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ABSTRACT
Fast progress on VLSI technology makes clock skew more sus-
ceptible to process variations. We propose DME/BST based algo-
rithms for clock tree routing to improve skew tolerance to process
variations. The worst case skew due to process variations is esti-
mated and employed to guide the decision making during the rout-
ing. Our method can be applied to general non-zero skew require-
ments. Minimizing total wirelength is considered as a secondary
objective at the same time. Experimental results on benchmark cir-
cuits demonstrate great improvement on process variation tolerance
through our algorithms.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms
Algorithms, Performance

Keywords
VLSI, interconnect, physical design, clock tree synthesis

1. INTRODUCTION
In synchronous VLSI designs, the pace of data transfer is gener-

ally coordinated by clock signals, thus clock network quality plays
a key role in determining VLSI system performance. Conventional
clock designs have placed emphasis on seeking zero clock skew,
since the clock skew sets a lower bound on clock cycle time. Previ-
ous work has focused on zero-skew clock design under either path-
length or Elmore delay model [8, 9, 16]. Further, since the clock
network is a major source of power consumption, reducing clock
network wirelength to lower power consumption is always desired.
The DME(Deferred-Merge Embedding) algorithm is proposed in
[1, 2, 7] to achieve zero-skew with a minimal wirelength. In prac-
tice, however, circuits are able to operate correctly within some
non-zero skew bound [4]. In [4], a bounded skew clock tree(BST)
algorithm extends DME to further reduce clock tree wirelength.
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In reality, designed skews may not be guaranteed after chip man-
ufacturing because the fabricated wire width may be different from
expected values due to process variations such as etching errors,
mask misalignment and spot defects. Process variations are mit-
igated in clock design through buffer insertion/sizing[3, 18] and
non-tree topology[10]. Other types of topologies such as mesh or
combined mesh-tree [6, 14, 15] have also been proposed to pursue
process variation tolerant zero-skew. Even though non-tree struc-
tures are generally effective in overcoming process variations, it
does not permit the widely applied clock gating technique and ex-
cessive usage of non-tree structures may aggravate the already se-
vere power consumption problem for the clock network.

In modern VLSI circuit designs, clock skew is more and more
susceptible to process variations because of the increasingly high
clock frequency, large chip area and shrinking feature size. This
requires that skew tolerance to process variation needs to be han-
dled in a meticulous manner. Thus, a process variation aware clock
treerouting is needed in complement with non-tree structure, buffer
insertion/sizing and wire sizing to achieve a greater process varia-
tion tolerance. Our experimental results show that a careful clock
tree design itself will make a great difference on skew tolerance
to process variations. In [17], an abstract tree topology for im-
proving process variation tolerance is suggested based on the ob-
servation that skew between two clock sinks will not be affected by
the process variations along the shared portion of their source-sink
paths. Hence, skew tolerance to process variation may be improved
through letting a pair of clock sinks with a smaller skew permissi-
ble range share a greater portion of their source-sink paths in the
abstract topology. However, this work uses a crude delay model
neglecting sink location/capacitance, and more importantly it is in-
complete in that it does not show how to implement the abstract
topology through physical routing.

In this work, we improve upon these deficiencies by focusing on
the construction of the clocktree to improve skew tolerance with
respect to process variations. The process variation tolerant tree
can be adopted as either a complete clock network or a local clock
system driven by a buffer or a mesh of a global clock network. The
primary objective is to minimize the maximum skew violation due
to process variations and the routing wirelength is minimized as
secondary objective. We propose DME[1, 2, 7] and BST [4] based
algorithms to solve these problems. The major distinction from
DME/BST is that a worst case process variation limit is considered
in addition to skew permissible ranges during the routing. In exper-
iments, we compared our method with a naive extension of DME
and our method exhibits great improvement on tolerance to process
variations.
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The remainder of this paper is organized as follows. Section 2
presents problem formulation. The algorithm of minimizing skew
violation is described in Section 3. Then the experimental results
are shown in Section 4. Our algorithm is extended to minimize
wirelength subject to skew bounds in Section 5. Finally, Section
6 summarizes the primary results of this paper and outlines further
research.

2. PROBLEM FORMULATION
Let S = {s1, s2, . . . , sn} ⊂ �2 denote a set of clock sinks in

the Manhattan plane ands0 be a clock source if given. An abstract
topologyTt(S) is defined as a rooted binary tree with itsn leaves
bes1, s2, . . . , sn. A physical embedding ofTt(S) is a rooted rec-
tilinear Steiner treeTe(S) such that each internal nodevi ∈ Tt(S)
is mapped to a locationl(vi) in the Manhattan plane. In a binary
rooted tree, each nodev is connected to its unique parent by an
edgeev. Suppose the cost ofev is its wirelength| ev |, then the
overall cost ofTe(S) is the total wirelength of the edges inTe(S).

For the wire width variations, both global spatial variations and
local random variations are appended to the nominal wire widthw0

through the following expression[15]:

w = w0 + λx+ θy + δ (1)

where coefficientλ indicates the spatial variation along thex coor-
dinates and coefficientθ models the variation along they direction.
The fourth termδ is a random variable following a normal proba-
bility distribution with mean value0 and standard deviationσ. As
an approximation, we assume that the wire widthw of is bounded
by 0 < Wl ≤ w ≤ Wu whereWl = w0 + λx + θy − 3σ and
Wu = w0 + λx+ θy + 3σ.

For each sinksi, let t(s0, si) denote the delay time from roots0
to si. Then for any two sinkssi andsj , the clock skewtskew(si, sj)
between them is1 t(s0, si) − t(s0, sj). Each skewtskew(si, sj)
is allowed to change within a permissible range[LPRij , UPRij ]
without affecting circuit performance[12, 17]. Theskew viola-
tion is defined asSVij = max(LPRij − tskew(ij), tskew(ij) −
UPRij). In order to improve tolerance to process variation, we
will first solve the minimal skew violation under process variation
problem as follows.

Minimizing Skew Violation (MinSV) Problem: Given a set
S = {s1, s2, . . . , sn} ⊂ �2 of clock sinks, skew permissible
ranges for all pairs of clock sinks, find a clock routing treeTe(S)
such that the maximum skew violation among all pairs of sinks is
minimized when wire width varies betweenWl andWu.

Note that the source locations0 is not included in our formu-
lation since our proposed methods can handle any prescribeds0
transparently. Even though we consider only wire width variation
here, our method can be easily extended to account for wire thick-
ness and spacing variations. The interconnect delay is evaluated
through Elmore delay model.

3. MINIMAL SKEW VIOLATION CLOCK
TREE

Given an abstract topology, the procedure to build the minimal
skew violation clock tree is divided into two phases as [2, 4, 7,
9]: bottom-up tree of merging segments construction and top-down
routing tree embedding. During the bottom-up phase, a set of can-
didate locations, which is called merging segment, is found for each
internal node of the given abstract topology in order to achieve

1Some works treat the absolute value of the delay difference as the
skew without differentiating the signs.

certain skew objectives. Every candidate location along a single
merging segment should yield the same skew behavior and the tree
obtained is calledtree of merging segments. Examples of abstract
topology and tree of merging segments are illustrated in Figure 1.
In the top-down embedding process, one candidate location is se-
lected for each merging segment such that the total wirelength is
minimized while the skew performance obtained in the bottom-up
phase is retained.
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Figure 1: (a) abstract topology tree, (b) tree of merging seg-
ments for the abstract topology of (a).

3.1 Notations and Definitions

DEFINITION 1. Segment Distance: For any two merging
segmentsM(ni) and M(nj), the segment distancebetween
M(ni) and M(nj) is defined asDij = d(M(ni),M(nj)) =
{min dr(va, vb) | va ∈ M(ni), vb ∈ M(nj)}, where
dr (va, vb) = |xa − xb| + |ya − yb| is the rectilinear distance
betweenva andvb.

DEFINITION 2. Nearest Pair: For any two merging seg-
ments M(n1) and M(n2), a pair of points v1 ∈ M(n1)
and v2 ∈ M(n2) is defined as nearest pair ifdr (v1, v2) =
d(M(n1),M(n2)).

DEFINITION 3. Shortest Distance Region: For any two merg-
ing segmentsM(n1) and M(n2), the shortest distance region
R(M(n1),M(n2)) betweenM(n1) and M(n2) is the set of
points with the minimum sum of Manhattan distances toM(n1)
and M(n2), i.e., R(M(n1),M(n2)) = {p | dr (p,M(n1)) +
dr (p,M(n2)) = d(M(n1),M(n2))}.
3.2 Tree of Merging Segments Construction

Our objective in searching the merging segments is to minimize
the skew violation due to process variations. More specifically
speaking, for an internal noden with two children nodesni and
nj , we look for a merging segment forn such that the skew viola-
tion between any sinksr ∈ Tni and sinksl ∈ Tnj is minimized.
We useTni andTnj to denote the subtrees rooted atni andnj ,
respectively. In order to guide the searching for the merging seg-
ment, we need to estimate the range of the skew betweensr and
sl. Because of process variations, the skew between a particular
pair of sinkssr ∈ Tni andsl ∈ Tnj is not a unique value, instead
it is within a range[tskew(sr, sl), tskew(sr, sl)] and different sink
pairs may have different skew ranges under process variations.

To minimize the maximum skew violations among all sink pairs,
we need to estimate skew ranges for all sink pairs between two
subtrees[19]. For example, if there are 8 sinks inTnr and 7 sinks
in Tnl, then skew ranges for 56 pairs need to be estimated. This
is in contrast to the traditional zero-skew routing where only skew
between one pair of sinks from two subtrees need to be computed.
However, estimating skew ranges for all pairs of sinks between two
subtrees greatly increases the computation time. Hence, we trace
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the skew range for only the most critical sink pair between two
subtrees. LetPrl = UPRrl − LPRrl andPmin be the minimum
skew permissible range among all pairs of sinks for the given net.
The criticality between a sink pairsr andsl is defined as:

Criticalityrl = γ
Pmin

Prl
+ (1− γ) drl

dmax
(2)

wheredrl is the rectilinear distance betweensr andsl, dmax is the
maximum sink pair distance among all pairs of sinks of the total
net, andγ is a constant weighting factor. On the right-hand side
of the above equation, the first term represents the criticality due to
the skew permissible range and the second term describes the crit-
icality from the spatial distance, since the skew between two sinks
far apart from each other is more susceptible to process variations.
We can pre-select the most critical sink pair between any two sub-
trees according to equation (2) and perform the skew estimation
for only this critical sink pair when the merging segment for their
corresponding subtrees is searched.

The skew range betweensr andsl can be obtained if the mini-
mum and the maximum delay from noden to sr andsl are avail-
able. Estimating the minimum interconnect delay due to wire width
variation is actually very similar to the delay driven wire sizing
problem[5]. The difference is that the wire width variation range
due to process variation is much smaller than that in the wire siz-
ing problem. Such small variation range allows us to employ some
simple wire sizing scheme to estimate the minimum interconnect
delay. It is stated in [5] that single width sizing is a reasonable
approximation to the optimal wire sizing. For a wire segment of
length l and widthw, its resistance isrl/w and its capacitance is
clw, wherer andc are coefficients for resistance and capacitance.
If it has a capacitive loadCL, its interconnect delay in Elmore delay
model ist = 1

2
rcl2 + rl

w
CL. Evidently, the minimum delay is ob-

tained whenw = Wu and the maximum delay occurs ifw = Wl.
When we estimate the minimum delay from a noden to a sinksr in
a routingtree instead of a 2-pin path, the wire width along the path
fromn to sr isWu while wire width for any branching segment not
on this path has to be the minimumWl. Since those branching seg-
ments are pure capacitive load to then → sr path, the minimum
wire width implies the minimum load. The maximum delay due to
process variation in a routing tree can be estimated similarly. An-
other observation is that process variations at any wires not inTn
do not affect the skew betweensr andsl. Therefore, the merging
segments forn’s parent/ascendant nodes found in later searchings
may maintain the skews between any sink pairs betweenTnr and
Tnl.

Once the skew range[tskew(sr, sl), tskew(sr, sl)] for the most
critical sink pairsr ∈ Tnr andsl ∈ Tnl is obtained, we can choose
the merging segment for the internal noden, which is the parent
node ofnr andnl, such that the center of this skew range coincides
with the center of permissible range[LPRrl, UPRrl] for sr and
sl. When the skew range is greater than the skew permissible range,
such selection minimize the maximum positive skew violation. If
the skew range is smaller than the permissible range, this selection
method maximize the safety margin.

Suppose we are working on the tree of merging segments for
a noden with childrenni andnj . Furthermore, letTM(ni) and
TM(nj ) denote two subtrees of merging segments rooted atni’s
merging segmentM(ni) andnj ’s merging segmentM(nj), re-
spectively. Letvi ∈ M(ni) and vj ∈ M(nj). The search-
ing for the merging pointv is started by modeling the min-
imum(maximum) delayt(v, sr)(t(v, sr)) and t(v, sl)(t(v, sl))
from v to sr andsl, respectively.

8>>>>><
>>>>>:

t(v, sr) = t(vi, sr) + rc
2
· |evi |2 +

r·|evi
|

Wu
· CTi

t(v, sr) = t(vi, sr) + rc
2
· |evi |2 +

r·|evi
|

Wl
· CTi

t(v, sl) = t(vj , sl) + rc
2
· |evj |2 +

r·|evj
|

Wu
· CTj

t(v, sl) = t(vj , sl) + rc
2
· |evj |2 +

r·|evj
|

Wl
· CTj

whereevi is the edge betweenv andvi, evj is the edge between
v andvj . NotationCTi

is the tree capacitance ofTM(ni) where
the wire width along the path fromvi to sr is Wu and any other
wire width in this subtree iswl. Notations ofCTi , CTj

CTj are
defined similarly. Therefore, the lower boundtskew(sr, sl) and
upper boundtskew(sr, sl) of the skew betweensr andsl are

�
tskew(sr, sl) = t(v, sr)− t(v, sl)
tskew(sr, sl) = t(v, sr)− t(v, sl)

If we let |evi | = z and|evj | = Dij − |evi | = Dij − z, where
Dij = d(M(ni),M(nj)), then8<
:
tzskew(sr, sl) = rc · z ·Dij + rz(

CTi
Wu

+
CTj

Wl
) +K

t
z
skew(sr, sl) = rc · z ·Dij + rz(

CTi
Wl

+
CTj

Wu
) +K

whereK = t(vi, sr)− t(vj , sl)− (
rc·D2

ij

2
+

r·Dij ·CTj

Wl
) andK =

t(vi, sr)− t(vj , sl)− (
rc·D2

ij

2
+

r·Dij·CTj

Wu
).

Thus, for any0 ≤ z ≤ Dij , the skew is within the bound
Bz = [tzskew(sr, sl), t

z
skew(sr, sl)]. In particular, if|evi | = 0, the

minimum and the maximum skew are given ast0skew(sr, sl) = K

andt0skew(sr, sl) = K. When|evi | = Dij , then8<
:
t
Dij

skew(sr, sl) = t(vi, sr)− t(vj , sl) + (
rc·D2

ij

2
+

r·Dij·CTi
Wu

)

t
Dij

skew(sr, sl) = t(vi, sr)− t(vj , sl) + (
rc·D2

ij

2
+

r·Dij·CTi
Wl

)

Suppose that the skew permissible range forsr and sl
is [LPRrl, UPRrl] and let M0

skew = [t0skew(sr, sl) +

t
0
skew(sr, sl)]/2,M

Dij

skew = [t
Dij

skew(sr, sl) + t
Dij

skew(sr, sl)]/2, and
MPR = [LPRrl +UPRrl]/2. In other words,MPR is the center

of the permissible range,M0
skew(M

Dij

skew) is the center of the skew
range whenz = 0(z = Dij). There exist three scenarios (Fig-

ure 2): (i) M0
skew ≤ MPR ≤ M

Dij

skew ; (ii) M
Dij

skew < MPR; (iii)
M0

skew > MPR
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Figure 2: (a) M0
skew ≤MPR ≤MDij

skew , (b) M
Dij

skew < MPR, (c)
M0

skew > MPR.

LetQ = t(vi, sr)+ t(vi, sr)− (UPRrl+LPRrl+ t(vj , sl)+
t(vj , sl)).

In case (i), no wire snaking[16] is necessary and we can obtain

z =
rcD2

ij + r ·Dij(
CTj

Wl
+

CTj

Wu
)−Q

r(2c ·Dij +
CTi

+CTj

Wu
+

CTi
+CTj

Wl
)

(3)
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by aligning the center of the skew range to the center of the permis-
sible range. This alignment is equivalent to solving the following
equation:

tzskew(sr, sl)− LPRrl = UPRrl − tzskew(sr, sl)

For case (ii), we let|evj | = 0 and need to extend the edge length
of evi so that|evi | > Dij . By solving

t
|evi

|
skew(sr, sl)− LPRrl = UPRrl − t|evi

|
skew(sr, sl)

we have

|evi | =

r
[r(

CTi
Wl

+
CTi
Wu

)]2 − 4rcQ− r(CTi
Wl

+
CTi
Wu

)

2rc
. (4)

SinceM
Dij

skew < MPR,Q < 0 and therefore[r(
CTi
Wl

+
CTi
Wu

)]2−
4rcQ > 0. For the same reason, the RHS of equation (4) is guar-
anteed to be positive and there is always a feasible solution.

Similarly, for case (iii), we let |evi | = 0 and extend the edge
length ofevj so that|evj | > Dij and by solving

t
|evj

|
skew(sr, sl)− LPRrl = UPRrl − t|evj

|
skew(sr, sl)

we have

|evj | =

r
[r(

CTj

Wl
+

CTj

Wu
)]2 + 4rcQ− r(CTj

Wl
+

CTj

Wu
)

2rc
. (5)

From the above analysis, a merging point minimizing skew vio-
lation for sr andsl always exists. A feasible merging segment is
a collection of all such merging points ofsr andsl. In addition,
|evi |+ |evj | is defined as merging cost. It is obvious that for each
pair of vi andvj , the feasible merging segment ofv is actually the
intersection of two Manhattan circles2 centered atvi andvj , respec-
tively. Consequently, it is a Manhattan arc3. The merging segment
M(n) is chosen among these feasible merging segments in a way
such that the tolerance violation is minimized and merging cost is
also minimized. Ifvi andvj is a nearest pair, then the merging cost
is minimized. Therefore, it is sufficient to select nearest points of
M(ni) andM(nj) to constructM(n). Similar to [1], we have the
following Lemma:

LEMMA 1. If two merging segmentM(ni) andM(nj) do not
intersect, then there exists a nearest pairvi ∈ M(ni) and vj ∈
M(nj) such that eithervi or vj or both is an end point ofM(ni)
or M(nj).

According to Lemma 1, the merging segmentM(n) is built
as follows. SupposeM(ni)’s end points arevi1 and vi2 and
M(nj)’s end points arevj1 andvj2 . First, the rectilinear distances
dr (vi1 , vj1), dr (vi1 , vj2), dr (vi2 , vj1), anddr (vi2 , vj2) are com-
puted. Then all pairs of points whose rectilinear distances are equal
tod(M(ni),M(nj)) are selected. For each such pair of points, the
feasible merging segment is found. Any two feasible merging seg-
ments are merged if they overlap. The process repeats until no fea-
sible merging segment overlap with each other. Finally, the longest
feasible merging segment is picked up as merging segment if there
are more than one feasible merging segments left. Basically, if
there is no need to extend edge, the resulting merging segment
2Manhattan Circle is a collection of all points with equal distance
from a point (center). Basically, Manhattan circle is a square ro-
tated by 45 degree.
3Manhattan Arc is a line segment of a Manhattan circle. Its slope
is either−1 or +1.
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Figure 3: (a) An example such thatDij = d(M(ni),M(nj)) =
9 and M(ni) is not parallel to M(nj), suppose no edge exten-
sion is needed, |evi | is found to be 3, (b) An example such that
Dij = d(M(ni),M(nj)) = 9 and M(ni) is parallel to M(nj),
suppose no edge extension is needed, |evi | is 4, (c) An exam-
ple such that Dij = d(M(ni),M(nj)) = 7 and M(ni) is not
parallel to M(nj), suppose edge evi needs to be extended to
|evi | = 9.

M(n) is inside the shortest distance regionR(M(ni),M(nj))
(Figure 3(a) and (b)). Otherwise, some adjustment is applied to
M(n) as follows. For instance, in Figure 3 (c), M(n) contains only
vj1 is merging segment if it is restricted withinR(M(ni),M(nj)).
In order to obtain more flexibility,M(n) is allowed to extend along
M(nj) such that all pointsvc of M(nj) with dr (vc,M(ni)) ≤ 9
may be included inM(n). Therefore, in Figure 3 (c), M(n) is the
line segmentvj1vc.

3.3 Algorithms and Their Analyses

Algorithm 1 Merging SegmentConstruction(lnode, rnode).

Input: Two nodes lnode and rnode ofTt(S)
Output: A routing tree with internal nodes embedded.

1. pick a lnode’s clock sinksr ;

2. pick a rnode’s right sinksl ;

3. D← d(M(lnode),M(rnode));

4. LPR← lower bound of permissible range ofsr andsl;

5. UPR← upper bound of permissible range ofsr andsl;

6. computet0skew , t
0
skew, tDskew andt

D
skew;

7. M0
skew ← (t0skew + t

0
skew)/2;

8. MD
skew ← (tDskew + t

D
skew)/2;

9. MPR ← (LPR + UPR)/2;

10. if (M0
skew ≤MPR ≤MD

skew) then
compute|elnode| according to Equation (3);
|ernode| = D − |elnode|;

11. else if (MD
skew < MPR) then

extendelnode| according to Equation (4);
|ernode| = 0;

12. else
elnode| = 0;
extendernode| according to Equation (5);

13. end if

14. construct the merging segment according to rules de-
scribed in Section 3.2 and return the resulting merging
segment;

To build the tree of merging segments, the initial clock abstract
topology tree is processed in bottom-up fashion. Merging segment
of an internal node is based on its left and right children’s merg-
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ing segments. MergingSegmentConstruction (Algorithm 1) is the
main routine constructing such merging segments. Inside the route,
sink sr of lnode and sinksl of rnode are identified, distance be-
tweenM(lnode) andM(rnode) are computed, permissible range
of sr andsl is fetched and all skews are calculated. Finally, the
merging segment is formed according to rules described in Section
3.2.

After tree of merging segments is finalized, the clock routing tree
is embedded top-down same as in DME [1]. First the location for
clock source is determined, then all descendent’s locations are re-
cursively located. In particular, each clock sink’s location is itself
and each internal node’s location is derived from its parent’s loca-
tion and the condition whether there exists extension.

In fact, Algorithm 1 is analogous to a postorder tree traversal.
The running time of postorder isO(N) whereN is the number of
edges of the tree. Furthermore, all computations in the algorithm
can be done in constant time. Therefore, both tree of merging seg-
ments and clock routing embedding can be made in timeO(N).
Note that if a tree hasn leaves, the number of the tree’s edges is
usuallyO(n).

4. EXPERIMENTAL RESULTS
The algorithm of MinSV have been tested on five benchmark cir-

cuits widely employed in the literature [4, 7, 8, 9, 15, 16]. As [15],
the wire widths are scaled under the0.18 micron technology while
the sink’s loading capacitances remain the same. We assume that
the wire width follows the variation defined in equation (1) with
nominal widthw0 = 0.54, standard deviationσ = 0.162 for the
local variation termδ, and spatial variation coefficientλ = θ =

3σ
dmax

wheredmax is the maximum rectilinear distance among all
pair of sinks. The weighting factorγ in selecting the critical sink
pairs is0.5. The wire resistance per unit length is0.0042/wΩ
wherew is the wire width, and per unit length and width capaci-
tance is3.18e− 6pF , the driver’s resistance is18.2Ω, and the unit
of pin’s loading cap is0.01pF . The initial clock routing abstract
topology is constructed by applying the method introduced in [16],
which recursively partition sinks into two equal parts in horizontal
and vertical directions alternately. However, our algorithms are not
dependent on specific topologies. Any other methods such as [1, 2,
7, 8, 9, 11, 12, 13, 17] can be used to generate the initial abstract
topology. The experiments are carried out on a SUN Blade-100
workstation with 512M memory.

Since there is no previous work which addresses the construc-
tion of process variation tolerant clocktrees, we have implemented
an extended DME algorithm for comparisons. Instead of seeking
zero-skew, as in the original DME algorithm, the objective has been
modified to target the skew between each sink pair to be at the cen-
ter of its permissible range. Since DME algorithm itself is not ca-
pable of dealing with random process variations, the local variation
term δ is ignored for the skew estimation during the DME algo-
rithm. Even though the corresponding change on the algorithm is
trivial, skew tolerance to any design uncertainties is improved due
to the increased guarding band. However, the wire width variation
is not handled directly as in our algorithms.

Different permissible ranges for each pair of sinks were applied
using uniformly distributed random numbers over [0.0, 1.0]. For
each pair of sinkssi andsj ,LPRij is negative andUPRij is pos-
itive, respectively. We use a constant SCALE to control theLPRij

andUPRij (= random number * SCALE). For each SCALE, two
types of cases are considered: (1)LPRij andUPRij are sym-
metric, that is|LPRij | = |UPRij |; (2) |LPRij | and |UPRij |
differ, but not a lot, that is|LPRij + UPRij | ≤ SCALE

10
. Results

for SCALE = 1 andSCALE = 0.1 are shown in Tables (1–

2), whereS means all permissible ranges are symmetric whileNS
indicates that all tolerance ranges are not symmetric.

Figure 4: Clock routing tree for r5.

To compare the tolerance to the process variation, two clock rout-
ing trees are constructed with the same set of permissible ranges by
DME and MinSV, respectively. For each routing tree, Elmore delay
of each sink and max skew and max skew violation among sinks are
computed with width variation. Tables (1–2) exhibit experimental
results for benchmarksr1–r5. The total wirelength are listed in
column 2 and 3. The wirelength generated from MinSV is some-
times greater and sometimes less than the wirelength resulted from
DME, but all of the differences are on a negligible level. The skew
performance is evaluated through the number of skew violations
and the maximum skew violations. The number of skew violations
are shown in column 4 and 5, and the percentage improvements
from MinSV are in column. Our algorithm constantly outperforms
the DME by large margin of32% − 57% in term of number of
skew violations. In column 7 and 8, the experimental results show
that MinSV always yields significantly less value on the maximum
skew violation and the average improvement from MinSV is32%.
The rightmost two columns show the CPU time which indicate that
our algorithm runs at speed about the same as DME.

Comparing the results between symmetric permissible range and
non-symmetric permissible range, we can see that non-symmetric
permissible ranges usually cause greater wirelength and worse skew
violations. This is due to the fact that wire snaking occurs more of-
ten when we align the skews to non-symmetric permissible ranges.
The smaller SCALE value in Table (2) implies tighter permissible
ranges and consequently the skew violations are worse. Figure 4
shows the embedded clock routing tree for the benchmarkr5.

5. MINIMIZING WIRELENGTH SUBJECT
TO SKEW CONSTRAINTS

Besides improving process variation tolerance, it is desirable to
minimize total wirelength for the clock tree and thereby reduce
power dissipation. Therefore, we further propose an algorithm on
minimizing wirelength subject to skew constraints.

Minimizing Wirelength Subject to Skew Constraints (Min-
WSC) Problem: Given a setS = {s1, s2, . . . , sn} ⊂ �2 of clock
sinks, a set of skew permissible ranges for each pair of clock sinks,
find a clock routing treeTe(S) such that the total wirelength is min-
imized while the maximum positive skew violation among all pairs
of sinks is non-positive when wire width varies in[Wl,Wu].
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total wirelength (µm) #skew violations max skew violation (ns) CPU(s)
DME MinSV DME MinSV imprv DME MinSV imprv DME MinSV

r1-S 168376 168251 89 40 55% 0.141 0.126 11% 0.1 0.1
r1-NS 179702 179630 102 58 43% 0.082 0.057 30% 0.1 0.1
r2-S 351085 352044 190 91 52% 0.365 0.206 44% 0.2 0.2
r2-NS 383169 384651 243 157 35% 0.492 0.392 20% 0.2 0.2
r3-S 440309 440989 264 114 57% 0.302 0.250 17% 0.4 0.4
r3-NS 494090 494161 318 189 41% 0.329 0.274 17% 0.4 0.4
r4-S 885678 885523 496 230 54% 1.543 0.454 71% 2.2 2.2
r4-NS 1009232 1008957 659 383 42% 0.588 0.359 39% 2.1 2.1
r5-S 1309794 1311689 834 393 53% 1.449 0.649 57% 6.9 7.0
r5-NS 1552413 1552719 1139 671 41% 1.215 1.101 9% 6.9 6.9

Table 1: The results when SCALE is 1.

total wirelength (µm) #skew violations max skew violation (ns) CPU(s)
DME MinSV DME MinSV imprv DME MinSV imprv DME MinSV

r1-S 168376 168252 161 100 38% 0.142 0.127 11% 0.1 0.1
r1-NS 169835 170020 166 101 39% 0.098 0.093 5% 0.1 0.1
r2-S 351085 352044 354 225 36% 0.371 0.207 44% 0.2 0.2
r2-NS 349704 351290 351 235 33% 0.171 0.060 65% 0.2 0.2
r3-S 440309 440990 462 285 38% 0.320 0.251 22% 0.4 0.4
r3-NS 443812 443676 491 311 37% 0.302 0.248 18% 0.4 0.4
r4-S 885678 885523 1028 616 40% 1.537 0.454 70% 2.1 2.2
r4-NS 888685 888342 1051 655 38% 0.458 0.363 21% 2.2 2.2
r5-S 1309794 1311689 1449 989 32% 1.449 0.650 55% 7.0 6.9
r5-NS 1310697 1311156 1665 1045 37% 0.993 0.763 23% 7.0 6.9

Table 2: The results when SCALE is 0.1.

The procedure to build the minimal positive skew violation and
minimal wirelength clock tree is similar to the algorithm MinSV
except that merging regions are exploited other than mere merging
segments. In section3, points whose skew range[tskew, tskew ]
closer to the center of permissible range[LPR,UPR] are pre-
ferred during tree of merging segments construction. If we only
seek non-positive skew violation, such merging scheme may cause
unnecessary extra wirelength. In order to avoid such extra wire-
length, all merging points whose corresponding skew ranges are
within permissible range are considered as candidates. Usually
these merging points may form a polygonmerging regioninstead
of a merging segment and any merging within this region will not
cause positive skew violation. Merging regions allow us more room
during the top-down routing phase to find a minimum total wire-
length. The basic idea is similar to the BST algorithm[4]. How-
ever, the scenarios in our work are much more complicated due to
the fact that each sink pair may have its distinct permissible range
in contrast to the single global skew bound in BST. Moreover, the
fact that at each pointvi on a joining segmentJn (of an internal
noden), the skew between any pair of sinks in the subtree rooted
atn is a range instead of a single value makes the merging regions
more difficult to obtain than BST.

5.1 Notations and Definitions

DEFINITION 4. Shortest Distance Region: 4 For any two con-
vex polygonal regionsP1 andP2 with boundariesB(P1) andB(P2),
respectively, theshortest distance region�(P1, P2) betweenP1

andP2 is the set of points with minimum sum of Manhattan dis-
tances toB(P1) andB(P2), i.e.,�(P1, P2) = {p | dr (p,B(P1))+
dr (p,B(P2)) = d(B(P1),B(P2))}.
4Note that shortest distance region here is defined based on merg-
ing regions and is different from the shortest distance region de-
fined in Section3.

DEFINITION 5. Shortest Distance Segments: For any two con-
vex polygonal regionsP1 andP2 with boundariesB(P1) andB(P2),
respectively, theshortest distance segmentsof B(P1) and B(P2)
are defined asSP2(P1) = B(P1) ∩ �(P1, P2) and SP1(P2) =
B(P2) ∩ �(P1, P2)

DEFINITION 6. Joining Segment: Let n be an internal node
with childrenni andnj with merging regionM(ni) andM(nj),
respectively. The segments ofM(ni) andM(nj) used to build the
merging regionM(n) are calledjoining segments, denoted asJni

andJnj .

DEFINITION 7. Well-behaved Elmore Delay Line Segment: Let
a joining segmentJn with respect to an internal noden be a line
segment with ending pointsv1 andv2. For each pointvp onJn, let
u denotedr (v1, vp), thendr (v2, vp) = |Jn| − u. If for any leaf
nodesk in the subtree rooted atn�

t(vp, sk) = K · u2 + α1 · u+ β1

t(vp, sk) = K · u2 + α2 · u+ β2

whereK, α1, α2, β1, and β2 are constants, thenJn is a well-
behaved Elmore delay line segment.

5.2 Tree of Merging Regions Construction
Suppose we are working on the tree of merging regions for a

noden with childrenni andnj and letTM(ni) andTM(nj) de-
note two subtrees of merging regions rooted atni’s merging re-
gionM(ni) andnj ’s merging regionM(nj), respectively.M(n)
is constructed based on the skew betweenTM(ni)’s sink sr and
M(nj)’s sinksl. First, shortest distance segmentsSM(ni)(M(nj))
andSM(nj)(M(ni)) are found and are used as joining segments
Jni and Jnj . We assume thatJni and Jnj are well-behaved:
when Jni and Jnj are parallel Manhattan arcs, delay functions
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on Jni andJnj are constants and whenJni andJnj are paral-
lel non-Manhattan arcs, delay functions onJni andJnj have same
quadratic terms.

First of all, let us look at certain pair of pointsvi and vj on
Jni and Jnj such thatdr (vi, vj) = d(Jni ,Jnj ). If the skew

rangeBskew = [t0skew(sr, sl), t
Dij

skew(sr, sl)] and permissible
rangeBPR = [LPRrl, UPRrl], whereDij = d(Jni ,Jnj ),
there are four scenarios: (1) BPR andBskew do not overlap, (2)
BPR andBskew partially overlap, (3) BPR coversBskew com-
pletely, and (4) BPR is covered byBskew completely. When
LPRrl = t0skew(sr, sl) andUPRrl = t

Dij

skew(sr, sl), both case
(3) and case (4) occur and we treat this as case (3) for simplicity.

Case (1). happens when (a) UPRrl < t0skew(sr, sl) or (b)

LPRrl > t
Dij

skew(sr, sl). In subcase (a), we let|evi | = 0 andevj

has to be extended according to Equation (5). In subcase (b), we
first let|evj | = 0 and compute|evi | = z by solvingtzskew(sr, sl) =

LPRrl. If the result satisfiest
|evi

|
skew(sr, sl) ≤ UPRrl, then we are

done. Otherwise,|evj | = 0 andevi has to be extended according
to Equation (4). In this case, the merging region is reduced to a
merging segment.

Case (2). happens whenLPRrl ≤ tDij

skew(sr, sl) andt0skew(sr, sl) ≤
UPRrl. If t0skew(sr, sl) < UPRrl < t

0
skew(sr, sl) or t

Dij

skew(sr, sl) <

LPRrl < t
Dij

skew(sr, sl), thenevj or evi is extended as Case (1).

Otherwise, either (c) t0skew(sr, sl) < UPRrl < t
Dij

skew(sr, sl) or

(d) t0skew(sr, sl) < LPRrl < t
Dij

skew(sr, sl) is true. By solving

t
|evi

|
skew(sr, sl) = UPRrl, we have

zlo =
UPRrl − t(vi, sr) + t(vj , sl) + (

rc·D2
ij

2
+

r·Dij ·CTj

Wu
)

rc ·Dij + r(
CTi
Wl

+
CTj

Wu
)

,

(6)

and the edge length ofevi can be any value in[0, zlo] for subcase
(c). Similarly, we can obtain

zhi =
LPRrl − t(vi, sr) + t(vj , sl) + (

rc·D2
ij

2
+

r·Dij ·CTj

Wl
)

rc ·Dij + r(
CTi
Wu

+
CTj

Wl
)

(7)

by solvingt|evi
|skew(sr, sl) = LPRrl and|evi | can be any value

in [zhi,Dij ] for subcase (d).
Case (3). happens whenLPRrl ≤ t0skew(sr, sl) ≤

t
Dij

skew(sr, sl) ≤ UPRrl. The value of|evi | is in [0, Dij ] and
|evj | = Dij − |evi |.

Case (4). happens whent0skew(sr, sl) < LPRrl ≤ UPRrl <

t
Dij

skew(sr, sl). If there exists somez = |evi | such thatLPRrl ≤
tzskew(sr, sl) ≤ t

z
skew(sr, sl) ≤ UPRrl, then |evi | has to be

within [zlo, zhi] and |evj | = Dij − |evi |. Otherwise,|evi | is ob-
tained by solving

t
|evi

|
skew(sr, sl)− LPRrl = UPRrl − t|evi

|
skew(sr, sl)

and|evj | = Dij − |evi |.
Then let us consider when pointsvi andvj move alongJni and

Jnj simultaneously. The delay functions aret(vi, sr) = K · u2
i +

α1 · ui + β1, t(vi, sr) = K · u2
i + α2 · ui + β2, t(vj , sl) =

K ·u2
j +α3 ·uj +β3, andt(vj , sl) = K ·u2

j +α4 ·uj +β4, where
0 ≤ ui ≤ |Jni | and0 ≤ uj ≤ |Jnj | andK, α1, α2, α3, α4, β1,
β2, β3, andβ4 are constants.

If we let |evi | = z and|evj | = Dij−z, whereDij = d(Jni ,Jnj ),
then for merging pointv,

8>>>>><
>>>>>:

t(v, sr) = rc
2
· z2 +

r·CTi
Wu

· z + t(vi, sr)

t(v, sr) = rc
2
· z2 +

r·CTi
Wl
· z + t(vi, sr)

t(v, sl) = rc
2
· (Dij − z)2 +

r·CTj

Wu
· (Dij − z) + t(vj , sl)

t(v, sl) = rc
2
· (Dij − z)2 +

r·CTj

Wl
· (Dij − z) + t(vj , sl)

Let us consider the following two cases:
Case (a). Jni andJnj are both Manhattan arcs. Sincet(vi, sr),

t(vi, sr), t(vj , sl), andt(vj , sl) are constants (see explanation later),
without loss of generality, we may assume thatt(vi, sr) = β1,
t(vi, sr) = β2, t(vj , sl) = β3, andt(vj , sl) = β4. Therefore,

8<
:
tzskew(sr, sl)a = (rc ·Dij +

r·CTi
Wu

+
r·CTj

Wl
) · z + t0skew,a

t
z
skew(sr, sl)a = (rc ·Dij +

r·CTi
Wl

+
r·CTj

Wu
) · z + t

0
skew,a

and 8<
:
t0skew,a = (β1 − β4)− (

rc·D2
ij

2
+

rDij ·CTj

Wl
)

t
0
skew,a = (β2 − β3)− (

rc·D2
ij

2
+

rDij ·CTj

Wu
)

(8)

Case (b). WhenJni andJnj are not Manhattan arcs, we have
ui = uj . Therefore, the skew range is given by

�
tzskew(sr, sl)b = (α1 − α4)ui + tzskew(sr, sl)a
t
z
skew(sr, sl)b = (α2 − α3)ui + t

z
skew(sr, sl)a

(d) nj

Jni

(e)

Jni

Jnj

(f)

Jni

Jnj

Dij
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Figure 5: (d) merging region when Jni and Jnj are parallel
well-behaved Manhattan arcs and skew condition is in (a), (e)
merging region when Jni and Jnj are parallel well-behaved
horizontal line segments and skew condition is in (b), and (f )
merging region when Jni and Jnj are parallel well-behaved
with slope m > 0 and skew condition is in (c), where lt0 stands
for t0skew(sr, sl), ut0 for t0skew(sr, sl), ltD for t

Dij

skew(sr, sl), and

utD for t
Dij

skew(sr, sl).

Based on the above discussions, whenvi andvj are moved along
Jni andJnj simultaneously, one case is replaced by another if one

of the four line segments representingt0skew(sr, sl), t
0
skew(sr, sl),

t
Dij

skew(sr, sl), and t
Dij

skew(sr, sl) intersects either one of horizon-
tal line segments representingLPRrl or UPRrl. Therefore, the
merging region ofJni andJnj can be formed in constant time by
considering conditions at all possible intersections since there are
at most8 intersections. Figure5 illustrates some examples.

Note that during the construction, the following may happen: (i)
Jni andJnj are parallel Manhattan arcs with non-constant delay
functions or (ii) the delay functions onJni andJnj have different
quadratic terms. Under these situations, any pair of points can be
picked up to construct the merging region as long as they satisfy
vi ∈ Jni , vj ∈ Jnj , anddr (vi, vj) = d(Jni ,Jnj ).
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5.3 Merging Region Construction Procedure
Suppose we are working on the merging region for a nodenwith

childrenni andnj .

Step 1. Find joining segmentsJni = SM(nj)(M(ni)) andJnj =
SM(ni)(M(nj)) and then computeDij = d(Jni ,Jnj ).

Step 2. Based on skew permissible range betweensr and sl
[LPRrl, UPRrl] and delay functionst(vi, sr), t(vi, sr),
t(vj , sl) andt(vj , sl) defined for pointsvi onJni andvj on
Jnj , compute delay functions oft(v, sr), t(v, sr), t(v, sl)
andt(v, sl). Next, functionstzskew(sr, sl) andtzskew(sr, sl)
are calculated.

Step 3. If Jni andJnj are both well-behaved Manhattan arcs
parallel to each other, then we may obtain the merging re-
gion according to the relation betweenBskew andBPR as
described in Section5.2.

Step 4. If Jni andJnj are both well-behaved non-Manhattan arcs
parallel to each other, then all possible intersections between
t0skew(sr, sl), t

0
skew(sr, sl), t

Dij

skew(sr, sl), or t
Dij

skew(sr, sl)
and line segmentsLPRrl or UPRrl are obtained first. For
each intersection, the positions ofvi andvj are located on
Jni and Jnj , and a feasible range[Levi

, Uevi
] (Levi

≤
Uevi

) for evi is found. Furthermore, feasible range is also
computed whenvi andvj are ending points ofJni andJnj .
Then for each feasible range, the possible locations for merg-
ing pointv when|evi | = Levi

or |evi | = Uevi
are located

inside shortest distance region�(Jni ,Jnj ) of Jni andJnj

in the Manhattan plane. Finally, the minimal polygon enclos-
ing these locations is constructed as the merging region.

The following Lemmas show the correctness of the merging re-
gion construction procedure(the proofs are omitted due to page
limit). The boundaries of merging region are either Manhattan arcs
or rectilinear line segments whenJni andJnj are parallel well-
behaved Manhattan arcs. However, boundaries of merging region
could be any kinds of line segments ifJni andJnj are parallel
well-behaved non-Manhattan arcs.

LEMMA 2. If Jni and Jnj are two well-behaved Manhattan
arcs parallel to each other, then any Manhattan arc or rectilinear
line segmentl ∈ �(Jni , Jnj ) is also well-behaved.

LEMMA 3. If Jni andJnj are two parallel well-behaved non-
Manhattan joining segments, then any line segmentl ∈ �(Jni ,Jnj )

is also well-behaved if the delay functionst andt defined overJni

andJnj have the same quadratic term.

LEMMA 4. M(v) is a polygon with at most20 boundary seg-
ments.

6. CONCLUSION AND FUTURE WORK
In order to cope with the increasingly severe impact on clock

skew from process variation, we propose DME/BST based process
variation aware clock tree routing algorithms to improve skew tol-
erance to process variations. Experimental results show that our
method provides great improvement on skew tolerance to process
variations. In this work, we adopt existing techniques on con-
structing initial abstract topology. However, these techniques are
either based on clock sink location distributions [16], or only skew
permissible ranges between clock sink pairs [17]. In future, we
will investigate new techniques on abstract topology construction
that considers both the sink physical proximities and sink temporal
specifications to enable a better skew tolerance for clock routing
tree. Process variations on clock buffers will be considered in fu-
ture as well.
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