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Abstract

A key challenge in devising solutions to a range of prob-

lems associated with business process management: process

life cycle management, compliance management, enterprise

process architectures etc. is the problem of identifying

process semantics. The current industry standard business

process modelling notation, BPMN, provides little by way

of semantic description of the effects of a process (beyond

what can be conveyed via the nomenclature of tasks and

the decision conditions associated with gateways). In this

paper, we describe the conceptual underpinnings, design,

implementation and evaluation of the ProcessSEER tool

that supports several strategies for obtaining semantic effect

descriptions of BPMN process models, without imposing an

overly onerous burden of using formal specification on the

analyst. The tool requires analysts to describe the immediate

effects of each task. These are then accumulated in an

automated fashion to obtain cumulative effect annotations

for each task in a process. The tool leverages domain

ontologies wherever they are available. The tool permits

the analyst to specify immediate effect annotations in a

practitioner-accessible controlled natural language, which

enables formal specification using a limited repertoire of

natural language sentence formats. The tool also leverages

semantic web services in a similar fashion.

1. Introduction

The growing interest in business process management

(BPM) methodologies and tools, as well as the high levels

of adoption of such technologies in industry has led to a

greater need for more sophisticated techniques for analysing

and reasoning with business process models. Much of the

analysis required for process compliance management [1],

change management [2], enterprise process architectures [3]

and the management of the business process life cycle [4]

relies on being able to refer to the semantics of business

processes. The current industry-standard process modelling

notation, BPMN [5], as well as several other similar no-

tations, provide a means for describing the coordination

semantics of business processes but not the semantics of

processes in terms of their effects. Thus a BPMN process

model might require that task A must precede task B,

but does not provide any indication of what is done by

tasks A and B (beyond what might be implicit in their

nomenclature), i.e. their effects. We are unable to determine

from a process design in BPMN what the effects achieved

by a process might be at any point in the process design.

This is the problem that this paper seeks to address.

The problem is not alleviated by taking recourse to the

formal semantics of process design notations such as BPMN.

Such semantics, as pointed out above, only describe the

coordination aspects of a process. In addition, there is no

consensus on the semantics of BPMN [6].

The solution we propose involves explicit semantic an-

notation of process models by analysts. The problem is

challenging for a variety of reasons. Analysts need to be pro-

vided with a simple and accessible mechanism to describe

the effects of process steps. The language in which these

effects need to be specified should ideally be formal, permit-

ting sophisticated tool support for several of the analysis and

reasoning tasks mentioned above. A formal language would

however not be practitioner-accessible. Informal annotations,

on the other hand, make substantive tool support for these

analysis tasks difficult. The use of controlled natural lan-

guage (CNL) [7] is an effective compromise between these

two extremes, by offering the analyst a repertoire of sentence

schemas in which to describe the effects - populating a

sentence schema generates a correspondingly instantiated

formal annotation.

To ensure practitioner accessibility, and to avoid placing

an unduly heavy burden of annotation on analysts, our

approach only requires that analysts provide a description

of the immediate effects of each process task, i.e., a context-

independent specification of the functionality (together with

relevant associated ramifications) of each task. These are

then accumulated into cumulative effect annotations in a

context-sensitive manner, such that the cumulative effect

annotations associated with any task in a BPMN process

model would describe the effects achieved by the process

were it to execute up to that point. We note that such a

description will necessarily be non-deterministic, i.e., there

might be alternative effect scenarios that might transpire if

a process has executed up to a certain point in a process

model. The non-determinism stems from two sources. First,
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a process might have taken different paths through a process

model to arrive at a certain point. Second, the effects of

certain process steps might “undo” the effects of prior

process steps. This is often described as the belief update or

knowledge update problem - multiple alternative means of

resolving the inconsistencies generated by the “undoing” of

effects is another source of non-determinism.

This paper describes a conceptual underpinning and im-

plementation of the ProcessSEER tool (implemented using

the Eclipse environment, the STP BPMN modelling tool

[8], the Prover9 theorem prover [9] and the ACE-CNL

controlled natural language toolkit [7]). In section 2 we

discuss the background and relate our work to other current

research in this field. Section 3 is broken up into a num-

ber of subsections that explore how effect annotations are

accumulated across process models. It includes a procedure

for accumulating scenario labels that effectively describe

the paths taken through a process model to obtain the

corresponding effect scenarios. In section 4 we describe how

this machinery might leverage ontology, CNL, and semantic

web services to obtain richer effect descriptions. Section 5

describes the design and implementation of a tool (Fig.1)

that realises these functionalities.

2. Background and Related Work

Annotating and analysing specifications of program func-

tionality, in order to help establish program correctness,

has a long tradition dating back to the introduction of

the axiomatic techniques proposed by Hoare and Dijkstra

[10]. With sufficient information, these forms of annotations

provide [11] a basis for answering questions relating the

identification of: the conditions enabling a process to be

performed (i.e. postdiction); the conditions resulting from

a process being performed in some context (i.e. prediction);

and, the processes with the capability of realising a set of

conditions when executed in some context (i.e. planning).

Recently, similar proposals have emerged in the domain of

web services [12] [13]. These forms of specification can

be effective for performing analyst related tasks, however

their utility and availability in some situations can be limited

(e.g. cost restrictions) - warranting a need for “partiality”

and “lightweight” approaches [14]. The contribution in this

paper are techniques to leverage a partial specification of

functional effects annotated to business process models.

A lot of effort is currently being directed into semantic

annotation for web service or process discovery. Recently, a

semantic annotation framework was developed to facilitate

the interchange of process models and their discovery [15].

Ontology is used in this framework as a classification

repository for the identification of processes or subprocesses

that satisfy the selection criteria. Our tool will reduce the risk

of modifying existing processes by alerting the analyst to the

consequences of design time decisions. We use ontology in

conjunction with a CNL taxonomy to define the vocabulary

used in the effect annotations for the purpose of translation

into formal logic. Our process differs from that described in

[15] in that effect annotations are not simply used for term

comparison but also for reasoning about process outcomes.

In [16], a Generic Process Model (GPM) is proposed to

encode and extend the representation of processes with state

and stability (i.e. goal) relevant information. These notions

of state and stability lead to a general notion of validity

of process models (primarily w.r.t. goal reachability). In

[17], the GPM is used as a basis for identifying the scope

of changes that can be made to an existing process given

changes to GPM-related phenomena (e.g. goal change).

Some of the techniques outlined in this paper, such as the

accumulation procedure, help leverage partial and symbolic

state descriptions to perform goal and change relevant analy-

sis. In the SBPV approach [18], a scheme for annotating and

propagating a restricted form of axiomatic task descriptions

is introduced for a restricted class of process models, but

differs in several key ways to our work. Our approach pro-

vides a parsimonious extension to the modelling framework

(the analyst’s effort is only extended by requiring immediate

effect specifications of tasks in the BPMN model) and is

driven by the need to identify the minimal amount of seman-

tic annotation required to meet the requirements of functions

such as compliance management, process change and life-

cycle management, enterprise process architectures etc. The

SBPV approach, on the other hand, requires complete spec-

ifications of both pre-conditions and post-conditions that are

context-sensitive, thus placing a somewhat onerous burden

on the analyst (besides additional annotations required for

reachability analysis, which we do not consider). Our ma-

chinery for contextualising context-independent task effect

specifications provided by analysts solves a harder problem,

by permitting non-determinism in effect scenarios. We con-

sequently cannot provide polynomial-time guarantees as the

SBPV framework can. We believe this is not a significant

impediment since design, annotation and propagation tasks

do not normally involve real-time constraints, and afford

the luxury of slower off-line computation. As our evaluation

shows, we still are able to meet reasonable processing-time

bounds. In [19], similar process annotation techniques are

used for compliance checking.

3. Accumulating Effects

Our objective is to devise tool support that enables an-

alysts to associate immediate (context independent) effects

with process steps, so that the tool is then able to contex-

tualise these effects, i.e., compute cumulative effects. Ulti-

mately, we need a tool that answers the following question

about any step in a process design: “What would the process

have done if it had executed up to this point?”. The answer to

this question is non-deterministic and is provided in terms of
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Figure 1. The BPMN modelling tool with effect annotations displayed at the bottom.

(possibly multiple) effect scenarios. An effect scenario at a

given point in a process is one consistent set of (cumulative)

effects of a process if it were to execute up to that point.

There are two reasons why we might find multiple effect

scenarios associated with a given point in a process. First, a

process might arrive at a given point through multiple paths,

which cannot be predicted at design time. Second, activities

in a process might undo the effects of activities earlier in the

process (as we shall see in an example later in this section).

ProcessSEER performs on-demand, anytime computation

of cumulative effects. There are two stages to effect ac-

cumulation. The first stage in effect accumulation involves

deriving a scenario label [20] which provides the organising

locus for our procedure. For obtaining the effect scenario at

a given point in a process we compute the set of scenario

labels at that point. A scenario label is a precise list of tasks

that define a path leading from the Start Event in a model

to the selected task. The simplest form of scenario label

is a sequence of tasks. For example, in (Fig.1), if the task

T6 was selected, then a scenario label associated with that

task would be 〈S, T1, G1, T2, G2, T6〉 where S is the start

event. A scenario label can either be a sequence, denoted

by the 〈〉 delimiters, or a set denoted by the {} delimiters

or combinations of both. The set delimiters are used to deal

with parallel splits, and distinct elements in a set can be

performed in any order.

The second stage of effect accumulation involves the

processing of immediate effect annotations for each of the

tasks listed in the scenario label using a pair-wise operation

where the immediate effect of S is combined with the

immediate effect of T1, the result being the cumulative effect

at T1. The cumulative effect at T1 is then combined with the

immediate effect of T2 resulting in the cumulative effect at

T2 and so on up to Tn.

3.1. A Procedure for Effect Accumulation over

Scenario Labels

Contiguous Tasks: We define a process for pair-wise

effect accumulation, which, given an ordered pair of tasks

with effect annotations, determines the cumulative effect

after both tasks have been executed in contiguous sequence.

We assume throughout, the existence of a background

knowledge-base (KB) that provides an additional basis for

consistency. Consider the following simple example, where

task T2 follows task T1, such that T2 somehow “undoes” the

effects of T1 or changes the status of some entity referred

to in T1. For instance, the status of a cheque submitted
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in T1 might be “not yet cleared”, while the immediate

effect of the “cheque clearance” task T2 might be to set its

status to “cleared”. A background rule that specifies that a

cheque cannot have a “cleared” and “not yet cleared” status

simultaneously ensures that we do not counter-intuitively

obtain both status descriptions in the same effect scenario.

The procedure serves as a methodology for analysts

to follow if only informal annotations are available. We

assume that the effect annotations have been represented

in conjunctive normal form (CNF) where each clause is

also a prime implicate [21] (this provides a non-redundant

canonical form). Simple techniques exist for translating

arbitrary sentences into the conjunctive normal form, and

for obtaining the prime implicates of a theory (references

omitted for brevity). Let 〈Ti, Tj〉 be an ordered pair of

tasks connected via a sequence flow such that Ti precedes

Tj , let ei be an effect scenario associated with Ti and ej

be the immediate effect annotation associated with Tj . Let

ei = {ci1, ci2, . . . , cim} and ej = {cj1, cj2, . . . , cjn} (we

can view CNF sentences as sets of clauses, without loss

of generality). If ei ∪ ej is consistent, then the resulting

cumulative effect, denoted by acc(ei, ej), is ei ∪ ej . Else,

we define e′i ⊆ ei such that e′i ∪ ej is consistent and there

exists no e′′i such that e′i ⊂ e′′i ⊆ ei and e′′i ∪ej is consistent.

We define acc(ei, ej) = e′i ∪ ej . We note that acc(ei, ej) is

non-unique i.e. there are multiple alternative sets that satisfy

the requirements for ei. In other words, the cumulative effect

of the two tasks consists of the effects of the second task plus

as many of the effects of the first task as can be consistently

included. We remove those clauses in the effect annotation

of the first task that contradict the effects of the second

task. The remaining clauses are undone, i.e., these effects

are overridden by the second task.

In the preceding, we assume that all consistency checks

implicitly include a background knowledge base (KB) con-

taining rules and axioms. Thus, the statement that e′i ∪ ej is

consistent, effectively entails e′i∪ej ∪KB is consistent. We

omit references to KB for ease of exposition. The following

example illustrates an application of this definition.

Example: Let e1 and e2 represent effect annotations at T1

and T2 in a process model where T2 immediately follows

T1. Let e1 represent a cumulative effect annotation, i.e.,

an effect scenario, while e2 represents an immediate effect

annotation. At T1 the cumulative effect is (p ∧ q) and the

immediate effect of T2 is r. A rule exists in the KB that

states KB = r → ¬(p ∧ q).
e1 = (p ∧ q)
e2 = r
KB = r → ¬(p ∧ q)
¬(p ∧ q) ≡ (¬p ∨ ¬q)
Applying the definition above, the two alternative effect

scenarios describing the cumulative effects at T2 are {p, r}
and {q, r}.

In addition to pair-wise effect accumulation across sce-

nario labels, we need to make special provision for the

following: (1) accumulation across AND-joins, and (2)

accumulation of effects over message flows (extending

the framework presented in [20]). Consider the scenario

label 〈S, Th, {〈Ti1, Ti2, . . . , Tin〉, 〈Tj1, Tj2, . . . , Tjm〉}, Tk〉.
Let the immediate effects of Ti1, Tj1 and Tk be ei1, ej1

and ek respectively. Let Eh, Ein and Ejm be the set of

cumulative effect scenarios associated with Th, Tin and

Tjm respectively. The set of cumulative effect scenarios

associated with Ti1 is given by {acc(e, ei1) | e ∈ Eh}.
Similarly, the set of cumulative effect scenarios associated

with Tj1 is given by {acc(e, ej1) | e ∈ Eh}. In other

words, we accumulate over the pair of tasks 〈Th, Ti1〉 as if

they constitute a contiguous pair (and similarly for the pair

〈Th, Tj1〉). We accumulate across AND-joins in the follow-

ing manner. The set of cumulative effect scenarios associated

with Th is given by {acc(esi, ek) ∪ acc(esj , ek) | esi ∈
Ein, esj ∈ Ejm and esi, esj are exclusion-compatible}. In

other words, we pair-wise accumulate the immediate effect

of Tk with each effect scenario of each of tasks preceding the

AND-join, but then combine them via set union since every

possible combination of the prior scenarios could potentially

transpire. Exclusion-compatibility provides a guarantee that

the effect scenarios could potentially occur together, i.e., that

they do not have a mutually exclusive (XOR) split in their

antecedents relative to each other. Exclusion-compatibility

is determined using the exclude-set mechanism described in

the next section. Note that we do not consider the possibility

of a pair of effect scenarios es1i and es2j being inconsistent,

since this would only happen in the case of intrinsically and

obviously erroneously constructed process models.

Much of the earlier and following discussion pertains to

flows within individual pools. Message flow links across

pools can be dealt with in a relatively straightforward fashion

by requiring an immediate effect annotation for each incom-

ing message. These effects are combined via conjunction

with the immediate effects of the task associated with the

incoming message. We assume again that no inconsistencies

appear between the message and task effects - such incon-

sistencies would only appear in erroneous process designs.

The procedure described above does not satisfactorily deal

with loops, but we can perform approximate checking by

partial loop unravelling e.g., assume that the loop is executed

n times where n is set by the analyst. Analysts can also

identify infeasible (with respect to domain constraints) effect

scenarios obtained in the process. We note that our objective

is to devise decision-support functionality in the compliance

management space, with human analysts vetting key changes

before they are deployed.

3.2. A Procedure for Computing Scenario Labels

As previously mentioned the process of effect accumula-

tion is reliant upon the computation of scenario labels that
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act like a road map for governing the order in which effect

annotations are assembled and analysed. The computation

of scenario labels at a given point is a non-trivial exercise.

Of particular concern is the fact that scenario labels require

selective sorting and complex processing to identify exclude

sets, i.e., sequences that are explicitly excluded from effect

accumulation.

Figure 2. A BPMN model containing a parallel gateway

split and an informal join.

Figure 3. A BPMN model containing an exclusive

gateway split and join.

Selective sorting: There is a unique sorting requirement

for scenario labels. A scenario label is not necessarily

a sequence, yet it can contain sequential elements. The

scenario label 〈〈S, T1, G1, {〈T2〉, 〈T3〉}, G2, T4〉, [∅]〉 from

(Fig.2) shows how tasks T2 and T3 are both independent

subsequences contained within a set, indicating that the

separate subsequences can occur in any order. The set of

subsequences is regarded as a separate element within an

outer sequence of tasks. Although the execution of subse-

quences within a set may occur in any order, the set must

occur in sequential order with other elements in the scenario

label. Paths can be traced and stitched together in any order.

Tasks contain no priority information so sorting must occur

during the scenario label assembly process.

Complex processing and exclude sets: In (Fig.3) there are

two scenario labels generated when T4 is selected:

Label 1: 〈〈S, T1, G1, T2, G2, T4〉, [〈S, T1, G1, T3〉]〉
Label 2: 〈〈S, T1, G1, T3, G2, T4〉, [〈S, T1, G1, T2〉]〉

Each scenario label indicates a possible list of tasks that

could have occurred in order to arrive at task T4. Each sce-

nario label also contains an ‘exclude set’ (denoted by “[ ]”)

that explicitly defines paths that may not be traversed given

the current path. In scenario label 1 the sequence of tasks

(path) followed to arrive at T4 is 〈S, T1, G1, T2, G2, T4〉

and the path to be explicitly excluded is the sequence

〈S, T1, G1, T3〉. The exclude set is meant to assist the

reasoning engine in detecting inconsistencies like exclusive

gateway splits being accidently merged using parallel gate-

way joins.

3.2.1. Scenario Label Extraction. The Scenario Label

Extraction Process is divided into three steps. The first step

involves a reverse path traversal method where the selected

activity becomes the root node in a tree structure and all

branches are traced back to the start event. The second step

segments the list of paths into a set of gateways and their

subsequences. These segments are then used in the final step

to produce a list of scenario labels.

Reverse path traversal: All elements in the BPMN model

are treated as generic nodes in a tree structure and the Path

Collection Procedure walks the model in a reverse depth-first

search from the selected object back to the Start Event. This

is a recursive function that returns a list of Paths, i.e., a list

of sequences of tasks and gateways. Each Path discovered

is completely sequential. It does not contain any parallel

occurrences because all gateway influences are ignored.

Using the Path Collection Procedure with (Fig.1) and

selecting task T12 produces the following list of paths:

Path List:

Path 1: 〈S, T1, G1⊗, T2, G2⊕, T4, G3⊗, T7, T12〉
Path 2: 〈S, T1, G1⊗, T2, G2⊕, T4, G3⊗, T8, T12〉
Path 3: 〈S, T1, G1⊗, T2, G2⊕, T5, G4⊗, T9, T12〉
Path 4: 〈S, T1, G1⊗, T2, G2⊕, T5, G4⊗, T10, T12〉
Path 5: 〈S, T1, G1⊗, T2, G2⊕, T5, G4⊗, T11, T12〉
Path 6: 〈S, T1, G1⊗, T3, T12〉

The symbols ⊗ and ⊕ are used to denote exclusive

and parallel gateways respectively. This list represents all

possible routes from the start event S to task T12. The

procedure eliminates extraneous parallel pathways such as

〈S, T1, G1⊗, T2, G2⊕, T6〉 by tracing backward from T12.

This list of paths is then segmented into collections of

subsequences that we call gateway sequences.

Figure 4. Gateway Sequence Groupings.

Extracting gateway sequences: The segmentation of the

path list in (Fig.4) identifies the data captured in gateway se-

quences. The boxed diagrams in (Fig.5) represent instances

of the gateway sequence class and their contents. Each
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gateway sequence contains the gateway and its downstream

subsequences. The subsequences either end at the selected

activity or at another gateway. If a subsequence ends with

a gateway then that gateway is itself a gateway sequence.

Therefore gateway sequence G2 is inserted at the end of

the first subsequence in gateway sequence G1. Likewise

gateway sequences G3 and G4 are both inserted into gateway

sequence G2. The first step in extracting gateway sequences

Figure 5. Gateway Sequence Objects.

from the path list is to find all the gateways. There are

no gateway joins used in (Fig.1) but if there were then

they must be filtered out of the gateway collection process

because they have no effect on the subsequences or sets in

a scenario label. All we are interested in at this stage is

collecting gateway splits. Gateway joins are detected and

filtered out by identifying multiple incoming edges and

only a single outgoing edge. The Gateway Split Collection

Procedure is a simple iterative process that doesn’t require

much explanation other than that a gateway identification

method is employed to first determine whether the object

is a gateway and second, whether it is a gateway split or a

gateway join.

Extracting all gateway splits from the path list produces

the following list:

G1⊗, G2⊕, G3⊗, G4⊗

Iterating forward along each path tends to collect gateways

in the order in which they appear in the BPMN diagram.

The order is somewhat important when building gateway

sequences because child gateway sequences need to be

inserted into parents. Therefore children must already exist

before their parents can be created. Reverse iteration through

the gateway list is employed to capture children first. It

cannot be guaranteed that all gateway splits in the gateway

list will be in order so numerous passes through the list may

be necessary. In a case where the gateway list is assembled

out-of-order, a subprocedure checks for the existence of

child gateway sequences and aborts parent creation if they

are missing. If the gateway is successfully processed then it

is removed from the gateway list and the list is recycled to

collect gateways that were missed. An ordered collection

of Gateways is therefore purely an efficiency enhancing

operation.

Gateway sequences create a new model that is inde-

pendent of the original list of paths. This facilitates the

generation of a completely independent list of scenario

labels. Each gateway sequence object contains a method for

assembling its subsequences with its parent’s subsequence.

This method is the final step in the overall Scenario Label

Extraction Process and is covered in the next section.

Deriving scenario labels: The first gateway sequence is all

that is necessary to derive all scenario labels. This is because

each gateway sequence is responsible for merging itself with

its parent’s subsequence, i.e., the parent gateway sequence

passes its subsequence to the child gateway sequence and

the child builds the appropriate number of subsequences

by combining the parent subsequence with its own subse-

quences, returning the appended list of subsequences back

to the parent. Deriving all scenario labels begins by creating

a list of the first tasks in the model that are common to

all paths. The common tasks at the beginning of every

path in the path list are 〈S, T1〉. That sequence is then

passed to G1⊗, the first gateway sequence in the list. That

parent gateway sequence then passes its subsequences to its

children which in turn return their own sets of subsequences.

The process is explained in the following sequence of

operations. The symbol → is used to indicate that data is

passed to a child gateway sequence while the symbol ←
is used to indicate that data is passed back to the parent

gateway sequence.

The beginning subsequence common to all Paths is passed

to the first gateway sequence.

〈S, T1〉 → G1⊗

Gateway sequence G1⊗ must first process its child gateway

sequences before it returns its final list.

〈S, T1, G1⊗, 〈T2, G2⊕〉〉

〈S, T1, G1⊗, 〈T3, T12〉〉

G1⊗ passes its subsequence to its child gateway sequence.

〈T2〉 → G2⊕

G2⊕ must first process its child gateway sequences before

it returns its final list. Note the difference in sequence

assembly between exclusive G1⊗ and parallel G2⊕.

〈T2, G2⊕{〈T4, G3⊗〉, 〈T5, G4⊗〉}〉

G2⊕ passes each of its subsequences to each of its child

gateway sequences G3⊗ and G4⊗.

〈T4〉 → G3⊗

〈T5〉 → G4⊗

G3⊗ and G4⊗ assemble their subsequences with the parent

subsequence and return their list of subsequences back to

the parent G2⊕.

G2⊕ ← 〈T4, G3⊗, T7, T12〉
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G2⊕ ← 〈T4, G3⊗, T8, T12〉

G2⊕ ← 〈T5, G4⊗, T9, T12〉

G2⊕ ← 〈T5, G4⊗, T10, T12〉

G2⊕ ← 〈T5, G4⊗, T11, T12〉

G2⊕ appends its parent subsequence to each of the returned

child subsequences and returns that list to G1⊗. Note how

the parallel gateway sequence assembles each subsequence

returned from G3⊗ with each of the subsequences returned

from G4⊗. G2⊕ now returns six subsequences to G1⊗ from

the original five subsequences it received from its child

gateways G3⊗ and G4⊗.

G1⊗ ← 〈T2, G2⊕{〈T4, G3⊗, T7, T12〉, 〈T5, G4⊗, T9, T12〉}

G1⊗ ← 〈T2, G2⊕{〈T4, G3⊗, T7, T12〉, 〈T5, G4⊗, T10, T12〉}

G1⊗ ← 〈T2, G2⊕{〈T4, G3⊗, T7, T12〉, 〈T5, G4⊗, T11, T12〉}

G1⊗ ← 〈T2, G2⊕{〈T4, G3⊗, T8, T12〉, 〈T5, G4⊗, T9, T12〉}

G1⊗ ← 〈T2, G2⊕{〈T4, G3⊗, T8, T12〉, 〈T5, G4⊗, T10, T12〉}

G1⊗ ← 〈T2, G2⊕{〈T4, G3⊗, T8, T12〉, 〈T5, G4⊗, T11, T12〉}

G1⊗ now appends its own subsequence, including the start

sequence it received, to each of the child subsequences

returned by G2⊕.

〈S, T1, G1, 〈T2, G2{〈T4, G3, T7, T12〉, 〈T5, G4, T9, T12〉}

〈S, T1, G1, 〈T2, G2{〈T4, G3, T7, T12〉, 〈T5, G4, T10, T12〉}

〈S, T1, G1, 〈T2, G2{〈T4, G3, T7, T12〉, 〈T5, G4, T11, T12〉}

〈S, T1, G1, 〈T2, G2{〈T4, G3, T8, T12〉, 〈T5, G4, T9, T12〉}

〈S, T1, G1, 〈T2, G2{〈T4, G3, T8, T12〉, 〈T5, G4, T10, T12〉}

〈S, T1, G1, 〈T2, G2{〈T4, G3, T8, T12〉, 〈T5, G4, T11, T12〉}

〈S, T1, G1, 〈T3, T12〉}

The result is that a complete list of scenario labels is

returned from gateway sequence G1⊗. For the purpose of

simplicity exclude sets have been omitted from the list.

However, exclude sets are calculated by exclusive gateway

sequences and returned as part of the assembly process. An

exclusive gateway sequence contains a complete list of all

its subsequences and excludes every other subsequence from

each of its subsequences.

The final list of scenario labels including exclude sets

can be seen in (Fig.6). Each scenario label contains a list

of elements that can be tasks, gateways, sequences, exclude

sets and parallel sets. Each element in a scenario label can

be identified as one of these objects so that task grouping

rules can be applied. Once the scenario labels have been

assembled then immediate effect annotations can be easily

extracted from the base elements (tasks) and interpreted

according to their placement within the scenario labels.

The process of extracting the immediate effect annotations

and accumulating the effects is explained in more detail in

section 3.1.

Results: To avoid confusion the output in (Fig.6) specif-

ically uses square brackets “[ ]” to represent exclude sets

and braces “{ }” to represent parallel sets. When task T12

is selected in (Fig.1) and these procedures applied, they

generate the set of scenario labels listed in (Fig.6). This

demonstrates the tool’s ability to process complex BPMN

models. It is worth noting that the number of scenario labels

generated from (Fig.1), seven in total, is greater than the

six paths listed in the path list. The effect of gateways is

not considered when tracing paths. However, when deriving

scenario labels, the gateway effect is considered. Parallel

gateways will cause multiple paths to collapse into a single

scenario label that includes parallel sets whereas exclusive

gateways, when nested inside parallel gateways will generate

a greater number of scenario labels to accommodate for all

possible combinations. For example, a parallel split followed

by two exclusive splits, each containing three alternate paths,

will generate six paths. However, because each exclusive

path from one split must be combined with each exclusive

path from the other there will be 3 × 3 = 9 scenario

labels generated. This illustrates how scenario labels are

quantifiably independent from traceable paths.

4. Leveraging Ontology, Controlled Natural

Language and Semantic Web Services

Ontology, a relationship reference model of domain spe-

cific terminology, can ease the semantic annotation exercise

in several ways (as we have noted earlier, a substantial body

of work explores the role of ontology in this setting). First,

an ontology can help avoid naming conflicts in analyst-

mediated immediate effect annotation (i.e., the same concept

being referred to by different names). Second, an ontology

can help resolve abstraction conflicts, where effect descrip-

tions are provided at different levels of abstraction, and

therefore in different vocabularies. Third, an ontology can

provide the background knowledge base referred to earlier

that is used for consistency checking of effect accumulation.

Such a background KB can be easily obtained by extraction

from an ontology those relations (rules) whose concept

signatures are included in the concept signature of the

effect annotations provided (i.e., that refer precisely to those

concepts referred to in the effect annotations). Finally, we

can envisage an extension to our current tool that leverages

ontology to generate suggestions to analysts in terms of

additional (immediate) effects that might be included in the

annotation (for instance, a causal rule a causes b that might

be implicit in an ontology might be used to suggest to an

analyst that b be included in an annotation that contains a.

We use CNL (Controlled Natural Language) [22] as the

notation in which an analyst specifies the immediate effects

of process tasks. CNL provides a practitioner-accessible
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1: 〈S, T1, G1, 〈〈T2, G2, {〈T4, G3, 〈〈T7〉, [〈T4, G3, T8〉]〉〉, 〈T5, G4, 〈〈T9〉, [〈T5, G4, T10〉, 〈T5, G4, T11〉]〉〉}, T12〉, [〈S, T1, G1, T3〉]〉〉

2: 〈S, T1, G1, 〈〈T2, G2, {〈T4, G3, 〈〈T7〉, [〈T4, G3, T8〉]〉〉, 〈T5, G4, 〈〈T10〉, [〈T5, G4, T9〉, 〈T5, G4, T11)]〉〉}, T12〉, [〈S, T1, G1, T3〉]〉〉

3: 〈S, T1, G1, 〈〈T2, G2, {〈T4, G3, 〈〈T7〉, [〈T4, G3, T8〉]〉〉, 〈T5, G4, 〈〈T11〉, [〈T5, G4, T9〉, 〈T5, G4, T10〉]〉〉}, T12〉, [〈S, T1, G1, T3〉]〉〉

4: 〈S, T1, G1, 〈〈T2, G2, {〈T4, G3, 〈〈T8〉, [〈T4, G3, T7〉]〉〉, 〈T5, G4, 〈〈T9〉, [〈T5, G4, T10〉, 〈T5, G4, T11〉]〉〉}, T12〉, [〈S, T1, G1, T3〉]〉〉

5: 〈S, T1, G1, 〈〈T2, G2, {〈T4, G3, 〈〈T8〉, [〈T4, G3, T7〉]〉, 〈T5, G4, 〈〈T10〉, [〈T5, G4, T9〉, 〈T5, G4, T11〉]〉〉}, T12〉, [〈S, T1, G1, T3〉]〉〉

6: 〈S, T1, G1, 〈〈T2, G2, {〈T4, G3, 〈〈T8〉, [〈T4, G3, T7〉]〉〉, 〈T5, G4, 〈〈T11〉, [〈T5, G4, T9〉, 〈T5, G4, T10〉]〉〉}, T12〉, [〈S, T1, G1, T3〉]〉〉

7: 〈S, T1, G1, 〈〈T3, T12〉, [〈S, T1, G1, T2〉]〉〉

Figure 6. A final list of scenario labels with exclude sets.

language for specifying effects (and thus, avoid the problems

associated with insisting that analysts become proficient in

a formal notation) while still making it relatively easy to

translate these into an underlying formal representation.

A domain specific ontology also facilitates the translation

of CNL into First Order Logic (FOL). Languages such

as OWL-S use variable names in their effect descriptions,

e.g. objectPurchased. Such a term would not ordinarily

exist within the taxonomy of a CNL application. A CNL

interpreter (an application that can translate CNL into FOL)

would require a domain specific ontology that includes such

terms. Consider the following immediate effect annotation

written in natural language:

The purchase amount is confirmed with a confir-

mation number and the client is the owner of the

object purchased and the creditLimit of the credit

card is decreased by the purchase amount.

A CNL interpreter linked to an ontology that included

business transaction related terminology could identify com-

pound terms like purchase amount and suggest alternatives

such as purchaseAmount. This is reliant upon the standard-

isation of terms within the domain specific ontology. A

CNL that is becoming popular within the semantic web

community is Attempto Controlled English (ACE) [23] [24].

The following sentences are written in ACE and represent a

conversion of the immediate effect annotations above. They

contain variable names but can be easily understood by an

analyst.

A purchase has a purchaseAmount that is con-

firmed by a confirmationNumber.

A purchase has an objectPurchased that is owned

by a client.

A creditCard has a creditLimit that is decreased

by a purchaseAmount.

From these CNL sentences the following paraphrases can

be derived:

There is a purchase X1.

There is a confirmationNumber X2.

The confirmationNumber X2 confirms a

purchaseAmount X3.

The purchase X1 has the purchaseAmount X3.

There is a client X4.

The client X4 owns an objectPurchased X5.

The purchase X1 has the objectPurchased X5.

There is a creditCard X6.

The purchaseAmount X3 decreases a creditLimit X7.

The creditCard X6 has the creditLimit X7.

The paraphrasing then allows us to assemble the following

FOL statements that are machine processable:

has(purchase, purchaseAmount)

confirms(confirmationNumber, purchaseAmount)

owns(client, objectPurchased)

has(purchase, objectPurchased)

decreases(purchaseAmount, creditLimit)

has(creditCard, creditLimit)

Consider the background rule:

∀x, y, z(owns(x, z) ∧ ¬equals(x, y)→ ¬owns(y, z))
indicating that two entities may not own a purchased

object at the same time. Now suppose that the previous

activity in a business process contained, as part of its

cumulative effect, owns(company, objectPurchased).
This would be the case prior to the credit card transaction

and confirmation of purchase. Consider now that the

current task is to finalise the purchase and the immediate

effect of that task is owns(client, objectPurchased).
When this annotation is combined with the previous

cumulative effect and presented to the reasoning engine,

an inconsistency will be detected, i.e., both company and

client cannot own the object purchased. The pair-wise

accumulation application will then replace the statement

owns(company, objectPurchased) with the updated

statement owns(client, objectPurchased) to produce the

cumulative effect at the current task.

The OWL-S segment below [25] describes the effect of a

purchase being confirmed for an agreed amount, and relates

directly to the CNL and FOL specifications presented
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earlier in this section.

< process : hasEffect >
< expr : KIF − Condition >

< expr : expressionBody >
(and (confirmed (purchase ?purchaseAmount)
?confirmationNumber)

(own ?objectPurchased)
(decrease (creditLimit ?creditCard)
?purchaseAmount))

< /expr : expressionBody >
< /expr : KIF − Condition >

< /process : hasEffect >
Semantic web services can thus be directly leveraged to

obtain immediate effect specifications of process tasks that

these services might execute.

5. Implementation and evaluation

This ProcessSEER tool has been implemented using

the Eclipse environment and the STP (SOA Tools Plat-

form) BPMN modelling tool [8]. The tool supports analyst-

mediated specification of immediate effects of process tasks

within a process modelling environment. The tool then

computes cumulative effect scenarios in an “on-demand”

fashion (i.e., the tool computes the effect scenarios associ-

ated with tasks selected by the user). Pair-wise effect accu-

mulation requires consistency checks - these are performed

by the first-order theorem prover Prover9 [9]. First-order

logic representations of controlled natural language effect

specifications are obtained using the ACE-CNL toolkit [7].

The application interface in (Fig.1) shows the immediate and

cumulative effects displayed in a dialogue box at the bottom

of the screen (space and formatting restrictions prevented us

from displaying a larger screen shot).

The ProcessSEER tool was evaluated in two ways. First,

expert evaluation was conducted using experienced analysts

with significant background in BPMN modelling, in the

context of industry-scale process models (developed for the

financial services sector) with approximately 20-22 activities

each. The feedback was generally positive in relation to

usability, effectiveness/accuracy of the effect scenarios gen-

erated and the response time. The testing has helped to im-

prove tool performance and usability. The second component

of the evaluation exercise involved testing for processing

time with increasing size and complexity of models. A

series of tests were conducted across a variety of models

to evaluate the speed of scenario label derivation and pair-

wise accumulation with consistency checking. These tests

involved immediate effect specifications that translated into

single first-order logic sentences for each activity. Each of

these sentences were ground. This is a realistic assumption

since quantified sentences rarely appear in the description of

immediate effects, but more commonly appear in the rules in

the background knowledge-base. The tests were conducted

on a computer with a Pentium Quad Core 2.4GHz CPU and

produced the results listed in Table 1

The results show the time required to compute an effect

Activities Paths Scenario Labels milliseconds

10 12 4 209
12 6 7 248
20 8 8 515
22 13 48 2718
22 48 16 1376
24 13 45 2763
24 96 32 1519

Table 1. Effect accumulation speeds

scenario for a selected activity, relative to the number of

“upstream” activities to that activity, the number of paths

that can be traced back to the start event from the selected

activity and the number of scenario labels associated with the

selected activity. Note that the number of distinct scenario

labels need not equal the number of distinct paths, but might

be greater or fewer. The recorded times represent the time

taken for both the derivation of scenario labels and pair-wise

accumulation of activities with consistency checking. The

test data shows that dynamic accumulation can be realised

within the operational constraints of the analyst.

Additional testing results are omitted here due to space re-

strictions, but the following observation is important. While

the results above involve a significant number of consistency

checks (one for every pair of contiguous activities), our

evaluation suggests that this does not, in general, signifi-

cantly degrade the performance of the tool. In the worst

case, the computation of acc(ei, ej) would require a number

of consistency checks that is exponential in the cardinality

of ei. The theorem prover Prover9 takes approximately

3ms to check the consistency of a set of 50 sentences.

Our evaluation suggests that the exponential number of

consistency checks that might be required in the worst case

does not significantly impact the processing time of the

tool, for the following reasons. First, we believe inconsistent

effects (where a task “undoes” the effects of a prior task) are

relatively rare in business processes due to the contributory

nature of activities toward achieving a final goal whereas

they can be seen more frequently in, say, engineering pro-

cesses. Second, the inconsistency at any given step typically

involves a small number of effects (typically a single effect)

of the most recent task. These can be directly identified by

flagging the rules in the background knowledge base that are

violated. The worst-case scenario involving an exponential

number of consistency checks is therefore extremely rare.

Third, several instances of inconsistency (such as those that

involve resetting of status flags, e.g., from not paid to paid)

can be dealt with via specialised machinery that deals with

inconsistent literals. Finally, the fact that the theorem prover

is quite fast in the face of reasonable-sized sets of sentences
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provides further confidence that this will not be a major issue

in practical settings.

6. Conclusion

A business process modelling tool that can provide instant

feedback about the consequences of critical process re-

engineering decisions at design time adds an extra layer of

protection before changes are initiated. Add to this the ability

to automatically translate business processes into semantic

web services and we have a suite of tools of considerable

benefit to any organisation.

ProcessSEER is currently capable of storing immediate

effect annotations and dynamically accumulating those an-

notations with consistency checking for selected tasks in

the model. The work involved in this paper represents a

substantial contribution to the development of a BPMN

modelling tool that can perform automated process analysis.

Future development will extend the functionality, encourag-

ing business contribution to semantic web content.
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