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Abstract—This paper reviews the research and development of process system engineering (PSE) in the wastewater
treatment process (WWTP). A diverse range of PSE applications have evolved in the wastewater treatment process,
such as modeling, control, estimation, expert system, fault detection and monitoring system. This article describes sev-
eral types of PSE that have proven to be effective in WWTP. The merits and shortcoming of PSE and its detailed ap-
plications are presented. Since its development is the forefront in WWTP, a reasonable review of the research progress
in this field is addressed.
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INTRODUCTION the wastewater by transformation and separation processes. Depend-
ing on the characteristics of the wastewater, the desired effluent qual-

The effluent requirements in WWTP have become increasinglyity, and other environmental or social factors, this can be achieved
stringent and loads on the existing plants have increased. These lie-many different ways.. Traditionally, WWTP is divided into me-
quire more efficient treatment methodology for wastewater. Onechanical, physical, chemical and biological treatment, which has
way to improve process efficiency is by building a new and largebeen utilized with many different combinations. Fig. 1 shows the
treatment plant, which is normally expensive and often impossibleprincipal layout of a typical plant with physical, biological and chem-
since the required land or foundation is not available. Another wayical treatment. Physical treatment involves, for instance, screens,
is to introduce advanced techniques. This may reduce large volsedimentation, flotation, filters and membrane techniques. Chemi-
umes, improve the effluent water quality, decrease the use of cheneal treatment involves coagulation and flocculation of colloidal and
ical, and save energy and operating cost. Sustainable solutions fimely suspended matter as well as precipitation of some dissolved
the problems of wastewater treatment will require the developmentnatter.
of an adequate information system for control and supervision of Biological processes are based on biological cultures that consist
the process. of bacteria, uni-cellular life forms and even some multi-cellular life

The introduction of PSE such as control, estimation, expert sysforms. The organic pollutants in the wastewater serve as food and
tem, modeling, optimization, monitoring and diagnostic techniquesenergy sources for the microbiological culture as it grows. The mi-
in WWTP has been slow due to the lack of reliable instrumenta-crobiological culture can either grow suspended in the water phase or
tion and the harsh environment in which the computer and autoin a fixed position on surfaces such as a bio-flm. Suspended growth
mation devices are housed and operated. However, this situation is used in so-called activated sludge (AS) reactors, while the fixed
rapidly changing due to advances in sensor technology and the irgrowth is used in fixed bed reactors. Biological treatment aims at a
troduction of smart sensors capable of self-cleaning, self-calibratiortertain amount of microbiological culture in the process. In AS reac-
and self-reconfiguration. Now, there is a trend for an integrated protors, this is achieved by separating the sludge from the water phase
cess system engineering starting from the sources of wastewat@ér a separation unit and then returning the sludge into the biologi-
treatment to the receiving water and sludge disposal. cal reactor. The excess sludge created in the process is removed and

We first describe and explain the wastewater treatment plant, thetreated in sludge treatment processes, which stabilize and dewater
review the applications of modeling, advanced process control, pathe sludge. Stabilization of sludge makes it biologically safe and
rameter estimation, expert system, monitoring and diagnosis iroften usable as a fertilizer. The reduction of organic matter in a bio-
WWTP reported in the literature and used in practice. logical treatment plant can be 90% or more.

DESCRIPTION OF WASTEWATER MODELING
TREATMENT PROCESS
In wastewater treatment, the goals of a treatment plant are to
Wastewater treatment processes aim at removal of pollutants iachieve an average reduction in nutrient concentrations and good
effluent quality in spite of the many disturbances. Modeling and
*To whom correspondence should be addressed. simulations are key tools in the achievement of these goals.
E-mail: iblee@postech.ac.kr 1. Mechanistic Model
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Fig. 1. A common layout of a wastewater treatment plant.

A mechanistic model is based on the actual or believed physics;apability of predicting the performance of single-sludge systems
chemistry and microbiology that govern the system. Mechanisticcarrying out carbon oxidation, nitrification and denitrification. As a
models of wastewater treatment process aim at describing all bioesult, in 1987, the “Activated Sludge Model (ASM) No. 1" was
logical reactions and important mass balances of the system in sugitesented [Henze et,d987a, b]. Though the model has been mod-

a way that the volumes and the flow rates of the system can be dified and extended, it is still used widely because of its detailed de-
signed adequately. In order to faithfully describe a biological WWTP,scription of biomass growth and removal of organic compounds.

a large number of phenomena also have to be taken into consider- This model divided organic and inorganic materials related with
ation, such as characterization of the influent, hydraulics of eactwastewater treatment into 13 components and used their mass bal-
tank, hydrolysis of different substrates of the influent, removal me-ances. All components in the model are expressed in the matrix form.
chanisms of organic materials and sludge clarification-thickeningThe meaning of components, stoichiometric parameters, chemical
mechanisms. reaction equation etc. are described in detail in the matrix. Compo-
1-1. Aerator Model nents are largely classified into carbonaceous compounds and nitro-

In 1983, the International Association on Water Quality (IAWQ) genous compounds, and each is divided again into readily biode-
formed a task group to develop a practical model for the design andradable and slowly biodegradable. ASM No. 1 has four important
operation of a biological wastewater treatment facility. The first goalreactions: the growth of biomass (implies oxidation of carbon com-
was to review the existing models and the second was to reach grounds and nitrification/denitrification), decay of biomass, and am-
agreement concerning the simple mathematical model having thenonification of organic nitrogen and hydrolysis of particulate or-

[ TR
Npdiidy i

nprzhic

Fig. 2. Schematic diagram of IAWQ ASM No. 1.
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ganic matter. The main emphasis of the model is the biological reagnent model is a simpler approach that considers two well-mixed
tor, while the settler dynamics is treated comparatively superficially.compartments, one above and one below the sludge blanket level.
Main reactions and inter-relationship of components are illustrated Keinath et al[1977] obtained a settling velocity model that sat-
in Fig. 2. isfied the solid flux model and the underflow condition of that: the

Recently, several papers reporting research on biological nutridownward solid flux is the sum of the gravity settling flux and the
ent removal (BNR) process modeling have been published. Gujesolid flux due to the bulk movement of the liquid in a continuous
et al [1995] extended ASM No. 1 for carbon and nitrogen removal flow settler. Vitasovic [1986] developed a more rigorous analysis
to include the modeling of biological phosphorus removal. The re-of dynamics of the settler. Vitasovic's model predicts the solids con-
sulting ASM No. 2 included 17 processes and 17 components. Typeentration profile in the settler by dividing it into 10 layers of con-
ical values of its 40 kinetic parameters were listed, although theystant thickness and by performing a solid balance around each layer.
have not been verified from experimental data. In a companion paHowever, the model is reasonable only in the hindered settling con-
per, procedures of wastewater and biomass characterization for uslition due to limitation of its settling velocity model. Takacs et al
with ASM No. 2 have been presented [Henze.ei1885]. Mino [1991] classified the settling characteristics into four regions and sug-
et al. [1995] modified ASM No. 2 to include the denitrification ca- gested a double exponential settling velocity model in order to take
pability of phosphorus-accumulating organisms (PAO) by includ- all kinds of sedimentation into account. Dupont and Henze [1992]
ing two new processes: anoxic polyphosphate storage and anoxaeveloped a model for the secondary clarifier based on the general
growth of PAO. The modified model improved the simulation of flux theory that can be used in combination with the activated sludge
phosphates in the anoxic zone of a BNR plant. ASM No. 2 was alsenodel to form a complete dynamic WWTP. In addition to the flux
modified to be consistent with anoxic P-uptake by including the model, it includes a simple and purely empirical model for predict-
process of denitrification by PAO using internal polyhydroxyal- ing the contents of particulate components in the effluent. Nowa-
kanoates (PHAS) [Issacs et 4995a]. Based on pilot-plant phos- days, a more sophisticated model has been developed. Diehl and
phate and nitrate data, 46 model parameters and 19 initial conJeppsson [1998] proposed a new one-dimensional model based on
centrations were identified after about 2,000 iterations of a randomhe theory of nonlinear partial different equations and constructed
search algorithm, although most parameters were insensitive to then entire WWTP model combining the settler model with ASM
data. No. 1.

Occasionally, the model structure of ASM No. 1, 2 and so on2. Data-driven Modeling
requires very complex estimation algorithms and it is hard to iden- To date, the most successful model and the industrial standard is
tify their numerous parameters. Jeppsson and Olsson [1993] prdhe mechanical model (ASM No. 1, No. 2 and No. 3). However,
posed a reduced order model for on-line parameter identificationthe model structure requires a high dimension and the model pos-
of WWTP. With a simplified Extended Kalman Filter, 8 basic reac- sesses a large number of kinetic and stoichiometric parameters. Some
tions and 13 components in IAWQ ASM No. 1 were reduced tosubstrate components and model parameters are difficult to esti-
4 reactions and 10 components. It has been verified against ASvhate, partly due to the limitation of available measurement tech-
No. 1 to investigate whether it incorporates the important dynamianiques. And some processes of ASM No. 1, 2 and 3 are theoretical
phenomena in the actual time scales or not. More procedures fon nature and rate equations are difficult. Any particular plant has
validation and details can be found in the literature [Jeppsson, 1996jts own process environmental conditions and process operations,
1-2. Secondary Settler Model which make it difficult to develop an accurate general model. It is

In most previous models, the clarifier has been treated as a pumot easy or desirable to spend considerable time and effort to simu-
concentrator, sometimes with time delay. More structured modeldate peculiarities and non-idealities of a process using ASM mod-
that incorporate both the clarification and the thickening phenom-els. As a result, the actual application of such a complex model to
ena have been presented. However, the dependence of the settlipgpcess control and operational strategies is limited.
parameters on the biological conditions of the sludge is not straight- In a black box modeling strategy, the model development is main-
forward. It is usually assumed that there is no biological activity out-ly driven by measured data from the actual system that has to be
side the bioreactor. There are, however, indications that some bianodeled. Its main advantage is the fact that, within a reasonable
degradation takes place in the settler. A secondary settler separatasount of time, one can obtain a highly accurate mathematical mod-
the biomass from the treated wastewater and is a key mechaniset without detailed knowledge of a system. The applicability of black
in operation of biological WWTP. The model of the settler can bebox modeling has greatly increased because of the availability of
divided into four categories: first, the most general, multi-layer mod-mathematical concepts that can approximate any continuous non-
el which considers the settler as a number, n, of horizontal sliceinear function, such as artificial neural networks (ANN), fuzzy and
(layers) with the feed into slice m. Each slice has a bulk movemengienetic algorithms (GA).
of liquid and solids either upwards (above the feed) or downwards Capodaglio et 8]1991] used neural networks to model the sludge
(below the feed). Solids settle into the slice from the above and settieolume index (SVI) in order to modelrecast sludge bulking, and
out of the slice to the below. Second is the settling flux model thafTyagi and Du [1992] predicted the effect of heavy metals on the
uses settling velocity due to gravity force. However, there are somperformance of WWTP. Su and McAvoy [1992] used a parallel train-
limitations in that it has a problem of determining constants in theing approach of recurrent neural networks to predict biological re-
model and it is applicable to the region of zone settling. Third, themoval efficiency in the wastewater treatment process. Boger [1992]
clarification model, describes the effluent concentration by using aeviewed various applications of neural networks in the field of waste-
double-exponential form of the flux model. Fourth, the compart-water engineering and discussed both advantages and limitations
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of neural approach. Roche et[&P95] developed a secondary clar-

ifier model that predicted the return sludge concentration based o > Neural

the settling hydraulic retention time (HRT) by using a shifted power Network

model whose coefficients were correlated to the incoming suspende ¢

solid (SS) and the sludge volume index (SVI). Hack and Kéhne i .

[1996] estimated the wastewater process parameters using neu inputs p FirstPrinciple | Output
networks. A simplified hybrid neural net approach was applied to (ASM model)

the modeling and subsequent analysis of a chemical WWTP to re
duce the occurrences of overflow in the clarifier caused by fila-
mentous bulking and thereby increase wastewater treatment cape Neural
ity [Miller, 1997]. Hamodaet al [1999] examined plant dynamics P Network
and modeling techniques with emphasis on the digital computing
technology of ANN. Lee and Park [1999] used the ANN model to

(a)

estimate the nutrient dynamics in a sequentially operated batch rea First Principle

tor. Yoo et al [2000] predicted and classified the state of the sec- IPuts M ASMmodely [P @—> Ouput
ondary settler using Kalman filtering and neural networks. Gontar-

ski et al [2000] simulated and predicted an industrial WWTP using (b)

ANN. Recently, neural networks have been successfully applied tig. 3. Hybrid model configuration incorporating prior knowledge
biological WWTP as well as chemical industries summarized com- into a data based model (a) serial hybrid model (b) parallel
prehensively by Himmelblau [2000]. hybrid model.

However, a conventional ANN model suffers from the drawback
that it is synthesized on the available data, without detailed knowl-
edge of the underlying principles. When the data are sparse and noisyetwork (residual model) for developing a dynamic model of a se-
such an empirical black box model may be inadequate and inaccuguence batch reactor system. Can.gt8D7] reviewed efficient
rate for prediction and extrapolation because it possesses no physirodel development strategies for bioprocesses based on neural net-
cal basis. Furthermore, the ability to learn nonparametric approxiwork in macroscopic balances. They compared the serial and paral-
mation can lead to over-fitting of the noise as well as the underlylel gray box models that use available knowledge represented in
ing function. Therefore, it often becomes necessary to implementhe macroscopic balances and combined naturally with neural net-
some form of empirical or semiempirical modeling to develop aworks. Zhao et al. [1999] modeled the nutrient dynamics using sim-
system representation suitable for further analyses. The potentigillified ASM2 and neural network in a sequence batch reactor. An-
advantages of hybrid modeling approaches relative to a fully eméerson et a[2000] used sequential and parallel hybrid models based
pirical approach include a reduced demand on experimental datan the first-principles knowledge of WWTP, which build as much
and more reliable extrapolation. Consequently, the alternative ofrior knowledge as available and then use empirical components
using a hybrid model that integrates both a mechanical model anduch as neural networks. Lee [2000] applied the gray box model-
ANN appear promising. The serial configurations used neural neting approach to the coke wastewater treatment plant.
works to represent poorly defined terms in the first-principle model3. Simulation Benchmark
(ASM model). For example, material balance on the biological reac- Many control strategies have been proposed in the literature but
tor might yield a set of ordinary differential equations including a their evaluation and comparison, either in real-life applications or
number of poorly defined kinetic terms (reaction rates or kineticsimulations, is difficult. This is partly due to the variability of the
parameters of ASM model). In a serial configuration one or moreinfluent, the complexity of the biological and hydrodynamic phe-
black boxes would replace these “unknown” expressions. Thuspomena, the large range of time constants (from a few minutes to
the neural networks provide intermediate values necessary for timeeveral days, even weeks), and the lack of standard evaluation crite-
series prediction with the mechanical models represented schemata. Different regions have different effluent requirements as well
ically in Fig. 3(a). In parallel arrangements, a dynamic model of theas different cost levels. To enhance the acceptance of innovative
wastewater treatment system exists, and the effort is to construcontrol strategies, the evaluation should be based on a rigorous meth-
an empirical error model compensating for its fallacies or errors.odology including a simulation model, plant layout, controllers, per-
For prediction of the dynamic behavior the outputs of the simpleformance criteria and test procedures. To this end, there has been a
dynamic model are biased by the outputs of the error model, as irecent effort to develop a standardized simulation protosioher-
Fig. 3(b). Fig. 3 represents a hybrid model configuration incorpo-lation benchmark[COST-624, 1997]. The COST 682 Working
rating prior knowledge into a data-based model with serial hybridGroup No. 2 has developed a benchmark for evaluation of control
model and parallel hybrid model. strategies by simulation. The benchmark is a simulation environ-

Cote et al[1995] demonstrated that coupling of mechanic and ment defining a plant layout, a simulation model, influent loads,
ANN models resulted in improved ammonia and suspended solidest procedures and evaluation criteria. For each of these items, com-
prediction. Dissolved oxygen (DO) prediction was biased since erpromises were pursued to combine plainness with realism and ac-
roneous measurements due to DO probe limitations were not foleepted standards.
lowed closely by the ANN model. Zhao et[4P97] suggested a A relatively simple layout was selected for the simulation bench-
hybrid model consisting of a simplified process model and a neuraimark (see Fig. 4). It combines nitrification with predenitrification,
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Fig. 4. A layout of simulation benchmark.

which is used most commonly for nitrogen removal. The plant, whichtions and organism species that are involved in the system may be
was designed to treat an average flow of 20,0@D'nconsists of a  very large. An accurate description of such complex systems can
5-compartment bioreactor and a secondary settler. To increase thberefore result in quite involved models, which may not be useful
acceptability of the results, two internationally accepted procesgrom a control-engineering viewpoint. We can summarize some of
models were chosen. The biological process is modeled by ASMhe major problems in general: Lacking process knowledge (varia-
No. 1 [Henze et al1987]. The behavior of the secondary settler is tions of microorganism characteristics, hydrolysis, flocculation, set-
modeled by a double exponential settling velocity model, calledtling characteristics), large variations of influent load and uncer-
Takacs’ modelwith a 10-layer secondary settling tank [Takacs et tainties in the influent composition (depending on weather, indus-
al, 1991]. Simulated influent data are available in three two-weektrial discharges and toxic material, etc.), multivariable with many
files derived from real operating data. The files were generated t@ross-couplings, several different unit processes interconnected by
simulate three weather situations representing dry weather, stormyarious internal feedback, macroscopic modeling of microscopic
weather (dry weather+two storm events), and rainy weather (dryreaction, highly nonlinear processes, non-stationary processes, time
weather+long rain period). Each of the data contains 14 days ofarying process parameters (due to the adaptive behavior of living
influent data at 15 minute sampling intervals. The full benchmarkorganisms to various environmental conditions), stiff dynamics (a
model includes approximately 150 nonlinear differential equations;wide range of time constants, varying from a few minute to several
the complete model can be found on a website (http:/Avww.ensic.udays or weeks), practically non-controllable and highly variable pro-
nancy.ff COSTWWTP). cess inputs, and lack of adequate measuring techniques. In particu-
A basic control strategy is proposed to validate the user’s simutar, from their input/output behavior, these processes can appear to
lation code. That is, prior to defining and testing a new control stratte highly stable until gross process failure occurs. On the other hand,
egy users must validate their software by implementing a predeno significant input disturbance excites any significant output re-
fined control strategy. Once the user has validated the simulatiosponse. Whereas, a very significant response can occur in the ab-
code, any control strategy can be applied and the performance caence of any obvious motivating input disturbances. By these di-
be evaluated according to certain criteria [Alex et al., 1999; Pons ettinctive features, WWTP has challenged control engineers [Jepps-

al., 1999; Copp et al., 2000; Yoo, 2000; Cho, 2001]. son, 1996; Lindberg, 1997; Islam et 4B99].
Several advanced control strategies had been developed previ-
CONTROL ously, e.g. sliding mode control [Derdiyok and Levent, 2000], but

few of them are reported as appropriate. Olsson [@88DB] listed

Wastewater treatment plants are large non-linear systems subjettte essential variables in the process and their measurement fre-
to perturbations in flow and load, together with uncertainties con-quency. Important types of measurements and manipulated vari-
cerning the composition of the incoming wastewater. Neverthelessables are listed in Table 1.
these plants have to be operated continuously, meeting stricter arld Dissolved Oxygen Control
stricter regulations. And effluent standards will become tighter than Dissolved oxygen (DO) control does not require any in-depth
now. There are even indications in some countries that tomorrow'knowledge of the microbial dynamics. Therefore, a traditional Pl
regulations must be met on the basis of spot checks, not monthlgontroller or on/off controller has been widely used [Flanagan et
average. In this situation, advanced control is not the answer, but &l., 1977] and there have been extensive experiences of DO con-
can help. trol with feed-back controller [Briggs et al., 1967; Wells, 1979; Ko

But the behavior of biological processes occurring in a bioreac-et al., 1982; Stephenson, 1985; Rundqwist, 1986; Holmberg et al.,
tor has a complexity unparalleled in the chemical or engineeringl989; Carlsson et al., 1994; Lindberg and Carlsson, 1996a]. De-
industry. Consequently, its prediction from information about the spite the straightforward task of DO dynamics, several difficulties
environmental conditions is extremely difficult. The number of reac- are involved. First, DO dynamics contain both nonlinear and time
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Table 1. Variables for measurement and manipulation

Measurement variables Manipulated variables

Flow rates in different plant units
BOD, COD, TOC
Phosphorus fractions

Nitrogen in ammonia, nitrite and nitrate . . e
9 ' Air flow rate and its spatial distribution

pH
S . Return sludge flow rate
Suspended solids in different units 9
L Waste sludge flow rate
Alkalinity
Influent flow rate
Temperature

Additional carbon source flow rate
Chemical dosage pumping rate
Feeding points for step feed control

Dissolved oxygen in different locations
Air flow rates and air pressure

Sludge levels

Sludge flow rates

Gas flow rates and temperatures
Respiration rate

varying properties naturally. From long time constants and randonspectively. For MLSS control, a conventional PID controller was
influent disturbances, any tuning of a conventional controller be-used in RAS flow rate manipulation, and the sludge in the second-
comes tedious. Therefore, a self-tuning controller was implementedry clarifier was wasted using a microbial mass balance formula in
in a full scale plant to examine the potential of adaptive control inthe the sludge age. Nejjari et al. [1999] proposed a non-linear ad-
WWTP, where DO concentration is kept very close to its set-pointaptive feedback-linearizing controller for a biological WWTP based
under varying operating conditions [Diaz et al., 1995]. Olsson [1992]on the non-linear model of the process and combined with a joint
gave an example of cascade control concept for DO control. Lee atbserver and estimator which plays a role of the software sensor
al. [1998a] suggested a discrete type autotuned PI controller usinfpr on-line estimation of biological states and parameter variables
an auto-regressive exogenous model to describe DO dynamics ard interest.
Yoo et al. [2001] applied a closed-loop autotuning algorithm for 3. Respirometry-based Control
the PID controller tuning of DO control in a full-scale coke waste- Respirometry is the measurement and interpretation of the re-
water treatment plant. Recently, Gomes and Menawat [2000] despiration rate of activated sludge. The respiration rate is the amount
veloped a Model-Based Geometric Control Algorithm (MGA) for of oxygen consumed by the microorganisms measured per unit vol-
controlling DO in fermentation processes. ume and unit time. It reflects two of the most important biochemi-
2. Sludge Inventory Control cal processes in WWTP, biomass growth and substrate consump-
There are basically two controlled variables for the sludge in-tion. Respirometry has been the subject of many studies and a num-
ventory in the biological WWTP: the waste activated sludge (WAS)ber of measurement techniques and instruments have been devel-
flow rate and returned activated sludge (RAS) flow rate. WAS flow oped.
rate control controls the total sludge mass in the system and the sludgeSubstrate utilization in an aerobic environment requires oxygen.
retention time (SRT) can be kept at a desired level. The traditional portion of the consumed substrate is oxidized to provide the en-
sludge age formula is a steady state calculation and does not taleegy required to reorganize, and the remainder of the substrate mol-
short term fluctuations into consideration. Therefore, it should beecules is converted to new bacterial cell mass [Spanjers et al., 1996)].
emphasized that the SRT calculation has to be based on the slud@ie rate of oxygen consumption can be measured relatively easily
concentration and flow rates averaged over several days. by measuring physical variables like DO or carbonaceous material
The sludge distribution within the system is controlled by the by heterotrophic bacteria and the oxidation of ammonia nitrogen to
step feed flow distribution or the RAS flow rate. The former can nitrate nitrogen by autotrophic bacteria. Nitrification often accounts
redistribute the sludge dynamically within the aeration basin whilefor approximately 40% of the total oxygen demand. The substrates
the latter can shuffle sludge between the settler and the aeration badirave various biodegradation kinetics depending on their inherent
Many contradictory control schemes are made for return sludge floncharacteristics and the responsible sludge condition, e.g., mineral-
The recycle flow rate can only redistribute sludge between the setization of carbonaceous compounds differs from that of nitrogenous
tler and the aeration basin, while the total sludge mass of the sysubstrates, and in the carbonaceous matters the same degradation
tem remains the same. Two most common practical control principattern is not shown according to their molecular structures. Called
ples are either constant RAS flow rate or influent flow ratio con- the bisubstrates hypothesis, it was introduced first in the UCT (Uni-
trol. The influent flow ratio control appears to have several difficul- versity of Cape Town) model [Dold et al., 1991]. According to the
ties and is seldom used consistently. The constant RAS flow strathypothesis, BOD in the influent waste stream can be regarded as
egy is often found to be better empirically. two fractions: one is readily biodegradable substrate (RBS), which
Cakici and Bayramoglu [1995] introduced a control method of has a simple molecular structure and is able to pass through the cell
sludge age and mixed liquor suspended solids (MLSS) concentrawall immediately for microbial metabolism, and the other is slowly
tion by adjusting the sludge recycle rate and wastage flow rate, rebiodegradable substrate (SBS), which was assimilated in a form of
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RBS through extracellular enzymatic reaction, called hydrolysisobtained from input/output data during iterative design procedure.
[Ekama and Marais, 1979]. 4-2. Multivariable Control
Since the respiration rate is directly linked to the growth of bacte- Above previous researches focused on single input single output
ria and consumed substrates, it has been used to analyze microl&1SO) process control. Some examples of multivariable control of
conditions of WWTP in a form of respirogram that is a graphical the wastewater treatment process can be found in Bastin and Doch-
description of respiration rate as a function of time [Kappeler andain [1990], Dochain and Perrier [1993], and so on. Lindberg [1997,
Gujer, 1992; Spanjers and Keesman, 1994; Spanjers and Vanrd998] suggested multivariable modeling and control strategy of nu-
leghem, 1995; Dochain et al., 1998; Vanrolleghem et al., 1995, 1998}rient removal in WWTP using numerical algorithms for subspace
Furthermore, the respiration rate can be decomposed into exogtate space system identification (N4SID) that can identify muilti-
enous and endogenous parts, in which this comes from an adenogariable processes [Van Overschee and De Moor, 1996]. From the
ine tri-phosphate (ATP) oxidation in microorganisms and that frommulti-input multi-output (MIMO) process model, Lindberg [1997]
the external substrate oxidation. The change of the rate relies maileveloped a linear quadratic (LQ) controller with integration of feed-
ly on its exogenous part since the endogenous respiration rate susrward and feedback controller. Steffens and Lant [1999] evaluated
tains a constant level in a short time experiment [Kong et al., 1996}several multivariable model-based control algorithms, such as linear
Hence, the analysis of exogenous respiration rate has been used fpradratic controller (LQC), dynamic matrix controller (DMC) and
the identification of the characteristics of substrates and microornonlinear predictive controller (NPC) for controlling nitrogen re-
ganisms [Brower et al., 1998; Spanjers et al., 1999]. moval in WWTP and compared that with a conventional PI con-
4. Advanced Nutrient Removal Control troller of the SISO system. They concluded that model-based con-
Nitrogen and phosphorus are the principal nutrients of concerrirol algorithms could provide tight control of nitrogen compound
in treated wastewater discharges. Discharges containing nitrogeremoval and offer significant benefits in terms of deferred capital
and phosphorus may accelerate the eutrophication of lakes and rexpenditure.
servoirs and may stimulate the growth of algae and rooted aquatic On the other hand, Isaacs and Henze [1995] and Isaacs et al.
plants in shallow streams. Significant concentrations of nitrogen in1995] dealt with the problem of nutrient removal control in an al-
the treated effluents may also have other adverse effects includingrnating nitrification/denitrification process. Lukasse et al. [1998]
DO depletion in receiving waters, exhibiting toxicity toward aquatic developed an aeration strategy for optimal nitrogen removal in al-
life, affecting chlorine disinfection efficiency, presenting a public ternating nitrification/denitrification process. First, optimal control
health hazard, and affecting the suitability of wastewater for reusetheory was applied to ASM No. 1, and then, from the result of the
Therefore, the control of nitrogen and phosphorus is becoming infirst simulation, a simple discrete model which could replace com-
creasingly important in water quality management and in the desigplex ASM No. 1 was created to design a receding horizon optimal
of WWTP [Lee et al., 1998b; Yoo, 2000; Cho, 2001]. controller. It revealed that it is impossible to control both ammonia
4-1. Model-based Control and nitrate to their set points as their consumption/production is com-
The development of advanced nutrient analyzers has made it pogletely coupled.
sible to introduce better control. In biological nitrogen and phos-
phorus removal, many factors influence the reaction rates, such as PARAMETER AND STATE ESTIMATION
the amount of microorganisms, temperature, substrate composition
and concentration. There are only a few ways to influence the ni- As previously described, WWTP is a complex dynamic process
trification/denitrification rates in practice: One is to adjust the DO influenced by many uncertain factors, such as loading and biomass
set point for ammonia removal in the aeration zone; another is t@omposition. Successful process control requires good knowledge
control the dosage of external carbon for nitrate removal. Phosphasf process variables such as the most influential kinetic and stoichi-
rus can be removed by controlling the dosage of chemicals for phosmetric parameters and resulting biomass composition. Model pa-
phorus precipitation. rameters and state estimation are based on available noisy process
Many papers have dealt with the problem of removal of nitro- measurements. The parameters of biological models usually vary
gen compound. Henze [1991] discussed capabilities of biologicalvith the environmental conditions and need to be updated frequently
nitrogen removal process for wastewater treatment and suggestdiarough on-line and off-ine algorithms. Tracking of parameters val-
that the most economic configuration for nitrogen removal shouldues is also useful for detection of toxic input and on-line sensor fail-
be the predenitrification system. Recent approaches to the problem afes and sudden parameter changes. The need of state estimation
nitrate removal by external carbon source can be found. Lindbergrises in connection to state-feedback control schemes. Process var-
and Carlsson [1996b] proposed an adaptive control strategy usingbles that are not monitored due to unavailable or expensive sen-
auto-regressive moving average with exogenous input (ARMAX) sors can be estimated or reconstructed numerically. Even in the case
model with recursive least square method for parameter estimationvhere process measurements are available, estimation algorithms
Yuan et al [1997] suggested various control strategies using pro-are still necessary to optimally weigh the uncertainty of the process
portional feedback controller with some assumption and modifica-model with measurement accuracy and generate a more accurate
tion of ASM No. 1. To design the controller and determine the op-state variable estimate [Bastin and Dochain, 1990; Kabouris, 1994].
timal set point, they added the dynamics of an external carbon source It is well known that particular problems of model identification
to the denitrification model in ASM No. 1. Barros and Carlsson in WWTP involve the highly nonlinear nature of the dynamics, the
[1998] developed an iterative pole placement design method of amall sensitivity of the state variables and the inability of measur-
nitrate controller. The closed-loop model of the process could beng individual process variables reliably.
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Goto and Andrew [1985] presented on-line estimation of oxy-tion, and (3) a knowledge base editor that accesses the explanation
gen uptake rate from DO mass balance in a complete mixed aeraubsystem and helps the programmer locate bugs in the program
tion basin, neglecting DO time derivative and measuring air andperformance. It may also assist in adding new knowledge, main-
water flowrates and DO concentration. Howell and Sodipo [1985]taining correct rule syntax, and checking consistency on an updated
estimated on-line respiration rate and aeration efficiency by a factorknowledge base. The control system generally has (1) a user inter-
ized Kalman filter algorithm. Olsson and Chapman [1985] used theface which makes access to the expert system more comfortable
Maximum Likelihood method to estimate the parameters of a timefor humans and hides much of the system complexity, (2) an ex-
invariant linear stochastic difference equation describing clarifica-planation subsystem that allows the program to explain its reason-
tion of effluent solid dynamics. In the case of time-varying param-ing to the user, such as justifications for the systems conclusions,
eters, they used the Extended Least Square method in modeling ahd why the system needs a particular piece of data, and (3) an in-
the effluent solids response of a pilot scale settler. Holmberg anference engine, or the interpreter of the knowledge base. It applies
Olsson [1989] simultaneously estimated OUR and aeration coeffithe knowledge to the solution of the actual problems.
ciencies using Kalman filter method. Marsili-Libelli [1990] designed  Stephan and Anthony [1991] designed an expert system for water
and evaluated a real-time estimator both for oxygen uptake rattreatment plants and applied it to a plant in New York. Watanabe
and for oxygen transfer rate coefficients. Ayesa et al. [1991] usectt al [1993] proposed intelligent operation support system (IOSS)
an Extended Kalman filter (EKF) algorithm to simultaneously esti- for bulking prediction and control for WWTP with on-line process
mate the states and parameters of ASM No. 1 for nitrifying WWTP,data and image signals on microbes; the data and signals come from
including a selector reactor, and Larrea et al. [1992] attempted tha submerged high resolution microscope. In their research, the rules
simultaneous estimation of nine model parameters. Weijer et alof the expert system were produced from historical data by using
[1996] reviewed the recent literature on calibration strategies andrtificial neural networks. Wang [1996] used the decision-support-
methods for assessing parameter identifiability of ASM 1 and pre-ing system (DSS) in city water supply. DSS was designed to op-
sented the identifiability results for full-scale plants by a combinederate with an SCADA system connected to a telephone line. He sug-
analysis of the parameter sensitivity and the Fisher information matrixgested a triple hierarchy to infer the result of the system. The first

Recently, Kabouris and Georgakakos [1996a, b, c] reviewed thdnierarchy is used for data processing, the second is for data analy-
parameter and state estimation of WWTP about model developsis, and the final is for reason driving with the library of knowl-
ment, application and on-line estimation. Tenno and Uronen [1995edge base. Medsker [1996] presented a hybrid intelligent system
1996] introduced a stochastic model based on an ASM model andith microcomputer and compared it to a neural network, expert
the outlet gas formation description. Suescun et al. [1998] prosystem, fuzzy logic, genetic algorithms and case-based reasoning.
posed a simultaneous estimation of the volumetric mass transfdre forecasted that the microcomputer-based hybrid intelligent system
coefficient and oxygen uptake rate and validated the experimentdbecame more effective and economical. Baeza Et9819] sug-
results in a continuous pilot-scale plant. Jose et al. [1999] proposegested a real time expert system (RTES) for the supervision and con-
a neural network-based inferential sensor for phenol monitoringrol of WWTP for removal both organic matter and nutrient. He
using on-line biomass concentration by spectrophotometry, whereised PLC for process control and"Gfor RTES development.
the network was built with wavelets as a basis function and théRTES was designed to actuate as the master in a supervisory set-
adaptive algorithm for the weights was based on a Lyapunov stabipoint control scheme and it is based on a distributed architecture.
ity analysis. Predicted output of the network showed a good agreefhe method was implemented in WWTP for 600 days, and excel-
ment with experimental data over fairly broad ranges of inlet condent performance was reported to manage the process in spite of
centration and dilution rate step changes. Assis and Filho [2000] restrong disturbances.
viewed the soft sensor technologies for on-line bioreactor state esti-
mation, such as adaptive observer, filtering techniques and artificial MONITORING AND DIAGNOSIS
neural networks and predicted trends on on-line software based state
estimation. Yoo and Lee [2001] suggested and experimented with Process monitoring of operating performance is extremely im-
a supervisory control based on simultaneous process identificatioportant for plant safety and quality maintenance in a process. It is
andin-situ estimation of respiration rate in a full-scale wastewater largely divided into two main approaches such as model-based and
treatment plant. data-based. The former makes mathematical models to identify the

static and dynamic relationships of processes and so it is useful if a
EXPERT SYSTEM process is rather simple, but not useful if processes have severe non-
linearity, high dimensionality and complexity. On the contrary, the

An expert system provides expert solutions to problems in a spdatter makes statistical guideline based on historical data in hormal
cific domain, but it is limited by the information contained in its operation conditions, so it is available without process characteris-
database. Hence, it is up to the knowledge engineer and the expdits if there are enough available data.
to work together to gather the correct information and inference The monitoring problem largely consists of three sequential parts:
rules contained in the knowledge base. data rectification, detection, and diagnosis. Fig. 5 illustrates the mon-

A typical expert system consists of two separate entities: a knowlitoring scheme for the plant. Data rectification means the screening
edge base and a control system. The knowledge base contains ()available data to remove redundant information. Olsson and Ne-
a listing of rules that solve the problems of the given domain, (2well [1999] defined the detection as a combination of process ob-
specific data, or the facts, conclusions, and other relevant informaservations and measurements, data analysis and interpretation to de-

Korean J. Chem. Eng.(Vol. 18, No. 4)



416 C. K. Yoo et al.

External and Internal same information at least to some extent is observed. It is desirable
Disturbance to develop schemes for providing reliable on-line information on
the status of the plant so that early corrective actions may be taken.
Traditionally, statistical process control (SPC) has been used to
monitor a few quality-related key process signals to detect trends,
outliers and other anomalies. The term “SPC” is often confused with
process control. SPC, however, is more related to the process moni-
toring, and therefore the term “statistical process monitoring” (SPM)
is often used instead of SPC. Shewhart, cumulative sum (CUSUM)
and exponentially weighted moving average (EWMA) are tradi-

Real Plant

observations
measurement

Detection Consequence Analysis tional univariate SPC charts. The use of univariate control charts
implicitly assumes that the variables are independent and identi-
cally distributed (iid). For this reason, these procedures are of lim-
ited use with high-dimensional multivariate data that are strongly

cross-correlated and auto-correlated, dynamic, multiple time-scale,
non-stationary and noisy. That is, as the number of variables and
the extent of collinearity increase, the interpretation of these univari-
ate control charts can lead to false conclusions [Rosen, 1998; Tep-
pola, 1999].
tect abnormal features or effects and the isolation of faults. Diagno- Multivariate statistical process control (MSPC) is a possible solu-
sis involves the analysis of effects to identify and rank likely causestion to dimensionality and collinearity problems. Contrary to univari-
The advice involves the problem of synthesizing strategies to elimiate techniques, multivariate techniques are more successful solutions
nate the causes and return the process to normal operating conditiotis. monitor the process data having severe collinearity and noise.
Only a few researchers have been interested in process monitoririthey contain such methods as principal components analysis (PCA)
in WWTP. Monitoring in wastewater treatment has mostly focusedor partial least squares (PLS) combined with standard sorts of con-
on a few key effluent quantities upon which regulations are enforcedrol charts. These methods are the basis of the fiebeshomet-
However, since environmental restrictions are becoming more rigidics, which has traditionally been concerned with multivariate an-
nowadays, an increased effort for higher effluent quality is requirecalyses in chemistry, particularly those of spectroscopy. These have
in the advanced monitoring of plant performance. also been used widely in industrial process monitoring over the past
Monitoring of WWTP is very important because recovery from several decades. PCA and PLS aim to represent a multivariate set
failures is time-consuming and expensive. That is, most of theof measurements with a smaller number of variables. These trans-
changes in biological treatment process are very sluggish when thiermed variables are linear combinations of the original ones. These
process is recovered back from a ‘bad’ state to a ‘normal’ state omethods have been used and extended in various applications [Geladi
back from a ‘bad’ state to a ‘good’ state. Therefore, early fault de-and Kowalski, 1986; Johnson and Wichern, 1992; MacGregor et
tection and isolation in the biological process is very important asal., 1995; Wise and Gallagher, 1996; Chen and McAvoy, 1998; Liu
corrective action well before a dangerous situation happens. At thet al., 2000].
same time discrimination between serious and minor abnormality With the use of multivariate data analytical methods, the exten-
is of primary concern. To accomplish these classifications, a relision from univariate to multivariate control charts is very logical.
able detection procedure is heeded. However, few monitoring techBecause the multivariate scores are orthogonal mathematically and
niques are available to utilize the large on-line data sets despite thtbey give the optimal summary of measurements and observations,
increasing popularity and decreasing price of on-line measuremerthey are ideally suited for displaying in control charts [Wikstrom et
systems in the field of the wastewater treatment system. al., 1998]. The scores are also more robust to noise than original
A wastewater treatment plant is a very complex system includ-ariables since they are linearly weighted averages. This allows a
ing a great deal of equipment and complex processes. The operatarsore efficient pattern tracking of the process over time for detect-
are under increasing regulatory pressure to reduce pollutant levelag abnormalities and for defining the time when they occur. Mul-
in their effluent. One response to this has been the installation divariate control charts have been explained in detail by MacGre-
extensive on-line sampling capable of measuring flow rates, concergor and Kourti [1994].
trations and other variables frequently. Data acquisition systems may The multivariate Shewhart charts are constructed simply by plot-
collect a large amount of data, normally tens of process and contrding the appropriate quantity vs. time. Those of scores show how
variables, but there are relatively few significant events. Thereforethe process evolves over time in the respective principal component.
the data from all the measurements should be mapped into a sifdeanwhile, a Shewart chart of Hotelling%ifidicates a summary
nificant description of the current process. The obtained data willof all scores. The multivariate CUSUM charts are only available
give much process information, if only the important and relevantfor scores. In these charts cumulative sums of deviations from the
information can be extracted and interpreted. Not only are there mantarget values are calculated and visualized, then all observation are
variables to be considered, but also they are often highly cross-corsed to detect a special event, rather than only the last observation.
related (e., the measured variables are not independent of one arifhe EWMA charts are used to model process dynamics with mem-
other) and auto-correlated. So, redundancy that variables carry thary and drift. They show robust and filtered values through weight-

Diagnosis

Fig. 5. Monitoring scheme for the plant.
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ing more heavily to recent than old observations. These three kindk998; Li et al., 2000], there has been little research on the problems
of control charts only show if the systematic part of an observationof application to industrial processes. Third, the choice of sampling
conforms the model. However, if a new type of event occurs andnterval strongly affects the nature of the data and hence the model.
gives data that are not represented in the training set, the model willhere is a very wide range of dynamics in WWTP. That is, while
not fit these new data well and hence leave much of this observasome measurements are taken many times per minute, some are
tion unmodelled. Therefore, we often use simultaneous scores mortaken only every fifteen minutes. Quality measurements may be
itoring and residual tracking (SMART) charts to identify how the taken once a day or even less frequently (multirate sampling). It
model fits current data well. They represent time series patterns ahay be possible to block variables sampled at the same frequency
model residuals. and develop a multi-block model. Another possibility is to use a
Besides the dimensionality and collinearity problems, process datenultiscale model through the use of wavelet transforms [Bakshi,
often consist of many underlying phenomena that create their owd998]. In addition, extensions of MSPC to monitor more complex
variation and scale. The measured signal can be often very messy batch processes are made with the multiblock PCA, PLS or mul-
because some phenomena mask others. So, it is hard to observe tiigay PCA, PLS, respectively [MacGregor et al., 1994; Nomikos
long-term drift of signal such as seasonal fluctuation having lowand MacGregor, 1994]. These monitoring methods are based on
frequency. In most situations, the objective is to identify transientthe traditional statistical analytical approach using Hotellings T
phenomena such as faults and disturbances. However, there alsam of squared prediction error (SPE or Q statistiégndQ sta-
exist applications where the detection of long-term disturbancedistics methods provide reliable and correct tools for detecting that
such as drifting and seasonal fluctuations is important. A filteringmultivariable process has gone out-of-control. However, these meth-
approach can give a possible solution for this problem. The origi-ods do not always work well in WWTP, because they cannot de-
nal data are compressed and analyzed at different scales by usitegt any changes in the operating conditior? iaiifd Q are inside
multiresolution analysis [Teppola, 1999]. The corresponding scalehe confidence limits. Therefore, a new monitoring method may be
representation shows different phenomena occurring at differentequired that can effectively treat the nonstationarity of the character-
rates. Mutiresolution analysis enables one not only to show the unistics of the biological treatment process and diagnose source causes.
derlying phenomena but also to filter out unwanted and disturbing Meanwhile, it is an important issue to diagnose the source causes
phenomena. In addition, proper clustering methods help one to dider abnormal behavior. Chemometric methods such as PCA and PLS
criminate different scale events. have been utilized for merging detection with diagnosis of source
Applications of MSPC in the biological process have recently causes of abnormal situations [Ku et al., 1995; Raich and Cinar, 1995;
drawn great interest by a few researchers. Krofta et al. [1995] ap€hiang et al., 2000; Russel et al., 2000]. Ku et al. [1995] proposed
plied the analysis techniques for dissolved air flotation. Rosen [1998h diagnostic method in which the out-of-control observation was
adapted multivariate statistics-based methods to the wastewater treabmpared to PCA models for known disturbances. Using refine-
ment monitoring system using simulated and real process data. Vaments of statistical disturbances, discriminant analysis then selects
Dongen and Geuens [1998] illustrated that multivariate time serieshe most likely causes of the current out-of-control condition. Suc-
analysis can be a valid alternative of the dynamic modeling incessful diagnosis depends on the discrimination ability of these dis-
WWTP. Teppola [1999] used a combined approach of multivariateturbance models. Raich and Cinar [1995] suggested quantitative tools
techniques, fuzzy and possibilistic clustering, and multiresolutionthat evaluated overlap and similarity between the PCA model and
analysis for wastewater data monitoring. Tomita et al. [2000] ap-discriminant analysis in order to diagnose the source causes for ab-
plied multivariate analysis in the simulated WWTP and detectednormal behavior. Chiang et al. [2000] compared the fault diagnosis
three groups of variables characterizing the system. methods using discriminant partial least squares (DPLS), Fisher
However, the multivariate statistical analysis method has fundasgiscriminant analysis (FDA) and PCA. They showed that FDA and
mental weak points in the nutrient removal process. The nutrienDPLS are more proficient than PCA for diagnosing faults. Russel
removal process is hon-stationary, which means that the procest al. [2000] proposed a fault detection method using canonical var-
itself changes gradually over time. Wastewater treatment plants ariate analysis and dynamic component analysis. Recently, Kano et
hardly ever “normally” operated for long periods, and what “nor- al. [2000a, b] proposed a new statistical process-monitoring algo-
mality” means also changes because of the nonstationarity. So, corithm. It is based on the idea that a change of operating condition
ventional static PCA is not suited for non-stationary process monican be detected by monitoring the distribution of time-series pro-
toring as it assumes data are i.i.d and they are obtained from a naress data because the distribution reflects the corresponding operat-
mal operating condition for a particular process. This is a problening condition. However, they did not consider an individual con-
for developing statistical control charts as they should be developettibution of each transformed constituent in the calculation of dis-
from a set of “normal” operating data. similarity index through normalization. Choi et al. [2001] proposed
Issues that need to be addressed, particularly in relation to WWTR modified dissimilarity measure algorithm to consider the effect
are the selection and transformation of data, model structure andf individual transformed variables. This method is used for detect-
sampling intervals. First, to implement dynamic and adaptive datang the existence of disturbances as well as for isolation of kinds of
based models, the methods of selecting and transforming data adisturbances through eigenvalue monitoring.
required[Ku et al., 1995]. Ideally, these should demand a mini-
mum of process knowledge. Second, adaptive algorithms for MSPC CONCLUSION
show potential for non-stationary processes. While adaptive algo-
rithms have been developed [Dayal and MacGregor, 1997; Qin, Process system engineering techniques such as modeling, con-
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trol, estimation, expert system, and monitoring and diagnosis sysBastin, G. and Dochain, D., “On-Line Estimation and Adaptive Con-
tem in the wastewater treatment plant are significantly under de- trol of Bioreactor, Elsevier, New York (1990).

velopment and have given very real economic benefits to be gaine@oger, Z., “Application of Neural Networks to Water and Wastewater
In this paper, we have reviewed many papers about PSE tech- Treatment Plant OperatiotBA Trans 31, 25 (1992).

niques in the field of wastewater treatment plants. Among themBriggs, R., Jones, K. and Oaten, A. B., “Monitoring and Automatic Con-
however, only a few techniques have been reported to work suc- trol of Dissolved Oxygen Levels in Activated Sludge; Effluent and
cessfully in real wastewater treatment plants, while manifold mon-  Water Treatment Convention, Thunderbird Enterprises, London, 11
itoring and control strategies have been developed and adopted to (1967).

the mechanical, chemical and electronic industries. One of the inheBrouwer, H., Klapwijk, A. and Keesman, K. J., “Identification of Acti-
ent differences in the wastewater treatment plant and the other phy- vated Sludge and Wastewater Characteristics using Respirometric
siochemical industries is that the microorganisms, which played an Batch-ExperimentsiVat. Res 32, 1240 (1998).

important role in wastewater treatment process, are living creatureSakici, A. and Bayramoglu, M., “An Approach to Controlling Sludge
with various vital forces according to the surrounding conditions.  Age in the Activated Sludge Proce¥#it. Res29, 1093 (1995).
Therefore, the cell viability should be regarded as an essential factatan, H., Braake, H. A., Hellinga, C., Luyben, K. and Heijnen, J. J., “An
for the wastewater treatment process operation because it is strongly Efficient Model Development Strategy for Bioprocesses Based on
correlated with the process performance. One of the possible can- Neural Network in Macroscopic Balancegid. & Bio., 54, 549
didate to check the activity of microorganisms is the respirometer (1997).

as we discussed in Respirometry-based control. In addition, the reéeapodaglio, A. G., Jones, H. V., Novotny, V. and Feng, X., “Sludge
spiration rate has been used for bio-model calibration, toxicant inhi- Bulking Analysis and Forecasting Application of System Identifica-
bition test, substrate state observation and biokinetic analysis be- tion and Artificial Neural Computing Technologwat. Res 25,
tween biodegradable pollutants and corresponding microbes. 1217 (1991).

Another further research topic on PSE issues is the design of aBarlsson, B., Lindberg, C. F.,, Hasselblad, S. and Xu, S., “On-line Esti-
integrating operation system on wastewater treatment plants. How- mation of the Respiration Rate and the Oxygen Transfer Rate at
ever, since PSE technologies have borne fruitful results individually, Kunsangen Wastewater Plant in Uppsil&t. Sci. Tech21, 1185
it is time to consider that a plant-wide operating system should be (1994).
developed. Integration of possible PSE techniques can be expectéhen, G. and McAvoy, T. J., “Predictive On-Line Monitoring of Con-
to play a significant role in management of wastewater treatment tinuous ProcessJournal of Process Contrd, 409 (1998).
industry through reducing operation cost and enhancing the effluChiang, L. H., Russel, E. L. and Braatz, R. D., “Fault Diagnosis in Chem-
ent quality. ical Processes using Fisher Discriminant Analysis, Discriminant Par-

In essence, we contend that PSE techniques will be a critical tech- tial Least Squares, and Principal Component Analg@igm. In-
nology for meeting the increasingly stringent effluent requirements  telli. Lab, 50, 243 (2000).
in the wastewater treatment industry over the next decade. Cho, J. H., “Dynamic Modeling of Advanced Wastewater Treatment

Process and Cascade Control of Denitrification Process; Master
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