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Among the many applications of mass spectrometry, biomarker

pattern discovery from protein mass spectra has aroused

considerable interest in the past few years. While research

efforts have raised hopes of early and less invasive diagnosis,

they have also brought to light the many issues to be tackled

before mass-spectra-based proteomic patterns become routine

clinical tools. Known issues cover the entire pipeline leading

from sample collection through mass spectrometry analytics to

biomarker pattern extraction, validation, and interpretation.

This study focuses on the data-analytical phase, which takes as

input mass spectra of biological specimens and discovers

patterns of peakmasses and intensities that discriminate between

different pathological states. We survey current work and

investigate computational issues concerning the different stages

of the knowledge discovery process: exploratory analysis, quality

control, and diverse transforms of mass spectra, followed by

further dimensionality reduction, classification, and model

evaluation. We conclude after a brief discussion of the critical

biomedical task of analyzing discovered discriminatory patterns

to identify their component proteins as well as interpret

and validate their biological implications. # 2006 Wiley

Periodicals, Inc., Mass Spec Rev 25:409–449, 2006

Keywords: MS preprocessing; classification; biomarker dis-

covery; data mining; proteomics; machine learning; dimen-

sionality reduction

I. INTRODUCTION

Classification has a long history as a staple statistical technique

but has made giant strides with recent advances in machine

learning and data mining. Nevertheless, protein mass spectra—

like DNA microarray data—raise a number of technical

challenges that highlight the limitations of existing classification

methods. First, it has been shown that mass spectra mining

involves a high risk of finding patterns in noise; thus, more than

most other types of data, mass spectra require meticulous and

customized quality control, cleaning, and transformation prior to

data analysis. Mass spectra preprocessing must take account of

multiple factors that govern data production such as sample

collection and handling as well as instrumentation. By practi-

tioners’ consensus, preprocessing takes around 80% of data

mining time; this might well be an underestimation for mass

spectra mining where preprocessing involves a complex blend of

digital signal processing, data exploration, and data engineering

techniques.

Second, a mass spectrum usually contains thousands of

different mass/charge (m/z) ratios on the x-axis, each with

corresponding signal intensity on the y-axis. For data mining

purposes, each m/z ratio is represented as a distinct variable

whose value is the intensity; hence each case can be seen

geometrically as a single point in a very high-dimensional space.

In classification for diagnosis and biomarker discovery, which is

the focus of this paper, the problem of high dimensionality is

compounded by small sample size: diseased specimens are

relatively rare and difficult to collect, especially when invasive

procedures are involved. This twofold pathology, called the high-

dimensionality-small-sample (HDSS) problem, is the main issue

that plagues and propels current research on protein mass spectra

classification.

Dimensionality reduction is crucial to biomarker discovery.

First, the curse of dimensionality must be coped with if the

classification problem is to be solved at all. Whatever the

classification goal, the most effective way so far to get around

the HDSS problem is by reducing the size of the variable set.

More importantly, extracting a handful of variables from an

initial set of several thousands is not a simple preprocessing

expedient but the very goal of biomarker discovery. The final

variables and their interaction in the learned model constitute the

proteomic signature, which the biomedical researcher must then

identify, validate, and interpret. In short, dimensionality reduc-

tion and classification are the co-essential goals of mass spectra

mining for biomarker discovery. A corollary requirement is

model intelligibility: the selected variables and their respective

roles and interactions must not only be accessible in the final

classifier, they must be biologically interpretable.

This review describes how the specific characteristics and

constraints of mass spectra classification have been handled in

biomarker research. The remainder of the paper is structured

around the main phases of the generic knowledge discovery

process. Section II describes the different ways of preprocessing

mass spectra for classification. Although much of the MS

classification literature focuses on surface-enhanced laser

desorption/ionization time-of-flight (SELDI-TOF) spectra, any
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mass spectrometry (MS) technique can be used for sample

classification, and the discussion on MS data preprocessing is,

therefore, quite general involving many different types of MS

spectra. If methods developed for protein identification are

thought to be useful, they were also considered in this review, as

well as methods from microarray data analysis. For complete-

ness, Section III gives a brief overview of themajor approaches to

classification; readers familiar with the basics of building

classifiers can skip this section. Sections IV and V discuss the

two tasks that form the core of mass-spectra-based diagnosis and

biomarker discovery, dimensionality reduction, and classifica-

tion. Section VI explains how the resulting classifiers are

evaluated and selected with a view to optimizing generalization

performance and model stability. Section VII briefly presents the

postclassification task of interpreting the learned models and

patterns to extract biologically meaningful disease markers.

Section VIII concludes and previews challenges that lie ahead.

Table 1 gives a list of the abbreviations most often used in this

review.

II. DATA PREPROCESSING

A. Introduction

Mass spectrometers registerwhen ionized proteins or peptides hit

their detector, and this information is then usually compiled into a

histogram, which counts the number of detector events within

small time bins (for an introduction into different techniques and

their application in proteomics see Aebersold & Mann (2003)).

Since each time corresponds to amass over charge ratio (m/z), the

time bins can be converted into m/z bins. These histogram data

are called a ‘‘mass spectrum’’ and form the raw material for all

further data processing. Different MS techniques measure mass

spectra of different resolution andmass range. The resolution of a

mass spectrum is expressed as the full-width-half-maximum

(FWHM) ratio, that is, the m/z value of a signal divided by its

width at half of its height (m/Dm). The resolution can vary from a

few 100 for linear TOF spectra to a few 10,000 for delayed

extraction/reflectron TOFor Fourier transformmass spectra. The

mass range can go from 0 to a few 100,000 Da if entire proteins

are measured, or it can be limited to masses smaller than a few

1,000 Da for small peptides or peptides fragments. Mass spectra

have several imperfections, which can complicate their inter-

pretation. Despite the large number of different types of mass

spectra, there are some common themes a data analyst has to deal

with, and some of these are listed below:

* Chemical noise: Matrix-assisted laser desorption/ionization

(MALDI; Karas & Hillenkamp, 1988) spectra sometimes

contain a high amount of chemical background noise

produced by clusters of matrix molecules that are abundant

in the sample mixture (Krutchinsky & Chait, 2002). If the

protein/peptide mixture is very complex, many weak and

overlapping protein/peptide signals will be assigned to the

chemical noise, since they are not distinguishable from it.

Many mass spectra also contain impurities, that is,

molecules that are not proteins or that do not

originate from the original biological sample, but from

sample preparation or contamination. Examples of such

contaminants are polymers, keratin (or other proteins from

human skin, hair, or clothing), and trypsin (used to cleave

proteins into peptides). Chemical noise is also present in

electrospray ionization MS (ESI, Fenn et al., 1989) due to

buffers and solvents. If coupled by means of liquid

chromatography (LC), chemical noise can be very

abundant at the beginning and at the end of the elution

process.

* Baseline: In MALDI spectra, chemical noise can be very

abundant in the lower mass range causing a strong upward

drift in the baseline of the mass spectra, which falls off

rapidly with increasing mass. In ESI spectra, chemical

noise can form a bump in the baseline in the intermediate

mass range.

* Multiple charge states: Peptide ions produced by ESI often

carry a different number of elemental charges (charge

state) and especially large denaturated protein ions

produce a broad distribution of charge states. Since a MS

instrument measures the mass over charge ratio, the

corresponding protein will be found many times in the

spectrum, potentially overlapping with signals of other

proteins. Multiple charge states are much less important

for MALDI, but can also be seen for large proteins.

* Mass-dependent sensitivity: Most of the currently used ion

detectors are based on the electron multiplier technology.

The signal produced by these detectors depends on the

speed of the ion and not on its kinetic energy (Peng, Cai, &

Chang, 2004). Since all ions of the same charge have the

same kinetic energy after acceleration, heavier ions are

slower and produce a weaker signal (the signal intensity

should approximately diminish with the inverse square

root of m/z). Additionally, the resolution of many

instruments is also mass dependent.

* Chemical adducts and fragmentation: Large proteins

measured by MS are often not pure, but carry chemical

adduct ions (e.g., sodium and potassium, solvent, or matrix

ions), which stem from the sample preparation. For large

TABLE 1. Abbreviations Used in This Review
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proteins, this can create a distribution of m/z values, which

is broader than the one expected for pure proteins.

Especially in MALDI, a protein may also fragment, that

is, lose some of its side chains or amino acids, which can

also contribute to signal broadening.

* Reproducibility: In MALDI, the signal intensity depends

strongly on the laser power, on the amount of sample used,

and on the quality of the matrix crystals. Repeated

measurements may, therefore, result in largely different

absolute intensities. However, if the sample preparation

conditions are carefully controlled, good reproducibility

can be obtained. Similar facts hold for ESI and other

techniques. Since mass spectra measure the outcome of a

statistical process they are subject to statistical fluctuations

even if experimental conditions are exactly the same.

Therefore, peptide signal intensities as well as relative

intensities of isotopic clusters can vary significantly

between measurements especially if the abundances of

the peptides are low.

* Ion suppression effects: The signal intensity of a protein/

peptide depends strongly on its chemical composition.

Especially if the analyte concentration exceeds a certain

threshold, analytes producing intense signals can suppress

the signals of other analytes, which are less suitable for

ionization. These effects can be seen in MALDI (Kratzer

et al., 1998) and ESI (King et al., 2000; Tang, Page, &

Smith, 2004) experiments. The signal intensity of certain

analytes does not depend linearly on the initial concen-

tration, but is influenced in a complex way by the

concentration of other analytes.

* Calibration: As the mass spectrometer measures the times

of detector events, these times have to be converted into

m/z values by the application of equations describing the

physics of the ion separation process. Some of the

parameters entering these processes are only approxi-

mately known (e.g., initial velocity and position of the

ions) or are neglected in the equations. This can lead to

slight shifts in the calculated masses.

The recent discussion on biomarker detection by means of

surface enhanced laser desorption/ionization TOF (SELDI-MS)

emphasized the relevance of data preprocessing for the

classification of mass spectra from healthy and diseased patients

(Fung & Enderwick, 2002; Petricoin et al., 2002; Baggerly et al.,

2003; Hilario et al., 2003;Wagner et al., 2004). Baggerly,Morris,

and Coombes (2004) showed that differences in data preproces-

sing methods could severely change the outcome of the

classification task. Especially baseline correction, mass calibra-

tion, intensity normalization, and variable selection methods are

crucial and should be carefully evaluated for each application.

Data preprocessing is equally important in other proteomic

applications. For protein identification by means of peptide mass

fingerprinting (PMF) or peptide fragmentation fingerprinting

(PFF or MS/MS), the quality of the peak lists will directly

influence the quality of the peptide or protein identifications

(Blueggel, Chamrad, & Meyer, 2004).

Many proteomic experiments are performed on a large

scale, that is, hundreds of mass spectra are acquired from the

original sample. This makes it possible to use correlations

between these spectra in order to improve data preprocessing. In

one application dubbed the ‘‘molecular scanner’’ (Bienvenut

et al., 1999; Binz et al., 1999) proteins purified by 2-dimensional

gel electrophoresis were digested and mapped onto a membrane,

which was scanned on a fine grid by a MALDI-TOF instrument,

that is, a PMF was measured at every grid site. The grid spacing

was much smaller than the size of detectable spots, and signal

intensities were correlated between neighboring grid sites

making it possible to smooth out intensity variations and to

implement data processing steps that were able to improve the

mass calibration, to discard chemical contaminants as well as to

detect and separate overlapping protein spots with high

sensitivity (Muller et al., 2002a). Information gained from these

steps could be incorporated into the protein identification score,

which enhanced the specificity of the database search (Muller

et al., 2002b).

Data preprocessing can increase specificity and sensitivity

of automatic peptide/protein identification for MS/MS data as

well. Gentzel et al. (2003) investigated the influence of peak

clustering, contaminant exclusion, deisotoping, clustering of

similar spectra, and external calibration on protein identification.

The first step was necessary since the high resolution of the mass

bins ofQ-TOFspectra sometimes split peaks apart. Togetherwith

the next three steps this led to a reduction in complexity of the

mass spectra and made the search more specific.

Besides gel electrophoresis, LC is the most important

protein separation technique in proteomics. Its advantage is the

speed and flexibility, which makes it possible to serialize

different LC methods for multidimensional separation

(Washburn, Wolters, & Yates, 2001). It can be used with ESI or

MALDI, but LC-ESIMS is most often applied. In this technique,

a mass spectrum is acquired for every time step, which is usually

smaller than the elution time of a peptide. Since peptide signals

have a specific shape in time as well as inm/z dimension, they can

be distinguished from chemical noise (Hastings, Norton, & Roy,

2002). LC-MS data are often used for comparative studies, and

data preprocessing and calibration methods were essential in

order to obtain good results. Li et al. (2003) analyzed data with

isotopically labeled peptides (isotopically coded affinity tags,

ICAT), where peptide from two samples are labeled with

different mass tags and then mixed for relative quantification.

Wang et al. (2003) compared LC-MS data from different samples

directly—a procedure, which critically depends on the correct

alignment of the datasets.

Preprocessing of mass spectra can roughly be divided into

several subtasks (quality assessment, baseline correction,

smoothing, noise estimation, peak detection, intensity normal-

ization, and calibration), which are described in the following

sections. However, the authors are aware that these tasks are not

independent, and several combinations of different solutions of

these subtasks may have to be tested in order to find a good-

preprocessing method. Some iterative strategies evaluate the

results obtained after identification in order to refine data

preprocessing. If inconsistencies or missing values appear, data

preprocessing is reiterated with different settings until a

consistent solution is obtained. Graber et al. (2004) described

an example of such a result driven strategy for protein

identification and relative quantification.
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B. Spectrum Quality Assessment

Quality assessment is the first very important step in data

analysis. Detecting spectra with low signal-to-noise ratio helps

instrumentalists to adjust their experimental settings, and it

allows the data analyst to exclude them from further processing.

Data visualization is an easy and rapid way to assess measure-

ment quality, and appropriate visualization techniques can reveal

structure in the data, which would be very difficult to detect by

purely computational approaches. Heat maps, in which all the

spectra are plotted side-by-side and the intensity is represented on

a gray scale, are very useful for comparative studies (Baggerly,

Morris, & Coombes, 2004). They reveal peaks that can be

detected in many spectra as vertical bands. If zoomed into, they

show the alignment of the peaks and provide hints whether the

masses arewell calibrated. In LC-MS experiments the spectra are

ordered according to their elution time, which allows a natural

representation of the data. These 2-dimensionalmaps, sometimes

called virtual gels in analogy to 2-dimensional gel electrophor-

esis, can be annotated with data obtained from MS/MS peptide

identifications (Li et al., 2004). The maps can be depicted as

2-dimensional grey scale images or as 3-dimensional landscapes

(eagle view or surface plots). Similar to microarray or

electrophoretic approaches, two LC-MS maps from different

samples can be color coded as red and blue images and overlaid.

The resulting image shows upregulated or downregulated

peptides as red or blue, respectively, and the unchanged peptides

as dark magenta (Tammen et al., 2004). To make this approach

work, the two LC-MS runs have to be well aligned. One way to

check the alignment graphically is to calculate the covariance of

all mass spectra in one run with all mass spectra in the other, and

to depict the covariance matrix as a contour plot. Off diagonal

signals in this matrix indicate alignment errors (Bylund et al.,

2002). Multivariate data visualization techniques can be used to

explore large numbers of spectra. Principal component analysis

(PCA) or discriminate coordinate analysis can project the data

onto a 2-dimensional subspacewith minimal loss of information,

and outliers can be detected visually (Hastie, Tibshirani, &

Friedman, 2001; Coombes et al., 2003).

Multivariate methods can control the quality and detect

outliers automatically. Coombes et al. (2003) used the Mahala-

nobis distance in the space of the first six principal components,

which accounted for 80%, and a w2 test to successfully detect

outliers in SELDI chip data. In the same paper, an analysis of

variance (ANOVA) of a good-quality replicate dataset obtained

on different chips and different days showed that the variance due

to chip-to-chip, day-to-day, or spot-to-spot differenceswasminor

compared to the peak-to-peak differences inherent in the mea-

surement, which explained about 90% of the total variance. For

replicatemicroarray data,Model et al. (2002) applied a statistical

test based on robust PCA in order to detect failed experiments.

In large scale-protein identification experiments hundreds of

MS/MS spectra are measured. Detecting and discarding low-

quality spectra from further processing saves computing time and

lowers the false-positive rate. On the other hand, detecting high-

quality spectra that failed to be identified indicates that peptide

identification should be tried with a different method. Sadygov

et al. (2002) defined a score based on the number of ion pairs that

add up to the parentmass and showed that low-scoring spectra are

of lesser quality. A similar score and a set of other scores such

as the number of peaks, total peak intensity, the number of ion

pairs that have an amino acid mass difference or a neutral loss

mass difference were used to classify spectra into good or bad

ones (Bern et al., 2004). The performance of this handcrafted

classifier was then compared to an off-the-shelf support vector

classifier, and it was found that both methods gave similar results

being able to correctly classify 90%of the good and about 70%of

the bad spectra.

C. Baseline Correction, Smoothing, and Noise

Estimation

Roughly, a mass spectrum consists of signals, baseline, and

noise (Fig. 1a). The signals are produced by the peptides,

proteins, and contaminants present in the sample; the baseline is

the slowly varying trend under the spectrum; and the noise

consists of chemical background (usually small, except for MS/

MS spectra), electronic noise, signal intensity fluctuations,

statistical noise, warping of the signal shapes (due to over-

charging in ion traps), and statistical noise in the isotopic clusters

(see below). Signals, baseline, and noise can never be totally

separated. The baseline, for example, can depend on the presence

of large and intense signals as well as on abundant low-intensity

FIGURE 1. Two views of a matrix-assisted laser desorption/ionization

time-of-flight (MALDI-TOF)mass spectrum. a: TheMALDI-TOFmass

spectrum clearly shows the baseline drift and the signals sticking out of

the noise. b: Zoom of the same spectrum, which shows the signal of

peptide STQVYGQDVWLPAETLDLIR surrounded by chemical noise.

The dotted line indicates the baseline calculated by a Top-Hat filter.
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noise. Noise can be quite intense and is sometimes impossible to

distinguish from real signals.

In order to provide a model for a mass spectrum S(t) or

S(m/z), the contributing terms have to be simplified and are

considered as additive and independent. The first term is a sum of

independent signals produced by peptides and contaminants.

Each signal can be modeled as isotopic clusters (see below) for

high-resolution spectra or have a peak-like form for low-

resolution spectra and high masses. Each measurement produces

spectra of different overall intensity, and the intensity of every

single signal is subject to fluctuations as well, which can be

modeled by a global random factor d and an individual random

factor gi for every signal i, both of which have a mean value of 1.

The second term is the baseline bd, which depends on the m/z

value and d. The third term ed describes additive noise (mostly

chemical noise), which is also dependent on the m/z value and d.

SðxÞ ¼ d
X

i

gi � Ii � siðx; pi; zi; riÞ

( )

þ bdðxÞ þ edðxÞ ð1Þ

where x is either time t or m/z, and si is the ideal mean signal of

peptide (or contaminant) pi with charge zi and mean intensity Ii.

The signal also depends on the resolution ri of theMS instrument,

which may be mass dependent (therefore the index i). This

dependency can be accurately approximated by convoluting the

isotopic cluster with the peak shape of the spectrometer (a

Gaussian shape works well for MALDI spectra, FT instruments

produce Lorentzian peaks). Since m/z is measured, the m/z value

of a signal with charge z is reduced by a factor z, and the signal is

compressed by a factor z leading to a spacing between isotopic

groups of 1/z (Fig. 3). This spectrummodel neglects warping and

fluctuations of the signal shapes, but for most applications it is

general enough. However, its assumptions have to be verified for

each type of MS data. A discussion of the various components

and how to estimate them is presented in the following sections.

1. Baseline correction

The most important parameter for baseline estimation is the

maximal width a signal can have. This width is mass dependent

and can depend on the presence of intense or overlapping signals.

For TOF data, the signal width increases with the mass, but a

logarithmic transformation of the mass values reduces this

dependence, which facilitates baseline correction and peak

detection (Tibshirani et al., 2004). High pass filters implemented

with fast Fourier transform (Press et al., 1995) or filters from

mathematical morphology (Breen et al., 2000; Soille, 2003), for

example, the Top-Hat filter, can be applied. The latter method is

very easy to implement since one only has to calculate the

minimum intensity in a sliding window in the first run and the

maximum intensity in the second run. Coombes et al. (2003)

combined baseline correction and peak detection into a two-step

algorithm. First, peaks are detected and subtracted from the

spectrum, and the baseline is calculated as a piecewise constant

interpolation of local minima. After baseline subtraction, peak

detection is run again with newly calculated noise levels.

Another interesting way to design baseline filters is based on

wavelet theory (Shao, Leung, & Chau, 2003). The wavelet

method transforms the mass spectrum into a hierarchical

representation with different scales, and it allows rapidly

accessing the data at a certain mass and resolution. Filters that

discard thewavelet coefficients above a certain resolution,maybe

in a mass-dependent manner, could be used to estimate the

baseline. It should also be possible to detect slow oscillations in

the baseline, which can occur at higher masses in SELDI spectra.

All of these non-parametric baseline detection algorithms

have difficulties to correctly predict the height of the peak in the

following situations: if a small peak sits on top of a large and

broad peak, or if several larger peaks overlap. In the former case

the envelope of the large peak forms the baseline for the smaller

one, and in the latter case the baseline stays on the base level even

if the width of the total signal is much larger than the expected

signal width. A parametric approach that operates with a signal

model could alleviate these problems, but it would be difficult to

apply if spectra are overcrowded with peaks (Fig. 2).

FIGURE 2. Smoothing of (SELDI) spectra: for this type of data, it is

difficult to distinguish signal from noise. The strength of the smoothing

defineswhich peaks are discarded andwhich ones are selected for further

processing. a: The smoothingwas carried out using thewavelet smoother

described in Coombes et al. (2004) (free download from http://

bioinformatics.mdanderson.org/cromwell.html). The dashed line corre-

sponds to weak (threshold value 6), the solid line to stronger (threshold

value 60) smoothing. The number of peaks changes significantly

between the two methods. b: The estimated noise, which is the original

minus the smoothed curve (threshold 60), shows somemass dependence

for lowmasses. This could be a true feature of the noise, but it could also

indicate that the smoothing is too strong for low masses. The noise

estimated with threshold 6 is much smaller and does not seem to be mass

dependent (data not shown).
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2. Smoothing and noise estimation

First we focus on additive noise, whereas further methods to

estimate multiplicative noise and remove impurities will be

discussed further down. After an appropriate smoothing method

has been applied, additive noise can be estimated by calculating

the expected deviation of the rawdata from the smoothed curve in

a mass window (Fig. 2b). If the noise is estimated in a region

where signals are present, it is preferable to use a robust

calculation of the deviation, for example, by using percentiles

(Satten et al., 2004). Variousmethods for smoothing spectra have

been developed. It is important that a smoother preserves the peak

shape or at least its mean mass and width (first and second

moment), especially for high-resolution spectra where the

isotopic peaks are visible. Hastie, Tibshirani, and Friedman

(2001) discuss smoothing splines, wavelet smoothing, and kernel

methods such as locally weighted linear regression. The last

method encompasses popular smoothers such as the Gaussian or

the Savitzky–Golay smoother (Savitzky & Golay, 1964). In the

latter method, a polynomial is locally fitted to the data for each

smoothed value, and for polynomials of degree n it can be shown

that the first nmoments of a peak are preserved. As an extension

of the algorithm, the window width and the degree of the

polynomial can be defined adaptively for every mass region

(Barak, 1995). In a classic paper, Cleaveland (1979) presented a

robust version of local weighted regression, where the poly-

nomial is fitted using robust, iterative regression. Coombes et al.

(2004) proposed a discrete wavelet approach with hard thresh-

olding, which worked well for low-resolution SELDI spectra

(Fig. 2). Filters taken from mathematical morphology are

attractive as well, since they are fast and easy to implement with

only very few parameters, although their results can be quite

jagged (Breen et al., 2000).

Estimation of themultiplicative noise and its dependency on

the signal intensity is a different problem. In the best case, a large

number of replicate spectra are available and the variation of the

signal intensities can be estimated by calculating the variance

over the replicates for each signal separately. However, if only a

FIGURE 3. Theoretical signal shapes: The mean signals si of peptide STQVYGQDVWLPAETLDLIR

were calculated by themethods described inRockwood,Orden, and Smith (1995) andRockwood andOrden

(1996). a: The singly charged distribution convoluted with a Gaussian of width 0.2 (full width at half

maximum (FWHM)& 5,700). The inset shows the fine structure 5th isotopic group at a very high resolution,

which is out of reach for standard instruments. b: The same peptide, but with charge z¼ 2. The dashed line

corresponds to FWHM& 3,000 and the solid line to FWHM& 5,700.
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small number of replicates are at hand, the variance estimate is

not precise and often too small. If one assumes that the variance is

a smooth function of the signal intensity only and does not

depend on the peptide, then signals of similar intensity can be

pooled, and thevariance can be estimatedwithin these pools (Jain

et al., 2003). For duplicate data the intensity pairs can be

represented as a scatter plot, and noise can be estimated, for

example, by the deviation from a smoothed curve. Three similar

methods for variance estimation in duplicates, all based on

pooled estimates of the variance, are compared for microarray

data in Huang and Pan (2002).

In many experiments, spectra are not independent, and the

correlation between them can be used for smoothing and to

discard chemical noise or contaminants. If a set of spectra is

acquired under the same experimental conditions, but with

different analytes, the peaks that can be detected in most of the

spectra are probably due to sample preparation and not related to

the analytes (Chamrad et al., 2003). In the molecular scanner

application, the 2-dimensional patterns of the signal intensities

revealed whether they could be attributed to chemical noise or

impurities (Muller et al., 2002a,b). A similar situation holds for

LC-MS experiments, where the subsequently measured spectra

are highly correlated and where the elution profiles often show

different patterns for chemical noise than for true analytemasses:

analytes elute over a short time and show a smooth profile,

whereas chemical noise either has a spiky profile or forms a

slowly varying background signal. This fact has been used by a

series of algorithms designed to purge chemical noise from this

type of data. Andreev et al. (2003) smoothed the time domain in

LC-MS data using a matched filtering technique, which

suppresses the additive noise in the Fourier domain taking into

account its frequency characteristics. The component detection

algorithm (CODA) by Windig, Phalp, and Payne (1996)

calculated statistical descriptors to discardmasses showing noisy

elution profiles. CODA can effectively clear chemical noise

masses present at the beginning and end of a LC run. However,

there is a chance that analyte signals are discarded as well if they

have the same mass as chemical noise. The 2-dimensional

structure of the data matrix in LC-MS experiments facilitates

smoothing, since a signal must match in both dimensions. PCA

separates the smoothed signals (first PCs) from noise (higher

order PCs) if applied to the data matrix (Lee, Headley, & Hardy,

1991). Muddiman et al. (1995) developed the sequential paired

covariance (SPC) method based on the correlation between sub-

sequent spectra as a filtering criterion, which allows suppressing

noisy spectra. However, since the original signal intensities are

replaced by the correlation score, quantitative information is lost

in the transformed data. Fleming et al. (1999) reviewed and

compared different LC-MS smoothing methods: CODA, PCA,

SPC, and their own method based on SPC, which considers only

signals that are correlated over time windows of the expected

signal width, but not over larger windows.

Data measured in large-scale experiments are often

redundant, and several spectra of the same analyte are measured.

In LC-MS experiments several spectra of a peptide are obtained

during its elution. A peptide can also elute in different forms at

different times and be chosen more than once for fragmentation

analysis. In order to enhance the signal-to-noise ratio, the

redundant information can be compiled. If all spectra contain the

same analytes with similar intensities the best way to combine

them is to calculate the average spectrum. However, if the spectra

have different intensities low-intensity spectra contribute more

noise than signal to the sum and should be omitted. Zhang and

McElvain (1999) showed for Gaussian profiles and constant

noise that only those spectra should be considered, which are

more intense than about 40% intensity. If the shape of the elution

profile is known, a matched filter can even further enhance the

combined signal.

If the identity of the spectra is not known, an unsupervised

clustering approach can yield groups of similar spectra, which

can be combined for better signal-to-noise ratio. Gentzel et al.

(2003) and Beer et al. (2004) described such an approach for LC-

MS/MS data (see also Venable et al. (2004)). For 2D gel data,

clustering PMF spectra can reveal the similarity of spots without

knowing their identity. Additionally, it allows determining

which masses stem from a spot itself and which come from

overlapping spots (Schmidt et al., 2003). In the framework of the

molecular scanner technique masses (and not spectra) are

grouped if they have similar 2-dimensional profiles. This proved

to be very useful for sensitive protein spot detection and

separation of eventually overlapping spots. It could also largely

improve a PMF scoring system, since peptide masses from a

protein should have similar 2-dimensional profiles, and random

matches to masses from chemical noise or overlapping protein

spots could be discarded due to their different profiles (Muller

et al., 2002a,b).

D. Peak Detection and Charge State Estimation

Mass spectra usually contain several 10,000 up to 1,000,000

sampling values. However, intensity values are correlated since

mass signals are usually much broader than the sampling width.

Also, mass spectra can contain large regions that do not contain

useful information. Extracting the relevant signals from a mass

spectrum is, therefore, ameans to reduce its very large dimension

to a more manageable size of several hundred features.

Attempts to classify SELDI spectra using raw data directly

(Petricoin et al., 2002) have to consider the ‘‘curse of

dimensionality’’ (Somorjai, Dolenko, & Baumgartner, 2003),

and the results have to be analyzed critically (Baggerly et al.,

2003; Sorace & Zhan, 2003). A difficulty with the whole

spectrum approach in biomarker discovery studies is its lack of

interpretability. If one detects a significant difference between

two groups of spectra that lies in a noisy region, how could this be

explained, and how could a potential biomarker molecule be

extracted from this knowledge? Or if the differences are found

only in the flanks of a peak: is this due to overlapping peaks, due

to a change in the chemical composition of the ion reflected in a

different peak shape or just due to different mass calibration?

Therefore, many authors use peak detection before further

analysis is carried out (Fung & Enderwick, 2002; Hilario et al.,

2003;Wang et al., 2003; Yasui et al., 2003; Coombes et al., 2004;

Tibshirani et al., 2004), although other strategies such as simple

m/z binning were also applied (Purohit & Rocke, 2003). Prados

et al. (2004) investigated the influence of peak detection

thresholds in SELDI spectra on the classification performance.

For protein identification by means of PMF or PFF, the

quality of the peak lists defines the error rate of protein
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identifications (Gras et al., 1999; Gentzel et al., 2003), since peak

lists containing too many insignificant entries will have a low

specificity in the identification process, whereas missing peaks

will impair the sensitivity. The precision of the measured mass

value is crucial for a good-specificity of protein identification by

MS (Clauser, Baker, & Burlingame, 1999).

1. Isotopic distribution

The ideal signals produced by peptides or proteins are isotopic

clusters, that is, the ensemble of all isotopic masses of a peptide,

weighted with their frequency of occurrence in the biosphere.

Isotopic masses group aroundm/z values of (m0þ i)/zDa, where

m0 is the so-called monoisotopic mass and i¼ 1, 2, . . . , n. Within

each group neighboring isotopicmasses differ by less than 0.01/z.

The measured signal consists of the isotopic masses convoluted

with the peak shape of the instrument. The width of the entire

isotopic cluster goes from 1Da for small masses (�100 Da) up to

more than 50Da for 100,000Da (it raises approximately with the

square root of the mass). Depending on the resolution of the MS

instrument single isotopic peaks are either distinguishable or they

melt into broader peaks containing several isotopes (Fig. 3). For

singly charged peptides, modern MS instruments can clearly

resolve the isotopic groups at m0þ i Da for m0 up to several

thousand daltons, and Fourier transform ion cyclotron resonance

(FTICR) spectrometers are even able to resolve isotopic fine-

structure within these groups (Shi, Hendrickson, & Marshall,

1998).

The isotopic distribution of peptides of known sequence can

be calculated using tables containing the masses and abundances

of isotopes of each element. Rockwood, Orden, and Smith (1995)

and Rockwood and Orden (1996) presented an elegant and very

fast solution to the problem, which represented the isotopic

distribution of a peptide as a convolution product of elementary

distributions and used the fast Fourier transform method for its

calculation. However, in most applications the sequences of the

peptides are not known before peak detection, and an isotopic

distribution typical for the investigated mass range has to be used

(Berndt,Hobohm,&Langen, 1999;Gras et al., 1999;Breen et al.,

2000). Fortunately, peptides of similar mass but different

composition usually have similar isotopic distributions (espe-

cially in the fist two isotopic groups), and a distribution averaged

over peptides within a mass range (say 100 Da) provides a good

approximation.

2. Peak detection

In the parametric approach to peptide signal detection, amodel of

a peptide signal is matched against the raw data, and where the

match exceeds a certain threshold a signal is assumed to be

present. The model may contain various parameters, such as

offset from baseline (to correct errors in baseline subtraction),

signal height, width of the isotopic peaks (Berndt, Hobohm, &

Langen, 1999; Gras et al., 1999), and charge state for ESI spectra

(see next section). Gras et al. used a matched filter approach to

locate potential peaks and then performed a non-linear regression

to adjust the peak width and height. The fitted models were then

subtracted from the raw data, and the algorithm was run again in

order to find overlapping peaks.

An isotopic distribution of finite peak width can be

considered as a linear transformation of a signal consisting only

of a sharp peak at themonoisotopicmass (mathematically it is the

product of two convolutions: the first produces the isotopic

distribution and the second blurs the sharp peaks). This

transformation can be inversed by mathematical techniques,

which are either based on Fourier transform methods such as

matched filtering (Palmblad, Buijs, &Hakansson, 2001;Andreev

et al., 2003) or on generalized inversion and regularization theory

(Mohammad-Djafari et al., 2002). The latter method was applied

by Zhang, Guan, and Marshall (1997), who used maximum

entropy regularization, and by Samuelsson et al. (2004), who

used constrained quadratic programming and a regularization

term that penalizes too many overlapping signals. Linear

inversion methods have the advantage that they can decompose

overlapping signals directly as long as these have the same charge

state, width and offset.

For high masses or low-resolution mass spectra the isotopic

peaksmay not bevisible and collapse into a single broad peak, the

shape of which may be distorted by fragmentation and chemical

adducts. In order to describe such a broad peak the isotopicmodel

may not be accurate, and more flexible approaches such as the

‘‘exponentially modified Gaussian’’ (Malmquist, 1994) or the

very flexible ‘‘empirically transformed Gaussian’’ (Li, 1997)

could be used. Shackmana,Watson, andKennedy (2004) took the

latter model to deconvolve overlapping peaks by means of non-

linear regression.

For low-resolution peaks, one could also refrain from using

parametric models. The easiest way to find broad low-resolution

peaks is to smooth the raw spectrum and then take those local

maxima which exceed a threshold value (Yasui et al., 2003;

Coombes et al., 2004). The first derivative indicates peak flanks if

it exceeds a certain threshold (Coombes et al., 2003; Shackmana,

Watson, & Kennedy, 2004). Wallace, Kearsley, and Guttman

(2004) presented a different technique to find summits and

valleys: starting with a straight line that connects the first and last

point in the spectrum, the algorithm finds the point in the raw

spectrum that is farthest from this line. It adds this point as a new

node in the piece-wise linear interpolation of the raw data and

repeats these steps until no significant peaks are left. Jarman et al.

(2003) used a statistical test to check whether the histogram

within a sliding window (ion counts vs. time or m/z bins)

resembles a uniform distribution or has a peaked shape. The test

considers baseline and noise in the raw data, and it is performed

for varying window width in order to cope with different peak

widths. For non-parametric peak detection there are two options

to quantify peaks: peak height or area above the baseline. Peak

height is less sensitive to disturbance by other overlapping

signals, but it neglects thewidth of the signal. Peak area considers

the full signal and averages out random noise, but beginning and

end of a peak have to be well defined.

One disadvantage of non-parametric methods is that they

cannot detect strongly overlapping peaks. Various filters used in

image processing, such as the ‘‘unsharp masking’’ and high pass

filters (Carroll & Beavis, 1996) or second-derivative filters

(Grushka & Israeli, 1990), allow enhancing the resolution of a

mass spectrum as well as removing the background. Fast Fourier

transform is a powerful tool to implement these filters and to

combine them with prior smoothing of the raw data. More
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recently, wavelet transforms have been applied to separate

overlapping signals (Shao et al. (1997); Shao, Leung, & Chau,

2003).Mohammad-Djafari et al. (2002) reviewed another way to

design these filters by means of inversion theory, where suitable

regularization techniques help limiting the high variance in the

filtered data.

Most of these algorithms use thresholds for signal to noise

ratios (or other scores) to exclude randompeaks.The threshold for

the signal-to-noise ratio can be obtained from statistical analysis

of the noise. The distribution of the noisy peak intensities can be

estimated for a certainmasswindow, and all intensities that have a

low P-value with respect to this distribution can be considered as

real peaks. Another option is to link the peak detection threshold

directly to the identification or classification process. Gras et al.

(1999) took a supervised learning procedure to obtain optimal

peak detection thresholds. The MS/MS identification software

Mascot (Perkins et al., 1999) evaluates several peak detection

thresholds and the one with the best identification P-value is

taken. Prados et al. (2004) investigated the influence of the peak

detection threshold on mass spectra classification.

3. Charge detection and charge deconvolution

MALDI spectra have the advantage that the charge state of

peptides is almost always z¼ 1. ESI, on the other hand, produces

multiply charged ions, and each peptide usually appears in

several charge states corresponding to different peaks in the

spectrum. For native globular proteins of known structure, the

charge state can be readily predicted since it correlates well with

the diameter of the protein (Felitsyn, Peschke, & Kebarle, 2002),

but denatured proteins or peptides can produce a broad

distribution of charge states depending on their chemical

composition (mainly the number of basic amino acids for the

positive ion mode).

For high-resolution spectra, the charge state can be directly

read from the spacing between isotopic peaks. Senko, Beu, and

McLafferty (1995) investigated two commonly used techniques:

Fourier transform frequency analysis and the Patterson trans-

form,which calculates the autocorrelation in the neighborhood of

a peak. The authors found that the combination of the two charge

state estimators provided better results over a wide range of

conditions. Zhang andMarshall (1998) replaced the autocorrela-

tion by a more robust score in order to determine the charge state

of isotopic clusters. However, especially for low-resolution

spectra or noisy spectra and overlapping peaks, the frequency

estimation can perform poorly, and it is better to find the charge

state whose isotopic pattern fits best to the data (Gentzel et al.,

2003; Li et al., 2003; Wang et al., 2003).

For low-resolution spectra, where the isotopic peaks are not

distinguishable, multiple charge states can be an advantage since

the uncharged parent mass can be calculated more precisely as a

weighted sum of the measured m/z values of the different charge

states. If the peptide mass is not known, Mann, Meng, and Fenn

(1989) presented a simple charge deconvolution algorithm, that

yields the peptide mass m from a sequence of multiply charged

experimental masses. For all m, this algorithm simply calculates

all possible m/z values within the mass range and sums up the

intensities in the intensities at these values. It does this for all

masses, and the mass that yields the highest intensity sum is

believed to be the singly charged peptide mass. However, the

algorithm is sensitive to calibration errors, baseline, and noise. It

is also sensitive to outliers, and more robust measures have been

introduced (Reinhold & Reinhold, 1992). If many proteins are

present in the sample, it might be useful to transform multiply

charged spectra into singly charged ones. Zhang and Marshall

(1998) start with the most intense signal, determine its charge

state, transform the signal into a charge 1 signal in an artificial

spectrum, discard the processed signals in the original spectrum,

and go on to the next most intense peak, until all signals above a

certain intensity/noise threshold are processed.

For MS/MS experiments, the charge of the parent ion is an

important parameter for peptide identification, and search time

and efficiency can be improved if the charge state is known. For

high-resolution spectra, the charge can be determined by the

spacing between isotopic peaks, but this is often not possible for

low-resolution ion trap spectra. However, ions of different charge

states fragment differently, and one can try to determine the

charge of the parent ion from its fragmentation spectrum.

Sadygov et al. (2002) proposed a score, which counts for each

parent charge the fragment ion pairs adding up to the parentmass.

A different approach uses the fact that fragment masses are

always smaller than the parent ion mass. However, the m/z value

of fragment ions can be larger than them/z value of the parent ion

(at most by a factor of z), and the distribution of fragment m/z

values with respect to the parent m/z value was found to be

indicative for the parent charge state (Colinge et al., 2003).

4. LC-MS peak detection

LC-MS experiments record a mass spectrum for each step in

the elution time from the LC column, which produces data

that has a special 2-dimensional structure (Fig. 4). An ideal

LC-MS peptide signal can be represented as a bilinear form:

S(t,m/z)¼ S1(m/z)S2(t) where S1 is the mass signal (e.g., isotopic

peak cluster) and S2 is the elution profile (it is assumed that a

peptide elutes over several time steps). A real LC-MS signal

consists of a sumof isolated signals plus noise and baselinewhere

the noise has a different elution profile than peptides, which

makes it possible to distinguish it from signals. Although the

elution profile of a peptide is less well defined and less

reproducible than its m/z signal, a Gaussian shape is usually a

rather good approximation, but more flexible refinements were

proposed (Malmquist, 1994; Li, 1997). Peak detection in the time

domain is basically the same as peak detection in low-resolution

mass spectra, and it can be done in a non-parametric or

parametric way. In order to find signals in 2-dimensional LC-

MS runs, Hastings, Norton, and Roy (2002) presented a simple

method dubbed ‘‘vectorized peak detection,’’ which first

smoothes the SICs by a median filter and then considers only

those points in (t, m/z)-space that have a local maximum in t and

match a peptide signal in m/z-direction. Andreev et al. (2003)

used matched filtration in the time domain and scored each peak

by a multiplication of its time and mass domain scores.

The special bilinear structure of LC-MS data can either be

used to directly find the number of signals present, or for

smoothing or comparison with other experiments. In the absence

of noise the number of linearly independent components or the
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rank of the data matrix S(t,m/z) equals the number of signals

(Fraga, Bruckner, & Synovec, 2001). Generalized rank estima-

tion methods, which provide a robust estimate of the number of

independent components, therefore provide an estimate of the

number of signals. For small windows of LC-MS data that

contain a mixture of bilinear signals, PCA can yield pure 1-

dimensional signals (elution profiles and isotopic distribution).

However, the solutions are not well defined, and additional

constraints have to be defined (Kiers, tenBerge, & Bro, 1999).

This problem can be avoided if multi-way data are available, that

is, if the same measurement is repeated with different

concentration of peptides. Then multi-way decomposition

methods such as PRAFAC or Tucker3 provide the pure signals

of the analytes without ambiguity under mild regularity

conditions (Bro, 1997; Kiers, tenBerge, & Bro, 1999).

Certain analytes such as polymers or glycosylated peptides

can produce extended 2-dimensional patterns of peaks in a LC-

MS run. Polymer chains, for example, often have different

lengths, and these chains differ in a number of polymer units.

Since themass is directlyproportional to thenumber of units in the

chain, and the elution time is often a nearly linear function

of the chain length, these polymers form a nearly linear pattern

in the (t,m/z)-space. Marchetti et al. (2004) used the two-

dimensional autocorrelation function to detect such linear

patterns.

E. Intensity Calibration and Variance Stabilization

Even after baseline correction and smoothing, it is possible that

large experimental variations remain in the data, since the signal

intensities can change between experiments due to different total

analyte concentration or ionization efficiency, for example. In

order to even out these experimental variations signal intensities

are usually normalized, that is, the intensity values are

transformed to new values, which are less dependent on

experimental conditions. For MALDI/SELDI data the peak

intensities are often divided by the sum of all intensities (total

ion count or TIC) of the spectra in order to be less dependent on

variations in laser intensity or matrix crystal formation. Some-

times a single very abundant protein (e.g., albumin in human

plasma samples) can dominate theTIC,which should be excluded

unless its concentration is known to be constant, or a more robust

approach such as normalization by the median intensity of the

peaks has be considered. Another normalization strategy is to

replace intensities by their signal-to-noise ratios, where the noise

is estimated in a window around a signal (Satten et al., 2004).

The standard deviation of peak intensities depends on the

intensity itself, which makes the application of statistical tests

more cumbersome. Coombes et al. (2004) andWang et al. (2003)

found a linear dependence for SELDI and LC-MS data,

respectively. If the dependence is strictly linear, a logarithmic

transformation of the intensities will produce constant standard

deviation (it turns the multiplicative noise into constant additive

noise)-a property, which is called variance stabilization. Detailed

studies on the intensity dependence of the standard deviation

have been performed for microarray data. Durbin et al. (2002)

proposed a statistical model of fluorescence intensities, which

consists of background as well as a multiplicative and an additive

noise term. In this case the standard deviation s depends on the

mean intensity m quadradically (s2¼m2s1
2þs2

2), and a

logarithmic transformation cannot stabilize the variance any-

more for small intensities. However, the authors could show that

the arcsinh transformation, which approaches the logarithm for

large arguments, yields constant variance. The same findings

FIGURE 4. LC-MS data: this figure shows good-quality data, which contains very little noise. The elution

time is along the vertical andm/z along the horizontal axis. The inset shows a 3-dimensional surface plot of

themarked rectangle and reveals how four isotopic distributions smoothly elute over time. The images were

produced by the MSight LC-MS viewer, freely available at http://www.expasy.org/MSight.
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were obtained for a more general quadratic relation between

variance andmean intensity (Huber et al., 2002). The authors also

compare the arcsinh normalization with other approaches and

show its good performance for real microarray data. In a recent

paper, Anderle et al. (2004) studied noise models for LC-MS

experiments, and found that a quadratic variance/intensity

relation fits the data very well. On the other hand, Coombes

et al. (2003) found for a SELDI dataset that a cube root

transformation was most successful (among those transforma-

tions examined) at stabilizing the variance.

In many applications such as ICAT quantification experi-

ments the signal intensities of a peptide under different biological

conditions are compared. Statistical tests have to be developed in

order to find out whether peptides are significantly upregulated or

downregulated compared to random variations in the intensities.

This situation is very similar to cDNA microarrays experiments

(Yang et al., 2002) or to difference gel electrophoresis (DIGE)

applications (Kreil, Karp, & Lilley, 2004). For ICAT quantifica-

tion in large-scale LC-MS experiments, Li et al. (2003) assumed

that the majority of peptides do not change their intensity except

for a scaling factor common to all equally labeled peptides.

Further they assumed that the logarithm of the intensity ratios has

a Gaussian distribution for the unchanged peptides, and an

unsupervised fitting procedure yields a normalized Zscore andP-

value for each intensity ratio. In another LC-MS experiment that

was performed without labeled peptides, signal intensities of

peptides from different runs are compared directly (Wang et al.,

2003). The intensities of each run were normalized by a constant

factor in order to set the median intensity ratio equal to 1.

Intensity ratios have been studied extensively in the context of

microarray data. Chen, Dougherty, and Bittner (1997) deduced

the intensity ratio probability distribution under assumptions that

the intensities of each gene are normally distributed and the

standard deviation of the intensities are proportional to their

mean values, where the proportionality factor c is the same for

each gene and fluorescent. Under these assumptions, which can

to a certain extent be justified biologically, the intensity ratio

distribution does not depend on the mean intensity of a gene

making it possible to apply the same test to all genes. The authors

also proposed an iterative algorithm that corrects a constant

scaling factor for red or green intensities. Powell et al. (2002)

used Monte Carlo simulations to demonstrate the robustness of

this method with respects to violations of the tests main

assumptions (normality and constant c).

These applications assume that the differences of signal

intensities I of a peptide i between the two groups are mainly due

to a constant scaling factor k:I1,i¼ kI2,i for all i. However, small

intensities can be dominated by background term bi, and a better

relation would be I1,i¼ kI2,iþ bi. Chen et al. (2002) provided an

extension of their test including background correction terms,

which have an influence on geneswith a low signal-to-noise ratio.

In order to calibrate the intensities, the values of k and the mean

background b can be determined by a robust linear fit or a more

general relation I1,i¼ f(I2,i) can be obtained by applying a non-

linear scatterplot smoother to the intensity data (Yang et al.,

2002). Zien et al. (2001) presented a maximum likelihood

calibration algorithm to calculate scaling factors, which is based

on a normal distribution of intensity ratios and which works as

well for more than two groups.

F. Mass Calibration and Time Alignment

Calibration ofMSdata is a crucial step in data preprocessing. The

precision of the m/z values determines the error rate of protein

identifications (Clauser, Baker, & Burlingame, 1999; Chamrad

et al., 2003). In comparative studies, small shifts in them/z values

can blur the distinction between groups of samples. For example,

Baggerly, Morris, and Coombes (2004) showed the importance

of calibration issues for SELDI-TOF classification of ovarian

cancer samples. For LC-MS experiments, the relative variations

in elution time are usuallymuch higher than those inm/z. In order

to compare different LC-MS runs the elution times have to be

aligned (Wang et al., 2003). Since mass and time calibrations can

be performed independently and since they have to deal with

quite different problems, they will be discussed in separate

sections.

1. Mass calibration

As alreadymentioned in the introduction to this chapter, the times

of detector events have to be converted into m/z values. The

conversion formulas contain various experimental parameters,

some of which cannot be known exactly or are subject to

variations leading to errors in the m/z values. Vestal and Juhash

(1998) give a detailed discussion of these formulas for various

TOF configurations and calculate their dependency on initial ion

velocity and position, for example, two parameters, which cannot

be determined with certainty. If the flight times, the conversion

formulas as well as the flight times of some reference ions of

knownmass are available, unknown parameters in the conversion

equations can be defined by a fitting procedure (Christian,

Arnold, &Reilly, 2000). However, the exact conversion formulas

or reference times are not always available to the data analyst, and

other calibration methods have to be applied. Usually m/z errors

are quite small (less than 0.2% for linear TOFs down to less than

0.001% for Fourier transform instruments), and they can be

corrected approximately by a simple affine transformation (i.e.,

x0 ¼ axþ b) of them/z values if two or more referencem/z values

are provided (Egelhofer et al., 2000; Gentzel et al., 2003). Higher

order correction polynomials can substantially reduce the error

compared to an affine correction if many evenly distributed

reference masses are present (Gobom et al., 2002). However, if

only a few masses (less than 5) are present, first-order correction

is the safer method. For singly charged ions, peptide masses (up

to 4,000 Da) can be adjusted even in the absence of reference

masses since peptidemasses are not continuously distributed, but

are concentrated in narrow intervals separated by 1.00045 Da

(Gay et al., 1999). Amass correction can then be applied in order

to find as many masses as possible within these intervals (Gras

et al., 1999;Wool & Smilansky, 2002;Muller, 2003), and masses

outside the intervals can be discarded as outliers (Schmidt et al.,

2003). In the case of protein identification, PMF or PFF masses

can be adjusted in order to give the best match with theoretical

masses obtained for each candidate protein or peptide sequence,

respectively. Gras et al. (1999) and Egelhofer et al. (2002) used

robust linear regression to align theoretical and experimental

masses for each candidate protein and to discard outlier masses.

This allowed working with a much lower mass tolerance, and the

specificity of the search could be greatly improved.
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In many applications multiple mass spectra are measured

from the same sample and data processing is facilitated if they all

are aligned. Normally peaks are simply clustered together if their

mass difference is less than a certain value. Fung and Enderwick

(2002); Yasui et al. (2003), and Prados et al. (2004) discuss their

clustering strategies in some detail. Often not all spectra are

equally similar to each other, and it might be better to first align

the more similar spectra, for example, by first constructing a

similarity tree and then aligning the spectra following the tree

structure. In the molecular scanner approach, the 2-dimensional

topology of the MS data could be used. Since calibration errors

were quite smoothly distributed as a function of the position on

the membrane, mass deviations between neighboring spectra

were small and these spectra could be aligned more easily with

respect to each other. An iterative algorithm aligned each

spectrum with respect to its four neighbors until the mass

deviations were all evened out. Some spectra, which provided

many reliable reference masses, were used as anchor points in

order to force the algorithms to converge to the right values

(Muller et al., 2002a).

2. Time alignment in LC

Shifts in LC retention time are caused by different injection

timing (constant shift), slow and fast temperature fluctuations,

and flow rate changes. They are more irregular than mass

calibration errors, and a low-order polynomial may only be

sufficient to correct the trend in the errors but not the intermittent

fluctuations. An alignment strategy consists of a mapping

t0 ¼ f(t), which is able to correct these irregular deviations under

the condition that it neither reverses time order (monotonous

function) nor introduces sharp changes. Dynamic time warping

(DTW) is frequently used in signal processing tasks in order to

align warped signals (Aach & Church, 2001). It is based on a

dynamic programming algorithm, which finds a globally optimal

solution maximizing the similarity between two signals, but

which can be quite time- andmemory-consuming for large signal

vectors. Several authors used DTW to align LC data: Wang and

Isenhour (1987) used an integer valued warping function to

minimize the Euclidian distance between two signal vectors

under monotonicity constrains. Nielsen, Carstensen, and Smeds-

gaard (1998) developed the correlation optimized warping

(COW) algorithm, where they divided the signal into intervals.

These intervals were shifted, stretched, or compressed without

violation of monotonicity and continuity constrains, and the

authors used DTW to find the piecewise linear warping function,

which provides the best correlation between the two signals. In

order to overcome the computational burden of DTW Forshed,

Schuppe-Koistinen, and Jacobsson (2003) determined the end

positions of the intervals with a genetic algorithm (GA), which

finds a reasonably good solutionwithin a short time even for large

chromatograms. Eilers (2004) used polynomial timewarping and

developed an iterative algorithm in order to find the polynomial

coefficients that minimize the Euclidian distance between two

chromatograms.

The methods discussed so far compare raw chromatograms

(eventually baseline corrected and smoothed) without peak

detection. If the complexity of the spectra is not too high and there

is a clear correspondence between peaks in the two chromato-

grams, then the time shifts can be directly measured, and a time

alignment can be obtained by linear interpolation of these shifts

(Johnson et al., 2003). Malmquist (1994) proposed a similar

method where the chromatograms are first aligned using the

highest peaks, and then smaller peaks with a good correlation

between the two chromatograms are taken into account to refine

the calibration.

For LC-MS experiments peaks in the LC chromatogram can

be identified by their corresponding mass spectra, which should

provide a clearer distinction.Wang et al. (2003) used information

from both time andm/z dimensions in order to align elution times

by means of a DTWalgorithm. Bylund et al. (2002) presented a

modified version of the COWalgorithm adapted for LC-MS data,

where they used the covariance of mass spectra as the similarity

score used in the alignment.

III. A BIRD’S EYE VIEW OF CLASSIFICATION
METHODS

Biomarker discovery is aimed at finding a set of discriminatory

proteins to diagnose different states with respect to a given

disease. Such a diagnostic model can be built from mass spectra

of biological samples (e.g., serum), which have been labeled by

biomedical specialists, that is, assigned to one of several

predefined classes or disease states, for example, in the simplest

case, diseased (positive) versus control (negative). After the

preprocessing operations described in ‘‘Data Preprocessing’’

section, a collection of mass spectra is represented by an n� p

matrixX. Each of then rows is a spectrumofp selected peaks, and

each cellMij contains the normalized intensity of the jth peak of

spectrum i. Associated with matrix X is a vector Y of n class

labels, which can be viewed as the (pþ 1)th column ofX; label Yi
Xi(pþ 1) is the class or disease state of spectrum Xi. The model

induced (or learned) from this labeled dataset will serve to

diagnose new cases (spectra), that is, assign them to one of the

prespecified classes. In data mining or machine learning terms,

diagnosis and biomarker discovery can be cast as a classification

task. The generic model of classification assumes:

* a generator of random vectors x, which are drawn according

to an unknown but fixed probability distribution, P(X).

* a supervisor which assigns output values, class labels, y, to

the x random vectors, according to an unknown but fixed

conditional probability distribution P(YjX).

The pairs (x,y), drawn from the probability distribution

P(X,Y)¼P(YjX)P(X), constitute the learning space. The task of
the learner is to build a classifier, in other words, an

approximation of Y as a function of X and a set of model

parameters y in a space of hypotheses (Fig. 5).

Generative approaches model the class-conditional densities

p(xjyi) and the priors p(yi), and then use Bayes’ theorem to

estimate posterior class probabilities p(yijx)¼ p(xjy)p(yi)/p(x)
where p(x) serves to normalize the result to the [0,1] interval.

Discriminative approaches make no attempt to model the under-

lying joint data distribution but model posterior class probabil-

ities directly; that is, they assume some functional form for

p(YjX) and estimate its parameters directly from the training data.
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The generative/discriminative distinction applies to base

level learning approaches or models. Very often, ensemble

approaches improve classification performance by building

committees of such base models and combining their responses

in some way to output a common, more informed decision.

A. Generative Approaches

Generative models are so-called because they express a

hypothesis about how the data were generated. Naı̈ve Bayes is

a simple classifier that assigns a case x to the most probable class

given x. The method uses Bayes’ theorem to compute the

posterior probability of each candidate class yi. Naı̈ve Bayes

owes its name to the simplifying hypothesis that all variables are

mutually independent. Thus the class-conditional density of the

data is computed as the simple product of the individual class-

conditional densities of the variables. In short, learning a

classifier reduces to estimating class priors and class-conditional

densities; classifying a new case consists in using these

estimations to compute the posterior of each class and selecting

the class with the highest posterior probability.

Other density estimation methods come in different flavors

based on initial assumptions about these densities. Parametric

approaches assume the data to have been generated according to a

given probability distribution specified by a set of parameters.

For instance, linear (LDA) and quadratic discriminant analysis

(QDA) assume that the class densities are Gaussian. The

distinction between the two arises from a second assumption

regarding class covariance. If the classes have a common

covariance matrix, the class boundaries (or decision boundaries)

become linear in x; the discriminant function for a given class k is

defined as

dLDAk ðxÞ ¼ xT
X

�1

mk �
1

2
mTk

X

�1

mk þ log pk

Otherwise the discriminant remains quadratic in x:

d
QDA
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2
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1
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� ðx� mkÞ
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�

�
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�1
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ðx� mkÞ þ log pk

In both cases theGaussian parameters are estimated from the

training data, and x is assigned to argmaxkdk(x) (see Hastie,

Tibshirani, & Friedman (2001) for further details).

For less well-behaved data, non-parametric approaches

make no prior assumptions and estimate densities in a purely

data-driven manner. Kernel density estimation and K-nearest-

neighbor classifiers are non-parametric approaches that estimate

densities in the local vicinity of a new case. In kernel density

estimation (KDE, also known as Parzen windows), a kernel

function (e.g., a Gaussian) is centered on each training case; the

width of the kernel, a user-specified parameter, determines

the region of influence of each case. To classify a new example,

the class-conditional density at its precise location in instance

space is estimated as the sum of all other individual densities

whose region of influence encompasses the new location. In

K-nearest neighbors (KNN), the size of the local vicinity is

determined by the user-defined parameter K, the number of

neighbors to be considered. No internal model is built; learning is

simply storing the training cases. To classify a new case, its KNN

(i.e., the K cases most similar to it in terms of predictive variable

values) are identified using a similarity metric such as Euclidean

distance. The new case is assigned to the most frequent class

among these K neighbors. While no probability densities are

explicitly computed as in kernel density estimation, KNN

classification can be viewed as delimiting a sphere-like region

centered on the query case and estimating the posterior

probability of the class within that region (Duda, Hart, & Stork,

2000).

B. Discriminative Approaches

Discriminative approaches build a direct mapping from inputs to

class labels or model posterior class probabilities without

modeling the underlying joint probability density. Logistic

regression models class posteriors using a function that is linear

in x:

PðY ¼ yi X ¼ xj Þ ¼
1

1þ e�ðaþbTxÞ

In the binary case, the logit transform of the above model

yields the linear discriminant function:

dðxÞ ¼ aþ bTx

such that x is assigned to the positive class if d(x)> 0.

Algorithmically, the parameters (a, b) can be fit to the data

either by maximizing the conditional likelihood
Pn

i¼1 log pðy
ðiÞj

xðiÞ; a; b:Þor byminimizing the 0–1 loss
Pn

i¼1½IðIðdðx
ðiÞÞ > 0Þ 6¼

yðiÞÞ�, where the indicator function I(.)¼ 1 if its argument is true,

0 otherwise.

The perceptron is another simple discriminative classifier.

To separate two classes y1 and y2, it computes a linear

combination of its inputs. Each input variable is assigned a

weight or coefficient; if the sum of theseweighted inputs is above

a given threshold, the example is assigned to class y1, otherwise it

FIGURE 5. Classification as a supervised learning task. The training

data are assumed to be drawn from an unknown probability distribution

P(X) and the class labels from P(YjX). A learner builds a function that

estimates the joint distribution P(X,Y) to predict a class ŷy for a new

instance x.
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is assigned to class y2. Learning consists in finding the

appropriate weights so that the resulting hyperplane (i.e.,

(d�1)-dimensional surface in d dimensions, for example, a line

in 2 dimensions) effectively separates the classes. The perceptron

learning algorithm starts with a random initialization of these

weights and iteratively adjusts them until a prespecified criterion

is met (e.g., error is below a given threshold). Since perceptron

learning builds hyperplanes to separate classes, it fails whenever

the data are not linearly separable. Many of the artificial neural

networks (NNs) (Bishop, 1995) now available are extensions that

overcome this limitation. For instance, multilayer perceptrons

add hidden units with non-linear (e.g., sigmoid) activation

functions in order to build arbitrary non-linear class boundaries

and solve more complex classification problems.

Support vector machines (SVMs) (Vapnik, 1998) are a more

recent and extremely powerful example of the discriminative

approach. Their underlying principle (called structural risk

minimization) defines the true risk or error of a classifier as the

sum of the empirical (or training) error and a term that quantifies

the capacity or complexity of the learnedmodel. There is a trade-

off between the two terms: overly simple models incur high-

training error but increasing model complexity can entail

overfitting and hurt generalization. To minimize generalization

error, we need to attain the lowest empirical errorwith the lowest-

capacity model suited to the available training data. For 2-class

problems, it has been shown that the model, which meets this

requirement is a hyperplane that produces themaximalmargin of

separation between the two classes. Such a hyperplane can be

uniquely constructed by solving a constrained quadratic

optimization problem; the solution can be expressed exclusively

in terms of the data points that lie on the margin, the so-called

support vectors. This technique can be applied even if the data are

non-linearly separable; the basic idea is to transform the data via a

non-linear mapping onto a higher dimensional feature space

where they become linearly separable. Thus, a linear boundary in

feature space is equivalent to a non-linear decision surface in the

original input space. Remarkably, there is no need to actually

perform this mapping and carry out the computations in high-

dimensional space; the use of an appropriate kernel (e.g.,

polynomial) function allows us to compute the final decision

function using dot products between patterns in input space.

SVMs have achieved impressive results in many biomedical

applications (Brown et al., 2000; Schölkopf, Guyon, & Weston,

2003; Schölfkopf, Tsuda,&Vert, 2004); introductory texts can be

found in (Burges, 1998; Cristianini & Shawe-Taylor, 2000).

Decision trees (DT) and rules comprise a distinct sub-

category of discriminative learners. From the point of view of

knowledge representation, they can be qualified as logical

(Langley, 1996) or non-metric (Duda, Hart, & Stork, 2000)

approaches as opposed to the other methods described above.

Moreover, they are sequential approaches (Quinlan, 1994) in the

sense that they examine one variable at a time whereas the

preceding learners consider all input variables simultaneously.

To determine the order in which the variables should be

considered, all decision tree algorithms have built-in feature

selection strategies, as we shall see in ‘‘In-Context Variable

Selection’’ subsection. Sequential learning methods are most

appropriate for tasks which can be solved by exploring only a

small subset of the available variables; ‘‘simultaneous’’ learners

are best suited for tasks where variable interactions should be

taken into account, for example, when variables taken individu-

ally are only weakly correlated with the class variable but are

collectively relevant. Neither alternative is perfect for mass

spectra based biomarker discovery, which requires finding the

smallest variable set possible while maximizing sensitivity to

variable interaction.

The simplest models in this category are single-node trees

called decision stumps and single-condition rules. They build the

simplest possible class boundaries, which are single axis-parallel

lines. However, more elaborate DTs and rules can carve out

regions of arbitrary complexity as assemblages of piecewise

hyperrectangles inp-dimensional space.Adecision tree is built by

recursively partitioning the training data with the aim of

maximizing the class homogeneity of the resulting subsets. At

each node, the remaining data are further subdivided based on the

values of a test variable. The selected variable is that which

ensures themaximal reduction of class heterogeneity asmeasured

by the Gini indexGðtÞ ¼
P

i pið1� piÞ in CART (Breiman et al.,

1984) or by entropy HðXÞ ¼ �
P

x2x pðxÞ log pðxÞ in C4.5

(Quinlan, 1993). The recursion process continues until all

terminal nodes are homogeneous or all variables have been used,

after which the tree is pruned to avoid overfitting.

A decision rule is typically a conjunction of a number of

conditions: if cond1 ^ cond2 ^ . . . ^ condN then conclusion. A

rule classifier can be built by recursive partitioning, that is, by

building a decision tree, which is then reexpressed as a rule set in

a straightforward fashion. A rule is simply a path from the root to

a terminal node, and the tree itself is a disjunction over all these

rules (paths). An alternative way of inducing decision rules is by

set covering. In this approach, rules are created one at a time, and

the examples covered by the new rules are removed from the

training set. As with DTs, rule conditions are added successively

as tests on the values of individual variables. Examples of set-

covering rule induction methods are Ripper (Cohen, 1995) and

logical analysis of data (LAD) (Boros et al., 2000).

C. Ensemble Approaches

Contrary to the single-model classifiers described in the previous

subsections, aggregate classifiers comprise multiple models

whose decisions are combined in some way in order to classify

a new case. There are twomain approaches to building aggregate

models. Resampling-basedmethods generatemultiplemodels by

training a single learning algorithm on multiple random

replicates or subsamples of a given dataset whereas hetero-

geneous ensemble methods (also called multistrategy methods)

train several different learning algorithms on the same dataset.

Resampling-based ensemble methods, which have been

applied to mass spectra include boosting and bagging. Both these

methods achieve model diversity by running the same learning

algorithm on different samples of the training data. In both, the

number of iterations is fixed by the user, and a new case is

classified by taking a simple or weighted vote among the base

classifiers. The basic idea of boosting is to focus the learning

process on the more difficult cases by iteratively reweighing the

training cases. Initially all cases are equally weighted. At each

iteration, a classifier is built and tested; the weights of all
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misclassified cases are increased and those of correctly classified

cases decreased (Freund & Schapire, 1997). In bootstrap

aggregation, more popularly known as bagging, the different

training sets are generated by randomly drawing with replace-

ment samples of the same size as the original training dataset. A

given learning algorithm is applied to the different bootstrap

replicates to produce a committee of m models, which assign a

new instance to a class by a simple majority vote (Breiman,

1996). While bagging builds diverse models by randomly

resampling training instances, the RandomForest algorithm

grows an ensemble of DTs by randomly resampling features.

The algorithm has two user-defined parameters: the size of

the candidate feature set F and the number of iterations T. In the

standard tree-building procedure, the feature to be tested at

the current node is selected from all the remaining candidate

features; in RandomForest, the selection process is restricted to a

subset of F features drawn randomly drawn from the full

candidate set. T different trees are thus built, and a final decision

is reached via a majority vote on their predictions (Breiman,

2001).

While the above methods vary the training sets on which to

apply a given algorithm, multistrategy approaches build hetero-

geneous ensemble classifiers by varying the algorithms to apply

on a given training set. An early example of this approach is

stacked generalization, whereby K base level models are built on

the training data and their predictions on test samples input as

training data to a metalevel learner, together with the actual class

labels of these samples. The metalearner’s task is to build a

model, which will predict the outcome of a new sample based on

the predictions of the base level learners (Wolpert, 1992). In other

forms of multistrategy learning, the predictions of the different

base classifiers can be combined without metalearning, for

instance, via a simple or weighted vote.

D. Which Classification Algorithm?

There is an overwhelming number of classification algorithms

which can be combined in an exponential number of ways. The

question of which learning approach works well for a given

classification problem is still an open question and will probably

remain so for sometime. Different classification algorithms have

their specific biases, which should match the problem structure,

that is, the concept that governs class assignment. Unfortunately

the problem structure is not known a priori; in fact it is precisely

what should be discovered. Even in a circumscribed domain such

as mass spectrometry, different learning algorithms could be

appropriate for seemingly related problems, depending on the

concept that underlies the data and how the features interact

together to determine the class.

To illustrate the match or mismatch between the problem

structure and the biases of the learning algorithms, we created

three very simple artificial classification problems involving only

two features. These were fed into two different classification

algorithms, a linear discriminant, and a decision tree. In Figure 6,

the leftmost column shows the training sets, the other two

columns visualize the decision boundaries drawn by the two

algorithms on the plane defined by the two features. The three

problems are characterized by different types of feature

interaction and feature relevance to the class label. Both features,

m/z1,m/z2, are rescaled within the interval [�1,1]. In the simplest

problem (a), only one feature (m/z1) is relevant for classification.

If this takes values within the intervals [0.6,0.7][[0.9,0.95] then
the specimen belongs to one class, otherwise it belongs to the

other class. Class distributions are multimodal. The decision tree

algorithm approximates these class boundaries correctly, thanks

mainly to its inherent feature selection strategy and the fact that it

can capture multimodal distributions when the boundaries are

orthogonal to the axes defined by the features. The linear

discriminant, however, fails to find the correct decision surface

due to multimodality (one of its main assumptions is that class

distributions are unimodal). Problem (b) shows a more

complicated situation where both features are relevant but the

decision boundaries are not orthogonal to the axes. This is an easy

problem for the linear discriminant but harder for the decision

tree algorithm, which tries to approximate the decision surface

piecewise, thus producing a staircase effect. The decision tree

algorithm could in principle approximate the decision boundary

given enough training examples. The third problem, (c), is the

equivalent of a logical exclusive-or between the two features in

determining the class label. Both features are relevant, but none,

taken alone, is adequate to completely define the class. The

decision tree manages to approximate the decision boundaries

due to its divide-and-conquer local approach; this approximation

could be improved provided enough examples were used for

training. However, the decision tree’s sequential feature selection

mechanism could be misled completely if these two features and

their discriminatory interaction were hidden in a much larger

feature set.

To summarize, there is no universally superior learning

algorithm. The question is notwhich algorithm is best overall, but

rather under which conditions a given algorithm is appropriate

for a given learning task. Among the factors to be considered are

the complexity of the concept to be learned, the availability of

domain knowledge, and the nature, quality, and distribution of the

available data. Beyond the idiosyncrasies of individual problems

and datasets, however, we can search for commonalities that

characterize a clearly delimited task domain. For instance, high

data dimensionality is a generic issue to be tackled in all

applications involving mass-spectra classfication, whatever their

specific objectives. Algorithms that can cope with high

dimensionality, are therefore most appropriate for this task.

However, such methods are extremely rare; an alternative

solution consists in reducing dimensionality prior to the learning

process.

IV. DIMENSIONALITY REDUCTION

After the preprocessing phase described in ‘‘Data Preproces-

sing’’ section, the mass spectra are ready to be mined. They have

been denoised, aligned, normalized, and otherwise transformed

to facilitate the modeling or learning task. In particular, the

dimensionality of raw spectra has been reduced, often by several

orders of magnitude. Such drastic reduction might still prove

insufficient; if the number of variables is greater than the sample

size, certain modeling algorithms like linear or quadratic
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discriminant analysis will fail. In addition, we have seen that in

diagnosis with biomarker discovery, selection of a small panel of

m/z values is as important a goal as classification itself.

Dimensionality reduction methods can be classified into

three main groups based on the perspective adopted to reduce

dimensionality. Individual variable selection methods rank and

select single variables assuming mutual independence among

them. In-context variable selectionmethods also rank or evaluate

individual variables, but do so in the context of others, that is,

taking account of certain interdependencies among variables.

Variable subset selection methods assess and select variables

sets collectively, thus integrating all possible correlation or

other forms of interaction among them into the evaluation

function. Finally, variable transformation methods reduce

dimensionality by constructing new variables as combinations

of the old.

Another classification scheme is the distinction between

filter, wrapper, and embedded methods. Filter methods perform

dimensionality reduction as a preprocessing step to the learning

phase, independently of the learning method. Wrapper methods

wrap feature selection around the learning process and use the

estimated performance of the learned classifier to select

feature subsets; the utility of the selected variable set is tied to

the learning method used in feature selection. Embedded

methods are programmed as subroutines of the learner and are,

therefore, inseparable from specific learning algorithms. Since

the filter/wrapper distinction was introduced (Kohavi & John,

1997), there has since been a proliferation of new approaches,

FIGURE 6. Three artificial learning problems with two features. Each problem (row) is represented by the

training set (left column), the decision surface induced by a linear discriminant algorithm (middle), and the

decision surface induced by a decision tree algorithm (right).
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which defy classification under this scheme. Filter methods have

been used as wrappers, and wrapper or embedded methods as

filters, so that this distinction has become confusing at best. For

this reason, we organize this section based on the first-

classification scheme, which has the advantage of clarity.

A. Individual Variable Selection

Typically used as a filter, individual variable selection assumes

mutual independence of all predictive variables. It relies on some

scoring or ranking function to quantify variable relevance or

discriminatory power; the final variable set is selected by defining

a threshold on the computed scores or ranks. Many of the

classical statistical tests and measures have been used to

determine significant differences in variable importance. These

tests rely on the same basic procedure to evaluate each variable:

partition the sample according to classes (e.g., healthy vs.

diseased), compute a test statistic of the variable for each class,

and then check for significant differences in the values of this

statistic. Statistics that havebeen used to rankmass spectral peaks

are the t-statistic (Liu, Li, & Wong, 2002; Wu et al., 2003;

Papadopoulos et al., 2004), the F-ratio (Liu, Li, & Wong, 2002;

Wagner, Naik, & Pothen, 2003), and the w2-statistic (Liu, Li, &

Wong, 2002; Rogers et al., 2003). Intuitively, the t-statistic

quantifies differences between the class-conditional means of a

variablewhereas theF-statistic expresses the ratio of its between-

class variance to its within-class variance. The w2 statistic

measures the strength of association between two qualitative

variables; to test a peak’s association with the class variable, its

intensity must be discretized or binned. In all three cases, the

higher thevalue of the statistic, the higher thevariable’s rank. The

Wilcoxon test ranks variables directly according to the absolute

value of differences in their class-conditional means; it has been

used for peak selection in (Kozak et al., 2003; Sorace & Zhan,

2003). The precise definitions and formulas of these different

statistics and tests can be found in standard statistical textbooks.

Alternative variable ranking/selection criteria have been

borrowed from information theory and technology. Awell-known

entropy-based criterion is the mutual information between a

predictive and a class variable (Cover & Thomas, 1991),

computed as the initial entropy of the class variable minus its

entropy after observing the predictive variable. The difference

quantifies the information about the class gained from observing

the variable. For this reason, mutual information is also known as

information gain in theMachineLearning community. It has been

shown to be an effective variable ranking criterion in MS-based

lung cancer prediction (Hilario et al., 2003). Another increasingly

popular criterion from information technology is the AUC or area

under the receiver operating characteristic (ROC) curve.TheROC

curve is a plot of the true versus false-positive rates associated

with all possible thresholds for classifying a sample as positive

(see ‘‘Overview of Model Evaluation Methods and Matrics’’

subsection for a more detailed explanation). It has been shown

that, for certain distribution patterns, the AUC is a more reliable

indicator of a biomarker’s ability to discriminate between cancer

and control (Pepe, 1995). TheAUChas been used to rank peaks in

prostate cancer detection prior to learning with individual or

boosted DTs (Adam et al., 2002; Qu et al., 2002).

B. In-Context Variable Selection

The main advantage of individual variable selection is its

efficiency, since it requires no more than computing p0 scores

(where p0 is the original dimensionality or number of raw

variables). However, it has a number of drawbacks: it cannot

detect redundant or correlated variables, or variables which are

irrelevant by themselves but highly discriminatory in combina-

tion with others. To alleviate these shortcomings, machine-

learning research has given rise to novel variable selection

algorithms which we shall call in-context variable selection

methods because they take (limited) account of variable

interaction while ranking/selecting individual variables.

Like most in-context variable selection methods, those

described in this section are filters unless specified otherwise.

Relief-F (Kononenko, 2004), an extended version of Relief (Kira

& Rendell, 1992), computes the relevance of each predictive

variable via a method based on KNN. For simplicity, we describe

the algorithm for the case of two classes. The algorithmmaintains

a relevance score for each variable. At each iteration, it picks a

case at random and identifies the case’s nearest neighbor from the

same class and its nearest neighbor from the other class. It then

adjusts feature weights to reward features, which discriminate

neighbors from different classes and penalize those which have

different values for neighbors of the same class. The result is an

estimate of features’ merit in circumscribed local regions of the

instance space. This allows Relief-F to take into account feature

interaction, that is, their conditional dependence given the class,

whereas other methods lose sight of such dependencies as an

effect of averaging over all the training instances. Since Relief-F

is a self-contained feature selection method, it can and has been

used as a filter for a variety of learning algorithms. It was been

used form/z value ranking and selection in lung cancer diagnosis,

where it outperformed purely univariate variable selection

methods such as that based on information gain (Hilario et al.,

2003). Relief was also shown to outperform a variety of other

feature selection methods in a comprehensive comparative study

by Guyon et al. (2003).

To select individual variableswhile integrating the impact of

other variables, Wu et al. (2003) use a measure of variable

importance given by the RandomForest (RF) learning algorithm

(Breiman, 2001) (Subsection V.C.1). This measure is derived by

averaging over several iterations of the following process: a

classifier is built to compute a reference accuracy; the value of

each variable is then permuted randomly in turn, and the decrease

in performance with respect to the reference accuracy measured.

The magnitude of the decrease is taken as a measure of the

discriminatory power of that variable: the higher the decrease, the

more important the variable’s contribution to classifier perfor-

mance. In a filter set-up, Wu et al. used RF scores to select a

subset of 15–25 peaks, which were deemed most discriminatory

between diseased and healthy samples. The selected peak

set was used to train diverse classifiers such as linear

discriminants, nearest-neighbor classifiers, DTs, SVMs, and RF

itself. In general, all these learning algorithms obtained better

performance on variable sets filtered using RF rather than the

t-statistic.

A similar in-context feature selection technique was used in

a study on stroke diagnosis (Prados et al., 2004). Three variable
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ranking methods were used: one based on information gain,

Relief-F, and one SVM-based technique. In this last approach, a

linear SVM classifier was trained using the set of peaks produced

in the preprocessing phase. The weights of the variables in the

linear classifier were used to rank them in decreasing order of

importance, and the p0 top-ranked variables (where p0 is a user-

selected parameter) were retained for the actual training phase.

Though the hyperplane weights played the same role as

information gain in ranking the variables, the manner in which

these criteria were computed spells the difference between single

variable selection and in-context variable selection. Information

gain is computed as the mutual information between the class

variable and a predictivevariable, taken in isolation fromall other

predictors. On the other hand, all variable weights are computed

simultaneously in building an SVM classifier, so that the weight

of each variable is computed in strict interdependence with those

of all others.

Genetic algorithms have also been used for variable ranking

in experiments on ovarian cancer (OC-HC4). Working on the

original 15,154 variables (m/z values) of themass spectra, Li et al.

(2004) apply GAs to select 10,000 different subsets of 20

variables using KNN (K¼ 5, consensus rule) as the fitness

function. A subset was considered discriminative if it led to an

accuracy of at least 90%. The 15,154 variables were then ranked

based on the number of times each was selected into the 10,000

discriminative subsets. Finally, this ranked list was used to train

nearest neighbor classifiers using successively increasing

numbers of top-ranked variables (Subsection V.A.2). While

dimensionality reduction is based on individual variable ranks,

the ranking criterion does not examine each variable separately,

but considers classification decisions made in interaction with 19

other variables each time; the procedure is thus a case of in-

context variable selection.

Certain methods that rank and select variables in isolation

when used as filter become in-context variable selection methods

when embedded in learning algorithms. An example is the

mutual information criterion used in C5.0 under the name of

information gain. Though the criterion is explicitly applied to

candidate variables taken individually, interaction with pre-

viously selected variables in the ancestor nodes is implicitly

taken into account. Stepwise discriminant analysis embeds

forward, backward, or bidirectional feature selection into linear

discriminant analysis; the backward and bidirectional variants

are more sensitive to variable interaction than forward selection.

More recent methods embed variable selection or variable

weighting techniques into linear classifiers. Examples are

Yanasigawa et al.’s (2003) modification of Tukey’s compound

covariate method, Tibshirani et al.’s (2004) shrunken centroids,

andYasui et al.’s (2003) boosted univariate discriminants; as they

are inextricable from the learning process, these methods will be

discussed in Section V.

C. Variable Subset Selection

Variable subset selection requires evaluation criteria that are

specifically adapted to groups of variables as a whole. It also

introduces an additional difficulty: the number of possible

variable subsets increases exponentially with the number of

variables. This precludes exhaustive search for all but trivial

datasets; heuristic or stochastic search strategies are needed. GAs

are increasingly popular stochastic strategies while forward or

backward selection methods are examples of heuristic search.

Forward selection starts with an empty variable subset S and

selects the variable thatmaximizes a predefined scoring function.

Thereafter, it selects from the remaining variables the onewhich,

added to S, maximizes the score of the resulting subset. The

process continues until a predefined criterion ismet, for example,

until no single variable addition improves the merit of the subset.

Backward elimination proceeds in the reverse direction; it starts

with the full variable set and at each step removes the variable

whose elimination yields the highest score for the remaining

subset.

A number of variable subset selection strategies have been

used as filters prior to the learning process. Forward selection has

been used with different scoring functions in two mass-spectral

applications. In one experimental study on prostate cancer

detection (Qu et al., 2003), a discrete wavelet transform reduced

the initial mass set to 1,271 variables. Stepwise forward selection

was then applied to find a subset thatmaximized theMahalanobis

distance between the cancer cases and controls. Intuitively, the

Mahalanobis distance quantifies the separation between two

groups in terms of the Euclidean distance between their centers

(group means), normalized by their covariance to correct for the

effect of correlated variables. Mathematically, it is computed as

DM ¼ ð�XX1 � �XX2Þ
T
S�1ð�XX1 � �XX2ÞD, where S is the unbiased

estimate of the covariance matrix. This method resulted in a

subset of 11 variables, which were then used to build a linear

discriminant model.

Correlation-based feature selection (CFS) also relies on

forward selection. Its evaluation criterion is based on the idea that

good variable subsets containvariables highly correlatedwith the

class yet uncorrelated with each other (Hall & Holmes, 2003).

The merit of a variable set is directly proportional to the mean

strength of correlation between the member variables and the

class, and inversely proportional to the mean correlation among

the variables themselves. Correlation between variables is

measured in terms of their symmetrical uncertainty, a normalized

form of mutual information. Use of this criterion requires

preliminary binning of continuous variables. CFS uses stepwise

forward selection to find a variable subset that maximizes the

merit criterion. CFS has been found to yield best performance in a

comparative study of variable (subset) selection methods for

mass-spectra-based ovarian cancer diagnosis (Liu, Li, & Wong,

2002); however this should be taken with caution due to a

technical flaw in the Liu et al.’s experimentation methodology

(Subsection VI.B.1).

In Baggerly et al. (2003), mass spectra preprocessing

yielded samples with 506 peaks. A much smaller variable set

was needed to build a classifier using Fisher’s linear discriminant

analysis. Search was restricted to subsets of sizeN¼ 1 to 5 of this

initial peak set. A peak set was considered optimal if it maxmized

the Mahalanobis distance between the lung cancer and control

groups. Exhaustive search was used forN¼ 1 and 2. ForN¼ 3 to

5, 50 GA runs were performed using different initial populations

of 200 sets of N peaks; 250 generations were evolved before

halting.

Variable subset selection has been shown to be most

effective in a wrapper setup, targeted to a specific learning
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algorithm. In a study on ovarian cancer diagnosis and biomarker

discovery, mass spectra preprocessing was limited to baseline

subtraction and intensity scaling to [0,1]; no dimension reduction

was performed. The input to the data mining process thus

contained 15,154 m/z values or variables (Petricoin et al., 2002).

GAs were used to evolve an initial population of 1,500 sets, each

containing between 5 and 20 m/z values, into meaningful

biomarker patterns. To determine the discriminatory power of

each set, the training samples were expressed in terms of its

variables and used to generate a self-organizing map. Self-

organizing maps are NNs which cluster input samples in a way

that preserves the topology of the input space, with the result that

the distances between samples in the map reflect their actual

relative distances (Kohonen, 1995). Avariable set was deemed fit

if it produced a map with homogeneous cancer and control

clusters. The sets that passed the fitness test were used to spawn

new variable sets through crossover and mutation. The learning

process halted after 250 generations or when a map was found

that perfectly separated the cancer and control cases.

In Alexe et al. (2004), feature subset selection is wrapped

around the LAD (Logical Analysis of Data) algorithm, a set-

covering method for rule induction. The process starts with an

initial pool of k features selected from the raw set on the basis of

five individual feature-scoring criteria (e.g., entropy, Pearson

correlation with the class variable). The feature pool is then

reduced iteratively; at each iteration, a subset composed of the

half top-ranked features is used to train a LAD classifier. If

classification accuracy using the reduced pool is higher than that

obtained with the parent pool, the reduced pool becomes the

current pool, and iteration continues. Otherwise an attempt is

made to find a better performing feature set by generating

variants of the current reduced pool. If such a feature set is found,

it becomes the basis for further feature reduction, otherwise the

iteration process stops and returns the current feature pool. The

feature selection process is, however, marred by a methodolo-

gical inconsistency: while cross-validation is used to select the

most appropriate feature subset, the initial feature set is selected

on the entire dataset prior to cross-validation, thus resulting in the

use of test samples for what should be considered an integral part

of the training process (Subsection VI.B.1).

Recursive feature elimination or RFE (Guyon et al., 2002) is

a feature subset selection method, which was applied in gene

expression analysis to identify biomarkers for cancer diagnosis.

In RFE a given feature set (initially the set of all variables, scaled

if necessary) is used to train a linear SVM; the features are ranked

in decreasing order of their (squared) weights in the hyperplane,

and the lowest ranked features are eliminated. The algorithm

generates a set of nested feature subsets, one for each

iteration. The selected subset is that which minimizes

score(F)¼ err(SVMjF)þ jFj/N, where err(SVMjF) is the error

of the SVM classifier trained on feature subset F, jFj is the size of
F, andN is the total number of original features. The second term

penalizes large feature sets. In the original version of RFE, one

feature was eliminated at a time; to reduce the number of

iterations, a natural variant consisted in eliminating the t% lowest

ranked features. Multiple runs were needed to explore different

values of t. Instead of selecting a single threshold/subset, Jong

et al. (2004) proposed two ways of combining feature subsets

produced from these multiple runs. First, Join gathers all the

features occurring at least x times in the different feature subsets

and trains a single classifier based on the resulting feature set.

Second, Ensemble builds a separate classifier for each feature

subset and classifies a test sample by a majority vote of the

committee of classifiers. These methods were tested on ovarian

and prostate cancer diagnosis (Subsection V.B.3).

D. Variable Transformation

Variable (subset) selection reduces data dimensionality by

selecting from a preexisting set of variables. Variable transfor-

mation techniques create new variables by combining or

transforming the old. Dimensionality is reduced if a small

number of these new variables can replace the old without loss of

discriminating information.

Many of these variable transformation/extraction methods

are commonly used during the preprocessing stage (Section II):

examples are spectral transforms such as Fourier, wavelet, or

kernel convolution transforms. In addition, principal components

analysis (PCA) is a statistical technique for reexpressing raw

variables in terms of newvariables, called components, which are

linear combinations of the original variables. These components

are computed through an eigenvalue decomposition of the

covariance matrix of the original data, with the eigenvalues (and

their corresponding eigenvectors) ordered in decreasing order of

magnitude. Though theoretically there can be as many compo-

nents as original variables, very often a much smaller set of

components can explain most of the variability in the data.

Substantial dimensionality reduction can thus be attained by

describing the data in terms of a few principal components.

(Lilien, Farid, and Donald 2003) used PCA to reduce the rawm/z

ratios of three ovarian cancer datasets and a prostate cancer

dataset (around 15,000–16,000 variables) in view of classifica-

tion by linear discriminant analysis. In compliance with a

precondition of LDA, the number of components was selected to

be lower than the number of examples available for each

problem.

A study on human African trypanosomiasis (Papadopoulos

et al., 2004) compared PCAand t-tests as tools for dimensionality

reduction. Thesemethods resulted in a reduced set of 41 principal

components and 19 peaks, respectively. Each reduced variable

set was used to train classifiers based on DTs, NNs, and GAs, as

well as a combined model, which classified test cases via a

majority vote of all the three base models. PCA led to higher

accuracy than t-statistic-based variable selection on all learning

methods used except DTs, where both achieved equivalent

performance (Subsection V.C.2).

Partial least squares (PLS) projection to latent structure can

be viewed as the supervised counterpart of PCA. It extracts

latent variables as linear combinations of the original explanatory

variables such that most of their association with the response

variable is explained. Dimensionality is reduced when the first

few linear combinations of predictors explain most of the

association with the response. In a study on lung cancer

diagnosis, PLS was used as a filter before classification via

logistic regression or linear discriminant analysis. The number of

factors retained was chosen on a separate tuning set but was not

reported (Purohit & Rocke, 2003).
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V. CLASSIFYING MASS SPECTRA FOR DIAGNOSIS
AND BIOMARKER DISCOVERY

This section surveys work on diagnosis and biomarker discovery

following the taxonomyof classification approaches outlined in ‘‘A

Bird’s Eye View of ClassificationMethods’’ section.1Much of this

work concernsmass spectral data that have beenmade available by

the originating institutions; for conciseness these datasets are

summarized in Table 2 and will be referred to in the remainder of

the text by their short names, given in column 2 of the table.

A. Generative Approaches

1. Linear and Quadratic Discriminant Analysis

Discriminant analysis (Subsection III.A) is one of the most

widely used approaches to mass spectra classification in spite of

the HDSS problem. Discriminant analysis typically relies on the

covariance matrix, which becomes singular when the number of

variables p is greater than the number of examples n. To

guarantee a non-degenerate solution, it is necessary that

p� (n� k), where k is the number of classes; in addition, to

avoid overfitting, it is recommended that n � p, for example,

n� 2p (Tukey, 1992), n � 5p . . . 10p (Somorjai, Dolenko, &

Baumgartner, 2003).

The most popular way of having p< n is by using any of the

dimensionality reduction methods described in ‘‘Dimensionality

Reduction’’ section prior to discriminant analysis.Working on an

ovarian cancer dataset with only 89 samples (OC-NWHU,

Table 2), Wu et al. (2003) selected variable sets of size 15 and

25 using two alternative measures, the t-statistic and Random-

Forest scores (Subsection IV.B). They then applied a number

of classification algorithms including LDA and QDA. On the

15-variable sets, LDAwas second only to SVM in classification

accuracy, but this advantage diminished on the 25-variable sets

(however, see ‘‘Generalization Performance’’ subsection for

remarks on their evaluationmethodology). In addition, the use of

25 variables to build quadratic discriminants often resulted in

singular covariance matrices when a resampling strategy was

followed. Similar behavior was observed on the Duke lung

cancer dataset (n¼ 41): the leave-one-out cross-validation error

of LDA and QDA on a 4-peak set almost tripled when a 13-peak

set was selected; degradation was worse for QDA since the

covariance matrices became nearly singular on very small

samples (e.g., only 17 cases for the lung cancer group) (Wagner,

Naik, & Pothen, 2003).

LDA has been coupled with variable subset selection in lieu

of individual variable selection. As discussed in ‘‘Variable Subset

Selection’’ subsection, Qu et al. (2003) used the Mahalanobis

distance to select the most discriminatory set composed of 11

wavelet coefficients. They then applied Fisher’s linear discrimi-

nant to project this 11-dimensional vector onto a hyperplane

which allowed for maximal separation of the prostate cancer and

control groups in their 248-case training sample (PC-EVMS,

Table 2). The resulting classifier attained 96.7% sensitivity and

100% specificity on an independent test set of 45 samples.

Similarly, Baggerly et al. (2003) applied linear discriminant

analysis to draw a hyperplane for each of the 1- to 5-peak sets

selected by GAs from MALDI-TOF spectra in a study on lung

cancer (LC-Duke, Table 2).

Variable transformation techniques have also been used to

yield a small variable set appropriate for discriminant analysis. To

build linear discriminants for one prostate cancer dataset (PC-

EVMS, Table 2) and three ovarian cancer datasets (OC-H4, OC-

WCX2a, OC-WCX2b, Table 2), Lilien, Farid, and Donald (2003)

used PCA to transform the original p-dimensional mass-spectral

space (e.g., p¼ 16,382 in PC-EVMS) into an (n� k)-dimensional

space (e.g., n¼ 386, k¼ 3 for PC-EVMS). Results of this PCA-

LDA learning configuration will be discussed further in ‘‘Evalua-

tion Results: A Comparative Study’’ subsection. The supervised

counterpart of PCA, PLS, has also been used as a filter for LDA on

the LC-Duke dataset (Table 2). In leave-out-out cross-validation

experiments, LDA achieved significantly higher predictive

accuracywhenvariableswerefilteredwithPLS thanwithprincipal

components regression (Purohit & Rocke, 2003).

Rather than filtering variables prior to discriminant analysis,

other researchers have used variations on the discriminant

analysis algorithm itself to circumvent the p� n problem. The

best known of these is stepwise discriminant analysis, which can

be viewed as the straightforward embedding of forward, back-

ward, or bidirectional variable subset selection into the

discriminant algorithm. Sorace and Zhan (2003) built several

diagnostic models for ovarian cancer (OC-WXC2b, Table 2) by

combining stepwise discriminant analysis with a variable

selection filter based on a two-sided Wilcoxon test. Among the

peaks which had aP-value<10�6, 100were selected, sorted, and

binned by requiring a separation of at least 1m/z value to start the

next bin. In one case, this procedure produced 12 bins; the peak

site with the lowest P-value in each bin was selected. Stepwise

discriminant analysis was applied to these 12 peaks and built a

TABLE 2. Datasets which have been made public and used in

classification experiments by different teams

The datasets are referred to in the text by their identifiers as

shown in the Names column. The Data column gives the number of

spectra for each class or disease state: D, diseased, C, controls, B,

benign.

1This excludes the large body of attempts to classify mass spectra

based solely on differentially expressed peaks identified by standard

statistical significance tests such as T-stat, Wilcoxon, Mann–Whitney.
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diagnostic model using 7 peaks. Three different models were

built by varying the lower bound on the range of m/z values to

retain; tests on an independent holdout set led to the intriguing

observation that perfect classification was achieved by models

involving peaks from the low molecular weight range, generally

taken to represent noise.

A variant of LDA is diagonal linear discriminant analysis

(DLDA), which assumes mutual independence of the explana-

tory variables, resulting in a diagonal covariance matrix

D ¼ diagðs2
1;s

2
2; . . . ;s

2
pÞ for all class densities. Closely linked

to DLDA are methods that can be viewed as weighted voting of

linear univariate classifiers. An example is Tukey’s (1992)

compound covariate method which was applied by Hedenfalk,

Duggan, and Chen (2001) to gene expression analysis. This

method uses a standard t-test at level a to select a set of genes and

forms a linear classifier with these genes weighted by their t-

statistic:

Hðx	Þ ¼
X

i2SðaÞ

ti x	i �
�xxi1 þ �xxi2

2

� �

where x* is the example to be classified, S(a) the set of geneswith

a significant t-statistic at level a, and ti the t-statistic for gene i:

ti ¼
�xxi1 � �xxi2

si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=n1 þ 1=n2
p

where si is the pooled standard deviation for gene i. IfH(x*)> 0,

the sample x* is assigned to class 1, otherwise to class 2. In other

words, an example is assigned to the class with the nearest

centroid, the distance to the centroids being weighted by the

summed t-statistics of the discriminatory variables. In a study of

mass-spectra-based diagnosis of lung cancer, Yanasigawa et al.

(2003) used a variant of the compound covariate method where

the t-statistic was replaced by a battery of six different statistical

tests including Kruskal–Wallis and Fisher’s exact test. Eighty-

two peaks that met 3 of these 6 criteria were selected from a

training set of 50 samples; the resulting compound covariate

model correctly classified all 43 samples of a blinded test cohort

as either tumor or normal. However, the method did less well in

discriminating histological subgroups such as adenocarcinoma

versus large-cell (94% test set accuracy) or mediastinal nodal

involvement (75% test set accuracy).

Stepwise discriminant analysis and the compound covariate

method use hard thresholds to select or eliminate variables, and

hence often exhibit high variance. In contrast coefficient

shrinkage methods, which assign continuous weights to vari-

ables, operate less abruptly and eliminate variables onlywhen the

coefficient is reduced to 0. Such an approach was developed by

Tibshirani et al. (2002) as a modification of the nearest-centroid

method. In the 2-class case, the discriminant function is defined

as:

Sðx	Þ ¼ log
p1

p2
þ
X

p

i¼1

ti x	i �
�xx0i1 þ �xx0i2

2

� �

with normalization factor ti defined as,

ti ¼
�xx0i1 � �xx0i2
ðsi þ s0Þ

where �xx0i1 and �xx
0
i2 are possibly shrunken means, and s0 is a value

common to all genes, for example, themedian value of the si over

the set of genes. Thus shrunken centroids use a standardized

squared distance in contrast to LDAwhich uses the Mahalanobis

distance to class centroids. The Mahalanobis distance becomes

problematic in an HDSS context, as it uses the pooled within-

class covariance matrix to normalize deviations from the mean;

when p � n, the covariance matrix becomes singular. To

circumvent this problem, the shrunken centroidsmethod assumes

a diagonal within-class covariance matrix. In addition, centroid

shrinkage by soft thresholding introduces a way of reducing the

number of variables. The soft threshold function is s(t,

D)¼ sign(t)(|t|�D)þ, where tþ¼ t if t> 0 and otherwise 0. If

jtj �D, t is set to 0, otherwise it is moved closer to 0 by the

quantity D, a user-tuned parameter (typically by cross-valida-

tion). If the centroids for a givenvariable are shrunken so that they

coincide for all classes, the variable is in effect eliminated.

The shrunken centroids approach, applied to gene expres-

sion analysis in Tibshirani et al. (2002), was integrated into the

‘‘peak probability contrasts’’ method for mass-spectra-based

diagnosis of ovarian cancer (OC-NWUH, Table 2). Peak

extraction from raw mass spectra yielded 14,067 m/z sites; these

were then binned via hierarchical clustering to identify 192 peaks

that were common to all spectra. A split point a(i) was estimated

for each peak i so as to maximize jpi2(a)� pi1(a)j, the difference
in the proportion of samples from each class having peaks higher

than a(i). For a given class k, pik was set to pik(a(i)). A new

spectrum can then be encoded as a binary vector based on the set

of common peaks and their individual split points. A peak in the

new spectrum is deemed to correspond to a common peak if its

center lies within 0.005 of the position of the common peak, and

its value set to 1 if it is higher than the split point of the common

peak, otherwise to 0. The result is a binary vector, which can then

be compared to the probability centroid vectors of each class and

assigned to the class that is closest in overall squared distance.

While stepwise discriminant analysis, compound covari-

ates, and shrunken centroids embed variable elimination into the

classification process, Lee et al. (2003) merge variable

transformation and classification through the use of PLS.

Working on the LC-Duke dataset (Table 2), they first used a

wavelet transform to reduce the initial 60,000 m/z values of the

raw spectra to 545 wavelet coefficients. These were the inputs to

PLS which produced a 2-component discriminant model to

separate lung cancer cases from controls. Each component was a

linear combination of wavelet coefficients, which were then

inverse-transformed to the original variates. m/z ratios corre-

sponding to large PLS coefficients can be used to investigate

proteins that may possibly be upregulated or downregulated in

diseased specimens.

2. Non-parametric generative approaches

Discriminant analysis assumes a Gaussian distribution although

it has been shown to work in practice in a much broader range of

cases. Non-parametric generative approaches make no such

assumption; examples that have been used for mass spectra are

KNN, kernel density estimation (Subsection III.A), or versions of

Naive Bayes which do not assume a specific probability
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distribution for continuous variables2. KNN was explored in the

context of two studies on ovarian cancer. Using a training sample

from the OC-H4 dataset, Li et al. (2004) applied the GA-based

process described in Subsection IV.B to rank the 15,154 m/z

values of the raw spectra. They then explored successively

increasing variable subsets consisting of the i top-ranked

variables, for i¼ 1 to 100, applying KNN (K¼ 5) each time to

measure classification performance on a separate test set. Across

50 iterations of the whole GA/KNN process, it was observed that

performance grew initially as the variable subset size was

increased, and then reached a plateau at size 10, with average

classification performance on the test set hovering around 97%

(93–100%). In findings reminiscent of those of Sorace and Zhan

(2003) on another ovarian cancer dataset, the authors observed

that all 10 top-ranked variables belonged to the<500 Da region,

and then repeated the same analysis after excising this low-

molecular weight region. Performance on the new, supposedly

less noisy 10-variable set fell to 90% (78%–96%). Explaining

these observations remains an open problem.

Zhu et al. (2003) built a classifier for ovarian cancer

diagnosis (OC-WCX2a, Table 2) after a two-step dimensionality

reduction process. First, they selected discriminatory variables

using a t-test with a significance level adjusted for multiple

comparisons. The 563 variables that passed the test were ranked

and subjected to further reduction. The second step was variable

subset selection wrapped around KNN (K¼ 5) using the

Mahalanobis distance to identify nearest neighbors. Starting

with the top-ranked variable, they successively added the next

top-ranked variable until KNN classification performance

reached a plateau. This resulted in a final variable set of 18 m/z

values. The 18-variable KNN classifier achieved 100% accuracy

on a holdout subset of the OC-WCX2a dataset as well as on an

independent dataset, OC-WCX2b (Table 2).

Non-parametric generative models have been compared

with other approaches to mass spectra classification. In a

comparison involving five different variable selection schemes

and four learning algorithms, Naı̈ve Bayes and KNN displayed

roughly equivalent performance in ovarian cancer diagnosis

(OC-WCX2b, Table 2); both did clearly better thanC4.5 butwere

outperformed by SVM on variable sets of size 17–20 (Liu, Li, &

Wong, 2002). On a different ovarian cancer dataset (OC-

NWUH), KNN (K¼ 1 and 3) also outperformed LDA and

QDA on variable sets of size 15 and 25 selected by RF

(Subsection IV.B). On the 25-variable set, 1NN achieved the

highest accuracy along with the RF classifier, which had the

undeniable advantage of having preselected variables adapted to

its learning bias (Wu et al., 2003). On the Duke lung cancer data,

however, 6NN achieved significantly lower accuracy than LDA

and QDA on a 4-peak set selected using the F-statistic, while

kernel density estimation using a Gaussian kernel showed

equivalent performance with QDA. Results of these two

comparative studies should however be taken with caution due

to methodological shortcomings discussed in Subsection VI.B.1.

B. Discriminative Approaches

1. Logistic regression

Multivariate logistic regression was used in two similar studies

on cancer diagnosis. In a study on ovarian cancer based onSELDI

mass spectra, dimensionality reduction was performed in two

alternativeways (Rai et al., 2002). The first approach used unified

maximum separability analysis (UMSA), a variant of classical

discriminant analysis which projects the training samples onto a

3-dimensional component space. Components are linear combi-

nations of the original variables/peaks determined to achieve

maximum separation between cancer and control cases. The

individual variables were then ranked according to their

contribution to the separation of the two groups, and seven peaks

were thus selected. In the second approach, CART was used to

grow a decision tree, which selected two peaks, in fact a subset of

the UMSA-selected set.Multivariate logistic regression was then

applied to build a classifier using these two common peaks at 60

and 79 kDa. Finally another classifier was built based on the

combination of these two peaks with CA125, the tumor marker

traditionally used for ovarian cancer diagnosis. This classifier

produced improved performance over those based on CA125

alone or the two selected peaks alone. However, these results are

subject to caution since performance was measured over all

specimens, including the training data. The second study (Li

et al., 2002) focused on breast cancer diagnosis and followed a

strategy very similar to that described by Rai et al. Peak

extraction using Cipherghen software yielded 147 qualifiedmass

peaks (S/N> 5). The UMSA procedure, followed by stepwise

selection, reduces these 147 peaks to a final set of 3 candidate

biomarkers at 4.3, 8.1, and 8.9 kDa. A logistic regression

classifier built from these peaks achieved 93% sensitivity and

91% specificity, averaged over 20 evaluation runs using a 70%–

30% train-test split.

2. Neural networks

An investigation on renal cancer carcinoma (RCC) used a dataset

composed of 106 samples (48 RCC, 38 healthy controls (H), and

20 benign cases (B)) to train different multilayer perceptrons

(Rogers et al., 2003). Peak detection and clustering on the raw

data yielded a set of 368 variables/peaks, which was sorted in

order of decreasing relevance as measured by the w2 criterion.

The resulting data were then encoded using boolean (peak

presence/absence) or continuous features (peak signal intensi-

ties). Different fully connected multilayer perceptrons were built

with varying numbers of the top-ranked variables. Allmodels had

five hidden units with a sigmoid activation function. Weights

were randomly initialized to values in [�1, þ1], and back-

propagation trainingwas pursued until a limit of 100 epochs or an

error of 0 was attained. To overcome chance results due to

randomness, each model was initialized ten times, and the

average performance over these ten runs reported. On one

2Naı̈ve Bayes can be parametric or non-parametric depending on how

probabilities of continuous variables are computed. Non-parametric

versions include those which discretize continuous variables or which

use kernel density estimation methods; parametric implementations

assume a specific probability distribution, for example, Gaussian, for

continuous variables.
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blinded test set (12 RCC vs. 11 healthy controls), NNs using both

boolean and continuous features were able to discriminate RCC

from healthy controls fairly well. On the RCC versus benigns/

controls task (12 RCC vs. 20 benigns/controls), performance

degraded for models trained on boolean inputs but remained

essentially the same for those with continuous features. Results

concerning model stability are reported in Subsection VI.B.

Multilayer perceptrons were also used in a study aimed at

detecting hepatocellular carcinoma (HCC) in patients with

chronic liver disease (CLD) (Poon et al., 2003). The data

included serum samples from 38 patients with HCC at various

stages and 20 patients with CLD (controls). Preprocessing of raw

mass spectra yielded 2,384 candidate peaks, which were reduced

by significance analysis of microarray (a technique borrowed

from gene expression analysis (Tusher, Tibshirani, & Chu,

2001)) to a set of 250 differentially expressed peaks. Intensities at

these peakswere normalized and fed into amultilayer perceptron

with 250 inputs, 7 hidden units, and 1 output unit. The output was

a diagnostic score between 0 and 1, with 0¼CLD and 1¼HCC.

The NN was trained using standard backpropagation, with the

learning rate and momentum automatically selected by the

software used. Training halted when the error <0.02 or when

the number of epochs reached 300. Generalization error was

estimated using tenfold cross-validation. ROC analysis of

estimated errors showed that NN diagnostic scores were useful

in differentiating HCC and CLD cases. However, NN interpret-

ability remains a non-trivial problem; though sensitivity analysis

can be used to determinewhich of the 250model variables play a

major role in diagnosing HCC, the presence of bias and hidden

units complicates the task of determining the precise nature of

interactions between the peaks.

3. Support vector machines

Support vector machines (Subsection III.B) have been applied

extensively to mass spectra, both for classification and for

dimensionality reduction. To filter the variable set prior to SVM

learning for prostate cancer diagnosis (PC-CPPD, Table 2), Jong,

Marchiori, and van derVaart (2004) evolved a large number of

variable sets using GAs with SVM accuracy as the fitness

function, and then selected features that were present in more

than ten runs. This led to the selection of 47 features for SVM

training. In another set of experiments, RFEwas run several times

with different thresholds, and the resulting variable subsets were

combined according to the Join and Ensemble approaches

described in Subsection IV.C. To train the SVM classifier on the

OC-H4 data, linear SVM was used with the regularization

parameterC set to 10, and theweights of the diseased and control

cases set to 10 and 0.5, respectively, to compensate for class

imbalance. On the PC-CPPD dataset, which is far more skewed

that the ovarian cancer dataset, Cwas set to 1, and its weights for

diseased and controls set to 1,000 and 0.005, respectively. These

two approaches led to significantly higher sensitivity rates than

use of the full feature set or simply selecting the variable subset

which minimized error on a tuning set.

SVMs have also been used in conjunction with other filter

methods like variable subset selectionmethods such as CFS (Liu,

Li, & Wong, 2002) or individual variable selection based on

criteria such as information gain (Prados et al., 2004), the F-

statistic (Wagner, Naik, & Pothen, 2003), w2, and entropy (Liu,

Li, &Wong, 2002). Whichever feature selection method is used,

and despite methodological caveats formulated in Subsection

VI.B.1, there is widespread agreement on the behavior of SVMs

for mass-spectra classification: SVMs are competitive with top-

performing algorithmswhen the number of features is very small;

as dimensionality increases, their advantage over all other

methods becomes more pronounced. For instance, on a 4-

variable version of the LC-Duke lung cancer dataset, five

algorithms (LDA,QDA,KDE,KNN, SVM) displayed error rates

varying between 10% and 17%, with linear SVM rating 15%. On

the 13-variable version of the same dataset, however, all other

algorithms displayed error rates between 27%and 34%, far above

linear SVM’s 2% (Wagner et al., 2003). In another comparative

study involving SVM,Naı̈ve Bayes, KNN, and C4.5, Liu, Li, and

Wong (2002) found that SVMs were constantly in the top two

ranks for variable set sizes between 17 and 20, independently of

the variable selection method used. However, on the 15,154 raw

variables of the OC-WCXb dataset (Table 2), the error rates of

KNN and Naı̈ve Bayes tripled at the least, that of C4.5 remained

stable at 3.5% while SVM attained perfect accuracy. Jong,

Marchiori, and van derVaart (2004) reported the same perfor-

mance for SVM on the same dataset. This resilience of SVM to

high-dimensional data makes it one of the most appropriate

techniques for mass spectra classification.

4. Decision trees and rules

As explained in Subsection IV.B, DTs and rules are sequential

approaches, which use embedded feature selection methods to

determine the next variable to test on. Hence they are relatively

resilient to high dimensionality and have been used in mass

spectra classification without a preliminary variable selection

phase, even in cases where p� n. In a study on renal cell

carcinoma (Won et al., 2003) for instance, 36 SELDI mass

spectra were preprocessed using Ciphergen’s built-in software

PBS to select 119 peaks. No further dimension reduction was

performed prior to the application of the C4.5 algorithm, which

created a classification tree using five selected variables. CART

was also applied directly to PBS-detected peaks to identify

candidate biomarkers for ovarian cancer (Rai et al., 2002) or renal

transplant rejection (Clarke et al., 2003). Yet another example

concerns a sample of 106 cases of prostate cancer and 56 controls

(Bañez et al., 2003). Two sets of SELDI mass spectra were

produced from these samples using the weak cation exchange

array (WCX2) and the immobilized metal affinity capture-

copper array (IMAC3-Cu). PBS detected 89 peaks for theWCX2

set and 97 for the IMAC3-Cu set. Again, there was no further

variable selection. On a training set of 44 cancer cases and 30

controls, the WCX2 set produced a tree with six test nodes/

variables and the IMAC3-Cu set a tree with five test nodes.

Combining the data from the two arrays resulted in a simpler tree

with three test nodes, which achieved higher classification

performance on a blinded test set than either of the two larger

trees.

However, it has been shown that prior dimensionality

reduction can also enhance performance of DTs and rules. On the
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EVMS prostate cancer data (PC-EVMS, Table 2), for example,

the 779 peaks produced after mass spectra preprocessing were

ranked according to the area under the ROC curve; 124 peaks

with AUC� 0.62 were retained, of which CART used only nine

to build a decision tree (Adam et al., 2002). After a discrete

wavelet transform on the raw mass spectra of the Duke lung

cancer dataset, Zhu, Yu, and Zhang (2003) selected nine wavelet

coefficients that maximized the F-ratio. The decision tree built

from this variable set contained only two test nodes. The

approach described by Alexe et al. (2004) differs from the three

others on two counts. First, it creates decision rules via set

covering rather than recursive partitioning; second, it combines a

variable selection filter with a variable subset selection process

wrapped around the rule induction process, using the accuracy of

the inducedmodel to score the candidatevariable sets (subsection

IV.C).

Controlled comparative studies give us a rough idea of how

DTs fare on mass spectra with respect to other learning

algorithms. On the Duke lung cancer data, DTs were found to

perform worse than both linear discriminants and logistic

regression in intensive 500 split-sample runs (Neville et al.,

2003). Similarly, DT ranked last or next to last in a comparative

study involving six different variable selection methods and four

learning algorithms including SVM, Naı̈ve Bayes, and KNN

(Liu, Li, & Wong, 2002). One possible explanation for this poor

performance is that DT sequential approach takes little account

of variable interaction and thus fails to exploit useful information

concerning the relative abundance of proteins in mass spectra.

The second explanation is that the non-metric representation of

DT falls short of the finer information concerning relative

abundance of proteins by testing single thresholds which effect

simple binary splits on peak intensities. On the other hand, DTs

and rules dominate all other learning approaches in terms of

model intelligibility; the biomarker patterns detected can be

interpreted directly as sets of constraints on the intensity levels of

the peaks identified by m/z values.

C. Ensemble Models

1. Resampling-based ensembles

Homogeneous ensembles are aggregates of base classifiers built

using the same learning algorithm but different versions of the

training data. The most straightforward way of obtaining diverse

training subsets is by instance resampling, for example, via

boosting or bagging. A prostate cancer dataset (PC-EVMS) has

been repeatedly used as a testbed for boosting univariate base

classifiers. After individual variable selection based on the AUC

(Subsection IV.A), 194 peaks remained available for model

building. These were used by Qu et al. (2002) to build ensembles

of decision stumps following the boosting procedure described in

Subsection III.C.Afirst ensemblewith 400base classifiers and62

distinct peaks separated prostate cancer (PC) from non-cancer

with 100% accuracy on both training and test sets; a second

ensemble comprising 100 base classifiers also perfectly sepa-

rated healthy (H) men from those with benign prostate

hyperplasia (BPH). These two ensemble classifiers were

combined to form a 3-class ensemble, which again achieved

perfect accuracy on the PC versus BPH versus H problem.

However, this final classifier had 500 decision stumps and 74

peaks. To build a more parsimonious and hence more

interpretable classifier, the same procedure was followed with

one difference: only new peaks can be selected at each iteration.

The resulting 3-class classifier had 21 peaks instead of 74, but

sensitivity and specificity on the test set dropped to 96.7%. This

accuracy-interpretability trade-off is a recurrent observation in

many of the reviewed studies.

Yasui et al. (2003) follow a technique similar to that of Qu

et al. except that their base classifier is a univariate linear

discriminant. At the outset, allN cases are assigned equalweights

of 1/N. At each iteration i, each of the candidate variables is used

to build a logistic regression model based on the weighted cases,

and the model (variable) that maximizes the likelihood ratio is

selected. The linear part of the selected logistic regressionmodel,

that is, the exponent in the sigmoid function 1=ð1þ e�ðaþbTsÞÞ,
becomes the base classifier. Its predictions on the training set are

evaluated, and the weights of misclassified (correctly classified)

examples are increased (decreased) for the next iteration.

Boosting halts when observed sensitivity and specificity exceed

predefined thresholds. The resulting aggregate classifier after the

last iteration M can be written as the sum of M univariate linear

classifiers. While each linear classifier is univariate, selection of

the solevariable needed for eachmodel is done in interactionwith

other variables by virtue of the boosting. After the first base

classifier is built, all previously selected variables influence each

new variable selection step via theweight updates entailed by the

performance of their respective classifiers. This method pro-

duced an aggregate classifier using 26 peaks for the PC/BPH

versus controls problem and 25 for the cancer versus BPH

problem.

A less common way of resampling the training data is by

taking different subsets of the features instead of the instances.

The best-known representative of this approach is the RF

algorithm (Breiman, 2001), which has been described in

Subsection III.C. RF was used by Wu et al. (2003) on ovarian

cancer data, both for dimensionality reduction (Subsection IV.B)

and for classification. As a variable selectionmechanism, RFwas

compared with t-statistic-based variable ranking/selection; as a

learningmethod itwas comparedwithLDA,QDA, andKNN.For

all learning algorithms used, variable selection was more

effective using RF than the t-statistic. As a learning algorithm,

RF outperformed the three other methods; it led to an overall

lower error rate as well as to a more stable assessment of

classification errors across different model evaluation strategies.

These observations suggest that RF is one of the more promising

techniques for mass spectra classification. A thorough explora-

tion of the potential of the RandomForest algorithm for cancer

diagnosis can be found in (Izmirlian, 2004).

In Li et al.’s (2003) cascaded DTs, as in RandomForest,

model diversity is achieved by varying thevariables instead of the

instances. However, while RandomForest draws candidate

variables randomly at each node, Li et al. obtain diverse trees

by non-randomly selecting a different variable at the root of each

tree. At the outset, all candidate variables are ranked using C4.5’s

default criterion. For i¼ 1 toT (the number of trees to be grown as

specified by the user), the ith tree is initialized using the ith
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top-ranked variable on the candidate list as the root node. Tree

construction is then pursued following the standard procedure,

but the diversity of root nodes ensures diversity and comple-

mentarity of the different trees in the ensemble. Decisions are

combined by a weighted majority vote. In tenfold cross-

validation experiments on an ovarian cancer dataset (OC-H4),

cascaded C4.5 and SVM achieved perfect accuracy while

standard, bagged, and boosted C4.5 scored 10, 7, and 10 errors,

respectively. However, SVM used all 15,154 variables whereas

Li’s model comprised 20 trees with 2–5 variables each. In this

particular case, a relatively more intelligible model was obtained

without sacrificing accuracy. However, identification and

validation of the 72 variables in the entire tree ensemble remains

a non-trivial task.

2. Heterogeneous ensembles

In contrast to the homogeneous ensembles described in the

preceding section, heterogeneous ensembles combine different

learning algorithms trained on the same dataset. An example is

the aggregate model built by Papadopoulos et al. (2004) to

diagnose sleeping sickness or trypanosomiasis. After preproces-

sing, the dataset of 85 diseased samples and 148 controls included

206 peak sites. Two dimensionality reduction strategies were

explored. Individual variable selection based on the t-statistic

yielded 19 potential biomarkers with a P-value <10�5 while

transformation of these 206 peaks into principal components

produced a set of 41 derived variables which explained most of

the variation in the data. On each variable set, an ensemble

classifier was built combining three models built by recursive

partitioning or DTs, NN training, and GAs. Classification of test

instances was done by a majority vote of the base classifiers. On

the 19-peak set, the ensemble classifier achieved an accuracy of

96.3% on an independent test set while the best individual base

classifier DTattained 94.5%. On the 41-principal component set,

the ensemble classifier achieved 99.1% accuracy versus 98.2%

(NN), 97.2% (GA), and 94.5% (DT) for the base classifiers.

These results illustrate once again the often observed trade-off

between generalization performance and model understandabil-

ity; better performance was obtained with 41 principal

components, each of which is a linear combination of 206

detected peaks. Similarly, the multistrategy classifier outper-

formed all individual classifiers on either variable set, but

analysis of this complex model is far from straightforward. One

of the many promising research paths in biomarker discovery is

the development of techniques for interpreting the knowledge

distilled from data by ensemble models.

VI. EXPERIMENTATION AND MODEL
EVALUATION

A classification algorithm can be evaluated along different

dimensions like prediction or generalization error, understand-

ability or novelty of the models produced, robustness, and

training and classification computational requirements. For the

task of classifyingmass spectrawewill focus on two dimensions,

generalization error, and model stability (the latter can be

considered as a special case of robustness). Assessment of model

novelty requires the direct intervention of domain experts; in the

case of mass spectra it is directly related to pattern interpretation

and biomarker identification (Section VII).

Generalization Error: Recall that our definition of the

classification task (Section III) assumes an instance space

governed by a joint probability distribution P(X,Y), in which

data have been generated according to probability P(X) and class

labels y¼ S(x) assigned according to a conditional probability

distribution P(YjX). In the real world we have access to a dataset
Dwith a limited number of examples, drawn from the distribution

P(X,Y). The classification process will be trained on this dataset

in order to construct the approximation of S(X).

The generalization error of the model, M(X), induced by C

on the dataset D, is the probability that M will misclassify an

example, x, drawn at random from P(X). That is:

ErrMðDÞ ¼ PðMðxÞ 6¼ SðxÞÞ ¼ EP½MðxÞ 6¼ SðxÞ�

¼

Z

x

IðMðxÞ 6¼ SðxÞÞPðxÞdx

where EP denotes expectation with respect to P and the indicator

function I(.) returns 1 if its argument is true and 0 otherwise. The

generalization error of the classification process C on datasets

with a given number of instances N is simply the average

generalization error of the classification models derived on

datasets of size N; it is given by:

ErrCðNÞ ¼ EF½ErrMðDÞ�

whereF is the distribution fromwhich the datasetsD of sizeN are

drawn.

Since we cannot draw an infinite number of new examples

from P(X) in order to compute the exact generalization error of a

modelM, we have to rely on estimations computed by some error

estimation procedure using the available dataD. For this purpose

we distinguish between training error (aka resubstitution error)

and test error. The former is the percentage of misclassifications

incurred when the model is applied to the set on which it was

trained, while the latter is misclassification rate when applied to

an independent set that was not used for training. Both are given

by:

1

N

X

xi2D

IðMðxiÞ; SðxiÞÞ

D is either the train or the test set, depending on which error we

are computing. It is easy to construct a confidence interval for the

above quantity if one considers the result of the application of the

model to an example as governed by a binomial distribution.

Training error is not a good estimate of the generalization

error; depending on the complexity of models that the

classification process is inducing it can typically drop to zero

for highly complex models. Nevertheless, a model that overfits

the training data will usually have high generalization error. The

test error is the best way we have to estimate the true

generalization error, and it approaches the true generalization

error as N!1.

Stability: The following definition of stability was given by

Turney (1995):
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The stability of a classification algorithm is the degree to

which it generates repeatable results, given different batches of

data from the same process.

Ideally different datasets Di from the same instance

distribution P(X,Y) should result in the same or at least very

similar models. Stability is crucial when the goal of the

classification task is not limited to providing accurate prediction

but includes knowledge discovery, that is, pinpointing those

factors that affect the classification decision, as it is definitely the

case in biomarker discovery.

Imagine an application scenario in which we are asked to

produce a classification model for predicting whether a given

individual has developed a disease or not. As part of the analysis,

we might induce a number of classification models by applying

the same classification process to different subsets of the initial

dataset. In an alternative scenario, two different teams working

on the same problem use the same classification process but

different samples; each team comes up at the end with its own

classification model. The problem appears when the induced

models are different, emphasizing different features of the

individual’s description. Which one should be trusted and given

as the result of the knowledge discovery process to the experts?

The answer to this question requires the detection of the

source of model instability. In the two scenarios described

above there are two sources of instability: one related with the

classification process that is applied, and the other with the

experimental conditions under which the samples were collected

and prepared. In the first scenario, the classification process we

are using is sensitive to sampling variations from data collected

from the same instance distribution P(X,Y); we could lift this

instability by altering the classification process by selectingmore

stable constituents. In the second case (assuming that the

classification process is stable) different classification models

might be an indication that the distributions from which we

sample our training examples are in fact different due to

variations of the experimental protocols used or simply because

samples come really from different instance distributions.

In the following sections, we will describe how we can

estimate the generalization error and the stability of a classifica-

tion process.

A. Overview of Model Evaluation

Methods and Metrics

1. Generalization performance

a. Principles and techniques. In what follows we will use

the term classification process instead of classification algorithm.

This distinction is important since the first one involves all

preprocessing steps, like feature selection and parameter tunning

of the classification algorithm, and the actual application of the

classification algorithm to the preprocessed dataset. These should

be evaluated as a single component, otherwise the error

estimation would be flawed, resulting in optimistic estimates of

the generalization error (more on this later in the same section).

In the estimation of generalization performance there are

two notions that should be clearly identified and distinguished.

The first is the generalization error of the finally induced

classification model, ErrM(D), and the second is the general-

ization error of the classification process used, ErrC(N). Working

with specific applications we are mostly concerned with the

generalization error of the induced model since it is the one that

will be applied in practice. Nevertheless themost often used error

estimation procedures provide an estimation of the general-

ization error of the classification process and not that of a single

classification model; however, under appropriate stability

assumptions these are also good estimates of the ErrM(D).

The general idea underlying all error estimation procedures

is the division of the available set of examples into two disjoint

sets. One is used for training, and the other is used for testing/

evaluating the generated model. The test set should not contain

examples that have been used in the training set, as this would

provide optimistically biased estimates of the error. Various

methods are used for obtaining the division to train/test sets and

estimating the error.

Error estimators are typically characterized by two quan-

tities, their bias and their variance. Let ErrðC;DÞ be the error

estimation produced by an error estimation method for a given

datasetDwithN instances and a given classification procedureC,

and ErrM(D) the true generalization error of the model that

we wish to estimate. Then the bias of the error estimation

method is simply EF½ErrMðDÞ � ErrðC;DÞ� and the variance

EF½ðErrMðDÞ � ErrðC;DÞÞ2�, where as before the datasets D are

drawn from the distribution F with respect to which the

expectation is taken. Bias captures the systematic error of our

error estimation method in establishing the true error, while

variance measures the dispersion of our estimation. In Figure 7,

wegive an example of two fictional estimators, one unbiasedwith

high variance, A, and the other biased but with low variance, B.

Even though estimator B is slightly biased we might be tempted

to use it because its values are less dispersed than those ofA, sowe

can have higher confidence in its estimations.

FIGURE 7. Examples of two hypothetical error estimators with

different bias-variance profiles.
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In an ideal scenario there are enough data available, and the

error estimation procedure is relatively straightforward. In this

casewe set aside a number of samples that will constitute our test

set, which should never be used during training. The data analyst

will be working only with the training data where he can perform

whatever tasks he considers necessary, like feature selection or

parameter tuning, in order to derive the final classificationmodel.

One part of the training data could be used to train different

models using different parameter settings of the classification

algorithmor different feature sets, and another part as a validation

set on which the performance of the induced models will be

validated. Based on the performance on that validation set a

single classification model is selected and applied to the test set.

The test error is then a reliable estimation of the generalization

error of our classification model, ErrM(Dtr), where Dtr is the

training set (including the validation set). In fact, this is the only

method that provides an estimation of the generalization error of

the classification model. This approach to error estimation is

referred as the holdout method. Usually 2/3 of the initial

examples are used for constructing the classification model and

the remaining 1/3, called the holdout set, is used for testing.

Nevertheless in practice the availability of data is rather limited:

using the holdout method wewill test our classification model on

only one third of small datasets; moreover the size of the training

set will be also small. As a result the final estimation might be

pessimistically biased, since better performance could probably

be achieved ifwe usedmore training data, but also unreliable, due

to the small amount of testing data which will result in large

confidence intervals for the generalization error.

In order to get more reliable estimates of error in cases of

limited data availability we have to rely on resampling

techniques. Resampling is based on repeatedly separating the

available data into training and test subsets, and then running the

classification process on the training set and testing it on the test

set. During the resampling procedure a number of classification

models, possibly different, are createdwhosegeneralization error

is estimated on a small part of the whole dataset. The final error

estimation is an average over the different test errors coupledwith

a confidence interval. One of the advantages of resampling

techniques is that they take into account error variations due to

different training and test sets, so to some extent they can detect

sensitivity to different samples coming from the same instance

distribution. Resampling techniques estimate the generalization

error of the classification process and not of a specific

classification model. By getting an estimate of the average

performance of the classification models that the classification

process induces we hope that the classification model that will be

finally employed will have a similar generalization error since it

will be the result of the same process.

In k-fold cross-validation the available set is split into k

disjoint sets. The inducer is then trained on the union of k� 1 sets

and tested on the remaining set. The whole process is repeated k

times, each time a different set from the k is used as a test set. The

estimation of the error is simply the average of the observed

errors over the k-folds. When k equals the number of examples

then the method is called leave-one-out. A variant of cross-

validation is stratified cross-validation, where the partitions are

constructed in such away, that the distribution of the classes in the

initial dataset is preserved. Leave-one-out provides unbiased

estimates of ErrC(N� 1) and the k-fold cross-validation unbiased

estimates of ErrC(N�N/k).

In the bootstrapmethod the initial set of examples is sampled

with replacement, so that a new set of the same size is established.

The instances not chosen in the sampling process will form the

testing set. The whole process is repeated a number of times, k,

usually between 50 and 200, each time using a different sample of

the examples. The estimation of the error is given by the

following formula:

Err ¼
1

k

X

k

b¼1

ð0:632etestb þ 0:368etrainÞ

where etestb is the error of the model on the b test set, and etrain the

error of the model on the complete initial set.

Leave-one-out produces almost unbiased estimates of the

true error, but with high variance. The size of the training sets is

almost the same as the size of the complete dataset. The variance

is reduced when wemove to k-fold cross-validation, with k in the

area of five to ten, and it is further reduced when we are using

stratified cross-validation, though remaining relatively high. One

method to reduce the variance of cross-validation is to repeat the

whole procedure for a number of times. For both cross-validation

and stratified cross-validation the estimates of the mean are

almost unbiased. In bootstrap the error estimates are highly

biased, but they have a very low variance. Bootstrap’s bias is high

especially when evaluating algorithms that fit the training data

perfectly, for example, a one-nearest neighbor algorithm or an

unpruned decision tree. In that case, etrain is zero, leading to

optimistic estimation of the error. Efron and Tibshirani (1995)

propose a bootstrap version, which they call the 632þ rule, which

is designed to provide less biased estimates of the error. A

comparative study of cross-validation, stratified cross-validation,

and bootstrap can be found in Kohavi (1995). The author

concludes that the use of tenfold stratified cross-validation is

appropriate for algorithm selection, even if the computational

power available is sufficient for more computational intensive

methods of error evaluation. In a similar study, Bailey and Elkan

(1993) compared the performance of bootstrap and leave-one-out

cross-validation; they also concluded that the use of cross-

validation is preferable, since it exhibits much smaller bias than

bootstrap. They noted though that the best choice of error

estimationmethod depends onwhich algorithm is evaluated. The

same observation was made by Braga-Neto and Dougherty

(2003),when they examined the performance of cross-validation,

bootstrap, and resubstitution estimation on small sample sizes.

They found that cross-validation exhibited high variance in small

sample sizes, variance that increased with the classification

algorithm’s ability to produce highly complex models. The

variance of cross-validation decreased with an increase of the

sample size, and it became comparable with that of other

estimators for samples that contained more than 100 instances.

The resubstitution estimation was strongly biased. Finally,

bootstrap was shown to have relatively low variance, and low

bias in some cases, which overall makes it an interesting

evaluation strategy if one overlooks its high computational cost.

Since resampling involves the creation of multiple classi-

fication models, the problem is deciding which classification

model should be finally employed. One can choose to rerun the
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classification process, this time on the complete dataset; in this

case we cannot estimate the final model’s generalization error

which might possibly be less pessimistic than the initial

estimation which was based on smaller training sets3. Alter-

natively one may choose one of the classification models

developed as the result of the resampling process; in this case

we have more confidence in the accuracy of our error estimation

since it is computed on training sets of the same size. Hastie,

Tibshirani, and Friedman (2001) propose what they call the one

standard-error rule for selecting which model to apply: ‘‘Choose

the most parsimonious model whose error is no more than one

standard error above the error of the best model.’’ The choice of

the final classification model can prove irrelevant if the

classification models produced during resampling are quite

similar among themselves and to the classification model

induced from the complete dataset, bringing up again in front

the question of stability of the classification process.

Determining which error estimation method to use is a

complicated task. In any case it is clear that the greater the

number of training instances the more reliable the evaluation

results. The following rule could serve as a rough guide: use

holdout testing for large datasets and tenfold cross-validation for

average-sized datasets; if the dataset has less than a couple of 100

examples then bootstrap could provide more reliable estimations

due to its lower variance.

b. Methodological pitfalls. Building a classificationmodel is

a complex process which involves: preprocessing steps like

feature selection, feature extraction, and/or feature combination;

tuning of parameters that control the behavior of the classification

algorithm, for example, the complexity of the models it induces;

and only lastly, the actual training of the classification algorithm

on the chosen data representation and parameters. To evaluate the

predictive performance of a classification model all these steps

should be done exclusively on the training data; it is only when a

final classification model is built that it can be applied to the test

data to estimate its performance. This rule applies to all error

estimationmethods; though quite clear for the holdout method, it

is often violated when resampling methods are used.

A common error consists in performing feature selection on

the entire dataset before evaluating the classification algorithm

on the new dataset of reduced dimensionality. This entails an

information leak since test examples, that is, those contained

in the test folds, have been used in feature selection, which is an

integral part of the model building process. This can result in

overly optimistic estimations of the error as demonstrated clearly

by Simon et al. (2003). Using leave-one-out cross-validation,

they compared a scenario with feature selection performed only

once using the complete dataset (partial cross-validation) with

the correct scenario where feature selection was redone within

each training fold (complete cross-validation). Experimentswere

conductedwith artificial datasets of very high dimensionality and

few instances, constructed from the same generating distribution,

which contained no information. No classification algorithm

could do better than random guessing on such data. Nevertheless

partial cross-validation reported zero classification error in

90.2% of the 2000 artificial datasets used in the study. For

complete cross-validation the median error estimation was

correct, though with a relatively high variance. A similar study

by Ambroise and McLachlan (2002) led to the same conclusion.

When feature selection is done outside the cross-validation loop,

the higher the dimensionality to sample-size ratio, the higher the

odds of finding features that by pure chance discriminate the data

perfectly. However such optimistic results are completely

misleading; a true measure of generalization performance can

be obtained only with complete cross-validation, that is, using

test instances that have not been used for feature selection.

Suppose now that we have a classification algorithm, C,

whose behavior is controlled by a set of parameters a. We can

estimate the generalization error of C for a given value of a by

using one of the error estimation techniques described above.

This will yield a more or less4 unbiased estimation of the error of

C for the given a. However, if we examine a set of different values

for using the same evaluation method and select the value that

minimizes the error, this minimized error will not be an unbiased

estimate of minfErrCa
g since the selection of the appropriate

value for a is done by looking a posteriori at the testing

performance. As in feature selection parameter tuning should be

redone for each training fold. This can be achieved by nesting

within each training fold another resampling loopwhose purpose

is to estimate the performance of different parameter settings on

that fold. Once a choice is made the classification algorithm

should be retrained on the complete training fold using the

selected parameter setting and then evaluated on the test fold

following the standard procedure. The average over all the folds

will now be an unbiased estimate of minfErrCa
g. The final

classification model to be applied can be derived in two different

ways. The first is to directly select the classification model

produced by the most parsimonious parameter setting according

to the one standard-error rule given above. The second is to

simply run the classification algorithm C with each of the

different parameter settings (without the nested resampling

loop), select the setting that exhibits the lowest error, and then

rerun the classification algorithm C on the complete training set

with the selected setting. Note that in both cases we do not get the

actual error of the finally produced classification model but only

an error estimation as this is given by minfErrCa
g.

Simply comparing error estimates is not sufficient, as

observed differences might not be significant in a statistical

context. The estimates of the errors are sample estimates of the

true error. Two inducers can have the same true error but different

sample estimates. In order to establish whether the differences in

the sample estimates reflect a difference in the true error or are

simply the result of random fluctuations of the sample estimates

around the same mean, the use of statistical significance tests is

essential. A number of studies have been done on the validity of

different statistical tests for detecting significant differences in

classifier error (Feelders & Verkooijen, 1995; Dietterich, 1998).

Among the best performing are McNemar’s test and the t-test
3With the exception of the leave-one-out cross-validation where the

amount of the training data used at each repetition is almost the same

as the complete set of instances, nevertheless in leave-one-out the

problem comes from the high variance of the estimate. 4Depending on the properties the error estimator.
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based on the results of a twofold cross-validation repeated five

times.

Depending on the type of the application we might be

interested in different views of the generalization error, for

example,measuring the generalization error for a given class. For

these cases a number of alternativemeasures havebeen proposed.

We will focus on two class problems since these are the most

often met in medical diagnostic problems. We can build the

confusion matrix shown in Table 3.

Then based on the above the following performance

measures can be defined:

* sensitivity: TP/P, the percentage of positive instances

correctly classified, indicates how good our classifier is in

identifying the positive examples, also known as TP rate or

recall.

* specificity: TP/N, the percentage of negative instances

correctly classified, indicates how good our classifier is in

identifying the negative examples.

* precision: TP/(TPþFP), the percentage of instances

classified as positive that were really positive, indicates

how accurate our classifier is when it predicts the positive

class.

All of the above performancemetrics can be estimated using

exactly the same estimation methods that we described for

evaluating the generalization error.

Another way of evaluating and visualizing the performance

of a classification model is via the use of ROC graphs (Fawcett,

2003). ROC graphs are 2-dimensional graphs where the X-axis

corresponds to the FP rate¼FP/N (the percentage of negative

instances incorrectly classified as positive) and the Y-axis to the

TP rate. Complete ROC curves can be constructed only for

classification models that output a probability or a score for their

prediction. The ROC curve will then give the trade-off between

TP-rate and FP-rate for every possible value of a threshold on the

score. Classifiers that do not output a score become single points

in a ROC graph. An example of a ROC graph with four ROC

curves is given in Figure 8. Some explanations are in order. The

point (0,0) corresponds to the strategy of never predicting the

positive class and the point (1,0) to the strategy of always

predicting the positive class. Perfect performance corresponds to

the (0,1) point. Themorewemove to the right along a ROC curve

the more we increase the TP rate, but at the same time we also

increase the FP rate. Informally a pointA is better than a pointB if

A appears more to the left of B (lower FP-rate) and higher (higher

TP-rate). A classifier completely dominates another one if its

ROC curve is always above the ROC curve of the second; in

Figure 8, for example, the DT classifier is completely dominated

by Naı̈ve Bayes and the 5-nearest-neighbor. The diagonal line

y¼ x corresponds to a random classifier that predicts randomly

positivewith probability p. This randomclassifier has a TP rate of

p but also a FP rate of p. The cost of a classifier for a given point

(FP rate, TP rate) of its curve is given by:

pðpositiveÞ � ð1� TP rateÞ � costðnegative; positiveÞ

þpðnegativeÞ � ðFP rateÞ � costðpositive; negativeÞ

where p(positive) and p(negative) refer to the probability of the

positive and the negative class, respectively, and cost(x,y) is the

cost assigned to misclassifying y as x. One advantage of ROC

curves is that they allow us to visualize the performance of the

classification problem regardless of the class distribution and the

misclassification costs. One can compute the convex hull of a set

of classifiers (also given in Fig. 8). Classifiers on the convex hull

are optimal for a range of class distributions andmisclassification

costs (Provost & Fawcett, 2001). Finally another measure of

classifier performance is the area under the ROC curve,

abbreviated as AUC. The AUC can be defined as P(xþ> x�),

that is, the probability that a classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative

instance (Fawcett, 2003).

2. Stability

Stability of classification algorithms is an important issue when

one is concerned with the reproducibility of results. We do not

want to discover different potential biomarkers each time we

analyze a different set of data. The notion of stability also pro-

vides a framework for uncovering differences in collected data

that should be attributed to different experimental conditions.

Tomeasure the stability of a classification process one needs

to define a measure of similarity among classification models.

TABLE 3. Confusion matrix for binary classification

FIGURE 8. ROC curves of four different classifiers on a mass-spectro-

metry problem. For this specific problem, the convex hull contains

discretized Naı̈ve Bayes and 5-nearest-neighbors which can thus be

optimal under certain conditions. Note that decision trees (DTs) fare

worse than random, probably because their sequential variable selection

mechanism assesses variables individually, in effect ignoring all

interactions among peak intensities.
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Oneway to do this is to use a syntactic measure of similarity. The

problem with this approach is that it depends on the representa-

tion language used in the classification process. Moreover

models, which seem very different based on a syntactic measure

of similarity might in fact be logically equivalent, delivering

exactly the same predictions over all possible inputs.

Turney (1995) proposed a measure of stability based on the

agreement of two classification models. He defined the agree-

ment of two classificationmodels as the probability that theywill

produce the same predictions over all possible instances drawn

from P(X). Note here that instances are drawn from P(X) and not

P(X,Y); the underlying reason is that the agreement of two

concepts should be examined in all possible input worlds. In

order then to measure the stability of a classification process he

gave a simple algorithm based on m� twofold cross-validation.

In twofold cross-validation the available data are split in two,

each part used once for training and once for testing. However,

testing is not done on a test set but on an artificial set constructed

by sampling uniformly over all possible values of X. The

classification process is run on each of the subsets, and the

classification models produced are applied to the artificial

instances. Stability is simply the percentage of times that the

twomodels agree, independently of the instances’ actual classes.

The final result is the average over all them runs (each run results

in a different random split of the initial dataset). This approach

provides an empirical estimation of the logical agreement of two

concepts.

Another measure for the stability of a classification process

comes from the bias-variance error decomposition (Domingos,

2000). For a given test instance classification error is decomposed

into three components:

ErrðxÞ ¼ c1NðxÞ þ BðxÞ þ c2VðxÞ

A first-irreducible component is due to the inherent noise, N(x).

The second, B(x), is the bias of the classification process and

measures the systematic error of the classification process. It

measures the distance from the optimal prediction of the

‘‘average’’ prediction of the classification models constructed

from different training sets. The optimal prediction is the class of

the given instance in case there is no noise. In case there is noise it

is the most common class label with which the instance is seen.

Finally the variance term, V(x), measures the variance of the

predictions of the different classification models around the

‘‘average’’ prediction. cis are multiplicative factors. The general

procedure for the computation of the bias-variance decomposi-

tion is also based on resampling. A number of different training

sets should be constructed and the classification process run on

each of them in order to generate a classification model. Then

each of thesemodels will be applied to the same fixed test set, and

the above quantities will be computed. What the variance term

depicts is the variation in predictions, due to the differences in the

training set, around the most common prediction. A completely

stable classification process would have zero variance, that is, its

predictions for a given instancewould not changewith changes in

the training set.

Both of the above approaches couple error evaluation with

an estimate of the stability of the resulting classification models.

They could be used to select among different classification

processes based on a combination of error and stability, that is,

select a classification process which yields both low error and

high stability. Stability is an issue that is relatively ignored in

classification performance studies. Nevertheless it is important

due to the way error evaluation is done, that is, via multiple

resamples from the same dataset that usually give rise to different

classification models. If the resulting models are relatively stable

then first, we can have more confidence in the result of the error

estimation procedure, and second, the problem of selecting the

finalmodel for deployment in the real world becomes less critical

since all of them will be more or less logically equivalent.

The concept of stability can also be used to detect

differences in data collection, experimental protocols, equipment

etc. For example, assume that two teams work remotely on the

same mass-spectrometry application. One team produces a

classification model with low predictive error and good stability,

and sends it to the other team for testing. Nevertheless the testing

results show a high predictive error. This is simply an indication

of a change in the joint distribution P(X,Y) that can be attributed

to any of the factors mentioned above. Alternatively one could

use the framework proposed by Turney (1995) to assess the

degree of agreement of the classificationmodels when tested on a

collection of artificial instances drawn from P(X). Again high

instability would mean that there is a difference in the generation

of the training data in the two laboratories.

B. A Critical Perspective on Evaluation Practices

for Biomarker Discovery

Wewill undertake a short review of biomarker discovery onmass

spectrometry based on machine learning and data mining

techniques with respect to the two aforementioned dimensions,

that is, error evaluation and stability-reproducibility of results,

and try to pinpoint the most common methodological flaws and

how these should have been tackled.

1. Generalization performance

One of the most common methodological flaws in mass-spectra

classification concerns the selection of the most discriminating

features or m/z ratios. There are many cases where feature

selection is kept outside the evaluation loop of the classification

process. To highlight the extent of confusion, even within the

same paper this can be done correctly for one dataset andwrongly

for another one. For example, Liu, Li, andWong (2002) examine

feature selection methods on two different datasets, a microarray

and a mass-spectra dataset. On the first set they rely on a holdout

evaluation procedure where feature selection and learning are

done only on the training data, and the learned model is correctly

tested on a blind test set. However, on the second dataset (the

mass-spectra dataset) they use cross-validation, but instead of

tightly coupling the learning algorithm with feature selection

within each cross-validation fold, they apply feature selection to

the complete dataset prior to cross-validation. The cross-

validated error is estimated only for the classification algorithm

using features selected on the complete dataset, thus leading to

optimistic estimations of error. Wu et al. (2003) and Tibshirani

et al. (2004) worked on the same mass-spectra problem, used the

same feature selection strategy, the same error evaluation

procedure, and examined among others two classification
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algorithms that were common to both studies, support vector

machines, and linear discriminants. The first study reports errors

that are in the range of 12%–14% for the two learning algorithms.

However the errors that the second study reports are more than

double, 30%–35%. The difference is that in the first study feature

selection was done outside the cross-validation loop once using

the complete dataset while on the second it was correctly redone

within each fold of the cross-validation. This is a very clear

demonstration of how a flawed error estimation procedure can

provide optimistically biased results.

Feature selection is not the only stage of learning that can

create problems during the error estimation procedure. The same

type of optimistic error estimation can appear also when tuning

the parameters of a given learning algorithm. Alexe et al. (2004)

examine the performance of logical analysis on mass-spectro-

metry data. They report sensitivities and specificities up to 100%.

Their system requires setting up a number of input parameters

that affect the learning behavior. In order to select the best

parameter setting they performed a systematic search on the

parameter space using information from the complete dataset.

More precisely during the search each parameter setting was

evaluated by k-fold (k¼ 2,5,10) cross-validation on the complete

dataset. The search was continued until the results were deemed

satisfactory, that is, until a parameter setting was found with low

predictive error. As explained above, this procedure overfits the

model to the given dataset and does not provide an unbiased error

estimate. Sound error estimation can be achieved in two ways. A

holdout test set can be kept aside on which the final model

resulting from the selected parameter setting will be tested;

alternatively, cross-validation can be used, but during each

training phase of the cross-validation loop, a cross-validated

parameter search can be done using the current training fold. An

example of sound error estimation including systematic para-

meter setting is given in Tibshirani et al. (2004). There cross-

validation is used to estimate the error of a number of

classification algorithms; the classification process includes

feature selection and extensive parameter tuning of some of the

algorithms. Both feature selection and parameter tuning are

redone for every training fold of the cross-validation.

Work with machine learning and data mining techniques is

relatively new in the area of mass spectrometry. Nevertheless the

fields of both machine learning and data mining are relatively

mature fields with well-established strategies for performance

evaluation. For reported results on mass-spectra mining to be

meaningful and allow for valid comparisons, a strict methodo-

logical framework should be followed. More stringent review

policies concerning dataminingmethodologymight help prevent

the proliferation of results of flawed data mining experiments.

2. Stability

Stability and reproducibility of results is an issue that has been

largely neglected in the analysis of mass-spectrometry data. The

only exceptions to our knowledge are the articles of Rogers et al.

(2003) and Papadopoulos et al. (2004). Both of these examine

whether a classificationmodel produced at one point in time from

a given dataset is still valid with respect to its predictions when

applied to another dataset collected at a different moment and

possibly even under different experimental conditions. Neither of

the two author teams examined the effect that different data

samples could have in the construction of the classification

model.

Papadopoulos et al. (2004) did a small-scale study of

reproducibility. They used an ensemble of classification models

consisting of NNs, DTs, and GAs. They tested the predictive

performance of their ensemble model on the same sample whose

mass-spectra was rerun 28 different times over a period of

2 weeks. Unfortunately no conclusion can be drawn since the

testing data consisted only of a single control sample (it was

always correctly classified). They also examined the effects of

hemolysis using eight samples (three controls and five patients)

all correctly classified. Finally they examined the effect of sample

degradation on 18 samples (ten patients and eight controls),

which were reprocessed after having been thawed. In the latter

case all of themwere systematically classified as controls. Rogers

et al. (2003) created a classification model using a NN with five

hidden layers. Classification performance on a blind holdout set

was found to be in the range of 81.8%–83.3% in terms of

sensitivity and specificity. Nevertheless when the same model

was tested on an independent dataset collected approximately

10 months later its performance was significantly lower with

sensitivities and specificities in the range of 41.0%–76.6%. This

performance discrepancy can be due to two factors: one is a poor

error estimation strategy and the second is a difference between

the distribution onwhich the classificationmodel was trained and

the distribution on it was tested. Performance estimates on the

first-data sample were taken, as already mentioned, using

holdout. One problem of holdout is that it does not measure

variations of performance due to differences in training and test

set, especially when, as here, the number of available instances is

relatively small (218 instances including both stages of the

study). It could be simply that the specific train-test split used

initially was favorable by pure chance. If a resampling evaluation

method had been used it might have revealed a lower

performance estimate. Learning distribution differences could

be attributed to differences in the experimental protocol used to

collect the second set of data; different chips were used to

generate the mass-spectra. Declining performance of the laser

and the detector with time could have also played a role. Because

of the number of varying factors no safe conclusion can be drawn

on the source of instability.

Altogether both studies clearly demonstrate the need for a

careful examination of the stability and reproducibility of the

results. Any such study should first exclude the eventuality that

non-reproducibility is due to the unstable nature of the algorithms

used. This can be easily done by performing a stability analysis of

the classification algorithm along the lines described in

‘‘Stability’’ subsection under ‘‘Overview of Model Evaluation

Methods and Metrics’’ subsection. Only then can one examine

reproducibility within the same experimental protocol. An issue

that should be closely examined is how predictive performance is

affected by the time scale but also by the site where data

collection took place. A number of questions arise here: would

rerunning the same testing samples over different time points and

then feeding them to the classification model still produce the

same predictions? Would rerunning the same training data and

reconstructing the classification model still produce the same
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classification models? More importantly, is the predictive

performance stable over time, that is, in a different batch of

testing data collected at a later point in time, in the same but also

in different laboratories, do we get a similar predictive

performance with the already constructed classification model?

Equally important, does rerunning our classification process with

a new batch of training data, again taken at a later point in time

from the same or different laboratories, produce the same or at

least a very similar classification model? All these questions,

especially the last two, should be studied systematically and

answered in an affirmative manner for the results of biomarker

discovery on mass-spectrometry application to be trustworthy

and reliable. The goal of the Early Detection Research Network

validation study (Grizzle et al., 2004) was precisely to determine

the portability and reproducibility of mass-spectrometry and

more specifically of the SELDI technology in the context of

prostate cancer prognosis and diagnosis. Among the different

issues that were examined in that initiative are: the reproduci-

bility of mass-spectra of the same samples when mass-spectro-

metry is performed in different sites and whether the predictive

power of classification models acquired within a specific site

remains valid for mass-spectrometry data of different samples

collected in the different sites.

C. Evaluation Results: A Comparative Study

Comparing performance results among different studies is not a

straightforward task. First of all, comparison should take place on

exactly the same dataset. Second, there should be no methodo-

logical flaws that would invalidate the evaluation results. Third,

the same error evaluation strategy should be used for results to be

comparable; ideally even the separation into training and test

folds should be the same, however this is more easily donewithin

the same study than across different studies. In the comparisons

given below we will try to keep fixed as many factors of the

experimental evaluation as possible. We will state clearly when

and for which reasons a comparison is not possible. Finally, the

results reported below from the studies of Liu, Li, and Wong

(2002) and Wu et al. (2003) should be interpreted as approxima-

tions given the flawed evaluation practices described in

‘‘Generalization Performance’’ subsection.

1. Ovarian cancer

For ovarian cancer, three different datasets have been made

available by the FDAClinical Proteomics Databank. Two studies

have been run on the first version, OC-H4 (Table 2). Petricoin

et al. (2002) heuristic machine learning approach led to the

extraction of a 5-marker, which achieved 100% sensitivity and

95%specificity. These performancemeasureswere observed on a

blind test set of 116 (50 diseased, 66 benign/control) out of 216

samples, that is,with a 46%/54% train/test split. Lilien, Farid, and

Donald (2003) ran Q5 on the same dataset under a variety of

experimental conditions. To ensure fair comparison, we selected

the experimentation settings closest to those used by Petricoin:

50%/50% train/test split and a probability classification threshold

of 0.5 which led to the classification of 98.04% of the test set

(Petricoin et al.’s method classified all test samples). Under this

setup, Q5’s closed-form, exact statistical approach obtained a

sensitivity of 87.57% and a specificity of 90.15%. The authors

report a classification threshold that classifies 90% of the OC-H4

samples with a sensitivity of 97.5% and a specificity of 96.8% but

the 10% unspecified training/test ratio for these results preclude

any meaningful comparison. In contrast to the precise subset of

m/z values harvested by Petricoin et al., the final pattern extracted

by Lilien et al.’s linear discriminant was a linear combination of

the principal components that had been used as variables for the

learning phase. The discriminant was back-projected onto mass-

spectral space and reexpressed in terms of the originalm/z values.

Those with the highest coefficients were then selected for further

investigation.

Four different teams experimented with ovarian cancer

dataset OC-WCX2b (Table 2). All four report 100% sensitivity

and 100% specificity as their best results.With a 50% probability

classification threshold and a training proportion of at least 75%,

Q5 classified all test sampleswith perfect accuracy (Lilien, Farid,

& Donald, 2000). Sorace and Zhan (2003) used Wilcoxon

variable ranking followed by stepwise discriminant analysis to

train three linear models on 49% if the dataset, then tested these

on the remaining data. Two models with different sets of seven

m/z values each achieved perfect classification, while a third

model with 13 m/z values scored 96.25% sensitivity and 91.11%

specificity. Jong, Marchiori, and van derVaart (2004) studied the

performance of linear SVMs on the full feature set as well with

feature selection using RFE, Join, and Ensemble (‘‘Variable

Subset Selection’’ subsection). They also report best results of

100% sensitivity and specificity; however their final feature set

had 187 features, significantly more than the seven features

reported by Sorace and Zhan (2003). Interestingly enough SVMs

with no feature selection yielded a sensitivity of 100% and a

specificity of 99.55%. The evaluation strategy that they used was

ten times holdout testing with around 25% of the total dataset

kept for the holdout test set. Liu, Li, and Wong (2002) used

tenfold cross-validation to compare different combinations of

variable selection and learning methods. Among the variable

selection methods, the subset selection algorithm CFS consis-

tently achieved the best performance for each of the four learning

algorithms used. Among the learning algorithms, SVM scored

the lowest average error over the different variable selection

methods used. Two configurations achieved perfect accuracy:

CFS-SVM and CFS-KNN. Another remarkable result is that

SVM achieved perfect classification even without variable

selection (using all 15,154 m/z values).

Wu et al. (2003)’s comparative study of methods for ovarian

cancer diagnosis was based on MALDI-TOF spectra (OC-

NWUH, Table 2). Two feature selection algorithms—t-statistic-

based variable ranking and RandomForest variable scoring—

were explored in conjunction with five learning methods: linear

and quadratic discriminant analysis, KNN, SVM, boostedCART,

and RandomForest. Classification accuracy was estimated using

both tenfold cross-validation and bootstrap for the first five

algorithms and a 2:1 train/test split for the combined models.

Only variable subsets of size 15 and 25 were considered. On both

sizes, SVM achieved best performance when variables were

ranked according to the t-statistic; however, with RandomForest-

based variable selection, RandomForest and boosted CART did

better than SVM. Overall, RandomForest-based variable selec-

tion not only led to higher accuracy, it also proved to be more
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stable than t-statistic-based variable ranking. Tibshirani et al.

(2004) worked on the same dataset and compared peak

probability contrasts (PPC, ‘‘Linear and Quadratic Discriminant

Analysis’’ subsection) to a number of classification algorithms

coupledwith a t-statistic-based feature selection. Error evaluation

was done using tenfold cross-validationwith feature selection and

parameter tuning always correctly redone within every cross-

validation fold. Quite surprisingly, best performance (23.6%

error) was achieved by an SVM model which used the complete

feature set (91360 features), followed closely by PPC which

used only seven features with an error of 25.8% SVM and LDA

coupled with a t-statistic-based feature selection were found to

have errors between 30.3% and 34.8%, more than double the

errors estimated by Wu et al. (2003); as explained in ‘‘General-

ization Performance’’ subsection, the discrepancy was due to the

poor evaluation methodology followed in the latter study.

2. Prostate cancer

We analyzed five studies based on the PC-EVMS data (Table 2).

Two studies (Lilien, Farid, &Donald, 2000; Qu et al., 2003) used

different subsets of the data and are not comparable. The

remaining three (Adam et al., 2002; Qu et al., 2002; Yasui et al.,

2003) followed the same 85%–15% decomposition of the 386-

specimen dataset into a training set and an independent test set.

Two employed anAUC-based variable rankingmethod to reduce

the set of candidatemarkers to 779m/z values. Adam et al. (2002)

used CART to produce a 9-node decision tree. Qu et al. (2002)

used boosting to create two committees of decision stumps (1-

node DTs), which classified cases via a weighted majority vote.

For the first committee Adaboost generated an aggregate

classifier comprising 500 base classifiers and 74 peaks. To

reduce model complexity, a variant called boosted decision

stump feature selection (BDSFS) required that each variable be

used exactly once or not at all; the result was an aggregate

classifier with 21 base classifiers and 21 peaks. Yasui et al.

(2003)’s approach, described in Section V.C.1, is likewise based

on boosting but combines marker selection with linear

discriminant analysis within the boosting cycle. Unlike DTs,

which can handle any number of classes directly, linear classifiers

are basically binary. Thus, at least two linear classifiers were

needed for these 3-class problems. One classifier was trained to

distinguish PC/BPH versus control, a second to separate PC from

BPH.The final classifier combined 2 linear classifiers comprising

26 and 25 peaks, respectively. We follow Yasui et al.’s (2003)

decomposition to compare the three solutions to the prostate

cancer diagnostic problem in Table 4.

3. Lung cancer

The lung cancer data set was the object of a datamining challenge

(Campa, Fitzgerald,&Patz, 2003) that elicitedmore than a dozen

experimental studies. Three solutions were selected for this

review with the aim of illustrating the diversity of approaches

explored. Lee et al. (2003) built several partial least squares

discriminant (PLS-DA) models, each with a different experi-

mental strategy. A first model built on the complete data achieved

100% accuracy—a result both unsurprising and unreliable, as the

model was trained and tested on the same data. The dataset was

then partitioned into a design set of 28 cases and a test set of 13. A

PLS discriminant was built from the design set by sevenfold

cross-validation. The resulting two-component model produced

one false positive and one false negative, yielding a sensitivity of

87.5% and specificity of 80%, or an overall accuracy of 85%. The

same process using leave-one-out cross-validation led to a final

two-component model with an accuracy of 76%. The differences

in these three accuracy rates illustrate the impact of the error

estimation strategy on model assessment and selection.

Wagner, Naik, and Pothen (2003)) used F-ratio based

variable ranking followed by a comparative study of five learning

algorithms—linear and quadratic discriminant analysis, kernel-

based density estimation, KNN, and SVM. They tested two

different experimental protocols to select between 3 and 15

peaks: the first used the full dataset to rank variables before cross-

validation whereas the second-integrated variable selection into

the leave-one-out cross-validation loop. We ignore the results of

the first strategy, which has the methodological flaw of using test

sample labels invariable selection. The second strategy produced

best results with 13-peak models. Linear SVM outperformed all

other classifiers with an accuracy of 98% (96% sensitivity, 100%

specificity) as opposed to 73% for the closest runner-up.

Baggerly et al. (2003) built biomarker patterns of 1–5 peaks

using a GA/linear discriminant hybrid. The accuracy of these

peak sets was then estimated via leave-one-out cross-validation.

The best single peak, which appeared in all the best 1- to 5-peak

sets, scored 74%; accuracy increased with peak size, the best

5-peak set attaining 98%. Again, these results should be taken

with caution; since peak selection involving a supervised

learning technique (LDA) was done on the full data before

cross-validation, the accuracy rates reported are likely to be

optimistic.

D. Discussion

Meaningful comparisons could be done onvery few of the studies

presented above. For the ovarian cancer dataset OC-H4, the

studies of Petricoin et al. (2002) and Lilien, Farid, and Donald

(2000) could be compared after finding the specific experimental

setting in the second study thatwasmost similar to that of the first.

For dataset OC-WCX2b each of the four studies examined used a

different way to partition the available data into train-test sets so

no fair comparison was possible. Nevertheless an interesting

observation reported by both Jong et al. (2004) and Liu, Li, and

Wong (2002) was the excellent performance of linear SVMs on

the complete feature set.While this is good enoughwhenwewant

to perform only classification, it does not help us when the goal is

TABLE 4. Performance measures on the prostate cancer problem

(%)

PC, prostate cancer; BPH, benign hyperplasia; C, controls.
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biomarker discovery. For the MALDI-TOF ovarian cancer data

one of the two studies had methodological flaws so again

comparison could not take place. However in Tibshirani et al.

(2004) a number of methods were compared under the same

framework, which allowed for some meaningful comparisons.

Here too linear SVMs on the full feature set achieved top

performance, though again sidestepping the problem of biomar-

ker discovery. Very good performance with a small feature set

was achieved by the PPC method introduced by the authors. For

the prostate cancer dataset PC-EVMS it was possible to compare

the results of three studies (Adam et al., 2002; Qu et al., 2002;

Yasui et al., 2003) while two others (Lilien, Farid, & Donald,

2000; Qu et al., 2003) were excluded because they used different

subsets of the initial data. The clear winner was a combination of

Adaboost with AUC-based individual variable selection. For the

lung cancer challenge there could not be any comparison since

the different studies either had methodological problems or used

different evaluation methods.

As discussed in ‘‘Which Classification Algorithm?’’ sub-

section, there is no algorithm that works best for all types of

problems. If domain knowledge is available about the type of

feature interactions that are sought or are expected to be found,

this shouldmotivate the choice of learning approaches thatmatch

the requirements of the problem. Otherwise the only avenue is

systematic experimentation and evaluation of different learning

paradigms. In fact the relative superiority of a given learning

paradigm for a specific problem is informative of the form of the

concept that underlies the classes, that is, the target concept

probably requires the type of decision boundaries that the

learning algorithm is able to discover.

VII. MODEL INTERPRETATION AND
BIOMARKER IDENTIFICATION

After the final classifier has been validated from a data mining

perspective, in particular with respect to predictive accuracy and

model stability, the reins are handed to the biomedical researcher

whose task is to validate and interpret the biological implications

of the computer model. A detailed discussion of this essential

phase is beyond the scope of this review; descriptions of the

approaches used and problems encountered by biologists in

identifying, validating, and interpreting mass spectra-based

biomarker patterns can be found in Watkins et al. (2001), Adam

et al. (2003), Allard et al. (2004), and Koopmann et al. (2004).

The twofold purpose of this short section is to highlight the need

for a human-readable diagnostic model and to sum-up ongoing

debate in the biomedical community concerning the methods,

assumptions, and validity of current biomarker research.

In applications such as handwriting recognition, data-driven

pattern recognition models can be black boxes provided that

predictions remain reasonably accurate. In contrast, model

intelligibility is an indispensable requirement for medical

applications in general. Producing a readable model is more or

less difficult depending on the induction algorithm used and the

number of variables in the final model. Classification models can

be situated along a spectrum depending on the human effort

required to interpret them. At one endpoint, symbolic models

such as DTs and rules are straightforward to interpret. A bit

further down the scale, linear discriminant classifiers remain

relatively easy to understand since the relative importance of

each variable is reflected by the magnitude of its coefficient

(recall that the variables have been normalized (Section II) and

reduced (Section IV) to the p0 most discriminatory variables,

obligatorily with p0 < n for linear discriminants). Neural net-

works and support vector classifiers with non-linear kernels can

be grouped at the high-opacity extreme; despite intensive

research on NN interpretation in the 1990s (see Andrews,

Diederich, &Tickle, 1995 for an overview), translating them into

readable form remains a non-trivial task.

In general, model complexity impedes understandability.

With the advent of systems biology, however, extremely

elaborate models have been produced to explain biological

systems and processes, which are naturally and overwhelmingly

complex. Such models are not completely devoid of utility, as

they can provide functional definitions of systems properties,

which can be tested against observed facts. Given two models of

equivalent explanatory power, however, the more parsimonious

one should be preferred—and parsimony, in mass spectra

classification, concerns above all the size of the variable set.

Eminently readable models such as DTs and rules can quickly

become incomprehensible as the number of variables increases;

this provides yet another justification for aggressive feature

selection in biomarker discovery.

Unfortunately the model interpretability issue has been

relatively neglected in computer scientists’ work onmass spectra

classification. Many of the studies reviewed above have focused

on reporting generalization performance without providing the

minimal information required to make classifiers useful to

biomedical researchers—the list of discriminatory m/z values.

Though it is beyond data miners’ competence to investigate the

identities and roles of the selected m/z values or peaks, a clear

idea of the direction andmagnitude of the impact of certain peaks

would ease considerably the burden of interpretation that awaits

the domain experts.Given such leads, biomedical researchers can

review related work and single out the masses or peaks on which

there is an emerging consensus. They can then undertake, on this

highly reduced candidate set, the laborious process of identifying

the associated proteins and discovering how these are related to

the disease process.

The issue of interpreting biomarker patterns mined from

mass spectra has been the subject of recent debate within the

biomedical community. The defenders of proteomic pattern

diagnostics claim that biomarker or proteomic patterns mined

from mass spectra could be used directly as biomarkers with no

need to identify the component proteins (Wulfkuhle, Liotta, &

Petricoin, 2003). Adversaries of this school of thought contend

that without knowing the identity of the individual proteins, it is

unlikely that the method will be useful for cancer diagnosis.

Diamandis (2003, 2004) observes that the patterns found in five

different prostate cancer studies were completely different, even

in those conducted by the same team. On the other hand, the best

prostate cancer marker to current knowledge, PSA, did not

appear in any of the published patterns. He raised the hypothesis

that MS technology may have trouble detecting validated cancer

markers which are low-abundance proteins and was instead

picking up molecules present in serum at much higher levels of
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concentration. In addition, he surmised that the discriminatory

molecules found did not originate from prostate, but were

actually epiphenomena of cancer, that is, they were produced by

other organs in response either to the presence of cancer or to the

patient’s general condition.

The same concern over reproducibility was aired by other

researchers who examined datasets on ovarian cancer published

by Petricoin after their Lancet publication in 2002. Sorace and

Zhan (2003) and Baggerly, Morris, and Coombes (2004) noted

that most discriminatory peaks belonged to the low-molecular

weight region; several confirmatory experiments revealed that

the patterns found in this region indeed displayed a discrimina-

tory ability that was well beyond that expected of random

noise. Both teams concluded, contrary to Diamandis, that this

structure in noise had nothing to do with the underlying biology,

but was due to artefacts of flawed experimentation (e.g., mid-

experiment protocol shift, suspect mass calibration (Baggerly,

Morris, & Coombes, 2004)). In reply to critics, Petricoin and his

colleagues remarked that the initial paper was a proof of

feasibility and that the methodology has undergone significant

refinement since then (Check, 2004). They however contest the

claim that low molecular weight values always represent noise.

Using MS to identify the entire low-molecular weight region of

the proteome, they have found that the region contains thousands

of whole proteins and fragments including oncogenes. The

ultimate goal of this identification effort is to be able to

investigate extracted proteomic patterns by searching directly

the corresponding identities in a database (Petricoin & Liotta,

2003).

There is in fact greater agreement on the basic issues than is

apparent at first sight. Petricoin and Liotta agree that knowing the

identities of the distinguishing proteins can lead to insights

concerning their relationship to the underlying pathology;

however, it is not an absolute precondition for the clinical

evaluation of proteomic patterns: for example, CA-125 was used

for cancer testing for many years before it was sequenced and

characterized. On the other hand, Diamandis (2003) agrees that

knowing the identities of the discriminatory molecules ‘‘is not

absolutely necessary for their use as biomarkers, but without this

knowledge, the method will remain empirical and probably

difficult to validate, reproduce, standardize, and quality control.’’

Wulfkuhle, Liotta, and Petricoin (2003) establish the same

requirements before proteomic pattern diagnostics can be

incorporated into routine clinical practice: ‘‘Standard operating

procedures must be established for sample handling and

processing. Reproducibility standards for proteomic patterns

and a universal reference standard for quality control of MS

instruments must also be developed. Equivalent reproducibility

and quality control/quality assurance release specifications,

spectral quality measures, machine-to-machine, lab-to-lab and

process-driven variability measures must be identified and

controlled for.’’ In summary, the seminal paper of Petricoin

et al. (2002) and the publication on theweb of the related datasets

have aroused both interest in and founded criticism of the

methodology used as well as the underlying assumptions of

proteomic pattern diagnostics. Beyond often intensive debate

which is part of the growing pains of MS-based clinical

proteomics, what appears today is a basic concurrence of views

on the priority tasks for the coming years.

VIII. CONCLUSION

Despite intensive ongoing research on preprocessing and

classification of protein mass spectra for biomarker discovery,

the field is still very much in its infancy. Data analysts

are only starting to unravel the computational difficulties

involved in building accurate predictive models from

extremely noisy, high dimensional, and often very small

samples. Digital signal processing and statistical techniques

need to be combined in order to assess the quality of raw mass

spectra and transform these into a representation appropriate

for knowledge discovery. As for the classification task

itself, the major challenge remains the high-dimensionality

small-sample or p� n problem common to mass spectra and

microarray classification.Much of existing work has focused on

applying off-the-shelf classification algorithms and reporting

predictive performance. However, there has been a recent trend

to devise approaches tailored to the specific idiosyncrasies of

mass spectral data, either by innovative combinations of

known methods (Baggerly et al., 2003) or by the introduc-

tion of novel algorithms (Tibshirani et al., 2004). Differences

in experimental conditions and even blatantly flawed

evaluation strategies preclude a comprehensive assessment of

the relative merits of the methods used, whether old or new.

However, several comparative studies on specific datasets

have led to independent and corroborating observations of

the resilience of SVM to the p� n problem, even where p is

on the order of several thousands. This is, however, no panacea

in the case of mass-spectra classification for biomarker dis-

covery, for the opacity of the resulting SVM classifiers render

them inexploitable for subsequent biological validation. Inter-

pretability is a condition of verifiability by domain experts, and

model parsimony in terms of the number of variables used is a

condition of interpretability.

It therefore seems that aggressive dimensionality reduc-

tion is an indispensable requisite for biomarker discovery. It

is essential to any approach that would provide a solution to

the p� n problem while satisfying stringent requirements on

model interpretability. Added to these constraints is the

practical impossibility, for the biomedical researcher, of

experimentally identifying and validating the impact of several

hundreds/thousands of candidate markers. In this context, the

most promising approaches to date include SVMs coupled with

filter/wrapper variable (subset) selection as well as methods

which embed variable selection into the learning process to

produce either a single model, e.g., shrunken centroids

(Tibshirani et al., 2002) or an ensemble of base level models,

e.g., RandomForest (Breiman, 2001; Izmirlian, 2004). While

the predictive performance of each of these approaches

depends on the characteristics of the dataset and the concept

underlying the class structure, there is general agreement on

relative interpretability. Linear models such as shrunken

centroids and linear SVMs give a clear indication of the

importance of each discriminatory peak; this is not the case for

ensemble classifiers and SVM models based on non-linear

kernels. A priority research issue is finding ways to decipher

these models and translate them into human-readable form if

their recognized predictive power is to be put to full use in

biomarker discovery.
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