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We define a causality semantics of Place/Transition nets with weighted inhibitor arcs
(PTI-nets). We extend the standard approach to defining the partial order semantics of
Place/Transition nets (PT-nets) based on the process semantics given through net un-
folding and occurrence nets. To deal with inhibitor arcs at the level of occurrence nets
activator arcs (and extra conditions) are used. The properties of the resulting activa-
tor occurrence nets are extensively investigated. It is then demonstrated how processes
corresponding to step sequences of PTI-nets can be constructed algorithmically, and a
non-algorithmic (axiomatic) characterisation is given of all those processes that can be
obtained in this way. In addition, a general framework is established allowing to sepa-
rately discuss behaviour, processes, causality, and their properties before proving that the
resulting notions are mutually consistent for the various classes of Petri nets considered.
This facilitates an efficient and uniform presentation of our results.

Key Words: theory of concurrency, Petri nets, weighted inhibitor arcs, causal-
ity semantics, processes, occurrence nets, step sequences.

1. INTRODUCTION

Petri nets are a formal model of concurrent computation that has been the
subject of extensive development in the past few decades (see [8, 19] for a compre-
hensive overview of the results pertaining both to theory and application of Petri
nets). In its most common formulation, a Petri net consists of places, or local states,
and transitions effecting the change of local states. The latter is possible if, for a
given transition, a specified set of local states is currently active, or marked in Petri
net terminology. Such a model is what is usually referred to as Place/Transition
nets, or PT-nets. Petri nets with inhibitor arcs (PTI-nets), where a transition’s
executability can also depend on some specific local states not being marked, is
perhaps the most natural extension of the standard PT-net model. As stated in
[18], ‘Petri nets with inhibitor arcs are intuitively the most direct approach to in-
creasing the modelling power of Petri nets’. PTI-nets are strictly more expressive
than PT-nets; as they can simulate the computations of Turing machines, several
important decision problems like reachability and liveness which are decidable for
PT-nets are undecidable for PTI-nets [12].

1Supported by travel grants from the Netherlands Organization for Scientific Research (NWO)
and the British Council, and an EPSRC grant GR/M94366 (MOVIE).
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Unlike a standard Petri net, a Petri net with inhibitor arcs has essentially the
possibility of testing whether a place is empty in the current marking (zero testing).
This means that inhibitor arcs are well suited to model situations involving testing
for a specific condition, rather than producing and consuming resources. Indeed,
inhibitor arcs have been found to be particularly useful in areas such as commu-
nication protocols (see, e.g., [4]) and performance analysis (see, e.g., [7]). Despite
their apparent usefulness, the theory of inhibitor nets has not yet received the level
of attention it deserves, and it is our intention here to contribute towards rectifying
this problem.

In this paper, we consider the general class of PTI-nets consisting of weighted
PT-nets with weighted inhibitor arcs which can be used for testing whether a place
does not contain more than a certain threshold number of tokens [1]. We are
concerned with the development of a process semantics of general PTI-nets, based
on net unfolding and occurrence nets.

The line of research presented here is a continuation of the work of [14] on
elementary net systems with inhibitor arcs, which has been further developed in
[17]. The key aspect of the adopted approach is to use the so-called stratified
order structures to provide a causality semantics consistent with the operational
semantics defined in terms of step sequences. Whereas for an elementary net system,
an abstract causality semantics can be given in terms of partial orders alone, the
presence of inhibitor arcs requires more information on the relationships between
event occurrences.

p1 p2

p3 p4

t u

2 3

FIG. 1 Place/Transition net NI expl with weighted inhibitor arc.

An example

We consider the most general class of inhibitor nets, for we allow both weighted
arcs for consuming and producing tokens (the standard arcs), and weighted in-
hibitor arcs. To illustrate the role of the latter ones, let us consider the inhibitor
net NI expl with the two transitions, t and u, and four places, p1, . . . , p4, shown in
figure 1.

In addition to the weighted standard arcs, like that between transition t and
place p3 of weight 2 (which means that executing t leads to the addition of 2 tokens
to p3), there is an inhibitor arc between place p3 and transition u of weight 3. This
means that u can occur (is enabled) only if p3 contains at most 3 tokens, in addition
to the requirement represented by the arc with weight 1 from p2 to u by which p2

should contain at least one token which will be ‘consumed’ by u when it occurs.
Executing u does not affect the tokens in p3. Initially, both t and u are enabled
and σ1 = u, σ2 = ut, σ3 = utt, σ4 = t, σ5 = tu, σ6 = tut, and σ7 = tt are the
non-empty execution sequences of NI expl .
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The possibility to execute t is never affected by executing u. However, after
the execution sequence (firing sequence) tt, transition u becomes disabled. This
indicates that independence of transitions is no longer symmetric. In the a priori
concurrency semantics of nets with inhibitor arcs as discussed in [6] and investigated
in [14] and [17], t and u may also be executed simultaneously after executing t, since
the inhibitor place p3 of u holds less than 3 tokens prior to the occurrence of u.
Thus also the step sequence {t}{t, u} may be executed. Hence simultaneity of
transition occurrences and absence of ordering are different notions.

Stratified order structures take care of these more involved relations between
transition occurrences by providing next to a partial order a weak partial order. The
former describes the standard causal relationships between the occurrences whereas
the latter describes weak causal relationships as that described above: after the first
occurrence of t, u may precede a next occurrence of t but not vice versa, and hence
the step {t, u} after t may be sequentialised to ut, but not to tu.

Causality semantics

For elementary net systems and PT-nets, an abstract partial order semantics
follows immediately from their process semantics (see, e.g., [20], [2], [11]). Processes
are constructed by unfolding the system according to a given run represented by
a firing sequence. This leads to occurrence nets, which are (labelled) acyclic nets
with non-branching places (conditions), since conflicts are resolved during the run.
By abstracting from the conditions of an occurrence net, one obtains a (labelled)
partial order which describes the causal relationships between the events (transition
occurrences) in the given run: all labelled sequences which are linearisations of the
partial order are firing sequences of the net and among them is the firing sequence
on basis of which the process was constructed.

In order to obtain a causality semantics in terms of stratified order structures
for nets with unweighted (i.e., zero-testing inhibitor arcs) also both [14] and [17]
first develop a process semantics. Since in the a priori semantics not all concur-
rent runs of the system can be represented by a firing sequence, these processes
are based on step sequences. (Consider again the net NI expl in figure 1, with an
additional inhibitor arc of weight 0 from p4 to t. Now, neither tut nor ttu are firing
sequences, although {t}{t, u} is still a valid step sequence.) Given a step sequence
of an elementary net system with inhibitor arcs, [14] unfolds the system into an
occurrence net with additional arcs (activator arcs) to represent the inhibitor arcs.
Testing if a place is empty (inhibitor arc) is in the unfolding represented by testing
whether its complement condition (which can be assumed to exist) does hold using
an activator arc. In the resulting activator occurrence net the conditions are again
non-branching with respect to the normal arcs. Moreover, it is acyclic in a sense
which includes the activator arcs (♦–acyclic) and thus allows to extract a (labelled)
stratified order structure which describes precisely the causality and weak causality
relationships between the events in the given run. All step sequences which obey
the constraints imposed by the stratified order structure are step sequences of the
system and they include the step sequence on the basis of which the process was
constructed.

To define a process semantics for unweighted PT-nets with unweighted inhibitor
arcs, we investigated in [17] first the case that all inhibitor places are complemented
(and thus bounded). In this case, the approaches of [2] and [14] can be combined
and, again, from the resulting processes, labelled stratified order structures can be
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extracted which describe the causality between transition occurrences in the under-
lying concurrent run. To deal with inhibitor places which are not complemented,
additional conditions (called z-conditions) were introduced ‘on demand’ during the
construction of a process for a given step sequence. The presence of a z-condition
signals an empty inhibitor place with the zero-testing represented by an activator
arc. Since z-conditions may be branching (with respect to the normal arcs), this
led to a new type of occurrence net with activator arcs. Still, also from these pro-
cesses a labelled stratified order structure could be extracted describing precisely
the causal relationships in the underlying run.

As already observed in [17], the process semantics and hence the causality se-
mantics presented there could easily be generalised to PT-nets with weighted ordi-
nary arcs. How to deal with weighted inhibitor arcs was however less obvious. In
this paper, we demonstrate that in the case of complemented inhibitor places, the
approach of [17] based on testing for occurrences of complement conditions can be
easily adapted. For general PTI-nets however, we propose a completely new pro-
cess semantics, again using extra conditions and activator arcs connected to these
conditions. Together they represent the dependency between transition occurrences
due to the presence of inhibitor arcs in the PTI-net. This is different from the role
of the z-conditions in [17], and makes it possible to avoid references to the weights
of inhibitor arcs, but rather to focus on the dependencies they give rise to. Con-
sequently, in contrast to the unfolding in [17], the new construction has a ‘local’
flavour similar to the classical unfolding procedures discussed above. Moreover, it
is no longer necessary to introduce a new type of occurrence nets with activator
arcs. We describe how processes corresponding to step sequences of PTI-nets can
be constructed and an axiomatic characterisation is given of the processes that can
be obtained in this way. We also establish that the resulting semantics is fully
consistent with the operational semantics of PTI-nets in terms of step sequences.

Our approach to defining causality semantics

Developing an abstract causality semantics for a class of Petri nets on basis
of a process semantics requires going through several steps of defining various be-
havioural notions and relations between them. And, after looking at various pro-
posals in the literature, it was revealing to observe that these steps do not depend
on the kind of nets one is interested in. That is, there is a general pattern of
proceeding, which only differs in technical (though non-trivial) aspects between
different classes. In our presentation, we decided to take full advantage of this
phenomenon, and we set out to develop a uniform framework for relating, in par-
ticular, behaviours, processes, and causality structures generated by nets. This
decision proved to be a fruitful one, as we were able to boil down several interesting
semantical characteristics (called the aims) to relatively few requirements (called
the properties) which need to be established for a specific class of nets and/or
behaviours to guarantee that the aims hold. The immediate advantage of this ap-
proach is that we obtain a clear separation of concerns when discussing different
behavioural notions. Thus a second main contribution of this paper is the introduc-
tion of this semantical framework, and the demonstration how using it leads to an
efficient and uniform presentation which avoids the listing of ad hoc intermediate
results for each class of PTI-nets considered.
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An outline of this paper

We first introduce several basic notions and concepts used throughout the paper.
We then define the general semantical framework, after which the relationships be-
tween the different semantical objects we are interested in are clarified. In section 4,
we recall the definitions and properties of executions and causal structures needed
to deal with PT-nets and PTI-nets. Section 5 takes a closer look at the properties
of occurrence nets with activator arcs. The following section explains how the stan-
dard process semantics can be seen as an instance of the general framework defined
earlier on. After that we investigate PTI-nets with and without complemented in-
hibitor places and their semantics, showing that they are also an instance of the
more general picture. Proofs of results omitted from the main body of the paper
are included in the appendix.

This paper is largely self-contained, although it will be an advantage for the
reader to be acquainted with the ‘classical’ process theory as presented in [2, 11, 20].

2. PRELIMINARIES

We use the standard mathematical notation. In particular, ] denotes disjoint set
union, N the set of natural numbers (including 0), and ∞ the first infinite ordinal.
The set of all finite sequences over a set X is denoted by X∗; the empty sequence
is denoted by ε and xk is the sequence consisting of exactly k occurrences of an
element x ∈ X. The powerset of a set X is denoted by P(X), and the cardinality
of a finite set X is denoted by |X|. Throughout the paper we assume the existence
of a universe U of atomic elements such that whenever u, v ∈ U , then u 6∈ v.

Functions and relations

The standard ◦ notation for the composition of functions is used also also in the
special case of functions f : X → P(Y ) and g : Y → P(Z), for which g ◦ f : X →
P(Z) is defined by

g ◦ f(x)
df

=
⋃

y∈f(x)

g(y) ,

for all x ∈ X. The restriction of a function f : X → Y to a set Z ⊆ X is denoted
by f |Z . Unless specified explicitly, all functions are assumed to be total.

The composition of two binary relations P ⊆ X ×Y and Q ⊆ Y ×Z is given by

P ◦Q
df

= {(x, z) | ∃y ∈ Y : (x, y) ∈ P ∧ (y, z) ∈ Q} .

As customary for binary relations, we will mostly use an infix notation and write

xPy rather than (x, y) ∈ P . Moreover, domP
df

= {x | (x, y) ∈ P} and codomP
df

=
{y | (x, y) ∈ P}. The restriction of a relation P ⊆ X × Y to a set Z ⊆ X × Y is

denoted by P |Z . By idX
df

= {(x, x) | x ∈ X} we denote the identity relation on a
set X. Relation P ⊆ X × X is reflexive if idX ⊆ P ; irreflexive if idX ∩ P = ∅;
and transitive if P ◦P ⊆ P . The transitive closure of P is denoted by P+, and the
transitive and reflexive closure by P ?. P is a partial order if it is acyclic (i.e., P+

is irreflexive) and P = P+ (so each partial order is irreflexive).
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Multisets

A multiset (over a set X) is a function m : X → N, and an extended multiset
(over X) is a function m : X → N ∪ {∞}. For two extended multisets m and m

′

over X, we denote m ≤ m
′ if m(x) ≤ m

′(x) for all x ∈ X. (As usual, n < ∞ for
all n ∈ N.) Any subset of X may be viewed through its characteristic function
as a multiset over X, and any multiset may always be considered as an extended
multiset. We denote x ∈ m if m(x) ≥ 1 and m(x) 6= ∞. The multiset 0X and the

extended multiset ΩX are given respectively by 0X(x)
df

= 0 and ΩX(x)
df

= ∞, for
all x ∈ X.

The sum of two multisets m and m
′ over X is given by (m + m

′)(x)
df

= m(x) +

m
′(x), the difference by (m − m

′)(x)
df

= max{0,m(x) − m
′(x)}, the intersection by

(m∩m
′)(x)

df

= min{m(x),m′(x)}, and the multiplication of a multiset m by a natural

number n by (n ·m)(x)
df

= n ·m(x). A multiset m is finite if there are finitely many
x ∈ X such that m(x) ≥ 1. In such a case, the cardinality of m is defined as

|m|
df

=
∑

x∈X m(x).

Labellings

A labelling for a set X is a function ` : X → A, where A is a set of labels. Given
a labelling ` : X → A and a ∈ A, we say that x ∈ X is a–labelled if `(x) = a. We
can lift the labelling ` : X → A to a subset Y of X in two different ways. As usual,

`(Y ) is the set of labels assigned by ` to Y , thus `(Y )
df

= {a ∈ A | ∃y ∈ Y : a = `(y)}.
In addition, if Y is finite, then `〈Y 〉 is the multiset of labels assigned to the elements

of Y , i.e., `〈Y 〉 is the multiset over A given by `〈Y 〉(a)
df

= |`−1(a) ∩ Y |, for every
a ∈ A. For a sequence of sets σ = X1 . . . Xn and a labelling ` for X1 ∪ . . . ∪Xn we

write `(σ)
df

= `(X1) . . . `(Xn) and `〈σ〉
df

= `〈X1〉 . . . `〈Xn〉.
Let X1, . . . , Xn be mutually disjoint sets, and let `i be a labelling for each Xi.

Then `1∪ . . .∪`n is the labelling for X1∪ . . .∪Xn defined by `1∪ . . .∪`n(x)
df

= `i(x)
if x ∈ Xi for some 1 ≤ i ≤ n.

We will use the notion of a labelled relational structure (or structure) to refer to
a tuple (X,P, `) or (X,P,R, `), where X is a set, P,R ⊆ X×X, and ` is a labelling
for X.

Petri nets

We now introduce the basic notion of a (Petri) net with weighted arcs which
underlies all net models discussed later, and give its operational semantics in terms
of step sequences. After that we introduce two extensions of this basic net notion,
employing respectively inhibitor arcs and activator arcs.

A (weighted) net is a triple N
df

= (P, T,W ) such that P and T are disjoint finite
sets (P, T ⊆ U), and W : (T × P ) ∪ (P × T ) → N is a multiset. The elements of
P and T are respectively the places and transitions, and W is the weight function
of N . In diagrams, places are drawn as circles, and transitions as rectangles. If
W (x, y) ≥ 1 for some (x, y) ∈ (T ×P )∪ (P × T ), then (x, y) is an arc leading from
x to y. As usual, arcs are annotated with their weight if this is 2 or more. We
assume that, for every t ∈ T , there are places p and q such that W (p, t) ≥ 1 and
W (t, q) ≥ 1 (i.e., nets are assumed to be T-restricted).

The pre- and post-multiset of a transition t ∈ T are multisets of places, preN (t)

and postN (t), respectively given by preN (t)(p)
df

= W (p, t) and postN (t)(p)
df

=
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W (t, p), for all p ∈ P . Both notations extend to finite multisets of transitions U :

preN (U)
df

=
∑

t∈U

U(t) · preN (t) and postN (U)
df

=
∑

t∈U

U(t) · postN (t) .

For a place p ∈ P , we denote by preN (p) and postN (p) the multisets of transitions

respectively given by postN (p)(t)
df

= W (p, t) and preN (p)(t)
df

= W (t, p), for all
t ∈ T .

Amarking of a net N is a multiset of places. Following the standard terminology,
given a marking M of N and a place p ∈ P , we say that p is marked (under M)
if M(p) ≥ 1 and that M(p) is the number of tokens in p. In diagrams, M will be
represented by drawing in each place p exactly M(p) tokens (small black dots).

Transitions represent actions which may occur at a given marking and then
lead to a new marking. Here we define this dynamics in the more general terms of
multisets of (simultaneously occurring) transitions.

A step is a finite multiset of transitions, U : T → N. It is enabled at a marking
M if M ≥ preN (U). Thus, in order for U to be enabled at M , for each place p,
the number of tokens in p under M should at least be equal to the total number of
tokens that are needed as an input to U , respecting the weights of the input arcs.

If U is enabled at M , then it can be executed leading to the marking M ′ df

=
M − preN (U) + postN (U). This means that the execution of U ‘consumes’ from
each place p exactly W (p, t) tokens for each occurrence of a transition t ∈ U that
has p as an input place, and ‘produces’ in each place p exactly W (t, p) tokens for
each occurrence of a transition t ∈ U with p as an output place. If the execution of
U leads from M to M ′ we write M [U〉M ′. Note that the empty step 0T is enabled
at every marking of N , and that its execution has no effect on the marking, i.e.,
M [0T 〉M for all markings M of N .

A step sequence from a markingM to a markingM ′ is a possibly empty sequence
σ = U1 . . . Un of non-empty steps Ui such that

M [U1〉M1 · · · Mn−1 [Un〉M
′ ,

for some markingsM1, . . . ,Mn−1 of N . Moreover, the sequence of alternating mark-
ings and steps, µ = MU1M1 . . .Mn−1UnM

′, will be called a mixed step sequence of
N from M to M ′. If σ is the empty sequence ε, then n = 0 and M = M ′. If σ is a
step sequence from M to some M ′ we write M [σ〉M ′ or M [σ〉, and say that M ′ is
reachable from M .

The set of all markings reachable from M will be denoted by [M〉. Note that
we always have M ∈ [M〉. If we want to make it clear which net we are dealing
with, then we may add a subscript N and write [·〉N rather than [·〉.

In some cases, a net N has an implicit initial marking minN . Then, knowing
which transitions have been executed (and how many times) suffices to calculate
the resulting marking. More precisely, if U is a multiset of transitions, then we
denote by marN (U) the marking of N given by (minN + postN (U)) − preN (U).
It is then easy to see that M [U1 . . . Un〉M ′ implies M ′ = marN (U1 + · · ·+ Un).

If each multiset in a step sequence σ = U1 . . . Un is a singleton, Ui = {xi} with
xi ∈ T , then the sequence x1 . . . xn is called a firing sequence. For ordinary Petri
nets the reachability of markings does not depend on whether we use (general) step
sequences or firing sequences; however, this may no longer hold if we also allow,
e.g., inhibitor or activator arcs, described next.
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Nets with inhibitor arcs

An inhibitor net is a net enriched with weighted inhibitor arcs leading from
places to transitions. Formally, an inhibitor net NI is a tuple (P, T,W, I) such that

und(NI )
df

= (P, T,W ) is a net (the underlying net of NI ) and I — the inhibitor
function — is an extended multiset over P × T . If I(p, t) = k ∈ N, then p is an
inhibitor place of t, and this will imply that t can only be executed if p does not
contain more than k tokens; in particular, if k = 0 then p must be empty. Moreover,
I(p, t) = ∞ means that t can never be prevented from occurring by the presence
of tokens in p. In diagrams, inhibitor arcs have small circles as arrowheads. An
inhibitor arc from p to t is drawn only if its weight is different from ∞. Just like
the normal arcs, inhibitor arcs are annotated with their weights. Now however,
the weight 0 is not shown. A net (P, T,W ) (without inhibitor arcs) can be consid-
ered as a special instance of an inhibitor net and identified with the inhibitor net
(P, T,W,ΩP×T ).

Let NI = (P, T,W, I) be an inhibitor net. The various notations introduced
above for transitions and places, are defined for NI through its underlying net
und(NI ). In addition, for every transition t ∈ T , inhNI (t) is the extended multiset

of places given by inhNI (t)(p)
df

= I(p, t) and, for a finite multiset U of transitions,
inhNI (U) is the extended multiset of places given by

inhNI (U)(p)
df

= min({∞} ∪ {inhNI (t)(p) | t ∈ U}) .

Steps and markings of NI are defined as for its underlying net und(NI ). In
NI , a step U : T → N is enabled at a marking M if it is enabled at M in und(NI )
and, in addition, M ≤ inhNI (U). Thus, if a place p is an inhibitor place of some
transition t occurring in U , then p must not contain more than I(p, t) tokens. This
definition of enabledness is based on an a priori condition: the inhibitor places
of transitions occurring in a step should obey the inhibitor constraints before the
step is executed.2 Note that the empty step 0T is enabled at every marking of NI
and that its execution has no effect. The notions of a step sequence, mixed step
sequence and reachability are defined as for (ordinary) nets, using the modified
notion of enabledness.

Nets with activator arcs

An activator net is a net enriched with weighted activator arcs leading from

places to transitions, NA
df

= (P, T,W,Act) such that und(NA)
df

= (P, T,W ) is the
underlying net of NA and Act is a multiset over P × T . If Act(p, t) > 0, then p is
an activator place of t, and this will imply that t can only be executed if p contains
at least k tokens (the presence of the tokens is tested without the implication
of them being consumed by t). Moreover, Act(p, t) = 0 means that t does not
need any tokens in p to be enabled, unless W (p, t) ≥ 1. In diagrams, activator
arcs have small black dots as arrowheads, and are drawn only if their weights are
positive. Just like the normal arcs, activator arcs are annotated with their weights
if the latter are greater than 1. A net (P, T,W ) (without activator arcs) can be
considered as a special instance of an activator net and identified with the activator
net (P, T,W,0P×T ).

2In the a posteriori approach [5], the inequality for enabledness is strengthened and becomes
M + postNI (U) ≤ inhNI (U).
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Let NA = (P, T,W,Act) be an activator net. The various notations introduced
above for transitions and places, are defined for NA through its underlying net
und(NA). In addition, for every transition t ∈ T , actNA(t) is the multiset of

places given by actNA(t)(p)
df

= Act(p, t) and, for a finite multiset U of transitions,
actNA(U) is the multiset of places given by

actNA(U)(p)
df

= max({0} ∪ {actNA(t)(p) | t ∈ U}) .

Steps and markings of NA are defined as for its underlying net und(NA). In
NA, a step U : T → N is enabled at a marking M if it is enabled at M in und(NA)
and, in addition, M ≥ actNA(U). Thus, if a place p is an activator place of some
t ∈ U , then M(p) ≥ Act(p, t). This definition of enabledness is again based on the
a priori condition. (For alternative definitions see [5, 23].) Note that the empty
step 0T is enabled at every marking of NA and that its execution has no effect.
The notions of a step sequence, mixed step sequence and reachability are defined
as for (ordinary) nets, using the modified notion of enabledness.

Labelled nets and marked nets

For each kind of net described above, we can consider labelled versions as well
as marked versions, which amounts to adding an extra component to the tuple
representing the net. In the former case, this component is a labelling for the places
and transitions of the net, while in the latter a marking of the places, called the
initial marking. All the notations relating to the structure and behaviour of labelled
(marked) nets are inherited from the underlying unlabelled (resp. unmarked) nets.
In diagrams, labels are given instead of the underlying elements.

Boundedness and complement places

A place p of a marked net N with initial marking M0 is said to be n–bounded,
where n ∈ N, if M(p) ≤ n for every marking M reachable from M0; it is bounded
if it is n–bounded for some n; and otherwise it is unbounded. N is safe if all its
places are 1-bounded.

A place q of a marked net N with initial marking M0 is a complement of a
place p of N if q 6= p, preN (p) = postN (q) and postN (p) = preN (q). In such a

case, bndN (p) = bndN (q)
df

= M0(p) +M0(q) is a common bound for both p and q;
moreover, bndN (p) = M(p) +M(q), for every marking M reachable from M0.

3. THE SEMANTICAL FRAMEWORK

Aiming at a systematic presentation of the process and causality semantics for
various types of Petri nets considered in this paper, we will use a common scheme
the setup of which is pictured in figure 2. For a given Petri net model PN , we will
be working with the following semantical domains:

• EX are executions, such as step sequences, employed by the operational (be-
havioural) semantics of nets in PN ;

• LAN are labelled acyclic nets, such as occurrence nets, providing the struc-
tural description of abstract processes of nets in PN , with each labelled net
in LAN representing a single non-sequential history;
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• LEX are labelled executions, such as labelled step sequences, employed by
the operational semantics of nets in LAN ;

• LCS are labelled causal structures, such as labelled partial orders, defining
an abstract causality semantics of nets in PN .

The arrows in figure 2 indicate functions that will be instantiated later, and
then used to define and relate the three views on semantics for the Petri net model
PN captured respectively by EX , LAN and LCS. For each net model considered
in this paper, it will be our aim to show that the different semantics agree in the
sense that processes (LAN ) and causal structures (LCS) describe relations between
events consistent with the chosen operational semantics (EX ). This section will
show how certain simple and natural conditions (called properties) guarantee such
an agreement. As a result, we will later be in the position to focus solely on the
definitions of the semantical domains and functions appearing in figure 2, and after
establishing the properties in question, the desired results on the semantics will
follow immediately.

N ∈ PN LAN

EX LEX

LCS

α

ω πN

φ

λ

ε
ı

κ

FIG. 2 The general setup for a Petri net N in PN .

Let us now assume that a certain Petri net model PN has been fixed, and
that the N in figure 2 is an arbitrary net from that model. We first consider
the square-like part of the diagram (together with the diagonal), which essentially
describes and relates two different ways in which a net in PN can be given a process
semantics.

The function ω : PN → P(EX ) yields the non-empty set of executions of N ,
providing its operational semantics. The function α : PN → P(LAN ) associates
with N a non-empty set of labelled acyclic nets (processes) from LAN satisfying
certain axioms; a process is given an operational semantics through the function
λ : LAN → P(LEX ) which associates with it a non-empty set of labelled executions.
A labelled execution can be interpreted as an ordinary execution (of the original
net N ) by forgetting some irrelevant information through the total function φ :
LEX → EX . Finally, the partial function πN : EX → P(LAN ) defines, for each
execution of N , a non-empty set of labelled acyclic nets which can be viewed as
operationally defined processes of N . We thus have our first requirement.

Property 1. The functions ω, α, λ, φ and πN |ω(N) are total. Moreover, ω, α, λ
and πN |ω(N) never return the empty set.

Two aims can now be formulated which, when fulfilled, guarantee that the
axiomatic and behavioural process definition as well as the operational semantics
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of nets in PN are in agreement: the axiomatic processes of N (defined through
α) coincide with the operational processes of N (defined through πN ◦ ω); and
the operational semantics of N (defined through ω) coincides with the operational
semantics of the processes of N (defined through φ◦λ◦α). To prove these aims, we
use a consistency property relating individual executions to individual processes:
(i) any process defined from an execution ξ of N can also be defined axiomatically
and then has ξ as one of its executions; and (ii) any labelled execution of a process
LN of N can also be interpreted as an execution of N and then can be used to
define LN operationally.

Property 2 (Consistency). For all ξ ∈ EX and LN ∈ LAN ,

ξ ∈ ω(N ) ∧ LN ∈ πN (ξ) iff LN ∈ α(N ) ∧ ξ ∈ φ(λ(LN )) .

Provided that this property has been established for a given net model PN , the
two aims formulated above follow.

Aim 1. α = πN ◦ ω.

Proof. To show the (⊆) inclusion, suppose that LN ∈ α(N ). Then, by prop-
erty 1 for λ and φ, there exists ξ ∈ φ(λ(LN )). Hence, by property 2, ξ ∈ ω(N )
and LN ∈ πN (ξ). Thus LN ∈ πN (ω(N )). To show the (⊇) inclusion, suppose that
LN ∈ πN (ω(N )). Then there exists ξ ∈ ω(N ) such that LN ∈ πN (ξ). Hence, by
property 2, LN ∈ α(N ).

Aim 2. ω = φ ◦ λ ◦ α.

Proof. To show the (⊆) inclusion, suppose that ξ ∈ ω(N ). Then, by property 1
for πN , there exists LN ∈ πN (ξ). Hence, by property 2, LN ∈ α(N ) and ξ ∈
φ(λ(LN )). Thus ξ ∈ φ(λ(α(N ))). To show the (⊇) inclusion, suppose that ξ ∈
φ(λ(α(N ))). Then there exists LN ∈ α(N ) such that ξ ∈ φ(λ(LN )). Hence, by
property 2, ξ ∈ ω(N ).

An immediate corollary of aims 1 and 2 is the consistency between the oper-
ational semantics of N and the operational semantics of its behaviourally defined
processes.

Corollary 3.1. ω = φ ◦ λ ◦ πN ◦ ω.

We now turn to the abstract causality semantics of processes which is repre-
sented by the triangle-like part on the right of the diagram in figure 2. By extracting
from a labelled acyclic net the causal relationships between its labelled events one
obtains an abstract representation of causality between events. This is formalised
through a function κ : LAN → LCS which associates a labelled causal structure
with each process in LAN . To relate this abstract causality semantics to the op-
erational semantics of processes, we use a total function ε : LCS → P(LEX ) and a
partial function ı : P(LEX )→ LCS, which allow one to go back and forth between
labelled causal structures and the corresponding labelled executions. Formally, we
require

Property 3. The functions κ, ε and ı|λ(LAN ) are total. Moreover, ε never returns
the empty set.

The function ε associates with each labelled causal structure a set of labelled
executions. On ε we impose the restriction that the executions returned by ε should
always contain enough information to uniquely reconstruct the original labelled
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causal structure. To formalise this requirement, we have the partial function ı,
which is defined for sets of labelled executions and yields labelled causal structures,
typically through some kind of intersection. It is partially defined since it cannot
associate a labelled causal structure to a set of labelled executions that do not have
a common domain and labelling (and thus are unrelated).

Property 4 (Representation). ı ◦ ε = idLCS .

Note that this implies that the domain of ı includes ε(LCS).
Clearly, the causality in a process of N (defined through κ) should coincide

with the causality structure implied by its operational semantics (through ı ◦ λ).
By taking care that the observational semantics for the structures in LCS fits with
the operational semantics chosen for LAN , such an aim can be achieved. Thus we
require

Property 5 (Fitting). λ = ε ◦ κ.

and then we have

Aim 3. κ = ı ◦ λ.

Proof. By properties 4 and 5, κ = idLCS ◦ κ = ı ◦ ε ◦ κ = ı ◦ λ.

Finally, we can relate the operational semantics of the net N and the set of
labelled causal structures associated with it, in effect joining together the two parts
of the diagram in figure 2 considered so far separately.

Corollary 3.2. ω = φ ◦ ε ◦ κ ◦ α.

Proof. By aim 2 and property 5, ω = φ ◦ λ ◦ α = φ ◦ ε ◦ κ ◦ α.

Aim 2 and corollaries 3.1 and 3.2 verify the consistency of the process and
abstract causality semantics of the net N with its operational semantics given by
the function ω (which captures the dynamics of the nets in PN and is in many
instances given through, for example, the standard firing sequence or step sequence
semantics).

To use the above setup in practice all we need to do is to establish properties 1
and 3, and check that the consistency, representation and fitting properties hold
true (properties 2, 4 and 5). Having done so, the semantical aims follow from the
above discussion.

4. EXECUTIONS AND CAUSAL STRUCTURES

In this section we will discuss the specific classes of executions, labelled execu-
tions, and labelled causal structures to be used in the rest of this paper. We thus
instantiate EX , LEX , and LCS together with functions φ, ı, and ε and we establish
that these satisfy the requirements formulated in properties 1, 3, and 4.

4.1. Executions and labelled executions

We use two kinds of executions, step sequences (STS) and firing sequences (FS).
A step sequence (over a set X ⊆ U) is a finite — possibly empty — sequence of
non-empty finite multisets (over X), while a firing sequence (over X ⊆ U) is a finite
sequence of elements (from X); i.e., a firing sequence over X is an element of X∗.
Since we identify a finite sequence x1 . . . xn with {x1} . . . {xn}, we have FS ⊆ STS.
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We also use two kinds of labelled executions, labelled step sequences (LSTS)

and labelled firing sequences (LFS). A labelled step sequence is a pair $
df

= (σ, `),
where σ = X1 . . . Xn ∈ STS is a step sequence consisting of mutually disjoint sets
(rather than multisets) Xi ⊆ U , and ` is a labelling for the set X1 ∪ . . .∪Xn called
the domain of $. A labelled firing sequence is a labelled step sequence (σ, `) such
that σ ∈ FS is a firing sequence. Note that LFS ⊆ LSTS.

With each labelled step (firing) sequence $ = (σ, `), where σ = X1 . . . Xn, we

associate the step (firing) sequence φ($)
df

= `〈σ〉, thus defining the function φ of
figure 2 by forgetting the identity of the elements carrying the labels. (Note that
φ is total and hence satisfies property 1.) Moreover, for i ≤ n and x ∈ Xi, we use

ind($,x)
df

= i to denote the index of the unique set Xi in which x appears.

4.2. Labelled causal structures

We use two kinds of labelled causal structures, labelled partial orders (LPO)
and labelled stratified order structures (LSOS).

A labelled partially ordered set (or poset) is a triple lpo
df

= (X,≺, `), where X
is a set (the domain of lpo), ` is a labelling for X, and ≺⊆ X × X is a partial
order. In this paper we will only be concerned with finite posets, i.e., posets with
finite domains. To denote that x = y or x ≺ y, we write x ¹ y. The notation
x 6↔ y indicates that x and y are distinct incomparable elements (x 6= y ∧ x 6≺
y ∧ y 6≺ x). lpo is linear if any two distinct elements of X are comparable (6↔= ∅)
and stratified [9] if x 6↔ y and y 6↔ z imply that x 6↔ z whenever x 6= z. A
stratified poset lpo = (X,≺, `) can be identified with the labelled step sequence
(X1 . . . Xn, `), where the Xi’s are the equivalence classes of the relation 6↔ ∪ idX ,
with the property: ≺ =

⋃
i<j Xi × Xj , and 6↔ = (

⋃
iXi × Xi)\idX . Similarly,

a linear poset lpo = (X,≺, `) can be identified with the labelled firing sequence
(x1 . . . xn, `), where x1 . . . xn is the enumeration of the elements of X with the
property ≺ =

⋃
i<j{(xi, xj)}.

A poset lpo can be thought of as an abstract history of a concurrent system,
where ≺ is interpreted as causality, and 6↔ as independence.

A labelled stratified order structure [10, 13] (or so-structure) is a structure lsos
df

=
(X,≺,<, `), where X is a finite set (the domain of lsos), ` is a labelling for X, and
≺ and < are two binary relations over X such that for all x, y, z ∈ X,

x 6< x C1
x ≺ y =⇒ x < y C2

x < y < z ∧ x 6= z =⇒ x < z C3
x < y ≺ z ∨ x ≺ y < z =⇒ x ≺ z C4 .

It is easily seen that (X,≺, `) is a poset and, furthermore, that x ≺ y implies y 6< x.
Moreover, if (X,≺, `) is a poset, then (X,≺,≺, `) is an so-structure. Thus LSOS
may be viewed as extending LPO. In diagrams, ≺ is represented by solid arcs, and
< by dashed arcs. We can omit arcs that can be deduced using C1-C4.

The first relation in an so-structure lsos should be interpreted as the standard
causality, and the second relation as weak causality. While causality is an abstrac-
tion of the ‘earlier than’ relation, weak causality is a similar abstraction of the ‘not
later than’ relation. For a detailed discussion of so-structures the reader is referred
to [13].
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Representation properties

We now instantiate the functions ε and ı relating labelled causal structures with
labelled executions. First we establish a relationship between LPO and LSTS with
LFS as a special case.

The set of labelled step sequences of a poset lpo = (X,≺, `) is the set εLSTS(lpo)
comprising all $ ∈ LSTS with domain X and labelling ` such that for all x, y ∈ X,
x ≺ y implies ind($,x) < ind($, y). In other words, εLSTS(lpo) comprises all
labelled step sequences (stratified posets) with the same domain and respecting the

ordering ≺. Moreover, εLFS(lpo)
df

= εLSTS(lpo)∩LFS consists of the labelled firing
sequences or linearisations (linear posets) of lpo.

The poset intersection of a non-empty set LSTS of labelled step sequences with

the same domain X and labelling ` is defined as ıLPO(LSTS )
df

= (X,≺, `), where ≺
is a binary relation on X such that for all x, y ∈ X, x ≺ y if ind($,x) < ind($, y)
for all $ ∈ LSTS . In other words, ıLPO(LSTS ) intersects all the orderings on
the set X implied by the elements of LSTS . It is easy to see that ıLPO(LSTS )
is a poset. Moreover, every poset is completely determined by its labelled step
sequences and, in fact, already by its labelled firing sequences ([21]).

Fact 4.1 (properties 3 and 4 for εLFS , εLSTS and ıLPO). Let lpo be a poset.

1. εLFS(lpo) 6= ∅ and εLSTS(lpo) 6= ∅.

2. ıLPO(εLFS(lpo)) = lpo and ıLPO(εLSTS(lpo)) = lpo.

Next we consider representations of so-structures. The set of labelled step se-
quences of an so-structure lsos = (X,≺,<, `) is the set ε(lsos) comprising all
$ ∈ LSTS with domain X and labelling ` such that for all x, y ∈ X, x ≺ y implies
ind($,x) < ind($, y), and x < y implies ind($,x) ≤ ind($, y). In other words,
ε(lsos) comprises all labelled step sequences with the same domain and respecting
the orderings ≺ and <, under the assumption that the latter allows simultaneity.
Note that, if lsos = (X,≺,≺, `), then ε(lsos) = εLSTS(lpo), where lpo = (X,≺, `).

The so-structure intersection of a non-empty set LSTS of labelled step sequences

with the same domain X and labelling ` is ı(LSTS )
df

= (X,≺,<, `), where ≺ and <

are binary relations on X such that for all x, y ∈ X, x ≺ y if ind($,x) < ind($, y)
for all $ ∈ LSTS , and x < y if ind($,x) ≤ ind($, y) for all $ ∈ LSTS . It is easy
to see that ı(LSTS ) is an so-structure. Moreover, every so-structure is completely
determined by its labelled step sequences ([14]).

Fact 4.2 (properties 3 and 4 for ε and ı). Let lsos be an so-structure.

1. ε(lsos) 6= ∅.

2. ı(ε(lsos)) = lsos.

By Szpilrajn’s representation theorem (fact 4.1 for LFS) each poset is already
unambiguously identified by its labelled firing sequences (linearisations). A similar
result does not hold for so-structures since these do not necessarily have linear order
extensions and so one needs to consider labelled step sequences (stratified poset

extensions) [15]. Consider, e.g., lsos
df

= ({a, b},∅, {(a, b), (b, a)}, id {a,b}), which has
({a, b}, id{a,b}) as its only labelled step sequence.

As the next proposition shows, the incomparability (6↔) of two elements of an
so-structure implies that they may be executed simultaneously. Moreover, if in
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addition one of the elements is not required to occur not later than the other one,
it can actually be executed later on.

Proposition 4.3. Let lsos = (X,≺,<, `) be an so-structure.

1. If x and y are distinct elements of X such that ¬(x ≺ y) and ¬(y ≺ x) then
there is a labelled step sequence (σ, `) ∈ ε(lsos) such that x and y belong to
the same step of σ.

2. If x and y are distinct elements of X such that ¬(x ≺ y) and ¬(y < x) then
there is a labelled step sequence (σ, `) ∈ ε(lsos) such that y belongs to the step
immediately following the step to which x belongs.

Proof. See the appendix.

Acyclicity and closure of labelled causal structures

When used as a tool for representing concurrent behaviours, labelled causal
structures will be derived from locally defined information involving events which
directly interact with one another. This local information is combined into a
global relationship involving all the event occurrences; in particular, posets and
so-structures can be built from local relationships using suitable closure operations.

For posets, the construction in question is nothing but the standard transitive
closure. We say that a structure rs = (X,≺, `) is acyclic if≺+, the transitive closure

of ≺, is irreflexive. Moreover the transitive closure of rs is rs+ df

= (X,≺+, `).

Fact 4.4 (Closure for posets). Let rs = (X,≺, `) be a structure. Then rs+ is a
poset iff rs is acyclic. Moreover, for every poset lpo, it is the case that lpo+ = lpo.

For so-structures, we need slightly more complicated devices, developed in [14].
The ♦–closure is an operation which constructs an so-structure from local infor-
mation given in the form of a structure with two relations. The ♦–closure of a

structure rs = (X,≺,<, `) is rs♦
df

= (X,≺′,<′, `), where

≺′ df

= (≺ ∪ <)?◦≺◦(≺ ∪ <)? and <
′ df

= (≺ ∪ <)?\idX .

We say that rs is ♦–acyclic if ≺′ is irreflexive. This property has a straightforward
interpretation in operational terms, as it means that in a system history described
by rs, there are no event occurrences e1, e2, . . . , ek such that each ei has occurred
before or simultaneously with ei+1, while ek has occurred before e1. It is also this
property which characterises those cases when rs♦ is an so-structure.

Fact 4.5 (Closure for so-structures [14]). Let rs = (X,≺,<, `) be a structure.
Then rs♦ is an so-structure iff rs is ♦–acyclic. Moreover, for every so-structure
lsos, it is the case that lsos♦ = lsos.

Note that if rs = (X,≺,∅, `) and (X,≺, `) is acyclic, then rs♦ = (X,≺+,≺+, `).

5. LABELLED ACYCLIC NETS

This section introduces two kinds of labelled acyclic nets which as instantiations
of LAN in figure 2 will form the basis of the process semantics discussed later. We
define functions κ and λ which relate these nets to the labelled causal structures and
to the labelled executions of the previous section, and which satisfy the requirements
of properties 1 and 3. Moreover, the fitting condition of property 5 is established.
Thus, in each case we will have achieved our aim 3.
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Labelled occurrence nets

For ordinary Petri nets, labelled occurrence nets are used to represent execution
histories (see, e.g., [2, 3, 11, 20]). Such acyclic nets may be viewed as partial net
unfoldings, with each transition representing an occurrence of a transition in the
original net, and each place corresponding to the presence of a token on a place of
the original net. Conflicts between transitions are resolved and thus places do not
branch.

Definition 5.1 (LAN for PT-nets). A labelled occurrence net (or o-net) is a

labelled net ON
df

= (B,E,R, `) such that

• R ⊆ (B × E) ∪ (E ×B).3

• For every b ∈ B, |preON (b)| ≤ 1 and |postON (b)| ≤ 1.

• The structure rsON
df

= (E,≺loc , `|E) is acyclic, where ≺loc
df

= (R ◦R)|E×E.

• ` is a labelling for B ∪ E.

The class of o-nets will be denoted by LON .

The places of an o-net are called conditions (‘Bedingungen’ in German) and its
transitions are called events (‘Ereignisse’ in German). In diagrams, we show only
their labels.

The relation ≺loc in definition 5.1 represents the local information about causal
relationships between the events. Since the structure rsON is acyclic, ON defines a

poset κ(ON )
df

= rs+
ON = (E,≺+

loc , `|E) (see fact 4.4) which in turn provides a partial
order description of the labelled event occurrences. Note also that κ is total and
hence satisfies property 3. We refer to κ(ON ) as the poset generated by ON .

Executions of o-nets

A rich set of notions and results has been developed over the years for occurrence
nets. In addition to providing a precise description of causal relationships between
executed events, an o-net enjoys several specific behavioural properties which make
tractable some hard verification problems, such as marking reachability. We now
rephrase without proofs certain facts known from the literature, both to demon-
strate how o-nets fit into our semantical template and to serve as the basis, or
guide, for our subsequent dealing with labelled activator occurrence nets.

Let ON = (B,E,R, `) be a fixed o-net, and κ(ON ) = (E,≺ON , `|E) be the
poset generated by ON . The default initial marking minON of ON consists of

all conditions without incoming arcs, i.e., minON
df

= B\codomR, while the default
final marking maxON of ON consists of all conditions without outgoing arcs, i.e.,

maxON
df

= B\domR. The executions of ON are the standard step sequences or
firing sequences leading from minON to maxON . Since minON assigns at most
one token to each condition, the weight function always returns 0 or 1, and ON
is acyclic and without branching conditions, it follows that ON is safe and that in
any step sequence from the initial marking it can execute a given event no more
than once.

3We treat the weight function as a binary relation R in this case as it always returns 0 or 1.
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Fact 5.2. IfM0E1M1 . . . EnMn is a mixed step sequence of ON from the initial
marking, then each Mi is a set, and the Ei’s are disjoint sets.

Two key verification problems for Petri nets and other concurrent system models
are related to checking whether a given state can ever be reached from the initial
one, and whether a (multi)set of actions can ever be executed. Though for general
Petri nets both problems are hard, for occurrence nets they can be easily treated
using two notions introduced next.

A slice of ON is a maximal (w.r.t. set inclusion) set S ⊆ B of conditions
which are causally unrelated, i.e., (S × S) ∩ R+ = ∅; and a configuration is a set
D ⊆ E of events which comprises all their causal predecessors, i.e., e ∈ D and
f ≺ON e implies f ∈ D. We denote this respectively by S ∈ sl(ON ) and D ∈
cnf(ON ). Clearly, both minON and maxON are slices ofON , and both ∅ and E are
configurations. Moreover, minON = marON (∅) and maxON = marON (E), and
this close relationship extends to other slices and configurations (see fact 5.4). One
can also show that for any two configurations D and G, marON (D) = marON (G)
implies D = G.

Fact 5.3. Let minON [E1 . . . En〉ONM .

1. For every i ≤ n, if e ∈ Ei and f ≺ON e then f ∈ E1 ∪ . . . ∪ Ei−1.

2. E1 ∪ . . . ∪ En is a configuration of ON .

3. M = maxON iff E1 ∪ . . . ∪En = E.

Thus any execution of ON from the initial marking amounts to executing a
configuration of events. And, since any configuration of events can be executed
from the initial marking, configurations are exactly those sets of events which can
be executed from the initial marking of ON . The next result shows that slices are
exactly those markings which can be reached from the initial marking of ON .

Fact 5.4. Let M
df

= [minON 〉ON , and M
′ be the set of all markings M ∈ M

such that maxON ∈ [M〉ON . Then sl(ON ) =M =M′ = marON (cnf(ON )).

The above result implies that the final marking of ON is always reachable from
any marking reachable from the initial one. Essentially, this means that ON is
deadlock-free until its final marking has been reached.

The name ‘slice’ is in part motivated by our next notion, which captures the
way in which a member of sl(ON ) slices through the occurrence net, dividing it

into two subnets. For a slice S ∈ sl(ON ), let preonON (S)
df

= (B′, E′, R′, `′) and

postonON (S)
df

= (B′′, E′′, R′′, `′′) be nets given by:

B′ df

= {b ∈ B | ∃c ∈ S : (b, c) ∈ R?} B′′ df

= {b ∈ B | ∃c ∈ S : (c, b) ∈ R?}

E′ df

= {e ∈ E | ∃c ∈ S : (e, c) ∈ R?} E′′ df

= {e ∈ E | ∃c ∈ S : (c, e) ∈ R?}

R′ df

= R|(B′×E′)∪(E′×B′) R′′ df

= R|(B′′×E′′)∪(E′′×B′′)

`′
df

= `|B′∪E′ `′′
df

= `|B′′∪E′′ .

Intuitively, preonON (S) is the part of ON which has been executed to reach the
slice S, and postonON (S) that which can still be executed after S.

Fact 5.5. Let S be a slice of ON . Moreover, let ON ′ and ON ′′ be respectively
the nets preonON (S) and postonON (S).
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1. ON ′ and ON ′′ are o-nets such that: B = B′∪B′′, B′∩B′′ = S, E = E′]E′′

and R = R′ ]R′′. Moreover, minON ′ = minON , maxON ′ = S = minON ′′ and
maxON ′′ = maxON .

2. Each mixed step sequence of ON ′ from minON ′ is also a mixed step sequence
of ON .

3. Each mixed step sequence of ON from minON to some marking M is also a
mixed step sequence of ON ′, if all its events belong to E ′ or M ⊆ B′.

4. Each mixed step sequence of ON ′′ from S is also a mixed step sequence of
ON from S, and vice versa.

Labelled executions of o-nets and posets

Now we are ready to define the labelled executions of an o-net by adding event
labels to its executions. Again, let ON = (B,E,R, `) be a fixed o-net.

Definition 5.6 (λ for o-nets). The sets

λLSTS(ON )
df

= {(σ, `|E) | minON [σ〉ONmaxON }

λLFS(ON )
df

= λLSTS(ON ) ∩ LFS

are respectively the labelled step sequences and the labelled firing sequences of ON .

From facts 5.2 and 5.3(3), it follows that λLSTS(ON ) ⊆ LSTS and λLFS(ON ) ⊆
LFS. Hence definition 5.6 is sound. Furthermore, note that λLSTS(ON ) is a non-
empty set because maxON ∈ [minON 〉ON by fact 5.4. Since, as observed before, the
reachability of a marking in an ordinary Petri net does not depend on whether we
use step sequences or firing sequences, λLFS(ON ) is also non-empty. Hence both
λLSTS and λLFS satisfy property 1. We also note that all labelled step (firing)
sequences of ON have the same domain and labelling, and so ıLPO|λLFS(LON ) and
ıLPO|λLSTS(LON ) are total (property 3).

From facts 5.3(1,3), 5.4 and 5.5, it can be deduced that the operational semantics
of ON defined through its labelled step sequences agrees with its partial order
semantics captured by the poset κ(ON ). We therefore obtain the following, on the
basis of our earlier discussion.

Fact 5.7 (property 5 (fitting) and aim 3 for o-nets).

1. λLSTS(ON ) = εLSTS(κ(ON )) and λLFS(ON ) = εLFS(κ(ON )).

2. κ(ON ) = ıLPO(λLSTS(ON )) = ıLPO(λLFS(ON )).

Labelled activator occurrence nets

The presence of inhibitor arcs makes the standard unfolding procedure more
complicated, due to the fact that local information regarding the lack of tokens
in a place cannot be explicitly represented in an o-net. In [14] this problem is
solved by using complement places and representing an (unweighted) inhibitor arc
by an activator arc connected to a condition representing a complement place. The
resulting nets are called activator occurrence nets.

Definition 5.8 (LAN for inhibitor nets). A labelled activator occurrence net

(or ao-net) is a labelled activator net AON
df

= (B,E,R,Act , `) such that
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• R ⊆ (B × E) ∪ (E ×B) and Act ⊆ B × E.4

• For every b ∈ B, |preAON (b)| ≤ 1 and |postAON (b)| ≤ 1.

• The structure rsAON
df

= (E,≺loc ,<loc , `|E) is ♦–acyclic, where ≺loc and <loc

are relations respectively given by (R ◦R)|E×E ∪ (R ◦ Act) and Act−1 ◦R.

• ` is a labelling for B ∪ E.

The class of ao-nets will be denoted by LAON .

Let AON = (B,E,R,Act , `) be an ao-net as in definition 5.8. Since rsAON

is ♦–acyclic, (R ◦ R)|E×E is acyclic in the usual sense, and so the labelled net

underlying AON , und(AON )
df

= (B,E,R, `), is an o-net.
Similarly as for o-nets, the relations≺loc and <loc represent the local information

about the causal relationships between the events contained in AON . Figure 3
shows how ≺loc and <loc are constructed from ordinary arcs and activator arcs.
They define an so-structure which captures the relations between the occurrences
of the labelled events.

(a)

e f

(b)

e f

(c)

e f

FIG. 3 (a,b) Two cases defining e ≺loc f , and (c) one case defining e <loc f .

Definition 5.9 (κ for ao-nets). The so-structure generated by AON is given

by κ(AON) = (E,≺AON ,<AON , `|E)
df

= rsAON
♦.

Thus ≺AON = b
? ◦ ≺loc ◦b

? and <AON = b
? \idX , where b

df

= ≺loc ∪ <loc .
Hence, since rsAON is ♦–acyclic, definition 5.9 is sound, i.e., κ(AON) is indeed
an so-structure (see fact 4.5). Note that κ is total and thus satisfies property 3.
Figure 4 shows an ao-net and the so-structure it generates.

We observe that ≺AON includes the partial order relation of the poset generated
by und(AON ). In fact, the definition of κ given here can be considered as a
conservative extension of the previous definition of κ from LON to LAON , as an
ao-net AON without activator arcs can be identified with its underlying o-net. In
such a case, we have κ(AON ) = (E,≺,≺, `|E) where ≺= ((R ◦ R)|E×E)

+. Hence
κ(AON ) is the so-structure determined by the poset κ(und(AON )) = (E,≺, `|E).

Executions of ao-nets

We have already mentioned that occurrence net are a model in which various
verification questions, such as marking reachability, can be easily treated using the
notions of a slice and configuration. We will now show how these concepts can be
extended to activator occurrence nets.

Until the end of this section, let AON = (B,E,R,Act , `) be a fixed ao-net,
and ON be its underlying o-net. Moreover, let κ(AON) = (E,≺AON ,<AON , `|E)

4Again, the weight function R is treated as a binary relation which always returns 0 or 1, and
as all activator arcs have weight 0 or 1, also Act may be viewed here as a binary relation.
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b1 b2

b4 b5

b3

b6

e f

g h

e f

g h

FIG. 4 An ao-net AON 0 where minAON 0
= {b1, b4} and maxAON 0

= {b3, b6}, and
the so-structure it generates.

be the so-structure generated by AON , and κ(ON ) = (E,≺ON , `|E) be the poset
generated by ON . Recall that ≺ON= ((R ◦R)|E×E)

+.
The default initial marking minAON and final marking maxAON of AON are

respectively minON and maxON . Thus each mixed step sequence of AON from
the initial marking is a mixed step sequence of ON from the initial marking. The
converse holds if the executed events obey the local constraints imposed by the
activator arcs present in AON .

Proposition 5.10. µ
df

= M0E1M1 . . . EnMn is a mixed step sequence of AON
from the initial marking iff µ is a mixed step sequence of ON from the initial
marking such that for every i ≤ n and e ∈ Ei, f ≺loc e implies f ∈ E1 ∪ . . .∪Ei−1,
and f <loc e implies f 6∈ Ei+1 ∪ . . . ∪ En.

Proof. See the appendix.

Hence, in view of fact 5.2, we obtain

Proposition 5.11. If M0E1M1 . . . EnMn is a mixed step sequence of AON
from the initial marking, then each Mi is a set, and the Ei’s are disjoint sets.

To characterise reachable markings and executable sets of events of AON , we
will now extend the notions of a slice and configuration, which proved to work very
well for o-nets. However, since the so-structure κ(AON) has two ordering relations,
we will have two different notions instead of just one defined previously.

A set D ⊆ E is a strong configuration of AON , if e ∈ D and f ≺+
loc e implies

f ∈ D. It is a weak configuration, if e ∈ D and f b
+ e implies f ∈ D. We will

denote this respectively by D ∈ scnf(AON ) and D ∈ wcnf(AON ).
Since the ordering ≺ON is included in ≺+

loc which in turn is included in b
+, we

have cnf(ON ) ⊇ scnf(AON ) ⊇ wcnf(AON ), and if Act = ∅ then both inclusions
become equalities.

Proposition 5.12. Let minAON [E1 . . . En〉AONM .

1. E1 ∪ . . . ∪ En is a strong configuration of AON .

2. M = maxAON iff E1 ∪ . . . ∪ En = E.

3. If M = maxAON then, for every i ≤ n and e ∈ Ei, f ≺AON e implies
f ∈ E1 ∪ . . . ∪ Ei−1, and f <AON e implies f ∈ E1 ∪ . . . ∪ Ei.

Proof. Follows from proposition 5.10 and fact 5.3(3).

To introduce two kinds of slices for ao-nets, we first define two relations on
the conditions of AON generalising the idea of causally related conditions in o-
nets. Instead of simply using R+|B×B = R ◦ ((R ◦ R)|E×E)? ◦ R we now have
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slin(AON )
df

= R◦ ≺?loc ◦R and wlin(AON )
df

= R◦ b
? ◦R. Clearly, R+|B×B is

included in slin(AON ) which in turn is included in wlin(AON ), and if Act = ∅
then both inclusions become equalities.

For the ao-net AON 0 in figure 4, slin(AON 0) = ({b4}×{b2, b3, b5, b6})∪({b1}×
{b2, b3}) ∪ {(b2, b3), (b5, b6)} and wlin(AON 0) = slin(AON 0) ∪ {(b1, b6)}. Intu-
itively, (b, c) ∈ wlin(AON ) means that b and c cannot be both marked at any
marking reachable from minAON from which maxAON is also reachable (referring
to the ao-net in figure 4, b1 and b6 are such conditions because the only way to
remove a token from b1 is to execute e, and for this one needs a token in b5; how-
ever, the token in b5 has already been removed in order to produce a token in b6).
Moreover, (b, c) ∈ slin(AON ) means that b and c cannot be both marked at any
marking reachable from minAON , as in order to put a token in c there must have
been a token in b which had to be consumed to mark c.

A strong slice of AON is a maximal (w.r.t. set inclusion) set S ⊆ B of con-
ditions which are incomparable w.r.t. slin(AON ), i.e., (S × S) ∩ slin(AON ) =
∅; while a weak slice is a maximal set S of conditions which are incomparable
w.r.t. wlin(AON ), i.e., (S × S) ∩ wlin(AON ) = ∅. We denote this respec-
tively by S ∈ ssl(AON ) and S ∈ wsl(AON ). For the ao-net AON 0 in figure 4,
we have wsl(AON 0) = {{b1, b4}, {b1, b5}, {b2, b5}, {b2, b6}, {b3, b5}, {b3, b6}} and
ssl(AON 0) = wsl(AON 0) ∪ {(b1, b6)}.

Proposition 5.13. wsl(AON ) ⊆ ssl(AON ) ⊆ sl(ON ), and if Act = ∅ then
both inclusions become equalities.

Proof. See the appendix.

We finally extend the notions of a net preceding and following a slice of an
o-net. Let S be a slice of the o-net ON underlying AON . We define two nets with

activator arcs, AON ′ df

= (B′, E′, R′,Act ′, `′) and AON ′′ df

= (B′′, E′′, R′′,Act ′′, `′′)

so that (B′, E′, R′, `′) = preonON (S), (B′′, E′′, R′′, `′′) = postonON (S), Act ′
df

=

Act |B′×E′ and Act ′′
df

= Act |B′′×E′′ . We will denote AON ′ and AON ′′ respectively
by preaonAON (S) and postaonAON (S).

Note that due to proposition 5.13, the last two notions are defined for every weak
or strong slice of AON . Moreover, the structures rsAON ′ = (E′,≺′

loc ,<
′
loc , `|E′) and

rsAON ′′ = (E′′,≺′′
loc ,<

′′
loc , `|E′′) are ♦–acyclic, because ≺

′
loc ∪ ≺

′′
loc and <

′
loc ∪ <

′′
loc

are respectively included in ≺loc and <loc . Hence AON ′ and AON ′′ are both ao-
nets.

What now follows is a series of results which re-establish (after some adjust-
ments) the well-known facts about the behaviour of o-nets recalled earlier in this
paper.

Proposition 5.14. Let S be a slice of ON . Moreover, let AON ′ and AON ′′

be respectively the ao-nets preaonAON (S) and postaonAON (S).

1. If S ∈ ssl(AON ) then the following hold.

(a) actAON (e) = actAON ′(e), for every event e ∈ E′.

(b) Each mixed step sequence of AON ′ from minAON ′ is also a mixed step
sequence of AON .

(c) Each mixed step sequence of AON from minAON to some marking M
is also a mixed step sequence of AON ′, if all its events belong to E ′ or
M ⊆ B′.
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2. If S ∈ wsl(AON ) then the following hold.

(a) actAON (e) = actAON ′′(e), for every event e ∈ E′′.

(b) Each mixed step sequence of AON ′′ from S is also a mixed step sequence
of AON from S, and vice versa.

Proof. (1) Suppose that e ∈ E′ and d ∈ actAON (e) ∩ (B′′\S). Then there are
b, c ∈ S and f ∈ E′′ such that eR?c and bR?fRd. Hence (b, c) ∈ slin(AON ), a
contradiction. Parts (1b) and (1c) follow from fact 5.5(2,3) and part (1a).

(2) Suppose that e ∈ E′′ and d ∈ actAON (e) ∩ (B′\S). Then there are b, c ∈ S
and f ∈ E′ such that bR?e and dRfR?c. Hence (b, c) ∈ wlin(AON ), a contradic-
tion. Part (2b) follows from fact 5.5(4) and part (2a).

As for o-nets, slices correspond to reachable markings and, intuitively, the ao-
net preaonAON (S) is the part of AON which has been executed to reach S, and
postaonAON (S) that which can still be executed after S. However, if S is not
a weak slice (i.e., S /∈ wsl(AON )), then maxAON is not reachable from S in
postaonAON (S). Consider, for instance, the strong slice {b1, b6} of AON 0 in
figure 4. To reach {b1, b6} the weak causality implied by the activator arc is ignored
and condition b5 can no longer be marked despite the fact that the event which has
to test it has not yet occurred.

Proposition 5.15. Let minAON [E1 . . . En〉AONM . Then the following state-
ments are equivalent:

1. maxAON ∈ [M〉AON .

2. E1 ∪ . . . ∪ En ∈ wcnf(AON ).

3. M ∈ wsl(AON ).

Proof. See the appendix.

Hence since the initial marking is a weak slice we obtain

Corollary 5.16. maxAON ∈ [minAON 〉AON .

Thus to describe the executions of AON (from minAON to maxAON ), we have
to use the weak slices; clearly, both minAON and maxAON are weak slices. The
strong slices of AON coincide with the markings reachable from minAON in AON ,
and the weak slices with those from which in addition maxAON is reachable.

Proposition 5.17. LetM
df

= [minAON 〉AON , andM
′ be the set of all markings

M ∈M such that maxAON ∈ [M〉AON .

1. ssl(AON ) =M = marAON (scnf(AON )).

2. wsl(AON ) =M′ = marAON (wcnf(AON )).

Proof. (1) The inclusion ssl(AON ) ⊆ M holds by proposition 5.14(1c) and
corollary 5.16. The M ⊆ marAON (scnf(AON )) inclusion follows from proposi-
tion 5.10. To show marAON (scnf(AON )) ⊆ ssl(AON ), suppose D ∈ scnf(AON )
and b, c ∈ marAON (D) are such that (b, c) ∈ slin(AON ). Then there are e, f ∈ E
such that bRe≺?locfRc. Hence f ∈ D and e 6∈ D, contradicting D ∈ scnf(AON ).

(2) Follows from part (1), the fact that wsl(AON ) and wcnf(AON ) are re-
spectively included in ssl(AON ) and scnf(AON ), and proposition 5.15.
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Labelled executions of ao-nets and so-structures

By adding event labels to the executions of an ao-net we obtain its labelled
executions.

Definition 5.18 (λ for ao-nets). The set of labelled step sequences of AON

is given by λ(AON )
df

= {(σ, `|E) | minAON [σ〉AONmaxAON }.

The soundness of the above definition, i.e., that λ(AON ) ⊆ LSTS follows from
proposition 5.11. By corollary 5.16, λ(AON ) is a non-empty set, and so λ(AON )
satisfies property 1. We also note that the labelled step sequences in λ(AON )
all have the same domain and labelling, and so ı|λ(LAON ) is total (property 3).
We observe that the definition of λ is an extension of the definition of λLSTS for
o-nets since an o-net can be considered as an ao-net without activator arcs and
λ(AON ) = λLSTS(und(AON )) if AON has no activator arcs.

Proposition 5.19 (property 5: fitting for ao-nets). λ(AON ) = ε(κ(AON )).

Proof. The (⊆) inclusion follows from proposition 5.12(3), while the (⊇) inclu-
sion follows from ≺ON⊆≺AON , fact 5.7 and proposition 5.10.

We have therefore established

Theorem 5.20 (aim 3 for ao-nets). κ(AON ) = ı(λ(AON )).

The labelled step sequences of AON have a causality interpretation in terms
of the partial order and the weak partial order provided by κ(AON). In fact, a
single partial order (as defined by an occurrence net) is insufficient, as it cannot
fully express the relationship between simultaneous events if they cannot be sequen-
tialised. For example, in figure 4 we have that {g}{e, h}{f} and {g}{e}{h}{f} are
step sequences leading from minAON 0

to maxAON 0
, but {g}{h}{e}{f} cannot be

executed, despite the fact that e and h are not related by the usual partial ordering.

6. PROCESS SEMANTICS OF PT-NETS

In this section we provide a rephrasing of the process semantics of [2, 11] for
the case of general, possibly non-safe, finite PT-nets and show how this semantics
fits into our framework. The processes used come from LON and for each PT-
net, its associated o-nets can be defined in two different ways: (i) operational,
through unfoldings based on step sequences; and (ii) axiomatic, from the structure
of the net. In both cases, the resulting processes are the same. That is, we have
consistency (property 2). Thus, together with what has been established already in
the previous sections, the process and causality semantics of PT-nets fulfils aims 1
and 2, and their corollaries.

A Place/Transition net (or PT-net) is any marked net N = (P, T,W,M0), which
will be fixed for the rest of this section.

Definition 6.1 (ω for PT-nets). The set ωSTS(N )
df

= {σ | M0[σ〉N } compris-
ing all step sequences starting from the initial marking M0 of N , is the set of step

sequences of N . Moreover, the set of firing sequences of N is the set ωFS(N )
df

=
ωSTS(N ) ∩ FS.

Since ε ∈ ωFS(N ), it follows that both ωFS and ωSTS satisfy property 1.
First we give the operational definition of the processes of N which is based on

its step sequences.
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Definition 6.2 (πN for PT-nets). Let σ = U1 . . . Un be a step sequence of N .
A process generated by σ is the last labelled net in a sequence N0, . . . ,Nn, where
for 0 ≤ k ≤ n,

Nk = (Bk, Ek, Rk, `k)
df

=

(
k⊎

i=0

Bi,

k⊎

i=0

Ei,

k⊎

i=0

Ri,

k⊎

i=0

`i

)

is constructed in the following way (in this, and other similar definitions presented
later on, it is assumed that the sets of conditions, events and arcs do not contain
any elements other than those specified explicitly).

• For each 0 ≤ i ≤ n, `i : Bi ∪Ei → P ∪ T is a labelling defined below.

• E0 = ∅ and for 1 ≤ i ≤ n, Ei comprises a distinct event for each transition
occurrence in Ui. The event corresponding to the j-th occurrence of t in Ui
is t–labelled and denoted by ti,j.

• B0 comprises a distinct condition for each place occurrence inM0. The condi-
tion corresponding to the j-th occurrence of s in M0 is s–labelled and denoted
by sj.

• For 1 ≤ i ≤ n and for every e ∈ Ei, Bi comprises a distinct condition for
each place occurrence in postN (`i(e)). The condition corresponding to the
j-th occurrence of p in postN (`i(e)) is p–labelled and denoted by pe,j.

• R0 = ∅, and for 1 ≤ i ≤ n and every e ∈ Ei:

– We add an arc (e, pe,j) to Ri for each pe,j ∈ Bi.

– We choose a disjoint (i.e., Bf∩Bg = ∅ whenever f 6= g) set of conditions
Be ⊆ Bi−1\domRi−1

such that `i〈Be〉 = preN (`i(e)) and add an arc
(b, e) to Ri for each b ∈ Be.

We will denote the set of processes generated by σ by πN (σ).

Note that the last part of definition 6.2 is the only difference with the operational
definition of processes for safe PT-nets. For such nets, there is always only one
candidate set of conditions Be and hence the processes generated by a step sequence
are all isomorphic.

It is straightforward to check that, for every step sequence σ of N , all processes
generated by σ satisfy definition 5.1 and hence are o-nets. Moreover, πN |ωSTS(N)

and πN |ωFS(N) are total and never return the empty set. Thus property 1 is satisfied
in both cases.

Any process generated by some step sequence σ of N will have σ as an asso-
ciated step sequence, i.e., it has a labelled step sequence $ such that σ = φ($).
This follows from the observation that the successive addition of sets of events in
definition 6.2 to construct the process actually defines an execution of the process.

Fact 6.3. Assuming the notation as in definition 6.2, let maxi
df

= Bi\domRi
,

for every 0 ≤ i ≤ n. Then max0E
1max1 . . . E

nmaxn is a mixed step sequence of
the o-net Nn from its default initial marking to its default final marking.

Corollary 6.4. The following hold.
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1. If σ ∈ ωSTS(N ) and ON ∈ πN (σ), then σ ∈ φ(λLSTS(ON )).

2. If σ ∈ ωFS(N ) and ON ∈ πN (σ), then σ ∈ φ(λLFS(ON )).

Next we give an axiomatic definition of processes based on the structure of the
PT-net.

Definition 6.5 (α for PT-nets). A process of N is an o-net ON = (B,E,R, `)
satisfying the following:

• ` is a labelling function for B ∪ E such that `(B) ⊆ P and `(E) ⊆ T .

• For all e ∈ E, preN (`(e)) = `〈preON (e)〉 and postN (`(e)) = `〈postON (e)〉.

• M0 = `〈minON 〉.

We will denote the set of processes of N by α(N ).

Every process generated by a step sequence of N satisfies definition 6.5 and so
we have that πN (σ) ⊆ α(N ) for all σ ∈ ωSTS(N ). Consequently, also α satisfies
property 1.

Since in a process of N the neighbourhood relations of the transitions of N are
faithfully reflected, its (mixed) step sequences correspond after labelling to those
of N .

Fact 6.6. Let ON ∈ α(N ) be a process of N and ξ be a (mixed) step sequence
of ON from minON . Then `〈ξ〉 is a (mixed) step sequence of N from the initial
marking M0, where ` is the labelling of ON .

Corollary 6.7. φ(λLSTS(ON )) ⊆ ωSTS(N ) and φ(λLFS(ON )) ⊆ ωFS(N ),
for every process ON ∈ α(N ).

Moreover (see facts 5.5 and 5.4), the part of a process ON of N executed to
reach a marking (i.e., a slice) S of ON is preonON (S) which is the ‘prefix’ of
ON upto S. Clearly, preonON (S) satisfies definition 6.5 and hence is itself also a
process of N .

Fact 6.8. Let ON ∈ α(N ) and let S ∈ sl(ON ). Then preonON (S) ∈ α(N ).

On the other hand, given a labelled step sequence of a process of N , its associated
step sequence, which by corollary 6.7 is a step sequence of N , can be used to
construct the process stepwise in accordance with definition 6.2.

Fact 6.9. Let ON ∈ α(N ) and D0F1D1 . . . FnDn be a mixed step sequence
from minON to maxON . Then there is a run of the construction described in def-
inition 6.2, generating ON . Moreover, referring to the notation in definition 6.2,
Fi = Ei for every 1 ≤ i ≤ n, and Di = Bi \ domRi

for every 0 ≤ i ≤ n.

Corollary 6.10. Let ON ∈ α(N ) be a process of N and σ ∈ φ(λLSTS(ON )).
Then ON ∈ πN (σ).

Thus we now have

Fact 6.11 (property 2: consistency for PT-nets). For every step sequence σ,
every firing sequence σ′ and every o-net ON ,

1. σ ∈ ωSTS(N ) ∧ON ∈ πN (σ) iff ON ∈ α(N ) ∧ σ ∈ φ(λLSTS(ON )).
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2. σ′ ∈ ωFS(N ) ∧ON ∈ πN (σ′) iff ON ∈ α(N ) ∧ σ′ ∈ φ(λLFS(ON )).

Hence for PT-nets the remaining aims are fulfilled:

Fact 6.12 (aims 1 and 2 for PT-nets).

α(N ) = πN (ωSTS(N )) = πN (ωFS(N ))
ωSTS(N ) = φ(λLSTS(α(N )))
ωFS(N ) = φ(λLFS(α(N ))) .

Thus the operationally and axiomatically defined processes coincide, the oper-
ational semantics of a PT-net corresponds with the operational semantics of its
processes, and through its processes the abstract causal relationship between tran-
sition occurrences can be defined (aim 3 for o-nets, fact 5.7(2)).

7. PT-NETS WITH INHIBITOR ARCS

In this section we formally introduce Place/Transition nets with inhibitor arcs
and define three specific subclasses of such nets.

A PT-net with inhibitor arcs (or PTI-net) is a marked inhibitor net NI
df

=
(P, T,W, I,M0), which is fixed for the rest of this subsection.

Definition 7.1 (ω for PTI-nets). The set of step sequences of a PTI-net NI

is the set ωSTS(NI )
df

= {σ | M0[σ〉NI } comprising all step sequences starting from

the initial marking M0 of NI . Moreover, ωFS(NI )
df

= ωSTS(NI ) ∩ FS is the set of
firing sequences of NI .

Let und(NI )
df

= (P, T,W,M0) be the Place/Transition-net underlying NI . Note
that ωSTS(NI ) ⊆ ωSTS(und(NI )), and that if I = ΩP×T , then we are actually
dealing with a PT-net, and NI is fully described by und(NI ) and may be specified
in the form (P, T,W,M0). In such a case we have ωSTS(NI ) = ωSTS(und(NI )) and
thus also ωFS(NI ) = ωFS(und(NI )).

Since the empty sequence ε is always a step sequence of NI , ωSTS is total
(defined for every PTI-net) and never returns the empty set. Thus also in the case
of PTI-nets, ωSTS (as well as ωFS) satisfies property 1.

z

u t

1

3 2

FIG. 5 PTI-net which is also a PTDI-net.
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PTCI-nets, PTDI-nets, and PTSI-nets

A PT-net with complemented inhibitor places (or PTCI-net) is a PTI-net in
which every inhibitor place p has a designated complement place denoted by pcpl .
In any PT-net, places which have a complement are bounded and the token count on
a place and its complement is the same in every reachable marking. Thus PTCI-nets
have bounded inhibitor places and an inhibitor place p of a PTCI-net NI contains
no more than k tokens iff its complement pcpl contains at least bndNI (p)−k tokens.
Figure 7 shows a PTCI-net.

A PT-net with dominated inhibitor places (or PTDI-net) is a PTDI-net in which
— independently of the current marking — transitions which output to an inhibitor
place cannot occur immediately before a transition which tests this place by means
of an inhibitor arc, and transitions which take input tokens from an inhibitor place
cannot occur simultaneously with transitions testing the inhibitor place. Formally,

NI
df

= (P, T,W, I,M0) is a PTDI-net if whenever p is an inhibitor place of a tran-
sition z ∈ T then W (u, p) > I(p, z) and W (p, t) > I(p, z), for all u ∈ preNI (p)
and t ∈ postNI (p). The PTI-net of figure 5 is a PTDI-net. Thus, as implied by
the definition, the occurrences of u and t are always related in the same manner
to those of z. More precisely, t and z can never be executed in a single step, and
the occurrence of a step {u, z} implies that this occurrence of z cannot be executed
later than that of u, since first some of the tokens deposited in the inhibitor place
have to be removed (by t) in order to enable z.

PTDI-nets are a generalisation of what is usually referred to in the literature as
inhibitor nets. These are nets in which inhibitor arcs are only used to test whether
a place is empty or not. In our set-up, a PT-net with simple inhibitor places (or
PTSI-net) is a PTI-net NI = (P, T,W, I,M0) in which I always returns 0 or ∞.

PTDI-nets are a genuine generalisation of inhibitor nets in the sense that not
every PTDI-net can be modelled as a PTSI-net with the same set of firing sequences
and hence certainly not with the same set of step sequences.

Proposition 7.2. There is no PTSI-net with the same set of firing sequences
as the PTDI-net of figure 5.

Proof. See the appendix.

On the other hand, since PTSI-nets may have unbounded inhibitor places, not
every PTSI-net can be simulated by a PTCI net with the same set of firing se-
quences.

zu

FIG. 6 PTSI-net which cannot be modelled by a PTCI-net.

Proposition 7.3. There is no PTCI-net with the same set of firing sequences
as the PTSI-net of figure 6.

Proof. Suppose that NI = (P, T,W, I,M0) is a PTCI-net with the same set of
firing sequences ∆ as the PTSI-net of figure 6. Thus NI has transitions u and z.

Since u? ⊆ ∆ and every inhibitor place of z has a complement, executing u
has no effect on the marking of the inhibitor places of z. Since u ∈ ∆, z ∈ ∆,
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but not uz ∈ ∆, it must then be the case that there is a place p ∈ P such that
preNI (z)(p) > 0 and preNI (u)(p)−postNI (u)(p) > 0. However, again by u? ⊆ ∆,
this yields a contradiction with preNI (u) ≤ postNI (u).

Every PTCI-net can be converted into a PT-net which has the same set of firing
sequences. This follows immediately from the observation that in a PTCI-net NI
an inhibitor arc from a place p to a transition t with weight k can be replaced by
two ordinary arcs, each with weight bndNI (p) − k from the complement pcpl of p
to t and from t to pcpl . Thus testing whether there are no more than k tokens
in p is replaced by testing whether its complement contains at least bndNI (p)− k
tokens. After removing in this way all inhibitor arcs a PT-net results which has the
same firing sequences as NI . Hence as far as firing sequences are concerned every
PTCI-net can be simulated by a PTDI-net (without inhibitor arcs). However, this
does not work when step sequences are considered. Whereas the arcs replacing
an inhibitor arc can be viewed as consuming and producing tokens, an inhibitor
arc only tests without consuming. For instance the PTCI-net of figure 7 allows a
step sequence {u}{u, z} whereas the net resulting from the construction described
above, cannot execute u and z simultaneously after u has occurred. We show next,
that for the PTCI-net of figure 7 there does not exist a PTDI-net with the same set
of step sequences. Note that this PTCI-net has only one inhibitor arc with weight
1 and may be considered as a ‘smallest’ counterexample, since any PTCI-net which
has only inhibitor arcs with weight 0 is a PTSI-net and hence also a PTDI-net.

pcpl

pu z
1

FIG. 7 PTCI-net which cannot be modelled by a PTDI-net.

Proposition 7.4. There is no PTDI-net with the same set of step sequences
as the PTCI-net of figure 7.

Proof. Suppose that NI = (P, T,W, I,M0) is a PTDI-net with the same set of
step sequences ∆ as the PTCI-net of figure 7. Thus NI has u and z among its
transitions. Since {u}{z} ∈ ∆, {u, z} ∈ ∆, and NI is a PTDI-net, executing u
has no effect on the inhibitor places of z. Then from {u}{u, z} ∈ ∆ and {z} ∈
∆, it follows that it is possible to execute {u}{u}{z} from M0 in NI . However,
{u}{u}{z} 6∈ ∆.

8. PROCESS SEMANTICS OF PTCI-NETS

In order to obtain a process semantics for PTCI-nets without weights, we com-
bined in [17] the process semantics for non-safe PT-nets (see section 6) with the
process semantics from [14] for elementary net systems (safe PT-nets) with inhibitor
arcs. In this section we extend this work to the full class of PTCI-nets and fit it into
the semantical framework, thus extending and systematizing our previous results
and formulating an abstract causality semantics for PTCI-nets.

In the processes of PT-nets, the presence of tokens is represented by conditions,
but their absence cannot be tested. The idea of [14] is now that an inhibitor
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arc which tests whether a place is empty, can be simulated by an activator arc
which tests whether its complement place is not empty. To apply this idea in the
non-safe case (as explored in [17]), the inhibitor places should be bounded and
have complement places. However, in contrast to the safe case, complement places
cannot just be added for the bounded inhibitor places, since this may lead to new
processes. Hence in general this approach cannot be applied to PTI-nets, not even
when they are bounded. But for PTCI-nets, in which every inhibitor place comes
with a complement place (and thus is bounded), one can use this approach. Let
NCI = (P, T,W, I,M0) be a PTCI-net, fixed for the rest of this section.

First we provide the operational definition which takes a step sequence and
constructs a corresponding ao-net essentially as done for PT-nets but now adding
on the way activator arcs to complement places (with the number of activator arcs
to be added determined by the bound of the inhibitor place and the weight of the
inhibitor arc).

Definition 8.1 (πN for PTCI-nets). Let σ = U1 . . . Un be a step sequence of
NCI . A complement activator process (or ca-process) generated by σ is the last
labelled activator net in a sequence N0, . . . ,Nn, where for 0 ≤ k ≤ n,

Nk = (Bk, Ek, Rk,Actk, `k)
df

=

(
k⊎

i=0

Bi,
k⊎

i=0

Ei,
k⊎

i=0

Ri,
k⊎

i=0

Act i,
k⊎

i=0

`i

)

is constructed as in definition 6.2, except for the activator arcs Act i, which are
defined in the following way.

• Act0 = ∅, and for 1 ≤ k ≤ n and every e ∈ Ek, if p is an inhibitor place
of `k(e) then we choose a set Ae of exactly bndNCI (p) − inhNCI (`k(e))(p)
conditions in Bk−1\domRk−1

labelled by pcpl . After that we add an activator

arc (b, e) to Act i for each b ∈ Ae.

We will denote the set of ca-processes generated by σ by πcpl
NCI (σ).

Figure 8 shows a PTCI-net NCI and illustrates the generation of a ca-process
for the step sequence σ = {w,w}{t}{u, u}{w,w}{t}{t}. Note that bndNI (q) =
bndNI (r) = 2 and r = qcpl . The vertical lines indicate the stages (from left to
right) in which the net has been derived.

Note that in definition 8.1 it may happen that Ae ∩ Af 6= ∅ for e 6= f . As
the next proposition 8.2 shows, the required sets Ae can always be found and thus
definition 8.1 is sound.

Proposition 8.2. Assuming the notation as in definition 8.1, let `
df

= `n and

maxi
df

= Bi\domRi
, for every 0 ≤ i ≤ n. Moreover, let 1 ≤ k ≤ n, e ∈ Ek and p be

an inhibitor place of `(e). Then

|`−1(pcpl ) ∩maxk−1| ≥ bndNCI (p)− inhNCI (`(e))(p) .

Proof. Let N
df

= und(NCI ), AON
df

= Nn and ON
df

= und(AON ). We ob-
serve that σ ∈ ωSTS(N ) and ON ∈ πN (σ), which follows directly from the defi-
nitions. Thus, by fact 6.11(1), ON ∈ α(N ). Consequently, by facts 6.3 and 6.6,

µ
df

= `〈max0〉U1`〈max1〉 . . . Un`〈maxn〉 is a mixed step sequence of N from M0.
Since σ = U1 . . . Un is a step sequence of NCI , this implies that µ is also a mixed

29



NCI p

q

r = qcpl

t

w

u
1

p p p p

q r q r

q r q r

t t t

w u w

w u w

FIG. 8 A PTCI-net and a ca-process generated by {w,w}{t}{u, u}{w,w}{t}{t}.

step sequence of NCI from M0. Thus `〈maxk−1〉(p) ≤ inhNCI (`(e))(p), and so
`〈maxk−1〉(p

cpl ) ≥ bndNCI (p)− inhNCI (`(e))(p).

It is fairly easy to check that, for every step sequence σ of NCI , all ca-processes
generated by σ are ao-nets.

Proposition 8.3. Let σ ∈ ωSTS(NCI ). Then πcpl
NCI (σ) ⊆ LAON .

Proof. Let AON
df

= Nn be as in definition 8.1. Then und(AON ) is an o-net.
Hence it suffices to observe that rsAON is a ♦–acyclic structure as, by construction,
e ≺loc f implies i < j, and e <loc f implies i ≤ j, for all e ∈ Ei and f ∈ Ej .

Since also πcpl
NCI |ωSTS(NCI ) is total and never returns the empty set, property 1

is satisfied. We now propose the following axiomatic definition for the ca-processes
of a PTCI-net.

Definition 8.4 (α for PTCI-nets). A complement activator process (or ca-
process) of NCI is an ao-net AON = (B,E,R,Act , `) such that und(AON ) is
a process of und(NCI ) and, moreover, if e ∈ E and p is an inhibitor place of `(e)
then

|`−1(pcpl) ∩ actAON (e)| = bndNCI (p)− inhNCI (`(e))(p) . (8.1)

We will denote the set of ca-processes of NCI by αcpl (NCI ).

Intuitively, the last condition means that if event e is enabled then there are
enough tokens in pcpl to ensure that p does not inhibit transition `(e).

Figure 9 shows three ca-processes in αcpl (NCI ) for the PTCI-net NCI of figure 8.
Notice that AON 3 is isomorphic to the ca-process generated by σ in figure 8. In
fact, every ca-process generated by a step sequence of NCI satisfies definition 8.4
and thus is a ca-process of NCI .

Proposition 8.5. Let σ ∈ ωSTS(NCI ). Then πcpl
NCI (σ) ⊆ αcpl (NCI ).

Proof. Assume the notation from definition 8.1 and denote AON
df

= Nn. We

first observe that ON
df

= (Bn, En, Rn, `n) ∈ πund(NCI )(σ), which follows directly
from the definitions and thus, by fact 6.11(1), ON ∈ α(und(NCI )). Moreover,
by proposition 8.3, AON is an ao-net and, by construction, the condition (8.1) in
definition 8.4 is satisfied. Hence AON ∈ αcpl (NCI ).
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FIG. 9 Three ca-processes in αcpl(NCI ).

Consequently, also αcpl is total and never returns the empty set. Since, by
definition, αcpl (NCI ) ⊆ LAON , property 1 is satisfied.

Properties of the ca-processes of PTCI-nets

In definition 8.1 (which is based on definition 6.2), the successive addition of
sets of events describes an execution of the resulting ca-process considered as a net
with activator arcs.

Proposition 8.6. Assuming the notation as in definition 8.1, let maxi
df

=

Bi\domRi
, for every 0 ≤ i ≤ n. Then µ

df

= max0E
1max1 . . . E

nmaxn is a mixed
step sequence of the ao-net Nn from its default initial marking to its default final
marking.

Proof. By fact 6.3, µ is a mixed step sequence of und(Nn) from minund(Nn) =
minNn

to maxund(Nn) = maxNn
. Moreover, actNn

(e) ⊆ maxk−1, for all 1 ≤ k ≤

n and e ∈ Ek. Hence µ is a mixed step sequence of Nn.

As a consequence, any ca-process generated by a step sequence σ of NCI will
have a labelled step sequence corresponding to σ (after forgetting about the iden-
tities of the underlying events through the function φ).

Corollary 8.7. If σ ∈ ωSTS(NCI ) and AON ∈ πcpl
NCI (σ), then it is the case

that σ ∈ φ(λ(AON )).

Proposition 8.8. Let AON ∈ αcpl(NCI ) and let ξ be a (mixed) step sequence
of AON from minAON . Then `〈ξ〉 is a (mixed) step sequence of NCI from M0,
where ` is the labelling of AON .

Proof. It suffices to show the result for ξ
df

= B0E1B1 . . . EnBn, i.e., a mixed step

sequence. Let N
df

= und(NCI ) and ON
df

= und(AON ).
Since ON ∈ α(N ) we have, by fact 6.6, that `〈ξ〉 is a mixed step sequence of

N . Thus it suffices to show that if e ∈ Ei and p is an inhibitor place of `(e), then
`〈Bi−1〉(p) ≤ inhNCI (`(e))(p). The latter is equivalent, by `〈Bi−1〉 ∈ [M0〉N , to
showing that `〈Bi−1〉(pcpl ) ≥ bndNCI (p)− inhNCI (`(e))(p). This, in turn, follows
from the fact that e is enabled and the condition (8.1) in definition 8.4.
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Corollary 8.9. If AON ∈ αcpl (NCI ), then φ(λ(AON )) ⊆ ωSTS(NCI ).

By propositions 5.17(1) and 5.14(1), the part of a ca-process AON of NCI
executed to reach a marking (i.e., a strong slice) S is preaonAON (S). This ‘prefix’of
AON can be shown to be also a ca-process of NCI .

Proposition 8.10. Let AON ∈ αcpl (NCI ), and let S ∈ ssl(AON ) be a strong
slice of AON . Then preaonAON (S) ∈ αcpl (NCI ).

Proof. Let AON ′ df

= preaonAON (S). By proposition 5.14(1a), we have that for
all events e in AON ′, actAON (e) = actAON ′(e). Thus the condition (8.1) in defi-
nition 8.4 holds for AON ′, as it held for AON . By proposition 5.13, ssl(AON ) ⊆
sl(und(AON )). Moreover, by fact 6.8, preonund(AON )(S) ∈ α(und(NCI )).

Since preonund(AON )(S) = und(AON ′), it follows that AON ′ ∈ αcpl (NCI ).

Furthermore, given a labelled step sequence of a ca-process of NCI its associated
step sequence is one of the generators of that process.

Proposition 8.11. Let AON ∈ αcpl (NCI ) be a ca-process of NCI , and let

σ ∈ φ(λ(AON )). Then AON ∈ πcpl
NCI (σ).

Proof. Let ON
df

= und(AON ), N
df

= und(NCI ), and µ
df

= D0F1D1 . . . FnDn be a
mixed step sequence of AON from minAON to maxAON such that σ = `〈F1 . . . Fk〉,
where ` is the labelling of AON .

Clearly, µ is also a mixed step sequence of ON from minON to maxON . Since
ON ∈ α(N ), we know from fact 6.9, that there is a run of the construction de-
scribed in definition 6.2, generating ON . Moreover, referring to the notation in
definition 6.2, Fi = Ei for every 1 ≤ i ≤ n, and Di = Bi \ domRi

for every
0 ≤ i ≤ n. Hence, by definition 8.1, we can re-run this construction, adding at
each stage the sets Actk, and resulting in AON , provided that for every 1 ≤ i ≤ n
and e ∈ Fi, b ∈ actAON (e) implies b ∈ Bi \ domRi

. This can be shown as follows.
Suppose that e ∈ Fi and b ∈ actAON (e) are such that b /∈ Bi \ domRi

= Di−1.
Then there must be f such that one of the following holds: f ∈ preAON (b) and
f /∈ F1 ∪ . . . ∪ Fi−1 or f ∈ postAON (b) and f ∈ F1 ∪ . . . ∪ Fi−1. In either case, we
obtain a contradiction with proposition 5.12(3).

Thus every ca-process of NCI can be generated by a step sequence of NCI and
we now have

Proposition 8.12 (property 2: consistency for PTCI-nets). For every step
sequence σ and every ao-net AON ,

σ ∈ ωSTS(NCI ) ∧AON ∈ πcpl
NCI (σ) iff AON ∈ αcpl(NCI ) ∧ σ ∈ φ(λ(AON )) .

Hence also for PTCI-nets the remaining aims are fulfilled:

Theorem 8.13 (aims 1 and 2 for PTCI-nets).

αcpl(NCI ) = πcpl
NCI (ωSTS(NCI ))

ωSTS(NCI ) = φ(λ(αcpl (NCI ))) .
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9. PROCESS SEMANTICS OF GENERAL PTI-NETS

We now turn to defining a process semantics for general PTI-nets. Since in-
hibitor places do not necessarily have complements, a new feature is needed to
represent the test that an inhibitor place does not contain too many tokens. Our
proposal is to add ‘on demand’ new artificial conditions with activator arcs to rep-
resent the testing by inhibitor arcs. Moreover, if a transition has an inhibitor place
which is input or output to some other transition, then occurrences of these two
transitions may have a causal relationship which should be faithfully reflected by
the neighbourhood of the new condition.

Let NI = (P, T,W, I,M0) be a PTI-net fixed for the rest of this section. If p ∈ P
and t, w ∈ T are such that inhNI (t)(p) 6= ∞ and preNI (w)(p) + postNI (w)(p) 6=
0, then we write wp

( t, and w ( t if there is at least one p such that wp
( t.

Similarly, for an ao-net AON = (B,E,R,Act , `), if b ∈ B and e, f ∈ E are such
that actAON (e)(b) 6= 0 and preAON (f)(b) + postAON (f)(b) 6= 0, then we denote
f b
(• e, or simply f(• e. The main idea behind the process construction presented

next is to ensure that whenever w ( t, any two occurrences, f of w and e of
t, are adjacent to a common condition so that f(• e, and thus are related in the
corresponding causal structure. Note that this resembles the technique used in
[22] to define a process semantics of PT-nets, where the construction always makes
occurrences of transitions adjacent to a common place causally dependent.

First we define the operational process semantics and demonstrate how to con-
struct an ao-net for a given step sequence of NI . Again, the construction follows
the pattern established for PT-nets, but now new conditions — labelled by the
special symbol f — may have to be added on the way.

Definition 9.1 (πN for PTI-nets). Let σ = U1 . . . Un be a step sequence of NI .
An activator process (or a-process) generated by σ is the last labelled activator net
in a sequence N0, . . . ,Nn, where for 0 ≤ k ≤ n,

Nk=(Bk ] B̃k, Ek, Rk,Actk, `k)
df

=

(
k⊎

i=0

Bi ]
k⊎

i=0

B̃i,
k⊎

i=0

Ei,
k⊎

i=0

Ri,
k⊎

i=0

Act i,
k⊎

i=0

`i

)

is constructed as in definition 6.2, except that B̃0 = Act0
df

= ∅ and, for k = 1, . . . , n:

• `k is extended to a labelling of Bk ∪ B̃k ∪ Ek, by `k(b)
df

= f for all b ∈ B̃k.

• If e ∈ Ek and f ∈ Ej (for j < k) are such that `(f) ( `(e) then we create

exactly one condition b ∈ B̃k and add two arcs: (f, b) ∈ Rk and (b, e) ∈ Actk.

• If f ∈ Ek and e ∈ Ej (for j ≤ k) are such that `(f) ( `(e) then we create

exactly one condition b ∈ B̃k and add two arcs: (b, f) ∈ Rk and (b, e) ∈ Actk.

We will denote the set of a-processes generated by σ by πNI (σ).

We observe that if NI has no inhibitor arcs (i.e., I = ΩP×T and so NI is in fact
a PT-net), then the a-processes of NI generated by a step sequence σ are exactly
the processes of NI generated by σ according to definition 6.2. Thus the function
πN for PTI-nets defined here is a conservative extension of πN defined for PT-nets.

Definition 9.1 is illustrated in figure 10 for a PTI-net and one of its step se-

quences, σ
df

= {w}{t}{t, u}. Note that this PTI-net is a PTDI-net but not a PTCI-
net. As before, the stages are shown in which the nodes and connections were
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FIG. 10 A PTI-net and an a-process generated by {w}{t}{t, u}.

generated. The resulting process has E3 = E1 ] E2 ] E3 as its set of events for

which we let E1 df

= {ew} with `3(ew) = w, E2 df

= {et,1} with `3(et,1) = t, and

E3 df

= {et,2, eu} with `3(et,2) = t and `3(eu) = u. Since in the step sequence σ, the
occurrence of w precedes the first occurrence of t and w ( t, a f–labelled condi-
tion is created such that ew(• et,1 in the a-process being created. Adding E3 to
the a-process under construction leads to three more f–labelled conditions: for w
and the second occurrence of t, a f–labelled condition is created so that ew(• et,2;
and since in the PTI-net we have u ( t, two f–labelled conditions are created so
that et,1(• eu and et,2(• eu.

In the construction of definition 9.1, whenever an event f is introduced before
an event e and `(f) ( `(e), then this will always lead to f ≺ e in the generated
so-structure. Similarly, whenever an event e is introduced not later than an event f
and `(f) ( `(e), then this will always lead to e < f . Whether or not it is necessary
to enforce these relations depends, in general, on the current number of tokens in
the inhibitor places p for which `(f)p( l(e). Thus, as we will demonstrate later, in
case of PTDI-nets it can never be avoided. Moreover, the uniform strategy based
on ‘local’ structural relationships as adopted in definition 9.1 leads to a process
semantics and an abstract causality semantics which fulfil the aims of our set-up
and thus are in agreement with the operational semantics of PTI-nets. In addition,
the causality semantics for PTCI-nets which are also PTDI-nets is the same whether
it is based on the ca-processes defined in section 8 or on the a-processes from this
section.

The a-processes generated by the step sequences of NI are indeed ao-nets.

Proposition 9.2. Let σ ∈ ωSTS(NI ). Then πNI (σ) ⊆ LAON .

Proof. Let AON
df

= Nn be as in definition 9.1. Then und(AON ) is an o-net.
Hence it suffices to observe that rsAON is a ♦–acyclic structure as, by construction,
e ≺loc f implies i < j, and e <loc f implies i ≤ j, for all e ∈ Ei and f ∈ Ej .
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Clearly, πNI |ωSTS(NI ) is total and never returns the empty set. Hence property 1
is satisfied. In the next step we give an axiomatic definition for the notion of an
a-process.

Definition 9.3 (α for PTI-nets). An activator process (or a-process) of NI is

an ao-net AON = (B ] B̃, E,R,Act , `) satisfying the following:

1. `(B) ⊆ P and `(E) ⊆ T .

2. The conditions in B̃ = domAct are labelled by the special symbol f.

3. M0 = `〈minAON ∩B〉.

4. For all e ∈ E,
preNI (`(e)) = `〈preAON (e) ∩B〉 and postNI (`(e)) = `〈postAON (e) ∩B〉.

5. For all b ∈ B̃, there are unique g, h ∈ E such that
preAON (b) + postAON (b) = {g}, b ∈ actAON (h) and `(g) ( `(h).

6. For all e, f ∈ E,
if `(f) ( `(e) then there is exactly one c ∈ B̃ such that f c

(• e.

7. For all e ∈ E and S ∈ ssl(AON ),
if preAON (e) ∪ actAON (e) ⊆ S then `〈S ∩B〉 ≤ inhNI (`(e)).

We will denote the set of a-processes of NI by α(NI ).

r r

fq f q

p p p

fq f q

s s

w

t t
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t t
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FIG. 11 An a-process in α(NI ) and the generated local causality structure.

Figure 11 shows an a-process for the PTI-net of figure 10. Notice that the
processes in figure 10 and figure 11 are isomorphic.

In what follows, if NA is a labelled activator net with the special symbol f as
one of its labels, then NAf denotes NA with all those f–labelled places deleted
which are not activators for any transition (together with the ordinary arcs con-
nected to them) and for a multiset of places M , Mf is M with all instances of
f–labelled places deleted. For an a-process AON of NI , we have AON f = AON
by definition 9.3(2). Furthermore, und(AON ) has no activator arcs and is an o-net
possibly with f–labelled conditions which are all removed in und(AON )f. Thus
in general, und(AON )f 6= und(AON ) = und(AONf).

Definition 9.3(1,3,4) corresponds to the requirements of definition 6.5 and guar-
antees that und(AON )f is a process of und(NI ). Definition 9.3(5) describes the
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immediate neighbourhood of the f–labelled conditions. Each such condition has
exactly one event to which it is connected by an ordinary arc, and one for which
it acts as an activator place (while respecting the requirement that AON should
be an ao-net). Moreover this neighbourhood has to correspond to an inhibitor arc
in NI . Conversely, definition 9.3(6) requires that whenever events in AON repre-
sent transitions related through an inhibitor place, there should be a f–labelled
condition relating these events. Finally, definition 9.3(7) refers to proposition 5.17,
and requires that the strong slices of AON (i.e., markings reachable from minAON )
properly reflect the inhibitor constraints present in NI : an event can only occur at
a slice if there are not too many conditions corresponding to tokens in the inhibitor
places of its counterpart in NI .

Every a-process generated by a step sequence of NI satisfies definition 9.3 and
so we have

Proposition 9.4. Let σ ∈ ωSTS(NI ). Then πNI (σ) ⊆ α(NI ).

Proof. See the appendix.

Consequently, also α is total and never returns the empty set. Since, by defini-
tion α(NI ) ⊆ LAON , property 1 is satisfied.

Properties of the a-processes of PTI-nets

The successive addition of sets of events as described in definition 9.1 corre-
sponds to an execution of the resulting a-process (as a net with activator arcs).

Proposition 9.5. Assuming the notation as in definition 9.1, let maxi
df

= (Bi∪

B̃i)\domRi
, for every 0 ≤ i ≤ n. Then µ

df

= max0E
1max1 . . . E

nmaxn is a mixed

step sequence of the ao-net AON
df

= Nn from its default initial marking to its default
final marking.

Proof. By fact 6.3, maxf

0 E
1maxf

1 . . . Enmaxf

n is a mixed step sequence of

ON
df

= und(AON )f such that maxf

0 = minON and maxf

n = maxON . More-

over, for every b ∈ B̃n, if b ∈ preAON (e) for some event e ∈ En, then b ∈ minAON .
Hence, to show that µ is a mixed step sequence of AON , it suffices to prove that
actAON (e) ⊆ maxk−1, for all 1 ≤ k ≤ n and e ∈ Ek.

Suppose that e ∈ Ek and b ∈ actAON (e). Then, by definition 9.1, there is
exactly one f such that one of the following holds: j < k and preAON (b) = {f}
and postAON (b) = ∅, or j ≥ k and postAON (b) = {f} and preAON (b) = ∅,
where j satisfies f ∈ Ej . In either case, b ∈ maxk−1.

Corollary 9.6. If σ ∈ ωSTS(NI ) and AON ∈ πNI (σ), then σ ∈ φ(λ(AON )).

In the a-processes of NI the neighbourhood relations of the transitions are
reflected including a representation of inhibitor places. This makes it possible to
show that each of their step sequences represents a step sequence of NI .

Proposition 9.7. Let AON ∈ α(NCI ), and let µ
df

= B0E1B1 . . . EnBn be a
mixed step sequence of AON from minAON . Then `〈µ′〉 is a mixed step sequence

of NI from M0, where µ
′ df

= Bf

0 E1B
f

1 . . . EnB
f

n and ` is the labelling of AON .

Proof. Let ON
df

= und(AON )f and N
df

= und(NI ). Clearly, ON ∈ α(N )
and µ′ is a mixed step sequence of ON from minON . Hence, by fact 6.6, `〈µ′〉
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is a mixed step sequence of N from M0. Thus it suffices to show that if e ∈
Ei and p is an inhibitor place of `(e), then `〈Bi−1〉(p) ≤ inhNCI (`(e))(p). This,
however, follows from Bi−1 ∈ ssl(AON ) (which holds due to proposition 5.17(1)),
and definition 9.3(7).

Corollary 9.8. If AON ∈ α(NI ), then φ(λ(AON )) ⊆ ωSTS(NI ).

Again, as for ca-processes of PTCI-nets, it can be shown that the ‘prefixes’ of
an a-process AON of NI executed to reach a marking (a strong slice) S of AON are
also a-processes of NI . Now, however, there may be f–labelled conditions which
are activator places for ‘later’ events and thus lead to a violation of the definition
of an a-process. Hence, rather than preaonAON (S), it will be preaonAON (S)f

which is an a-process of NI .

Proposition 9.9. Let AON ∈ α(NI ) and let S ∈ ssl(AON ) be a strong slice
of AON . Then preaonAON (S)f ∈ α(NI ).

Proof. See the appendix.

On the other hand, given a labelled step sequence of an a-process AON of NI ,
its associated step sequence is one of the generators of AON .

Proposition 9.10. Let AON ∈ α(NI ) and let σ ∈ φ(λ(AON )). Then AON ∈
πNI (σ).

Proof. See the appendix.

Consistency of the execution based process semantics and the axiomatic process
semantics of NI now follows from propositions 9.4 and 9.10, as well as corollaries 9.6
and 9.8.

Proposition 9.11 (property 2: consistency for PTI-nets). For every step se-
quence σ and every ao-net AON ,

σ ∈ ωSTS(NI ) ∧AON ∈ πNI (σ) iff AON ∈ α(NI ) ∧ σ ∈ φ(λ(AON )) .

Consequently, also the remaining aims for PTI-nets are fulfilled and we may
conclude that the two proposed process semantics are in full agreement with the
the operational semantics of PTI-nets.

Theorem 9.12 (aims 1 and 2 for PTI-nets). For every PTI-net NI ,

α(NI ) = πNI (ωSTS(NI ))
ωSTS(NI ) = φ(λ(α(NI ))) .

The construction of a-processes for general PTI-nets uses constraints introduced
through ‘artificial’ f–labelled conditions, which do not have direct counterparts
in the original PTI-net, but rather represent dynamic relationships between the
executed transitions. The question therefore arises whether such a technique does
not introduce too many constraints in the causality structures generated by a-
processes. That this is indeed possible can be observed by taking the PTI-net NI
and one of its a-processes AON shown in figure 12 (it can be generated, e.g., from
the step sequence {u, t}{z}). One may easily verify that we can safely delete one
of the activator arcs (but not both), which leads to another a-process generating
weaker constraints than AON .
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FIG. 12 PTI-net and its a-process whose so-structure can be weakened.

Having said that, it turns out that PTDI-nets are special in that the proposed
semantics is minimal, in the sense that making the causal structure more relaxed,
by removing some of the activator arcs, leads to inconsistency with the semantics
of the underlying PTDI-net.

Proposition 9.13. Let NI be a PTDI-net and AON = (B,E,R,Act , `) be one
of its a-processes. Moreover, let AON ′ = (B,E,R,Act ′, `) be an ao-net such that
Act ′ ⊆ Act and κ(AON ′) 6= κ(AON ). Then φ(λ(AON ′))\ω(NI ) 6= ∅.

Proof. See the appendix.

Thus, in particular, for all the standard inhibitor nets (PTSI-nets) the proposed
semantics introduces a minimal number of constraints.

We finally address the issue of having two different process semantics for PTCI-
nets, which in general may lead to different causality semantics. Consider, for
example, the PTCI-net in figure 8, and one of its step sequences {w,w}{t}. It is
not difficult to see that the so-structure generated by the a-process of this step
sequence using the second semantics can never be generated by that based on
complement places (basically, t can only be related to one occurrence of w in this
case).

Although, in general, the semantics are different, for PTCI-nets which are PTDI-
nets processes derived in either way lead to the same causality structures.

Proposition 9.14. Let NI be a PTI-net which is both a PTCI-net and PTDI-
net. Then κ(αcpl (NI )) = κ(α(NI )).

Proof. See the appendix.

Thus, in particular, for all the standard inhibitor nets (PTSI-nets) with com-
plemented inhibitor places the two semantics are in essence the same.

10. CONCLUSIONS

The central contribution of this paper is a proposal for a process semantics
for PT-nets with inhibitor arcs while assuming an a priori operational semantics.
Our investigation has been conducted within a general framework for dealing with
process semantics of Petri nets, also proposed here. In essence, the investigation
of the relationship between nets and their processes is separated from the inves-
tigation of the causality within these processes, with an operational/observational
interpretation in terms of executions as the bridge between them.

There are at least two potential applications of these results: first, they can
be useful in the development of model checking algorithms for PTI-nets based on
unfoldings; second, they can be used as a basis for obtaining a causality semantics
for PT-nets with priorities, extending the results obtained for the elementary net
systems with priorities in [16].
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APPENDIX A
PROOFS OMITTED FROM THE MAIN TEXT

Proof of proposition 4.3

(1) Let Z
df

= {z | x < z < x ∨ y < z < y} ∪ {x, y} be the set consisting
of all elements which have to occur simultaneously with x or y. Moreover, let

X0
df

= {w ∈ X\Z | w < x ∨ w < y} consist of all remaining elements which cannot

occur later than x or later than y and let X1
df

= X\(Z ∪ X0) comprise all other
elements. By applying the conditions (C2–C4), we obtain:

• ≺ ∩ (Z × Z) = ∅, since otherwise x ≺ x or y ≺ y or x ≺ y or y ≺ x. (i)

• If z ∈ Z and w ∈ X0 then ¬(z < w), since otherwise w ∈ Z. (ii)

• If z ∈ X1 and w ∈ Z ∪X0 then ¬(z < w), since otherwise z ∈ X0. (iii)

Consider the so-structure lsos i
df

= (Xi,≺ |Xi×Xi
,< |Xi×Xi

, `|Xi
), for i = 0, 1. From

fact 4.2(1), there are labelled step sequences (σi, `|Xi
) ∈ ε(lsos i), for i = 0, 1. It is

easy to see that (i)—(iii) imply that (σ0Zσ1, `) ∈ ε(lsos).

(2) Let Y
df

= {w | w < y < w} ∪ {y} be the set consisting of all elements

which have to occur simultaneously with y, and let Z
df

= {z ∈ X\Y | x < z <

x} ∪ {z ∈ X\Y | x < z < y} ∪ {x} be the set consisting of all elements which have
to occur simultaneously with x or not later than y but not before x. Moreover, let

X0
df

= {w ∈ X\(Z ∪ Y ) | w < x ∨ w < y} consist of all remaining elements which

cannot occur later than x or later than y, and let X1
df

= X\(Z ∪ Y ∪X0) comprise
all other elements. By applying the conditions (C2–C4), we obtain:
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• ≺ ∩ (Y × Y ) = ∅, since otherwise y ≺ y. (iv)

• ≺ ∩ (Z × Z) = ∅, since otherwise x ≺ x or x ≺ y. (v)

• If z ∈ Z and w ∈ Y then ¬(w < z), since otherwise y < x or z ∈ Y . (vi)

• If z ∈ Z and w ∈ X0 then ¬(z < w), since otherwise w ∈ Z. (vii)

• If z ∈ Y and w ∈ X0 then ¬(z < w), since otherwise w ∈ Y or y < x. (viii)

• If z ∈ X1 and w ∈ Z ∪ Y ∪X0 then ¬(z < w),
since otherwise z ∈ X0 ∪ Y ∪ Z. (ix)

Consider the so-structure lsos i
df

= (Xi,≺ |Xi×Xi
,< |Xi×Xi

, `|Xi
), for i = 0, 1. From

fact 4.2(1), there are labelled step sequences (σi, `|Xi
) ∈ ε(lsos i), for i = 0, 1. It is

easy to see that (iv)—(ix) imply that (σ0ZY σ1, `) ∈ ε(lsos).

Proof of proposition 5.10

(=⇒) Clearly, µ is a mixed step sequence of ON from the initial marking.
Suppose that e ∈ Ei and f ≺loc e. Then there is b ∈ B such that fRb(R ∪ Act)e.
Hence b /∈ minAON and, by e being enabled at Mi−1, b ∈ Mi−1. Thus f ∈ E1 ∪
. . . ∪ Ei−1 as |preAON (b)| ≤ 1.

Suppose now that e ∈ Ei, f ∈ Ej (j > i) and f <loc e. Then there is b ∈ B
such that bRe and bActf . Hence b ∈ Mi−1 (by bRe) and b /∈ Mi ∪ . . . ∪Mn (by
fact 5.3(1)). Thus b /∈Mj−1, contradicting bActf and f being enabled at Mj−1.

(⇐=) It suffices to show that for every i ≤ n and e ∈ Ei, if b ∈ actAON (e)
then b ∈ Mi−1. This, in turn, follows if fRb implies f ∈ E1 ∪ . . . ∪ Ei−1, and bRg
implies g /∈ E1 ∪ . . . ∪ Ei−1. And the last two properties follow immediately from
the assumptions we made.

Proof of proposition 5.13

The second part clearly holds, so we first show that ssl(AON ) ⊆ sl(ON ). Let
S ∈ ssl(AON ). Thus (S×S)∩R+ = ∅ and so to prove that S ∈ sl(ON ) it suffices
to show that no condition can be added to S without destroying this property.

Suppose that there is b ∈ B\S such that (({b} × S) ∪ (S × {b})) ∩ R+ = ∅.
Since b 6∈ S and S as a strong slice of AON is maximal w.r.t. set inclusion, we may
consider the following two cases.

Case 1: (S × {b}) ∩ slin(AON ) 6= ∅. Since (S × {b}) ∩ R+ = ∅, there must
be c ∈ S, c′ ∈ B and e1, . . . , ek ∈ E such that: k ≥ 1, (c, c′) ∈ slin(AON ) and
c′Act e1R ◦Re2 . . . ek−1R ◦RekRb. Moreover, we can choose these elements in such
a way that k is maximal (this is possible since E is finite and R+ acyclic). Let d ∈ B
be such that dRe1. Since dR+b, we have that d 6∈ S. Because S ∈ ssl(AON ) this
implies that ((S×{d})∪({d}×S))∩slin(AON ) 6= ∅. If (S×{d})∩slin(AON ) 6= ∅
then there is a path from S to b which passes through d and ends with a sequence of
arcs in R+ which is longer than k, in contradiction with the maximality of k. Thus
it must be the case that ({d}×S)∩slin(AON ) 6= ∅. Hence, by |postAON (d)| ≤ 1,
there are f ∈ E and d′ ∈ S such that e1 ≺

?
loc fRd

′. Since (c, c′) ∈ slin(AON ) and
c′Act e1, this means that (c, d′) ∈ slin(AON ), a contradiction with S ∈ ssl(AON ).

Case 2: ({b} × S) ∩ slin(AON ) 6= ∅. Since ({b} × S) ∩ R+ = ∅, there must
be d, c′ ∈ B, c ∈ S and e1, . . . , ek ∈ E such that the following are satisfied: k ≥ 2,
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bRe1R ◦Re2 . . . ek−2R ◦Rek−1RdAct ekRc
′ and (c′, c) ∈ slin(AON ). Moreover, we

can choose these elements in such a way that k is maximal. Since bR+d, we have
that d 6∈ S. We now observe that if ({d} × S) ∩ slin(AON ) 6= ∅, then we obtain a
contradiction with the maximality of k. If (S × {d}) ∩ slin(AON ) 6= ∅, then, by
|preAON (d)| ≤ 1, there are d′ ∈ S and f ∈ E such that d′Rf ≺?loc ek−1. But this
means that (d, c) ∈ slin(AON ), a contradiction.

We have shown that ssl(AON ) ⊆ sl(ON ). To prove wsl(AON ) ⊆ ssl(AON ),
let S ∈ wsl(AON ). Then, clearly, slin(AON ) ∩ (S × S) = ∅. Thus, to show that
S ∈ ssl(AON ) it suffices to show the maximality of S w.r.t. slin(AON ).

Suppose that there is b ∈ B\S such that (({b}×S)∪(S×{b}))∩slin(AON ) = ∅.
Since b 6∈ S, we may consider the following two cases.

Case 1: (S × {b}) ∩ wlin(AON ) 6= ∅. Since (S × {b}) ∩ slin(AON ) = ∅,
there must be c ∈ S, c′ ∈ B and e, e′, e1, . . . , ek ∈ E such that: k ≥ 1 and
cRe b

? e′Act−1c′Re1 ≺loc e2 . . . ek−1 ≺loc ekRb. Moreover, we can choose these
elements in such a way that k is maximal (this is possible since E is finite and
≺loc is acyclic). Since (c′, b) ∈ slin(AON ), we have that c′ 6∈ S. We now observe
that if (S × {c′}) ∩ wlin(AON ) 6= ∅ then we obtain a contradiction with the
maximality of k. Thus it must be the case that ({c′} × S) ∩ wlin(AON ) 6= ∅.
Hence, by |postAON (c′)| ≤ 1, there are f ∈ E and d′ ∈ S such that e1 b

? fRd′.
Since (c, c′) ∈ wlin(AON ) and c′Act−1e1, this means that (c, d′) ∈ wlin(AON ), a
contradiction with S ∈ wsl(AON ).

Case 2: ({b}×S)∩wlin(AON ) 6= ∅. Since ({b}×S)∩ slin(AON ) = ∅, there
must be c ∈ S and e1, . . . , ek, e, e

′ ∈ E such that: k ≥ 1, bRe1 ≺loc e2 . . . ek−1 ≺loc

ek(<loc \ ≺loc)e b
? e′Rc. Moreover, we can choose these elements in such a way

that k is maximal. Let d ∈ B be such that (ek, d) ∈ R. Since (b, d) ∈ slin(AON ),
we have that d 6∈ S. We now observe that if ({d}×S)∩wlin(AON ) 6= ∅, then we
obtain a contradiction with the maximality of k. If (S × {d}) ∩wlin(AON ) 6= ∅,
then, by |preAON (d)| ≤ 1, there are d′ ∈ S and f ∈ E such that d′Rf b

? ek. But
this means that (d′, c) ∈ wlin(AON ), a contradiction.

Proof of proposition 5.15

(1)⇒ (2) Follows from proposition 5.12(3).
(2)⇒ (3) Suppose that there are b, c ∈M such that (b, c) ∈ wlin(AON ). Then

there are e1, . . . , ek ∈ E such that: k ≥ 1 and bRe1 b e2 . . . ek−1 b ekRc. The latter
means that ek ∈ E′ = E1∪ . . .∪En. Hence, since ek−1 b ek and E′ ∈ wcnf(AON ),
we obtain ek−1 ∈ E′. By applying the same argument k − 1 times we obtain that
e1 ∈ E′. But this means that b 6∈M , a contradiction.

(3)⇒ (1) Suppose that M 6= maxAON . It suffices to show that there is a set of

events Ẽ 6= ∅ such that M [Ẽ〉AON M̃ and M̃ ∈ wsl(AON ).
Let AON ′ = (B′, E′, R′,Act ′, `′) be the ao-net preaonAON (M) and, moreover,

let AON ′′ = (B′′, E′′, R′′,Act ′′, `′′) be postaonAON (M). We first define an infinite
sequence of sets Ei ⊆ E′′:

E0 df

= {e ∈ E′′ | preAON (e) ∪ actAON (e) ⊆M}

Ei+1 df

= {e ∈ Ei | ∀f ∈ E′′ \ Ei : actAON (f) ∩ preAON (e) = ∅} ,

where i ≥ 0. Let Ẽ be defined as the intersection of all the Ei’s. Clearly Ei+1 ⊆
Ei ⊆ E′′, and so, since E′′ is finite, there is k ≤ |E′′| such that Ẽ = Ek. Moreover,
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since Ẽ ⊆ E0, Ẽ is enabled at M , and so there is M̃ such that M [Ẽ〉AON M̃ . What

we need to show is that Ẽ 6= ∅ and M̃ ∈ wsl(AON ).
Let Emin be the set of all events in E′′ which are minimal w.r.t. ≺AON |E′′×E′′ .

Since M 6= maxAON , we have E′′ 6= ∅, and so since ≺AON is a partial order, we
have Emin 6= ∅. We then observe that Emin ⊆ E0, which follows from proposi-
tion 5.14(2a). Suppose now that Emin ⊆ Ei and e ∈ Emin\E

i+1. Then, there is
f ∈ E′′ such that actAON (f) ∩ preAON (e) 6= ∅ and f /∈ Ei. Hence f /∈ Emin

and there is g ∈ Emin such that g ≺AON f . Thus g ≺AON e, a contradiction with
the minimality of e. Therefore, we obtained that Emin ⊆ Ei, for all i ≥ 0, and so
Emin ⊆ Ẽ. Suppose that Ẽ 6= Emin . Then there are e ∈ Ẽ\Emin and f ∈ Emin

such that f ≺loc e implying that postAON (f) ∩M 6= ∅, a contradiction.

Hence Ẽ = Emin 6= ∅. What we still need to show is that M̃ ∈ wsl(AON ). To

the contrary, suppose that there are b, c ∈ M̃ and e, f ∈ E such that bRe b
? fRc.

Thus, since M ∈ wsl(AON ), one of the following three cases holds.

Case 1: b ∈ M̃\M and c ∈ M̃ ∩M . Then there is g ∈ Ẽ such that gRb. Let
d be any condition such that dRg. We have d ∈ M and g(≺loc ◦ b

?)f . Hence
(d, c) ∈ wlin(AON ), contradicting M ∈ wsl(AON ).

Case 2: b ∈ M̃\M and c ∈ M̃\M . Then there is g ∈ Ẽ = Emin such that gRb.

Moreover, f ∈ Ẽ = Emin as we have c ∈ M̃\M , fRc and |preAON (c)| ≤ 1. Hence
g ≺loc e and so g ≺AON e <AON f , meaning that f /∈ Emin , a contradiction.

Case 3: b ∈ M̃ ∩M and c ∈ M̃\M . Then there are e1, . . . , ek ∈ E such that
e1 = e, ek = f and ei b ei+1, for all i < k.
We first observe that e1 ∈ E′′ as b ∈M and bRe. Suppose now that there is i ≤ k
such that ei ∈ E′, and let us choose the smallest such i. We have i ≥ 2 as e1 ∈ E′′.
Hence postAON (ei−1) ∩ preAON (ei) 6= ∅, or postAON (ei−1) ∩ actAON (ei) 6= ∅,
or actAON (ei−1) ∩ preAON (ei) 6= ∅. We then obtain respectively a contradiction
with ei ∈ E′ ∧ ei−1 ∈ E′′, or proposition 5.14(1a), or proposition 5.14(2a). Thus
e1, . . . , ek ∈ E′′. Consequently, as e1 <AON · · · <AON ek and ek = f ∈ Emin , we
have ek−1, . . . , e1 ∈ Emin . Hence e = e1 ∈ Emin = Ẽ, and so, by bRe, we obtained

that b /∈ M̃ , a contradiction.

Proof of proposition 7.2

Suppose that NI = (P, T,W, I,M0) is a PTSI-net with the same set of firing
sequences Θ as the PTDI-net of figure 5. Thus NI has z, u, and t among its
transitions. Let R be the set of inhibitor places of z in NI . Since z ∈ Θ and
uz 6∈ Θ, there is a place r ∈ R such that postNI (u)(r) > 0, or there is a place
p ∈ P such that preNI (z)(p) > 0 and preNI (u)(p)− postNI (u)(p) > 0. However,
since u∗ ⊆ Θ it must be the case that preNI (u) ≤ postNI (u), and so there must
be an r ∈ R such that postNI (u)(r) > 0. Note that this implies that R 6= ∅.

Suppose now that there is θ ∈ Θ such that the marking M reached through
θ satisfies M |R = 0R and M(p) < W (p, z), for some p ∈ P (in other words,
z is disabled due to the lack of tokens in an input place p, and not by one of
its inhibitor places being marked). Then, since there is k ≥ 1 such that θtkz ∈ Θ,
preNI (t)|R = postNI (t)|R = 0R. But now utz ∈ Θ implies that postNI (u)|R = 0R
in contradiction with postNI (u)(r) > 0, for some r ∈ R.

Thus the enabledness of z for a marking M reachable from M0 can be tied to
the lack of tokens on its inhibitor places R; more precisely, we obtained that z is
enabled at a marking M reachable from M0 iff M |R = 0R.
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Let R = {r1, . . . , rm} for some m ≥ 1 and let ki
df

= W (u, ri) − W (ri, u) and

li
df

= W (ri, t) −W (t, ri) for every i ≤ m. Consider all sequences of the form uktl,
for k, l ≥ 0.
Looking at the PTDI-net of figure 5, it is easy to see that uktl ∈ Θ iff 3k− 2l ≥ 0.
Moreover, uktlz ∈ Θ iff 3k − 2l ≤ 1. On the other hand, by z ∈ Θ and what we
have already proved, uktlz is a firing sequence of NI iff kik − lil = 0, for every
i ≤ m. As a result, we obtained that the following two systems of linear constraints

{
3k − 2l ≥ 0
3k − 2l ≤ 1





3k − 2l ≥ 0
k1k − l1l = 0
. . .

kmk − lml = 0

have exactly the same solutions in non-negative integers k and l. This, however, is
impossible as we show next.

Suppose first that ki = 0 for some i ≤ m. Then li = 0, otherwise the solution
on l for the second system would have always to be 0, despite the fact that (1, 1)
is a solution of the first system. Thus any equation 0k − lil = 0 can be discarded
as not contributing any constraints. Similarly, we can assume that li 6= 0 for all
i ≤ m. If for some i, ki 6= 0 6= li, then all solutions of the second system must lie
on a single line. But the pairs (0, 0), (1, 1) and (2, 3) which are solutions of the first
system are not co-linear.

Proof of proposition 9.4

Assume the notation from definition 9.1. Moreover, let N
df

= und(NI ), AON
df

=

Nn and ON
df

= und(AON )f. We first observe that ON ∈ πN (σ), which follows
directly from definition 9.1. Hence, by fact 6.11, ON ∈ α(N ) and so AON satis-
fies definition 9.3(1,3,4). Conditions in definition 9.3(2,5,6) are guaranteed by the
construction of AON . Hence, to complete the proof of AON ∈ α(NI ), we need to
show definition 9.3(7).

In what follows, for every event e of AON , we let #e be the i such that e ∈ E i.

Moreover, maxi
df

= (Bi ∪ B̃i)\domRi
, for every 0 ≤ i ≤ n.

Let e ∈ En and S ∈ ssl(AON ) be such that actAON (e) ∪ preAON (e) ⊆ S.
We have to prove that `〈Sf〉 ≤ inhNI (`(e)). What we will show is that b ∈
S\max#e−1 and p ∈ inhNI (`(e)) and `(b) = p leads to a contradiction, and so
`〈Sf〉 ≤ `〈max#e−1〉 ≤ inhNI (`(e)). We consider the following six cases.

Case 1: preAON (b) = postAON (b) = ∅. Then b ∈ max#e−1, a contradiction.
Case 2: postAON (b) = {f} and #f < #e. Then (b, c) ∈ slin(AON ), where

f c
(• e, a contradiction as c ∈ S ∈ ssl(AON ) and actAON (e) ⊆ S.
Case 3: preAON (b) = {f} and #e ≤ #f . Then (c, b) ∈ slin(AON ), where

f c
(• e, and we obtain a contradiction similarly as above.
Case 4: postAON (b) = {g}, preAON (b) = ∅ and #e ≤ #g.
Case 5: preAON (b) = {f}, postAON (b) = ∅ and #f < #e.
Case 6: preAON (b) = {f}, postAON (b) = {g} and #f < #e ≤ #g.
In the last three cases, we obtain b ∈ max#e−1, which yields a contradiction.

Proof of proposition 9.9

Let AON
df

= (B ] B̃, E,R,Act , `) and AON ′ df

= preaonAON (S)f. It is immedi-
ate that AON ′ satisfies definition 9.3(1-5). Consider events e and f of AON ′ such
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that `(f) ( `(e) and let c be the unique condition in B̃ such that f c
(• e in AON .

By proposition 5.14(1a), also f c
(• e in preaonAON (S) and hence in AON ′. Thus

definition 9.3(6) holds for AON ′.
To show definition 9.3(7) for AON ′, suppose that S′ ∈ ssl(AON ′) and event e

of AON ′ are such that preAON ′(e)∪actAON ′(e) ⊆ S′. If there is S′′ ∈ ssl(AON )
such that S′ ⊆ S′′, then we are done since definition 9.3(7) holds for AON . Suppose
therefore that such an S′′ does not exist. This means that there are b, b′ ∈ S′

such that (b, b′) ∈ slin(AON ′). Hence there are events e1, . . . , ek and conditions
b1, . . . , bk = b′ such that bRe1, eiRbi (for 1 ≤ i ≤ k), and bi(R ∪ Act)ei+1 (for
1 ≤ i ≤ k − 1). Not all ei’s and bi’s belong to AON ′; otherwise we would have
had (b, b′) ∈ slin(AON ′). We now observe that if ei is not in AON ′ then the same
is true of bi (which follows from preAON ′(c) = preAON (c), for all conditions c of
AON ′), and if bi (i < k) is not in AON ′ then the same is true of ei+1 (which follows
if bi ∈ B from prepreaonAON (S)(e) = preAON (e), for all events e of AON ′, and

if bi ∈ B̃ from proposition 5.14(1a) by which actpreaonAON (S)(e) = actAON (e),
for every event e ∈ E′). Hence ek is not in AON ′, and so b′ is also not in AON ′, a
contradiction.

Proof of proposition 9.10

By corollary 9.8, we have σ ∈ ωSTS(NI ). Since und(AON )f ∈ α(und(NI ))
and σ ∈ φ(λ(AON )) ⊆ φ(λ(und(AON )f)), there is by corollary 6.10, a run of
the construction described in definition 6.2, generating und(AON )f. We can then

re-run this construction of und(AON )f, adding at each stage sets Actk and B̃k, as
well as adjusting Rk and `k, as prescribed in definition 9.1, which is a deterministic
construction. Let AON ′ be the resulting a-process. All we need to show is that
AON and AON ′ are the same (isomorphic). If this is not the case then, for some
events e and f , either e ≺loc f in AON , and f <

′
loc e in AON ′ or e <loc f in AON

and f ≺′
loc e in AON ′. We now observe that e ≺loc f means that e occurs before

f in the underlying step sequence of σ. But this means that, when re-running the
construction, we could never create f <

′
loc e. Similarly, if e <loc f in AON , then e

occurs not later than f in the underlying step sequence of σ and so we would never
create f ≺′

loc e.

Proof of proposition 9.13

Since κ(AON ) 6= κ(AON ′), there are ao-nets AON i = (B,E,R,Act i, `) (for
i = 0, 1), events e, f ∈ E and a condition b ∈ B such that: Act ⊇ Act 0, (b, e) ∈
Act0, Act1 = Act0\{(b, e)} ⊇ Act ′, f b

(• e, and the relationship between f and e in
κ(AON 0) is different (stronger) than that in κ(AON 1). The latter means that one
of the following holds:

• postAON (b) = {f}, ¬(e ≺AON 0
f) and ¬(e <AON 1

f). (i)

• preAON (b) = {f}, f ≺AON 0
e and ¬(f ≺AON 1

e). (ii)

• postAON (b) = {f}, e ≺AON 0
f and ¬(e ≺AON 1

f). (iii)

In case of (i) and (iii), we have e <AON 0
f . Furthermore, f ≺AON 1

e cannot
hold, since f ≺AON 1

e implies that f ≺AON 0
e and so e <AON 0

f ≺AON 0
e which

by C4 in the definition of so-structures yields e ≺AON 0
e in contradiction with

the irreflexivity of ≺AON 0
. Similarly, in case of (ii), e <AON 1

f does not hold
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since otherwise f ≺AON 0
e <AON 0

f . Therefore, when (i) or (ii) holds, we have
both ¬(f ≺AON 1

e) and ¬(e <AON 1
f) and thus also ¬(e ≺AON 1

f). Hence, by
proposition 4.3, we can find two labelled step sequences, $ = (σ, `) and $′ = (σ′, `),
both belonging to ε(κ(AON 1)) ⊆ ε(κ(AON ′)) and such that e and f are in the same
set in σ, and e is in the set immediately following that to which f belongs in σ ′.
Recall that ε ◦ κ = λ by the fitting property 5.19 for ao-nets. Now observe that
φ($) = `〈σ〉 and φ($′) = `〈σ′〉 cannot both be valid step sequences of NI due
to the definition of PTDI-nets. Since AON is an a-process of NI , f(• e in AON
implies that `(f) ( `(e) in NI and hence either `(f) and `(e) can occur in one
step or they can be executed consecutively, but not both. Hence we obtained a
contradiction.

As to the case (iii), it can never be satisfied. Indeed, let γ = e1b1 . . . bk−1ek be
any sequence of nodes establishing the relationship e ≺AON 0

f . This means that:
e1 = e, ek = f , and for 1 ≤ i ≤ k − 1, the following hold:

• eiRbi(R ∪Act0)ei+1. (iv)
or
eiAct

−1
0 biRei+1. (v)

• There is 1 ≤ i0 ≤ k − 1 such that (iv) holds for i = i0. (vi)

If b 6∈ {b1, . . . , bk−1} then, clearly, γ is a sequence of nodes establishing e ≺AON 1
f ,

a contradiction. So we have b = bj for some 1 ≤ j ≤ k − 1. Then j 6= i0 since
preAON 0

(b) = ∅. Hence we have 1 ≤ i0 < j or j < i0 ≤ k − 1. In the former
case, by definition 9.3(5) and (b, e) ∈ Act0, we have that ej = e, and hence by (vi),
e ≺AON 0

e, a contradiction. In the latter case, by postAON 0
(b) = {f}, we have

that ej+1 = f , and hence by (vi), f ≺AON 0
f , a contradiction.

Proof of proposition 9.14

(⊆) Let AON = (B,E,R,Act , `) ∈ αcpl(NI ) be a ca-process of NI . We trans-
form AON into an a-process AON ′ ∈ α(NI ) for which κ(AON ′) = κ(AON ). This
is done by removing the original activator arcs in AON and adding f–labelled

places B̃ with new activator arcs Act ′. First, B̃ = Act ′
df

= ∅ and R′ df

= R. Then, for
all e, f ∈ E such that `(f) ( `(e) we create exactly one condition b ∈ B̃, add the
arc (b, e) to Act ′, and consider two cases:

Case 1: f ≺AON e. Then we add (f, b) to R.
Case 2: e <AON f . Then we add (b, f) to R.

Set AON ′ df

= (B ] B̃, E,R′,Act ′, `′), where `′ is the labelling ` extended to be a

labelling of B ∪ B̃ ∪ E so that `(b)
df

= f, for all b ∈ B̃.
We now observe that case 1 or 2 always holds whenever `(f) ( `(e), and so defi-

nition 9.3(6) is satisfied. Indeed, suppose that `(f)p( l(e), and let D
df

= preAON (f)

if p ∈ preNI (`(f)), and D
df

= postAON (f) otherwise. Thus |D ∩ `−1(p)| =
preNI (`(f))(p) or |D ∩ `−1(p)| = postNI (`(f))(p), respectively. Suppose that
there is S ∈ ssl(AON ) such that D ∪ actAON (e) ⊆ S. By the condition (8.1) in
definition 8.4, |S ∩ `−1(pcpl )| ≥ bndNI (p)− inhNI (`(e))(p). On the other hand, by
the definition of PTDI-nets, |S ∩ `−1(p)| ≥ |D ∩ `−1(p)| > inhNI (`(e))(p). Thus
|S ∩ `−1(pcpl )| + |S ∩ `−1(p)| > bndNI (p). However, `〈S〉 ∈ [M0〉 by proposi-
tion 5.17(1) and proposition 8.8, and we thus have a contradiction with the fact
that pcpl is a complement of p. Consequently, such an S does not exist, and so
slin(AON ) ∩ ((D ∪ actAON (e))× (D ∪ actAON (e))) 6= ∅.
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It is clear that slin(AON ) ∩ (D ×D) = ∅ as well as slin(AON ) ∩ (actAON (e)×
actAON (e)) = ∅. This follows from proposition 5.17(1) and the fact that both e
and f can be executed in some step sequence from minAON (follows from corol-
lary 5.16 and proposition 5.12(2)). Thus there is a pair (b, b′) ∈ slin(AON ) be-
longing to D × actAON (e) or actAON (e) × D. As one can check, in the former
case f ≺AON e, and in the latter one e <AON f . Hence we have shown that case 1
or 2 always holds.

We have ≺′
loc⊆≺AON and <

′
loc⊆<AON and rsAON ′ is ♦–acyclic. Moreover,

≺loc⊆≺
′
loc , and so <loc⊆<

′
loc . Therefore AON

′ is an ao-net such that κ(AON ′) =
κ(AON ). To show that AON ′ ∈ α(NI ), we still need to prove definition 9.3(7).

Suppose that e ∈ E and actAON (e)∪preAON (e) ⊆ S ∈ ssl(AON ′). By propo-
sition 5.17(1), there is G ∈ scnf(AON ′) such that S = marAON ′(G). We now
observe that G ∈ scnf(AON ). Indeed, this follows from the fact that ≺loc⊆≺

′
loc

and G ∈ scnf(AON ′). Hence Sf = marAON (G) ∈ ssl(AON ). Thus, by propo-
sition 8.8, `〈Sf〉 ∈ [M0〉NI . Consider p ∈ inhNI (`(e)). We have |`−1(pcpl ) ∩
Sf| ≥ bndNI (p) − inhNI (`(e))(p), by actAON (e) ⊆ S. Moreover, |`−1(pcpl ) ∩
Sf| + |`−1(p) ∩ Sf| = bndNI (p), by `〈Sf〉 ∈ [M0〉NI . Hence |`−1(p) ∩ Sf| ≤
inhNI (`(e))(p), and so `〈Sf〉 ≤ inhNI (`(e)).

(⊇) Let AON = (B∪ B̃, E,R,Act , `) ∈ α(NI ) be an a-process of NI . We trans-
form AON into a ca-process AON ′ ∈ αcpl (NI ), for which κ(AON ′) = κ(AON ), by

adding activator arcs Act ′ to und(AON )f. At the beginning, Act ′
df

= ∅.
Let µ = B0E1B1 . . . EnBn be a fixed mixed step sequence of AON such that

B0 = minAON , Bn = maxAON and E = E1 ] . . . ] En (such a µ exists, by
corollary 5.16 and propositions 5.11 and 5.12(2)). For every e ∈ E, we denote by
#e the i such that e ∈ Ei.

Consider all pairs, e ∈ E and p ∈ P , such that p ∈ inhNI (`(e)). By proposi-
tion 9.7, `〈Bf

#e−1〉 ∈ [M0〉NI and `〈Bf

#e−1〉(p) ≤ inhNI (`(e))(p). Hence, since pcpl is

a complement of p, `〈Bf

#e−1〉(p
cpl ) ≥ bndNI (p)−inhNI (`(e))(p). Therefore, we can

choose a subset B′ ⊆ `−1(pcpl )∩B#e−1 such that |B′| = bndNI (p)−inhNI (`(e))(p).
We then add B′ × {e} to Act ′.

Let AON ′ df

= (B,E,R′,Act ′, `′) with R′ df

= R|(B×E)∪(E×B) and `
′ df

= `|B∪E . Suppose
that f ≺′

loc e. Then #f < #e, and so, by proposition 5.19, ¬(e <AON f). Conse-
quently, by definition 9.3(6), f ≺AON e. Similarly, we can show that e <

′
loc f im-

plies e <AON f . Hence rsAON ′ is ♦–acyclic, and so AON ′ is an ao-net. Moreover,
by definition 9.1 and theorem 9.12, und(AON ′) = und(AON )f ∈ α(und(NI )).
Hence, since the condition (8.1) in definition 8.4 holds by construction, we have
AON ′ ∈ αcpl(NI ).
Thus once we have shown that ≺loc⊆≺AON ′ and <loc⊆<AON ′ , then κ(AON ′) =
κ(AON ) follows and we are done. We consider the following two cases.

Case 1: f ≺loc e because postAON (f) ∩ actAON (e) 6= ∅ on account of p ∈ P

such that `(f)p( l(e). Let D
df

= preAON (f) and i = #f −1 if p ∈ preNI (`(f)), and

D
df

= postAON (f) and i = #f otherwise. Furthermore, let j = #e − 1. We have
#f < #e and so i ≤ j. Moreover, D ⊆ Bi and |D ∩ `−1(p)| > inhNI (`(e))(p) by
the definition of PTDI-nets. Observe that as before, since p ∈ inhNI (`(e)), there
exists a subset B′ ⊆ `−1(pcpl )∩Bj such that |B′| = bndNI (p)− inhNI (`(e))(p) and
moreover B′ × {e} ⊆ Act ′. Thus |(D ∩ `−1(p)) ∪B′| > bndNI (p), and so there are
c ∈ D and d ∈ B′ such that (c, d) ∈ R+; otherwise there would be a marking M
reachable from M0 in und(NI ) such that M(p) +M(pcpl ) ≥ |D ∪B′| > bndNI (p),
a contradiction. If D = postNI (`(f)) then we get immediately that e ≺AON ′ f .
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If D = preNI (`(e)) then the same conclusion can be drawn after observing that
postAON (c) = {f}.

Case 2: e <loc f because preAON (f) ∩ actAON (e) 6= ∅ on account of p ∈ P

such that `(f)p( l(e). Let D
df

= preAON (f) and i = #f −1 if p ∈ preNI (`(f)), and

D
df

= postAON (f) and i = #f otherwise. Furthermore, let j = #e − 1. We have
#e ≤ #f and so j ≤ i. As in case 1, D ⊆ Bi and |D ∩ `

−1(p)| > inhNI (`(e))(p).
Again, there exists a subset B′ ⊆ `−1(pcpl ) ∩ Bj such that |B′| = bndNI (p) −
inhNI (`(e))(p) and moreover B′ × {e} ⊆ Act ′. Hence, similarly as in case 1, there
are c ∈ B′ and d ∈ D such that (c, d) ∈ R+. If D = preNI (`(f)) then we get
immediately that e <AON ′ f . If D = postNI (`(f)) then the same conclusion can
be drawn after observing that preAON (d) = {f}.
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