
Processing and visualizing the data in tweets

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Marcus, Adam, Michael S. Bernstein, Osama Badar, David R. Karger,
Samuel Madden, and Robert C. Miller. Processing and Visualizing
the Data in Tweets. ACM SIGMOD Record 40, no. 4 (January 11,
2012): 21.

As Published http://dx.doi.org/10.1145/2094114.2094120

Publisher Association for Computing Machinery

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/79351

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/79351
http://creativecommons.org/licenses/by-nc-sa/3.0/

Processing and Visualizing The Data in Tweets

Adam Marcus, Michael S. Bernstein, Osama Badar,
David R. Karger, Samuel Madden, Robert C. Miller

MIT CSAIL
{marcua, msbernst, badar, karger, madden, rcm}@csail.mit.edu

ABSTRACT
Microblogs such as Twitter provide a valuable corpus
of diverse user-generated content. While the data ex-
tracted from Twitter is generally timely and accurate,
the process by which developers currently extract struc-
tured data from the tweet stream is ad-hoc and requires
reimplementation of common data manipulation primi-
tives. In this paper, we present two systems for extract-
ing structure from and querying Twitter-embedded data.
The first, TweeQL, provides a streaming SQL-like in-
terface to the Twitter API, making common tweet pro-
cessing tasks simpler. The second, TwitInfo, shows how
end-users can interact with and understand aggregated
data from the tweet stream (as well as showcasing the
power of the TweeQL language). Together these sys-
tems show the richness of content that can be extracted
from Twitter.

1. INTRODUCTION
The Twitter messaging service (sometimes called a

“microblog”) is wildly popular, with millions of users
posting more than 200 million “tweets” per day1. This
massive flood of messages from a wide range of users
results in a tweetstream that contains information on a
vast array of topics, including conventional news stories,
events of local interest (e.g., local sports scores), opin-
ions, real-time events (e.g., earthquakes, flight delays),
and many others.

Unfortuantely, the Twitter interface does not make it
easy to access this information. The majority of useful
information is embedded in unstructured tweet text that
is obfuscated by abbreviations (to overcome the 140-
character text limit), social practices (e.g., prepending
tweets from other users with RT), and references (e.g.,
URLs of full stories, or the @usernames of other users).
Twitter’s APIs provide access to tweets from a partic-
ular time range, from a particular user, with a particu-
lar keyword, or from a particular geographic region, but
provides no facility to extract structure from tweets, and
1http://blog.twitter.com/2011/06/200-
million-tweets-per-day.html

does not provide aggregate views of tweets on different
topics (e.g., the frequency of tweets about a particular
topic over time.)

In this paper, we describe two approaches we have
devised to help programmers and end-users make sense
of the tweet stream by providing a more structured,
database-like interface to tweets. For programmers,
we have built TweeQL, a SQL-like stream processor
that provides streaming semantics and a collection of
user-defined functions to extract and aggregate tweet-
embedded data. For end-users, we built TwitInfo [7],
a timeline-based visualization of events in the tweet-
stream, linked to raw tweet text, sentiment analysis, and
maps.

In the next section we describe TweeQL and the chal-
lenges associated with building a tweet-based stream
processor. Then, in Section 3, we describe TwitInfo,
our tweet stream visualization, which is built on top of
TweeQL.

2. TWEEQL
TweeQL provides a SQL-like query interface on top

of the Twitter streaming API. The streaming API al-
lows users to issue long-running HTTP requests with
keyword, location, or userid filters, and receive the
tweets that appear on the stream and match these fil-
ters. TweeQL provides windowed select-project-join-
aggregate queries over this stream, and facilitates user-
defined functions for deeper processing of tweets and
tweet text.

We begin by describing the TweeQL data model, and
then illustrate its operation through a series of expam-
ples. We close with a discussion of challenges with
building TweeQL and future directions.

2.1 Data Model and Query Language
TweeQL is based SQL’s select-project-filter-join-aggregate

syntax. Its data model is relational, with both traditional
table semantics as well as streaming semantics.

2.1.1 Streams

http://blog.twitter.com/2011/06/200-million-tweets-per-day.html
http://blog.twitter.com/2011/06/200-million-tweets-per-day.html

The primary stream that TweeQL provides is twit-
ter stream. TweeQL users define streams based on
this base stream using the CREATE STREAM statement,
which creates a named substream of the main twitter
stream that satistifies a particular set of filters. For
example, the following statement creates a queriable
stream of tweets containing the term obama called oba-
matweets generated from the twitter stream streaming
source:

CREATE STREAM obamatweets
FROM twitter_stream
WHERE text contains ‘obama’;

While twitter stream offers several fields (e.g., text,
username, userid, location, latitude, longitude), the
Twitter API only allows certain filters to be used as ac-
cess methods for defining a stream. Specifically, when
defining twitter stream, the developer must supply a
combinations of fields which can be filtered by key or
range lookups. For example, the Twitter streaming API
allows parameters for text, userid, and latitude/longitude
ranges. If a user tries to create a stream from a streaming
source using an illegal set of predicates, TweeQL will
raise an error.

Users are not allowed to directly query the raw
twitter stream because Twitter only provides access to
tweets that contain a filter. If users wish to access an
unrestricted stream, Twitter provides a sampled, unfil-
tered stream that TweeQL wraps as twitter sample. An
unsampled, unfiltered stream is not provided by Twitter
for performance and financial reasons.

Streaming sources asynchronously generate tuples as
they appear, and are buffered by an access method that
implements the iterator model. They appear as tuples
with a set schema to the rest of the query tree. Any
streaming source must include a created at timestamp
field. If one is not provided by the datasource, tuples are
timestamped with their creation time. The field is nec-
essary for the windowed aggregates described in Sec-
tion 2.1.5 to follow proper ordering semantics.

While our examples show users creating streams from
the twitter stream base stream, in principle one could
also wrap other streaming sources, such as RSS feeds, a
Facebook news feed, or a Google+ feed. Once wrapped,
derived streams can be generated using techniques sim-
ilar to the examples we provide.

2.1.2 UDFs
TweeQL also supports user-defined functions (UDFs).

UDFs in TweeQL are designed to provide operations
over unstructured data such as text blobs. To sup-
port such diversity in inputs and outputs, TweeQL
UDFs accept and return array- or table-valued attributes.
TweeQL UDFs also help wrap web APIs for various ser-
vices, such as geocoding services.

Complex Data Types. TweeQL UDFs can accept array-
or table-valued attributes as arguments. This is required
because APIs often allow a variable number of parame-
ters. For example, a geocoding API might allow multi-
ple text locations to be be mapped to latitude/longitude
pairs in a single web service request.

UDFs can also return several values at once. This
behavior needed both for batched APIs that submit mul-
tiple requests at once, but also for many text-processing
tasks which are important in unstructured text process-
ing. For example, to build an index of words that appear
in tweets, one can issue the following query:

SELECT tweetid, tokenize(text)
FROM obamatweets;

The tokenize UDF returns an array of words that ap-
pear in the tweet text. For example, tokenize(“Tweet
number one”) = [“Tweet”, “number”, “one”]. While
arrays can be stored or passed to array-valued functions,
users often wish to “relationalize” them. To maintain
the relational model, we provide a FLATTEN operator
(based on the operator of the same name from Olston
et al.’s Pig Latin [8]). Users can wrap an array-valued
function found in a SELECT clause with a FLATTEN to
produce a result without arrays. For example, instead of
the above query, the programmer could write:

SELECT tweetid, FLATTEN(tokenize(text))
FROM obamatweets;

The resulting tuples for a tweet with tweetid = 5 and text
= “Tweet number one” would then be:

(5, ‘Tweet’)
(5, ‘number’)
(5, ‘one’)

Web Services as UDFs. Much of TweeQL’s structure-
extraction functionality is provided by third parties as
web APIs. TweeQL allows UDF implementers to make
calls to such web services to access their functionality.
One such UDF is the geocode UDF that returns the lat-
itude and longitude for user-reported textual locations
described in Section 2.1.4. The benefit of wrapping
such functionality in third party services is that often
the functionality requires large datasets—good geocod-
ing datasets can be upward of several gigabytes—that an
implementer can not or does not wish to package with
their UDF. Wrapping services comes at a cost, however,
as service calls generally incur high latency, and service
providers often limit how frequently a client can make
requests to their service.

Because calls to other web services may be slow or
rate-limited, a TweeQL UDF developer can specify sev-
eral parameters in addition to the UDF implementation.

For example, the developer can add a cache invalida-
tion policy for cacheable UDF invocations, as well as
any rate-limiting policies that the API they are wrap-
ping allows. To ensure quality of service, the developer
can also specify a timeout on wrapped APIs. When the
timeout expires, the return token TIMEOUT is returned,
which acts like a NULL value but can be retrieved at
a later time. Similarly, a RATELIMIT token can be re-
turned for rate-limited UDFs.

2.1.3 Storing Data and Generating Streams
It is often useful for TweeQL developers to break their

workflows into multiple steps and to write final results
into a table. To support both of these operations, we
allow the results of SELECT statements over streams to
write data to named tables. In this way, intermediate
steps can named to allow subsequent queries in a work-
flow to utilize their results.

Output to a table and temporarily naming tuples is
accomplished via the INTO operator. To save results, a
programmer can add a INTO TABLE tablename clause
to their query. To name a set of results that can be loaded
as a stream by another query, the programmer can add
a INTO STREAM streamname clause to their query. For
example, consider the following three queries:

CREATE STREAM sampled
FROM twitter_sample;

SELECT text, sentiment(text) AS sent
FROM sampled
INTO STREAM textsentiment;

SELECT text
FROM textsentiment
WHERE sent > 0
INTO TABLE positivesentiment;

SELECT text, sent
FROM textsentiment
WHERE text contains ‘obama’
INTO TABLE obamasentiment;

The first query creates an unfiltered sampled stream
called sampled (without a filter, Twitter sends only a
sample of the stream to non-paying users). The sec-
ond query retrieves all tweet text and its sentiment (de-
scribed in Section 2.1.4), and places that text in a stream
called textsentiment. The third query stores all positive-
sentiment tweet text from the textsentiment stream in a
table called positivesentiment. The final query stores all
tweet text from the textsentiment stream containing the
term obama in a table called obamasentiment.

2.1.4 Structure Extraction UDFs

One key feature of our TweeQL implementation is
that it provides a library of useful UDFs. One impor-
tant class of operators are those that allow programmers
to extract structure from unstructured content. These in-
clude functions for:

String Processing. String functions help extract struc-
ture from text. We have already described one such
UDF, tokenize in Section 2.1.2 that splits strings into a
list of tokens that can become relational with the FLAT-
TEN operator. Other UDFs allow more complex string
extraction such as regular expressions that can also re-
turn lists of matches for each string.

Event Detection. As we explore with TwitInfo in Sec-
tion 3, the number of tweets per minute mentioning a
topic is a good signal of peaking interest in the topic. If
the number of tweets per minute is significantly higher
than recent history, it might suggest that an event of in-
terest has just occurred.

To support event detection, we provide a meanDevi-
ations UDF. The UDF takes a floating point value, cal-
culates the difference between it and an exponentially
weighted moving mean (EWMA) of recent values (this
is the mean deviation), and updates the EWMA for fu-
ture calls. The details of this algorithm are spelled out
in [7]. The example below illustrates its use:

SELECT COUNT(text) as count,
__created_at as time

FROM obamatweets
WINDOW 1 minute
EVERY 1 minute
INTO STREAM obamacounts;

SELECT meanDeviation(count) AS dev,
time

FROM obamacounts
WHERE dev > 2
INTO TABLE obamapeaks;

The first query uses windowed aggregates, described
in Section 2.1.5, to calculate the tweets per minute men-
tioning the term obama. The second query calculates
the mean deviation of each tweets-per-minute value, and
stores the time of deviations above 2 in a table obama-
peaks.

The meanDeviations UDF is unique in that it stores
state that is updated between calls. This makes the se-
mantics of the UDF difficult to define, as calling mean-
Deviation(count) on the same count value with different
histories will result in a different return value. In con-
text we found that we can keep a simple interface to the
meanDeviations UDF and still have clear utility.

Location. Twitter is one of few streams of its size con-
taining location-annotated messages. Location informa-

tion comes in various forms on Twitter. GPS-provided
coordinates are most accurate, but a small fraction of
tweets are annotated with such precision (0.77% in mid-
2010 [6]). More common is a self-reported location
field, with values ranging from the nonsensical “Justin
Bieber’s heart” [6] to a potentially accurate “Boston,
MA.”

To extract structure from self-reported location strings,
we offer a geocode UDF. The query below extracts the
sentiment of tweets containing the term obama as well
as the coordinates of the self-reported location:

SELECT sentiment(text) AS sent,
geocode(loc).latitude AS lat,
geocode(loc).longitude AS long

FROM obamatweets
INTO STREAM obamasentloc

The query also displays another feature of TweeQL
UDFs. In addition to being able to return lists of fields
to be flattened into a resultset, UDFs can return tuples
rather than fields. In the example above, geocode returns
a tuple of coordinates that the query projects into two
fields, latitude and longitude, in the result set.

Classification. Classifiers can be used to identify struc-
ture in unstructured text content. For example, so-
cial science researchers explore various ways to use the
tweet stream as a proxy for public sentiment about vari-
ous topics. TweeQL provides a sentiment UDF for clas-
sifying tweet text as expressing positive or negative sen-
timent. An example of this UDF can be seen in the
obamasentloc stream example above. Other classifiers
might identify the topic, language, or veracity of a tweet.

Named entity extraction. Our examples so far have
featured identifying tweets about President Obama by
filtering tweets whose text contains the term obama.
Such an approach may be unacceptable when two peo-
ple with the same name might be confused. For ex-
ample, searching for tweets containing the term clinton
might combine tweets such as “Secretary Clinton ac-
cepts Crowley resignation” and ones such as “Former
President Clinton undergoes heart surgery.”

To avoid ambiguity, TweeQL provides a namedEn-
tities UDF, which identifies potential entities in con-
text. For example, namedEntities(“Secretary Clinton
accepts Crowley resignation”) would return a list of
fields [“Hillary Clinton”, “P.J. Crowley”], which could
be filtered.

With the namedEntities UDF, we can refine our origi-
nal obamatweets example to identify tweets specifically
involving Barack Obama.

CREATE STREAM obamatweets
FROM twitter_stream
WHERE text contains ‘obama’;

SELECT text,
FLATTEN(namedEntities(text)) AS entity

FROM obamatweets
INTO STREAM obamaentities;

SELECT text
FROM obamaentities
WHERE entity = "Barack Obama"
INTO STREAM barackobamatweets;

The current implementation of namedEntities is as an
API wrapper around OpenCalais 2, a web service for
performing named entity extraction and topic identifi-
cation. OpenCalais was designed to handle longer text
blobs (e.g., a newspaper article) for better contextual
named entity extraction. One area of future work is to
develop named entity extractors for tweets, which are
significantly shorter.

2.1.5 Windowed Operators
Like other stream processing engines, TweeQL sup-

ports aggregates and joins on streams. Because streams
are infinite, we attach sliding window semantics to
them, as in other streaming systems [?, 1]. Windows
are defined by a WINDOW parameter specifying the
timeframe during which to calculate an aggregate or
join. On aggregates, an EVERY parameter specifies
how frequently to emit WINDOW-sized aggregates. The

created at field of a tuple emitted from an aggregate is
the time that the window begins.

For example, the query below converts the oba-
masentloc stream of sentiment, latitude, and longitude
into an average sentiment expressed in a 1°x 1°area.
This average is computed over the course of three hours,
and is calculated every hour.

SELECT AVG(sent) AS sent,
floor(lat) AS lat,
floor(long) AS long

FROM obamasentloc
GROUP BY lat, long
WINDOW 3 hours
EVERY 1 hour
INTO STREAM obamasentbyarea;

2.2 System Design
Figure 1 illustrates the key architectural components

of the TweeQL stream processor.
TweeQL offers its SQL-like query language through a

traditional query prompt or in batched query mode. All
of the queries that make up a workflow (e.g., sampled,
textsentiment, positivesentiment, and obamasentiment in

2http://www.opencalais.com/

http://www.opencalais.com/

Query Parser

Sampler

Optimizer

Executor

Relational Mgr.

Cacher

Rate Limiter

Latency Enforcer

Pull APIsStreaming APIs

Query Plan

...
Stream Mgr.

sample obama ...
...

Pull API Mgr.

Twitter GMaps ...

Figure 1: TweeQL architectural components.
ADAM: does this diagram look OK? I’ll change
the example streams/services to match our
new api wrapping description

Section 2.1.3) are parsed together and sent to the Query
Parser to be processed together.

The parser generates batches of dependent query
trees, some of which store records in tables while others
generate streams that other query trees depend on. The
Optimizer reorders operators as informed by selectivity
and latency statistics collected by the Sampler. In addi-
tion to reordering operators, the optimizer also decides
which filters to send to streaming APIs to reduce the
number of tuples returned. The sampler keeps statistics
on all APIs and tables known to the database.

Optimized query tree batches are sent to the Execu-
tor. The query executor is iterator-based, and streams
are buffered by streaming access method operators which
allow iterator access. As we see in Section 2.1.3, a
stream (such as textsentiment) can be used by multi-
ple downstream query trees. All named streams register
downstream query trees as listeners, sending batches of
tuples generated at their root to the streaming buffer of
each query tree.

There are three data source managers from which the
executor retrieves data: a stream manager, pull-based
API manager, and a relational manager.

The Stream Manager registers all streams generated
with CREATE STREAM or INTO STREAM syntax. It
communicates with streaming APIs such as Twitter’s,
and informs streaming access method operators in query
trees when new batches of tuples arrive from streaming
sources.

The Pull API Manager manages requests to pull-
based web services that arise during query execution. In
addition to providing adapters to these services that gen-
erate relational data from nonrelational sources, it con-
tains components that apply to all requests. The Cacher

ensures that frequent requests are cached, and supports
age- and frequency-based cache eviction policies. The
Rate Limiter enforces webservice-based rate limiting
policies. These policies generally enforce the number of
requests per minute, hour, or day. Finally, the Latency
Enforcer ensures that requests that run for too long are
returned with TIMEOUT as discussed in Section 2.1.2.
The latency enforcer still allows requests returned after
a timeout to be cached for future performance benefits.

The Relational Manager simply wraps traditional
relational data sources for querying, and stores tables
generated with INTO TABLE syntax.

2.3 Current Status
TweeQL is implemented in Python, using about 2500

lines of code. The implementation is available as an
open source distribution3. The distribution includes
many of the features described in this paper. We are
working to add the rate-limiting and latency-enforcing
logic to web service UDF wrappers. The CREATE
STREAM and INTO STREAM statements, which we re-
alized were necessary as we wrapped streams for ser-
vices other than Twitter, are available in experimental
versions of TweeQL. Finally, we intend to add FLAT-
TEN syntax in the next TweeQL release.

2.4 Challenges
In this section, we describe a number of challenges

and open issues we encountered when building TweeQL.

Uncertain Selectivities. When creating a stream,TweeQL
users can issue multiple filters that could be passed to the
streaming API. Only one filter type can be submitted to
the API, and selecting the more efficient one to send is
difficult. For example, consider a user issuing the query:

CREATE STREAM obamanyc
FROM twitter_stream
WHERE text contains ‘obama’;
AND location in [bounding box for NYC];

He or she wants to see all tweets containing the word
obama that are tweeted from the New York City area.
TweeQL must select between requesting all obama
tweets, or all NYC tweets.

We benefit from having access to Twitter’s historical
API in this case. We an issue two requests for recent
tweets with both filters applied, and determine which
stream is less frequent. More generally, TweeQL can
sample both streams and select the filter with the lowest
selectivity in order to require the least work in applying
the second filter. We are also exploring Eddies-style [2]
dynamic operator reodering to adjust to changes in op-
erator selectivity over time.
3https://github.com/marcua/tweeql

https://github.com/marcua/tweeql

Uneven Aggregate Groups. When aggregating over
human output on a geographic region, traditional win-
dowed result strategies are inadequate. Consider, for
example, the obamasentbyarea stream (defined in Sec-
tion 2.1.5) that calculates the average sentiment in 1°x
1°latitude/longitude regions of tweets containing the
term obama. In this example, the average is aggregated
per region every three hours.

This fixed time window is not flexible enough due
to the uneven distribution of Twitter users across the
planet. For example, Tokyo has many Twitter users, but
Cape Town has far fewer. With a fixed time window, it
is possible that no results could be produced from Cape
Town while many could be produced in Tokyo. Note
that basing the window size on tweet count rather than
time does not solve this problem either because aggre-
gating tweets over too long a time period may include
old tweets that are now irrelevant.

An alternative solution is to employ windowing that
estimates confidence in the aggregated result, similar to
what was done in the CONTROL project [5]. Once a
bucket falls within a certain confidence interval for an
aggregate, its record can be emitted by the grouping op-
erator.

High-latency Operators. As discussed in Section 2.1.2,
TweeQL UDFs can return TIMEOUT and RATELIMIT
for long-running or rate-limited web services. Still, the
high latency of operations is tension with the traditional
blocking iterator model of query execution.

Web service API requests such as geolocation can
take hundreds of milliseconds apiece, but incur lit-
tle processing cost on behalf of the query processor.
Though the operations incur little computational cost,
they often bottleneck blocking iterators. Caching re-
sponses and batching multiple requests when an API al-
lows can reduce some request overhead.

We are also exploring modifying iterators to op-
erate asynchronously as described by Goldman and
Widom [4]. This, in combination with a data model
that allows partial results as described by Raman and
Hellerstein [9] might be a sufficient solution.

Aggregate Classifiers are Misleading. In the develop-
ment of TwitInfo, described in Section 3, we ran into an
issue with running aggregates over the output of classi-
fiers such as the sentiment UDF. We describe the prob-
lem and one solution in detail in [7].

One example of the issue can be seen in the oba-
masentbyarea example in Section 2.1.5. Consider the
case where the sentiment UDF simply outputs 1 for pos-
tive text and −1 for negative text. It is possible that the
classifier powering sentiment has different recall (e.g.,
the fraction of text identified as positive in situations
where the text is actually positive) for positive and neg-

ative classifications. In this case, AVG(sent) will be bi-
ased toward the class with higher recall. The solution
described in [7] is to return 1

recallpositive
for positive

text, and −1
recallnegative

, thus adjusting for this bias.

3. TWITINFO
TwitInfo [7] is an application written on top of the

TweeQL stream processor. TwitInfo is a user interface
that summarizes events and people in the news by fol-
lowing what Twitter users say about those topics over
time4. TwitInfo offers an example of how aggregate data
extracted from tweets can be used in a user interface.
Other systems, such as Vox Civitas [3], allow similar
exploration, but TwitInfo focuses on the streaming na-
ture of tweet data.

3.1 Creating an Event
TwitInfo users define an event by specifying a Twit-

ter keyword query. For example, for a soccer game,
users might enter search keywords soccer, football, pre-
mierleague, and team names like manchester and liv-
erpool. Users give the event a human-readable name
like “Soccer: Manchester City vs. Liverpool” as well
as an optional time window. When users are done en-
tering the information, TwitInfo saves the event and be-
gins logging any tweets containing the keywords using
a TweeQL stream like the following:

CREATE STREAM twitinfo
FROM twitter_stream
WHERE text contains ‘soccer’

OR text contains ‘football’
OR text contains ‘premierleague’
OR text contains ‘manchester’
OR text contains ‘liverpool’;

3.2 Timeline and Tweets
Once users have created an event, they can monitor

the event in realtime by navigating to a web page that
TwitInfo creates for the event. The TwitInfo interface
(Figure 2) is a dashboard summarizing the event over
time. The dashboard displays a timeline for this event,
raw tweet text sampled from the event, an overview
graph of tweet sentiment, and a map view displaying
tweet sentiment and locations.

The event timeline (Figure 2.2) reports tweet activity
by volume. The more tweets that match the query dur-
ing a period of time, the higher the y-axis value on the
timeline for that period. When many users are tweet-
ing about a topic (e.g., a goal by Manchester City), the
timeline spikes. TwitInfo’s peak detection algorithm is
implemented in a stateful TweeQL UDF described in
4The TwitInfo website with interactive visualizations is acces-
sible at http://twitinfo.csail.mit.edu/

http://twitinfo.csail.mit.edu/

Figure 2: The TwitInfo user interface summarizing a soccer game.
Section 2.1.4. The algorithm identifies these spikes and
flags them as peaks in the interface.

Peaks appear as flags in the timeline and appear to the
right of the timeline along with automatically-generated
key terms that appear frequently in tweets during the
peak. For example, in Figure 2.2, TwitInfo automati-
cally tags one of the goals in the soccer game as peak
“F” and annotates it on the right with representative
terms in the tweets like ‘3-0’ (the new score) and ‘Tevez’
(the soccer player who scored). Users can perform text
search on this list of key terms to locate a specific peak.

As users click on peaks, the map, tweet list, links, and
sentiment graph update to reflect tweets in the period
covered by the peak.

The Relevant Tweets panel (Figure 2.4) contains the
tweets that have the highest overlap with the event peak
keywords. These tweets expand on the reason for the
peak. The relevant tweets are color-coded red, blue, or
white depending on whether the sentiment they display
is negative, positive, or neutral.

3.3 Aggregate Metadata Views
In addition to skimming sentiment for individual

tweets, a user may wish to see the general sentiment
on Twitter about a given topic. The Overall Sentiment
panel (Figure 2.6) displays a piechart representing the
total proportion of positive and negative tweets during
the event.

Twitter users share links as a story unfolds. The Pop-

ular Links panel (Figure 2.5) aggregates the top three
URLs extracted from tweets in the timeframe being ex-
plored.

Often, opinion on an event differs by geographic re-
gion. A user should be able to quickly zoom in on clus-
ters of activity around New York and Boston during a
Red Sox-Yankees baseball game, with sentiment toward
a given peak (e.g., a home run) varying by region. The
Tweet Map (Figure 2.3) displays tweets that provide ge-
olocation metadata. The marker for each tweet is col-
ored according to its sentiment, and clicking on a pin
reveals the associated tweet.

3.4 Uses and Study
As we develop TwitInfo, we have tested its ability to

identify meaningful events and its effectiveness at relay-
ing extracted information to users.

We have tracked events of different duration and con-
tent using TwitInfo. In soccer matches, TwitInfo suc-
cessfully identifies goals, half-time, the end of a game,
and some penalties. The system successfully identified
all major earthquakes over a 1-month timespan. Finally,
we visualized sixteen days in Barack Obama’s life and
policymaking, with most newsmaking events receiving
coverage. Examples of these visualizations can be found
on the TwitInfo website.

We tested the TwitInfo interface on twelve users. We
asked them to reconstruct either a soccer game or six-
teen days in Barack Obama’s life based solely on the

TwitInfo user interface. Participants found the interface
useful for such summaries, with one participant recount-
ing in detail Obama’s every activity over the timespan
without having read any other news on the topic [7].

While users explained that TwitInfo provides them
with a good summary of an event, they often described
the summary as shallow. This is in part due to the short,
fact-oriented nature of tweets. It also suggests a good
direction for future work in extracting well-founded de-
tails about events from the tweetstream.

We also found TwitInfo to be useful for journalists. A
Pulitzer Prize-winning former Washington Post inves-
tigative reporter thought of two use-cases for the tool.
The first was in backgrounding: when a journalist first
starts a long-term research study, it helps to have an
overview of recent discussions on the topic. The second
use was in finding on-the-ground witnesses to an event.
While reporters are generally averse to trusting tweets
at face value, a location-based view of tweets can help
identify Twitter users that may have been at or near an
event to follow up with in more detail.

4. CONCLUSION
Twitter offers a diverse source of timely facts and

opinions. In order for the information in unstructured
tweets to be useful, however, it must be tamed. We de-
scribed two tools, TweeQL and TwitInfo, to make this
information more structured and accessible. TweeQL
provides programmers with a streaming SQL-like query
language to extract structured relations from the tweet-
stream. TwitInfo builds on TweeQL to generate a visu-
alization for users who wish to track a topic or event as
it is discussed on the tweetstream. More broadly, social
streams offer the database community an opportunity to
build systems for streaming, unstructured data, and so-
cial networks in the wild.

5. ACKNOWLEDGEMENTS
We thank Eugene Wu, who discussed the mechanics

of stream creation and wrapping syntax.

6. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel,

M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, and S. Zdonik. Aurora: a new model and
architecture for data stream management. The
VLDB Journal, 12:120–139, August 2003.

[2] R. Avnur and J. M. Hellerstein. Eddies:
Continuously adaptive query processing. In In
SIGMOD 2000.

[3] N. Diakopoulos, M. Naaman, and
F. Kivran-Swaine. Diamonds in the rough: Social
media visual analytics for journalistic inquiry. In
IEEE VAST, pages 115–122, 2010.

[4] R. Goldman and J. Widom. WSQ/DSQ: a practical
approach for combined querying of databases and
the web. SIGMOD Rec., 29(2):285–296, 2000.

[5] P. J. Haas and J. M. Hellerstein. Online query
processing. In SIGMOD Conference, page 623,
2001.

[6] B. Hecht, L. Hong, B. Suh, and E. H. Chi. Tweets
from justin bieber’s heart: the dynamics of the
location field in user profiles. In Proceedings of the
2011 annual conference on Human factors in
computing systems, CHI ’11, pages 237–246, New
York, NY, USA, 2011. ACM.

[7] A. Marcus, M. S. Bernstein, O. Badar, D. R.
Karger, S. Madden, and R. C. Miller. Twitinfo:
aggregating and visualizing microblogs for event
exploration. In Proceedings of the 2011 annual
conference on Human factors in computing
systems, CHI ’11, pages 227–236, New York, NY,
USA, 2011. ACM.

[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language
for data processing. In Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, SIGMOD ’08, pages
1099–1110, New York, NY, USA, 2008. ACM.

[9] V. Raman and J. M. Hellerstein. Partial results for
online query processing. In SIGMOD Conference,
pages 275–286, 2002.

	Introduction
	TweeQL
	Data Model and Query Language
	Streams
	UDFs
	Storing Data and Generating Streams
	Structure Extraction UDFs
	Windowed Operators

	System Design
	Current Status
	Challenges

	TwitInfo
	Creating an Event
	Timeline and Tweets
	Aggregate Metadata Views
	Uses and Study

	Conclusion
	acknowledgements
	References

