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Processed pseudogenes acquired somatically
during cancer development
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Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such

mutational process. Germline retrotransposition can cause processed pseudogenes, but

whether this occurs somatically has not been evaluated. Here we screen sequencing data

from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17

samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic

features mirror those of germline LINE element retrotranspositions, with frequent target-site

duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements

(21%), 50 truncation (74%) and polyA tails (88%). Transcriptional consequences include

expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic

pseudogene that integrated into the promoter and first exon of the tumour suppressor gene,

MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes

represents a new class of mutation occurring during cancer development, with potentially

diverse functional consequences depending on genomic context.
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M
utation underpins both the evolution of species and the
development of cancer1. In the germline, repetitive
DNA, such as long interspersed elements (LINE) and

Alu repeats, form a sizable proportion of the human genome.
LINE elements continue to propagate in the genome through
their retrotransposition machinery. Essentially, a functional LINE
element, when transcribed and translated by the host machinery,
encodes two proteins that co-ordinate reverse transcription of the
mRNA template and its integration back into the genome at a
distant site from the original element. Insertion of transposable
elements has considerably reshaped the human genome over
evolutionary time. A role for retrotransposition as a mutational
force in somatic cells has been increasingly recognized in the last
few years, documented to occur during both normal
neurogenesis2–5 and cancer development6–10.

Germline pseudogenes, representing cDNA copies of mRNA
transcripts, are a by-product of LINE-mediated retrotransposi-
tion11. This copying of DNA sequence through an mRNA
intermediate creates several distinctive genomic features of
pseudogenes, including the presence of polyA tails, absence of
intronic sequence and target-site duplications. In the germline,
processed pseudogenes influence evolution through gene
duplication, novel exons, gene fusions12, sequestration of
miRNAs13 and antisense transcript production14.

Formation of processed pseudogenes has not been system-
atically studied in cancer. From a screen of 660 cancer samples,
we find that somatically acquired pseudogenes are present in 2.6%
of cancers, especially lung and colorectal cancers. We find a
diverse array of transcriptional consequences, including expres-
sion from UTR and intronic insertions, as well as inactivation of
transcription from exonic insertions.

Results
We developed bioinformatic methods to detect somatically
acquired processed pseudogenes in massively parallel sequencing
data from both targeted exome and genome-wide studies in
cancer. Paired-end sequencing reads were aligned to the genome
and transcriptome with a view to identifying reads that split
exactly across canonical splice sites, were mapped to exons
separated by more than the library insert size, or mapped between
a pseudogene and its insertion site (Supplementary Fig. 1). To
define a putative pseudogene, we required that at least three exons
from a single gene were represented in the tumour DNA, with at
least two canonical splice junctions directly observed from either
split reads or confirmatory capillary sequencing. To establish that
pseudogenes were not germline, we analysed sequencing data
from the matched normal DNA for the given patient and
screened for identical events in other patients. We performed
PCR on tumour and matched normal DNA for all predicted
pseudogenes with mapped insertion sites, and excluded variants
with a positive germline PCR band from this analysis
(Supplementary Fig. 2).

We identified 42 somatically acquired pseudogenes in 14 out of
629 primary cases and 3 out of 31 cell lines sequenced (Table 1,
Supplementary Data 1 and Supplementary Table 1). As a typical
example, in a lung cancer we identified an insertion of all five
exons of the gene FOPNL, including a portion of the 50 UTR, the
full coding sequence and the full 30 UTR, into the eleventh intron
of SND1 in the opposite orientation (Fig. 1a). All four canonical
exon–exon junctions of FOPNL were crossed by sequencing reads
in the tumour DNA, and a polyA tail of at least 50 bp was present
at the 30 end of the pseudogene. No such evidence was seen in the
matched germline DNA from this patient or any other, and PCR
confirmed the 50 and 30 insertion points as somatic. The two
insertion points were mapped to base-pair resolution and

revealed a target-site duplication of 10 bp that included the motif
TTTT at either end of the pseudogene.

We observed variations on this theme (Figs 1b and 2a,
Supplementary Fig. 3). PolyA tails were usually, but not
universally, present, seen in 88% (21/24) pseudogenes with
insertion sites fully mapped. Target-site duplications were
frequent (67% with insertion sites fully mapped; 16/24),
although in five cases target-site deletions occurred. The majority
(74%; 31/42) of somatic pseudogenes did not contain the full
coding sequence of the gene, as the 50 end was frequently
truncated during reverse transcription and insertion. Two
somatic pseudogenes were novel isoforms of their template genes
not recorded in the Ensembl database. We did not observe any
base substitutions in the somatic pseudogenes, implying that the
reverse transcriptase has reasonable fidelity and the template
transcripts had not undergone RNA editing.

On the basis of these characteristics, somatic pseudogenes, like
their germline counterparts, are probably a product of the reverse
transcription and transposition capability of endogenous LINE
elements acting on mature mRNA transcripts. Most compelling is
the presence of target-site duplications of 8–20 bp, with the point
of insertion of the polyA tail almost universally occurring within
a TTTTAA or very similar motif (Fig. 2b), which is the classic
signature of LINE retrotransposition15,16. Where we observed
target-site deletions at insertion points the sequence showed less
consensus, although there was still predilection for AT-rich
sequences (Fig. 2b). We also found a somatic pseudogene inserted
at the breakpoint of a somatically acquired genomic
rearrangement (Supplementary Fig. 4), a process that can occur
in the germline17.

Interestingly, 21% (9/42) of somatic pseudogenes showed a
single inverted rearrangement within the cDNA occurring away
from the canonical splice sites of the gene (Fig. 2a,c,
Supplementary Fig. 5). Such internal inverted rearrangements
are observed in B8% of L1 LINE elements in the genome18 and
are thought to occur by a ‘twin priming’ mechanism. Here, not
only does the TTTT overhang prime reverse transcription from
the polyA tail, but the opposite strand, nicked 10–20 bp
downstream, can fold back onto the mRNA transcript
internally and prime another cDNA copy. These two partial
copies of the mRNA are then resolved by non-homologous end-
joining, leading to an inverted rearrangement19. Our data are
consistent with this mechanism. The internal rearrangements
lead to a shuffling of the exon order and direction in the
pseudogene, but without duplication of sequence (Fig. 2c). The
insertion points of the 50 end of the inverted pseudogenes showed
1–3 bp of microhomology, consistent with a second priming
event. Microhomology of between 1 bp and 4 bp was also usually
present at the internal rearrangement breakpoint, indicative of
non-homologous end-joining repair.

The 629 primary cases included data from 18 different tumour
types (Supplementary Fig. 6, Supplementary Table 2). Somatic
pseudogenes were most frequent in non-small cell lung cancer
(19%; 5/27 patients) and colorectal cancer (18%; 2/11). The fact
that such events occur in colorectal and lung cancers is consistent
with the observation of high rates of somatic retrotransposition of
LINE elements in these tumour types7–9.

For four patients with somatic pseudogenes, we sequenced
more than one tumour sample (Fig. 2d). In one patient, we
analysed four clonally related samples from two bronchial lesions,
both of which evolved from carcinoma in situ to invasive cancer.
We found somatic pseudogenes common to all four lesions and
others unique to a single lesion (Fig. 2d). In another case of lung
cancer we found four somatic pseudogenes, all of which were
present in both the carcinoma in situ and the invasive tumour.
Similarly, for two patients with colorectal cancer, we sequenced
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the primary tumour and a liver metastasis. In both cases, the
somatic pseudogene was present in both primary and metastasis.
Taken together, these data indicate that somatic pseudogenes can
form relatively early in cancer development, before the tumour
becomes invasive or metastatic, but can also occur in more
advanced stages of disease.

Highly expressed transcripts were especially likely to be
templates for somatic pseudogenes (Fig. 3a). Overall, 63% of
genes acting as the template for somatic pseudogenes were among
the top quartile of expressed genes for that tumour type20, a
statistically significant enrichment (Po0.0001, Wilcoxon test). A
similar property has been noted for germline pseudogenes21. This
may explain why we see several examples in which a gene was
recurrently retrotransposed as a somatic pseudogene. For
example, we found two somatic pseudogene copies of HDAC1,
one in a colorectal cancer and one in a lung cancer
(Supplementary Fig. 7a). Similarly, we see somatic pseudogenes
involving two aldo-keto reductase genes, AKR1C1 and AKR1C3
(Supplementary Fig. 7b). The aldo-keto reductase proteins
activate polycyclic aromatic hydrocarbons in tobacco smoke, a
key step in inducing the genotoxicity of these critical

carcinogens22,23. Overexpression of these genes has been
documented in lung cancer24, which may explain why they
recurrently serve as templates for somatic pseudogenes in this
disease.

Like any mutational process, the majority of somatic
pseudogenes are likely to be passenger mutations, but a few will
have functional consequences that may be oncogenic. Somatic
pseudogenes could exert functional consequences through many
different mechanisms12, including fusion gene formation,
increased expression of the pseudogene, disruption of a gene at
the insertion site, sequestration of miRNAs from the template
gene13 and production of antisense transcripts14. Among the 31
somatic pseudogenes with insertion sites identified, nine were
inserted into introns and three into 30 UTRs. Of these, five were
in the same orientation as the host gene, three in the opposite
orientation and four had internal inverted rearrangements.

To assess transcriptional consequences of somatic pseudogene
insertion, we performed RNA-sequencing on two primary
cancers and three cell lines, as well as analysed 20 non-small
lung cancers sequenced by TCGA25 (Supplementary Table 3).
Across these samples, there were 16 somatic pseudogenes, of

Table 1 | Somatic pseudogenes identified across 660 cancer samples.

Sample Cancer type Pseudogene Exons Full-length Insertion site Target-site dup. Internal inversion

PD7354c Lung ATP11B 19–30 No Unmapped NA No
PD7354h Lung ANLN 15–24 No Intergenic 12 bp Yes
PD7354h Lung KTN1 11–14; 44 No Intron 15 PSD3 7 bp Yes
PD7354h Lung UBAP2L 21–26 No Intergenic 18 bp No
PD7354h Lung MYBL2 11–14 No Intergenic NA No
PD7354h Lung AKR1C3 1–9 No Unmapped NA No
PD7354k Lung APP 14–16 No Unmapped NA No
PD7354k Lung CD55 1–11 Yes Unmapped NA No
PD7354k Lung CENPF 13–20 No Intergenic None No
PD7354k Lung DDX46 6–12 No Unmapped NA No
PD7354k Lung PSAP 5–14 No Unmapped NA No
PD7354k Lung S100A11 1–3 Yes Upstream CLMP None No
PD7354r Lung FMO3 5; 8–9 No Upstream TIPIN 10 bp No
PD7354r Lung HDAC1 6–14 No Intergenic 9 bp No
PD7354r Lung HDDC2 1–6 Yes Rearrangement None No
PD7354r Lung ODC1 8–12 No Intergenic 5 bp No
PD7355a Lung GOT1 5–9 No Intron 1 CDH12 None No
PD7356c Lung AKR1C1 6–9 No Intergenic 14 bp No
PD7356c Lung MYH9 28–41 No Intergenic 10 bp Yes
PD7356c Lung RCOR1 5–8; 12 No Intron 3 ESR1 16 bp Yes
PD7356c Lung TSPAN6 1–4; 6–8 Yes Intron 3 RIT2 14 bp No
PD7356i Lung FOPNL 1–5 Yes Intron 11 SND1 10 bp No
PD4864b Lung FNTA 1–9 No Intergenic NA No
PD4864b Lung KRT14 1–8 No Unmapped NA No
PD4861b Lung ARHGEF9 4–10 No Intergenic None No
PD4861b Lung HNRNPD 4–9 No Intron 1 RAB8B 9 bp No
PD6377a Gastric SLC12A1 25–27 No Intron 15 ADAMTS3 NA Yes
PD6384a Gastric POF1B 1–11; 17 No Intergenic NA Yes
PD6388a Gastric MRPL11 1–5 Yes Intron 1 ABCA13 15 bp No
PD7261a Colorectal HDAC1 1–14 Yes Intron 1 RASA2 NA No
PD9061a Colorectal CAST 18–29 No Intergenic NA No
PD6022a Gastric ARF4 1–6 Yes Unmapped NA No
PD6037a Cholangiocarcinoma CSDE1 7–16 No Unmapped NA No
PD4226a Breast THUMPD2 8–10 No Unmapped NA Yes
PD4226a Breast COBL 10–13 No Unmapped NA No
PD6368a Chondrosarcoma SEP15 1–5 Yes 3’ UTR WARS2 NA No
LB771-HNC Cell line (H&N) KRT6A 1–3; 4–9 No 30 UTR MLL 17 bp Yes
LB771-HNC Cell line (H&N) KIF18A 7–14 No 30 UTR BIN3, KIAA1967 None No
NCI-H2009 Cell line (lung) C9orf41 3–8; 8 No Intergenic 17 bp Yes
NCI-H2009 Cell line (lung) PTPN12 12–17 No Exon 1 MGA None No
NCI-H2009 Cell line (lung) IBTK 1–29 Yes Intergenic None No
NCI-H2087 Cell line (lung) ARPC5 1–4 Yes Intergenic 16 bp No

Insertion sites that could not be mapped may be due to insertion into repetitive sequences or failure of exon capture to include UTRs. H&N, head and neck carcinoma; NA, not available.
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which 10 were inserted in intergenic regions, three in introns, two
in 30 UTRs and one in the first exon of the MGA gene. We found
no evidence of expression from somatic pseudogenes inserted in
intergenic regions, whereas one of the three intronic insertions
was expressed. In this case, a partial KTN1 pseudogene inserted
into the last intron of PSD3 in a primary squamous cell lung
cancer. We saw a clear peak of expression arising from the PSD3
intron immediately adjacent to the insertion, with aberrantly
mapping read pairs aligning to the KTN1 UTR on one end and
the PSD3 intron on the other end (Supplementary Fig. 8). Of the
two insertions into 30 UTRs, both were expressed. In one, a
KRT6A pseudogene was inserted into the 30 UTR of MLL, the
latter being a well-known fusion gene in leukaemias
(Supplementary Fig. 9). The RNA-sequencing data show that
the last 1.2 kb of the MLL 30 UTR is lost from the mature
transcript and replaced by the somatic pseudogene, since we

found paired-end reads spanning the 50 insertion point but not
the 30 insertion point (Fig. 3b). The 30 UTR of MLL has been
shown to regulate transcript levels26, a feedback loop that could
be disrupted by such a change, although expression of an aberrant
transcript does not in itself imply oncogenicity. Similarly, a
KIF18A pseudogene inserted into the 30 UTRs of two overlapping
genes on opposite strands, KIAA1967 and BIN3. Reads reporting
both KIAA1967-KIF18A and BIN3-KIF18A fusion junctions were
found in the RNA-sequencing data (Supplementary Fig. 10).

We also observed that somatic pseudogene insertion could
abrogate expression of a target gene at the insertion site. In lung
adenocarcinoma cell line NCI-H2009, a PTPN12 pseudogene
caused an 8 kb target-site deletion that removed the promoter and
first exon of MGA (Fig. 3c). In corresponding RNA-sequencing
data, we find only wild-type exon 1 splicing into downstream
exons, with no reads linking PTPN12 to MGA. Thus residual
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expression is derived from the intact MGA allele, and loss of the
promoter and exon 1 has eliminated expression from the
disrupted allele. MGA encodes a MAX-interacting protein27,
with focal deletions and inactivating mutations in lymphoid
malignancies28,29. From a compendium of 7,651 exome
sequences30, we previously found that MGA is a likely tumour
suppressor gene on the basis of a statistically significant excess of
nonsense mutations (qo10� 6) especially in lung adenocarci-
noma31 (Supplementary Fig. 9b).

The diversity, complexity and iniquity of mutational processes
operative during the development of cancer have been laid bare by
whole-genome sequencing, and here we describe another novel
mechanism of somatic mutation. There has been much recent interest
in how retrotransposition of repeat elements in somatic cells reshapes
the genome during normal brain development and during cancer
development4,8. The formation of pseudogenes in somatic cells repre-
sents a companion mutational process, with considerable flexibility in
potential mechanisms to alter a cell’s transcriptional activity.
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Methods
Sequence data. Sequencing data comprised low coverage (2–5� genome
coverage) paired-end sequencing for genomic rearrangements32–34, high-coverage
(30–40� ) paired-end shotgun sequencing35,36 and targeted pull-down and
sequencing of the coding exome37,38 generated at the Wellcome Trust Sanger
Institute as described, both published and unpublished, on the Illumina HiSeq
platform (Supplementary Table 1). In total, 660 cancer samples (629 primary
samples and 31 cell lines) spanning 18 tumour types were analysed (Supplementary
Table 2). The identity of cell lines was confirmed by STR testing and were obtained
from ATCC. The Cambridgeshire Local Research Ethics Committee approved the
studies and all patients gave informed consent.

Pseudogene detection. Data were aligned to both the reference genome
(GRCh37) and the reference Ensembl transcriptome using BWA39 and the
alignment coordinates from the transcriptome mapping were converted back to
genome space. Owing to the different characteristics of exome versus genome data,

the analyses of these alignments were optimized to deal with the different data
types (Supplementary Fig. 1). It is important to note that, regardless of the analysis
method, exome versus genome data are likely to have differential sensitivities for
detecting pseudogenes.

Targeted exome data includes less than 2% (50 Mb) of the human genome and
provides high depth over exons but does not contain the intronic and intergenic
regions where the majority of genomic structural rearrangements lie. Analysis of
genomic alignments through our standard structural variant algorithm35,40 was
therefore sufficient for pseudogene detection in these data, as it provided high
confidence calls for exon–exon junctions with few calls representing other types of
genomic rearrangement. Candidate pseudogenes were required to have at least two
apparent deletion events in the same gene, that is, involvement of at least three
exons, with breakpoints separated by a distance of at least 500 bp but less than
50 kb, a size range that includes the majority of introns of the human genome41.
To remove polymorphic germline pseudogenes, groups were excluded if they
contained any read pairs from either a matched normal or an unmatched normal
panel of nine unrelated individuals. Breakpoints were further excluded if the
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intervening intron(s) aligned with a deletion annotated in the Database of Genomic
Variants, as this indicates a potential germline pseudogene. Transcriptome
alignments were used to identify reads that split across exon–exon boundaries by
visual inspection in IGV (Integrative Genomics Viewer).

Due to the large size of the genome, the presence of repetitive elements, which
tend to be more prevalent in non-coding sequences, and the presence of multiple
genomic structural rearrangements in many tumour types, genome data required a
custom pipeline to be developed (Perl scripts available on request). After alignment
to the transcriptome and conversion of the read mapping coordinates back to
genome space, read pairs that are derived from pseudogenes are characterized by a
large insert size, due to either reads mapping to adjacent exons, or a split in the
CIGAR string where two halves of a read have aligned across a splice junction in
the transcriptome. Read pairs were therefore filtered on these characteristics.
Retained pairs were required to have an insert size of between 300 bp and 50 kb,
two or fewer splits in the CIGAR string with the first and last match being at least
10 bp, and a mapping quality of at least 10. Read pairs passing these criteria were
annotated against gene positions at both the 50 and 30end of both read 1 and read 2.
Read pairs where all four coordinates mapped within the same protein coding gene
in Ensembl were retained. The number of supporting read pairs per gene for the
tumour, matched normal and an unmatched normal panel of 23 low-depth
genomes were calculated and genes with no supporting reads in the normal/normal
panel but more than three supporting reads in the tumour were validated by visual
inspection in IGV.

Insertion site mapping. Somatic pseudogenes were best distinguished from
contamination of the genomic DNA library by either RNA-sequencing libraries or
plasmids containing cDNA expression constructs by mapping the insertion sites of
the pseudogene to base-pair resolution. Mappings to the reference genome were
used to identify insertion sites using reads mapping between the pseudogene and
elsewhere in the genome and/or reads that aligned to one side of the insertion point
with soft clipping. Soft-clipped reads were realigned using BLAT, to obtain exact
breakpoint coordinates. However, the feasibility of mapping insertion points
depended on the data type and the position of the insertion.

In whole-genome shotgun sequencing, the insertion sites were identified for
73% (16/22) of pseudogenes whereas 86% of insertion sites could be mapped in
low-depth genomes (Supplementary Data 1). The lower rate of mapping in spite of
the higher coverage in whole-genome shotgun sequencing may reflect pseudogene
insertions into repetitive sequences in PD7354, which would be unmappable given
the short read lengths characteristic of Illumina sequencing.

Alignments to either the genome or transcriptome rarely provided insertion
sites for exome data. The majority of somatic pseudogenes consist of the 30 UTR
and varying extents of 50 truncation. As UTRs are not included in the bait design
for exome pull-down, insertion junction sequences are commonly not represented
in the bam files of these data. The 50 end insertion sites were mapped in 29% (2/7)
of somatic pseudogenes, with 40% of the remaining pseudogenes being full-length
and therefore including a 50 UTR. The 30 insertion site could only be mapped in
14% (1/7) of pseudogenes identified in exome data. To assess the relative sensitivity
of genome versus exome data for the detection of pseudogenes and capacity to map
the insertion site, we sequenced both the exome and whole genome of three cell
lines containing somatic pseudogenes to typical depth (Supplementary Table 4).
The number of read pairs supporting the presence of a pseudogene through
exon-to-exon mappings and the number of discordant read pairs reporting the
insertion site for matched exome and genome data were compared. Overall, exome
data shows greater sensitivity for splice junctions, whereas genome data are more
likely to include the insertion junctions.

Statistical analysis of recurrent point mutations. To assess whether any of the
insertions disrupted tumour suppressor genes at the insertion site, we analysed
point mutation calls from 7,651 exomes available from previous publications,
TCGA, ICGC and in-house for evidence of a higher than expected rate of inacti-
vating mutation, using an adaptation of the method described in Greenman
et al.,42. This analysis has been described in detail elsewhere31.

PCR validation and capillary sequencing. The somatic status of pseudogenes was
confirmed by designing primer pairs between the pseudogene and insertion site
(where known) and performing PCR on both tumour and matched normal
genomic DNA. DNA for both tumour and matched normal samples was available
for 12/16 somatic pseudogene insertion sites predicted from whole-genome
(430� ) data, all 10 insertion site predictions from low-depth data, and all 3
mapped exome insertions. A total of 92% (11/12) whole-genome predictions
validated, with the remaining 8% (1/12) not producing product in either tumour or
normal, consistent with PCR/primer failure. All (3/3) exome predictions had
confirmed somatic insertion points. Unsurprisingly, low-depth genomes, with no
or low coverage sequencing of matching normals, gave a high rate of germline
pseudogenes. Overall, 40% (4/10) PCRs showed product in both tumour and
normal; 50% (5/10) were somatic and the remaining 10% (1/10) failed to produce
product in either tumour or normal. The germline pseudogenes have not been
included in this manuscript.

RNA-sequencing. RNA-sequencing was performed on the three cell lines in which
somatically/in vitro acquired pseudogenes were identified and two of the primary
samples in which somatic pseudogenes were identified.

Total RNA was extracted using Trizol and sequencing libraries prepared by
standard Illumina RNA-sequencing of polyA-selected RNA. A 75-bp paired-end
sequencing was used and between 24 and 31 Gbp of data were generated per
sample. TopHat (v 1.3.3) was used to map reads to the genome. The quality of the
RNA-Seq data was assessed using a number of metrics, including absence of 30 bias
and low amounts of ribosomal RNA.

We confirmed the positions, insertion sites and expression of somatic
pseudogenes in RNA-Seq using two algorithms (Shlien A., unpublished). First, we
looked for discordantly mapped read pairs where one end mapped to the
pseudogene and the other near the integration site. We then evaluated grouping of
pairs by the consistency of the orientation in which the reads mapped, their
position and their overlap with regions of high homology (multi-mapping).
Second, we looked for reads that could be partially mapped to the pseudogene and
partially mapped to the insertion site (split reads). To do so, we mapped all the
RNA-seq data to a transcriptome database containing all known exon–exon
junctions. We then shattered and remapped all of the remaining reads into k-mers
(13 bp) to an indexed version of the human genome. Mapped fragments were
extended one base at a time so long as they maintained a single mapping position.
In this way we resolved the breakpoints of the expressed somatic pseudogenes.
Note that in the absence of fusion transcript formation, re-expression of the
pseudogene from its insertion site was indistinguishable from expression from the
template copy.
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