workflow model from a set of observations of a single activity
	Analysis of the overlapping effects for multiple activities

	Sensitivity analysis
	Conclusions and suggestions
	References

