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ABSTRACT

Fast progress on VLSI technology makes clock skew more sus-
ceptible to process variations. We propose DME/BST based algo-
rithms for clock tree routing to improve skew tolerance to process

variations. The worst case skew due to process variations is esti-

mated and employed to guide the decision making during the rout-
ing. Our method can be applied to general non-zero skew require-
ments. Minimizing total wirelength is considered as a secondary
objective at the same time. Experimental results on benchmark cir-
cuits demonstrate great improvement on process variation toleranc
through our algorithms.
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Algorithms, Performance
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1. INTRODUCTION

In synchronous VLSI designs, the pace of data transfer is gener-
ally coordinated by clock signals, thus clock network quality plays
a key role in determining VLSI system performance. Conventional

clock designs have placed emphasis on seeking zero clock skew,

since the clock skew sets a lower bound on clock cycle time. Previ-
ous work has focused on zero-skew clock design under either path
length or Elmore delay model [8, 9, 16]. Further, since the clock
network is a major source of power consumption, reducing clock
network wirelength to lower power consumption is always desired.
The DME(Deferred-Merge Embedding) algorithm is proposed in
[1, 2, 7] to achieve zero-skew with a minimal wirelength. In prac-
tice, however, circuits are able to operate correctly within some
non-zero skew bound [4]. In [4], a bounded skew clock tree(BST)
algorithm extends DME to further reduce clock tree wirelength.

ellinote@us.ibm.com

Haihua Su
IBM Austin Research Lab
11400 Burnet Road
Austin, TX 78758

haihua@us.ibm.com

Gary Ellis
IBM Microelectronics
11400 Burnet Road

Austin, TX 78758

In reality, designed skews may not be guaranteed after chip man-
ufacturing because the fabricated wire width may be different from
expected values due to process variations such as etching errors,
mask misalignment and spot defects. Process variations are mit-
igated in clock design through buffer insertion/sizing[3, 18] and
non-tree topology[10]. Other types of topologies such as mesh or
combined mesh-tree [6, 14, 15] have also been proposed to pursue
process variation tolerant zero-skew. Even though non-tree struc-
tures are generally effective in overcoming process variations, it

é:ioes not permit the widely applied clock gating technique and ex-

cessive usage of non-tree structures may aggravate the already se-
vere power consumption problem for the clock network.

In modern VLSI circuit designs, clock skew is more and more
susceptible to process variations because of the increasingly high
clock frequency, large chip area and shrinking feature size. This
requires that skew tolerance to process variation needs to be han-
dled in a meticulous manner. Thus, a process variation aware clock
treerouting is needed in complement with non-tree structure, buffer
insertion/sizing and wire sizing to achieve a greater process varia-
tion tolerance. Our experimental results show that a careful clock
tree design itself will make a great difference on skew tolerance
to process variations. In [17], an abstract tree topology for im-
proving process variation tolerance is suggested based on the ob-
servation that skew between two clock sinks will not be affected by
the process variations along the shared portion of their source-sink
paths. Hence, skew tolerance to process variation may be improved
through letting a pair of clock sinks with a smaller skew permissi-
ble range share a greater portion of their source-sink paths in the
abstract topology. However, this work uses a crude delay model
neglecting sink location/capacitance, and more importantly it is in-

complete in that it does not show how to implement the abstract
topology through physical routing.

In this work, we improve upon these deficiencies by focusing on
the construction of the clocleee to improve skew tolerance with
respect to process variations. The process variation tolerant tree
can be adopted as either a complete clock network or a local clock
system driven by a buffer or a mesh of a global clock network. The
primary objective is to minimize the maximum skew violation due
to process variations and the routing wirelength is minimized as
secondary objective. We propose DME[1, 2, 7] and BST [4] based
algorithms to solve these problems. The major distinction from
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The remainder of this paper is organized as follows. Section 2 certain skew objectives. Every candidate location along a single
presents problem formulation. The algorithm of minimizing skew merging segment should yield the same skew behavior and the tree
violation is described in Section 3. Then the experimental results obtained is calledree of merging segment&Examples of abstract
are shown in Section 4. Our algorithm is extended to minimize topology and tree of merging segments are illustrated in Figure 1.
wirelength subject to skew bounds in Section 5. Finally, Section In the top-down embedding process, one candidate location is se-
6 summarizes the primary results of this paper and outlines furtherlected for each merging segment such that the total wirelength is

research.

2. PROBLEM FORMULATION

LetS = {s1,82,...,5,} C R? denote a set of clock sinks in
the Manhattan plane arg be a clock source if given. An abstract
topology7:(S) is defined as a rooted binary tree withitdeaves
besi, sa,. .., sn. Aphysical embedding df;(S) is a rooted rec-
tilinear Steiner tred" (S) such that each internal nodg € T;(.S)
is mapped to a locatiof(v; ) in the Manhattan plane. In a binary
rooted tree, each nodeis connected to its unique parent by an
edgee,. Suppose the cost @f, is its wirelength| e, |, then the
overall cost off (5) is the total wirelength of the edgesTn(S).

For the wire width variations, both global spatial variations and
local random variations are appended to the nominal wire width
through the following expression[15]:

w=wo+ Ax+0y+4 1)

where coefficienf indicates the spatial variation along theoor-
dinates and coefficietmodels the variation along thedirection.
The fourth termy is a random variable following a normal proba-
bility distribution with mean valu® and standard deviation. As
an approximation, we assume that the wire widtlof is bounded
by < W < w < W, whereW; = wo + Az + 0y — 30 and
Wy = wo + Az + 0y + 30.

For each sinls;, lett(so, s;) denote the delay time from roe§
to s;. Then for any two sinks; ands;, the clock skew e (i, ;)
between them fst(so, s;) — t(s0,s;). Each skeWtsew (s:, 55)
is allowed to change within a permissible raff@é’R;;, U PR; ;|
without affecting circuit performance[12, 17]. Ttekew viola-
tion is defined asSVi; = max(LPR;j; — tskew(1]), tskew(1j) —
UPR;;). In order to improve tolerance to process variation, we
will first solve the minimal skew violation under process variation
problem as follows.

Minimizing Skew Violation (MinSV) Problem: Given a set
S = {s1,82,...,s,} C R? of clock sinks, skew permissible
ranges for all pairs of clock sinks, find a clock routing trég.S)
such that the maximum skew violation among all pairs of sinks is
minimized when wire width varies betweBi and W,,.

Note that the source locatiafy is not included in our formu-
lation since our proposed methods can handle any prescsiped
transparently. Even though we consider only wire width variation
here, our method can be easily extended to account for wire thick-
ness and spacing variations. The interconnect delay is evaluate
through Elmore delay model.

3. MINIMAL SKEW VIOLATION CLOCK
TREE

Given an abstract topology, the procedure to build the minimal
skew violation clock tree is divided into two phases as [2, 4, 7,
9]: bottom-up tree of merging segments construction and top-down

routing tree embedding. During the bottom-up phase, a set of can-

didate locations, which is called merging segment, is found for each
internal node of the given abstract topology in order to achieve

minimized while the skew performance obtained in the bottom-up
phase is retained.

=)

M
% ',ssrb
/ = ',Ngo
4
n A N
\\
S1 9 S3 % S1 Mny

(@ (b)
Figure 1: (a) abstract topology tree, (b) tree of merging seg-
mentsfor the abstract topology of (a).

3.1 Notations and Definitions

DEFINITION 1. Segment Distance: For any two merging
segmentsM (n;) and M(n;), the segment distancdetween
M(n;) and M(n;) is defined asD;; = d(M(n;),M(n;)) =
{min dr(va,vs) | va € M(ni),vs € M(ny;)}, where
dr(va,vs) = |Ta — zs| + |ya — ysl is the rectilinear distance
betweeny, anduvy.

DEFINITION 2. Nearest Pair: For any two merging seg-
ments M(n;1) and M(nz2), a pair of pointsv1 € M(n1)
and v2 € M(n2) is defined as nearest pair i, (vi,v2) =
d(M(n1), M(nz2)).

DEFINITION 3. Shortest Distance Region: For any two merg-
ing segmentsVi(n;:) and M(nz2), the shortest distance region
R(M(n1),M(n2)) betweenM(n,) and M(nz) is the set of
points with the minimum sum of Manhattan distance®v¢n; )
and M(n»), i.e, R(M(n1),M(n2)) = {p | dy(p,M(n1)) +
dr(p, M(n2)) = d(M(n1), M(n2))}.

3.2 Treeof Merging Segments Construction

Our objective in searching the merging segments is to minimize
the skew violation due to process variations. More specifically
speaking, for an internal node with two children nodes:; and
nj, we look for a merging segment farsuch that the skew viola-
tion between any sink, € T,; and sinks; € Ty, is minimized.

e useT,; andT),; to denote the subtrees rootedratandn;,
respectively. In order to guide the searching for the merging seg-
ment, we need to estimate the range of the skew betweamnd
s;. Because of process variations, the skew between a particular
pair of sinkss, € T,,; ands; € T,; is not a unique value, instead
it is within a rangelt, ..., (sr, 51), tskew (57, 51)] @nd different sink
pairs may have different skew ranges under process variations.

To minimize the maximum skew violations among all sink pairs,
we need to estimate skew ranges for all sink pairs between two
subtrees[19]. For example, if there are 8 sinkgjin and 7 sinks
in T},;, then skew ranges for 56 pairs need to be estimated. This
is in contrast to the traditional zero-skew routing where only skew
between one pair of sinks from two subtrees need to be computed.

'Some works treat the absolute value of the delay difference as theHowever, estimating skew ranges for all pairs of sinks between two

skew without differentiating the signs.
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subtrees greatly increases the computation time. Hence, we trace



the skew range for only the most critical sink pair between two
subtrees. LeP,; = UPR,; — LPR,; and P,,;, be the minimum

skew permissible range among all pairs of sinks for the given net.

The criticality between a sink pait- ands; is defined as:

P r
Criticality,; = v I;nm +(1-7) dri
1

rl dmaz

@)

whered,, is the rectilinear distance betwegnands;, dma. is the
maximum sink pair distance among all pairs of sinks of the total
net, andy is a constant weighting factor. On the right-hand side

of the above equation, the first term represents the criticality due to
the skew permissible range and the second term describes the crit
icality from the spatial distance, since the skew between two sinks
far apart from each other is more susceptible to process variations.
We can pre-select the most critical sink pair between any two sub-
trees according to equation (2) and perform the skew estimation

for only this critical sink pair when the merging segment for their
corresponding subtrees is searched.

The skew range between ands; can be obtained if the mini-
mum and the maximum delay from nodeto s, ands; are avail-
able. Estimating the minimum interconnect delay due to wire width
variation is actually very similar to the delay driven wire sizing
problem([5]. The difference is that the wire width variation range

due to process variation is much smaller than that in the wire siz-
ing problem. Such small variation range allows us to employ some _
simple wire sizing scheme to estimate the minimum interconnect t(vi, sr)

delay. It is stated in [5] that single width sizing is a reasonable
approximation to the optimal wire sizing. For a wire segment of
lengthl and widthw, its resistance isl/w and its capacitance is
clw, wherer andc are coefficients for resistance and capacitance.
Ifit has a capacitive load’.,, its interconnect delay in EImore delay
model ist = 2rcl® + ZLCy. Evidently, the minimum delay is ob-
tained whenw = W,, and the maximum delay occursuf = W,.
When we estimate the minimum delay from a nede a sinks;. in

a routingtreeinstead of a 2-pin path, the wire width along the path
fromn to s, is W, while wire width for any branching segment not
on this path has to be the minimui#,. Since those branching seg-
ments are pure capacitive load to the— s, path, the minimum
wire width implies the minimum load. The maximum delay due to

process variation in a routing tree can be estimated similarly. An-

other observation is that process variations at any wires ndj in
do not affect the skew between ands;. Therefore, the merging

ey, |

(v, 8) = t(vi, 57) + 5 - lew,|? + = - Crp,
(v, 50) = F(vi, 50) + % - ew, [ + it - O,
H, 1) = H(vg, 80) + 5 - lew, [ + Tt -
Hv,51) = Bug, 1) + 52 - e, [P + ol T,

wheree,, is the edge between andv;, e, is the edge between
v andv;. NotationCy, is the tree capacitance @h(,,) where
the wire width along the path fromy to s, is W, and any other
wire width in this subtree iso;. Notations ofCr,, Cr, Cr, are
defined similarly. Therefore, the lower boung,.,, (s, s:) and
upper boundeq, (s-, s;) of the skew betwees, ands,; are

éskew (87‘3 Sl) = é(’U, 87«) — z(’(_)7 Sl)
tskew(sra Sl) = t(’l), S'r) - E('U7 Sl)
If we let|e,, | = z and|e,,| = Dij — |ev,| = Di; — z, where
D;; = d(M(n;),M(n;)), then
Cr, C
Eew (Sr581) = 1C- 2 Dij + r2(3ps + v;f )+ K
7 Cr  Cr.. —
tskew(smsl) =rc-z- Dij + TZ(VTZ + W_’?) 1+ K
7 re-D2 rD;;-Cr. _
where = t(vi,s,) = (v, 51) — (“5 + ) andK =
re-D2. rD;i;i-Crp.
— t(vj, ) — (B 4 T

Thus, for any0 < z < Dy, the ‘'skew is within the bound
B. = [t%)00 (5 81), Lakew (Sr, 81)]. In particular, ifle,, | = 0, the
minimum and the maximum skew are givent8s , (s-, 1) = K
and?oew (sr, 51) = K. Whenl|e,,| = D;j;, then

D, — r D? rD;i-Crp.
bt (5ry51) = t(vi, 50) = F(vj, 80) + (T 5L + ——2)
-D; - 'rc<D72 rD;;-Crp,
Eopa (575 51) = E(vi, 50) = t(vg, 30) + (T3 + )

Suppose that the skew permissible range for and s;

[LPR,,UPR,;) and let M., (2o (8, 81) +
Uoew(5r, 50))/2, M, = [b02, (57, 50) + 1000, (57, )] /2, and
Mpr = [LPR,;+UPR,]/2. In other wordsMpr is the center

of the permissible rangé/?

0w (ML Y is the center of the skew
range whernz = 0(z = D;;). There exist three scenarios (Fig-

segments for’s parent/ascendant nodes found in later searchings M2, > Mpr

may maintain the skews between any sink pairs betvigerand
Tni-

Once the skew rang@., .., (sr, s1); tskew (sr, 51)] for the most
critical sink pairs, € T, ands; € Ty, is obtained, we can choose
the merging segment for the internal nogewhich is the parent
node ofn, andn;, such that the center of this skew range coincides
with the center of permissible rang®PR,;, U PR,,] for s, and

s1. When the skew range is greater than the skew permissible range,

such selection minimize the maximum positive skew violation. If

the skew range is smaller than the permissible range, this selectio

method maximize the safety margin.

Suppose we are working on the tree of merging segments for

a noden with childrenn; andn;. Furthermore, lefly,,,, and
T, denote two subtrees of merging segments rooted;'at
merging segmenM (n;) andn;'s merging segmenM(n;), re-
spectively. Letv; € M(n;) andv; € M(n;). The search-
ing for the merging pointv is started by modeling the min-
imum(maximum) delayt(v, s,)(t(v, s,)) and t(v, s;)(t(v, s1))
fromv to s, ands;, respectively.
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_ LetQ = t(vi, s) +t(vi, 87) —
t(vs 81)). . . . .
In case {), no wire snaking[16] is necessary and we can obtain

(UPRyi+ LPRy +t(vs, s1) +

<

2 Cr, T;
Crp,+Cr, Cr,+Cr,
T'(QC . D»;j + W = W = )




by aligning the center of the skew range to the center of the permis-
sible range. This alignment is equivalent to solving the following
equation:

izkew(sr,sl) LPRTZ = UPRN gkeu,(sr,sl)

For caseif), we let|e,; | = 0 and need to extend the edge length e bt
of ey, sothatle,,| > D;;. By solving (a) (b) (c)
—lew; |
b (87, 51) Figure3: (a) An examplesuch that D;; = d(M(n;), M(n;)) =
9 and M(n;) is not parallel to M(n;), suppose no edge exten-

lew, |

toi (sry81) — LPRy = UPRy — 1

we have sion is needed, |e., | is found to be 3, (b) An example such that
D;; = d(M(n;),M(n;)) = 9 and M(n;) isparallel to M(n;),
Cr; | C1ivg _./Cr, | O, suppose no edge extension is needed, |e.,| is 4, (¢) An exam-
oo = \/[T( W+ w It —AreQ = (S + ) @ ple such that D;; = d(M(n;),M(n;)) = 7 and M(n;) is not
v 2rc ‘ parallel to M(n;), suppose edge e,, needs to be extended to
€y, | = 9.
SinceM) < Mpg,Q < 0and thereforér( L, o)) = ool
4rc@ > 0. For the same reason, the RHS of equatlon (4) is guar-
anteed to be positive and there is always a feasible solution.
Similarly, for case ifi), we let|e,,| = 0 and extend the edge ~ M(n) is inside the shortest distance regi®iM (n;), M(n;))
length ofe,; so thatle., | > D;; and by solving (Figure 3¢) and ¢)). Otherwise, some adjustment is applied to
lew. | lew,| M(n) as follows. For instance, in Figure (M (n) contains only
Lopew(sry81) = LPRy = UPRy — ;.0 (sr, 1) vj, is merging segment if it is restricted withi(M (n; ), M(n;)).
we have In order to obtain more flexibilityM (n) is allowed to extend along
M(n;) such that all point®. of M(n;) with d,(ve, M(n;)) <9
T, Cr. may be included ifM(n). Therefore, in Figure 3cf, M(n) is the
o, \/ W2 +4reQ — r(Spt + ) ) line segment;, v..

are 3.3 Algorithmsand Their Analyses

From the above analysis, a merging point minimizing skew vio-

lation for s, ands; always exists. A feasible merging segment is - - -
a collection of all such merging points ef ands;. In addition, Algorithm 1 Merging SegmeniConstruction(inode, rode).

lev; | + |ev, | is defined as merging cost. It is obvious that for each  Input: Two nodes Inode and rnode (S)

pair of v; andv;, the feasible merging segmentwfs actually the Output: A routing tree with internal nodes embedded.
intersection of two Manhattan circfesentered at; andv;, respec- 1. pick aInode’s clock sink: ;
tively. Consequently, it is a Manhattan arThe merging segment 2. pick a rnode’s right sind ;
M(n) is chosen among these feasible merging segments in a way 3. D — d(M(lnode), M(rnode));
such that the tolerance violation is minimized and merging cost is 4 LPR | b ’ d of issibl ds)-
also minimized. Ifv; andv; is a nearest pair, then the merging cost ’ « lower bound of permissible range af ands;;
is minimized. Therefore, it is sufficient to select nearest points of 5. UPR « upper bound of permissible range sfands;;
M(ni? andM (n;) to constructM(n). Similar to [1], we have the 6. compute?, . s o andil..,:
following Lemma:
7. M?kew — (—skew + tskew)/z;

LEmMMA 1. If two merging segmeri¥I(n;) and M(n;) do not 8 MD /D 7D 9.
intersect, then there exists a nearest pairc M(n;) andv; € + Makew = (Eoew + Eakew) /2
M(n;) such that eithew; or v; or both is an end point dMI(n;) 9. Mpr + (LPR+UPR)/2;
or M(n;). 10, if (M, < Mpg < MZ,,,) then

According to Lemma 1, the merging segmévik(n) is built computele;,.oq4e | according to Equation (3);
as follows. Suppos@I(n;)’s end points arev;, andv;, and |€'rnode| =D — |einodel;
M(n;)'s end points are;, andv;,. First, the rectilinear distances 11. dseif (M2,,, < Mpg) then
dr(viy, V3 ), dr(Viy ;052 ), dr(Vig, v5,), @nddr(viy , vj, ) are com- extende,node| according to Equation (4);

puted. Then all pairs of points whose rectilinear distances are equal lernode| = 0;

to d(M(n;), M(n;)) are selected. For each such pair of points, the 12. dse

feasible merging segment is found. Any two feasible merging seg- elinode| = 0;

ments are merged if they overlap. The process repeats until no fea- extende,noqe| according to Equation (5);

sible merging segment overlap with each other. Finally, the longest 13. end if

feasible merging segment is picked up as merging segment if there 14. construct the merging segment according to rules de-

are more than one feasible merging segmer_ns left. _BaS|caIIy, if scribed in Section 3.2 and return the resulting merging
there is no need to extend edge, the resulting merging segment segment;

2Manhattan Circleis a collection of all points with equal distance
from a point (center). Basically, Manhattan circle is a square ro-

tated by 45 degree. To build the tree of merging segments, the initial clock abstract
3Manhattan Arcis a line segment of a Manhattan circle. Its slope topology tree is processed in bottom-up fashion. Merging segment
is either—1 or +1. of an internal node is based on its left and right children’s merg-
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ing segments. MerginegmeniConstruction (Algorithm 1) is the

2), whereS means all permissible ranges are symmetric whilg

main routine constructing such merging segments. Inside the route,indicates that all tolerance ranges are not symmetric.

sink s, of Inode and sinks; of rnode are identified, distance be-
tweenM (Inode) andM (rnode) are computed, permissible rangt
of s, ands; is fetched and all skews are calculated. Finally, tt
merging segment is formed according to rules described in Sec
3.2.

After tree of merging segments is finalized, the clock routing tr
is embedded top-down same as in DME [1]. First the location 1
clock source is determined, then all descendent’s locations are
cursively located. In particular, each clock sink’s location is itse
and each internal node’s location is derived from its parent’s loc
tion and the condition whether there exists extension.

In fact, Algorithm 1 is analogous to a postorder tree travers
The running time of postorder 8(/N) whereN is the number of
edges of the tree. Furthermore, all computations in the algoritl
can be done in constant time. Therefore, both tree of merging s
ments and clock routing embedding can be made in tini&/).
Note that if a tree has leaves, the number of the tree’s edges 1s
usuallyO(n).

4. EXPERIMENTAL RESULTS

The algorithm of MinSV have been tested on five benchmark cir-
cuits widely employed in the literature [4, 7, 8, 9, 15, 16]. As [15],
the wire widths are scaled under &8 micron technology while

Figure 4: Clock routing treefor r5.

To compare the tolerance to the process variation, two clock rout-
ing trees are constructed with the same set of permissible ranges by
DME and MinSV, respectively. For each routing tree, ElImore delay

the sink’s loading capacitances remain the same. We assume thagf each sink and max skew and max skew violation among sinks are

the wire width follows the variation defined in equation (1) with
nominal widthwo = 0.54, standard deviatiorr = 0.162 for the
local variation termd, and spatial variation coefficient = 0 =
di’; wheredmq. is the maximum rectilinear distance among all
pair of sinks. The weighting factoy in selecting the critical sink
pairs is0.5. The wire resistance per unit length 10042 /w2
wherew is the wire width, and per unit length and width capaci-
tance is3.18¢ — 6pF, the driver’s resistance i8.212, and the unit

of pin’s loading cap i9.01pF. The initial clock routing abstract
topology is constructed by applying the method introduced in [16],

computed with width variation. Tables (1-2) exhibit experimental
results for benchmarksl—r5. The total wirelength are listed in
column 2 and 3. The wirelength generated from MinSV is some-
times greater and sometimes less than the wirelength resulted from
DME, but all of the differences are on a negligible level. The skew
performance is evaluated through the number of skew violations
and the maximum skew violations. The number of skew violations
are shown in column 4 and 5, and the percentage improvements
from MinSV are in column. Our algorithm constantly outperforms
the DME by large margin 082% — 57% in term of number of

which recursively partition sinks into two equal parts in horizontal skew violations. In column 7 and 8, the experimental results show
and vertical directions alternately. However, our algorithms are not that MinSV always yields significantly less value on the maximum
dependent on specific topologies. Any other methods such as [1, 2skew violation and the average improvement from MinS%¥4%.
7,8,9, 11, 12, 13, 17] can be used to generate the initial abstractThe rightmost two columns show the CPU time which indicate that
topology. The experiments are carried out on a SUN Blade-100 our algorithm runs at speed about the same as DME.
workstation with 512M memory. Comparing the results between symmetric permissible range and
Since there is no previous work which addresses the construc-non-symmetric permissible range, we can see that non-symmetric
tion of process variation tolerant clotiees we have implemented  permissible ranges usually cause greater wirelength and worse skew
an extended DME algorithm for comparisons. Instead of seeking violations. This is due to the fact that wire snaking occurs more of-
zero-skew, as in the original DME algorithm, the objective has been ten when we align the skews to non-symmetric permissible ranges.
modified to target the skew between each sink pair to be at the cen-The smaller SCALE value in Table (2) implies tighter permissible
ter of its permissible range. Since DME algorithm itself is not ca- ranges and consequently the skew violations are worse. Figure 4
pable of dealing with random process variations, the local variation shows the embedded clock routing tree for the benchmiark
term ¢ is ignored for the skew estimation during the DME algo-

I’i’Fh_m. Even though the correspo_nding chan.ge_ on_th_e algorithm is 5 MINIMIZING WIRELENGTH SUBJECT
trivial, skew tolerance to any design uncertainties is improved due TO SKEW CONSTRAINTS

to the increased guarding band. However, the wire width variation
is not handled directly as in our algorithms. Besides improving process variation tolerance, it is desirable to

Different permissible ranges for each pair of sinks were applied minimize total wirelength for the clock tree and thereby reduce
using uniformly distributed random numbers over [0.0, 1.0]. For power dissipation. Therefore, we further propose an algorithm on

each pair of sinks; ands;, LPR;; is negative and/ PR;; is pos-
itive, respectively. We use a constant SCALE to controlitifeR; ;
andU PR;; (= random number * SCALE). For each SCALE, two
types of cases are considered: (1PR;; andUPR;; are sym-
metric, that is|LPR;;| = |UPRyj|; (2) |LPR;;| and |[UPR;;|
differ, but not a lot, that iSLPR;; + UPR,;| < 2“4LE. Results
for SCALE = 1 and SCALE = 0.1 are shown in Tables (1-
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minimizing wirelength subject to skew constraints.

Minimizing Wirelength Subject to Skew Constraints (Min-
WSC) Problem: Given asetS = {s1,s2,...,s,} C %2 of clock
sinks, a set of skew permissible ranges for each pair of clock sinks,
find a clock routing tre€” (S) such that the total wirelength is min-
imized while the maximum positive skew violation among all pairs
of sinks is non-positive when wire width varieqi#i;, W.,].



total wirelength [im) #skew violations max skew violation §.s) CPU({s)
DME MInSV | DME [ MInSV | imprv | DME | MIinSV | imprv | DME | MIinSV

r1-S 168376 168251 89 40 55%] 0.141] 0.126] 11% 0.1 0.1
r1-NS| 179702 179630 102 58] 43%] 0.082] 0.057] 30% 0.1
r2-S 351085 3520441 190 91| 52%] 0.365] 0.206] 44% 0.2

r2-NS'| 383169 384651 243 1571 35%]| 0.492] 0.392] 20%
r3-S 440309 440989 264 11417 57%] 0.302] 0.250] 17%
r3-NS'| 494090 494161 318 189 41%] 0.329] 0.274] 17%
r4-S 885678 885523 496 230 54%| 1.543] 0.454] 71%
r4-NS'| 1009232 1008957| 659 383| 42%]| 0.588] 0.359] 39%
r5-S | 1309794 1311689 834 393| 53%| 1.449] 0.649] 57%
r5-NS | 1552413 1552719| 1139 671 41%]| 1.215] 1.101 9%

SANNQY YOO
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Table1: Theresultswhen SCALE is1.

total wirelength [im) #skew violations max skew violation §.s) CPU({s)

DME MInSV | DME | MInSV | imprv | DME | MIinSV | imprv | DME | MIinSV
r1-S 168376 168252 161 100 38%| 0.142] 0.127] 11% 0.1 0.1
rI-NS| 169835 170020 166 101 39% | 0.098] 0.093 5% 0.1 0.1
r2-S 351085 352044 354 225 36%| 0.371| 0.207| 44% 0.2 0.2
r2-NS'| 349704 351290 351 235 33%]| 0.171] 0.060| 65% 0.2 0.2
r3-S 440309 440990 462 285 38%]| 0.320 0.25I| 22% 0.4 0.4
r3-NS| 443812 443676 491 31T 37%]| 0.302] 0.248] 18% 0.4 0.4
r4-S 885678 885523 1028 616| 40%| 1.537| 0.454] 70% 2.1 2.2
rd-NS| 888685 888342 1051 655| 38% | 0.458] 0.363] 21% 2.2 2.2
r5-S | 1309794 1311689| 1449 989 32%]| 1.449] 0.650| 55% 7.0 6.9
r5-NS | 1310697 1311156| 1665 1045 37%]| 0.993] 0.763] 23% 7.0 6.9

Table2: Theresultswhen SCALE is0.1.

The procedure to build the minimal positive skew violation and DEFINITION 5. Shortest Distance Segments: For any two con-
minimal wirelength clock tree is similar to the algorithm MinSV  vex polygonal region®; and P, with boundaried3(P;) andB(P),
except that merging regions are exploited other than mere mergingrespectively, theshortest distance segmemts5(P;) and B(P»
segments. In sectiod, points whose skew range,, .., tskew] are defined aSp,(P1) = B(P1) N R(P1, P2) andSp,(P2) =
closer to the center of permissible rangePR,U PR] are pre- B(P2) NR(Py, P2)
ferred during tree of merging segments construction. If we only
seek non-positive skew violation, such merging scheme may cause DEFINITION 6. Joining Segment: Let n be an internal node
unnecessary extra wirelength. In order to avoid such extra wire- with childrenn,; andn; with merging regionM (n;) and M (n;),
length, all merging points whose corresponding skew ranges arerespectively. The segments/ef(n;) and M (n;) used to build the
within permissible range are considered as candidates. Usuallymerging regionM (n) are calledjoining segmentsdenoted agd,,,
these merging points may form a polygorerging regioninstead andJ,,.
of a merging segment and any merging within this region will not
cause positive skew violation. Merging regions allow us moreroom  DEFINITION 7. Well-behaved Elmore Delay Line Segment: Let
during the top-down routing phase to find a minimum total wire- a joining segmend,, with respect to an internal node be a line
length. The basic idea is similar to the BST algorithm[4]. How- segment with ending points andwv.. For each point, onJ,, let
ever, the scenarios in our work are much more complicated due tou denoted, (v1, v,), thend, (v2,v,) = |Ja| — u. If for any leaf
the fact that each sink pair may have its distinct permissible range nodes;, in the subtree rooted at
in contrast to the single global skew bound in BST. Moreover, the - 5
fact that at each point; on a joining segmend,, (of an internal { t(vp, s1) = K - w tor-ust b
noden), the skew between any pair of sinks in the subtree rooted Hvp,s) = K -0 +az-ut P
atn is arange instead of a single value makes the merging regionswhere K, a1, as, 81, and 32 are constants, thed,, is a well-
more difficult to obtain than BST. behaved Elmore delay line segment.

5.1 Notationsand Definitions
5.2 Treeof Merging Regions Construction

DEFINITION 4. Shortest Distance Region: * For any two con- Suppose we are working on the tree of merging regions for a
vex polygonal region$; and P, with boundaries3(P1) andB(F%2),  noden with childrenn; andn; and letT(,,) and Ta, ) de-
respectively, theshortest distance regioR(F1, P.) betweenP note two subtrees of merging regions rootechds merging re-
and P is the set of points with minimum sum of Manhattan dis- gion M(n;) andn;'s merging regionM (n, ), respectivelyM (n)
tances td3(P;) andB(F,), i.e.,.R(P1, P2) = {p | d:(p, B(P1))+ is constructed based on the skew betw@&sy,,,)’s sink s, and
dr(p, B(P2)) = d(B(P1), B(P2))}- M (n;)'s sinks;. First, shortest distance segmesis (. ) (M (1))

“Note that shortest distance region here is defined based on merg&ndS ., (M(n:)) are found and are used as joining segments

ing regions and is different from the shortest distance region de-J»; andJ,;. We assume thal,, and J,; are well-behaved:
fined in Section3. whenJ,, andJ,; are parallel Manhattan arcs, delay functions
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on J,, andJ,; are constants and wheh,, andJ,; are paral-
lel non-Manhattan arcs, delay functlons.]m andJ., have same
quadratic terms.
First of all, let us look at certain pair of points andv; on
Jn; and J,; such thatd,(vi,v;) = d(Jn;,Jn;). If the skew

rangeBorew = [t00 (51, 51), ESD,jew(sr, s1)] and permissible
rangeBpr = [LPR,;, UPR.), whereD;; = d(Jn,,Jn;),
there are four scenarios1)(Bpr andB.y.., do not overlap, i{)
Bpr and B, partially overlap, 8) Bpr coversBgge,, COM-
pletely, and 4) Bpr is covered byBskew completely. When
LPR, = t%.,(sr,s1) andUPR,; = tskew(8T7sl)’ both case
(3) and case4) occur and we treat this as case (3) for simplicity.
Case (1). happens whend) UPR,; < 2., (sr, s1) OF (b)

LPR, > tgkew(sr,sl). In subcased), we let|e,,| = 0 ande,,
has to be extended according to Equation (5). In subdgsevé
firstlet|e,, | = 0and computge,, | = z by solvingt, ., (s, 1) =

lew; |

LPR. If the result satisfies,,* (sr, s1) < UPRy, then we are
done. Otherwisele,;| = 0 ande.,; has to be extended accordin
to Equation (4).
merging segment.
Case(2). happens wheh PR, < tskew(sr,sl) andtskew(sr,«s;)
UPR,;. If tskew (sry81) <UPR, < tskew(sr,sl) Ortskew(sr,sl)
LPR, < tskew(sr, s1), thene,; or e,, is extended as Case)(
Otherwise, eitherd) ffkew(sr,é’z) < UPR, < tskew(smsl) or
(d) 2y 00 (57, 81) < LPRy < tgkew(sr,sl) is true. By solving
glevi ‘skew(sr, s;1) = UPR,;, we have
rc-D%j Dy QT7 )
Wy

UPRy — t(vi, sr) + t(vy, sz) + ( +

Zlo =

rc- Dij + 7"(

(6)

and the edge length ef,, can be any value if0, z;,] for subcase
(¢). Similarly, we can obtain

re-D? r-D;;-Cr

 LPRu —(vi,s0) + vy, 80) + (5 + —5— 1)
Zhi = o 6T7
re- Dij + (378 + 5)
)

by solvingt!®»: | skew(s,, s;) = LPR,; and|e,, | can be any value

in [zns, Dsj;] for subcased).

Case (3). happens whenLPR, < t%..(sr8) <
Ziew(sr,sl) < UPR,;. The value of|e,,] is in [0, D;;] and
lev; | = Dij — lew,-

Case (4) happens wher, . (sr,s1) < LPR,; < UPR,; <

fiew(sr,sl). If there exists some = |e,,| such thatL PR,; <
row(5r,81) < Takew(sr,s1) < UPR,y, then|e,,| has to be
within [z;,, zr:] @nd|e,;| = Di; — |ew,;|. Otherwise,e,,| is ob-
tained by solving

v |

skew

t‘evi‘

skew

(sry81) — LPR,; = UPR, — (sr,81)

andle,;| = Dij — |e,|.

Then let us consider when poinisandv; move alongJ,,, and
Jn; simultaneously. The delay functions dfe;, s;) = K - u? +
o - uz + B, t(viysr) = K -u? + a2 - ui + B2, t(vs,s1) =
K -ul +as-u; + B3, andt(v;, s1) = K -u} + o - uj + B4, where
0<u < |Jnl| and0 < Uj < |JnJ| andK, a1, a2, A3, 04, 61,
B2, B3, and3, are constants.

Ifwelet|e,,| = zand|e,,| = D
then for merging point,

—z,whereD;; = d(Jn;,In;),

In this case, the merging region is reduced to a

t(v,s;) =2 2% + V‘c, -z + t(vi, sr)
t(v,sr) =% Ti o2+ ¥(vs, sr)
Ho,50) = % - (Diy — 2)* + St - (Dig — 2) + L{vy, 1)
Hv,s1) = % - (Dig — )2+ T (Dyy — 2) + (v, 1)

Let us consider the following two cases:

Case(a). J»; andJ,; are both Manhattan arcs. Sinde;, s;),
t(vi, sr), t(vy, s1), andt(v;, s;) are constants (see explanation later),
without loss of generality, we may assume that,s-) = (i,

t(vs, 8r) = B2, t(vj, 81) = B3, andi(v;, s;) = Ba. Therefore,
r-C r-Cr.
tikew (57‘7 Sl)a - (’f’C Dl] + T + W;FJ ) t R +Lgkew,a
g C rC —
tskew (57‘7 Sl)a - (’f’C Dz] + VVlT7 + f ) cz+ tgkew,a
and
r D rD;;-Cr,
g L(s)kew a — (ﬁl 64) ( - JTTJ)
-0 rc- D TDi] IQT (8)
tskew a = (ﬁQ ﬁ3) (— TJ)

<  Case (b). WhenJ,, andJ,; are not Manhattan arcs, we have
<_ u; = uj. Therefore, the skew range is given by
Lgkew (57“7 Sl)b - (Oé1 - 044)’1,61 + t;kew (57"7 Sl)

skew ST, Sl)b - (a2 - a3)u’b + tskew(s’rv Sl)

{

—-

®

Figure 5: (d) merging region when J,,; and J,,; are parallel
well-behaved Manhattan arcs and skew condition isin (a), (e)
merging region when J,,, and J,; are parallel well-behaved
horizontal line segments and skew condition isin (b), and (f)
merging region when J,,;, and J,; are parallel well-behaved
with slopem > 0 and skew condition isin (c), WhereltO stands
for tskew(sr, s1), ut® for Topew (sr, 51), 12 for o (sr,s1),and
ut® for tskew (sry 81)-

skew

Based on the above discussions, wheandv; are moved along
J., andJ,,; simultaneously, one case is replaced by another if one

of the four line segments representitig, ., (s, 51), ngew (sr,81),

;if;w(sr,sl) andtsggw(sr,sl) intersects either one of horizon-

tal line segments representidgP R,; or UPR,;. Therefore, the
merging region ofJ,,, andJ,,; can be formed in constant time by
considering conditions at all possible intersections since there are
at mostg intersections. Figurg illustrates some examples.

Note that during the construction, the following may happén: (
Jn; andJ,; are parallel Manhattan arcs with non-constant delay
functions or {i) the delay functions od,,, andJ,,; have different
guadratic terms. Under these situations, any pair of points can be
picked up to construct the merging region as long as they satisfy
Vi € J"i’ v € Jnj1 anddr(vi,v]-) = d(Jn”JnJ)
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5.3 Merging Region Construction Procedure

Suppose we are working on the merging region for a nodeéth
childrenn; andn;.

Step 1. Find joining segment3,,; = S y((n;) (M(ni)) andJ,; =
S M(ny) (M(n;)) and then comput®i; = d(Jn,,Jn;).

Step 2. Based on skew permissible range betweerand s;
[LPR,,UPR,;] and delay functiong(vi, s), t(vi, sr),
L(v;, s1) andi(v;, s;) defined for points; onJ,,, andv; on
Jn;, compute delay functions dfv, s,), t(v,_fr), t(v, s1)
andi(v, s;). Next, functions?, ., (sr, s1) andtz e (sr, 1)
are calculated.

Step 3. If J,, andJ,; are both well-behaved Manhattan arcs
parallel to each other, then we may obtain the merging re-
gion according to the relation betwe®yx.., andBpr as
described in Sectioh.2.

Step 4. If J,,, andJ,,; are both well-behaved non-Manhattan arcs
parallel to each other, then all possible intersections between

Lgkew (57"7 Sl), zgkew (S“ Sl)’ zgciejw (57“7 sl)’ or EZ@ZU}(SW Sl)
and line segments PR,; or U PR, are obtained first. For
each intersection, the positions @f andv; are located on
Jn, andJ,;, and a feasible rangfe,,,Ue,,] (Le,, <
Ue,,) for e, is found. Furthermore, feasible range is also
computed whem; andv; are ending points af,,, andJ,,;.
Then for each feasible range, the possible locations for merg-
ing pointv whenle,,| = Le,, or |e,,| = U.,, are located
inside shortest distance regi®{J,,, J,;) of J,, andJ,,

in the Manhattan plane. Finally, the minimal polygon enclos-
ing these locations is constructed as the merging region.

The following Lemmas show the correctness of the merging re-
gion construction procedure(the proofs are omitted due to page
limit). The boundaries of merging region are either Manhattan arcs
or rectilinear line segments wheh,, andJ,,; are parallel well-
behaved Manhattan arcs. However, boundaries of merging region
could be any kinds of line segmentsJdf,, andJ,,, are parallel

well-behaved non-Manhattan arcs.
LEMMA 2. If J,, and J,,; are two well-behaved Manhattan

arcs parallel to each other, then any Manhattan arc or rectilinear
line segment € R(J»,, J»;) is also well-behaved.

LEMMA 3. If J,,, andJ,,; are two parallel well-behaved non-
Manhattan joining segments, then any line segrent(J,., , J» )
is also well-behaved if the delay functiohandt defined oved,,,
andJ., have the same quadratic term.

LEMMA 4. M(v) is a polygon with at mos20 boundary seg-
ments.

6. CONCLUSION AND FUTURE WORK

In order to cope with the increasingly severe impact on clock
skew from process variation, we propose DME/BST based process
variation aware clock tree routing algorithms to improve skew tol-
erance to process variations. Experimental results show that our
method provides great improvement on skew tolerance to process
variations. In this work, we adopt existing techniques on con-
structing initial abstract topology. However, these techniques are
either based on clock sink location distributions [16], or only skew
permissible ranges between clock sink pairs [17]. In future, we
will investigate new techniques on abstract topology construction
that considers both the sink physical proximities and sink temporal
specifications to enable a better skew tolerance for clock routing
tree. Process variations on clock buffers will be considered in fu-
ture as well.
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