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Abstract

In sub-90nm process technology it becomes harder to
control the fabrication process, which in turn causes vari-
ations between the design-time parameters and the fabri-
cated parameters. Variations in the critical process param-
eters can result in significant fluctuations in the switching
speed and leakage power consumption of different transis-
tors in the same chip.

In this paper, we study the impact of process variation
on issue queues. Due to process variation, issue queues can
take variable access latency. In order to work with non-
uniform access latency issue queues, by exploiting ready
operands of instructions at dispatch time, we propose a pro-
cess variation aware issue queue design. Experimental re-
sults reveal that, for a 64-entry issue queue with half of the
entries affected by process variation, our technique recov-
ers most of the lost performance due to process variation
and incurs a performance penalty of less than 2% with re-
spect to the performance of issue queues without process
variation.

1 Introduction

In the advanced process technologies, it is very difficult
to control the fabrication process. The fabricated parame-
ters can be different from the design-time parameters. The
major factors leading to process variation are wafer mis-
alignment, random dopant fluctuations, and imperfections
in planarizarion steps. Variations in the critical process
parameters such as threshold voltage or effective channel
length can result in significant fluctuations in the switching
speed and leakage power consumption of different transis-
tors in the same chip. For instance, parameter variations in
130nm technology cause a 30% variation in the maximum
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allowable frequency of operation and a fivefold increase in
leakage power [5].

Parameter variations are classified as process variation
due to manufacturing phenomena, voltage variations due
to manufacturing and runtime phenomena, and temperature
variations due to activity and power dissipation variations.
While the voltage and temperature variations are runtime
phenomena, process variation is static and manifest itself
as die-to-die (DID) and with-in-die (WID) variations. WID
variation can be further divided into random and systematic
variations, where random variation is small change from
transistor to transistor and systematic variation exhibits spa-
tial correlations. WID variation can reduce the performance
gains of deeper pipelines [22].

Process variation is severe in memory components as
minimum sized transistors are used for density reasons [15].
Critical path delay in memory components is mainly dic-
tated by sensing operations and the variable sense current
produced by the minimum sized transistors causes a large
timing variations of output data arrival [12]. The usual prac-
tise of designing for worst-case process margins may not be
viable for future designs because of the degree of variability
encountered in the advanced process technologies.

In this paper, we study process variation effects on issue
queues, a performance-critical component of superscalar
processors [14]. Here we consider CAM/RAM based is-
sue queue and assume that the CAM cells take non-uniform
search times due to process variation and hence the is-
sue queue takes variable access latency. In order to work
with non-uniform access latency issue queues, by exploit-
ing ready operands of instructions at dispatch time, we pro-
pose a process variation aware issue queue design. We vali-
date our techniques by running SPEC2000 CPU benchmark
suite [3] on Simplescalar simulator [2] and show that, for a
64-entry issue queue with half of the entries affected by pro-
cess variation, our technique recovers most of the lost per-
formance due to process variation and incurs a performance
penalty of less than 2% with respect to the performance of
issue queues without process variation.



2 Related Work

As process variation can significantly impact perfor-
mance, several circuit-level and architectural-level tech-
niques have been proposed in the literature to minimize the
performance loss. Circuit-level techniques such as adap-
tive body biasing [17] and adaptive supply voltage [26] are
proposed to reduce the clock speed variability due to DID
and WID variations. Though these techniques are effective,
they add complexity to the manufacturing process, increase
leakage power, and reduce reliability.

As process variation makes some of the pipeline stages
slower and hence reduces the maximum frequency attain-
able by the pipeline, an architectural technique, called Re-
Cycle [7], is proposed to transfer the time slack of the faster
pipeline stage to the slower stages.

A variation-aware cache architecture [4] is proposed to
avoid faults by adaptively resizing the cache and hence im-
prove the yield. For process variation affected data caches,
an architectural technique, called variable-latency cache
architecture [23], is proposed in which extra buffers are
placed before the functional units to support different load
accesses with varying latencies.

By identifying wakeup/select logic path as a critical bot-
tleneck, a dependence-based issue queue design is proposed
in [24], which replaces the conventional issue queue with a
set of FIFOs. As instruction issue takes place through the
FIFO heads, the wakeup/select logic latency scales with the
number of FIFOs rather than the number of issue slots. Dis-
patch logic makes sure that all dependent instructions are
placed in the same FIFO.

By exploiting the fact that most instructions have one
or two ready operands at dispatch time, an issue queue de-
sign is proposed in [10], which consists of three separate is-
sue queues, i.e., without CAM logic for instructions whose
operands are ready; CAM logic for instructions with one
non-ready operand; CAM logic for instructions with both
operands non-ready at dispatch time. By using these sepa-
rate issue queues along with the last-tag speculation, a large
fraction of tag comparisons are eliminated from the sched-
ulers critical path. As some of the instructions may have
both operands ready at the time of dispatch or require only
one operand, a technique to disable wakeup logic for empty
entries and ready operands is proposed in [11] to minimize
dynamic power consumption.

Other works such as two-level issue queue design [20],
half-price architecture [13] and sub-banking issue queue de-
sign [25] are proposed in literature.

3 Issue Queue

In order to support out-of-order execution, modern day
superscalar datapaths include a number of components.
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Figure 1. Issue queue entry [14].

One such component is issue queue. The issue queue stores
the instructions waiting for execution, identifies whether
operands are ready through wakeup logic, and selects in-
structions for execution whose operands are ready and
whose required resources are available through select logic.

After an instruction is fetched, it is decoded and dis-
patched to the issue queue irrespective of the availability of
its input register operands. An instruction waits in the issue
queue until its input operands are ready. When an instruc-
tion is executed, the result tag of the instruction is broad-
casted to all the instructions waiting in the issue queue. The
wakeup logic compares the result tag with the input operand
tags of each instruction in the issue queue and if it finds
a match, the corresponding ready bit is ser. When both
operands of an instruction are ready, a request is made to
the select logic for execution. Based on the scheduler pol-
icy, the select logic chooses the next instructions to execute
from all ready instructions. The selected instructions upon
receiving a grant signal from the select logic are sent for-
ward to later stages in the pipeline.

A common way to implement issue queues is based
on CAM/RAM structures [24]. The RAM cells store op-
erations, destination operands, and ready bits indicating
whether source operands are ready, while the CAM cells
store source operand fags. As all source operand tags in the
issue queue are searched in a fully associative manner to
know which operands become ready for all the instructions
in the issue queue [14, 24], the CAM cells are used to store
the source operand fags. The main idea behind using CAM
to store the source operand tags is that it implements fully
associative search in a single clock cycle using dedicated
comparison circuitry [18].

Figure 1 shows the structure of an issue queue entry
based on the CAM/RAM structure. Each entry can ac-
commodate two operands by providing a tag location and
a ready bit for each operand. Every result tag is connected
to all the operand tags in the issue queue as shown in Figure
1. In each cycle, a maximum of issue width (IW) number of
result tags are compared with the operand tags in the issue
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Figure 2. CAM cell wakeup logic [24].

queue. CAM cell wakeup logic is shown in Figure 2. Each
cycle, all the match lines are precharged and then they are
conditionally discharged based on the tag values stored in
the CAM cell. For detailed hardware implementation of the
issue queue, one can refer to [24].

4 Process Variation Aware Issue Queue

In this paper, we consider an issue queue based on
CAM/RAM structure and assume that the wakeup logic of
the issue queue is affected by process variation. We assume
that the threshold voltage (V}j) variation is the major source
of WID variation as the effect of other parameter variations
can be translated as effective variations in V;;, [4]. Note
that CAM is compared every cycle and RAM containing the
payload area of the issue queue is accessed only during the
read operation when the instruction is dispatched on to the
functional unit. Hence we take into consideration the CAM
logic being affected by process variation when proposing
our techniques as it plays a very crucial role in the perfor-
mance of the issue queue and the system as a whole.

As wakeup logic is implemented using CAM cells, we
discuss the impact of process variation on CAM cells.
A CAM cell is mainly classified as either NOR-type or
NAND-type CAM cell [18] and it has a bit storage and bit
comparison circuitry. The CAM cells use SRAM cells for
bit storage. Process variation results in the mismatch in the
strengths of the different transistors in a CAM cell. Due to
such device mismatches, different type of failures can occur
in the CAM cell, which include search time failure, match
failure, and SRAM bit failure [4, 6]. The SRAM bit fail-
ures are further classified as read failure, write failure, and
access time failure [4].

The CAM cell search time is defined as the time taken
for a pre-specified voltage drop on the matchline. Due to
process variation, the CAM cell search time can vary sig-
nificantly [6]. By assuming that the deviation in V}j fol-
lows a normal distribution with 20% standard variation,
we evaluated the NOR-type CAM design (implemented in
65mm process technology) using Monte Carlo simulations
in HSPICE and obtained a 10.5% variation in the search

time of NOR-type CAM cell. Based on this analysis we
assume that the access latency of process variation affected
entry is 2 cycles and that of non-process variation affected
entry is 1 cycle. In the base case we consider an issue queue
which is not affected by process variation.

In order to work with variable latency issue queues, one
can consider the following worst-case design scenarios:

e CycleTimelncrease (CTI): The clock cycle time is in-
creased based on the worst-case access time. Here, we
consider 10.5% increase in the clock cycle.

e MultipleCycles (MC): The original clock cycle time
is maintained but the issue queue is accessed in mul-
tiple clock cycles. Here, all entries of the issue queue
take an access latency of rwo cycles.

¢ DisablingAffectedSpace (DAS): Disable an entry of
the issue queue permanently if it contains at least one
process variation affected tag locations so that the issue
queue becomes a queue without process variation at
the cost of reduced number of entries.

Increasing the clock cycle time has negative impact on
the overall pipeline performance as it increases the execu-
tion time, while the MC scheme has a problem of skipping
tag comparisons. As results of executed instructions in the
pipeline are produced in every cycle, the result tags have to
be compared with the source operand tags of instructions
present in the issue queue. If the access latency of the issue
queue is two cycles (in the case of MC scheme), some of
the produced results may not be compared with the operand
tags. In other words, if the issue queue is accessed in ev-
ery odd cycles (because of two cycle latency), all the re-
sults produced in even cycles cannot be compared with the
operand tags of instructions present in the issue queue. In
order to facilitate tag comparison in every cycle, we need
to split the issue queue into two sub-queues of equal en-
tries such that both these queues store same data and one
queue facilitates tag comparison in even cycle while the
other queue facilitates tag comparison in odd cycle. When-
ever we dispatch an instruction to one sub-queue, the in-
struction is also dispatched to the other sub-queue. Though
the access latency of the issue queue takes two cycles, be-
cause of tag comparison in every cycle, the throughput re-
mains same as that of the issue queue without process vari-
ation. As splitting the issue queue into two parts results in
50% reduction in the number of entries, the MC technique
incurs significant performance penalty especially when only
few entries of the issue queue are affected by process vari-
ation. The MC technique performs better when the number
of entries affected by process variation is more than 50% of
the issue queue size, while the DAS technique performs bet-
ter when the number of entries affected by process variation
is less than 50% of the issue queue size.

We now propose a process variation aware design tech-
nique to minimize the performance loss. In order to sup-



Parameter Value

RUU size 64 instructions
LSQ size 32 instructions
Machine width 8 wide fetch, 8 wide issue, 8 wide commit
Functional Units |8 Integer ALUs, 4 Integer multiply/divide,
8 FP add, 4 FP multiply, 4 FP divide/sqrt
64K, 4-way (LRU),
64B blocks, 2 cycle latency
64K, 4-way (LRU),
32B blocks, 1 cycle latency

L1 Data cache

L1 Inst. cache

L2 cache Unified, 512KB, 8-way (LRU),
128B blocks, 12-cycle latency
Memory 160 cycles
ITLB 16-entry, 4KB block, 4-way,
30-cycle miss penalty
DTLB 32-entry, 4KB block, 4-way,

30-cycle miss penalty
Combined, Bimodal 2K table,
2-Level 1K table, 8 bit history, 4K choser

Branch predictor

BTB 1K-entry, 4-way
Return-address stack 8
Mispredict penalty 18 cycles

Table 1. Our default configuration parameters

port our technique, we consider a modified version of the
wakeup logic by considering a PV bit for each operand tag
location and adding a 2-input AND gate to the precharge
signal. If the PV bit is reset for an operand tag location, the
operand tag location is said to be affected by process vari-
ation. We initialize the PV bits using the March test [19].
The March test is employed during the functional testing of
memory components and it can distinguish the low and high
latency components. It applies a sequence of operations that
read and write values of Os and 1s to different memory lo-
cations. The March test can also be used to identify the
process variation effects such as destructive readout failures
[21]. We characterize issue queue operand tag locations as
either low or high latency locations through such test that
captures access time failures before the operational phase of
a microprocessor and initialize the corresponding PV bits.
The inputs to the AND gate are the original precharge sig-
nal and the PV bit, which is associated with every operand
tag location. The output of the AND gate will drive the
precharge transistors of each match line. If the PV bit is re-
set for an operand, the precharge operation for all the match
lines of the ready operand is disabled, the corresponding
ready bit is set. Note that each entry of the issue queue has
two extra bits PV} and PV, one for each tag location.

e ProcessVariationAwarelssueQueue (PVAIQ): In-
structions with one or two ready input operands are
stored in the process variation affected entries of the
issue queue. If no process variation affected entries are
found, the instructions are steered onto the non process
variation affected space.

Number of entries

Configuration | Partially affected | Fully affected|Clean
Configl 8 8 48
Config2 16 16 32
Config3 8 40 16

Table 2. Different configurations of partially
and fully affected entries of the issue queue.

At dispatch time, we check whether an instruction is a
0, 1, or 2 operand instruction and whether zero or more
of its operands are ready. Note that whenever an instruc-
tion with one or two ready operand(s) is dispatched to an
entry in the issue queue, it is not necessary to access the
corresponding operand tag locations of the entry to write
the ready input operand tags and compare the operand tags
with the result tags. Exploiting reduced tag comparators for
instructions with zero or one non-ready operands is already
explored in the context of power-performance efficient dy-
namic scheduling [10]. In order to minimize the perfor-
mance loss due to process variation, we exploit disabling
wakeup logic for process variation affected operand tag lo-
cations to steer instructions with ready operands.

Through out the paper, we assume that an issue queue
entry is said to be fully affected if both operand tag loca-
tions are affected by process variation; partially affected if
only one operand tag location affected by process variation;
and clean entry if none of the tag locations are affected by
process variation. Based on the above assumption, the is-
sue queue is logically partitioned into four sub-queues, one
sub-queue with clean entries (1)1 1), tWo sub-queues with
partially affected entries (/01,2 and /()2 1), and one sub-
queue with fully affected entries (/(Q)2,2).

If an instruction with two ready operands is encountered,
we steer it to an entry of 1()2 2, provided there is a free entry
in IQQ2,2. As PV bits are reset initially for fully affected en-
tries, the precharge operation for the matchlines is disabled
and hence the wakeup logic for the operand tag locations is
disabled. Since each operand tag location has an issue width
(IW) number of matchlines (one matchline for every result
tag), we disable all the match lines of an operand tag loca-
tion. Note that disabling the wakeup logic for issue queue
entries is already explored in the context of dynamic power
minimization [11]. As wakeup logic for process variation
affected operand tag location is disabled, it has no impact on
the CAM cell search time, and hence the worst-case search
time of CAM cells remains one cycle. If there is no free
entry in /()2 2, the instruction is steered onto 1Q)1 1.

If an instruction with one non-ready operand is encoun-
tered, we steer it to either /(Q21 or Iy 2 in such a way
that the source tag of the non-ready operand is written onto
the clean tag location of the issue queue entry. The wakeup
logic of the other tag location is disabled as its PV bit is
reset. If there is no free entry available in the correspond-
ing IQ2,1 or IQ)1 2, the instruction is steered onto [Q) ;.
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Figure 3. Percentage runtime distribution of
ready input operands for issue queue.

Disabling the wakeup logic for the affected tag locations
does not effect the operation of the issue queue as the cor-
responding ready bits are set initially. For any instruction
with two non-ready operands, we always steer it to /() ;.

Note that the PV; and PV5 bits of all the entries of the
issue queue are associatively searched in parallel to find a
free entry along with the register renaming and checking
the status of the source physical registers. The steering al-
gorithm is a bit more complicated when compared to the
traditional designs but there is no extra delay involved as
the searches occur in parallel. Similar complexity issues
are discussed in various techniques like instruction packing
[16] and dynamic scheduling through tag elimination [10].
The instruction wakeup and the instruction selection logic
remain the same as that of the traditional designs except that
the wakeup logic has reduced tag comparisons.

S Experimental Validation
5.1 Experimental Setup

The baseline processor configuration used in our exper-
iments is given in Table 1. We validate our technique by
simulating 19 SPEC2000 CPU benchmarks [3] using the
Simplescalar 3.0 simulator [2]. For each benchmark, we
fast-forward 1 billion instructions and then simulate the next
500 million instructions. As part of sensitivity analysis, we
conduct experiments by assuming different configurations
of partially affected and fully affected entries of the issue
queue as shown in Table 2. In the configl and config2 pro-
cess variation cases, we assume equal number of partially
affected and fully affected entries, while in the config3 pro-
cess variation case, to model the worst case affected space,
we assume more number of fully affected entries as com-
pared to the partially affected entries.

5.2 Experimental Results

Figure 3 shows benchmark-wise percentage distribution
of 0, 1, and 2 input operand ready instructions. Percent-
age of 0, 1, and 2 input operand ready instructions, on an
average, is 14.3%, 45.4%, and 40.3%, respectively, for a
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Figure 4. Performance degradation of various
techniques w.r.t. the base case.

64-entry issue queue. These results are similar to the re-
sults presented in [10]. PVAIQ technique exploits this high
percentage of instructions with 1 or 2 ready input operands
to minimize performance penalty due to process variation
by steering such instructions onto partially or fully affected
issue queue entries.

Figure 4 shows benchmark-wise IPC degradation for dif-
ferent techniques with respect to the base case with con-
fig2. Performance degradation of the MC technique is very
significant and it ranges from 8.7% (“‘perlbmk”) to 49.1%
(“galgel”). High performance penalty for the MC technique
in the case of “galgel” and “art” is due to the fact that the
performance of “galgel” and “art” is heavily dependent on
the issue queue size. As a result even the DAS technique
performs poorly in these benchmarks. The PVAIQ tech-
nique reduces the performance penalty with respect to the
base case to a very large extent as compared with the other
two techniques and the performance penalty ranges from
0.22% (“gec™) to 6.24% (“applu”). Notable performance
penalty for the PVAIQ technique in the case of “applu” can
be attributed to two factors. One is that the performance
of “applu” is heavily dependent on the issue queue size.
Second reason is clearly visible from Figure 3, where “ap-
plu” has the highest percentage of non-ready instructions
(24.8%).

Figure 5 shows average performance degradation of dif-
ferent techniques with respect to the base case for is-
sue queue with different configurations of process vari-
ation affected entries. The performance degradation for
the MC technique remains same for different configura-
tions of the affected space. For the DAS technique the
performance degradation varies from 5.52%(“configl”) to
29.9%(“config3”). The DAS techniques has poor perfor-
mance when compared to the MC technique in config3
due to the fact that there are lesser number of clean en-
tries. In the case of config2 even though both MC and
DAS techniques have the same number of issue queue en-
tries the DAS technique gives a better performance when
compared to the MC technique because the MC technique
deals with the affected space also for which writing onto the
issue queue takes 2 cycles. In the case of PVAIQ technique
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Figure 5. Average performance degradation
of various techniques w.r.t. the base case.

the average performance degradation varies from as less as
0.28% (“configl”) to a maximum of 8.9% (“config3”) for
an issue queue size of 64. Overall, the PVAIQ techniques
incurs a very small performance penalty (less than 2%) for
a 64-entry issue queue with half of the entries being process
variation affected as compared to the MC (21.8%) and DAS
(13.8%) techniques.

For sensitivity analysis, we also conducted experiments
by considering issue width of 4 and 128-entry issue queue
and we observed that our technique significantly reduces
the performance loss due to process variation. For an
issue width of 8 and 128-entry issue queue the per-
formance penalty is 0.02%(“configl”), 0.11%(*config2”),
2.84%(“config3”), for an issue width of 4 and 64-entry
issue queue it is 0.34%(“configl”), 1.31%(“config2”),
6.18%(“config3”) and for an issue width of 4 and 128-
entry issue queue it is 0.02%(“config1”), 0.05%(“config2”),
2.22%(“config3”).

6 Conclusions and Future work

In this paper, we proposed an issue queue design to min-
imize the performance penalty due to process variation. Ex-
perimental results reveal that our technique can significantly
reduce performance penalty incurred due to access latency
variations. As part of the future work we would like to study
the effect of process variation on the RAM(payload) part of
the issue queue.
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