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Processing citizen science- and 
machine-annotated time-lapse 
imagery for biologically meaningful 
metrics
Fiona M. Jones  1 ✉, Carlos Arteta2, Andrew Zisserman  2, Victor Lempitsky3, Chris J. Lintott4 

& Tom Hart1 ✉

Time-lapse cameras facilitate remote and high-resolution monitoring of wild animal and plant 

communities, but the image data produced require further processing to be useful. Here we publish 

pipelines to process raw time-lapse imagery, resulting in count data (number of penguins per image) 

and ‘nearest neighbour distance’ measurements. The latter provide useful summaries of colony spatial 

structure (which can indicate phenological stage) and can be used to detect movement – metrics which 

could be valuable for a number of different monitoring scenarios, including image capture during 
aerial surveys. We present two alternative pathways for producing counts: (1) via the Zooniverse 
citizen science project Penguin Watch and (2) via a computer vision algorithm (Pengbot), and share a 

comparison of citizen science-, machine learning-, and expert- derived counts. We provide example files 
for 14 Penguin Watch cameras, generated from 63,070 raw images annotated by 50,445 volunteers. We 
encourage the use of this large open-source dataset, and the associated processing methodologies, for 

both ecological studies and continued machine learning and computer vision development.

Background & Summary
Seabird population changes are considered a re�ection of changes within the marine environment, making sea-
bird species key indicators of ecosystem health1,2. �e penguins (Family: Spheniscidae) are amongst the most 
threatened, facing environmental stressors such as invasive species, over�shing, pollution and climate change1–3. 
In the Southern Ocean, two key threats – sea ice change4,5 and an expanding krill �shery6 – have the potential 
to act synergistically, with a longer ice-free season facilitating a longer harvest7. In order to implement e�ective 
mitigation strategies, rigorous monitoring of penguin colonies is required. However, the challenges of on-ground 
monitoring in Antarctica (logistical, practical and �nancial) have le� gaps in data surveys, and the majority of 
monitoring has occurred on a small scale8.

Time-lapse cameras o�er a solution to these challenges, and Newbery and Southwell9 pioneered the use of 
automated cameras for penguin monitoring. A large, collaborative network of remote time-lapse cameras now 
exists in Antarctica, and in Jones et al. (2018) we discuss the Penguin Watch project, which currently operates 
over 90 cameras in the region10. �ese cameras are located in the Falkland Islands, South Georgia, the Antarctic 
Continent and the South Sandwich Islands, and at a minimum usually capture images once per hour year-round 
between the hours of 0700 and 200010. �e camera units (Reconyx HC500 Hyper�re Trail Cameras) are serviced 
once per year if conditions allow, and are powered either by 12xAA lithium ion batteries or an external recharge-
able battery connected to a solar cell10.

Owing to the wealth of image data collected, expert manual annotation is unfeasible. Instead, two parallel 
methods have been employed to e�ciently identify penguins in photographs, using – (1) citizen science10, and (2) 
computer vision11. �e Penguin Watch citizen science project (see Jones et al. (2018); www.penguinwatch.org), 
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hosted by the Zooniverse online platform (www.zooniverse.org), was launched in September 2014. �e project 
tasks volunteers with identifying individual penguins in randomly presented time-lapse images, and categorising 
them as either an ‘adult’, ‘chick’ or ‘egg’10. �ere is also the option to assign an individual or object to ‘other’, which 
allows classi�cation of other fauna, humans, or ships10. To date, over 6.5 million classi�cations have been made by 
roughly 50,000 registered volunteers and numerous anonymous (unregistered) participants.

In Jones et al.10 we describe a dataset (herea�er ‘Dataset 1’) of 63,070 raw Penguin Watch time-lapse images 
from 14 di�erent cameras, which is stored in the Dryad Digital Repository12 (please also see Jones et al.13 – an 
erratum correcting for a duplicate dataset). Also in the repository are metadata (such as date/time and temper-
ature information), raw anonymised citizen science classi�cations (i.e. xy coordinate data for each ‘click’ on a 
photograph), and ‘consensus click’ data, for each image12. �e latter are produced via a clustering algorithm10,14 – 
multiple volunteers (a total of ten if the photograph contains animals) annotate each image, meaning a ‘consensus 
click’ (average xy coordinate) must be generated for each penguin.

�is publically available data collection12 serves as a resource for ecological researchers, comprising images 
and citizen science annotations for multiple penguin colonies between March 2012 and January 201410. In addi-
tion, Penguin Watch volunteer clicks have been employed to train the machine-learning algorithm Pengbot – the 
second annotation method – which detects penguins in raw images using pixel densities11.

Whichever approach is adopted, the data must be further processed in order to extract biologically mean-
ingful metrics such as population counts and measures of movement. Here we present a second open-source 
database in the Dryad Digital Repository (herea�er ‘Dataset 2’15), which contains the following �les for each of 
the 14 cameras described in Jones et al. (2018): (1) using citizen science: Kraken Files (�ltered ‘consensus click’ 
data combined with metadata) and Narwhal Files (count data, ‘nearest neighbour distance’ measurements, and 
metadata); (2) using computer vision: Pengbot Count Files (count data). Also included in the repository are the 
Penguin Watch Manifest (image metadata), summary graphs, animations, Pengbot Out Files and Pengbot Density 
Maps. �e pipelines used to produce these �les are presented (in the form of scripts written in the R programming 
language (currently v3.6.016); see Code Availability). �ese scripts have the potential to be applied to a broad 
range of data types. For example, a metric of movement, calculated using ‘nearest neighbour distances’, could be 
useful for analysis of images captured during aerial surveys in subsequent studies.

Methods
In Jones et al. (2018) we outline the methodology associated with the Penguin Watch remote time-lapse camera 
network10. Here we present the ‘next steps’ in the data processing pipeline, and o�er two alternative work�ows 
for extracting count data (i.e. the number of penguins per image): (1) via citizen science (Fig. 1 – le�) and (2) 
via computer vision (Fig. 1 – right). Future studies will examine these count data across colonies and seasons. By 
comparing count data from the same camera across a number of years, and between colonies, patterns of popula-
tion change may be identi�ed, which can provide evidence to inform conservation policy decisions. �ese count 
data may also be used to determine phenological parameters such as adult arrival and departure date. Changes in 
phenological timings across years can indicate environmental change17, with implications for future population 
health.

�e citizen science work�ow is also used to calculate ‘nearest neighbour distances’, a metric which can be used 
to examine colony spatial structure and movement. �is in turn could allow automated detection of behaviour 
and phenological stage – for example, reduced average chick ‘second nearest neighbour distance’ (see below) 
could indicate huddling, a behaviour which occurs during the post-guard (crèche) phase18. �erefore, these spa-
tial metrics are also useful for population monitoring purposes.

Access to two alternative processing methods (i.e. citizen science and computer vision) is advantageous 
for a number of reasons. Firstly, certain images – for example photographs partially obscured by snow – may 
be more suitable for analysis using citizen science, while others – such as those containing high numbers of 
(uncrowded) individuals – may be more appropriate for computer vision annotation. Furthermore, citizen sci-
ence is a useful public engagement and educational tool19, while computer vision is useful for batch processing 
large quantities of data which may be considered ‘less interesting’ for human participants (e.g. winter images 
which contain few animals). Finally, citizen science classi�cations can be used to train future machine learning 
algorithms, and the counts produced by each can be cross-validated, ensuring the analyses remain reliable. In fact, 
Wright et al. (2017) demonstrate that a combination of methods (i.e. citizen science and machine learning) can 
outperform either method used alone20.

The citizen science pipeline – Penguin Watch. Steps 1 & 2. Raw images are annotated by volunteers; 
annotations are clustered (Jones et al., 2018; see Fig. 1, le�, ‘Step 1’ and ‘Step 2’).

�e methodology behind the Penguin Watch citizen science project is discussed in Jones et al. (2018). One 
of the fundamental paradigms of all such projects is that multiple volunteers process each subject (e.g. image or 
audio clip), meaning average annotations can be extracted, and errors minimised, through �ltering. In Jones et 
al. (2018) we therefore include discussion of a clustering algorithm14 which uses agglomerative hierarchical clus-
tering to take the xy coordinates of multiple volunteer clicks and produce a single ‘consensus click’, representing 
a single individual (penguin or ‘other’).

Step 3. Clustered annotations are �ltered, and stored in Kraken Files.
Here we present the next stage in the data processing pipeline (Fig. 1, le�, ‘Step 3’), taking these ‘consensus 

clicks’ and �ltering them, to improve data reliability10. �e Kraken Script (see Code Availability) is used to achieve 
this, and the results (�ltered ‘consensus clicks’ and associated metadata) are stored in Kraken Files (Dataset 215). 
�e Kraken Script extracts the ‘consensus clicks’ (Dataset 112) and metadata (Penguin Watch Manifest; Dataset 215) 
associated with the camera of interest, and merges them into a single �le. In order to be extracted however, an 
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adult ‘consensus click’ must have been generated from four or more raw volunteer clicks. �e threshold is lower 
for chicks and eggs: two or more volunteer clicks must have formed the ‘consensus click’. �ese rules can be mod-
i�ed within the Kraken Script to allow for di�erent �ltering thresholds, but we employ these levels as they were 

Fig. 1 Flow diagram to show the two data processing pipelines, using citizen science (the Penguin Watch online 
project) and computer vision (Pengbot). ‘Work�ow 1’ (le�): images are annotated using citizen science10 and 
aggregated using hierarchical agglomerative clustering14. �e resulting ‘consensus clicks’ are used to produce 
the Kraken Files and Narwhal Files presented alongside this Data Descriptor. ‘Work�ow 2’ (right): the Pengbot 
algorithm11 is used to produce the Pengbot Out Files, Pengbot Density Maps and Pengbot Count Files presented 
alongside this Data Descriptor.
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found to produce counts most similar to the gold standard10. �e lower threshold level of ‘num_markings > 1’ has 
also been used for eggs, because we believe they are o�en missed by volunteers, but a baseline level of �ltering 
must be implemented to eradicate erroneous clicks.

Step 4. Penguin counts and ‘nearest neighbour distances’ are calculated (see Fig. 1, le�, ‘Step 4’).
Kraken Files are the input �le type for the Narwhal Script (see Code Availability), which produces Narwhal 

Files. �ese �les (Dataset 215) include penguin counts, listed separately for ‘adult’, ‘chick’ and ‘egg’, and ‘nearest 
neighbour distance’ metrics. Looking at how average ‘nearest neighbour distances’ change over the breeding 
season is a useful indicator of movement, which in turn can signal the start of a new phenological stage, such as 
chick crèche. We also attempt to calculate the movement of each individual between images, again using ‘nearest 
neighbour distances’. �e metrics calculated are:

•	 Number of adults, chicks and eggs.
•	 Average adult ‘nearest neighbour distance’ (the mean distance between each adult in image i and its nearest 

adult neighbour).
•	 Average chick ‘nearest neighbour distance’ (the mean distance between each chick in image i and its nearest 

chick neighbour).
•	 Average chick ‘second nearest neighbour distance’ (the mean distance between each chick in image i and 

its second nearest chick neighbour). Since Pygoscelis species lay two eggs, a chick’s �rst nearest neighbour is 
likely to be its sibling in the nest. �erefore, looking at second nearest neighbour is a more useful indication 
of whole-colony movement.

•	 �e standard deviations of each ‘nearest neighbour distance’ metric listed above.
•	 Movement of adults (see Fig. 2; the mean distance between each adult [j] in image [i] and its nearest neigh-

bour in image [i-1]. �is means the coordinates of adult [j] are appended to all the adult coordinates in the 
previous image, to make a new coordinate set ([i-1] with one additional data point – adult [j] in image [i]). 
�e same adult will thus be represented by two data points in this new set of coordinates. ‘Nearest neighbour 
distance’ is then calculated for the adult of interest [j]. It is likely that adult [j]’s nearest neighbour will be itself, 
in its previous position, meaning this value is equivalent to the distance adult [j] has moved between images. 
�e mean is calculated to give the average distance moved by all adults in the image.)

•	 Movement of chicks (as above, for chicks).

�is approach to quantifying movement is only robust when photographs are captured within a relatively 
short time period (Penguin Watch photos are generally taken every hour within a set daytime period) and move-
ment is limited; i.e. if an individual moves too far (or another individual comes very close), then its nearest 
neighbour in image i-1 will not be itself, but a di�erent individual (Fig. 2). �erefore, this metric is most reliable 
in the period between egg lay and the end of the guard phase, when individuals are generally found at the nest. 
However, since individual penguins cannot be tracked using coordinate clicks – or indeed even in time-lapse 
photographs unless there are distinctive markings (e.g. in African penguins) – this remains a useful and novel 

Fig. 2 Diagram to illustrate how movement between images is calculated using ‘nearest neighbour distances’. 
�is �gure shows two images, image i (black text and bold penguins) and image i-1 (i.e. the previous image; 
grey text and faded penguins). If the coordinates of adult j (image i) are appended to the coordinates of the 
penguins in image i-1, adult j has a new nearest neighbour (in this case, adult j – itself – in its previous position). 
�is ‘nearest neighbour distance’ (shown by the red arrow) therefore represents the distance adult j has moved 
between the two images. However, if an individual moves signi�cantly between photographs (see adult x, which 
appears only in the later image) the ‘nearest neighbour distance’ (blue arrow) will not represent the individual’s 
movement. �erefore, this metric is best used when movement is limited, for example during the incubation 
and guard phase.

https://doi.org/10.1038/s41597-020-0442-6
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indicator of movement. Furthermore, detection of ‘change-points’ is o�en more important than movement per 
se. By taking the average of all the movement in an image, these can be identi�ed, and can provide a starting point 
for determining phenological dates.

An explanation of the di�erent variables and commands found within the Narwhal script is provided in 
Online-only Table 1.

Step 5. Narwhal Files are used to create plots and animations.
�e Narwhal Plotting Script (see Code Availability) takes the Narwhal Files and creates plots of cumulative 

summary statistics for each time-lapse image: abundance (for adults and chicks), chick ‘second nearest neighbour 
distance’, and mean adult ‘nearest neighbour distance’ between the ith and (i-1)th image (all moving averages). 
We have grouped these graphs with their associated raw time-lapse image to complete each plot, and created a 
Penguin Watch Narwhal Animation for each camera (Dataset 215) using the open source so�ware GIMP (v2.8)21 
and VirtualDub (v1.10.4)22, to allow easy visualisation of population trends.

The computer vision pipeline – Pengbot. Step 0. �e Pengbot computer vision algorithm – develop-
ment (Arteta et al., 2016).

Within Penguin Watch time-lapse images, penguins are o�en occluded and there can be a high degree of scale 
variation. �is presents a challenge to computer vision developers, and makes simple counting-density estima-
tion algorithms and binary object detectors insu�cient for the task of producing reliable counts11. Furthermore, 
variation in camera angle and distance from a colony, obscuration owing to snow or ice, and shape similarity 
between the objects of interest (i.e. penguins) and background objects (e.g. rocks), all combine to make automatic 
detection a complex problem11.

�e dot annotations (raw xy coordinate ‘clicks’; Dataset 112) of Penguin Watch volunteers o�er a large training 
dataset for machine-learning algorithms10, yet bring their own complications. For example, there is substantial 
variation amongst the annotations of di�erent volunteers, meaning any model must be robust to noisy labels11. 
Arteta et al. (2016) present the �rst solution to the problem of counting from crowd-sourced dot annotations 
– the Pengbot model. �e learning architecture of the Pengbot model is a deep multi-task convolutional neural 
network (CNN)11. It makes use of the variability in raw markings by using it to (1) estimate the ‘di�culty’ of an 
image, and (2) make inferences about local object scale (an individual penguin can measure fewer than 15 pixels 
or in excess of 700 pixels)11.

When the neural network is learning from the images, it tries to learn, among other things, which visual 
patterns belong to penguins. �e optimal way to train it would therefore be to provide complete information 
regarding every pixel – i.e. which image pixels are part of an object (in this case a penguin) and which are not. 
�is is extremely expensive – both in terms of experts’ time and (if professional annotators are paid) �nancially 
– therefore the algorithm relies instead on the assumption that volunteers are very likely to click on penguins. 
�us, the more clicks that are used, the more complete the information regarding what ‘penguin pixels’ look like. 
For this reason, the algorithm is trained on volunteer raw clicks, as opposed to ‘consensus clicks’. �ere is a step of 
the learning process that uses a form of count consensus derived from the raw clicks. However, such consensus is 
de�ned over the continuously changing de�nition of what a penguin is (i.e. as the learning progresses), meaning 
raw clicks must be available all the time.

Step 1. �e Pengbot model is used to generate Pengbot Out Files.
�e Pengbot CNN and associated code are publically available (see Code Availability). Running the algorithm 

on raw Penguin Watch images produces Pengbot Out Files (Dataset 215). �ese are MATLAB �les which contain 
matrices comprising ‘penguin densities’ for each pixel in the photograph. �ese matrices are visually represented 
in Pengbot Density Maps.

Step 2. Pengbot Out Files are used to produce Pengbot Density Maps.
�e Pengbot Counting Script (see Code Availability) is used to produce a Pengbot Density Map (see Fig. 3, 

right) from each Pengbot Out File, for each raw photograph. �e lighter (yellow) parts of the image represent 
pixels that the algorithm interprets as ‘penguin’, as opposed to background (e.g. snow, ice and rocks). �e bright-
ness of these pixels corresponds to a scale of density, such that summing the pixels belonging to a single penguin 
should give approximately one. In general, pixels towards the top of the image (i.e. in the distance) are brighter 
– of a higher ‘penguin density’ – than those in the foreground. �is is because penguins appear smaller towards 
the top/back of the image, so fewer pixels are required to comprise a whole individual. Conversely, duller pixels in 
the foreground have a lower ‘penguin density’, and more are required to count one individual. �is method allows 
the oblique angle and vantage point of the camera to be taken into account when counts are generated from the 
density maps.

Step 3. Pengbot Count Files are generated using the density data.
�e Pengbot Counting Script (see Code Availability) is also used to calculate the number of penguins in each pho-

tograph, by summing pixel densities. Note that these counts are for the total number of all individuals, as the model 
cannot currently distinguish between adults and chicks. �e data are stored in Pengbot Count Files (Dataset 215).

https://doi.org/10.1038/s41597-020-0442-6
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Data Records
In Jones et al. (2018) we describe a dataset uploaded to the Dryad Digital Repository (Dataset 112) comprising 
63,070 unique raw time-lapse images captured by the Penguin Watch remote camera network, metadata for these 
photographs (e.g. date/time and temperature information), raw anonymised classi�cations from the Penguin 
Watch citizen science project, and ‘consensus clicks’ derived from these classi�cations10,13. Please refer to Jones et 
al. (2018 & 2019) for full details and an explanation of these data types.

Here we present a second dataset made available through the Dryad Digital Repository (Dataset 215). �is con-
tains two main �le types. Firstly, �les containing data directly derived from Penguin Watch citizen science clas-
si�cations: Kraken Files and Narwhal Files (Online-only Table 2; produced using the Kraken Script and Narwhal 
Script, respectively), Narwhal Plots (Fig. 4 and Table 1; generated using the Narwhal Plotting Script), and Penguin 
Watch Narwhal Animations (Table 1, produced using GIMP (v2.8)21 and VirtualDub (v1.10.4)22. Secondly, �les 
produced using computer vision – i.e. the Pengbot CNN (albeit initially trained on citizen science dot annota-
tions): Pengbot Out Files, Pengbot Density Maps, and Pengbot Count Files (Table 2). All of these �les directly relate 
to those provided in Dataset 112; i.e. an example within every �le type is provided for each of the 63,070 raw 
time-lapse images captured by 14 cameras, meaning the processing pipeline can be traced for every photograph.

Also included in the repository (Dataset 215) are a Penguin Watch Manifest �le, containing metadata for all of 
the images, and a Method Comparison File, which contains analysis of gold standard, citizen science and Pengbot 
counts for 1183 Penguin Watch images (see Technical Validation).

Explanation of terms. Citizen Science Work�ow Files. 
Penguin Watch Manifest name: Unique image reference for identi�cation, in the format: SITExYEARx_ima-

genumber; e.g. DAMOa2014a_000001.
datetime: Time and date information for the image, in the format YYYY:MM:DD HH:MM:SS.
zooniverse_id: Unique identi�cation code assigned to each image within Zooniverse (the online platform that 

hosts Penguin Watch – see www.zooniverse.org).
path: Folder pathway, which includes the image name (e.g. DAMOa/DAMOa2014a_000025).
classi�cation_count: Number of volunteers who classi�ed the image before it was retired.
state: State of completion – either complete (the image has been shown to the required number of volunteers) 

or incomplete (the image requires classi�cation by further volunteers).
temperature_f: Temperature (in degrees Fahrenheit, as recorded by the camera) at the time the photograph 

was taken.
lunar_phase: Moon phase when the image was captured (one of eight options: “full” (full), “new” (new), “new-

cres” (new crescent), “�rstq” (�rst quarter), “waxinggib” (waxing gibbous), “waninggib” (waning gibbous), “lastq” 
(last quarter) or “oldcres” (old crescent)).

URL: Link to an online thumbnail image of the time-lapse photograph (lower resolution than the raw 
time-lapse imagery included in the repository, but useful for reference).

Kraken Files
Kraken Files comprise �ltered ‘consensus clicks’ and metadata (Online-only Table 2). �e �ltering threshold levels 
are ‘num_markings > 3’ for adults and ‘num_markings > 1’ for chicks and eggs (see Methods). Each row contains 
the following information. Please note that where ‘NA’ is given for probability values, ‘num_markings’, ‘x_centre’ 
and ‘y_centre’, no penguins have been identi�ed in the image.

name: Unique image reference for identification, in the format: SITExYEARx_imagenumber; e.g. 
DAMOa2014a_000001.

Fig. 3 Image data from a Gentoo Penguin (Pygoscelis papua) colony at George’s Point, Antarctic Peninsula. 
Le� - Penguin Watch time-lapse image GEORa2013b_000153, captured by camera GEORa on 22/01/2013 
at 16:00:00; right - the corresponding Pengbot Density Map, generated by the Pengbot convolutional neural 
network (CNN).

https://doi.org/10.1038/s41597-020-0442-6
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probability_of_adult: Estimated probability that the corresponding individual is an adult – based on the num-
ber of volunteers classifying it as such, as a proportion of the total number of clicks on that individual.

probability_of_chick: Estimated probability that the corresponding individual is a chick – based on the number 
of volunteers classifying it as such, as a proportion of the total number of clicks on that individual.

probability_of_egg: Estimated probability that the corresponding marking indicates an egg – based on the 
number of volunteers classifying it as such, as a proportion of the total number of clicks on that area.

num_markings: �e number of volunteer clicks that were aggregated to produce the ‘consensus click’ coordi-
nate values (i.e. the number of individual clicks on a speci�c area of the image). Owing to the �ltering process, 

Fig. 4 �e Narwhal Plot for MAIVb2012a_000661 (the last image in the MAIVb2012a data set, therefore 
showing the complete trends for the data series). �e plot comprises, from top down: the original time-lapse 
image (found in Dataset 112), graph 1: number of adults and chicks (moving average, n = 20), graph 2: average 
chick ‘second nearest neighbour distances’ (moving average, n = 2), and graph 3: mean adult ‘nearest neighbour 
distance’ between the ith and (i-1)th image (moving average, n = 20).

https://doi.org/10.1038/s41597-020-0442-6
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num_markings is ‘>3’ for adults and ‘>1’ for chicks and eggs in the �les provided alongside this Data Descriptor. 
�ese threshold levels can be changed in the Kraken Script, to create Kraken Files with di�erent degrees of �ltering.

x_centre: x coordinate value (in pixels) for the ‘consensus click’ (i.e. the coordinate calculated by the cluster-
ing algorithm)10,14. �e origin (point 0, 0) is located in the top le�-hand corner of the image, meaning it may be 
necessary to reverse the y-axis of a plot in order to overlay the ‘consensus clicks’ correctly. One coordinate value 
denotes one individual penguin/‘other’.

y_centre: y coordinate value (in pixels) for the ‘consensus click’ (i.e. the coordinate calculated by the cluster-
ing algorithm)10,14. �e origin (point 0, 0) is located in the top le�-hand corner of the image, meaning it may be 
necessary to reverse the y-axis of a plot in order to overlay the ‘consensus clicks’ correctly. One coordinate value 
denotes one individual penguin/‘other’.

For datetime, temperature_f, lunar_phase and URL please see ‘Penguin Watch Manifest’.

Narwhal Files
Narwhal Files contain penguin count data, ‘nearest neighbour distance’ metrics, and metadata. Each row contains 
the following information (Online-only Table 2):

Camera name Narwhal File (.csv) Narwhal Plots Penguin Watch Narwhal Animation

DAMOa DAMOa_narwhal DAMOa2014a_nplots DAMOa2014a_PW_Animation

GEORa GEORa_narwhal GEORa2013_nplots GEORa2013_PW_Animation

HALFb HALFb_narwhal HALFb2013a_nplots HALFb2013a_PW_ Animation

HALFc HALFc_narwhal HALFc2013a_nplots HALFc2013a_PW_ Animation

LOCKb LOCKb_narwhal LOCKb2013_nplots LOCKb2013_PW_ Animation

MAIVb MAIVb_narwhal

MAIVb2012a_nplots MAIVb2012a_PW_ Animation

MAIVb2013a_nplots* MAIVb2013a_PW_Animation*

MAIVb2013c_nplots MAIVb2013c_PW_ Animation

MAIVc MAIVc_narwhal MAIVc2013_nplots MAIVc2013_PW_ Animation

NEKOa NEKOa_narwhal

NEKOa2012a_nplots NEKOa2012a_PW_Animation

NEKOa2013_nplots NEKOa2013_PW_Animation

NEKOa2014a_nplots NEKOa2014a_PW_Animation

NEKOb NEKOb_narwhal NEKOb2013_nplots* NEKOb2013_PW_Animation*

NEKOc NEKOc_narwhal
NEKOc2013_nplots NEKOc2013_PW_Animation

NEKOc2014b_nplots NEKOc2014b_PW_Animation

PETEc PETEc_narwhal
PETEc2013_nplots PETEc2013_PW_ Animation

PETEc2014_nplots PETEc2014_PW_ Animation

PETEe PETEe_narwhal PETEe2013_nplots PETEe2013_PW_ Animation

PETEf PETEf_narwhal PETEf2014a_nplots PETEf2014a_PW_ Animation

SPIGa SPIGa_narwhal

SPIGa2012a_nplots SPIGa2012a_PW_ Animation

SPIGa2013b_nplots SPIGa2013b_PW_ Animation

SPIGa2014_nplots SPIGa2014_PW_ Animation

Table 1. Available �les, and naming conventions, for the processed Narwhal data �les, plots and animations. 
*Missing one plot owing to corruption of raw time-lapse image.

Camera name Pengbot Out Folder (.matlab) Pengbot Density Maps (.jpg) Pengbot Count File (.csv)

DAMOa DAMOa_pengbot_out DAMOa_density_maps DAMOa_pengbot_count

GEORa GEORa_pengbot_out GEORa_density_maps GEORa_pengbot_count

HALFb HALFb_pengbot_out HALFb_density_maps HALFb_pengbot_count

HALFc HALFc_pengbot_out HALFc_density_maps HALFc_pengbot_count

LOCKb LOCKb_pengbot_out LOCKb_density_maps LOCKb_pengbot_count

MAIVb MAIVb_pengbot_out MAIVb_density_maps MAIVb_pengbot_count

MAIVc MAIVc_pengbot_out MAIVc_density_maps MAIVc_pengbot_count

NEKOa NEKOa_pengbot_out NEKOa_density_maps NEKOa_pengbot_count

NEKOb NEKOb_pengbot_out NEKOb_density_maps NEKOb_pengbot_count

NEKOc NEKOc_pengbot_out NEKOc_density_maps NEKOc_pengbot_count

PETEc PETEc_pengbot_out PETEc_density_maps PETEc_pengbot_count

PETEe PETEe_pengbot_out PETEe_density_maps PETEe_pengbot_count

PETEf PETEf_pengbot_out PETEf_density_maps PETEf_pengbot_count

SPIGa SPIGa_pengbot_out SPIGa_density_maps SPIGa_pengbot_count

Table 2. Available �les, and naming conventions, for the Pengbot output data.
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imageid: Unique image reference for identification, in the format: SITExYEARx_imagenumber; e.g. 
DAMOa2014a_000001.

nadults: �e total number of adults counted in the corresponding image, based on �ltered (here, num_mark-
ings > 3) ‘consensus click’ data (see Kraken Files).

nchicks: �e total number of chicks counted in the corresponding image, based on �ltered (here, num_mark-
ings > 1) ‘consensus click’ data (see Kraken Files).

neggs: �e total number of eggs counted in the corresponding image, based on �ltered (here, num_mark-
ings > 1) ‘consensus click’ data (see Kraken Files).

adultndout: �e mean adult ‘nearest neighbour distance’. Calculated by taking the distance between each adult 
and its nearest (adult) neighbour, and �nding the mean average.

adultsdndout: Standard deviation of the adult ‘nearest neighbour distances’.
chickndout: �e mean chick ‘nearest neighbour distance’. Calculated by taking the distance between each chick 

and its nearest (chick) neighbour, and �nding the mean average.
chicksdndout: Standard deviation of the chick ‘nearest neighbour distances’.
chick2ndout: �e mean distance between each chick and its second nearest (chick) neighbour within each 

image. �e second nearest neighbour is calculated because the Pygoscelis penguins (the primary focus of the 
Penguin Watch camera network) usually lay two eggs. Since a chick’s nearest neighbour is therefore likely to be its 
sibling in the nest, the distance to the second nearest neighbour is calculated, to provide more information about 
the spatial distribution of chicks within the colony.

chicksd2ndout: Standard deviation of the chick ‘second nearest neighbour distances’.
meanchangeadult: Movement of each adult [j] between image [i-1] and image [i]. �is is calculated by append-

ing the xy coordinate of adult [j] in image [i] to a dataframe of the adult xy coordinates in image [i-1], and calcu-
lating the ‘nearest neighbour distance’ for adult [j]. �e nearest adult to [j] is likely itself in the previous image, 
therefore this distance represents movement between the two images. It is possible that the nearest neighbour is 
a di�erent individual, so a mean average is calculated to provide an indication of movement within the �eld of 
view. �is metric is most appropriate between incubation and the end of the guard phase, when adults are o�en 
at the nest (see Methods).

meanchangechick: Movement of each chick [k] between image [i-1] and image [i]. This is calculated by 
appending the xy coordinate of chick [k] in image [i] to a dataframe of the chick xy coordinates in image [i-1], 
and calculating the ‘nearest neighbour distance’ for chick [k]. �e nearest chick to [k] is likely itself in the previ-
ous image, therefore this distance represents movement between the two images. It is possible that the nearest 
neighbour is a di�erent individual, so a mean average is calculated to provide an indication of movement within 
the �eld of view. �is metric is most appropriate between incubation and the end of the guard phase, when chicks 
are at the nest (see Methods).

tempf: Temperature (in degrees Fahrenheit, as recorded by the camera) at the time the photograph was taken.
tempc: Temperature (in degrees Celsius) at the time the photograph was taken.
For datetime, lunar_phase and URL, please see ‘Penguin Watch Manifest’

Narwhal Plots and Penguin Watch Narwhal Animations
Narwhal Plots (see Fig. 4), generated using the Narwhal Plotting Script, provide a visualisation of summary sta-
tistics: graph 1: abundance of adults and chicks; graph 2: chick ‘second nearest neighbour distances’; and graph 3: 
mean adult ‘nearest neighbour distance’ between the ith and (i-1)th image. A plot is produced for each time-lapse 
image (Table 1), showing the moving average trends up to, and including, that image. �erefore, to see the com-
plete trend, a plot should be created for the �nal image in the data series. �e complete sets of graphs have been 
used to create Penguin Watch Narwhal Animations, which show the trends developing through time, alongside 
the time-lapse images. �e folders of Narwhal Plots and Penguin Watch Narwhal Animations correspond to those 
described in Table 4 of Jones et al. (2018) (with the exception of PETEd2013, which is not included as it is a dupli-
cate image set of PETEc2014).

Computer Vision (Pengbot) Files. Pengbot Out Files. 
Pengbot Out Files are MATLAB �les containing a matrix of ‘penguin densities’, calculated using the Pengbot 
model. A density value is provided for each pixel in the corresponding raw time-lapse photograph. A �le is pro-
vided (in Dataset 215) for each of the 63,070 images presented in Dataset 112; they are separated into folders 
according to camera (e.g. DAMOa_pengbot_out) (Table 2).

Pengbot Density Maps. 
A Pengbot Density Map (Dataset 215), generated using the Pengbot Counting Script (see Code Availability), is 
provided for each of the 63,070 raw time-lapse photographs presented in Dataset 112. �e maps are a visual rep-
resentation of the pixel densities presented in the Pengbot Out Files. Maps are stored in the database according to 
camera (e.g. DAMOa_density_map) (Table 2; Fig. 3, right).

Pengbot Count Files. 
�ese are generated using the Pengbot Counting Script (see Code Availability). �ey provide a penguin count 
(adults and chicks combined) for each image by summing the ‘penguin density’ of each pixel in the Pengbot Out 
Files (Table 2).

imageid: Unique image reference for identification, in the format: SITExYEARx_imagenumber; e.g. 
DAMOa2014a_000001.
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raw_count: �e number of penguins in the image, as calculated by the Pengbot model11. Since the counts are 
generated by summing pixel densities, they are unlikely to be an integer value.

count: �e number of penguins in the image as calculated using Pengbot, rounded to the nearest integer.

Method comparison �le. �is �le contains penguin counts for 1183 images, from four di�erent cameras – 
DAMOa (Damoy Point; n = 300), HALFc (Half Moon Island; n = 283), LOCKb (Port Lockroy; n = 300) and 
PETEc (Petermann Island; n = 300) – as calculated by an expert (‘Gold Standard’), through Penguin Watch 
(‘Citizen Science’), and by Pengbot (‘Computer Vision’).

imageid: Unique image reference for identification, in the format: SITExYEARx_imagenumber; e.g. 
DAMOa2014a_000001.

datetime: Time and date information for the image, in the format YYYY:MM:DD HH:MM:SS.
GS_adults: �e number of penguin adults in the corresponding image, as identi�ed and calculated by an 

expert.
GS_combined: �e number of penguin adults and chicks in the corresponding image, as identi�ed and calcu-

lated by an expert.
CS_adults: �e number of penguin adults in the corresponding image, generated using clustered citizen sci-

ence data from the Penguin Watch project (threshold = num_markings > 3).
CS_combined: �e number of penguin adults and chicks, as generated using clustered citizen science data 

from the Penguin Watch project (threshold = num_markings > 3 for adults and num_markings > 1 for chicks).
CV_rounded: �e rounded number of penguin individuals (adults and chicks combined) in the corresponding 

image, calculated using the Pengbot model11.
�e �le also includes columns for six comparisons:
GS_combined vs. CV_rounded; GS_adults vs. CV_rounded; CS_combined vs. CV_rounded; CS_adults vs. 

CV_rounded; GS_combined vs. CS_combined; GS_adults vs. CS_adults.

GS vs. CV 
(combined)

GS vs. 
CV 
(adults)

CS vs. CV 
(combined)

CS vs. 
CV 
(adults)

GS vs. CS 
(combined)

GS vs. CS 
(adults)

DAMOa n = 300

Average di�erence 1.95 2.01 2.21 2.25 1.36 1.18

σ 1.84 2.15 2.16 2.38 1.66 1.56

Proportion 0 or 1 0.49 0.49 0.47 0.47 0.70 0.75

Overestimate 121 143 116 145 102 101

Underestimate 115 90 136 102 113 100

HALFc n = 283

Average di�erence 1.50 1.21 1.46 1.45 1.20 0.88

σ 1.36 1.08 1.70 1.56 1.53 1.34

Proportion 0 or 1 0.61 0.69 0.65 0.66 0.72 0.85

Overestimate 60 107 70 109 58 64

Underestimate 161 101 134 99 116 91

LOCKb n = 300

Average di�erence 1.83 3.71 2.13 3.50 1.23 1.17

σ 1.70 4.27 2.50 4.10 2.03 1.98

Proportion 0 or 1 0.55 0.45 0.52 0.46 0.72 0.77

Overestimate 68 157 80 159 61 82

Underestimate 168 96 151 81 92 80

PETEc n = 300

Average di�erence 12.13 7.17 11.31 7.09 3.70 2.36

σ 5.07 3.39 7.19 4.17 4.12 2.69

Proportion 0 or 1 0 0.06 0.02 0.08 0.36 0.46

Overestimate 0 81 1 84 85 79

Underestimate 300 212 297 207 170 162

Table 3. Comparison between gold standard (GS; expert classi�cations), citizen science (CS; Penguin Watch) 
and computer vision (CV; Pengbot) counts (n = 1183). Average di�erences (in raw count) are provided, 
alongside the standard deviation of these di�erences, the proportion of counts that were equal or di�ered by 
only one penguin, and the number of over- and underestimates. For GS and CS, combined counts (i.e. adults 
and chicks) and adult-only counts are included. �e �ltering threshold levels used for the CS counts are num_
markings > 3 for adults and num_markings > 1 for chicks. CV cannot distinguish between adults and chicks, so 
a single value is provided. Overestimates and underestimates relate to the second variable, i.e. for DAMOa ‘GS 
vs. CV (combined)’, computer vision overestimated the penguin count in 121 cases, and underestimated it in 
115 cases, as compared to the gold standard. GS vs CS counts are included for completeness – please see Jones et 
al. (2018) for a full discussion.
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Two columns are provided for each comparison. �e �rst column shows the di�erence (in raw number of 
penguins) between the counts generated via the two methods. For example, if the gold standard combined count 
was 15 and the computer vision count was 12, then the ‘GS_combined vs. CV_rounded’ column would contain 
the value 3. �e second column shows the same values, with any negative signs removed (whether the counts are 
under- or over-estimates is irrelevant when calculating average di�erences).

�e average di�erence in counts, the standard deviation of this di�erence, the proportion of counts that are 
equal or di�er by only one penguin, and the number of over- and under-estimates are also provided in the spread-
sheet (and summarised in Table 3). Overestimates and underestimates relate to the second variable, i.e. for ‘GS_
combined vs. CV_rounded’, an ‘underestimate’ would mean an underestimate by computer vision, as compared 
to the gold standard.

Technical Validation
In Jones et al. (2018) we provide a technical validation of Penguin Watch citizen science data, comparing clustered 
counts (at four di�erent threshold levels) to counts derived from expert annotations (the ‘gold standard’). Here 
we extend this analysis by comparing counts generated by the Pengbot computer vision algorithm to both gold 
standard and citizen science count data (see Table 3).

As in Jones et al. (2018), images from cameras at four sites (Damoy Point (DAMOa2014a), Half Moon Island 
(HALFc2013a), Port Lockroy (LOCKb2013) and Petermann Island (PETEc2013)) were employed in the analysis, 
to ensure that images showing di�erent camera angles and colony proximity, and capturing all three Pygoscelis 
species, were included. Gold standard classi�cations (annotations by author FMJ) and citizen science counts were 
taken from Jones et al. (2018), where a sample of 300 images was randomly selected for each site from the photo-
graphs that were (1) marked as containing animals and (2) were marked as complete in Penguin Watch. (Note that 
an exception to this is HALFc, where the whole sample of 283 images was used, to give a total of 1183).

Here, citizen science counts generated using a clustering threshold level of >3 for adults and >1 for chicks 
(i.e. four or more volunteer clicks, or two or more volunteer clicks, were required to form a ‘consensus click’, 
respectively) are used, since these �ltering levels were previously found to produce counts most similar to the gold 
standard, in most cases (see Jones et al., 2018). �ese are also the threshold levels used to create the Kraken and 
Narwhal Files discussed in this Data Descriptor. Adult counts and combined counts (i.e. adults and chicks) are 
provided for the gold standard and citizen science methods, to examine the impact of this on the agreement with 
computer vision, which cannot yet distinguish between these groups.

�e average di�erence between the gold standard (combined) and computer vision derived counts was less 
than two for DAMOa, HALFc and LOCKb (1.95 (σ = 1.84), 1.50 (σ = 1.36) and 1.83 (σ = 1.70), respectively) – 
similar to the di�erences between gold standard (combined) and citizen science (combined) counts (see Fig. 5). 
�e degree of error was greater for PETEc, where the count di�ered by 12.13 penguins on average. �e greatest 
discrepancies between the gold standard and citizen science counts were also associated with this site (likely 
owing to the higher average number of adults and chicks at this site – see Jones et al., 2018).

With the exception of DAMOa, the number of underestimates outweighed the number of overestimates for 
each site, showing that the discrepancies were mainly owing to ‘missed’ individuals. As discussed in Jones et al. 
(2018), chicks are o�en missed by citizen science volunteers – perhaps owing to obscuration by an adult, misiden-
ti�cation, or – since volunteers can move onto another image a�er marking 30 individuals – simply going unan-
notated. While the latter is irrelevant for computer vision, it is possible that chicks go undetected by the algorithm 
owing to their small size, and position underneath (or directly in front of) a parent.

Fig. 5 �e average di�erence between GS and CV counts (blue) and GS and CS counts (red), shown against the 
average number of individuals per image. A = DAMOa, B = HALFc, C = LOCKb, D = PETEc.

https://doi.org/10.1038/s41597-020-0442-6


1 2SCIENTIFIC DATA |           (2020) 7:102  | https://doi.org/10.1038/s41597-020-0442-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Since the proportion of underestimates generally increases with an increasing average number of chicks per 
image, it is possible that undetected chicks are a notable contributor to the error rate. However, while the propor-
tion of overestimates is increased when chick counts are excluded (as expected, since the computer vision counts 
remain constant), the overall agreement is not improved in all cases (i.e. for DAMOa and LOCKb). �erefore, 
there are other factors contributing to the high proportion of underestimated counts. As stated, the largest dis-
crepancies between the computer vision derived counts and gold standard counts are associated with PETEc, 
where 100% of counts were underestimates when compared to the gold standard (combined). �is is also the 
site which has the highest number of individuals per image on average (36.43 compared to 11.79, 15.03 and 
10.99 at DAMOa, HALFc and LOCKb, respectively). A greater number of individuals leads to a higher prob-
ability of crowding, with some individuals occluded by others (see Fig. 6). While the human eye can detect a 
partially-obscured penguin (in an extreme case, being able to mark an individual when only its beak is visi-
ble), the computer vision algorithm – which counts penguins by summing pixel densities – cannot achieve this. 
Furthermore, a problem which has the potential to a�ect all images is an “edge-e�ect”. Again, if only half a pen-
guin is visible on the perimeter of an image, a human annotator will record this as ‘one’ penguin. However, the 
computer vision algorithm can only record it as half an individual, lowering the overall estimation.

�ese three computer vision issues – missed chicks, occlusion of individuals, and the edge-e�ect – likely act 
in combination to produce underestimates of counts, particularly when images contain high numbers of indi-
viduals, such as at PETEc. However, as shown by Table 3 and Fig. 5, computer vision o�ers a valid alternative to 
expert annotation or citizen science when examining images with fewer individuals. Moreover, when investigat-
ing colony phenology, overall population trends are of greater interest than raw population counts. As shown in 
Fig. 7, the main population trends observed at PETEc are preserved irrespective of the annotation method used, 
justifying the use of both citizen science and computer vision for this task.

One way of using computer vision and citizen science in combination would be to introduce a pipeline where 
images are �rst processed using computer vision, and then only uploaded to Penguin Watch if penguins have been 
detected. However, while it might be assumed that blank images would cause boredom in volunteers, a study by 

Fig. 6 Image data from an Adélie Penguin (Pygoscelis adeliae) colony at Petermann Island, Antarctic Peninsula, 
on 25/12/2012 at 20:00:00. �e raw time-lapse image (top) and density map (bottom) for PETEc2013b_000023 
show how crowding and occlusion can lead to underestimation by Pengbot. While the computer vision 
algorithm is correctly identifying ‘penguin pixels’, the degree of occlusion – particularly in the top le�-hand 
corner of the image – makes counting a challenge.
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Bowyer et al. (2016) shows the opposite to be true. When a higher percentage of blank images were introduced 
into the Snapshot Serengeti23 citizen science project, mean average session length (the number of images seen by 
a volunteer) also increased24. �is suggests that volunteers are motivated by the excitement of ‘discovery’ (see 
the “intermittent-reinforcement” theory25), and supports the inclusion of blank images in the Penguin Watch 
project24.

Remote camera technologies have the potential to monitor animal and plant populations in locations which 
may otherwise be impossible to e�ectively survey. Here we show that citizen science and computer vision o�er 
alternative, albeit complementary, approaches to image analysis, meaning that the vast quantity of data produced 
via camera networks should not be a barrier to their use. We demonstrate how meaningful biological metrics can 
be extracted from imagery, and hope that the Penguin Watch data presented here may form a case study for those 
wishing to carry out similar analyses, and may be useful to both ecologists and computer vision developers.

Code availability
Code used to produce �les within Dataset 112:
• Raw Penguin Watch time-lapse photographs are renamed and resized using an R (currently v3.6.0) script. 

�e code is publically available via GitHub at https://github.com/zooniverse/Data-digging/blob/master/exam-
ple_scripts/Penguin_Watch/Penguin_Watch_ImageProcessingScript.R. A static version (written using v3.4.1) is 
archived on Figshare26.
• Raw Penguin Watch volunteer classi�cations (xy coordinate clicks) were clustered into ‘consensus clicks’ 

using agglomerative hierarchical clustering (Fig. 1, le�, ‘Step 2’)10,14. �e aggregation algorithm is written in 
Python (v 2.7) and can be found on GitHub at https://github.com/zooniverse/aggregation/blob/master/penguins/
aggregate.py. A static version of this script is also archived on Figshare14.

Code used to produce �les within Dataset 215:
• �e Kraken Script (Fig. 1, le�, ‘Step 3’; output = Kraken Files) is written in R (v3.6.0); it can be accessed 

through GitHub at https://github.com/zooniverse/Data-digging/blob/master/example_scripts/Penguin_Watch/
Kraken_Script.R, and a static version is archived on Zenodo27.
• �e Narwhal Script (Fig. 1, le�, ‘Step 4’; output = Narwhal Files) is written in R (v3.6.0); it can be accessed 

through GitHub at https://github.com/zooniverse/Data-digging/blob/master/example_scripts/Penguin_Watch/
Narwhal_Script.R and a static version is archived on Zenodo28.
• �e Narwhal Plotting Script (output = Narwhal Plots – graphs displaying Narwhal summary statistics) is writ-

ten in R (v3.6.0); it can be accessed through GitHub at https://github.com/zooniverse/Data-digging/blob/master/
example_scripts/Penguin_Watch/Narwhal_Plotting_Script.R and a static version is archived on Zenodo29.
• �e Pengbot model11, associated code and instructions, and the dataset used to train the neural network can 

be found at the following address: https://www.robots.ox.ac.uk/~vgg/data/penguins/.
• �e Pengbot Counting Script (Fig. 1, right, ‘Step 2’ and ‘Step 3’) is written in R (v3.6.0); it can be accessed 

through GitHub at https://github.com/zooniverse/Data-digging/blob/master/example_scripts/Penguin_Watch/
Pengbot_Counting_Script.R and a static version is archived on Zenodo30.
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Fig. 7 �e penguin population trend at Petermann Island, Antarctic Peninsula (camera PETEc) between 
3/12/2012 and 11/01/2013, as determined using expert-annotations (gold standard (GS); green), Penguin Watch 
(citizen science (CS); red), and the Pengbot algorithm (computer vision (CV); blue). Trends are shown as a 
moving average (n = 15).
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