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Abstract−−−−This paper reviews the research and development of process system engineering (PSE) in the wastewater
treatment process (WWTP). A diverse range of PSE applications have evolved in the wastewater treatment process,
such as modeling, control, estimation, expert system, fault detection and monitoring system. This article describes sev-
eral types of PSE that have proven to be effective in WWTP. The merits and shortcoming of PSE and its detailed ap-
plications are presented. Since its development is the forefront in WWTP, a reasonable review of the research progress
in this field is addressed.
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INTRODUCTION

The effluent requirements in WWTP have become increasingly
stringent and loads on the existing plants have increased. These re-
quire more efficient treatment methodology for wastewater. One
way to improve process efficiency is by building a new and large
treatment plant, which is normally expensive and often impossible
since the required land or foundation is not available. Another way
is to introduce advanced techniques. This may reduce large vol-
umes, improve the effluent water quality, decrease the use of chem-
ical, and save energy and operating cost. Sustainable solutions to
the problems of wastewater treatment will require the development
of an adequate information system for control and supervision of
the process.

The introduction of PSE such as control, estimation, expert sys-
tem, modeling, optimization, monitoring and diagnostic techniques
in WWTP has been slow due to the lack of reliable instrumenta-
tion and the harsh environment in which the computer and auto-
mation devices are housed and operated. However, this situation is
rapidly changing due to advances in sensor technology and the in-
troduction of smart sensors capable of self-cleaning, self-calibration
and self-reconfiguration. Now, there is a trend for an integrated pro-
cess system engineering starting from the sources of wastewater
treatment to the receiving water and sludge disposal.

We first describe and explain the wastewater treatment plant, then
review the applications of modeling, advanced process control, pa-
rameter estimation, expert system, monitoring and diagnosis in
WWTP reported in the literature and used in practice.

DESCRIPTION OF WASTEWATER
TREATMENT PROCESS

Wastewater treatment processes aim at removal of pollutants in

the wastewater by transformation and separation processes. De
ing on the characteristics of the wastewater, the desired effluent 
ity, and other environmental or social factors, this can be achie
in many different ways.. Traditionally, WWTP is divided into me
chanical, physical, chemical and biological treatment, which h
been utilized with many different combinations. Fig. 1 shows t
principal layout of a typical plant with physical, biological and che
ical treatment. Physical treatment involves, for instance, scre
sedimentation, flotation, filters and membrane techniques. Che
cal treatment involves coagulation and flocculation of colloidal a
finely suspended matter as well as precipitation of some disso
matter.

Biological processes are based on biological cultures that co
of bacteria, uni-cellular life forms and even some multi-cellular l
forms. The organic pollutants in the wastewater serve as food
energy sources for the microbiological culture as it grows. The 
crobiological culture can either grow suspended in the water pha
in a fixed position on surfaces such as a bio-film. Suspended gro
is used in so-called activated sludge (AS) reactors, while the fi
growth is used in fixed bed reactors. Biological treatment aims 
certain amount of microbiological culture in the process. In AS re
tors, this is achieved by separating the sludge from the water p
in a separation unit and then returning the sludge into the biol
cal reactor. The excess sludge created in the process is remove
treated in sludge treatment processes, which stabilize and dew
the sludge. Stabilization of sludge makes it biologically safe a
often usable as a fertilizer. The reduction of organic matter in a 
logical treatment plant can be 90% or more.

MODELING

In wastewater treatment, the goals of a treatment plant ar
achieve an average reduction in nutrient concentrations and g
effluent quality in spite of the many disturbances. Modeling a
simulations are key tools in the achievement of these goals.
1. Mechanistic Model
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A mechanistic model is based on the actual or believed physics,
chemistry and microbiology that govern the system. Mechanistic
models of wastewater treatment process aim at describing all bio-
logical reactions and important mass balances of the system in such
a way that the volumes and the flow rates of the system can be de-
signed adequately. In order to faithfully describe a biological WWTP,
a large number of phenomena also have to be taken into consider-
ation, such as characterization of the influent, hydraulics of each
tank, hydrolysis of different substrates of the influent, removal me-
chanisms of organic materials and sludge clarification-thickening
mechanisms.
1-1. Aerator Model

In 1983, the International Association on Water Quality (IAWQ)
formed a task group to develop a practical model for the design and
operation of a biological wastewater treatment facility. The first goal
was to review the existing models and the second was to reach an
agreement concerning the simple mathematical model having the

capability of predicting the performance of single-sludge syste
carrying out carbon oxidation, nitrification and denitrification. As
result, in 1987, the “Activated Sludge Model (ASM) No. 1” wa
presented [Henze et al., 1987a, b]. Though the model has been mo
ified and extended, it is still used widely because of its detailed
scription of biomass growth and removal of organic compounds

This model divided organic and inorganic materials related w
wastewater treatment into 13 components and used their mas
ances. All components in the model are expressed in the matrix f
The meaning of components, stoichiometric parameters, chem
reaction equation etc. are described in detail in the matrix. Com
nents are largely classified into carbonaceous compounds and 
genous compounds, and each is divided again into readily bio
gradable and slowly biodegradable. ASM No. 1 has four impor
reactions: the growth of biomass (implies oxidation of carbon co
pounds and nitrification/denitrification), decay of biomass, and a
monification of organic nitrogen and hydrolysis of particulate o

Fig. 1. A common layout of a wastewater treatment plant.

Fig. 2. Schematic diagram of IAWQ ASM No. 1.
Korean J. Chem. Eng.(Vol. 18, No. 4)
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ganic matter. The main emphasis of the model is the biological reac-
tor, while the settler dynamics is treated comparatively superficially.
Main reactions and inter-relationship of components are illustrated
in Fig. 2.

Recently, several papers reporting research on biological nutri-
ent removal (BNR) process modeling have been published. Gujer
et al. [1995] extended ASM No. 1 for carbon and nitrogen removal
to include the modeling of biological phosphorus removal. The re-
sulting ASM No. 2 included 17 processes and 17 components. Typ-
ical values of its 40 kinetic parameters were listed, although they
have not been verified from experimental data. In a companion pa-
per, procedures of wastewater and biomass characterization for use
with ASM No. 2 have been presented [Henze et al., 1995]. Mino
et al. [1995] modified ASM No. 2 to include the denitrification ca-
pability of phosphorus-accumulating organisms (PAO) by includ-
ing two new processes: anoxic polyphosphate storage and anoxic
growth of PAO. The modified model improved the simulation of
phosphates in the anoxic zone of a BNR plant. ASM No. 2 was also
modified to be consistent with anoxic P-uptake by including the
process of denitrification by PAO using internal polyhydroxyal-
kanoates (PHAs) [Issacs et al., 1995a]. Based on pilot-plant phos-
phate and nitrate data, 46 model parameters and 19 initial con-
centrations were identified after about 2,000 iterations of a random
search algorithm, although most parameters were insensitive to the
data.

Occasionally, the model structure of ASM No. 1, 2 and so on
requires very complex estimation algorithms and it is hard to iden-
tify their numerous parameters. Jeppsson and Olsson [1993] pro-
posed a reduced order model for on-line parameter identification
of WWTP. With a simplified Extended Kalman Filter, 8 basic reac-
tions and 13 components in IAWQ ASM No. 1 were reduced to
4 reactions and 10 components. It has been verified against ASM
No. 1 to investigate whether it incorporates the important dynamic
phenomena in the actual time scales or not. More procedures for
validation and details can be found in the literature [Jeppsson, 1996].
1-2. Secondary Settler Model

In most previous models, the clarifier has been treated as a pure
concentrator, sometimes with time delay. More structured models
that incorporate both the clarification and the thickening phenom-
ena have been presented. However, the dependence of the settling
parameters on the biological conditions of the sludge is not straight-
forward. It is usually assumed that there is no biological activity out-
side the bioreactor. There are, however, indications that some bio-
degradation takes place in the settler. A secondary settler separates
the biomass from the treated wastewater and is a key mechanism
in operation of biological WWTP. The model of the settler can be
divided into four categories: first, the most general, multi-layer mod-
el which considers the settler as a number, n, of horizontal slices
(layers) with the feed into slice m. Each slice has a bulk movement
of liquid and solids either upwards (above the feed) or downwards
(below the feed). Solids settle into the slice from the above and settle
out of the slice to the below. Second is the settling flux model that
uses settling velocity due to gravity force. However, there are some
limitations in that it has a problem of determining constants in the
model and it is applicable to the region of zone settling. Third, the
clarification model, describes the effluent concentration by using a
double-exponential form of the flux model. Fourth, the compart-

ment model is a simpler approach that considers two well-mi
compartments, one above and one below the sludge blanket le

Keinath et al. [1977] obtained a settling velocity model that sa
isfied the solid flux model and the underflow condition of that: t
downward solid flux is the sum of the gravity settling flux and t
solid flux due to the bulk movement of the liquid in a continuo
flow settler. Vitasovic [1986] developed a more rigorous analy
of dynamics of the settler. Vitasovic’s model predicts the solids c
centration profile in the settler by dividing it into 10 layers of co
stant thickness and by performing a solid balance around each 
However, the model is reasonable only in the hindered settling 
dition due to limitation of its settling velocity model. Takács et .
[1991] classified the settling characteristics into four regions and s
gested a double exponential settling velocity model in order to t
all kinds of sedimentation into account. Dupont and Henze [19
developed a model for the secondary clarifier based on the ge
flux theory that can be used in combination with the activated slu
model to form a complete dynamic WWTP. In addition to the fl
model, it includes a simple and purely empirical model for pred
ing the contents of particulate components in the effluent. No
days, a more sophisticated model has been developed. Dieh
Jeppsson [1998] proposed a new one-dimensional model base
the theory of nonlinear partial different equations and construc
an entire WWTP model combining the settler model with AS
No. 1.
2. Data-driven Modeling

To date, the most successful model and the industrial standa
the mechanical model (ASM No. 1, No. 2 and No. 3). Howev
the model structure requires a high dimension and the model 
sesses a large number of kinetic and stoichiometric parameters. 
substrate components and model parameters are difficult to 
mate, partly due to the limitation of available measurement te
niques. And some processes of ASM No. 1, 2 and 3 are theore
in nature and rate equations are difficult. Any particular plant 
its own process environmental conditions and process operat
which make it difficult to develop an accurate general model. I
not easy or desirable to spend considerable time and effort to s
late peculiarities and non-idealities of a process using ASM m
els. As a result, the actual application of such a complex mod
process control and operational strategies is limited.

In a black box modeling strategy, the model development is m
ly driven by measured data from the actual system that has t
modeled. Its main advantage is the fact that, within a reason
amount of time, one can obtain a highly accurate mathematical m
el without detailed knowledge of a system. The applicability of bla
box modeling has greatly increased because of the availabilit
mathematical concepts that can approximate any continuous 
linear function, such as artificial neural networks (ANN), fuzzy a
genetic algorithms (GA).

Capodaglio et al. [1991] used neural networks to model the slud
volume index (SVI) in order to model forecast sludge bulking, and
Tyagi and Du [1992] predicted the effect of heavy metals on 
performance of WWTP. Su and McAvoy [1992] used a parallel tra
ing approach of recurrent neural networks to predict biological
moval efficiency in the wastewater treatment process. Boger [19
reviewed various applications of neural networks in the field of wa
water engineering and discussed both advantages and limita
July, 2001
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of neural approach. Roche et al. [1995] developed a secondary clar-
ifier model that predicted the return sludge concentration based on
the settling hydraulic retention time (HRT) by using a shifted power
model whose coefficients were correlated to the incoming suspended
solid (SS) and the sludge volume index (SVI). Häck and Köhne
[1996] estimated the wastewater process parameters using neural
networks. A simplified hybrid neural net approach was applied to
the modeling and subsequent analysis of a chemical WWTP to re-
duce the occurrences of overflow in the clarifier caused by fila-
mentous bulking and thereby increase wastewater treatment capac-
ity [Miller, 1997]. Hamoda et al. [1999] examined plant dynamics
and modeling techniques with emphasis on the digital computing
technology of ANN. Lee and Park [1999] used the ANN model to
estimate the nutrient dynamics in a sequentially operated batch reac-
tor. Yoo et al. [2000] predicted and classified the state of the sec-
ondary settler using Kalman filtering and neural networks. Gontar-
ski et al. [2000] simulated and predicted an industrial WWTP using
ANN. Recently, neural networks have been successfully applied to
biological WWTP as well as chemical industries summarized com-
prehensively by Himmelblau [2000].

However, a conventional ANN model suffers from the drawback
that it is synthesized on the available data, without detailed knowl-
edge of the underlying principles. When the data are sparse and noisy,
such an empirical black box model may be inadequate and inaccu-
rate for prediction and extrapolation because it possesses no physi-
cal basis. Furthermore, the ability to learn nonparametric approxi-
mation can lead to over-fitting of the noise as well as the underly-
ing function. Therefore, it often becomes necessary to implement
some form of empirical or semiempirical modeling to develop a
system representation suitable for further analyses. The potential
advantages of hybrid modeling approaches relative to a fully em-
pirical approach include a reduced demand on experimental data
and more reliable extrapolation. Consequently, the alternative of
using a hybrid model that integrates both a mechanical model and
ANN appear promising. The serial configurations used neural net-
works to represent poorly defined terms in the first-principle model
(ASM model). For example, material balance on the biological reac-
tor might yield a set of ordinary differential equations including a
number of poorly defined kinetic terms (reaction rates or kinetic
parameters of ASM model). In a serial configuration one or more
black boxes would replace these “unknown” expressions. Thus,
the neural networks provide intermediate values necessary for time
series prediction with the mechanical models represented schemat-
ically in Fig. 3(a). In parallel arrangements, a dynamic model of the
wastewater treatment system exists, and the effort is to construct
an empirical error model compensating for its fallacies or errors.
For prediction of the dynamic behavior the outputs of the simple
dynamic model are biased by the outputs of the error model, as in
Fig. 3(b). Fig. 3 represents a hybrid model configuration incorpo-
rating prior knowledge into a data-based model with serial hybrid
model and parallel hybrid model.

Cote et al. [1995] demonstrated that coupling of mechanic and
ANN models resulted in improved ammonia and suspended solid
prediction. Dissolved oxygen (DO) prediction was biased since er-
roneous measurements due to DO probe limitations were not fol-
lowed closely by the ANN model. Zhao et al. [1997] suggested a
hybrid model consisting of a simplified process model and a neural

network (residual model) for developing a dynamic model of a 
quence batch reactor system. Can et al. [1997] reviewed efficient
model development strategies for bioprocesses based on neura
work in macroscopic balances. They compared the serial and p
lel gray box models that use available knowledge represente
the macroscopic balances and combined naturally with neural
works. Zhao et al. [1999] modeled the nutrient dynamics using s
plified ASM2 and neural network in a sequence batch reactor. 
derson et al. [2000] used sequential and parallel hybrid models ba
on the first-principles knowledge of WWTP, which build as mu
prior knowledge as available and then use empirical compon
such as neural networks. Lee [2000] applied the gray box mo
ing approach to the coke wastewater treatment plant.
3. Simulation Benchmark

Many control strategies have been proposed in the literature
their evaluation and comparison, either in real-life applications
simulations, is difficult. This is partly due to the variability of th
influent, the complexity of the biological and hydrodynamic ph
nomena, the large range of time constants (from a few minute
several days, even weeks), and the lack of standard evaluation 
ria. Different regions have different effluent requirements as w
as different cost levels. To enhance the acceptance of innov
control strategies, the evaluation should be based on a rigorous m
odology including a simulation model, plant layout, controllers, p
formance criteria and test procedures. To this end, there has b
recent effort to develop a standardized simulation protocol - ‘simu-
lation benchmark’ [COST-624, 1997]. The COST 682 Working
Group No. 2 has developed a benchmark for evaluation of con
strategies by simulation. The benchmark is a simulation envir
ment defining a plant layout, a simulation model, influent load
test procedures and evaluation criteria. For each of these items, 
promises were pursued to combine plainness with realism and
cepted standards.

A relatively simple layout was selected for the simulation ben
mark (see Fig. 4). It combines nitrification with predenitrificatio

Fig. 3. Hybrid model configuration incorporating prior knowledge
into a data based model (a) serial hybrid model (b) parallel
hybrid model.
Korean J. Chem. Eng.(Vol. 18, No. 4)



412 C. K. Yoo et al.

y be
 can
eful
 of
ria-
et-
er-
us-
ny
d by
pic
 time
ving
 (a
eral
ro-
rticu-
ar to
and,
re-
e ab-
 di-
pps-

revi-
ut

t fre-
vari-

pth
PI
 et
con-
o

t al.,
De-
ies
me
which is used most commonly for nitrogen removal. The plant, which
was designed to treat an average flow of 20,000 m3 d−1, consists of a
5-compartment bioreactor and a secondary settler. To increase the
acceptability of the results, two internationally accepted process
models were chosen. The biological process is modeled by ASM
No. 1 [Henze et al., 1987]. The behavior of the secondary settler is
modeled by a double exponential settling velocity model, called
Takács’ model, with a 10-layer secondary settling tank [Takács et
al., 1991]. Simulated influent data are available in three two-week
files derived from real operating data. The files were generated to
simulate three weather situations representing dry weather, stormy
weather (dry weather+two storm events), and rainy weather (dry
weather+long rain period). Each of the data contains 14 days of
influent data at 15 minute sampling intervals. The full benchmark
model includes approximately 150 nonlinear differential equations;
the complete model can be found on a website (http://www.ensic.u-
nancy.fr/COSTWWTP).

A basic control strategy is proposed to validate the user’s simu-
lation code. That is, prior to defining and testing a new control strat-
egy users must validate their software by implementing a prede-
fined control strategy. Once the user has validated the simulation
code, any control strategy can be applied and the performance can
be evaluated according to certain criteria [Alex et al., 1999; Pons et
al., 1999; Copp et al., 2000; Yoo, 2000; Cho, 2001].

CONTROL

Wastewater treatment plants are large non-linear systems subject
to perturbations in flow and load, together with uncertainties con-
cerning the composition of the incoming wastewater. Nevertheless,
these plants have to be operated continuously, meeting stricter and
stricter regulations. And effluent standards will become tighter than
now. There are even indications in some countries that tomorrow’s
regulations must be met on the basis of spot checks, not monthly
average. In this situation, advanced control is not the answer, but it
can help.

But the behavior of biological processes occurring in a bioreac-
tor has a complexity unparalleled in the chemical or engineering
industry. Consequently, its prediction from information about the
environmental conditions is extremely difficult. The number of reac-

tions and organism species that are involved in the system ma
very large. An accurate description of such complex systems
therefore result in quite involved models, which may not be us
from a control-engineering viewpoint. We can summarize some
the major problems in general: Lacking process knowledge (va
tions of microorganism characteristics, hydrolysis, flocculation, s
tling characteristics), large variations of influent load and unc
tainties in the influent composition (depending on weather, ind
trial discharges and toxic material, etc.), multivariable with ma
cross-couplings, several different unit processes interconnecte
various internal feedback, macroscopic modeling of microsco
reaction, highly nonlinear processes, non-stationary processes,
varying process parameters (due to the adaptive behavior of li
organisms to various environmental conditions), stiff dynamics
wide range of time constants, varying from a few minute to sev
days or weeks), practically non-controllable and highly variable p
cess inputs, and lack of adequate measuring techniques. In pa
lar, from their input/output behavior, these processes can appe
be highly stable until gross process failure occurs. On the other h
no significant input disturbance excites any significant output 
sponse. Whereas, a very significant response can occur in th
sence of any obvious motivating input disturbances. By these
stinctive features, WWTP has challenged control engineers [Je
son, 1996; Lindberg, 1997; Islam et al., 1999].

Several advanced control strategies had been developed p
ously, e.g. sliding mode control [Derdiyok and Levent, 2000], b
few of them are reported as appropriate. Olsson et al. [1989] listed
the essential variables in the process and their measuremen
quency. Important types of measurements and manipulated 
ables are listed in Table 1.
1. Dissolved Oxygen Control

Dissolved oxygen (DO) control does not require any in-de
knowledge of the microbial dynamics. Therefore, a traditional 
controller or on/off controller has been widely used [Flanagan
al., 1977] and there have been extensive experiences of DO 
trol with feed-back controller [Briggs et al., 1967; Wells, 1979; K
et al., 1982; Stephenson, 1985; Rundqwist, 1986; Holmberg e
1989; Carlsson et al., 1994; Lindberg and Carlsson, 1996a]. 
spite the straightforward task of DO dynamics, several difficult
are involved. First, DO dynamics contain both nonlinear and ti

Fig. 4. A layout of simulation benchmark.
July, 2001
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varying properties naturally. From long time constants and random
influent disturbances, any tuning of a conventional controller be-
comes tedious. Therefore, a self-tuning controller was implemented
in a full scale plant to examine the potential of adaptive control in
WWTP, where DO concentration is kept very close to its set-point
under varying operating conditions [Diaz et al., 1995]. Olsson [1992]
gave an example of cascade control concept for DO control. Lee et
al. [1998a] suggested a discrete type autotuned PI controller using
an auto-regressive exogenous model to describe DO dynamics and
Yoo et al. [2001] applied a closed-loop autotuning algorithm for
the PID controller tuning of DO control in a full-scale coke waste-
water treatment plant. Recently, Gomes and Menawat [2000] de-
veloped a Model-Based Geometric Control Algorithm (MGA) for
controlling DO in fermentation processes.
2. Sludge Inventory Control

There are basically two controlled variables for the sludge in-
ventory in the biological WWTP: the waste activated sludge (WAS)
flow rate and returned activated sludge (RAS) flow rate. WAS flow
rate control controls the total sludge mass in the system and the sludge
retention time (SRT) can be kept at a desired level. The traditional
sludge age formula is a steady state calculation and does not take
short term fluctuations into consideration. Therefore, it should be
emphasized that the SRT calculation has to be based on the sludge
concentration and flow rates averaged over several days.

The sludge distribution within the system is controlled by the
step feed flow distribution or the RAS flow rate. The former can
redistribute the sludge dynamically within the aeration basin while
the latter can shuffle sludge between the settler and the aeration basin.
Many contradictory control schemes are made for return sludge flow.
The recycle flow rate can only redistribute sludge between the set-
tler and the aeration basin, while the total sludge mass of the sys-
tem remains the same. Two most common practical control princi-
ples are either constant RAS flow rate or influent flow ratio con-
trol. The influent flow ratio control appears to have several difficul-
ties and is seldom used consistently. The constant RAS flow strat-
egy is often found to be better empirically.

Cakici and Bayramoglu [1995] introduced a control method of
sludge age and mixed liquor suspended solids (MLSS) concentra-
tion by adjusting the sludge recycle rate and wastage flow rate, re-

spectively. For MLSS control, a conventional PID controller w
used in RAS flow rate manipulation, and the sludge in the seco
ary clarifier was wasted using a microbial mass balance formul
the the sludge age. Nejjari et al. [1999] proposed a non-linear
aptive feedback-linearizing controller for a biological WWTP bas
on the non-linear model of the process and combined with a j
observer and estimator which plays a role of the software se
for on-line estimation of biological states and parameter variab
of interest.
3. Respirometry-based Control

Respirometry is the measurement and interpretation of the
spiration rate of activated sludge. The respiration rate is the am
of oxygen consumed by the microorganisms measured per unit
ume and unit time. It reflects two of the most important biochem
cal processes in WWTP, biomass growth and substrate consu
tion. Respirometry has been the subject of many studies and a 
ber of measurement techniques and instruments have been d
oped.

Substrate utilization in an aerobic environment requires oxyg
A portion of the consumed substrate is oxidized to provide the
ergy required to reorganize, and the remainder of the substrate
ecules is converted to new bacterial cell mass [Spanjers et al., 1
The rate of oxygen consumption can be measured relatively e
by measuring physical variables like DO or carbonaceous mat
by heterotrophic bacteria and the oxidation of ammonia nitroge
nitrate nitrogen by autotrophic bacteria. Nitrification often accou
for approximately 40% of the total oxygen demand. The substr
have various biodegradation kinetics depending on their inhe
characteristics and the responsible sludge condition, e.g., min
ization of carbonaceous compounds differs from that of nitrogen
substrates, and in the carbonaceous matters the same degra
pattern is not shown according to their molecular structures. Ca
the bisubstrates hypothesis, it was introduced first in the UCT (U
versity of Cape Town) model [Dold et al., 1991]. According to t
hypothesis, BOD in the influent waste stream can be regarde
two fractions: one is readily biodegradable substrate (RBS), wh
has a simple molecular structure and is able to pass through th
wall immediately for microbial metabolism, and the other is slow
biodegradable substrate (SBS), which was assimilated in a form

Table 1. Variables for measurement and manipulation

Measurement variables Manipulated variables

Flow rates in different plant units
BOD, COD, TOC
Phosphorus fractions
Nitrogen in ammonia, nitrite and nitrate
pH
Suspended solids in different units
Alkalinity
Temperature
Dissolved oxygen in different locations
Air flow rates and air pressure
Sludge levels
Sludge flow rates
Gas flow rates and temperatures
Respiration rate

Air flow rate and its spatial distribution
Return sludge flow rate
Waste sludge flow rate
Influent flow rate
Additional carbon source flow rate
Chemical dosage pumping rate
Feeding points for step feed control
Korean J. Chem. Eng.(Vol. 18, No. 4)
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RBS through extracellular enzymatic reaction, called hydrolysis
[Ekama and Marais, 1979].

Since the respiration rate is directly linked to the growth of bacte-
ria and consumed substrates, it has been used to analyze microbial
conditions of WWTP in a form of respirogram that is a graphical
description of respiration rate as a function of time [Kappeler and
Gujer, 1992; Spanjers and Keesman, 1994; Spanjers and Vanrol-
leghem, 1995; Dochain et al., 1998; Vanrolleghem et al., 1995, 1998].

Furthermore, the respiration rate can be decomposed into exog-
enous and endogenous parts, in which this comes from an adenos-
ine tri-phosphate (ATP) oxidation in microorganisms and that from
the external substrate oxidation. The change of the rate relies main-
ly on its exogenous part since the endogenous respiration rate sus-
tains a constant level in a short time experiment [Kong et al., 1996].
Hence, the analysis of exogenous respiration rate has been used for
the identification of the characteristics of substrates and microor-
ganisms [Brower et al., 1998; Spanjers et al., 1999].
4. Advanced Nutrient Removal Control

Nitrogen and phosphorus are the principal nutrients of concern
in treated wastewater discharges. Discharges containing nitrogen
and phosphorus may accelerate the eutrophication of lakes and re-
servoirs and may stimulate the growth of algae and rooted aquatic
plants in shallow streams. Significant concentrations of nitrogen in
the treated effluents may also have other adverse effects including
DO depletion in receiving waters, exhibiting toxicity toward aquatic
life, affecting chlorine disinfection efficiency, presenting a public
health hazard, and affecting the suitability of wastewater for reuse.
Therefore, the control of nitrogen and phosphorus is becoming in-
creasingly important in water quality management and in the design
of WWTP [Lee et al., 1998b; Yoo, 2000; Cho, 2001].
4-1. Model-based Control

The development of advanced nutrient analyzers has made it pos-
sible to introduce better control. In biological nitrogen and phos-
phorus removal, many factors influence the reaction rates, such as
the amount of microorganisms, temperature, substrate composition
and concentration. There are only a few ways to influence the ni-
trification/denitrification rates in practice: One is to adjust the DO
set point for ammonia removal in the aeration zone; another is to
control the dosage of external carbon for nitrate removal. Phospho-
rus can be removed by controlling the dosage of chemicals for phos-
phorus precipitation.

Many papers have dealt with the problem of removal of nitro-
gen compound. Henze [1991] discussed capabilities of biological
nitrogen removal process for wastewater treatment and suggested
that the most economic configuration for nitrogen removal should
be the predenitrification system. Recent approaches to the problem of
nitrate removal by external carbon source can be found. Lindberg
and Carlsson [1996b] proposed an adaptive control strategy using
auto-regressive moving average with exogenous input (ARMAX)
model with recursive least square method for parameter estimation.
Yuan et al. [1997] suggested various control strategies using pro-
portional feedback controller with some assumption and modifica-
tion of ASM No. 1. To design the controller and determine the op-
timal set point, they added the dynamics of an external carbon source
to the denitrification model in ASM No. 1. Barros and Carlsson
[1998] developed an iterative pole placement design method of a
nitrate controller. The closed-loop model of the process could be

obtained from input/output data during iterative design procedu
4-2. Multivariable Control

Above previous researches focused on single input single ou
(SISO) process control. Some examples of multivariable contro
the wastewater treatment process can be found in Bastin and D
ain [1990], Dochain and Perrier [1993], and so on. Lindberg [19
1998] suggested multivariable modeling and control strategy of 
trient removal in WWTP using numerical algorithms for subspa
state space system identification (N4SID) that can identify mu
variable processes [Van Overschee and De Moor, 1996]. From
multi-input multi-output (MIMO) process model, Lindberg [1997
developed a linear quadratic (LQ) controller with integration of fe
forward and feedback controller. Steffens and Lant [1999] evalua
several multivariable model-based control algorithms, such as li
quadratic controller (LQC), dynamic matrix controller (DMC) an
nonlinear predictive controller (NPC) for controlling nitrogen r
moval in WWTP and compared that with a conventional PI co
troller of the SISO system. They concluded that model-based c
trol algorithms could provide tight control of nitrogen compoun
removal and offer significant benefits in terms of deferred cap
expenditure.

On the other hand, Isaacs and Henze [1995] and Isaacs 
[1995] dealt with the problem of nutrient removal control in an 
ternating nitrification/denitrification process. Lukasse et al. [199
developed an aeration strategy for optimal nitrogen removal in
ternating nitrification/denitrification process. First, optimal contr
theory was applied to ASM No. 1, and then, from the result of 
first simulation, a simple discrete model which could replace co
plex ASM No. 1 was created to design a receding horizon opti
controller. It revealed that it is impossible to control both ammo
and nitrate to their set points as their consumption/production is c
pletely coupled.

PARAMETER AND STATE ESTIMATION

As previously described, WWTP is a complex dynamic proc
influenced by many uncertain factors, such as loading and biom
composition. Successful process control requires good knowle
of process variables such as the most influential kinetic and sto
ometric parameters and resulting biomass composition. Model
rameters and state estimation are based on available noisy pr
measurements. The parameters of biological models usually 
with the environmental conditions and need to be updated freque
through on-line and off-line algorithms. Tracking of parameters v
ues is also useful for detection of toxic input and on-line sensor 
ures and sudden parameter changes. The need of state estim
arises in connection to state-feedback control schemes. Proces
iables that are not monitored due to unavailable or expensive 
sors can be estimated or reconstructed numerically. Even in the
where process measurements are available, estimation algor
are still necessary to optimally weigh the uncertainty of the proc
model with measurement accuracy and generate a more acc
state variable estimate [Bastin and Dochain, 1990; Kabouris, 19

It is well known that particular problems of model identificatio
in WWTP involve the highly nonlinear nature of the dynamics, t
small sensitivity of the state variables and the inability of meas
ing individual process variables reliably.
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Goto and Andrew [1985] presented on-line estimation of oxy-
gen uptake rate from DO mass balance in a complete mixed aera-
tion basin, neglecting DO time derivative and measuring air and
water flowrates and DO concentration. Howell and Sodipo [1985]
estimated on-line respiration rate and aeration efficiency by a factor-
ized Kalman filter algorithm. Olsson and Chapman [1985] used the
Maximum Likelihood method to estimate the parameters of a time
invariant linear stochastic difference equation describing clarifica-
tion of effluent solid dynamics. In the case of time-varying param-
eters, they used the Extended Least Square method in modeling of
the effluent solids response of a pilot scale settler. Holmberg and
Olsson [1989] simultaneously estimated OUR and aeration coeffi-
ciencies using Kalman filter method. Marsili-Libelli [1990] designed
and evaluated a real-time estimator both for oxygen uptake rate
and for oxygen transfer rate coefficients. Ayesa et al. [1991] used
an Extended Kalman filter (EKF) algorithm to simultaneously esti-
mate the states and parameters of ASM No. 1 for nitrifying WWTP,
including a selector reactor, and Larrea et al. [1992] attempted the
simultaneous estimation of nine model parameters. Weijer et al.
[1996] reviewed the recent literature on calibration strategies and
methods for assessing parameter identifiability of ASM 1 and pre-
sented the identifiability results for full-scale plants by a combined
analysis of the parameter sensitivity and the Fisher information matrix.

Recently, Kabouris and Georgakakos [1996a, b, c] reviewed the
parameter and state estimation of WWTP about model develop-
ment, application and on-line estimation. Tenno and Uronen [1995,
1996] introduced a stochastic model based on an ASM model and
the outlet gas formation description. Suescun et al. [1998] pro-
posed a simultaneous estimation of the volumetric mass transfer
coefficient and oxygen uptake rate and validated the experimental
results in a continuous pilot-scale plant. Jose et al. [1999] proposed
a neural network-based inferential sensor for phenol monitoring
using on-line biomass concentration by spectrophotometry, where
the network was built with wavelets as a basis function and the
adaptive algorithm for the weights was based on a Lyapunov stabil-
ity analysis. Predicted output of the network showed a good agree-
ment with experimental data over fairly broad ranges of inlet con-
centration and dilution rate step changes. Assis and Filho [2000] re-
viewed the soft sensor technologies for on-line bioreactor state esti-
mation, such as adaptive observer, filtering techniques and artificial
neural networks and predicted trends on on-line software based state
estimation. Yoo and Lee [2001] suggested and experimented with
a supervisory control based on simultaneous process identification
and in-situ estimation of respiration rate in a full-scale wastewater
treatment plant.

EXPERT SYSTEM

An expert system provides expert solutions to problems in a spe-
cific domain, but it is limited by the information contained in its
database. Hence, it is up to the knowledge engineer and the expert
to work together to gather the correct information and inference
rules contained in the knowledge base.

A typical expert system consists of two separate entities: a knowl-
edge base and a control system. The knowledge base contains (1)
a listing of rules that solve the problems of the given domain, (2)
specific data, or the facts, conclusions, and other relevant informa-

tion, and (3) a knowledge base editor that accesses the explan
subsystem and helps the programmer locate bugs in the pro
performance. It may also assist in adding new knowledge, m
taining correct rule syntax, and checking consistency on an upd
knowledge base. The control system generally has (1) a user 
face which makes access to the expert system more comfor
for humans and hides much of the system complexity, (2) an
planation subsystem that allows the program to explain its rea
ing to the user, such as justifications for the systems conclusi
and why the system needs a particular piece of data, and (3) a
ference engine, or the interpreter of the knowledge base. It ap
the knowledge to the solution of the actual problems.

Stephan and Anthony [1991] designed an expert system for w
treatment plants and applied it to a plant in New York. Watan
et al. [1993] proposed intelligent operation support system (IOS
for bulking prediction and control for WWTP with on-line proces
data and image signals on microbes; the data and signals come
a submerged high resolution microscope. In their research, the 
of the expert system were produced from historical data by u
artificial neural networks. Wang [1996] used the decision-supp
ing system (DSS) in city water supply. DSS was designed to 
erate with an SCADA system connected to a telephone line. He 
gested a triple hierarchy to infer the result of the system. The 
hierarchy is used for data processing, the second is for data a
sis, and the final is for reason driving with the library of know
edge base. Medsker [1996] presented a hybrid intelligent sys
with microcomputer and compared it to a neural network, exp
system, fuzzy logic, genetic algorithms and case-based reaso
He forecasted that the microcomputer-based hybrid intelligent sys
became more effective and economical. Baeza et al. [1999] sug-
gested a real time expert system (RTES) for the supervision and
trol of WWTP for removal both organic matter and nutrient. H
used PLC for process control and G2TM for RTES development.
RTES was designed to actuate as the master in a supervisor
point control scheme and it is based on a distributed architec
The method was implemented in WWTP for 600 days, and ex
lent performance was reported to manage the process in sp
strong disturbances.

MONITORING AND DIAGNOSIS

Process monitoring of operating performance is extremely 
portant for plant safety and quality maintenance in a process. 
largely divided into two main approaches such as model-based
data-based. The former makes mathematical models to identify
static and dynamic relationships of processes and so it is usefu
process is rather simple, but not useful if processes have severe
linearity, high dimensionality and complexity. On the contrary, t
latter makes statistical guideline based on historical data in nor
operation conditions, so it is available without process characte
tics if there are enough available data.

The monitoring problem largely consists of three sequential pa
data rectification, detection, and diagnosis. Fig. 5 illustrates the m
itoring scheme for the plant. Data rectification means the scree
of available data to remove redundant information. Olsson and
well [1999] defined the detection as a combination of process 
servations and measurements, data analysis and interpretation 
Korean J. Chem. Eng.(Vol. 18, No. 4)
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tect abnormal features or effects and the isolation of faults. Diagno-
sis involves the analysis of effects to identify and rank likely causes.
The advice involves the problem of synthesizing strategies to elimi-
nate the causes and return the process to normal operating conditions.

Only a few researchers have been interested in process monitoring
in WWTP. Monitoring in wastewater treatment has mostly focused
on a few key effluent quantities upon which regulations are enforced.
However, since environmental restrictions are becoming more rigid
nowadays, an increased effort for higher effluent quality is required
in the advanced monitoring of plant performance.

Monitoring of WWTP is very important because recovery from
failures is time-consuming and expensive. That is, most of the
changes in biological treatment process are very sluggish when the
process is recovered back from a ‘bad’ state to a ‘normal’ state or
back from a ‘bad’ state to a ‘good’ state. Therefore, early fault de-
tection and isolation in the biological process is very important as
corrective action well before a dangerous situation happens. At the
same time discrimination between serious and minor abnormality
is of primary concern. To accomplish these classifications, a reli-
able detection procedure is needed. However, few monitoring tech-
niques are available to utilize the large on-line data sets despite the
increasing popularity and decreasing price of on-line measurement
systems in the field of the wastewater treatment system.

A wastewater treatment plant is a very complex system includ-
ing a great deal of equipment and complex processes. The operators
are under increasing regulatory pressure to reduce pollutant levels
in their effluent. One response to this has been the installation of
extensive on-line sampling capable of measuring flow rates, concen-
trations and other variables frequently. Data acquisition systems may
collect a large amount of data, normally tens of process and control
variables, but there are relatively few significant events. Therefore,
the data from all the measurements should be mapped into a sig-
nificant description of the current process. The obtained data will
give much process information, if only the important and relevant
information can be extracted and interpreted. Not only are there many
variables to be considered, but also they are often highly cross-cor-
related (i.e., the measured variables are not independent of one an-
other) and auto-correlated. So, redundancy that variables carry the

same information at least to some extent is observed. It is desi
to develop schemes for providing reliable on-line information 
the status of the plant so that early corrective actions may be ta

Traditionally, statistical process control (SPC) has been use
monitor a few quality-related key process signals to detect tre
outliers and other anomalies. The term “SPC” is often confused 
process control. SPC, however, is more related to the process m
toring, and therefore the term “statistical process monitoring” (SP
is often used instead of SPC. Shewhart, cumulative sum (CUSU
and exponentially weighted moving average (EWMA) are tra
tional univariate SPC charts. The use of univariate control ch
implicitly assumes that the variables are independent and id
cally distributed (iid). For this reason, these procedures are of 
ited use with high-dimensional multivariate data that are stron
cross-correlated and auto-correlated, dynamic, multiple time-sc
non-stationary and noisy. That is, as the number of variables
the extent of collinearity increase, the interpretation of these univ
ate control charts can lead to false conclusions [Rosen, 1998; 
pola, 1999].

Multivariate statistical process control (MSPC) is a possible so
tion to dimensionality and collinearity problems. Contrary to univa
ate techniques, multivariate techniques are more successful solu
to monitor the process data having severe collinearity and no
They contain such methods as principal components analysis (P
or partial least squares (PLS) combined with standard sorts of 
trol charts. These methods are the basis of the field of chemomet-
rics, which has traditionally been concerned with multivariate a
alyses in chemistry, particularly those of spectroscopy. These h
also been used widely in industrial process monitoring over the 
several decades. PCA and PLS aim to represent a multivariat
of measurements with a smaller number of variables. These tr
formed variables are linear combinations of the original ones. Th
methods have been used and extended in various applications [G
and Kowalski, 1986; Johnson and Wichern, 1992; MacGrego
al., 1995; Wise and Gallagher, 1996; Chen and McAvoy, 1998; 
et al., 2000].

With the use of multivariate data analytical methods, the ext
sion from univariate to multivariate control charts is very logic
Because the multivariate scores are orthogonal mathematically
they give the optimal summary of measurements and observat
they are ideally suited for displaying in control charts [Wikström
al., 1998]. The scores are also more robust to noise than ori
variables since they are linearly weighted averages. This allow
more efficient pattern tracking of the process over time for det
ing abnormalities and for defining the time when they occur. M
tivariate control charts have been explained in detail by MacG
gor and Kourti [1994].

The multivariate Shewhart charts are constructed simply by p
ting the appropriate quantity vs. time. Those of scores show h
the process evolves over time in the respective principal compo
Meanwhile, a Shewart chart of Hotelling’s T2 indicates a summary
of all scores. The multivariate CUSUM charts are only availa
for scores. In these charts cumulative sums of deviations from
target values are calculated and visualized, then all observation
used to detect a special event, rather than only the last observ
The EWMA charts are used to model process dynamics with m
ory and drift. They show robust and filtered values through weig

Fig. 5. Monitoring scheme for the plant.
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ing more heavily to recent than old observations. These three kinds
of control charts only show if the systematic part of an observation
conforms the model. However, if a new type of event occurs and
gives data that are not represented in the training set, the model will
not fit these new data well and hence leave much of this observa-
tion unmodelled. Therefore, we often use simultaneous scores mon-
itoring and residual tracking (SMART) charts to identify how the
model fits current data well. They represent time series patterns of
model residuals.

Besides the dimensionality and collinearity problems, process data
often consist of many underlying phenomena that create their own
variation and scale. The measured signal can be often very messy
because some phenomena mask others. So, it is hard to observe the
long-term drift of signal such as seasonal fluctuation having low
frequency. In most situations, the objective is to identify transient
phenomena such as faults and disturbances. However, there also
exist applications where the detection of long-term disturbances
such as drifting and seasonal fluctuations is important. A filtering
approach can give a possible solution for this problem. The origi-
nal data are compressed and analyzed at different scales by using
multiresolution analysis [Teppola, 1999]. The corresponding scale
representation shows different phenomena occurring at different
rates. Mutiresolution analysis enables one not only to show the un-
derlying phenomena but also to filter out unwanted and disturbing
phenomena. In addition, proper clustering methods help one to dis-
criminate different scale events.

Applications of MSPC in the biological process have recently
drawn great interest by a few researchers. Krofta et al. [1995] ap-
plied the analysis techniques for dissolved air flotation. Rosen [1998]
adapted multivariate statistics-based methods to the wastewater treat-
ment monitoring system using simulated and real process data. Van
Dongen and Geuens [1998] illustrated that multivariate time series
analysis can be a valid alternative of the dynamic modeling in
WWTP. Teppola [1999] used a combined approach of multivariate
techniques, fuzzy and possibilistic clustering, and multiresolution
analysis for wastewater data monitoring. Tomita et al. [2000] ap-
plied multivariate analysis in the simulated WWTP and detected
three groups of variables characterizing the system.

However, the multivariate statistical analysis method has funda-
mental weak points in the nutrient removal process. The nutrient
removal process is non-stationary, which means that the process
itself changes gradually over time. Wastewater treatment plants are
hardly ever “normally” operated for long periods, and what “nor-
mality” means also changes because of the nonstationarity. So, con-
ventional static PCA is not suited for non-stationary process moni-
toring as it assumes data are i.i.d and they are obtained from a nor-
mal operating condition for a particular process. This is a problem
for developing statistical control charts as they should be developed
from a set of “normal” operating data.

Issues that need to be addressed, particularly in relation to WWTP,
are the selection and transformation of data, model structure and
sampling intervals. First, to implement dynamic and adaptive data
based models, the methods of selecting and transforming data are
required [Ku et al., 1995]. Ideally, these should demand a mini-
mum of process knowledge. Second, adaptive algorithms for MSPC
show potential for non-stationary processes. While adaptive algo-
rithms have been developed [Dayal and MacGregor, 1997; Qin,

1998; Li et al., 2000], there has been little research on the prob
of application to industrial processes. Third, the choice of samp
interval strongly affects the nature of the data and hence the m
There is a very wide range of dynamics in WWTP. That is, wh
some measurements are taken many times per minute, som
taken only every fifteen minutes. Quality measurements may
taken once a day or even less frequently (multirate sampling
may be possible to block variables sampled at the same frequ
and develop a multi-block model. Another possibility is to use
multiscale model through the use of wavelet transforms [Bak
1998]. In addition, extensions of MSPC to monitor more comp
or batch processes are made with the multiblock PCA, PLS or m
tiway PCA, PLS, respectively [MacGregor et al., 1994; Nomik
and MacGregor, 1994]. These monitoring methods are base
the traditional statistical analytical approach using Hotelling’s T2 or
sum of squared prediction error (SPE or Q statistics). T2 and Q sta-
tistics methods provide reliable and correct tools for detecting 
multivariable process has gone out-of-control. However, these m
ods do not always work well in WWTP, because they cannot 
tect any changes in the operating condition if T2 and Q are inside
the confidence limits. Therefore, a new monitoring method may
required that can effectively treat the nonstationarity of the chara
istics of the biological treatment process and diagnose source ca

Meanwhile, it is an important issue to diagnose the source ca
for abnormal behavior. Chemometric methods such as PCA and
have been utilized for merging detection with diagnosis of sou
causes of abnormal situations [Ku et al., 1995; Raich and Çinar, 1
Chiang et al., 2000; Russel et al., 2000]. Ku et al. [1995] propo
a diagnostic method in which the out-of-control observation w
compared to PCA models for known disturbances. Using refi
ments of statistical disturbances, discriminant analysis then se
the most likely causes of the current out-of-control condition. S
cessful diagnosis depends on the discrimination ability of these
turbance models. Raich and Çinar [1995] suggested quantitative 
that evaluated overlap and similarity between the PCA model 
discriminant analysis in order to diagnose the source causes fo
normal behavior. Chiang et al. [2000] compared the fault diagn
methods using discriminant partial least squares (DPLS), Fis
discriminant analysis (FDA) and PCA. They showed that FDA a
DPLS are more proficient than PCA for diagnosing faults. Rus
et al. [2000] proposed a fault detection method using canonical 
iate analysis and dynamic component analysis. Recently, Kan
al. [2000a, b] proposed a new statistical process-monitoring a
rithm. It is based on the idea that a change of operating cond
can be detected by monitoring the distribution of time-series p
cess data because the distribution reflects the corresponding op
ing condition. However, they did not consider an individual co
tribution of each transformed constituent in the calculation of d
similarity index through normalization. Choi et al. [2001] propos
a modified dissimilarity measure algorithm to consider the eff
of individual transformed variables. This method is used for det
ing the existence of disturbances as well as for isolation of kind
disturbances through eigenvalue monitoring.

CONCLUSION

Process system engineering techniques such as modeling,
Korean J. Chem. Eng.(Vol. 18, No. 4)
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trol, estimation, expert system, and monitoring and diagnosis sys-
tem in the wastewater treatment plant are significantly under de-
velopment and have given very real economic benefits to be gained.
In this paper, we have reviewed many papers about PSE tech-
niques in the field of wastewater treatment plants. Among them,
however, only a few techniques have been reported to work suc-
cessfully in real wastewater treatment plants, while manifold mon-
itoring and control strategies have been developed and adopted to
the mechanical, chemical and electronic industries. One of the inher-
ent differences in the wastewater treatment plant and the other phy-
siochemical industries is that the microorganisms, which played an
important role in wastewater treatment process, are living creatures
with various vital forces according to the surrounding conditions.
Therefore, the cell viability should be regarded as an essential factor
for the wastewater treatment process operation because it is strongly
correlated with the process performance. One of the possible can-
didate to check the activity of microorganisms is the respirometer
as we discussed in Respirometry-based control. In addition, the re-
spiration rate has been used for bio-model calibration, toxicant inhi-
bition test, substrate state observation and biokinetic analysis be-
tween biodegradable pollutants and corresponding microbes.

Another further research topic on PSE issues is the design of an
integrating operation system on wastewater treatment plants. How-
ever, since PSE technologies have borne fruitful results individually,
it is time to consider that a plant-wide operating system should be
developed. Integration of possible PSE techniques can be expected
to play a significant role in management of wastewater treatment
industry through reducing operation cost and enhancing the efflu-
ent quality.

In essence, we contend that PSE techniques will be a critical tech-
nology for meeting the increasingly stringent effluent requirements
in the wastewater treatment industry over the next decade.
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