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Abstract

The main aim of this thesis is a theoretical analysis of selected processes with a hard
scale observed in the high-energy proton collisions at the LHC. These processes are con-
sidered in the limit of high energies available at the LHC, which allows a closer exam-
ination of the parton correlations inside the proton and, in consequence, leads to new
information on the partonic structure of hadrons. The analysis carried out in this thesis
concerns several problems. First, the Drell-Yan processes were analyzed in the formalism
of the color glass condensate. The obtained results were compared with those obtained in
the collinear approximation. The rest of the discussed issues concern the double parton
scattering. In particular, we analyzed the problem of the specification of initial conditions
for QCD evolution equations for double parton distributions, which satisfy non-trivial
momentum and valence quark number sum rules. Within the double parton scattering
studies, we analyzed the production of electroweak bosons W+W~ and Z°Z° taking into
account the so called splitting terms in the QCD evolution equations. The found results
show the importance of these terms for the predictions of the cross sections for the con-

sidered processes.

Streszczenie

Celem niniejszej pracy jest szczegdlowa analiza teoretyczna wybranych proceséw
z twarda skalg obserwowanych w wysokoenergetycznych zderzeniach protonéw na akcel-
eratorze LHC. Procesy te sa rozpatrywane w granicy wysokich energii, dostepnych na
LHC, co umozliwia doktadniejsze zbadanie korelacji migdzy partonami wewnatrz pro-
tonu i w konsekwencji prowadzi do otrzymania nowej informacji na temat partonowej
struktury hadronéw. Przeprowadzone w pracy analizy dotycza kilku wybranych zagad-
nien. Po pierwsze, dokonana zostata analiza procesow Drella-Yana w formaliZzmie szkta
kolorowego. Otrzymane wyniki zostaly poréwnane z wynikami uzyskanymi w ujeciu
kolinearnym. Pozostate analizowane zagadnienia dotycza proceséw podwdjnego rozpra-
szania partondw. W szczegdlnosci, analizowane bylo zagadnienie specyfikacji warunkéw
poczatkowych dla réwnan ewolucji QCD rozktadéw dwupartonowych, ktére speiniaja
nietrywialne reguly sum: pedowa i liczbowa dla kwarkéw walencyjnych. W ramach
badan podwojnego rozpraszania partonéw wykonana zostala analiza produkcji elektro-
stabych bozonéw W+W~ oraz Z°Z° z uwzglednieniem cztonéw typu splitting w réwna-
niach ewolucji QCD. Otrzymane wyniki pokazuja jak istotne sa te cztony dla przewidy-

wan przekrojow czynnych dla rozwazanych procesow.
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Preface

In the last 60 years, studies of particle collisions gave the possibility to deepen the
knowledge of the structure of hadrons and high energy processes. Experiments conducted
at particle accelerators led to the discovery of the fundamental constituents of matter -
"elementary particles" and allowed to examine the interactions between them. A model
of matter, called the Standard Model, assumes the existence of elementary particles -
a total of six quarks and six leptons, interacting with each other through the exchange
of intermediate bosons: gluons which mediate the strong force, photon which carries the

electromagnetic force and W+ and Z° bosons mediating the weak force.

One of the basic issues of high energy physics are the interactions between hadrons.
For decades, physicists have been conducting intensive studies in this field to understand
the dynamics of hadron collisions and to confront existing theoretical models with ex-
perimental data. The technical progress in the construction of accelerator and detector
systems has allowed to analyze these processes at increasingly higher energies.

The Large Hadron Collider (LHC), built by the European Organization for Nuclear
Research (CERN) in the years 1998 - 2008, is currently the largest and the most power-
ful accelerator in the world. The LHC has been designed to collide two opposing proton
beams with the total collision energy equal to 14 TeV. The analyzes of the particle colli-
sions at such high energies provide important information on interaction of hadrons and
thus on the structure of matter. Many of the fundamental particles are produced only in
high energy collisions, thus it is hard or near impossible to study them in other ways.
In the year 2012, the last missing element of the Standard Model, the Higgs boson, was
discovered, which proved the physical potential of the LHC.

The processes with a hard scale at the LHC, which are the main subject of the re-
search proposed in this thesis, belong to the area of fundamental science. They concern
the basic building blocks of matter - quarks and gluons which are fundamental constituent
of hadrons in general and nucleons in particular. Our analysis is based on quantum chro-

modynamics (QCD), the fundamental theory of strong interactions.
The outline of the dissertation is the following.
Chapter [T serves as a theoretical introduction in which we review basic facts con-

cerning the quantum chromodynamics and its applications such as color forces, quarks
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and gluons, deep inelastic scattering, the Feynman’s parton model and the phenomena of
parton saturation. We introduce here the parton distribution functions which are inten-
sively used in the description of the measured cross sections for high energy scattering

processes.

In Chapter 2, we present an analysis of the Drell-Yan lepton pair production at
forward rapidities at the LHC kinematics. In particular, we show that using the dipole
framework leads to a significant suppression of the DY cross section in comparison to the

collinear factorization result. This is due to saturation effects in a dipole cross section.

In Chapters Bland @] we perform theoretical studies of the double parton scattering
processes in the context of the LHC experiments. The key element in the description of
these processes are the double parton distribution functions (DPDFs) which describe cor-
relations between partons inside a hadron. Therefore, they provide the basic knowledge
of the partonic structure of a nucleon which goes beyond the description with the standard
single parton distribution functions, determined so far in the scattering experiments. In
particular, we concentrate on the QCD evolution equations of the double parton distribu-
tions, addressing the question of initial conditions for these equations. For this purpose,
we constructed a numerical program which solves the DPDFs evolution equations. The
observation of the double parton scattering processes at the Tevatron experiments strongly
suggests that the deep theoretical understanding of the double parton scattering is manda-

tory for the interpretation of experimental results from the LHC.

In Chapter [3] we present an application of the results from the previous section to
the analysis of the WTW~ and Z°Z° electroweak boson production in the double parton
scattering at the LHC. In particular, we quantify the role of splitting terms in the QCD
evolution equations for the double parton distribution functions. We find that these terms

give important contributions to the cross sections under the study.

The results discussed in this thesis are based on the following publications:

1. "Drell-Yan process at forward rapidity at the LHC",
Krzysztof Golec-Biernat, Emilia Lewandowska and Anna M. Stasto,
Phys. Rev. D82, 094010 (2010),

2. "The Drell-Yan processes at forward rapidities at the LHC",
Emilia Lewandowska, Acta Phys. Pol. B, Vol. 42 (2011) - No 7,



. "Initial conditions for evolution of double parton distributions",
Krzysztof Golec-Biernat and Emilia Lewandowska, Proceedings of Science,
PoS DIS2013 (2013) 075, arXiv:1311.7392 [hep-ph],

. "How to impose initial conditions for QCD evolution of double parton distribu-
tions?", Krzysztof Golec-Biernat and Emilia Lewandowska,
Phys. Rev. D90, 014032 (2014),

. "Double parton distribution functions and their QCD evolution equations”,
Emilia Lewandowska, Acta Phys. Pol. B, Vol. 45 (2014) - No 7,

. "Electroweak boson production in double parton scattering",
Krzysztof Golec-Biernat and Emilia Lewandowska, Phys. Rev. D90, 094032 (2014).
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Chapter 1

Introduction

1.1 Quarks and the strong interactions

In 1964, Murray Gell-Mann and George Zweig hypothesized the existence of cer-
tain elementary particles called quarks. At first, they assumed the existence of three
quarks, u, d and s, together with the corresponding antiparticles - called antiquarks. The
later experimental researches conducted over the strong interactions discovered of three
more quarks of different flavors, ¢, b and ¢, discovered in the years 1974, 1977 and 1995,
respectively. Quarks are the basic elementary particles and the fundamental constituents
of matter which make up hadrons: baryons which are built with three quarks (ggq) and

mesons formed by a quark antiquark pair (¢g).

Quarks are point-like fermions with spin %, fractional baryon number A = % and
fractional electric charge —i—%|e| or —% le|. The exact specification of the quark properties
is given in Table [L.Tl Each quark has its antiquark which is characterized by the opposite
sign of additive quantum numbers, e.g. the electric charge Q, baryon number A or the third
component of isospin /3. Quarks do not exist in nature as free particles but are confined in
hadrons. All experiments, made by the analogy to the break up of a nucleus during which
its components, nucleons, are released, failed to observe free quark. Even in the highest

energy collisions, the free quarks were never directly observed in the detectors.

Quarks can be divided into two groups according to their mass (called current mass):

e light quarks: u,d,s with mass m, < 0.5 GeV,

* heavy quarks: c,r,b with mass m, > 1 GeV.

The individual quark masses are shown in Table In addition, from the point of view

of electroweak interactions, all quarks are grouped into two-quark families, called gener-
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Table 1.1: The properties of quarks

Quantum numbers

Quark flavors A O I &L
u (up) IR B
d (down) % —% % —%
s (strange) % —% 0 0
¢ (charm) % +% 0 O
b (bottom, beauty) % —% 0 0
t (top, truth) I 420 0

ations,

() () C)

wherein, only the first-generation quarks occur commonly (as constituent quarks) in na-
ture, e.g. in the proton (uud) and the neutron (ddu).

Quark structure of hadrons have to be considered as a proven fact. Experiments on
deep inelastic scattering (DIS) of leptons off hadrons are beautifully explained as scat-
tering of leptons on individual, point-like quarks. In the infinite momentum frame, the
duration of these collisions is too small for quarks to exchange gluons among themselves.

Consequently, quarks interacts with leptons as free particles.

The development of the quark theory caused a re-review of the existing forces in
nature. Due to the Pauli exclusion principle, which excludes the existence of identical
quarks in the same quantum state, the existence of the structure of the three quarks in

a baryon requires quarks with different quantum numbers. It turned out that quarks carry

Table 1.2: Quark masses

my my nig

2 -8 MeV/c? 5-15MeV/c? | 0.1-0.3 GeV/c?
me ny, my

1.0-1.6 GeV/c? | 4.1 -4.5GeV/c? | 168 - 192 GeV/c?
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a color charge and are held in nucleons by a fundamental force - color force. The con-
cept of a color force, introduced in 1964 by O. W. Greenberg, allowed to fulfill the Pauli
exclusion principle for quarks in baryons. According to this theory, the interaction be-
tween quarks are determined by their color charge which allows to identify a quantum
state of each quark, called conventionally red, blue or green. As for the electric charge,
quarks have positive values of the color charge, while antiquarks have opposite, negative
value. The process of the transition of the quark color into a different color is done by
an emission of gluons. Such interactions between quarks are called strong interactions.
It was proven experimentally in 1980 at the high energy e™e™ scattering experiments at
DESY that the strong interactions between quarks are carried out through the vector gauge
bosons of spin 1, gluons, which are massless, electrically neutral particles. However, they

carry color charge.

1.2 Fundamentals of QCD

Over the past 60 years, numerous theoretical and experimental studies in particle
physics allowed to formulate the theory of strong interactions, called quantum chromo-
dynamics (QCD). Quantum chromodynamics describes the interactions between quarks
and gluons within hadrons. It is based on mathematical methods used in quantum elec-
trodynamics (QED) and quantitatively describes the physics of quarks, gluons and their

compound systems.

One of the basic concepts of QCD is color - the charge of the strong interactions.
According to this theory, the elementary particles interact strongly by the exchange color
charges carried by intermediary gluons. Gluons not only mediate the color charges be-
tween quarks, they also interact with each other due to their color charges. This stays in
contrast to photons which do not carry electric charges, thus they do not interact directly
between themselves. The fact that gluons interact with each other makes the mathemat-
ical analysis of the color forces extremely difficult. The already mentioned absence of
free quarks and gluons in an isolated form in nature is a key concept of quantum chro-
modynamics, called color confinement. In recent years, quantum chromodynamics has
enabled the formulation of a number of phenomenological models describing the inter-
actions of elementary particles. It was also realized that the results of perturbative QCD
could be seen in numerous hadronic processes involving hard scales, much bigger than

the fundamental parameter of QCD, Agcp ~ 300 MeV, that is in hard processes.

Quantum chromodynamics is a quantum field theory with a non-abelian local gauge
symmetry group. The three quark color fields, called customary: red, green and blue,
form a fundamental representation of the SU(3) gauge group. The eight gauge fields
corresponding to gluons are necessary for the local gauge symmetry and form the adjoint

representation of SU(3). The Lagrangian of QCD, required to be invariant under the
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SU(3) gauge group transformations, has the following form [[1]]

(O8]

308
=Y a{ir'ou—mla— Y Y gdar* (Tua}Aj — Z Gy, Gy, (1D
k=1 ki=la=1
in which g is the strong interaction coupling constant, g; are quark color fields with mass
my and Aj; are gluon fields. In addition, Y are the Dirac matrices and 7, are generators

of the SU(3) group which fulfill the following commutation relations

8
19,7 =i} T (1.2)
c=1
Here ¢, with a,b,c = 1,2,...,8, are the structure constants of the group. The gauge
strength fields,
Gi\ = JuAY — dyAL — g fALAS (1.3)

contain the nonlinear part in gauge fields, responsible for self-interaction of gluons.

In 1973, F. Wilczek, D. Gross, and H. D. Politzer theoretically predicted asymptotic

freedom of the strong interactions by computing the effective coupling constant in QCD,

g2 (Qz) 127
4 (33— an)ln(Qz/AQCD)

o, (Q%) = (1.4)

where ny is the number of active quark flavors f and Q? is the four-momentum transfer
squared and Agcp is the already mentioned internal scale of QCD. The effective coupling
constant of QCD is the decreasing function of Q%. Thus, for Q% > A2 ocp the coupling
constant is small, o (Q?) < 1. From Heisenberg uncertainty principle, this means that the
strength of the strong interactions is small at sufficiently small distances. Thus, quarks and
gluons interact as free particles at small distances, which is a property called asymptotic
freedom. It allows to apply perturbative methods to compute the QCD predictions, e.g. for
the deep inelastic scattering of leptons on hadrons where the values of Q? are very large.
On the other hand, at large distances color confinement forces bind quarks and gluons in
hadrons. The precise nature of this phenomenon is yet to be understood analytically. The
perturbative methods are of no use in such a case because of large values of the strong
coupling constant at large distances.

1.3 Deep inelastic scattering

One of the most important tests of quantum chromodynamics is the issue of break-

ing of the Bjorken scaling of the nucleon structure functions, F; and F>, in the deep in-
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Figure 1.1: Deep inelastic lepton-proton scattering.

elastic scattering (DIS). Deep inelastic scattering is a high-energy process attempted from
1960s until the year 2007 which provides information about the structure of the hadrons.
In DIS, charged leptons (electrons, muons) or neutrinos are deflected on a hadron target.
In consequence of such a scattering, many new particles are created. The graphical illus-
tration of the deep inelastic electron-proton scattering is presented in Fig. [[.I]in which
a target proton is being probed "deep inside" by virtual photon emitted by the point-like
lepton. The target proton absorbs some kinetic energy of the electron, thus this process

can be called inelastic.

The kinematics of the DIS is characterize by the square of the four-momentum

transfer ¢, being the photon virtuality,
Q* = ¢ =—(k-K), (1.5)
and by the invariant mass of the produced particles,
W?=(p+q)* =M*+2Ms+q°, (1.6)

in which k and k" are lepton incoming and outgoing four-momenta, and M and p are mass
and a four-momentum of the target proton (in the colliding mode). The standard variables

used in the description of DIS process are the Bjorken variable x and inelasticity y [2],

0? 0°
p— p— 1_7
YT 2pq 2ME—E) (1.7)
q-p E'
_ B 1.8
y k'p E b ( )

where the last equalities show these variables in the proton target rest frame (E and E’

are energies of the incoming and outgoing lepton, respectively). These variables obey the
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equations
xy(s—M?) = Q°, (1.9)

where s = (k+ p)2 is the Mandelstam invariant, equal to the total energy squared of the

incoming particles in their center-of-mass frame.

The structure of the target proton in DIS is encoded in the structure functions, Fj
F> and F3, which parametrize the DIS cross section integrated over momenta of all the
produced particles except the scattered lepton. In the case of a charged lepton scattering,

[p — [X, the differential cross section has the following form

d’c  8moa’ME [(1+(1—y)2

M
dndy = L 5 ) 2xF 4+ (1 —y)(F, — 2xF)) — <ﬁ) xsz} ,(1.10)

while for a neutrino (or antineutrino) scattering, vp — [X, the cross section can be rewrit-

ten as

d*c  G}ME K

M
= l—y— —xy | B+ v*xF £v(1 - W) xF 1.11
ndy . y xy) y+y xR £y (1—3y)x 3}, (1.11)

2F

with the fine-structure constant & and G being the Fermi constant equal to [2]]

a ! = 137.0359895(61), (1.12)
Gr = 1.16639(2) x 107> GeV 2. (1.13)

The sign (+) in the above formula equals (+) for the neutrino scattering and (—) for the

antineutrino scattering.

In 1967, James D. Bjorken suggested that for the very large values the four-momen-
tum transfer squared, Q> — oo, the structure functions depend only on one variable - the

Bjorken variable x,
Fi(x,0%) = Fi(x), i=1,2,3. (1.14)

This behavior, called the Bjorken scaling, was found in the first DIS data from SLAC.

1.4 The parton model

Parton model was proposed in 1969 by Richard Feynman as a way to analyze the
high-energy hadron collisions. According to this model, an inelastic scattering process
can be interpreted as an elastic scattering of a lepton on a free, point-like particle - parton.

Currently, partons are identified as quarks and gluons. Parton distributions, determined
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Figure 1.2: The DIS process in the parton model.

experimentally under the studies of the parton model, provide detailed description of the

hadron structure and are widely used in processes occurring in high-energy collisions.

The Feynman’s parton model provides a physical interpretation of the Bjorken scal-
ing. In this model, the deep inelastic scattering can be considered in the limit of the
infinite momentum of the proton in which its mass is neglected. In this limit, the proton
four-momentum equals p* =~ (P,0,0,P) and P — . In such a case, cross section (LIQ)

can be rewritten in the following form [2]]

d’c  4ma?
dxdQ?  Q*

(1-y)

(1+(1—y)?)F + (F, —2xF)| . (1.15)

According to Feynman, in the infinite momentum frame, the fast moving proton can
be treated as a flux of point-like partons each of which carries a momentum fraction & of

the proton four-momentum,

py =&pt. (1.16)

The graphical illustration of the DIS process in parton model is shown in Fig. Lepton
scattering takes place through the virtual photon exchange with the four-momentum g on
a single parton, without interfering with other. From the four-momentum conservation

2 QZ

2 —-q
(Ep+aq) g pa 2pa

X. (1.17)

Thus, the Bjorken variable equals the momentum fraction of the proton carried by the

struck quark. The cross section for such a scattering can be given as [2]]

dé Amo?

Ga =~ or LT 1-9)7368-8). (1.18)
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2
0

Figure 1.3: With the increase of the scale Q° > Q(z) a virtual photon starts to see a partonic
structure of the hadron.

in which the following relation for the structure functions has been used

P =xe,8(x—&)=2xF. (1.19)

In the Feynman’s (naive) parton model, the probability density that parton g carries
a fraction & of the total proton momentum is given by a function ¢(£) to be determined

from experiments. Thus
q(¢)dg, 0<é<! (1.20)

is the probability that the parton momentum fraction lies in the interval (§,& +d¢&). The
structure functions are given in such a case as incoherent sum over all scattering possibil-

ities,
F(x) =2xF(x er / d&qi(& Ze xq(x (1.21)

where i distinguishes different species of partons. We see that by measuring the structure
function F,, the parton distribution functions are determined. The relation F, = 2xFj,
valid in the naive parton model, is called the Callan-Gross relation. It was observed to
good accuracy at the first DIS data from SLAC.

1.5 Parton distribution functions

One of the achievements of perturbative QCD is the field theoretical justification
of the parton model realized by the factorization theorem of deep inelastic scattering.
Within this theory, the lepton-hadron DIS process can be consider as two independent
parts: a short distance part which is perturbatively calculable and a long distance part to be
determined experimentally. In terms of quantum chromodynamics, partons are identified

as both quarks and gluons in contrast to the naive parton model in which gluons are
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Figure 1.4: The dependence of the structure function F; on Q2 for fixed values of x,
obtained by the H1 Collaboration at DESY.

neglected. QCD improves the naive parton model by taking into account the emission
of gluons, which violates the Bjorken scaling by introducing dependence of the structure
functions on the logarithm of the hard scale Q2 [I]]. The violation of the Bjorken scaling

was observed experimentally in 1973.

Taking into account the gluon emission, shown in Fig. [[3] the structure function

takes the following form
P g [ aon s+ 52 (1o ()
—_— = — O(l—=)+—P,|-)log| = )|, 1.22
o qz,:;eq i yCI()’) ( y) 99\ y g 02 ( )

where P, is a splitting function, computed perturbatively in QCD. For Q%> AéCD, 1.e.
in the deep inelastic regime, the strong coupling constant o, (Q?) decreases which allows
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to apply perturbative calculations in QCD. Eq. (I.22)) can be written as
2)
2 (x,
Q Ze xX)+Aq(x,0%)) (1.23)
where a change in the parton densities is given by

o 0> rldy (x>
Ax,zz—“lo—/— Po(=]. 1.24
90 0%) =5 loe(5) | S-a0)Fag | (1.24)
The gluon emission from quarks implies that with the increase of the hard scale Q? a vir-
tual photon starts see a partonic structure of the hadron, composed of point-like quarks

and gluons. Defining the quark density distribution in the leading logarithmic limit,

q(x, Q%) = q(x) + Aq(x,0%). (1.25)
the following integro-differential equation can be obtained

_d dy 2 X
dlogQZq( x,0° )= ﬂ/ 751()’7Q )Paq <§) . (1.26)

The above equation is known as the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
evolution equation [3, 4] 5] (for nonsinglet quark distributions). It implies that quark car-
rying momentum fraction x could have come from a parent quark with a larger momen-
tum, y > x, which has radiated a gluon. The probability of this process per unit of log Q?
is proportional to &Py, (x/y). The full description of the PDFs also includes the evolution
of the gluon distribution function together with the distributions of sea quarks (quark-
antiquark pairs created from vacuum). Although these components of the proton do not

provide its quantum numbers, they constitute more than 50% of proton’s momentum.

The DGLAP evolution equations are widely used in global determinations of parton
distribution functions which also include the distribution of gluons. Thus, QCD predicts
the violation of the Bjorken scaling and allows to calculate the dependence of the structure
function F>(x, Q%) on the hard scale 0,

:Zegxq(x, 0%), (1.27)
9,q

where the quark/antiquark distribution functions acquired dependence on the hard scale
Q? at which the proton is probed by the virtual photon emitted by the incident electron.
The experimental results on the structure function F>(x, Q?), obtained by the H1 Collab-
oration, are shown in Fig.[[L4l For x ~ 0.25, the structure function is found to scale and
does not depend on Q7 at this particular value of x. However, for other values of x, the
structure function increases (for x < 0.25) or decreases (for x > 0.25) with Q%. This be-
havior can be explained by the DGLAP evolution equations once the initial conditions for
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Figure 1.5: The F, data from the HI and ZEUS collaborations. The proton structure
function strongly increases with the decreasing Bjorken variable x.

them are determined from fits to the data (see solid lines in Fig. [[.4).

1.6 Parton saturation

The essential observation at the theoretical progress in the physics of hadron inter-
actions at high energy is the fact that the proton structure function, in the region of the

small Bjorken variable x < 1, strongly increases with decreasing x for fixed values of Q?,
F(x,0%) ~x 7t (1.28)

with A = 0.2+0.3. The experimental confirmation of this result is shown in Fig. This
strong rise, however, cannot go on indefinitely and eventually saturates due to the fact
that the structure of hadron at small-x limit is dominated by dense field of low momentum
gluons. This phenomena of increasing parton densities (sea quarks and gluons) at high

energy is known as parton saturation.

Measurements conducted by many experiments on deep inelastic scattering allowed
to determine the distributions of quarks and gluons. The results of the HI and ZEUS
experiments, presented in Fig. clearly show the dominance of the gluon distributions
xg(x,0?) in the small-x limit while for the larger values of x — 1 - the contribution of

valence quarks is significant. Thus, it is the gluon distribution which should saturate first
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Figure 1.6: The quark and gluon distributions from H1 and ZEUS experiments [6] . At
the small-x limit, the contribution of the sea quarks and gluons is significant.

at small x since it grows faster then the quark density. Thus, is the driving force towards

saturation.

Saturation effects introduce into the measured cross sections an internal momentum

scale, known as saturation scale Q. It is given in terms of the gluon distribution,

1
0 = 05(Qs) Ne —538(x, 07, (129)

where the variable R is the hadron radius and o/, is the color charge squared of a sin-
gle gluon. The saturation scale grows with the center-of-mass energy, /s, i.e. with the

decreasing Bjorken variable x,
Q7 ~ st ~xh (1.30)
Therefore, for high energy hadron collisions, the saturation scale becomes large
03(s) > Ajep (1.31)
which leads to small values of the QCD coupling constant,
o, (0%) < 1. (1.32)
As a result, the computation of saturation effects in QCD can be approached from the
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Figure 1.7: Dipole model of the DIS process at small-x limit.

perturbative side. The most physically appealing description of saturation effects in DIS

at small x is provided by color dipole models.

1.7 Color dipole models of DIS

The main assumption of the color dipole models concerns the decay of photon into
qq pair due to gluon exchange, see Fig.[I.7lfor a graphical illustration of this process. The
proton still carries most of the total energy, while the virtual photon has just enough energy
to dissociate long before the scattering into a quark-antiquark dipole. In the kinematic
range of small-x, the virtual photon - proton cross section factorizes into a convolution of
the photon light-cone wave functions W7 ;, and the dipole cross section 0,5, describing
the interaction of the incoming quark-antiquark pair with strong gluon fields of the target
hadron. Both quantities are functions of transverse separation r | of the gg pair.

The proton structure function can be given in terms of the virtual photon-proton

cross sections [[7, (8], [0

F(x,0%) = Fr(x,0%) + F.(x,0%), (1.33)
with

Frp(x QZ)—Q—ZG (x,0%) (1.34)

T,L\A» - 47[2agm T,L\Ay 5 .

where o7 are the y*p cross sections which depend on the transverse dipole size r; and
the longitudinal momentum fraction z of the photon’s longitudinal momentum carried by

the quark with flavor f. They are given by the formula

1
or(x,0%) = / d*r, /o dz|Wr L (r1,2, Q%) o4q(x,rL), (1.35)
where the wave functions W7, for the transversely (T) and longitudinally (L) polarized
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photons can be interpreted as probabilities for y* to fluctuate into the ¢g dipole,

6Qem
Wr(r,z, 0% = %Zeﬁ{[ﬂ(l—z)z]uzK%mer%Ké(ur)}, (1.36)
S
6 em
Wil n 0P = Tt Y {402 (1 PR3 (un) | (1.37)
S

in which pu? = z(1-2)Q*+ m} and Ky | are the Mc Donald-Bessel functions.

The dipole cross section 0,4 in eq. (L33) characterizes the interaction of the quark-
antiquark dipole with the proton through gluon exchanges dominating in the small-x re-
gion. It encodes all the information about hadronic interactions and can be computed
from the dipole-proton scattering amplitude A(x,r ,A) as follows

Oya(x,r1) =2TmA(x,r | ,A=0) = 2/d2bLN(x,rL,bL). (1.38)

The imaginary part of the forward dipole-proton scattering amplitude, N(x,r ,b ), is
interpreted as the probability for the g4 dipole to scatter off the proton and can be given
in terms of the gluon distribution at the scale Q2 ~1/ ri > AZQCD,

N(x,r,b1) ~ axr? xg(x,1/r7). (1.39)

For larger values of dipole sizes, the dipole-proton scattering amplitude can be modeled
using ideas of parton saturation hoping that more precise QCD based calculations will
support the general picture encoded in the models of parton saturation.

Several models with gluon saturation effects have been proposed. In the historically
first Golec-Biernat - Wuesthoff (GBW) model [7], the dipole cross section is assumed in
the form

2

og5(x,r )=00(1—e""), (1.40)

where # = r| /2Ro(x). The quantity Ry, called in [[7]] saturation radius, plays the role of
the saturation scale, Ry(x) = 1/Q;(x), and is assumed in the form

Ro(x) = (x/x0)*/? (1.41)

in units of GeV~!. The parameters of the model, 6p =23 mb, A =0.29 and xy = 3- 1074
have been determined from the fit to HERA data on F, for x < 0.01. At the limit of
the small QZ, saturation in the o,z sets in for r; ~ 2Ry, 6,5 ~ 0p, which allows a good
description of the structure function F» in the small Q? regime. In this regime, the photon-
proton cross sections (I.33)) for the transverse polarized (T) photons gives o7 ~ 0y. For
large Q, the dominant contribution reflects small dipole configurations with | ~2/0 <
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Figure 1.8: Predictions for the structure function F5¢ in the BGKS saturation model (BGK
model + heavy quarks) (from [L1]]).

Ry, due to the relation o7 ~ 1/Q?, which leads to the Bjorken scaling for F, for the
contribution from the small dipoles.

Along with obtaining more precise experimental data it has been observed that the
GBW model characterizes the region of the photon virtuality Q% < 20 GeV? only. For
larger values of the photon virtuality one should take into account the gluon distributions
that satisfy the DGLAP evolution equations. These improvements, altogether with the
contribution of heavy quarks ¢ and b, have been included in Bartels - Golec-Biernat -
Kowalski (BGK) and Golec-Biernat - Sapeta (GS) models. In these models

the dipole cross section was assumed in the form

Ggqlor1) = Go{ 1 - exp(~mr3 o (12)xg(x, u?) /300) } (1.42)

25



with the scale
C
ur= o ug, (1.43)

where the parameters C, ,ug and oy were determined from a fit to DIS data. The gluon
density g(x,u?) is evolved with the leading order DGLAP evolution equation in which
quarks are neglected due to the gluon dominance in the small-x limit. At the initial scale

Q(Z) = 1 GeV?, the gluon density is given by
xg(x,08) = Agx M (1 —x)3°, (1.44)

with parameters A and A, determined from the fit to the HERA DIS data at x < 0.01.
The exponent 5.6 is taken from parametrizations of the parton distribution functions for
large values of x. The main motivation for the form (I.42) of the dipole cross section is
its proper limit (L39) for small transverse sizes of color dipoles, r; < 1/0,

2

Oyq(X,71) =~ ?riasxg(x,,uz). (1.45)

On other hand, for large dipoles, r; > 1/0Q, the dipole cross section saturates to a con-
stant value op. In contrast to the GBW dipole cross section, the rise in 1/x has become
dependent on r; and, in consequence, the DGLAP evolution strengthens the rise in 1/x
with increasing Q2, which is necessary to describe the small-x data for large values of Q.

To summarize, the GBW model describes well the structure function F> at small
values of the photon virtuality (< 20 GeVz), while the BGK model improves these results
and the small-r| part of the dipole cross section by incorporating the DGLAP evolution
equations. The final improvement of both discussed saturation models has been provided
by the GBS model by adding the heavy quark (charm and beauty) contributions in
the theoretical formula for F>. It can be clearly seen in Fig. [I.8] that predictions of the
GBS model are consistent with the H1 and ZEUS experimental data.

1.8 The Balitsky-Kovchegov equation

The calculation of the color dipole scattering amplitude can be also attempted di-
rectly from QCD by solving the Balitsky-Kovchegov (BK) evolution equation [[14} [15]
[16]]. At the high energies and small values of the Bjorken x, the increase of the gluon dis-
tribution leads to a major complication with computing tools of perturbation theory. The
QCD applies well to the events with small parton distributions, however in the parton sat-
uration regime, the non-perturbative features occurs and only weak coupling methods can

be used. In order to organize the calculations of processes in this region, a new effective
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theory has been developed known as the color glass condensate (CGC) 7).

The CGC theory is based on the division of partons in a hadron into fast and slow
ones. The high energy kinematics, which is used in CGC, simplify the description of the
fast partons by exploiting the fact that their dynamics is slowed down by Lorentz time
dilation and thus they can be viewed as static. Partons with momenta larger than the
separation scale AT = xP™ (given by the fixed hadron light-cone momentum P™) are fast,
while partons with small momenta k™ < A" are slow. The fast partons are nearly frozen
in light-cone time x™, and can be treated as static gluon color sources p%(x~,x ) for slow
partons. An average over color sources can be calculated by using 2-point equal time
correlation function

(Auletx0Avwty0)) = [ 2pWilplAulplAvip]. (1.46)

in which the low x gluons are described by gauge fields A, [p] and a weight Wy[p] depends
on the separation scale A ™. The basic relation of the CGC reflects a renormalization group
equation for the weight W,[p] and is known as the IMWLK equation

M)y 5
=1 — Xab (X1, Y ) =———Wi|p], (1.47
Y 2y, Spagey) Ker ) 5oniy ale) )

where Y = In(1/x) is rapidity and x, is a positive definite kernel depending on the color

sources via the Wilson line,
V(xL):Pexp{ig/dx_Aj(x_,xL)}, (1.48)
in which AT [p] is a solution of the Yang-Mills equation in the covariant gauge,
ViAT = —p, (1.49)

with p being the color charge density. In the CGC formalism, the saturated gluons form
a collective state described by strong classical color fields, A% ~ 1/g, leading to highly
nonlinear phenomena. This is the reason why it is very difficult to find a general solution
to the JIMWLK equation and various approximations have to be developed.

In one of them, the BK equation has been derived. This is an evolution equation for
the the S-matrix element for the color dipole-proton scattering S(x, 7, ,b | ), defined as as
an average of the path ordered exponentials (48] over classical gluon fields in the proton
that form the CGC,

strren) = o (T(ViEvon)), (1.50)

c Y

where the trace is performed over color indices. The dipole scattering amplitude from the
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previous section, N(x,r, ,b, ), can be written through the S-matrix element as
N(x,ri,b)=1-8Y,x,,y,), (1.51)

where (x,y, ) are two-dimensional vectors of the transverse position of the dipole ends.
Thus, the dipole transverse size r| = x| —y,, the impact parameter b, = (x, +y,)/2

and the dipole cross section

Oualxir1) =2 [ db (1-S(¥.x1y0)). (1.5

The S-matrix element obeys the non-linear evolution equation in rapidity Y [14} [15] [16],
called the BK equation,
d d*z, (v —y1)?
—S(Y,x,, = —0, 1.53
Y BxL3.) Jo2m (xp —z0)?(yL —zu)? (153

% (SO —y0) =80 —2)S( 2 —31)),

where the strong coupling &, = (N.0;)/7 is fixed in the original derivation. The BK
has been formulated in the leading In(1/x) and large N, approximations. The kernel of
the this equation has the property of conformal symmetry and is invariant with respect to
scale change, translations, rotations and inversions. Due to its simplicity, the BK equation
is well suited for numerical and analytic studies of the evolution in the parton saturation

regime.

Based on the solutions to the BK equation, the following parametrization of the
dipole cross section has been proposed by Iancu, Itakura and Munier (IIM model) [[10} [17],

2(%"‘#11’1#)
rL_QX KAY " r ) Os
Oyg(x,r1) = 27R? X No ( 2 ) for r Qy<2, (1.54)
] — —aln”(bri0s) for r; Qs>2,
where the saturation scale
0, = 0s(x) = (xo/x)*> GeV. (1.55)

The parameters R =0.572 fm, A = 0.22, xo = 1.63 - 1075, a=0.615,b = 1.006, No=0.7,
K =9.9 and y; = 0.7376 and were obtained from the fit to the small x DIS data.

1.9 Geometric scaling

The GBW model of deep inelastic scattering at small-x limit predicts a geometric

scaling of the total photon-proton cross section. At this regime, the dipole cross sec-
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Figure 1.9: Experimental data on the total photon-proton cross section as a function of
the scaling variable T = Q?/Q?(x), [19].

tion 0,5 depends only on the dimensionless quantity r; Q(x), where the saturation scale

0s(x) = 1/Ro(x),
Oyq(x,11) = 045 (r. Qs(x)). (1.56)
As a result, y*p cross section is a function of the ratio Q*/Q?,

2y 0
or.L(x,Q°) =orL oW ) (1.57)

This behavior is called geometric scaling. The implications of geometric scaling have
been confronted with experimental data in and are shown in Fig. It is clearly

seen that the data exhibit geometric scaling over a very broad region of Q2.

The BK equation also predicts geometric scaling. It can be solved at large transverse

distance, r| > Q;(Y), where the scaling property was found

SY,r1)=f(r.0s(Y)). (1.58)
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Furthermore, the scaling in the BK evolution equation implies the following dependence
of the saturation scale on rapidity

O;(Y) = APe®! (1.59)
where ¢ is a constant and A ~ Agcp. Parametrization (L54) takes these facts into ac-
count. In the saturation regime, 0’ < Q?, there is only one intrinsic scale - the saturation
momentum and all physical quantities should be expressed as a dimensionless function
of 0?/Q? times some power of Q2 giving the right dimension. Moreover, 1/Q; is the
typical transverse size of the saturated gluons. Thus, geometric scaling is a phenomenon

resulting from parton saturation.
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Chapter 2
Drell-Yan processes

In 1970, S. D. Drell and T.-M. Yan [20], showed that parton model assumptions
based on deep inelastic scattering also apply to certain processes in hadron-hadron colli-
sions. An example of such a process is a production of lepton pair [/~ with annihilation

of quark-antiquark pair ¢gg, also known as the Drell-Yan process.

The production of the Drell-Yan lepton pair is one of the most important processes
of high-energy physics which allows the description of the hadron collisions in terms of
the parton model. The analysis of the Drell-Yan process provide data about the structure
of hadrons and parton distributions. These functions are essential for calculations of the
cross sections for many processes occurring at hadron collisions. This chapter contains
an analysis of the Drell-Yan process in two approaches - based on the collinear factoriza-
tion and on the dipole model formalism. Particularly important is the comparison of the
obtained results from the point of view of parton saturation, encoded in the form of the
dipole cross section in the dipole approach. We show that the Drell-Yan cross section in

the dipole approach is significant smaller than that in the collinear approach.

2.1 Lepton pair production in the collinear approach

The parton model assumes that a cross section for the Drell-Yan process can be
presented in terms of parton distribution functions for quarks g (x) and antiquarks g (x)
obtained from the deep inelastic scattering. In this notation, the lowest order cross section

oPY of the Drell-Yan process with a large invariant mass squared M?,

M?* = (pj+ +pi-)* > 1 GeV?, (2.1)
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Figure 2.1: Drell-Yan process - quark-antiquark annihilation into lepton pair.

is given as follows
GMZZ/MMWMM@WWWWM (22)
f

where x| and x, are parton longitudinal momentum fractions. &,4_,;+;- is a subprocess
cross section which characterizes annihilation of quark-antiquark pair into lepton pair

with emission of virtual photon y* with virtuality Q% = M? > 0,
qqg — 7 =171, (2.3)

In analogy to deep inelastic scattering and Bjorken limit (sec. [L.3)), cross section (2.2)) is
2

M
valid for the domain of the asymptotic scaling: M?,s — oo with — fixed. The graphical
s
illustration of the Drell-Yan process is shown in Fig. 2.1l

The conducted measurements of the Drell-Yan cross sections showed the compati-
bility of the experimental data with theoretical predictions based on eq. (2.2). This con-
firmed the validity of the parton model, which also holds for gluon corrections imposed
by quantum chromodynamics. The collinear singularities occurring in corrections for
Drell-Yan cross section can be absorbed into renormalized parton distributions. After
taking into consideration the leading corrections, cross section (2.2) can be rewritten in

formalism of the scale-dependent parton distributions g ¢(x, M?), qs (x,M?):
o = ¥ [ dxidrag (a0, Mg (00, M) 11 2.4)
f
= ;/dxldxzqf(xl ,MZ)L_]f(xz,Mz) X [(f() +ad, +a2@2 + } NI
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o (M?)
2
As it has been shown in [2]], the cross section for gg annihilation into lepton pair of

in which the factor a =

mass M can be given in the lowest order as

= — §—M 2.
AM? N, (1o =M, @.5)

2
1

41
with oy = Ve in which o™ = 137.036 is the fine structure coupling constant. Factor
N, in eq. @2.3)) is the number of quark colors, ef is the quark charge, while V3§ is the
qq collision energy given by four-momenta p; and p; of the incoming partons and the

center-of-mass energy +/s of the hadron-hadron collision:

§= (p1+p2)* =x17105, (2.6)
N S
P1 :%—(Xl,0,0,X]>, p2:%<X2,0,0,—X2).

Substituting eq. 2.3) into 2.4), we find the following formula of the Drell-Yan cross

section in the parton model approach, [2]:

d GDY
dM?

1 d6(qq — It
= [[anan Xiar g o)+ g o @) < I o)
0 7

= %(Z/()ldxldeS(xl)CzS—Mz) X [;6}{Q_f(xl)zlf(x2)+(qHq_)} :

The parton momentum fractions x; and x; are expressed with the help of the rapidity y of

M? M?
X1 =1/ Texp(y), X =1/ Texp(—y). (2.8)

In this notation, relation (2.7) can be rewritten as a double-differential cross section

the lepton pair

d*c?Y g,

dM2dy ~ N.s l; ei{ar(x)g (x) + (g ¢ q‘)}] , (2.9)

which allows the direct measurement of the quark and antiquark distribution functions of

the colliding hadrons.

According to the naive parton model, distribution functions gr(x) and g(x) are
independent of the invariant mass M 2. Thus, the Drell-Yan cross section (2.7)) (multiplied
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Figure 2.2: Leading order (a) and next-to-leading order (b-d) diagrams of the Drell-Yan
process.

by M*) scales with respect to the variable M? /s:

doPY Ao 1 M?
4 . 2 _ 2 T, 7l
E 3NCSM /0 dx1dxy8(x1xy — =) X ;ef{CIf(M)qf(m)Jr(W—w)}
2 a2 2
= 4;56 %F <AL> , (2.10)
.S Ry

which formula exhibit scaling analogous to the Bjorken scaling of the DIS structure func-
tions.

2.2 Perturbative corrections to the Drell-Yan cross sec-

tion

As it has already been mentioned, effects of the quantum chromodynamics impose
perturbative corrections &'( @) to the parton model cross section of the Drell-Yan process.
The calculation of &'(ay) is analogous to the corresponding corrections to the structure
function F,. In particular, the key point here is to consider:

e corrections to the leading order (LO) contribution (shown in Fig. 2.2)) from virtual
gluons,

* next-to-leading (NLO) corrections obtained from real gluons in scattering process
g+q— Y+ g (see Fig.2Z2b,c),

e and NLO corrections from quark(antiquark)-gluon scattering g + g — ¥* + ¢ (see
Fig.2.2]d).

In the case of perturbation corrections to higher orders, e.g. &(a?), one should also
take into account the dependence on the type of the colliding objects. In general, those
corrections should be much smaller than &(qy). After taking into account the leading

order QCD corrections to the Drell-Yan cross section, eq. (Z.10) can be rewritten in the
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following form [2]:

dGDY 4717062 1 M2
4 _ 2 -
= M| dxdiadz8(nxz— =) 2.11)
2 2\~ 2 M s(1— oy (M?)
x| Leplar (e, MO 00, M%) + (g < @)} { 8(1=2)+ —_—Dy(2)
7

+ Y eH{g(x1. M) (qp(x2,M?) + G (x2,M?)) + (q,G 4> )} X
7

where g(x,M?) is the gluon distribution and the coefficient functions D, and D, are given

by the relations [21], 22| 23] 24]]

D,(z) = Cp [4(1+z2) (1“(1_Z)) —21+Zzlnz—|—5(1—z) (27”2—8)} :

-z |
N2
Dy(z) = Tg {(zz—k(l—z)%ln%—k%%—.@z—%zz] , (2.12)

where Cr =4/3 and Tg = 1/2.

Experiments on the Drell-Yan process are mainly based on the measurement of the
double differential cross section d>c /dM?dy in a limited range of rapidity, as well as the
cross section d?>c /dM?dxp which depends on the longitudinal momentum fraction of the
lepton pair xr. The variable xr is known as the Feynman’s variable and can be expressed
by the parton momentum fractions x; and x; as follows

2
— N ax —x. 2.13
XF 7 (pr++p-) =x1—x2 ( )

In the lowest approximation, the energy-momentum conservation (x| p;+ +xp;- )2 = M?

leads to relation

M2
X1X2 = o (2.14)

Using relations (Z.13) and (2.14), the LO Drell-Yan cross section can be written in the

following way

d*c™®  Ama?  xix
dM2dxp ~ 3NM* (x) + x>

) Y e [ar (1, M?)G (2, M?) + G p(x1,M?) g5 (x2,M?)] (2.15)
7

with the parton momentum fractions given by the kinematic variables xz, M? and s

w=t (Vs ). net(\raerm ). amw
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Figure 2.3: The Drell-Yan process in the framework of the dipole model.

4

In the NLO approximation, additional emission of a parton into the final state has to
be taken into account. Thus, the energy momentum conservation includes fraction z < 1
of the original parton momentum carried by quark: (x| p;+ 4+ zx2p;- ) = M?, which leads
to the relation

M2
XXy = —, (2.17)
S8
with parton momentum fractions equal
1 1
X = 5(\/;& FA(M2)2s) £ xr), X = 5(\/x1% FAM2)zs) —xp).  (2.18)

In this approximation, the Drell-Yan cross section is proportional to the strong coupling

constant o,

d*oNLo Ao ax(M?) !
- ol )/ dz 2 ¥ 2 (2.19)
dM?dxr 3INM* 21 min X1 T X2 7

X {(If(X1,M2)67f(X2,M2)Dq(Z)
+ gl M) [qp(x1,M2) + G (x2, M) Dy (2) + (x) sz)},
where z,,i, = M? /s(1 — xr) and coefficient functions D, and D, are given by eqs. (Z.12).

Thus, the final formula for the Drell-Yan cross section in the collinear approximation up
to order &'(0y) is given by the following sum

d2 GDY d2 GLO d2 GNLO
dM2dxr . dMldxy | dMPdxr

(2.20)

2.3 Drell-Yan processes in the dipole picture

The Drell-Yan cross section can also be computed in the rest frame of one of the
hadrons. This allows the formulation of the Drell-Yan process in the dipole picture. The
original description has been proposed in with details of the calculations pre-
sented in [27]. This process has also been reexamined in [28] and later on in [29] 30]
within the framework of the color glass condensate which well suited to studies of parton
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saturation effects in the DY processes. In the dipole picture, the Drell-Yan process can be
seen as a scattering of the quark (or antiquark) from the fast moving proton on the target
at rest. In this approach, a fast quark interacts with a strong gluon field of the target and
emits a virtual photon which later on decays into the lepton pair. The emission of the
virtual photon may be treated as a bremsstrahlung and occurs before or after scattering on
the target, see Fig. As a result, the Drell-Yan cross section is viewed as a product of
two quark amplitudes, testing the gluonic field at two different transverse positions, and

can be described by the same dipole cross section as in the DIS.

In the target rest frame, the Drell-Yan process is considered in a kinematic regime of
the small-x wherein the mass of the lepton pair M is much smaller than the center-of-mass

energy +/s and larger than the QCD scale Agcp:
Apep <K M* < 5.
In the small-x limit, in which the momentum fraction carried by the fast incoming parton
x1 1s much larger than the second one,
M2
xp ~1, Xn=—<LI1, (2.21)
§X1
the Drell-Yan cross section can be given in terms of the incoming quark/antiquark distri-

butions in the proton [28]]

d*cPY o x ldz X _ X
= ——Y ¢ / —2[qf<—,M2>+qf<—,M2> (2.22)
7 x1 < Z

dM?dxp 67TM? x| +x3 Z

T.L
x 0" (gp = VX)),

Using the proton structure function F», relation (2.22)) can be rewritten as

d*cPY Qo 1 Ydz  (x1  5\ 711
—_— = — | —FK| —M")o —vX 2.23
dM? dxp 67M? x| +x2 /xl z 2( z’ ) 7lap = 1), (2.23)
in which factor @, /6TM 2 characterizes photon decay into lepton pair and
X1 X1 X1 |
15} (;,MZ) =Y [qf<?M2> +qf<?M2>] : (2.24)
f

The cross section o (gp — Y*X) in eq. (2.23) describes the emission of a virtual photon y*
with the momentum fraction z of the fast quark and is given in the dipole picture as [28]

G;7L(qp — ’}/‘(X) = /dzrl Wf’L(Zer7M25mf) qu(XQ,ZrL), (225)

where (T, L) refer to the transverse and longitudinal polarization of the virtual photon and
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r | is the photon-quark transverse separation. The wave functions for the transverse and

longitudinal virtual photon polarization can be calculated in perturbation theory,

a

wi = S {l+ (=2 K (ry) +mi K5 (nro) ) (2.26)
20

Wi = ;M%l—z)z[(g(nu),

in which Kj ; are the Bessel-Mc Donald functions and the auxiliary variable 1, depending

on the quark mass my, is given by
n* = (1-2)M*+2*m}. (2.27)

The dipole cross section, 0,7 in eq. @2.23), is known from the DIS analyses, described in
detail in Chapter 1.

2.4 Numerical results

The cross section for the Drell-Yan process has been measurement by many exper-
iments, with a wide choice of targets and energies, and obtained results were compared
with theoretical predictions. As an example of such a comparison are the results of an
experiment conducted by the E605 collaboration [31] in which they measured the Drell-
Yan cross section d*>c/dM?dy for pCu — u* ™~ process at the energy /s = 38.8GeV.
It has been shown in Fig. 2.4 that there is a excellent agreement between theoretical
assumptions obtained from the next-to-leading order MRS(A) parton distributions and

experimental data.

In our research, we analyze the Drell-Yan lepton pair production at forward rapidi-
ties at the LHC energy /s = 14 TeV. In particular, we compare the Drell-Yan cross

sections computed in the two approaches described in this chapter,

e the collinear factorization approach in the NLO, see eq. (2.20),

* the dipole approach, see eq. (2.23)),

with the intention to study the possibility to see saturation effects in the DY processes,
described in the dipole approach by the dipole cross section. In our calculations, we used
the following models of dipole cross section, 0,5,

 the GBW model [7, 8], given by eq. (1.40),
* the GS model [11]], given by eq. (L42),
e the IIM model [10, [I7], given by eq. (L34).
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Figure 2.4: The Drell-Yan cross section d?c /dM?dy measured by the E605 collaboration
at the energy /s = 38.8 GeV against the theoretical prediction.

In Fig. 2.5l we present a comparison of the collinear factorization approach with the
dipole approach against the existing data from the Fermilab E772 Collaboration [34]. We
used the NLO CTEQ6.6M parton distribution functions [33] in the collinear factorization
and the GBW model [[7] for the dipole cross section. It is clearly seen that for different
values of the Feynman variable xr, the E772 experimental data are above the results from
both approaches. A similar result was found for the NLO MSTWOS8 parton distributions
[36]. As far as the dipole approach is concerned, for the energy /s = 38.8 GeV and the
indicated values of M and xf, the fraction of the slow parton momentum, x, ~ 0.01 —0.1,
is slightly beyond the applicability of this approach. Nevertheless, the presented results
show that both predictions are in the right ballpark.

In Fig. we show the predictions for the Drell-Yan cross section as a function
of the center-of-mass energy +/s at fixed xg = 0.15 for three values of the lepton pair
mass M =6,8,10 GeV. At the LHC energy, the GBW dipole model with saturation
give results which are significantly below the collinear factorization predictions with the
NLO CTEQ6.6M parton distributions. The same results are shown in the linear scale
in Fig. 2.7 in which the CTEQ6.6M and MSTWO8 parton distributions are used in the
collinear factorization approach and the GBW (dipole-GBW) and GS (dipole-GS) dipole
cross sections are substituted into the dipole approach formulae. The IIM dipole cross sec-
tion gives results which are very close to the GBW one. At the LHC energy, the fraction
x2 &~ 3-107° lies in the small x domain which has not been explored experimentally yet
for the DY processes and we clearly see that saturation effects encoded in the dipole cross
section give results which are systematically below the collinear factorization predictions.
These results are awaiting experimental verification at the LHC.
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Figure 2.5: The Drell-Yan cross section in the collinear and dipole formulas against the
E772 Collaboration data from Tevatron, [32, 33]].
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Figure 2.6: The Drell-Yan collinear and dipole cross section predicted for the LHC ener-
gies and three values of the lepton pair mass M = 6,8, 10 GeV, [32] 33]].
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Figure 2.7: The Drell-Yan cross section from the collinear and dipole approaches for fixed
xr = 0.15 and lepton pair mass M = 10 GeV, [132} 33]].
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Chapter 3
Double parton scattering

The standard approach of the hard processes usually assumes that only a single par-
ton scattering (SPS) occurs in the hadron collision. However, the experiments at CERN,
conducted back in the 80’s by the AFS collaboration [37]], allowed us to observe a double
parton scattering (DPS). This type of scattering is one of the processes of the multi parton
interactions (MPI) and occurs when in one hadron-hadron collision two independent hard
interactions take place (Fig.[3.I). The multi parton interactions allow us to gain new data
about hadron structure and correlations between partons within them. Therefore, they
are an important issue for the high energy collisions available on the LHC. The parton

scattering processes are described by the corresponding parton distributions:

* single parton distribution functions (SPDFs) for the single parton scattering, where
the final state of the hadron-hadron collision has been produced from only one hard

interaction,

* and multi parton distributions, which characterize the multi parton interactions. In
this work we will analyze the special case of the MPI: double parton scattering,
described by the double parton distribution functions (DPDFs).

The double parton scattering has been the subject of numerous theoretical [38, 39,
4011411142, 143144, 145146\, 147, 148, 149, 150] and phenomenological analyses [51} 152} 153} 154,

Figure 3.1: In the single parton scattering only one hard subprocess occurs, while in the
double scattering - two hard interactions take place.
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Figure 3.2: Graphical illustration of the n-parton correlation function.

551 [56]. The experimental evidence of the double parton scattering has been presented
in [37,57, 58], 59, 60} [61]]. The most important research of the double scattering are the
experiments on pp collisions at the energy of /s = 63 GeV made by ASF Collabora-
tion, as well as pp collisions conducted by CDF [58]] and DO [59] groups at the energies
of /s =1.8TeV and /s = 1.96 TeV. Recent research carried out by the ATLAS
and CMS [61] Collaborations allow the measurements of double parton scattering at the
energy of 7 TeV.

The specific objective of this chapter is the understanding of double parton scat-
tering processes within a rigorous approach based on quantum chromodynamics. More
specifically, the key element in this plan are the double parton distributions which un-
dergo QCD evolution equations. These distributions fulfill crucial and highly nontrivial
sum rules which have to be built in the solutions of the evolution equations through initial
conditions. From a broader perspective, these studies extend our knowledge on partonic

structure of a nucleon, providing information on correlations between partons.

3.1 Parton correlation functions

In order to derive the formula for double parton distributions we have to first define
the correlation functions which inform us about the structure of the interactions between
partons. In the lowest order analysis of the proton-proton collision, the n-parton correla-
tion function takes the following form in the momentum space [46]]

. d* d
Ly, .1}, / " 5 i 3.1)

X <p [(5) (én)]T[ﬁb(é]) o(Sw)l [p)-

The letters 7', T denote time and anti-time ordering of the hermitian parton fields ¢ while
&i,&! and [;,1] are parton positions and four-momenta, see Fig. From translation

invariance, we can shift the variables in the matrix element and obtain parton correlation
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function with the position argument of the first field to be equal zero, &{ =0,

~ d*E! (Y LY 1)
Sy, b1, L) = /(27[)"4e S (3.2)

d*&; ,~.4”_1 d*&l e
H/ 5 &il; g/%e &l
x (p| ¢() (&) T[9(&1)--0 (8] [p) -

The Dirac delta function, obtained in the first term of eq. (3.2)), imposes the momentum

conservation

=Y. (3.3)

i=1

M:

N
I
—

which reduce the number of independent momenta. Thus, the final form of the n-parton

correlation function is given by relation

SR H/ d S it 1:1/ a* 5' — (3.4)
i=1
x (p| T[¢(0 )---‘P(@;—l)] T[¢ (51)--~¢(5n)] p) -

From the formula for n partons, the double parton correlation function for n = 2 can
be found

d*& d*& d451’ i€\ —iEll i&l
Pnt2h) = [ G (s s @ (35)

x(pI T[9(0)9(EN] T[9(51)¢ (5] p)-

Let us reparametrize the parton four-momenta

1 12 R Ik 22
I =k 5 b=k X h k1+2, ) k2+2, (3.6)
where the momentum conservation (3.3)) gives
q1=—4q92=¢q. (3.7

Now, we have

' A8y dYSl ie-gni-itei e dg it
= ! l 24 152(]‘2“'2‘])
(ki k2, q) /(27[)4 20 (2 © e (3.8)

< (P T[9(~58)0 (& — 38 T[0(8 — 36)0(38)] Ip).

where, from translation invariance, we shift arguments in the matrix element by —&, /2.
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Figure 3.3: Position and momentum arguments in the double parton correlation function.

Introducing new position variables

y—3a=E&—-1%&, v+ 3z =& —3&, ==&, (3.9)
we finally obtain

d*zi d*z dYy PR
D(ky,k = IR gl22f2 g1V 3.10
(k) = erfenfents 0 © G0

< (P T[9(=322)0 (v — 320)] T[O (v + 321)0(522)] |p) -

The graphical illustration of the assignment of position and momentum arguments in the

double parton correlation function is shown in Fig.

3.2 Double parton distributions

The correlation function (3.10Q) is a starting point for a definition of double parton
distributions of hadrons. Let us introduce a frame in which the colliding hadrons are
collinear and move very fast. The plane perpendicular to the collision axis defines trans-

verse directions which allow to introduce the light cone coordinates for parton momenta

ki = (ki ki ki), q=(q",9",q), (3.11)

where kl-i = k? + k?, gt = ¢°+ ¢ and k; and q are two dimensional transverse vectors. We
define the double parton distribution by integrating out the minus components of parton
momenta in correlation function (3.10),

F(x1,20,k1,ko,q) = 27)° p Tk ks / dky dky dg~ ®(k1,k2,q) (3.12)

ki =xipt,qt=0"

;=

Notice that we introduced parton plus-momentum fractions x; with respect to the large
incoming hadron momentum p* and set the plus component of g to zero. Thus, the double

parton distribution depends on two momentum fractions, x; and x;, and three transverse
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momenta, ki, k; and q.

In order to better understand this definition, let us rewrite correlation function (3.10)

in the light cone notation. For the right-moving partons, we obtain

dytdy=d*y i
D(k1,ko,q) = /%)4)7 e~ i +y g —yq)
X / dzj dz; &’z dzdz, i’z i (T kT +2r k2 k)
(27‘[)4 (271;)4
x (p| T[o(—322)0(y— 32)] T[O (v + 321)0 (322)] [p) - (3.13)

s S A
el(22 k2 +Z2 k2 —Zz~k2)

Substituting this form into eq. (3.12)), integrating over dk, dk, and executing all of the
delta functions, we find the following expression

Flx,nkika,q) = 2p ki kS / dy~dy ¥

- - 2 2
dzy dz, oz Pt eixzzgﬁ/ dz) d'z okl g—iza ko
21 2m (2m)? (27)?

(Pl T[O(—322)0(y— 321)] T[9(322)0 v+ 321)] Ip),  (3.14)

X

where the spatial plus-components in the matrix element vanish, z| =z =y* = 0. With
vanishing plus-components the fields in the matrix element are space-like separated so

they commute and may be written in any order. Therefore, eq. (3.14) can be written as

F(x1,x, ki, ko, q) = 2p+/dyd2y eV
dil_ dZ_Z_ eixl Z17P+ eix222]7+/ d2Z1 d2Z2 e—ill~k1 e—i12~k2
2w 21 (2m)? (27)?
(p| 0(0,22) O(y,21) |p), (3.15)

X

X

where ¢ are bilinear parton operators

0000 =9(y— L) 1(T+ =9 o(y+12) (3.16)

y+:z+:0.

Integrating over transverse momenta k; and k,, we find the quasi-collinear double parton

distribution
F(x1,x2,q) = /dzkldszF(xl7x27kl7k2»(I> (3.17)
+ — 72 y- dZIdZE ixizy pt vz pt
= 2p* [ dy Py [ TL T emar enar (5] 0(0,2)0(521) Ip),

where z; = z; = 0 (but y # 0) for spatial arguments of the bilinear operators. This distri-
bution enters the DPS cross section formula in the collinear approximation, discussed in

the next section.
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It is interesting to notice that for a single parton (n = 1), relation (3.17) reduces to
the standard definition of the collinear parton distribution function
4 [dz”

Fx) =2p*[ S "7 (p| 0(0.27)|p). (3.18)

where now ¢'(0,z7) is the light-cone operator.

It has also been proposed in [46] to introduce the double parton distribution that
depends on the transverse momenta variables, ki >, and x being the Fourier conjugate
variable to the transverse momentum (,

dzq —ix-q
F(x1,x2,k1, ko, X) = 2n2¢ F(x1,x2,k1,k2,q)
o B 2 2
_ [dz dg oixiz P eixzzg;ﬁ/ d’zy d°zy  _j, o—inks
2w 2w (2m)? (27)?

x 2p* / dy~(p| 6(0,2) 6 (v,21) |p). (3.19)

This distribution has features of a Wigner function. Namely, integrating over k; and k»,
we obtain

F(x1,x2,X) = /d2k1d2k2 F(x1,x0,k1, ko, X), (3.20)

which is a probability to find two partons in a hadron with plus-momentum fractions x; 7,

separated by a transverse vector X. Similarly, after integrating over x, the distribution
F(x1,x2,ki, ko) = /dZX F(x1,x2,k1, k2, X) (3.21)

is a probability to find two partons with the momentum fractions x; > and transverse mo-
menta k 1,2-

For simplicity of presentation, the definitions of the parton distributions were pro-
vided in the simplest possible case where partons are scalar particles with no internal
quantum numbers. In the case of quantum chromodynamics with quark and gluon color
fields everything gets more complicated. Such issues like spin, color or gauge invariance
have to be carefully examined. For details, we refer the reader to review [46] where more

references can also be found.

3.3 Double parton scattering cross sections

The double parton distributions presented in the previous section can be used to
evaluate a cross section for the double parton scattering in hadron-hadron collisions. The

relevant graph for the computation with assignment of particle momenta is shown in
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Figure 3.4: The cross section for double hard scattering of two pairs of partons.

Fig. B4 The wavy lines denote two final state particle produced in double scattering
of two pairs of partons. Their momenta, g >, are on mass shell which is denoted by the
final-state cut line. The lower blob is associated with the right-moving hadron (with mo-
mentum p) while the upper blob with the left-moving hadron (with momentum p) while
the scattering partons are denoted by the solid lines. The assignment of parton momenta
corresponds to that in Fig. for n = 2. Notice that the four-momentum conservation is
imposed at each vertex. Thus

Li+li=q=U+I, i=1,2. (3.22)

In addition, the global momentum conservation for all final state particles holds,

m

m
PHi=aqi+a+ Y. px;+ Y, Px- (3.23)
j=1 j=1

The cross section computation is performed in a kinematic frame, where the colliding
hadrons are moving fast to the right (p) and to the left (p) with transverse momenta
p = p = 0. Thus, each momentum is given in light-cone coordinates, see eq. (3.11). In

addition, the parton momenta, /;, 1/, [;, 1!

!, are reparametrized as in Fig.[3.3]

h=ki—3q, b=k +3q, b=k —3q, li=k+3q (3.24)

and similarly for the upper parton momenta. So we have two sets of momenta, (ki,k>,q)

for the lower blob partons and (ki, k7, ) for the upper blob partons. From the momentum
conservation (3.22)),

q+g=0. (3.25)
The plus-components of k momenta are parametrized with momentum fractions
k?_:Xip_F, ]_(i:'fi(p_)_v i:1727 (326)
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where p* is a large component of the right-moving hadron momentum while 5~ is a large
component of the left-moving hadron momentum. The derivation of the DPS cross section
is rather lengthy, and we refer the reader to review [46]] for details. We emphasize here
only the most important points.

In order to obtain a formula in a collinear factorization form, which is convolution
of two hard scattering partonic cross sections and two double parton distributions, several

kinematic assumptions have to be made. Thus, we assume the following.

* The largest scale (or scales) in the process is a hard scale Q which of the order of fi-
nal state particle masses, Q2 ~ ql-z, while the hadronic scale (of the order of hadronic
mass M), which characterizes non-perturbative interactions, is much smaller than
the hard scale, A < Q.

¢ All transverse momenta are of the order of the hadronic scale,
[Ki| ~ [Ki| ~ qi| ~ |q] ~ A. (3.27)
From this we have for the longitudinal components of the produced particles

g ~q; ~0, (3.28)

and for the fast moving incoming hadrons
Pt~ (P~ 0, P~ (P~ A0 (3.29)

« The scattering partons have small virtualities of the order of A%. To achieve this for

the parton momentum fractions x;,%; ~ 1, we have to assume the following

kK~ 0, ki ~q ~ A/Q, (3.30)

(k); ~ 0, (k) ~q" ~ A*/Q. (3.31)

We see that g™ are small components.

Using these approximations, we can arrive at the following collinear factorization formula

with the momentum dependent parton distributions F (x;,k;,q) and F(%;,k;, —q) [46],

do N
dxidx, dx d% d*qd>qy 2

X /d2k1 dzl_q 5(2)((]1 — k1 — l_(l )/d2k2 dzl_(z 5(2)((]2 — k2 — l_(z)

61 (xlils) 6> (XZ)Ezs)

d? o
X /—(2732F(Xl,xz,kl,kz,q)F()?l,iz,kl,kz,—Q); (3.32)
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Figure 3.5: The graphical illustration of the cross section (3.36)).

where N is a symmetry factor (equal 1 if two hard scattering final state particles are

identical or 2 otherwise) and 67 » are hard scattering cross sections.

Integrating eq. (3.32)) over transverse momenta q; », we perform two Dirac delta
functions, which allows to integrate the double parton distributions over k transverse mo-
menta. In this way, we obtain the cross section with the quasi-collinear double parton
distributions (3.17),

do N

_do N s o
dx1dxydxdx; 2 1(x1%15) G2 (x2%25)

x / &2 F(x1,x2,q) F (51,52, —q). (3.33)

Formula (3.32) can be also be written with the parton distribution functions, F (x;, k;, x)
and F (%, k;,x), provided the Fourier transform (3.19) exists,

( ) A2( )
d Y ) O01(X1X1S5) O2(X2X2S
dedexldXQd qldzqz ) 1AM

X /dzkl dzl_(l 5(2)((]1 — k1 — l_{l)/dzkz dzl_{z 3(2)((]2 — k2 — l_(z)

X /dZX F(xl,)CQ,kl,kz,X)F()fl,fz,l_(l,l_(z,x) . (3.34)
Integration over transverse momenta q > leads to the following cross section in the collinear
approach
e LI DL
——— = —61(x1Xs XX28
dx1dx, dx;dx» 2 1A 211232

x /dsz(xl,)Q,X)F(Xl,)Ez,X), (3.35)

in which the quasi-collinear double parton distributions, F (x;,x), are defined by eq. (3.20).

The cross section (3.33) has a simple geometric interpretation in impact parameter

space if we additionally introduce an impact parameter b into the distributions F (x;,x),
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see [46] for details of this procedure. In such a case

= S Gy Srlans)
- ——— = — X1X18 X2X2S8
dx1dx> dxdx» 2 1A 213272

x /dzx/dzb @B F(x1,x0,%,b) F(¥1,5,%,B),  (3.36)

and the variable x can be treated as the average distance between the two scattering par-
tons, while b and b are the average distances between the parton and the right-moving or
left-moving hadron respectively. The graphical visualization of the cross section (3.36)) is
shown in Fig.

The presented formulas correspond to the naive Feynman parton model. In particu-
lar, the double parton distributions do not depend on hard scales. This is the consequences
of the assumption that transverse momenta of the final state particles, |q;|, are of the order

of the hadronic scale A. If we allow for perturbatively large transverse momenta,
A<lql <0, (3.37)

a new domain of phase space opens which allows for emissions of quarks or gluons from
parton lines. The perturbative resummation of such emissions, in which large logarithms
log(|q|/A) are involved, can be done with QCD evolution equations. In this case, parton
distributions acquire the dependence on a hard scale (or scales) which is governed by the

evolution equations. We refer the reader to paper for the details of their derivation.

In the next chapter we introduce the evolution equations for single and double parton
distributions in a way which is most suited from the point of view of phenomenological
applications presented in Chapter[3l
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Chapter 4

QCD evolution of parton distributions

4.1 QCD evolution of single parton distributions

The detailed analysis of the single parton distribution functions (SPDFs) provides
important data on the structure of hadrons and allows to better understand processes oc-
curring in high-energy collisions. The behavior of the SPDFs is determined using appro-
priate QCD evolution equations. A general formula of the QCD evolution equations can

be given as follows
1
aD(x,1) =Y / du K (x,1,0)D (1), @1
f 0

where function D (x,t) denotes the single parton distributions both for quarks and anti-
quarks of flavor f = ¢;,q; and for gluons f = G . The variables x and u, in eq. (4.1)), are
parton longitudinal momentum fractions with respect to the total nucleon momentum and

t is an evolution parameter, t = In(Q?/Q3).

The kernels %} characterize a real and virtual parton emission (see Fig. H.I])
and can be computed perturbatively as a series in powers of the strong coupling constant
o = 04(1),

Hyp = o K+ o2 )+ 4.2)

A general form of s is known in QCD as
Hyp(x,u,t) = ji/fl;-/ (x,u,t) —8(u—x)8pp Ji/fv (x,1), 4.3)

with the real part jffl}, which characterizes a real parton emission with the change of the

flavor: f/ — f and the change of the longitudinal momentum fraction: u — x with u > x,
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Figure 4.1: The graphical illustration of integral kernels in eq. (4.3), which characterize
areal and virtual parton emission.

see the left plot in Fig. 4.1l Thus
e/”igcf,(x,u,t) =0 for u<x. (4.4)

The function Ji/fv in eq. @.3) describes a virtual emission, see the right plot in Fig. B.1]

and is computed from the momentum sum rule, valid for all values of z,

1
) /O dxxDy(x,t) =1. 4.5)
f

The normalization to unity means that partons carry all nucleon momentum. Condition

(4.3) is equivalent to the following relation

1
Z/o dxx Hyp(x,u,t) =0. (4.6)

After substituting eq. (4.3)) into eq. (.6), we obtain for the virtual part of the kernel (4.3))

u 7} (u,t) / dxxji/ff/(x u,t), 4.7)

or changing the notation: x <> u and f <> f/,

1
x A} (x,t) = ;’/o duuf/”iflff(u,x,t). (4.8)

In this way we arrive at

1
dDs(x,1) = Z /0 du{ A (1)~ 8(u—0) 87 ) (6.0)} Dpat)  (49)

= / du%/f,(xut)Df/(u t)—Dy(x,1) Z/ f’j(u7x7t)'
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Using relation (@.3)), we write the most general form of the evolution equations which

obey the momentum sum rule (4.3)

X

1 R X du R
oD s(x,t1) :Z / du K /(x,u,t)Df/(u,t)—Df(x,t)/o —uApp(u,x,t) o (4.10)
f/ X

The QCD evolution equations can be interpreted as master equations for the Markov
stochastic processes. Let us assume that D (x,t) is a probability distribution to find a par-
ton f with a momentum fraction x at a scale . An infinitesimal change of the scale,
t — t + Ot, allows the parton (f,x) to be produced from a decay of the partons (f’,u).

And thus, the following master equation can be written
1
Dy(x,t +81) = 5:2/ du AR (x,u,0)D (1), @.11)
f 0

where Ot JiffR,(x, u,t) is a conditional probability of the parton transition (f/,u) — (f,x)
in the time interval 6¢. We should add to this equation the term

(1 — amz/fv(x,t)>Df(x,z), (4.12)

where 8t Ji/fv (x,1) is the transition probability that the parent parton (f,x) will decay to
any parton state when the scale is changed by 6¢. The above term describes the probability
that nothing will happen with the parton (f,x) after the change of the scale by dr. We
finally obtain the following master equation

1
Dy(x,t+68t) = 5;;/0 du A5 (3, u,t)D pr(u, 1) + (1 — amszv(x,t))z)f(x,r). (4.13)
After taking the limit 6 — O the above equation can be written as a differential equation
1
aDs(x,1) =Y /0 du {%f@,(x, u,t) — 8(u—x) 8ty (x,t)}Df/(u,t) . (4.14)
fl

which is the evolution equation (£.I)) with the kernel (£.3).

The general form of the evolution equations (4.10) can be examined in the case of
the DGLAP equations (see eq.[1.26). The evolution variable is related to the parton trans-
verse momentum, which is ordered along the chain of partons in subsequent emissions.

The real emission kernels have the following form

1 X
JigcR/(x,u,t) = ;Pff/ (;,t) Ox <u), (4.15)

where Pry are called splitting functions and the theta function results from conservation
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of the parton longitudinal momentum. After substituting eq. (4.13)) in eq. (4.10) we obtain
ld *d
D (x,1) Z/ “Lpyp <- I)Df/(u £)— Dy(x.1) Z/ by ( t) (4.16)

Changing the variables z = x/u in the first integral and z = u/x in the second one, we
arrived at the equations

14 1
ath(x,l) = Z/ ?ZPff/(Z,t)Df/ (z,[) —Df(X,I)Z/() dZZPf/f(Z,t). 4.17)
f/ X f/

The diagonal splitting functions Pss(z,t) have a simple pole at z = 1. This singular-

ity is removed by the virtual term and the final form of the evolution equations reads

dDs(x,1) = / ] %Pff(z,:){pf(’zf,t) —zsz(x,t)}—Df(x,t) /OdeZPff(Z,t)

14 1
+ ¥ {/x ?prf,(z,;)of, (z,;>—1)f(x,t)/0 dZZBf’f(Z,t)}- (4.18)

I'#f
The combination of the parton distributions in the first integral (equal to zero for z = 1)

cures the splitting function singularity.

The splitting functions are computed perturbatively in QCD and are given as a series

in powers of the strong coupling constant o,

2
0% (1) (0 os(1) )" 1
Pry(at) =5 p}f2(z)+( o P+, (4.19)
where # = In(u?/u3), and g is a factorization scale which separates long-distance QCD
effects from short-distance ones. In addition, the splitting functions are quark flavor inde-

pendent and the following relations are valid for f, f’ € {¢;,q;,G}i=1...n .

Pqiqj = q,q, = §; PV+P5¢1’

Pog; = Piq; = 8ijPyg + Pag

Puc = Pg6 = P,

Poq; = Pog, = Poq- (4.20)

There is also Pgg(z) splitting function for the gluon-to-gluon transition.

In the leading logarithmic approximation (LLA) we keep the first term in expansion

@19,

o (t
Pyp(z1) = 2;)1’}(}2 (2), (4.21)
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and additionally

vV _ pV S _pS _
Pag =Py Pog =Pyq =0 (4.22)
Thus, the non-zero splitting functions read

PG = ot gy 423
q9 (Z) - CF l_Z - qq(z)a ( . )

0 1+ (1—2)? 0
PY() = CF% = P01 -2, (4.24)

0 0
PG = Tkl +(1-2% = PY(1-2), (4.25)

1—

Pie(z) = 2Ca IL_Z+TZ+Z<1—Z) = Pip(1—2), (4.26)

where the SU (N,) gauge group coefficients read

N?>—1
Cr=-<
F 2Nc )

Cy =Ng, Tr = (4.27)

1
5
The strong coupling constant o(¢) can be absorbed into the definition of a new evolution
parameter

6 ) ln(.uz/AzQCD>

= n )
33—2np  In(ug/Ajep)

(4.28)

where n in the number of active quark flavors and Agcp is the basic dimensionfull para-
meter of QCD.

Thus egs. (I8 take the following form for quark/antiquark and gluon distributions
(we omit the superscript (0))

dqilxt) = /xl%{qu(z)qi(g,t)+qu(z)G<§,t)}

1
— q,-(x,t)/o dZZ[qu(Z)‘i‘PGq(Z)}a

A Gnt) = /xl%{ng(z)G(;—c,t) +qu(z)z<’-Z‘,t>}

1
— Glx1) /O dzz[Poc(z) +2n,Py(2)] | (4.29)

where i = 1,2,...2ny denotes quark flavor (including antiflavor: g,,; =¢;). We also
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introduced a short hand notation for the singlet quark distribution

ny
Y(x,t) =Y {qilx,0) +G;(x,0)} . (4.30)
i=1

The singularity at z = 1 in the splitting functions F,, and P in the real emission terms
are cured as in eq. @.I8)

datet) = [ Loy {a(Ze)-Fatn} - ate [ azry
+ [ Ere@o(La) —aten [ dsree),
a6t = | 1%1)(;0@{6(3 )—z26<x,r>}—G<x,r> [ bt

1 1
/ ﬂqu(z)z(g,r) — G(x,1) /0 dzz2n Py (2). (4.31)

<

4.2 Evolution equations for double parton distributions

The main objects in the description of double parton scattering in the collinear ap-
proximation are the parton distribution functions (DPDFs), Dy, 1, (x1,x2,01,02,q), intro-
duced in Chapter 3l They provide new information on correlations between partons in
a hadron. In the discussion of their evolution with hard scales, Q; and Q,, we set the
relative transverse momentum q = 0, postponing the discussion on the q dependence of
the DPDFs until Chapter[3l Thus, our basic object for a discussion is the set of functions

Dy, 1, (x1,X%2,01,02) = Dy, f, (x1,%2,01,02,9 = 0), (4.32)

where the parton flavors fi, f> include both quarks and gluons. The DPDFs depend on the
collinear variables - the parton longitudinal momentum fractions x1, x;, which sum cannot

exceed the total momentum of the hadron:
x1+x < 1. (4.33)
For x1 +x, > 1, we extend DPDFs into the unphysical domain demanding that
Dy 1, (x1,x2,t1,12) =0 for  x;4+x2>1. (4.34)

The DPDFs also depend on two factorization scales, Q1 and Q», fixed by two independent
hard processes in which the two partons take part. In the standard, naive approach, it is
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usually assumed that the DPDFs are products of two single PDFs, D¢(x,Q),

Dy, 1, (x1,%2,01,02) = Dy, (x1,01) D, (x2,02) O(1 — x| — x2). (4.35)

It is important to emphasize that this factorized form cannot be generally true, since the
correlation imposed by condition (4.33)) is usually not built in eq. 4.33). Thus, this ap-
proximation is sufficient only for small values of parton momentum fractions. This issue
will be discussed in Section 4.3]

The QCD evolution of the double parton distribution functions is a two step process:

 the DPDFs with equal scales are evolved from the initial scale Qg up to the smaller

scale Q1, treating both momentum fractions symmetric:

Dy, (x1,%2,00,Q0) — Dy p(x1,x2,01,01), (4.36)

* the evolution from Q; to Q5 is preformed with respect to the momentum fraction x;
while keeping x; fixed:

Dy f,(x1,%2,01,01) — Dy p(x; = fixed, x2,01,02) . (4.37)

We start with the evolution equation for the first step (@.36) by introducing evolution
parameter ¢ = In(Q?/ Q(Z)). In this notation, the QCD evolution equations for the DPDFs
in the leading logarithmic approximation (LLA) are given by

I—XQ
8th1f2(x1,x2,t) = Z/O du,/"igclf/(xl,u,t)Df/f2(u,x2,t)
17)61
+ Z/O du K, pr(x2,u,t) Dy, pr(x1,u,1)
+ Z f/ﬁflfz (1,1 +x2,8)D pr(x1 +x2,1) . (4.38)

A graphical illustration of the three terms in eq. (4.38]) is shown in Fig. The kernels
K in the first two integrals are the single parton distribution evolution kernels (4.3).
The real emission part of kernel (@.3)) is given in terms of the LLA splitting functions

% (1) 1 p0) (f) O(x < u). (4.39)

e u,t) = o ul i

The third term in eq. (.38) characterizes the parton splitting

(f'sx1 +x2) = (f1,%1) + (f2,x2) (4.40)
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Figure 4.2: An example of the graphical illustration of the three terms in the evolution

equation (£.38)).

thus, it contains the SPDFs which obeys the DGLAP evolution equation in the LLA
1
O Ds(x,t) = Z/ du Hyp(x,u,t)Dp(u,t). (4.41)
1 0

In this way, the evolution equations for the single and double parton distributions form
a closed set of equations, given by eqs. (£.38) and @.41). The last term in eq. (£.38)),
which will be called from now on as splitting term, is also symmetric with respect to the

interchange x| <> x»,

;J/I/;flfz(xl,xl +x2,1)D (X1 +x2,1) = ; :/“i/]/;flfz(xz,xl +x2,0)D pr(x1 4 x2,1)

(4.42)
in which the real emission splitting functions obey the following relations
R _ R R _ R
;%/ hih = Hps ;% hh = (4.43)
1 2

Let us finally notice that the upper integration limits in eq. (4.38)) reflect condition #.33)
for the parton momentum fractions, saying that the sum of two partons momenta cannot

exceed the total momentum of a hadron.

The second evolution step (@.37) is realized by the DGLAP type evolution equations
with respect to the second variable x;, while keeping the momentum fraction x; and the

evolution parameter t; = ¢ fixed:

l—x1
8,2Df1f2(x1,x2,t,t2) :Z/O du%czf/(xz,u,t)Dfl_f/(xl,u,t,tz). (4.44)

To derive the explicit form of the evolution equations for the DPDFs, we substitute
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the LLA form (4.39) of the DGLAP kernels into the evolution equations (4.38)):

alDflfz(xl ,X2,t) =

1=x2 dy (0) “duu o) (u
Z{/x1 qulf’( )Df/fz(u X2, )—Dflfz(xl,xz,t)/o . xlpffl( )

f/

=1 du ) 2duu o) (u
+/x2 u szf/( )Dflfl(x“u )= Dflh(m,xz’t)/o X2 ?Czpf/f2 (XZ)

+Zl

7 X +x2

X1
P ——— |Dp 4.45
f'=rif (x1+x2) f<x1+x27 )5 ( )

where the strong coupling constant ¢(7) is absorbed into the definition of the evolution
parameter (4.28). Changing the integration variables, z = xj,/u in the real emission

integrals and z = u/x; » in the virtual emission integrals, we finally find

oDy, f, (x1,X2,1) =

1 dz (o X1 1 0
Z{/Xl ;P,(q}/( )Df’fz( X2, >_Df1fz(x1’x27t)/o dzzP})) (2)

f =%

1
2 (0)
+/x2 Z Php(e Dflf/(xl’ . >_Df1fz(x1=x2>t)/0 dzzP/fz(Z)}

lxl

2

f! X1 +x2

X1
Py . D + 4.46
f=hh (x1 —l—xz) pr 1 +x,1). (4.46)

The evolution equations for the SPDFs in the third term above, D¢(x,1), are given by

]dZ

9Dy (x,t) Z/ ; ff, Df,( ) Dfth/ dzzP f,f (4.47)

The simple pole singularity at z = 1 in the diagonal splitting functions P]gf) is regularized
by the virtual emission terms in the same way as in the DGLAP evolution equations for
the SPDFs, see the previous section for more details.

The presented formulae form a basis for the construction of the numerical program
which solves the evolution equations for the DPDFs and SPDFs. We did it using the

method with an expansion in Chebyshev polynomials, described in detail in Appendix A.
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4.3 Momentum sum rule for double parton distributions

It is well known that the single parton distributions obey momentum and valence
quark number sum rules which are conserved under the DGLAP evolution. Correspond-

ing sum rules also exist for the double parton distributions.

The momentum sum rule for double parton distribution functions is given by the

following formula
l*XZ
Z/O dxy xlDflfz(xl,)Q,t) = (1 —XZ)sz(xZ,l), (4.48)
h

where Dy, (x2,t) is a single PDE. The physical interpretation of eq. (4.48) is motivated
by the observation that fixing parton (f2,x,) leads to the conditional probability to find
parton (f1,x;) in the colliding hadron,

Dy (x1,x2,1)

Df1 (X1 |XQ;Z‘) = Df (Xz l‘) (4.49)
2 )

Thus, after dividing both sides of eq. #.48) by Dy, (x2,t), we obtain the relation which
says that partons (f},x]) carry only the fraction (1 —x,) of the total nucleon momentum
while the missing fraction x; is carried by the known second parton. It is important to

notice that after imposing the parton exchange symmetry,

Dy, p,(x1,%2) = Dpy ; (x2,x1) (4.50)

the same rule applies to the opposite situation when the parton (f1,x1) is fixed,

1—x;
Z/() d)QXszlfz(xl,Xz,l) = (1 —X1>Df1 (xl,t). 4.51)
12

Both the conditions, (£.48)) and (4.31)), are consistent with the QCD evolution equations
(4.38) in the LLA form (.46)), once they are imposed on the initial conditions for these

equations at some scale 7.

Let us multiply both sides of eq. (4.48) by x,/(1 —x;). Then, after summing over
all flavors f> and integrating over x;, we find

1 1-x XX 1
Z / d)Cz/ dxy 1 Dflfz (Xl,xz,f) = Z/ dx)> xp sz (xz,t) . (4.52)
fi.2”0 0 12 n70

From the momentum sum rule for the SPDFs (.3)), the last integral equals 1. Thus, the
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momentum sum rule for the DPDFs reads

1 17)62 xX1X
Z/O dxz/o dx| 1i§2Dflf2(x1,x27t):1 (4.53)
fi.f2

and, from eq. @.51)), similarly for the variable xi,

1 lfx] XX
Z/ dxl/ dx) =Dy, p, (x1,22,1) = 1. (4.54)
fl7f2 0 0 1 XI

In order to prove the momentum sum rule (4.48)) we will show that the function
Dy, (x2,) on the r.h.s of this relation is indeed the SPDF which obeys the evolution equa-
tion (4.14). To this end, let us differentiate both sides of eq. (£.48)) over 7,

1
(1 —XQ) a,sz ()Cz,t) = Z/O dx1x1 athlfz (xl,X2,l‘) , (4.55)
f

where we set the upper integration limit to 1 by extending the DPDFs into the non-
physical domain through condition (4.34)). Using eq. (4.38)), we find the following relation

1 1
(1=x2) 9Dy, (x2,1) = Z/o dxlxl{Z/o du K5, g (x1,u)D g ¢, (1, X2,1)
fi 1
1
+Z/0 dujiffzf/(nyM)Dflf/(xlauyt)}
f/

1
+ Z/ dxlxlZt%/f’—)flfz(xh)CZ)Df’(xl +X2,l). (4.56)
£ 0 7
Changing the order of integrations and summations in the first integral over x1, we obtain

1 1
(1=x2) 9Dy, (x2,1) = Z/o du{Z/O dxlxl,/“i?lf/(xl,u)}Df/fz(u,xz,t)
f h
1 1
+ Z/o du,)igczf/(xz,u){Z/o dxlxlDflf/(xl,u,t)}
f h

1
+ Z/O dxix1 Y Ky g (x1,52) Dpr(x1 +x2,8) . (4.57)
s fi

The integral in the first line vanishes from eq. (#.6). Using the sum rule @.48) in the

second line and relations (4.43)) in the third one, we rewrite the above equation in the
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following form
1
(1—x2)aDp, (x2st) = Z/O du(1—u) Ay (x2,u,1) Do (1, 1)
f/
1
Z/ dxlxle%?ff/(xz,xl+x2,t)Df/(x1—|—x2,t). (4.58)
7 J0

Substituting kernel (£.3) in the first integral and changing the integration variable, u —
X] = u— xp, in the second one, we find after dividing both sides by (1 —x,),

Dy, (x2.1) Z/ dul_ (A (x0,0) = 8= 2) 81, Y (02) b Do)
+ Y ALt % 1) Dy (u,t). (4.59)
f/ o 1_x2 Hhf s Wy )
From the relation
L%/fl}/ (x,u,t) =0 for u<x (4.60)

we find, that the lower integration limit in the second integral can be set to zero. Thus,
after a simple algebra, we obtain the evolution equation @.14)) for the single parton dis-

tributions

Dy, (x2,1) Z/ du{ A (0,0) = 81— 22) 8p,p HY (12) } D) . (4:61)

4.4 Valence quark number sum rules

The DPDFs also obey valence quark number sum rules which are more complicated
than those for the SPDFs:

1
/ dx{Dg,(x,t) — Dg,(x,t)} = N;. (4.62)
0
The analogous sum rule depends on the second parton flavor f> 62]],

1—x
/0 dx {D%’fz (x1,%2,1) — Dg, , (xhxzaf)}

N;Dp,(x2,t) for f> # qi,q;
= ¢ WNi—=1)Dy,(x2,t)  for fa=g; (4.63)
(Ni+1)Dy,(x2,1)  for fr=g;
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A similar relation holds true with respect to the first parton, (f1,x;),

lfxl
/0 dx; {Dflqi(xlaxw) —Dflq‘i(xlaxzaf)}

]viDﬂ(xlat) for fl %qbq_i
= ¢ (Ni=1)Dg (x1,t) for fi=gq; (4.64)
(Ni+1)Dy (x1,t)  for fi=gq;.

The valence quark number sum rules for DPDFs can be simply derived now. For example,
for f> # q,q;, we find from the first relation (.63):

1 l*XQ
/0 dxz/o dxi {inqj(xl,xz,t) —Dgyq;(x1,%2,1) — Dy, (x1,X2,1) —f—inq-j(xl,xz,t)}
1
= N; /O dxy {Dy;(x2,1) — Dg;(x2,1) } = NiNj, (4.65)

where we used the sum rule (4.62)) in the last equality. A similar relation can be found
from the two last relations (4.63)) for N; # 1:

! I7e Dy, (x1,%2,t) = D (x1,%2,8) Dy, (x1,%2,) — D (x1,%2,1)
d)CQ dxl{ }
0 0 N;—1 N;+1

1
= /0 dxy {Dg,(x2,1) — Dg,(x2,1) } = N;. (4.66)

Let us stress again that the valence quark number sum rules (4.62)) and @.63) are con-
served by the DPDFs and SPDFs evolution equations once they are imposed on the initial

conditions at some scale f.

4.5 Specification of initial conditions

In order to solve the evolution equations for the DPDFs (4.38)), both initial distri-
butions: Dy, £, (x1,X2,%) and D(x,1), have to be specified at some initial value 7y. In
view of the importance of the momentum and valence quark number sum rules, the nat-
ural question arises how to provide initial conditions which obey these rules. One of the
solution is to specify DPDFs and then generate SPDFs in accordance with eqs. (4.48)) and
(4.63). However, this is not practical since at present the DPDFs are not constrained by
experimental data, in contrast to the SPDFs which are very well known from global fit
analyses done by many groups. Therefore, we reverse the logic and will try to build the
initial DPDFs from the known SPDFs.

In the literature, the following symmetric ansatz is often discussed [40, 41]]

(1—x; —x2)?
1 —x )2—|—n1 (1 _x2)2+n2

Dy, 1, (x1,x2,%0) = Dy, (x1,20) Dy, (x2,10) ( (4.67)
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Figure 4.3: The ratio of the r.h.s to the Lh.s of eq. (4.48)) (left) and of eq. (4.63)) (right) for
the input distributions @.67) as a function x; for f, = g,d, u,i. The violation of the sum
rules is indicated by the departure of the ratios from 1.

with n 2 = 0.5 for valence parton distributions. Although the form #.67) is parton ex-
change symmetric and positive definite, it does not fulfill the sum rule relations (@.48])
and ([@.63). We illustrate this effect in Fig. 4.3 by showing the ratio of the r.h.s to Lh.s
of eq. @.48) (left panel) and of eq. (.63) (right panel) as the function of x; for the fla-
vors f» = g,d,u,u. If the sum rule relations hold true these ratios should be equal to
1 for all values of x,. This is almost the case for the momentum sum rule but the va-
lence quark number rule is strongly violated for such an ansatz. The valence number
ratios for f, = u,i at small x, can be explained by the values (N, — 1)/N, = 0.5 and
(N, +1)/N, = 1.5 (with N,, = 2), respectively, obtained for the symmetric ansatz.

Now, the question arises whether it is possible to construct initial conditions for
QCD evolution of the DPDFs which exactly fulfill the momentum and quark number sum

rules and are built out of the known SPDFs. It is easy to check that the following ansatz,
proposed in [63} 64], satisfies eq. (@.48)) and the first relation in eq. ({.63))

x|
Dy p, (x1,%2,10) = Dy, (1_—)62@) Dy, (x2,10), (4.68)

1— X2
where the condition x| +x, < 1 is implicit. However, the last two valence quark relations
(@.63) are not satisfied. In order to fulfill them, we have to correct ansatz (4.68)) for the
same quark flavors or antiflavors, f, = g; or f» =g,

1

X1 1
Dflfl (xl,X2,t0) = I (Dfl (1——)62’t0> — 5) Dfl ()Q,to), (4.69)

X1 1
Dflf1 (x1,x2,00) = <Df1 (1_—x2,t0> + 5) Dﬁ (x2,10) - 4.70)
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Momentum sum rule
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Figure 4.4: The momentum sum rule (£.48]) as a function of the evolution scale for input
(@.68). The momentum sum rule for SPDFs is also shown. The lowest curve illustrates
the importance of the third (splitting) term in evolution equations (.38)).

The additional factors with 4-1/2 account for the factors with +1 on the r.h.s of eqs. (£.63))
and do not spoil the already fulfilled momentum sum rule (£.48)). However, the proposed

ansatz is not symmetric with respect to the exchange of partons,

Dflfz(xthle) 7£Df2f1 (x27x17t0)- “4.71)

In addition, the quark distributions Dy, (x1,x2) and Dg,g,(x1,x2) are not positive definite

in the whole physical domain: x| 4+ x, < 1. This situation is summarized in Table 4.1

Properties H Symmetric ansatz \ Our ansatz ‘
Parton symmetry yes no
Positivity yes no
Sum rules no yes

Table 4.1: Properties of the two discussed in the text initial conditions.

In Fig. 4.4 we show how the momentum sum rule (@.33)) is preserved by our numer-
ical program. The 1% deviation from unity results from numerical inaccuracies. We also
show the momentum sum rule for the SPDFs. The lowest curve illustrates the role of the
splitting terms in the evolution equations (4.38]). Without this terms, the momentum sum
rule for the DPDFs is strongly violated.

In Fig. we show the graphical comparison of the two inputs as functions of x|
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DPDFs for x,=10° and Q°=2 GeV?
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Figure 4.5: The initial DPDFs, x1x2D, , (x1,X2), as functions of x; for fixed x, = 1073
and the input scale Q3 =2 GeV?. The two input distributions ({67) (sym) and (Z.68)
(our) are plotted.

with fixed x» = 1073, using the MSTWO08 LO [36] parametrization of the SPDFs taken
at the scale Q(Z) =2 GeV?. For such a small x», both ansatze give practically the same
distributions with gluons, D, and D,,. However, this is not the case for the pure quark
distributions, Dy, and D,;, which are significantly different in the large x; region. As
expected, D, from eq. (#.69) is negative for x; > 0.6. Notice also that the modifications
given by eqs. ({.69) and (.70) lead to non-zero values of the distributions Dy, s, and D Iy
at the kinematic boundary: x| +x; = 1.

4.6 Effects of QCD evolution of the DPDFs

In order to study evolution of the DPDFs we use the constructed numerical pro-
gram based on the Chebyshev polynomial expansion, described in detail in Appendix A.
We solve simultaneously eqs. (@.31)) and (@.46), starting from the two initial conditions
specified in the previous section. In Fig. we show the DPDFs from Fig. evolved
up to the scale Q> = 100 GeV?2, while in Fig. &7l we present a graphical comparison of
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DPDFs (x,, X,=10°, Q°=100 GeV?)
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Figure 4.6: The DPDFs as in Fig. B3] but evolved to Q> = 100 GeV>.

the initial and evolved double parton distributions, shown on previous plots. We clearly
see that the evolved distributions D, and Dy, give exactly the same results in the whole
domain of x; while the distributions D,,, and D,; are different for large values of x;. As
expected, D, from our input stays negative for x; > 0.6. On the other hand, for small
values of parton momentum fractions, xj,x, < 1, both distributions tend to the same,

factorized form
Dy, 1, (x1,%2,0) = Dy, (x1,0) Dy, (x2,0) - (4.72)

To study the question of the factorization (4.72)) in more detail, we plot in Fig. 4.8]
the ratio

Rff — Dflfz(x17x27Q2)
2 Dy, (xlan)sz(x27Q2)

(4.73)

as a function of x; for fixed x, = 1073 and Q% = 100 GeV2. As we can see, the effect of the
violation of factorization for small values of x; and x; is only seen for the distribution D,;.
This is due to the third term in the evolution equations (@.38) which characterize parton

splitting. In particular, the violation is significant only for the splitting g — ¢g, due to

69
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Figure 4.7: Comparison of the initial and evolved DPDFs for the symmetric (dashed
curves) and our (asymmetric) (solid curves) inputs.

a large value of the gluon distribution g(x) at small x. For the distributions Dy, Dgy, Dy,
the factorization holds very well once one of the parton momentum fractions (or both) are

small. The same conclusions are valid for the others quark flavors.

To summarize, our goal to construct the DPDFs initial distributions which are built
out of the existing SPDFs and fulfill the new sum rules to reduce arbitrariness in the
DPDFs evolution is not fully successful. The lack of the parton exchange symmetry and
the negative values for some of them for large values of the parton momentum fractions

make them rather unsatisfactory for practical purposes.
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Figure 4.8: The ratio (@.73) for the symmetric (@.67) (dashed line) and our (#.68)) (solid
line) inputs evolved to Q2 = 100 GeV? as functions of x; for fixed x; = 1073.
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Chapter 5

Electroweak bosons production in
double parton scattering

A crucial prediction of the Standard Model is the existence of vector bosons W and
Z mediating in the weak interactions. In 1983, experiments of the UAI and UA2
[66] Collaborations, conducted at the CERN pp collider SPS, allow to experimentally
confirm theoretical predictions concerning them with high accuracy. The electroweak W
and Z boson production is one of the most valuable processes in the particle physics which

allows to determine the important data on the hadronic structure.

For better understanding of this process, we analyze in this chapter the WW ™~ and
7979 electroweak boson production in terms of the simplest multi-parton process - the
double parton scattering. We study the vector boson production in DPS by using the QCD
evolution equations for the DPDFs. In particular, we analyze the role of the splitting terms

in these evolution equations and show their significance for the computed cross sections.

5.1 W and Z bosons production

The vector bosons W+ and Z° can be produced from annihilation of two quarks
in a hadronic collision. They have particular small decay widths: I'yy = 2.085 GeV and
'z =2.4952 GeV, in comparison to their masses

My = 80.385GeV, (5.1)
Mz = 91.1876 GeV. (5.2)

The lowest-order diagrams for the W* and Z° boson production in the single parton scat-

tering are shown in Fig. 5.1l
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W= Z

L]l

Figure 5.1: Lowest order diagrams for the production of the vector bosons W+ and Z°.

In the collinear approximation, the cross section of the elementary process,
9§ - W/Z—IX,

is given by the parton distribution functions g, and G, known from Feynman’s parton
model (see Section [T.4),

=Y / dxdzq(x)3)(2) 8w 2 (5.3)
7
In addition,
M M
W2y W2y (5.4)
Vs Vs

are the parton longitudinal momentum fractions given in terms of the boson rapidity y.

The subprocess cross sections 6,5,y /7 has the following form (2]

~ Y ~

Suisw = 5\/EGFMVZV|qu,yz<<5(s—M$V), (5.5)
N Y n

6,0z = §szFMg(V;+A§)5(S—M§), (5.6)

where Gy is the Fermi constant (LI3), V,, is an appropriate element of the Cabibbo-
Kobayashi-Masakawa (CKM) matrix [67} 68]],

Vud Vus Vub
V= Vea Ves Vep ) (5.7)
Via Vis Vw

and V,;,A, are the couplings of the fermions to the Z boson, given by

Vier = +0.191,  Ayer=+3, (5.8)
Vasp = —0345, Agep=—%. (5.9)

74



3 T I TrrrT I T T 1T | LI |'l '3 T I L 11T I rrvd T
- /ll 7‘ L I'-
= CDF (1995)
I’ /,’ = / 7
o DO (1995) &/
o UAZ (1990) //f
) ’ - = _
L S
> m
[} -1 () -
1 1
= 1n -
1 1= |
z -4 e -
0 1 1 | [ 1 i1 l 1 bt I 1 o 1 I 1413 [ 1111 [ | I | l 1
5 1 1.5 2 5 1 15 2
Vs [TeV] Vs [TeV]

Figure 5.2: The theoretical predictions for the W and Z cross sections compared with the
UA1, UA2, DO and CDF experimental data [2]].

The cross section of the electroweak bosons production has been measured by many
experiments and collaborations. Fig.[5.2lshows a comparison of the W and Z cross section
(multiplied by branching ratios oy /7 - BR) , measured in pp collisions by UA1 [69], UA2
[70], DO and CDF Collaborations, with theoretical predictions. The leptonic
branching ratios are known from the Standard Model and are equal to

BR(W —1v) = 0.1084, (5.10)
BR(Z—1717) = 0.0336, (5.11)

while the parton distribution functions are from the MRS(A") set [[73]] with the factoriza-
tion scale U = My z. It is clearly seen that the agreement between theoretical predictions

and experimental data is very good.

The production of the electroweak bosons W+ and Z° can be characterizes by the
differential cross section in rapidity, y = %ln(xl /x2). In this case, the cross section for the
W boson production is given in terms of the convolution of the elementary cross section

(5.3) and the parton distribution functions

dGWzt .
dy B

00’ Y Vg |? {a(xr, )7 (x2, 1) + G(x1,1)q (x2, 1) } (5.12)
qq'

with the factorization scale y = My and

w_ 2nGr My,

o =
0 3\/§ 5
75
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Figure 5.3: Production of the electroweak bosons in double parton scattering.

For the Z boson production, the cross section is obtained from eq. (3.12)) by replacing
2 2 42
Vag'|© = 8¢ (Vg +Ay), (5.14)

and changing the mass My — M.

5.2 Simplified DPS cross section

The production of the W* and Z° bosons can be also analyzed for the double parton
scattering. The graphical illustration of the electroweak bosons production in DPS is
shown in Fig. The hard scale Q in such a case is equal to the boson mass Q = My z,
while the parton longitudinal momentum fractions x1,x, and z;,z can be related in the

collinear approach to the produced boson rapidities, y,y;, as follows
_ 0 Y12 _ 9 -2
. 2 5.15
Xip = NG el?, 212 NG € (5.15)

Using relation (3.13) and the following conditions for the momentum fractions

x12 <1, 712 <1, (5.16)

(r+x) <1, (m+z2) <1, (5.17)

the allowed values of rapidities can be specified

Vi %

s
—lnE < Vmax < In 0 (5.18)

We consider the W+ W~ and Z°Z° boson production in the proton-proton scattering
at the LHC center-of-mass energy /s = 14 TeV. In Fig. 5.4 (left), we show the rapid-
ity plane for the W W™ boson production, where the solid lines correspond to constant
values of (5.17) while the dashed lines represent the constant ratios x, /x; = z1/z2. The
middle point corresponds to fully symmetric momentum fractions x; = z; ~ 0.5- 1072,
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Figure 5.4: Kinematic plane for WW ™~ production in DPS at the LHC energy 14 TeV
(left) and cross section (5.20) for this process (right).

In the standard approach, the estimation of the DPS cross section G4p is usually

factorized into a product of the two single parton scattering cross sections 64 and Op

. N o403
2 Geff ’

OAB (5.19)
with a symmetry factor N equal 1 for A = B and 2 otherwise, and an effective cross
section, 0,7 ~ 15 mb, estimated by the CDF and DO Collaborations from the DPS data
(57, 58, 39]. In this approach, the DPS cross section for the W W~ bosons production

can be computed using the single scattering cross sections (3.12))

Ow+w- 1 doy+doy-

- . (5.20)
dyidy,  Oepp dyr dy>

The results of such a computation are shown in Fig. 5.4] (right) where we present the
DPS cross section (3.20) obtained using three quark flavors u,d, s and the MSTWO08(LO)
parametrization of the single PDFs [36]].

Formula (5.19) is only an approximation. A full description of DPS cross sections
in the collinear approximation with the double parton distributions is presented in the next

section.

7



5.3 DPS cross section with DPDF's

The double parton scattering allows to gain information on parton correlations by
measuring the double parton scattering cross section in high energy collisions of two
hadrons. The inclusive DPS cross section in the collinear approximation is given by the
following formula with the DPDFs [46] 44]], see also eq. (3.33) for scalar partons,

N N A
OAB = 0 Z /dxldxzdx’ldxlz G}‘lf]/(xlaxllan) Ggfé(xbxleZ) (5.21)
Nfif

d’q
X /(275)2 Dflfz(x17x25QlaQ2aq))Df]’fz’(xll,xlz,Ql,QL—q)’

where A and B denote the two hard parton states, N is a symmetry factor (equal 1 forA =B

and 2 otherwise) and ( is the relative transverse momentum discussed in Sec. 15.3.2)

For equal hard scales, Q1 = Q> = Q, the DPDFs evolve with a hard scale Q ac-
cording to the evolution equations (4.46)) and (#.47). Using the results of Chapter 4] and
our numerical program which solves the evolution equations, we are ready to analyze the
DPS production of electroweak boson pairs in detail. Two related questions are particu-

larly interesting:

¢ how the simplified cross section (5.19) compares with more accurate formula (3.21)),

e how important are the splitting terms in the evolution equations (@.46) for the ob-

tained results.

In order to answer the latter question it is useful to reformulate the evolution equations
for DPDFs in the double Mellin moment space. This will allow to easily separate two
contributions to the DPDFs, shown in a simplified form in Fig. The first contribution
comes from partonic emissions from one of the two partons while the remaining one
acts as a spectator. The second contribution is the splitting contribution in which parton
emissions come from two partons originating from a single one. This is the contribution

which is described by the splitting terms in the evolution equations (£.46)).

5.3.1 Evolution equations for Mellin momens of DPDF's

We rewrite evolution equations (4.46)) for equal scales with the help of the double
Mellin moments of the DPDFs,

1 1
Df1f2(n1,n2,t):/0 dxl/o d)QXIllxgze(l—xl—X2)Df1f2(xl,XQ,t), (5.22)

where the theta function imposes the basic momentum fraction constraint (4.33)). Notice

that we keep q = O for the DPDFs. Neglecting for simplicity of the notation the nega-
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tive virtual correction terms in eqs. (4.46)), we can write these equations in the following

equivalent form

1 1
3 D(x1,x2,1) = /0 dy /0 dz8(x1 —y2) 0(1 — 2—x2) P(y) D(z,x2,1)

1 1
+ [y [ dz 80 —y2) 01— =) PY) Dt 2.1)
1 ( X1
_|_
X1 +Xx2 X1 +x2

)D()Cl —|—XQ,Z), (5.23)

where we used a matrix notation in flavors, e.g. (D), s, = Dy, ,. Integrating both sides of
this equation as in eq. (3.22), we find the equation with two homogeneous terms and one

non-homogeneous term
d,D(ny,ny,t) =A; +Ar +B. (5.24)

The first homogeneous term, A, is given by

1 1 1 1
N N Y
x x{' x3* P(y) D(z,x2,1)

1 1 1
:/Ody/o dz/o dy 0(1—z—x2) B(1 — yz—x2) (y2)" 22 P(y) Dz, 32,1,

where we performed integration over x; with the help of the delta function in the third
line. The second theta function does not impose additional constraint and can be skipped.
Thus

1 1 1
A = [/0 de”‘P(y)} ' [/0 dZ/O dxy 2" x5 0(1 —2—2x2) D(z,x2,1)

= y(m)-D(ni,m,1), (5.25)
where the known matrix of anomalous dimensions read
1
y(n) = / dxx"P(x). (5.26)
0
In the same way we find a similar relation for the second homogeneous term,
Ay =D(ny,np,t) -y (ny). (5.27)

The transformation of the non-homogeneous term is slightly more complicated,

1 1 1 X1
B= [ d /d B(1—x1 —x2) " A2 P D . (528
/0 X1 A X2 0(1 —x1 —x2)x)" X5 o (x1+x2> (x1 +x2,1).  (5.28)
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After changing variables, x; — z = x| + x;, we find the following relation

1 1 1
B— /0 dox / dz(z—x1)" ~P(x1/2) D(z.1)
X1

1 1 1
_ / dx / dy / dz8(x1 —v2) (z—x1)2 P(y) D(z,1). (5.29)
0 0 0

Preforming the integration over x| with the delta function, we find

B = /Oldy/oldz(yz)"l (z—y2)" P(y)D(z,1)
= [ anm a—yyepw)] [ [ dzmtrni ]

= §(n1,n2)-D(ny +ny,1), (5.30)

where

1
P(m,ma) = /0 dyy" (1—y)" P(y). (5.31)

From eqgs. (3.23), (3.27) and (3.30), we can finally obtain the following form of the evo-

lution equation in the Mellin moments representation

8tl~)(n1,n2,t) :;}/(nl)[)(n],nz,t) + l~)(n|,n2,t) ’}/T(nz) + f/(nl,nz)ﬁ(n] —|—n2,t) .(5.32)

J N J

~~
homogeneous terms non—homogeneous term

Notice that the non-homogeneous term corresponds to the parton splitting contribution to
the DPDFs. Let us notice that D(ny +ny,t) is a vector of the Mellin moments of the single
PDFs,

Dy(n,t) = /0 e Dy (xh). (5.33)
The evolution equation for them can be found in a similar way. We obtain the equation
d,D(n,t) = y(n)D(n,t), (5.34)
which has a simple solution
D(n,t) = "™ Dy(n), (5.35)

where Dy (n) is an initial condition.

The general solution to the evolution equation (5.32)) is the sum of the general solu-
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Figure 5.5: Schematic illustration of two contributions in eq. (3.39).

tion to the homogeneous part and a particular solution to the non-homogeneous part. The

homogeneous equation has the following general solution
D(ny,ny,t) = eY("‘)tA(nl,nz)eyT("Z)t. (5.36)

A particular solution to the non-homogeneous equation can be found by making A(ny,n,)
time dependent and substituting such an ansatz to the full equation (3.32). Then, we find
the equation

O Alny,no,t) = e "™ Yny o) D(ny +nat)e 1)1 (5.37)
which can be easily solved
t ! ~ !
A(nl,nz,t) = Do(l’ll,l’lz) +/ a’t'e_ﬂ"‘)’ }7(n1,n2)D(n1 —{—l’lz,t’)e_yT(nz)t , (5.38)
0

where Dg(n1,n,) is an initial condition for the DPDFs. Substituting (53.38) into (5.36), we
obtain the final form of the solution

D(nl ,Nno, t) = eﬂnl)t D()(l”l] , nz) eyT(nz)t

t / ~ !/
+ /0 dt’' ") gy ) D(ny + ot ) el ) (5.30)

Relation (3.39) is the sum of two contributions. The first term describes two independent
DGLAP evolutions up to the scale Q of two partons emerging from a hadron at the initial
scale Qp (t = 0). The second term describes the emergence of the two partons from the
splitting of a single parton at the scale Q' (corresponding to ') which then independently
evolve up to the scale Q. Notice that the splitting occurs at any value of Q' € [Qp, Q]. The
graphical illustration of these two terms is given in Fig.[3.5

With eq. (3.39) it is easy to compute the two contributions to the solution of the
evolution equations for DPDFs. To find the homogeneous part, we solve these equations

without the splitting terms for initial conditions imposed at some initial scale. The non-
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homogeneous, splitting contribution can be found by solving the full evolution equations

for initial conditions which are equal to zero at the same initial scale.

The preformed analysis allows us to present the solution for two different scales,
say Q1 < Q2 (11 <12),

D(ni,mo,t1,12) = &™) Dy(ny,ny, q) ¥ ("2
min{tl,tg}
£ [l Y ) D + )& (5.40)
0

The evolution equations which correspond to this case have been derived in [42]]. The
x-space representation of egs. (5.39) and (3.40) is obtained from the inverse Mellin trans-
formation and can be found in [74]].

5.3.2 Relative momentum dependence

The form (3.39) of the solution is the basis of the proposition of Ryskin and Sni-
girev [44]] regarding the dependence of the DPDFs on the relative momentum q. This
dependence is not specified by the evolution equations and is a matter of a physically
motivated modeling. The basic idea is that for two partons originating from a nucleon, q
reflects their correlation inside the nucleon, described by a non-perturbative form factor

1

> (5.41
(1 Jrqz/mf),)2 )

F2g(q) =

known as the two-gluon nucleon form factor with m, ~ 1.5 GeV being an effective gluon
mass. Therefore, the first term in eq. (3.39) has been postulated in [44]] with the factorized

q-dependence,

DD (ny,np,1,q) = e Do(ny,ny)e? 2 FL(q). (5.42)

In principle, the form factor could depend on parton flavors, however, this dependence is

not taken into account.

On the other hand, if the two partons originate from a point-like parton through its
splitting, such a correlation (and the form factor) no longer exists. The q-dependence has
been introduced in the splitting term in eq. (5.39) through the lower integration limit

- t

D@ (ny,ny,t,q) = ( )df/eY(n')(”l) ¥(n1,n2) D(ny +n2,f/)eyT(n2)(t7t/), (5.43)
fo(q
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Figure 5.6: Schematic q-dependence of the DPDFs according to [44]].

where

0 if |q| < Qo
to(q) = (5.44)
1(q) if Qo<lq|<Q

2 /A2
) = 1 STy, M Roco)

n— - 9P (5.45)
0 2m pr b In(Q§/Abep)

with b = (33 —2ny) /6. Thus, for |q| > Qy, |q| is the scale from which the splitting starts,
see Fig. For |q| < Qp, the relative loop momentum is small and may be neglected due
to strong ordering in transverse parton momenta in the DGLAP approximation. Notice
that |q| < Q, which means that Q is the largest scale in the problem.

Summarizing, after the transformation into the x-space, the DPDFs can be written

as a sum of the two discussed contributions
D(x1,3,1,q) = DY (x1,x2,1,q) + D? (x1,32,1,q), (5.46)

which in the Mellin moment space are given by eqgs. (3.42) and (5.43).

5.3.3 Contributions to the DPS cross section

We are now ready to conclude our analysis of the W W~ and Z°Z° production in
DPS using the double parton distribution functions [[75]. Coming back to cross section
(3.21) with AB being the above mentioned boson pairs, we can write it in terms of the two

components in eq. (5.46) as the following sum of the three contributions

O = Gf(ul;) + 6&2”1) + Gﬁz), (5.47)
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Figure 5.7: The (11) and (12 +21) contributions to the W W~ production cross section
(3.47) and their sum. Contours of constant values are shown below.

where for i, j € {1,2}

i) _ N ' s ad g /
O, = 2 ﬂza"//dxldxzdx]dxz O'flf{(xl,x],Q) o-fzfﬁ(xbxQO)
_dzq () () (1
. /(zn)z Dy, (x1,%2,1, Q) D/ (31,33, -4) (5.48)

(

Each term in the above equation has a clear interpretation: GA};

)

1s a contribution without

parton splitting in the DPDFs evolution equations, the mixed contribution Gﬁf”l) has

a single parton splitting from only one hadron side while 61%2) is the double splitting
contribution with two parton splittings from both hadrons each.

(22)

The double splitting contribution 6,5~ was a matter of intensive debate in past years
[45] 143], 76l 146, [77) [78] and was classified rather as the single parton scattering process,
entirely characterized by the SPDFs. Since the double splitting contribution needs careful

diagrammatic analysis, we do not consider it in our analysis.

In the presented analysis, the differential cross section (3.47) in boson rapidities
Y12 was computed with A = W and B =W ™. For this purpose, we used our numerical
program which solves the evolution equations for DPDFs. For initial conditions, we used
prescription (d.67) from [41]] in which the DPDFs are products of single parton distribu-
tions (from the parametrization [36]) multiplied by a correlation factor in parton momen-

tum fractions xj ». To perform decomposition (5.46), we first found the solution to the
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Figure 5.8: The (11) and (12 +21) contributions to Z°Z° production cross section (5.47)
and their sum. Contours of constant values are shown below.

hom) Next, we

homogeneous evolution equations with the initial condition form [41]], D'
found the solution to the non-homogeneous equation with zero initial conditions, plrhom)

The two components in eq. (3.46) can written with the help of the found solutions

DY (x1,%,0,q) = D" (x1,x%,0)F5(q), (5.49)
D (x1,x2,0,q) = D™ (x; xp,0) — D™ (x1 x5, |q]), (5.50)

where the subtraction in the second equation accounts for the lower integration limit in
eq. (5.43). The first two components of the cross section (3.47)) are shown in Fig.[5.7 We
see that the single splitting contribution, G‘g,lé,ﬂl), is of the same order that the standard
contribution, Gv(Vlv]V) . Notice also the change in the correlation pattern in rapidity due to
the splitting contribution, shown in the plots with contours of constant values of the cross

sections.

We repeat our analysis for the Z°Z° boson production in DPS obtaining qualitatively
the same results, see Fig. In this case, the splitting contribution is peaked around
y1 =~ y2 ~ 0, which is due to the configuration with parton momentum fractions x| ~
x ~ 1072 for which the splitting contribution is determined by the strongly rising single
gluon distribution, driving the splitting ¢ — gg. The relevance of the single splitting
contribution is shown in Table[5.Tlwhere values of the total cross sections for the discussed
contributions are shown. They were calculated after the integration over the allowed

values of bosons rapidities.
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11 12421 12421 11
in [fb] Gt(ot ) t(ot 2D t(()l " )/ Gt(ot )
WTw-— 256 97 0.38
VAVA 61 22 0.36

Table 5.1: Components of the DPS cross sections for the electroweak boson production.

5.3.4 Discussion of the splitting contribution

In order to understand to the origin of the significance of the single splitting con-
tribution for the computed cross sections, reflected for example in Table 5.1, we plot the
cross section doy - /dy1dy,dq?® as a function of g for the standard and splitting con-
tributions at y; =y, = 0, see Fig. We see that both contributions are suppressed for
large values of ¢> because of the presence of the form factor F>4(q) in the homogeneous
part of the DPDFs, see eq. (5.49). The standard contribution, ol is stronger suppressed

12421)

that the single splitting one, o' , because it is proportional to

d’q 4 mg
—F = — 5.51
while the single splitting contribution is proportional to
d’q ., mg
—F = —. 5.52
/ o2 2 = oy (5:52)

We checked that an additional dependence on q in the non-homogeneous part of the
DPDFs is negligible. Thus, from the pure q-dependence, the standard contribution is

smaller by the factor

127 /287 ~ 0.43. (5.53)

However, the significant enhancement of the single splitting contribution due to weaker
g*-dependence is compensated by a smaller size of the non-homogeneous component of
the DPDFs, D), in comparison to the homogeneous component, D!). Roughly speaking,
in (') the DPDFs are proportional to (x *)* with A ~ 0.3 —0.5 (at x < 0.1) while in

12+21) they are only proportional to (x_’l)3. More precisely, the ratio of the DPDFs

ol
taken for y; = y» = 0 in the two contributions can be found from the values of the cross

sections at q> ~ 0 in Fig.
ppPpF) . pppF(12+21) 3.7, (5.54)
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Figure 5.9: The q>-dependence of doy, +y,— /dy1dy»dq? at y; = y, = O for the indicated
contributions. The upper limit for q° equals M‘%,.

From ratios (5.33)) and (5.34)) we find that for the differential cross sections at y; =y, =0,

we have
do12+21) . 1511 — .63 (5.55)

This ratio is bigger than those for the total cross sections in Table 5.1} but it stays in the
right ballpark. Thus, the single splitting contribution should be present in all analyses of
the DPS processes.

The presented analysis of the DPS electroweak boson production can also be quanti-
fied with the help of the effective cross section. Let us recall, that in the simplified analysis
with eq. (5.19), Oefr is a constant, approximately equal to 15 mb, which sets the right scale
for the computed cross sections. In our analysis with the DPDFs, this scale enters through
the value of the effective gluon mass in the two-gluon form factor, m, ~ 1.5 GeV. How-
ever, formula (5.19) no longer holds. How strongly it is violated can be shown by plotting

the effective cross section defined now as the ratio

o — 1404/ dy1)(d0B/dy2)
2 doag/dyidy;

(5.56)

In the simplified case this would a constant equal to 15 mb but in general o, depends on

boson rapidities (yi,y>).
(11)

. 11
We performed the computations for two cases: Oap = 045" and Opp = Gng ) +

G&HZI) for the WHW~ and Z°Z° production at the LHC. The results are shown in
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Figure 5.10: O in units of 15 mb for WHW ™~ production as a function of boson rapidities
for two models of the DPS cross sections, see in the text. The lines of constant values are
shown below.

Figs. and 011l For better visibility, we cut the maximal values to 1.6 or 1.2 at
the edges of the phase space. We see that with the standard contribution to the DPS cross
section, the factorization property is to good approximation valid in for central rapidities
(small values of momentum fractions, see Fig. [5.4). However, approaching kinematic
boundaries x| +x = z; + 22 = 1 with comparable momentum fractions, the violation of
factorization becomes stronger. This picture changes after adding the single splitting con-
tribution. Now, the violation of factorization is significant even for central rapidities. The

effective cross section is smaller than 15 mb and stays in between 60%-80% of this value.

5.3.5 Experimental status and outlook

In recent years, analyses of the double parton scattering have been performed by
the LHC experimental groups. The CMS [61] and ATLAS [60] Collaborations measured
the DPS using W + 2-jet events in the proton-proton collisions at the LHC center-of-mass
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Figure 5.11: The same as in Fig.[5.10 but for the Z°Z° production.

energy /s =7 TeV. The results of these measurements allow to determine the value of the
effective cross section which characterizes the effective transverse area of hard partonic
interactions in collisions between protons. The measured value of the effective cross
section were estimated to be O = 20.7 £ 0.8 (stat.) 6.6 (syst.) mb by CMS and G =
15 £3 (stat. ) (syst.) mb by ATLAS. The CMS and ATLAS results are in reasonable
agreement with the measurements from Tevatron conducted by the DO Collaboration with
jet events in the pp collisions at the energy /s = 1.96 TeV [[79]]. It was found that G‘“Cl
12.74+0.2 (stat.) &= 1.3 (syst.) mb for y+ 3-jet events and ofF = 14.6 +0.6 (stat.) &
3.2 (syst.) mb for Y+ b/c-jet + 2-jet final states.

The LHCb Collaboration also measured the DPS events with the J/¥ meson and
open charm (C) hadron or double same-charge charm hadrons (CC) [80]. The extracted
values of the effective cross section are in agreement with the results from Tevatron, CMS
and ATLAS, see Fig. Although the results from the CC sample give higher values
of Oeff, they are still in reasonable agreement with the rest of the measurements. Double
open-charm production, which allows to study different properties of double parton scat-
tering, is the subject of further research conducted by the LHCb Collaboration, see [81]]
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Figure 5.12: Ratios R¢,c, = o/ % measured by LHCb (points) in comparison with
1%2

the DPS cross-section measured at Tevatron (shaded area) [80]. For the J/%¥ C and CC
production these ratios have a clear interpretation as the effective cross-section.

and [82]] for theoretical predictions. There are also studies suggesting the relevance of

double parton scattering for Higgs measurements at the LHC [83]. The current state of
the DPS experimental data has been summarized in [84]].

The experiments carried out by the CMS, ATLAS, DO and LHCb Collaborations
revealed the increased significance of the double parton scattering in high energy proton-
proton collisions. The discussion of experimental results is still preformed with the sim-
plified formula (3.19) for the DPS, using the notion of the effective cross section. How-

ever, with higher energy, /s = 14 TeV, and higher luminosity, the LHC measurements
will be sensitive to more subtle results on the DPS, discussed in this thesis.
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Summary

In this thesis, we presented results of two original analyses of high energy scatter-
ing processes with hard scales which can be measured at the LHC at CERN. They are
selected in such a way that they provide new information on the quark-gluon (partonic)
structure of the proton. The main theoretical tool to study these processes is quantum

chromodynamics (QCD) - the basic theory of strong interactions.

The continuous progress in the construction of modern high energy accelerators,
like HERA, Tevatron, RHIC and the LHC, has opened a possibility to study the structure
of hadrons in the kinematic range of small values of the Bjorken variable x. In this range
parton densities become so high that they saturate and the methods of perturbative QCD
used to describe such effects reach the limits of applicability. One of the most charac-
teristic processes which allows to study the small x regime at hadronic colliders is the
Drell-Yan production of lepton pairs from the scattering of strongly interacting quarks
and gluons. In Chapter 2] we performed the analysis of the Drell-Yan production for the
LHC energy, using the color dipole approach which naturally includes parton saturation
effects at small x. We showed that these effects lead to the suppression of the Drell-Yan
cross section in comparison to the predictions from the collinear factorization approach

in which parton saturation effects are not taken into account.

The large center-of-mass energy of the LHC also allows to gain information on par-
ton correlations in the proton through the double parton scattering processes, described
in Chapters 3l and 4l These correlations are encoded in double parton distribution func-
tions (DPDFs) which are more general than single parton distribution functions (PDFs),
studied so far in the high energy scattering experiments. The DPDFs evolve with hard
scales of the DPS processes, which dependence is described by QCD evolution equations
analogous to the well know DGLAP evolution equations for the PDFs. For the purpose
of our studies, we constructed a numerical program which solves the evolution equations
for DPDFs in the leading logarithmic approximation. The Chebyshev expansion method
which we used for the construction is presented in Appendix [Al

There are interesting new sum rules which obey the new evolution equations. In
Chapter 4] we present an attempt to build initial conditions for the DPDFs evolution

which obey the new sum rules and are built out of the existing single PDFs to reduce
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arbitrariness in the specification of such initial conditions. The form which we found
obeys the new momentum and valence quark number sum rules but fails to be symmetric
with respect to the interchange of two partons. This leads to negative values of some
DPDFs in the region of large momentum fractions (> 0.5). Our studies showed the limits
of phenomenologically motivated approach to the description of the DPDFs.

Two partons in a hadron, which take part in the DPS, can originate directly from
the hadron or can be produced from a single parton through its splitting. These two
mechanisms are taken into account in the evolution equations for the DPDFs. It is an
interesting question how important the splitting contribution is for the DPS cross sections.
Up till now, a rigorous analysis of such a contribution has not been performed. In Chapter
[l we present such an analysis for the W W~ and Z°Z° electroweak boson production in
double parton scattering. We found that the splitting contribution plays an important role

for the DPS cross sections, making the standard way of their estimation no longer valid.
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Appendix A

Chebyshev polynomial method

The Chebyshev polynomial method allows to construct an efficient numerical pro-
gram which solves evolution equations for parton distributions by reducing the system of
integro-differential equations to a set of ordinary differential equations.

A.1 Chebyshev polynomial expansion

In general, any function f(X) with ¥ € [—1, 1] can be approximated by a finite num-

ber N of Chebyshev polynomials in the following [83]]

N
Z vier Th—1 (% (A.1)

where v = 1 except v = 1/2 and the Chebyshev polynomials 7" are defined by
Ty—1 (%) = cos((k — 1) arccosx), k=1,2,.... (A.2)

The expansion coefficients ¢, in eq.[A.I] are given by
) N
k= 2 ) Tier (%), (A.3)

n=1

in which variables %, are zeros of the N'" polynomial, Tjy(%,) = 0,

%, = cos (W) n=1,2,...,N. (A.4)

From the definition of the Chebyshev polynomials [85]], we find the following relation

Ty 1 (%) :cos(”(k_l);]”_l/z)). (A.5)
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For a function f(x) with x € [a,b], we need a one-to-one transformation
i=F(x)e[-1,1], (A.6)
with the inverse transformation
x= 2 (%) € [a,b]. (A7)

Defining the function f such that f(x) = f(x), we find
N
x) = Y veer Tie1 (%) (A.8)
k=1
The expansion coefficients are given by
2 N
k=5 2 SO Tier (%), (A.9)
n=1
with x, = 27(%,) being the images of the Chebyshev nodes (A.4)) in the interval [a, b].

The generalization to functions of two variables (x,y) € I C R? needs the invertible

transformation to the set of points (,5) € [—1,1] x [—1,1],

F=X(xy), y=Y(x,y), (A.10)
with the inverse
x=X(%,y), y=Y(%,5). (A.11)
Now
N M
)= Y Y vvid T (0) Ti-1(3) (A.12)
k=11=1
with the coefficients
22 N M
dklZNA—/IZ Z (rms Ynm) Tie—1(%n) Ti—1(Ym) , (A.13)

where x,,;,, and y,,, are the images of the Chebyshev nodes x,, and y,,, given by eq. (A.4)
with N and M, respectively,

Xnm = X()Zn,)jm) s Ynm = Y<Xn7)_’m) . (A.14)
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For the inverse relation, we have

S X(xnmaynm) ) Ym = ?(xnmd’nm) . (A.15)

A.2 Solving evolution equations

Let us apply the Chebyshev polynomial expansion to the prototype evolution equa-
tion, see eq. (£.47)) for the comparison,

(1) = / K(x,) fc/u,t) du — £(x,0)k(x), (A.16)

where K (x,u) and k(x) are known functions and x € [0, 1. Thus, the coefficients ¢, in the
Chebyshev approximation formula (A.8) depend on time

N
Z (Xn,1) Ti—1 (%) , (A.17)

ZIN

where x,, are the images of the Chebyshev nodes (A.4) through a one-to-one transforma-
tion,

X=X (%), %, =2 (x,) € [—1,1]. (A.18)

In order to compute them we differentiate both sides of eq. (A.I7) with respect to ¢ and

use eq. (A.16),

ek = O f (xn,1) Ti—1(Xn)

SRS
M=

Il
—

n
2 N
= R X { K o) = )5 [ s (5 19
n—=
Approximating the function under the integral by the Chebyshev expansion,
f(xn/u,t) Z vie () T—1 (2 (xa/u)), (A.20)
we find the set of linear differential equations

N
dck =Y, ci(t), k=1,2,....N (A.21)
=1
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with the matrix &/
2 X i}
oty = 2 ¥ { [ Kot T (R — k) i (5) | s (5). (22
n=1

Equations (A.22)) can be easily solved with efficient numerical methods once initial con-
ditions ¢ (0) are specified.

Analogously, the method for the double parton distribution functions can be illus-

trated with the following prototype equation, see eq. (4.46)) for the comparison,

O F (x,y,1) /K (x,y,u) F(x/u,y,t)du — F(x,y,t) k(x,y)

+ Px,y) f(x+y.1), (A.23)

where K(x,y,u), k(x,y) and P(x,y) are known functions, f(x+ y,7) obeys eq. (A.16) and
(x,y) € [0,1] x [0,1], The expansion coefficients dj; in the Chebyshev expansion (A.12)

depend on time

2 2 N M
dkl(t) Z Z xnmaynma )Tk l(xn)Tl l(ym) (A.24)

where (X, Vam) and (x,,, v, ) obey relations (A.14) and (A.I3). Differentiating both sides
with respect to ¢, and using eq. (A.23)), we find

29 N M
ody = —— Z Z az‘F(xrtm7ynm) kal(fn) Tlfl(ym)
Nanlmzl
22 N M
= NM Zl Zl /K(xnmaynm7u)F(xnm/uuynmat)du_F(xnmuynmat)k(xnmy))nm)
n=1m=
+ P(xnm7ynm)f(xnm +ynmat>}Tkl(xn> Tlfl()_’m> (A25)

Approximating the functions under the integral

F(xnm/u7Ynm; Z Z Vi/ Vl’dk’l’ kK — 1( (xnm/u ynm)) Tl’fl(Y(xnm/%ynm)) (A.26)
K=10I'=1

and

f(xnm +ynm,f) x~ Z Vjcj<t) Tj—l(fgg(xnm ‘|‘}’nm))> (A.27)
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and substituting into eq. (A.23)), we obtain the following set of linear differential equations
N M N

ordyy = Z Z '%kl|k’l’ dk’l’<t) + Z Cgklj Cj(l‘), (A.28)
K=10'=1 j=1

where k=1,2,....Nand [ =1,2,... M. The matrix 4 is given by

N M
Brawr = ——vk/vl Z Z { / K (s Y ) Ter—1 (X (X /s Yo )) (A.29)

X Ty (Y(xnm/uaynm» du — k(xmn»ynm) Ty (in) Ty (ym)} Ti—y (Xn) 14 ()7m)7

while the matrix € reads

22 ¥ _
(gklj NMVJZ ZPxnmaynm)Tk 1 (%) T l(ym)T] (2 (Xum +yum)) - (A30)

n=1m=1

Eqgs. (A.28) are solved together with eqs. (A.Z1) after specifying initial conditions c(0)
and dy;(0).

The presented method allows to compute the matrices <7, % and ¢ in advance and
provide them as an input for the numerical procedure. This is the main advantage of this

method which leads to a significant reduction of the computation time.
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